Sample records for good separation efficiency

  1. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui

    2017-04-01

    Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments.

  2. A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments.

    PubMed

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zhuang, Jiandong; Chen, Lihui

    2016-09-14

    Oil-water separation has recently become an important subject due to the increasing incidence of oil spills. Materials with underwater superoleophobic properties have aroused considerable interest due to their cost-effectiveness, environmental friendliness and anti-fouling properties. This paper presents a robust salt-tolerant superoleophobic aerogel inspired by seaweed used without any further chemical modification for oil-seawater separation. The green aerogel is prepared by freeze-drying of sodium alginate (SA)-nanofibrillated cellulose (NFC) using Ca 2+ ions as the crosslinking agent. The three-dimensional (3D) interconnected network structure of the developed aerogel ensures its high mechanical strength and good flexibility. The natural hydrophilicity of the polysaccharides contained in the aerogel ensures its excellent underwater superoleophobicity, antifouling and salt-tolerance properties. More impressively, the as-prepared aerogel can even keep its underwater superoleophobicity and high hydrophilicity after being immersed in seawater for 30 days, indicating its good stability in marine environments. Furthermore, the aerogel could separate oil-seawater mixtures with a high separation efficiency (of up to 99.65%) and good reusability (at least 40 cycles). The facile and green fabrication process combined with the excellent separation performance and good reusability makes it possible to develop engineering materials for oil-water separation in marine environments.

  3. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

    PubMed Central

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui

    2017-01-01

    Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments. PMID:28397862

  4. Large gamma-ray detector arrays and electromagnetic separators

    NASA Astrophysics Data System (ADS)

    Lee, I.-Yang

    2013-12-01

    The use of large gamma-ray detector arrays with electromagnetic separators is a powerful combination. Various types of gamma-ray detectors have been used; some provide high detector efficiency such as scintillation detector array, others use Ge detectors for good energy resolution, and recently developed Ge energy tracking arrays gives both high peak-to-background ratio and position resolution. Similarly, different types of separators were used to optimize the performance under different experimental requirements and conditions. For example, gas-filled separators were used in heavy element studies for their large efficiency and beam rejection factor. Vacuum separators with good isotope resolution were used in transfer and fragmentation reactions for the study of nuclei far from stability. This paper presents results from recent experiments using gamma-ray detector arrays in combination with electromagnetic separators, and discusses the physics opportunities provided by these instruments. In particular, we review the performance of the instruments currently in use, and discuss the requirements of instruments for future radioactive beam accelerator facilities.

  5. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  6. Fabrication of superhydrophilic and underwater superoleophobic metal mesh by laser treatment and its application

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Lian, Zhongxu; Xu, Jinkai; Yu, Zhanjiang; Ren, Wanfei; Yu, Huadong

    2018-04-01

    In this paper, a lot of micron-sized sand granular structures were formed on the substrate of the stainless steel mesh (SSM) by laser treatment. The rough surface with sand granular structures showed superhydrophilic in air and superoleophobic under water. With its special wettability, the SSM by laser treatment could achieve the separation of the oil/water mixture, showing good durability and high separation efficiency, which was very useful in the practical application of large-scale oil/water separation facility for reducing the impacts of oil leaked on the environment. In addition, it showed that the laser-treated SSM had a very high separation rate. The development of the laser-treated SSM is a simple, environmental, economical and high-efficiency method, which provides a new approach to the production of high efficiency facilities for oil/water separation.

  7. A Novel Sensitive Luminescence Probe Microspheres for Rapid and Efficient Detection of τ-Fluvalinate in Taihu Lake

    PubMed Central

    Wang, Jixiang; Wang, Yunyun; Qiu, Hao; Sun, Lin; Dai, Xiaohui; Pan, Jianming; Yan, Yongsheng

    2017-01-01

    Fluorescent molecularly imprinted polymers have shown great promise in biological or chemical separations and detection, due to their high stability, selectivity and sensitivity. In this work, fluorescent molecularly imprinted microsphere was synthesized via precipitation polymerization, which could separate efficiently and rapidly detect τ-fluvalinate (a toxic insecticide) in water samples, was reported. The fluorescent imprinted sensor showed excellent stability, outstanding selectivity and the limit of detection low to 12.14 nM, good regeneration ability which still kept good sensitivity after 8 cycling experiments and fluorescence quenching mechanism was illustrated in details. In addition, the fluorescent sensor was further used to detect τ-fluvalinate in real samples from Taihu Lake. Despite the relatively complex components of the environment water, the fluorescent imprinted microspheres sitll showed good recovery, clearly demonstrating the potental value of this smart sensor nanomaterial in environment monitoring. PMID:28485402

  8. A new approach to high-efficiency multi-band-gap solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnham, K.W.J.; Duggan, G.

    1990-04-01

    The advantages of using multi-quantum-well or superlattice systems as the absorbers in concentrator solar cells are discussed. By adjusting the quantum-well width, an effective band-gap variation that covers the high-efficiency region of the solar spectrum can be obtained. Higher efficiencies should result from the ability to optimize separately current and voltage generating factors. Suitable structures to ensure good carrier separation and collection and to obtain higher open-circuit voltages are presented using the (AlGa)As/GaAs/(InGa)As system. Efficiencies above existing single-band-gap limits should be achievable, with upper limits in excess of 40%.

  9. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin.

    PubMed

    Zhang, Yitong; Qian, Zijun; Liu, Peng; Liu, Lei; Zheng, Zhaojuan; Ouyang, Jia

    2018-02-01

    To get rid of the dependence on lactic acid neutralizer, a simple and economical approach for efficient in situ separation and production of L-lactic acid was established by Bacillus coagulans using weak basic anion-exchange resin. During ten tested resins, the 335 weak basic anion-exchange resins demonstrated the highest adsorption capacity and selectivity for lactic acid recovery. The adsorption study of the 335 resins for lactic acid confirmed that it is an efficient adsorbent under fermentation condition. Langmuir models gave a good fit to the equilibrium data at 50 °C and the maximum adsorption capacity for lactic acid by 335 resins was about 402 mg/g. Adsorption kinetic experiments showed that pseudo-second-order kinetics model gave a good fit to the adsorption rate. When it was used for in situ fermentation, the yield of L-lactic acid by B. coagulans CC17 was close to traditional fermentation and still maintained at about 82% even after reuse by ten times. These results indicated that in situ separation and production of L-lactic acid using the 335 resins were efficient and feasible. This process could greatly reduce the dosage of neutralizing agent and potentially be used in industry.

  10. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  11. Gas-liquid flow splitting in T-junction with inclined lateral arm

    NASA Astrophysics Data System (ADS)

    Yang, Le-le; Liu, Shuo; Li, Hua; Zhang, Jian; Wu, Ying-xiang; Xu, Jing-yu

    2018-02-01

    This paper studies the gas-liquid flow splitting in T-junction with inclined lateral arm. The separation mechanism of the T-junction is related to the pressure distribution in the T-junction. It is shown that the separation efficiency strongly depends on the inclination angle, when the angle ranges from 0° to 30°, while not so strongly for angles in the range from 30° to 90° Increasing the number of connecting tubes is helpful for the gas-liquid separation, and under the present test conditions, with four connecting tubes, a good separation performance can be achieved. Accordingly, a multi-tube Y-junction separator with four connecting tubes is designed for the experimental investigation. A good agreement between the simulated and measured data shows that there is an optimal split ratio to achieve the best performance for the multi-tube Y-junction separator.

  12. In situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil-water separation

    NASA Astrophysics Data System (ADS)

    Tang, Xiaomin; Si, Yang; Ge, Jianlong; Ding, Bin; Liu, Lifang; Zheng, Gang; Luo, Wenjing; Yu, Jianyong

    2013-11-01

    Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161° and superoleophilicity with an oil contact angle of 0°. This new membrane shows high thermal stability (350 °C) and good repellency to hot water (80 °C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification.Creating an efficient, cost-effective method that can provide simple, practical and high-throughput separation of oil-water mixtures has proved extremely challenging. This work responds to these challenges by designing, fabricating and evaluating a novel fluorinated polybenzoxazine (F-PBZ) modified nanofibrous membrane optimized to achieve gravity driven oil-water separation. The membrane design is then realized by a facile combination of electrospun poly(m-phenylene isophthalamide) (PMIA) nanofibers and an in situ polymerized F-PBZ functional layer incorporating SiO2 nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NP modification, the pristine hydrophilic PMIA nanofibrous membranes are endowed with promising superhydrophobicity with a water contact angle of 161° and superoleophilicity with an oil contact angle of 0°. This new membrane shows high thermal stability (350 °C) and good repellency to hot water (80 °C), and achieves an excellent mechanical strength of 40.8 MPa. Furthermore, the as-prepared membranes exhibited fast and efficient separation of oil-water mixtures by a solely gravity driven process, which makes them good candidates for industrial oil-polluted water treatments and oil spill cleanup, and also provided new insights into the design and development of functional nanofibrous membranes through F-PBZ modification. Electronic supplementary information (ESI) available: Detailed synthesis and structural confirmation of BAF-oda, OCA results, Raman spectrum and Movies S1 and S2. See DOI: 10.1039/c3nr03937d

  13. Determination of volatile compounds in cider apple juices using a covalently bonded ionic liquid coating as the stationary phase in gas chromatography.

    PubMed

    Pello-Palma, Jairo; González-Álvarez, Jaime; Gutiérrez-Álvarez, María Dolores; Dapena de la Fuente, Enrique; Mangas-Alonso, Juan José; Méndez-Sánchez, Daniel; Gotor-Fernández, Vicente; Arias-Abrodo, Pilar

    2017-04-01

    A chromatographic method for the separation of volatile compounds in Asturian cider apple juices has been developed. For this separation purpose, a monocationic imidazolium-based ionic liquid bearing a reactive terminal iodine atom was synthesized by a quaternization-anion exchange chemical sequence. Next, the gas chromatography (GC) stationary phase was prepared by covalently linking the imidazolium monolith to the reactive silanol groups of the inner capillary wall at 70 °C. This coated GC column exhibited good thermal stability (290 °C), as well as good efficiency (2000 plates/m) in the separation of volatile compounds from Asturian apple cider juices, and was characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the chromatographic method was evaluated, obtaining relative standard deviations from 3.7 to 12.9% and from 7.4 to 18.0%, respectively. Furthermore, recoveries from 82.5 to 122% were achieved. Graphical Abstract Covalent bonding of an ionic liquid to inner column wall led to a great improvement of the separation efficiencies of stationary phases in gas chromatography.

  14. Cationic double-chained surfactant as pseudostationary phase in micellar electrokinetic capillary chromatography for drug separations.

    PubMed

    Li, Yanqing; Liu, Qian; Yao, Shouzhuo

    2008-05-15

    The cationic double-chained surfactant didodecyldimethylammonium bromide (DDAB) was used as pseudostationary phase (PSP) in micellar electrokinetic capillary chromatography (MEKC). Its performance on the three kinds of drugs, i.e., basic, acidic, and neutral drugs, was systematically investigated. Nicotine, cotinine, caffeine, lidocaine, and procaine were selected as the model basic drugs. Good baseline separation and high efficiency were obtained under the optimal separation condition that consisted of 50mM phosphate (pH 4.0) and 0.08 mM DDAB. Three basic phenylenediamine isomers can also be well separated with DDAB in buffer. In addition, DDAB can form cationic bilayer on the capillary wall, thus the wall adsorption of basic analytes was greatly suppressed. Compared with commonly used CTAB, the separation of basic drugs was significantly improved with a much lower amount of DDAB present in the buffer. The DDAB-involved MEKC also showed superiority to CTAB upon the separation of acidic drugs, amoxicillin and ampicillin. In the case of neutral compounds, a good separation of resorcinol, 1-naphthol and 2-naphthol was achieved with 0.1mM DDAB and 30% (v/v) acetonitrile (ACN) present in buffer. Hence, it was concluded that the double-chained cationic surfactant DDAB can be a good substitute for traditional single-chained surfactant CTAB in MEKC.

  15. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    NASA Astrophysics Data System (ADS)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  16. A new two-roll electrostatic separator for recycling of metals and nonmetals from waste printed circuit board.

    PubMed

    Jiang, Wu; Jia, Li; Zhen-Ming, Xu

    2009-01-15

    The electrostatic separation is an effective method for recycling waste electrical and electronic equipment (WEEE). The efficiency of electrostatic separation processes depends on the ability of the separator. As a classical one, the roll-type corona-electrostatic separator has some advantages in recycling metals and plastics from waste printed circuit board (PCB). However, its industry application still faces some problems, such as: the further disposal of the middling products of the separation process; the balance of the production capacity and the good separation efficiency; the separation of the fine granular mixture and the stability of the separation process. A new "two-roll-type corona-electrostatic separator" was built to overcome the limitation of the classical one. The experimental data were discussed and the results showed that the outcome of the separation process was improved by using the new separator. Compared with the classical machine, the mass of conductive products increases 8.9% (groups 2 and 3) and10.2% (group 4) while the mass of the middling products decreases 45% (groups 2 and 3) and 31.7% (group 4), respectively. The production capacity of the new machine increases, and the stability of the separation process is enhanced.

  17. Artificial receptor-functionalized nanoshell: facile preparation, fast separation and specific protein recognition

    NASA Astrophysics Data System (ADS)

    Ouyang, Ruizhuo; Lei, Jianping; Ju, Huangxian

    2010-05-01

    This work combined molecular imprinting technology with superparamagnetic nanospheres as the core to prepare artificial receptor-functionalized magnetic nanoparticles for separation of homologous proteins. Using dopamine as a functional monomer, novel surface protein-imprinted superparamagnetic polydopamine (PDA) core-shell nanoparticles were successfully prepared in physiological conditions, which could maintain the natural structure of a protein template and achieved the development of molecularly imprinted polymers (MIPs) from one dimension to zero dimension for efficient recognition towards large biomolecules. The resultant nanoparticles could be used for convenient magnetic separation of homologous proteins with high specificity. The nanoparticles possessed good monodispersibility, uniform surface morphology and high saturation magnetization value. The bound amounts of template proteins measured by both indirect and direct methods were in good agreement. The maximum number of imprinted cavities on the surface of the bovine hemoglobin (Hb)-imprinted nanoshell was 2.21 × 1018 g - 1, which well matched their maximum binding capacity toward bovine Hb. Both the simple method for preparation of MIPs and the magnetic nanospheres showed good application potential in fast separation, effective concentration and selective biosensing of large protein molecules.

  18. Further theoretical studies of modified cyclone separator as a diesel soot particulate emission arrester.

    PubMed

    Mukhopadhyay, N; Bose, P K

    2009-10-01

    Soot particulate emission reduction from diesel engine is one of the most emerging problems associated with the exhaust pollution. Diesel particulate filters (DPF) hold out the prospects of substantially reducing regulated particulate emissions but the question of the reliable regeneration of filters still remains a difficult hurdle to overcome. Many of the solutions proposed to date suffer from design complexity, cost, regeneration problem and energy demands. This study presents a computer aided theoretical analysis for controlling diesel soot particulate emission by cyclone separator--a non contact type particulate removal system considering outer vortex flow, inner vortex flow and packed ceramic fiber filter at the end of vortex finder tube. Cyclone separator with low initial cost, simple construction produces low back pressure and reasonably high collection efficiencies with reduced regeneration problems. Cyclone separator is modified by placing a continuous ceramic packed fiber filter placed at the end of the vortex finder tube. In this work, the grade efficiency model of diesel soot particulate emission is proposed considering outer vortex, inner vortex and the continuous ceramic packed fiber filter. Pressure drop model is also proposed considering the effect of the ceramic fiber filter. Proposed model gives reasonably good collection efficiency with permissible pressure drop limit of diesel engine operation. Theoretical approach is predicted for calculating the cut size diameter considering the effect of Cunningham molecular slip correction factor. The result shows good agreements with existing cyclone and DPF flow characteristics.

  19. Enhancing separation in short-capillary electrophoresis via pressure-driven backflow.

    PubMed

    Tian, Miaomiao; Wang, Yujia; Mohamed, Amara Camara; Guo, Liping; Yang, Li

    2015-07-01

    We present a novel easy-to-operate and efficient method to improve the separation efficiency in short-capillary electrophoresis by introducing steady backflow to counterbalance electro-osmotic flow without the use of any external pressure. The backflow was easily generated by tapering the capillary end, which was achieved by heating a straight capillary and stretching it with a constant force. We investigated the net fluidic transport rate under different tip lengths and separation voltages. Good run-to-run repeatability and capillary-to-capillary reproducibility of the present method were obtained with RSD less than 1.5%, indicating the stability of the fluid transport rate in the tapered capillary, which ensures the quantification and repeatability of capillary zone electrophoresis (CZE) analysis. Enhanced separation of the tapered short capillary electrophoresis was demonstrated by CZE analyzing amino acids and positional isomers. Baseline separations were achieved in less than 60 s using a tapered capillary with the effective length of 5 cm, while no separation was achieved using a normal capillary without a tapered tip. The present study provides a promising method to use pressure-driven backflow to enhance separation efficiency in short-capillary electrophoresis, which would be of potential value in a wide application for fast analysis of complex samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment.

    PubMed

    Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-09-15

    Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Joo; Seol, Jin-Kyeong; Wu, Yu; Ji, Seungmuk; Kim, Gil-Sung; Hyung, Jung-Hwan; Lee, Seung-Yong; Lim, Hyuneui; Fan, Rong; Lee, Sang-Kwon

    2012-03-01

    We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4+ T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 +/- 1.1% for the CD4+ T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4+ T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11338d

  2. Dual Superlyophobic Copper Foam with Good Durability and Recyclability for High Flux, High Efficiency, and Continuous Oil-Water Separation.

    PubMed

    Zhou, Wenting; Li, Song; Liu, Yan; Xu, Zhengzheng; Wei, Sufeng; Wang, Guoyong; Lian, Jianshe; Jiang, Qing

    2018-03-21

    Traditional oil-water separation materials have to own ultrahigh or ultralow surface energy. Thus, they can only be wetted by one of the two, oil or water. Our experiment here demonstrates that the wettability in oil-water mixtures can be tuned by oil and water initially. Hierarchical voids are built on commercial copper foams with the help of hydrothermally synthesized titanium dioxide nanorods. The foams can be easily wetted by both oil and water. The water prewetted foams are superhydrophilic and superoleophobic under oil-water mixtures, meanwhile the oil prewetted foams are superoleophilic and superhydrophobic. In this paper, many kinds of water-oil mixtures were separated by two foams, prewetted by corresponding oil or water, respectively, combining a straight tee in a high flux, high efficiency, and continuous mode. This research indicates that oil-water mixtures can be separated more eco-friendly and at lower cost.

  3. Synthesis and evaluation of a maltose-bonded silica gel stationary phase for hydrophilic interaction chromatography and its application in Ginkgo Biloba extract separation in two-dimensional systems.

    PubMed

    Sheng, Qianying; Yang, Kaiya; Ke, Yanxiong; Liang, Xinmiao; Lan, Minbo

    2016-09-01

    Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross-linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two-dimensional hydrophilic interaction liquid chromatography× reversed-phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two-dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Selective isolation of gonyautoxins 1,4 from the dinoflagellate Alexandrium minutum based on molecularly imprinted solid-phase extraction.

    PubMed

    Lian, Ziru; Wang, Jiangtao

    2017-09-15

    Gonyautoxins 1,4 (GTX1,4) from Alexandrium minutum samples were isolated selectively and recognized specifically by an innovative and effective extraction procedure based on molecular imprinting technology. Novel molecularly imprinted polymer microspheres (MIPMs) were prepared by double-templated imprinting strategy using caffeine and pentoxifylline as dummy templates. The synthesized polymers displayed good affinity to GTX1,4 and were applied as sorbents. Further, an off-line molecularly imprinted solid-phase extraction (MISPE) protocol was optimized and an effective approach based on the MISPE coupled with HPLC-FLD was developed for selective isolation of GTX1,4 from the cultured A. minutum samples. The separation method showed good extraction efficiency (73.2-81.5%) for GTX1,4 and efficient removal of interferences matrices was also achieved after the MISPE process for the microalgal samples. The outcome demonstrated the superiority and great potential of the MISPE procedure for direct separation of GTX1,4 from marine microalgal extracts. Copyright © 2017. Published by Elsevier Ltd.

  5. Viscous investigation of a flapping foil propulsor

    NASA Astrophysics Data System (ADS)

    Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat

    2018-01-01

    Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.

  6. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    PubMed

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic pH junction high-speed counter-current chromatography coupled with microwave-assisted extraction for online separation and purification of alkaloids from Stephania cepharantha.

    PubMed

    Yuan, Zhiquan; Xiao, Xiaohua; Li, Gongke

    2013-11-22

    A simple and efficient dynamic pH junction high-speed counter-current chromatography method was developed and further applied to the online extraction, separation and purification of alkaloids from Stephania cepharantha by coupling with microwave-assisted extraction. Mineral acid and organic base were added into the mobile phase and the sample solution, respectively, leading to the formation of a dynamic pH junction in the column and causing focus of alkaloids. Selective focus of analytes can be achieved on the basis of velocity changes of the pH junction through appropriate selection of solvent systems and optimization of additive concentrations. The extract can be directly introduced into the HSCCC for the online extraction, separation and purification of alkaloids from S. cepharantha. Continuous separation can be easily achieved with the same solvent system. Under the optimum conditions, 6.0 g original sample was extracted with 60 mL of the upper phase of hexane-ethyl acetate-methanol-water (1:1:1:1, v/v/v/v) containing 10% triethylamine under 50 °C and 400 W irradiation power for 10 min, the extracts were directly separated and purified by high-speed counter-current chromatography. A total of 5.7 mg sinomenine, 8.3mg 6,7-di-O-acetylsinococuline, 17.9 mg berbamine, 12.7 mg isotetrandrine and 14.6 mg cepharanthine were obtained with purities of 96.7%, 93.7%, 98.7%, 97.3% and 99.3%, respectively. The online method provides good selectivity to ionizable compounds and improves the separation and purification efficiency of the high-speed counter-current chromatography technique. It has good potential for separation and purification of effective compounds from natural products. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Robust diamond meshes with unique wettability properties.

    PubMed

    Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan

    2014-03-18

    Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.

  9. Separation of swine wastewater into different concentration fractions and its contribution to combined anaerobic-aerobic process.

    PubMed

    Yang, Di; Deng, Liangwei; Zheng, Dan; Wang, Lan; Liu, Yi

    2016-03-01

    There are two problems associated with treatment of swine wastewater, low efficiency of anaerobic digestion during winter and poor performance for aerobic treatment of digested effluent. A strategy employing unbalanced distributions of the pollutant mass and wastewater volumes in anaerobic and aerobic units was proposed. To accomplish this, swine wastewater was separated into high content liquid (HCL) and low content liquid (LCL). Three separation ratios of HCL to LCL (v/v), 1:9 (S1), 2:8 (S2), and 3:7 (S3), were evaluated. Anaerobically digestion of the HCL accounted for only 10%, 20% and 30% of the total volume of raw wastewater, but produced 63.38%, 73.79% and 76.61% of the total methane output for S1, S2 and S3, respectively. The mixed liquid of digested effluents of HCL and LCL were treated aerobically using sequencing batch reactors. S2 generated the best performance, with removal efficiencies of 96.98% for COD, 98.95% for NH3-N, 91.69% for TN and 74.71% for TP. The results obtained for S1 were not as good as those for S2, but were better than those for S3. Based on methane output from the anaerobic unit and pollutants removal in the aerobic unit, S2 was the most suitable system for the treatment of swine wastewater. Additionally, the anaerobic digestion efficiency of S2 was 282% higher than that of previous techniques employing balanced distribution. Taken together, these findings indicate that unbalanced distribution could improve the efficiency of the anaerobic unit remarkably, while ensuring good performance of the aerobic unit. Copyright © 2015. Published by Elsevier Ltd.

  10. Separation analysis of macrolide antibiotics with good performance on a positively charged C18HCE column.

    PubMed

    Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-03-01

    The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Fabrication of zeolitic imidazolate framework-8-methacrylate monolith composite capillary columns for fast gas chromatographic separation of small molecules.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; ALOthman, Zeid Abdullah

    2015-08-07

    A composite zeolitic imidazolate framework-8 (ZIF-8) with a butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.) was fabricated to enhance the separation efficiency of methacrylate monoliths toward small molecules using conventional low-pressure gas chromatography in comparison with a neat butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolithic capillary column (33.5cm long×250μm i.d.). The addition of 10mgmL(-1) ZIF-8 micro-particles increased the BET surface area of BuMA-co-EDMA by 3.4-fold. A fast separation of five linear alkanes in 36s with high resolution (Rs≥1.3) was performed using temperature program. Isothermal separation of the same sample also showed a high efficiency (3315platesm(-1) for octane) at 0.89min. Moreover, the column was able to separate skeletal isomers, such as iso-octane/octane and 2-methyl octane/nonane. In addition, an iso-butane/iso-butylene gas mixture was separated at ambient temperature. Comparison with an open tubular TR-5MS column (30m long×250μm i.d.) revealed the superiority of the composite column in separating the five-membered linear alkane mixture with 4-5 times increase in efficiency and a total separation time of 0.89min instead of 4.67min. A paint thinner sample was fully separated using the composite column in 2.43min with a good resolution (Rs≥0.89). The perfect combination between the polymeric monolith, with its high permeability, and ZIF-8, with its high surface area and flexible 0.34nm pore openings, led to the fast separation of small molecules with high efficiency and opened a new horizon in GC applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Magnetically Separable MoS₂/Fe₃O₄/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol.

    PubMed

    Lu, Haijiao; Wang, Jingkang; Hao, Hongxun; Wang, Ting

    2017-09-30

    With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS₂/Fe₃O₄/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these problems. MoS₂ nanosheets (MNs) acted as an efficient support for nZVI and enriched the organic pollutants nearby, leading to an enhanced removal efficiency. Fe₃O₄ nanoparticles (NPs) could not only suppress the agglomeration and restacking of MNs, but also facilitate easy separation and recovery of the nanocomposites. The synergistic effect between MNs and Fe₃O₄ NPs effectively enhanced the reactivity and efficiency of nZVI. In the system, Cr(VI) was reduced to Cr(III) by nZVI in the nanocomposites, and Fe 2+ produced in the process was combined with H₂O₂ to further remove 4-Chlorophenol (4-CP) through a Fenton reaction. Furthermore, the nanocomposites could be easily separated from wastewater by a magnet and be reused for at least five consecutive runs, revealing good reusability. The results demonstrate that the novel nanocomposites are highly efficient and promising for the simultaneous removal of Cr(VI) and 4-CP in wastewater.

  13. Critical rotational speed model of the rotating roll electrode in corona electrostatic separation for recycling waste printed circuit boards.

    PubMed

    Li, Jia; Lu, Hongzhou; Xu, Zhenming; Zhou, Yaohe

    2008-06-15

    Waste printed circuit board (PCB) is increasing worldwide. The corona electrostatic separation (CES) was an effective and environmental protection way to recycle resource from waste PCBs. The aim of this paper is to analyze the main factor (rotational speed) that affects the efficiency of CES from the point of view of electrostatics and mechanics. A quantitative method for analyzing the affection of rotational speed was studied and the model for separating flat nonmetal particles in waste PCBs was established. The conception of "charging critical rotational speed" and "detaching critical rotational speed" were presented. Experiments with the waste PCBs verified the theoretical model, and the experimental results were in good agreement with the theoretical model. The results indicated that the purity and recycle percentage of materials got a good level when the rotational speed was about 70 rpm and the critical rotational speed of small particles was higher than big particles. The model can guide the definition of operator parameter and the design of CES, which are needed for the development of any new application of the electrostatic separation method.

  14. Clean-up of a pesticide-lanolin mixture by gel permeation chromatography.

    PubMed

    López-Mesas, M; Crespi, M; Brach, J; Mullender, J P

    2000-12-01

    In this study, the efficiency of a clean-up method by gel permeation chromatography (GPC) for the separation of pesticides from lanolin is analyzed. The pesticides analyzed belong to two different families, organophosphorous and synthetic pyrethroids. Lanolin, a standard mixture of the pesticides, and a lanolin-pesticides mixture are injected in a GPC column. The recoveries and elution times from the GPC column of lanolin (by a gravimetric method) and pesticides (by gas chromatography-electron capture detector) are determined. From this column, a good separation of the lanolin-pesticides mixture is observed.

  15. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.

    PubMed

    Ghimici, Luminita

    2016-03-15

    The flocculation efficiency of a cationic polyelectrolyte with quaternary ammonium salt groups in the backbone, namely PCA5 was evaluated on zirconium silicate (kreutzonit), kaolin, K- feldspar and zinc oxide (ZnO) suspensions prepared either with each pollutant or with their mixture. The effect of several parameters such as settling time, polymer dose and the pollutant type on the separation efficacy was evaluated and followed by optical density and zeta potential measurements. Except for ZnO, the interactions between PCA5 and suspended particles led to low residual turbidity values (around 4% for kreutzonit, 5% for kaolin and 8% for K-feldspar) as well as to the reduction of flocs settling time (from 1200 min to 30 min and 120 min in case of kaolinit and K-feldspar, respectively), that meant a high efficiency in their separation. The negative value of the zeta potential and flocs size measurements, at the optimum polymer dose, point to contribution from charge patch mechanism for the particles flocculation. A good efficiency of PCA5 in separation of paraffin oil (a minimum residual turbidity of 9.8%) has been also found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Separation and purification of fructooligosaccharides on a zeolite fixed-bed column.

    PubMed

    Kuhn, Raquel Cristine; Mazutti, Marcio Antonio; Maugeri Filho, Francisco

    2014-04-01

    Fructooligosaccharides (FOS), a well-known prebiotic product, are obtained by enzymatic synthesis and consist of a mixture of mono- and disaccharides. In this work, a methodology for their separation and purification was developed using a zeolite fixed-bed column. The effects of column temperature (40-60°C), eluent flow rate (0.10-0.14 mL/min), injected to bed volume percent ratio (2.6-5.1%), and ethanol concentration in the eluent (40-60%, v/v) were investigated using a fractionary factorial design (2(4-1)), having the separation efficiency and purity as target responses. Additional experiments were performed as well, where the temperature and ethanol concentration were studied in a central composite design (2(2)). In this work, the zeolite fixed-bed column was shown to be a good alternative for FOS purification, allowing a FOS purity of 90% and separation efficiency of 6.86 between FOS and glucose, using an eluent at 45°C with 60% ethanol concentration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Removal of the commercial pesticides Novadim Progress, Bordeaux mixture and Karate Zeon by pullulan derivatives based flocculants.

    PubMed

    Ghimici, Luminita; Constantin, Marieta

    2018-04-14

    Cationic pullulan derivatives have been synthesized and evaluated, for the first time, as flocculants for the separation of the commercial pesticides, Novadim Progress (organophosphoric type), Bordeax mixture and Karate Zeon (pyrethroid type) from synthetic wastewater. The investigated polymer samples contained either pendent tertiary amine or quaternary ammonium salts groups. The separation efficiency was followed by UV-Vis spectroscopy, while the information regarding the mechanism involved in the separation of pesticide particles have been obtained by zeta potential. UV-Vis spectroscopy data showed strong pesticide particles/polycation interactions in case of Novadim Progress and Bordeaux mixture (maximum pesticide removal between 90% and 98%). Good separation efficiency (around 80%) of Karate Zeon emulsion was also noticed. The zeta potential measurements indicated that the charge neutralization was the common flocculation mechanism for the removal of these pesticides. In addition, the hydrogen bondings and chelation of copper ions by amide and/or tertiary amino groups of the polycations had a noteworthy contribution to the pesticide removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. pYEMF, a pUC18-derived XcmI T-vector for efficient cloning of PCR products.

    PubMed

    Gu, Jingsong; Ye, Chunjiang

    2011-03-01

    A 1330-bp DNA sequence with two XcmI cassettes was inserted into pUC18 to construct an efficient XcmI T-vector parent plasmid, pYEMF. The large size of the inserted DNA fragment improved T-vector cleavage efficiency, and guaranteed good separation of the molecular components after restriction digestion. The pYEMF-T-vector generated from parent plasmid pYEMF permits blue/white colony screening; cloning efficiency analysis showed that most white colonies (>75%) were putative transformants which carried the cloning product. The sequence analysis and design approach presented here will facilitate applications in the fields of molecular biology and genetic engineering.

  19. Comparing monolithic and fused core HPLC columns for fast chromatographic analysis of fat-soluble vitamins.

    PubMed

    Kurdi, Said El; Muaileq, Dina Abu; Alhazmi, Hassan A; Bratty, Mohammed Al; Deeb, Sami El

    2017-06-27

    HPLC stationary phases of monolithic and fused core type can be used to achieve fast chromatographic separation as an alternative to UPLC. In this study, monolithic and fused core stationary phases are compared for fast separation of four fat-soluble vitamins. Three new methods on the first and second generation monolithic silica RP-18e columns and a fused core pentafluoro-phenyl propyl column were developed. Application of three fused core columns offered comparable separations of retinyl palmitate, DL-α-tocopheryl acetate, cholecalciferol and menadione in terms of elution speed and separation efficiency. Separation was achieved in approx. 5 min with good resolution (Rs > 5) and precision (RSD ≤ 0.6 %). Monolithic columns showed, however, a higher number of theoretical plates, better precision and lower column backpressure than the fused core column. The three developed methods were successfully applied to separate and quantitate fat-soluble vitamins in commercial products.

  20. Magnetically Separable MoS2/Fe3O4/nZVI Nanocomposites for the Treatment of Wastewater Containing Cr(VI) and 4-Chlorophenol

    PubMed Central

    Wang, Jingkang; Wang, Ting

    2017-01-01

    With a large specific surface area, high reactivity, and excellent adsorption properties, nano zerovalent iron (nZVI) can degrade a wide variety of contaminants in wastewater. However, aggregation, oxidation, and separation issues greatly impede its wide application. In this study, MoS2/Fe3O4/nZVI nanocomposites were successfully synthesized by a facile step-by-step approach to overcome these problems. MoS2 nanosheets (MNs) acted as an efficient support for nZVI and enriched the organic pollutants nearby, leading to an enhanced removal efficiency. Fe3O4 nanoparticles (NPs) could not only suppress the agglomeration and restacking of MNs, but also facilitate easy separation and recovery of the nanocomposites. The synergistic effect between MNs and Fe3O4 NPs effectively enhanced the reactivity and efficiency of nZVI. In the system, Cr(VI) was reduced to Cr(III) by nZVI in the nanocomposites, and Fe2+ produced in the process was combined with H2O2 to further remove 4-Chlorophenol (4-CP) through a Fenton reaction. Furthermore, the nanocomposites could be easily separated from wastewater by a magnet and be reused for at least five consecutive runs, revealing good reusability. The results demonstrate that the novel nanocomposites are highly efficient and promising for the simultaneous removal of Cr(VI) and 4-CP in wastewater. PMID:28973986

  1. Separator Decoration with Cobalt/Nitrogen Codoped Carbon for Highly Efficient Polysulfide Confinement in Lithium-Sulfur Batteries.

    PubMed

    Hu, Wen; Hirota, Yuichiro; Zhu, Yexin; Yoshida, Nao; Miyamoto, Manabu; Zheng, Tao; Nishiyama, Norikazu

    2017-09-22

    A macro-/mesoporous Co-N-C-decorated separator is proposed to confine and reutilize migrating polysulfides. Endowed with a desirable structure and synchronous lithio- and sulfiphilic chemistry, the macro-/mesoporous Co-N-C interface manipulates large polysulfide adsorption uptake, enabling good polysulfide adsorption kinetics, reversible electrocatalysis toward redox of anchored polysulfides, and facile charge transport. It significantly boosts the performance of a simple 70 wt % S/MWCNTs (MWCNTs=multi-walled carbon nanotubes) cathode, achieving high initial capacities (e.g., 1406 mAh g -1 at 0.2C, 1203 mAh g -1 at 1C), nearly 100 % Coulombic efficiencies, and high reversible capacities after cycle tests (e.g., 828.4 mAh g -1 at 1C after 100 cycles) at both low and high current rates. These results demonstrate that decorating separator with macro-/mesoporous Co-N-C paves a feasible way for developing advanced Li-S batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Graphene rectenna for efficient energy harvesting at terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Dragoman, Mircea; Aldrigo, Martino

    2016-09-01

    In this paper, we propose a graphene rectenna that encompasses two distinct functions in a single device, namely, antenna and rectifier, which till now were two separate components. In this way, the rectenna realizes an efficient energy harvesting technique due to the absence of impedance mismatch between antenna and diode. In particular, we have obtained a maximum conversion efficiency of 58.43% at 897 GHz for the graphene rectenna on n-doped GaAs, which is a very good value, close to the performance of an RF harvesting system. A comparison with a classical metallic antenna with an HfO2-based metal-insulator-metal diode is also provided.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Lina; He, Xiaomei; Wu, Zhenyu, E-mail: zhenyuwuhn@sina.com

    Highlights: • Mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite composite was synthesized by a simple, efficient and environmental friendly method. • The prepared material had a large surface area, high pore volume, and good magnetic separability. • DOX-loaded Fe{sub 3}O{sub 4}/hydroxyapatite composite exhibited surprising slow drug release behavior and pH-dependent behavior. - Abstract: In this contribution, we introduced a simple, efficient, and green method of preparing a mesoporous Fe{sub 3}O{sub 4}/hydroxyapatite (HA) composite. The as-prepared material had a large surface area, high pore volume, and good magnetic separability, which made it suitable for targeted drug delivery systems. The chemotherapeutic agent doxorubicin (DOX) wasmore » used to investigate the drug release behavior of Fe{sub 3}O{sub 4}/HA composite. The drug release profiles displayed a little burst effect and pH-dependent behavior. The release rate of DOX at pH 5.8 was larger than that at pH 7.4, which could be attributed to DOX protonation in acid medium. In addition, the released DOX concentrations remained at 0.83 and 1.39 μg/ml at pH 7.4 and 5.8, respectively, which indicated slow, steady, and safe release rates. Therefore, the as-prepared Fe{sub 3}O{sub 4}/hydroxyapatite composite could be an efficient platform for targeted anticancer drug delivery.« less

  4. Determination of rhenium content in molybdenite by ICP-MS after separation of the major matrix by solvent extraction with N-benzoyl-N-phenylhydroxalamine.

    PubMed

    Li, Jie; Zhong, Li-feng; Tu, Xiang-lin; Liang, Xi-rong; Xu, Ji-feng

    2010-05-15

    A simple and rapid analytical method for determining the concentration of rhenium in molybdenite for Re-Os dating was developed. The method used isotope dilution-inductively coupled plasma-mass spectrometry (ID-ICP-MS) after the removal of major matrix elements (e.g., Mo, Fe, and W) from Re by solvent extraction with N-benzoyl-N-phenylhydroxylamine (BPHA) in chloroform solution. The effect on extraction efficiency of parameters such as pH (HCl concentration), BPHA concentration, and extraction time were also assessed. Under the optimal experimental conditions, the validity of the separation method was accessed by measuring (187)Re/(185)Re values for a molybdenite reference material (JDC). The obtained values were in good agreement with previously measured values of the Re standard. The proposed method was applied to replicate Re-Os dating of JDC and seven samples of molybdenite from the Yuanzhuding large Cu-Mo porphyry deposit. The results demonstrate good precision and accuracy for the proposed method. The advantages of the method (i.e., simplicity, efficiency, short analysis time, and low cost) make it suitable for routine analysis.

  5. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously.

    PubMed

    Li, Daikun; Li, Qing; Mao, Daoyong; Bai, Ningning; Dong, Hongzhou

    2017-12-01

    Developing versatile materials for effective water purification is significant for environment and water source protection. Herein, a versatile bio-based material (CH-PAA-T) was reported by simple thermal cross-linking chitosan and polyacrylic acid which exhibits excellent performances for removing insoluble oil, soluble toxic dyes and heavy metal ions from water, simultaneously. The adsorption capacities are 990.1mgg -1 for methylene blue (MB) and 135.9mgg -1 for Cu 2+ , which are higher than most of present advanced absorbents. The adsorption towards organic dyes possesses high selectivity which makes CH-PAA-T be able to efficiently separate dye mixtures. The stable superoleophobicity under water endows CH-PAA-T good performance to separate toluene-in-water emulsion stabilized by Tween 80. Moreover, CH-PAA-T can be recycled for 10 times with negligible reduction of efficiency. Such versatile bio-based material is a potential candidate for water purification. Copyright © 2017. Published by Elsevier Ltd.

  6. The key to success: Gelled-electrolyte and optimized separators for stationary lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Toniazzo, Valérie

    The lead acid technology is nowadays considered one of the best suited for stationary applications. Both gel and AGM batteries are complementary technologies and can provide reliability and efficiency due to the constant optimization of the battery design and components. However, gelled-electrolyte batteries remain the preferred technology due to a better manufacturing background and show better performance mainly at low and moderate discharge rates. Especially, using the gel technology allows to get rid of the numerous problems encountered in most AGM batteries: drainage, stratification, short circuits due to dendrites, and mostly premature capacity loss due to the release of internal cell compression. These limitations are the result of the evident lack of an optimal separation system. In gel batteries, on the contrary, highly efficient polymeric separators are nowadays available. Especially, microporous separators based on PVC and silica have shown the best efficiency for nearly 30 years all over the world, and especially in Europe, where the gel technology was born. The improved performance of these separators is explained by the unique extrusion process, which leads to excellent wettability, and optimized physical properties. Because they are the key for the battery success, continuous research and development on separators have led to improved properties, which render the separator even better adapted to the more recent gel technology: the pore size distribution has been optimized to allow good oxygen transfer while avoiding dendrite growth, the pore volume has been increased, the electrical resistance and acid displacement reduced to such an extent that the electrical output of batteries has been raised both in terms of higher capacity and longer cycle life.

  7. Charge-based separation of particles and cells with similar sizes via the wall-induced electrical lift.

    PubMed

    Thomas, Cory; Lu, Xinyu; Todd, Andrew; Raval, Yash; Tzeng, Tzuen-Rong; Song, Yongxin; Wang, Junsheng; Li, Dongqing; Xuan, Xiangchun

    2017-01-01

    The separation of particles and cells in a uniform mixture has been extensively studied as a necessity in many chemical and biomedical engineering and research fields. This work demonstrates a continuous charge-based separation of fluorescent and plain spherical polystyrene particles with comparable sizes in a ψ-shaped microchannel via the wall-induced electrical lift. The effects of both the direct current electric field in the main-branch and the electric field ratio in between the inlet branches for sheath fluid and particle mixture are investigated on this electrokinetic particle separation. A Lagrangian tracking method based theoretical model is also developed to understand the particle transport in the microchannel and simulate the parametric effects on particle separation. Moreover, the demonstrated charge-based separation is applied to a mixture of yeast cells and polystyrene particles with similar sizes. Good separation efficiency and purity are achieved for both the cells and the particles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Finite-difference simulation of transonic separated flow using a full potential boundary layer interaction approach

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1983-01-01

    A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.

  9. DETERMINATION OF VENLAFAXINE, VILAZODONE AND THEIR MAIN ACTIVE METABOLITES IN HUMAN SERUM BY HPLC-DAD AND HPLC-MS.

    PubMed

    Petruczynik, Anna; Wroblewski, Karol; Szultka-Mlynska, Malgorzata; Buszewsk, Boguslaw; Karakula-Juchnowicz, Hanna; Gajewski, Jacek; Morylowska-Topolska, Justyna; Waksmundzka-Hajnosi, Monika

    2017-05-01

    A high performance liquid chromatography (HPLC) method for simultaneous analysis of venlafaxine and its major metabolite 0-desmethylvenlafaxine and vilazodone and its methabolite M10 have been devel- oped and validated. Chromatography was performed on the Phenyl-Hexyl column with mobile phase containing methanol, acetate buffer at pH 3.5 and diethylamine. The application of stationary phase with 7r-7c moieties and mobile phase containing diethylamine as silanol blocker lets to obtain double protection against silanols and thus very high theoretical plate numbers were obtained. The good separation selectivity, good peaks' symmetry and very high systems efficiency for all investigated compounds were obtained in applied chromatographic system. The method is very efficient and suitable for the analysis of investigated drugs and their metabolites in human serum for patients' pharmacotherapy control.

  10. Hydrophobic asymmetric ultrafiltration PVDF membranes: an alternative separator for VFB with excellent stability.

    PubMed

    Wei, Wenping; Zhang, Huamin; Li, Xianfeng; Zhang, Hongzhang; Li, Yun; Vankelecom, Ivo

    2013-02-14

    Polyvinylidene fluoride (PVDF) ultrafiltration membranes were investigated for the first time in vanadium redox flow battery (VFB) applications. Surprisingly, PVDF ultrafiltration membranes with hydrophobic pore walls and relatively large pore sizes of several tens of nanometers proved able to separate vanadium ions and protons efficiently, thus being suitable as a VFB separator. The ion selectivity of this new type of VFB membrane could be tuned readily by controlling the membrane morphology via changes in the composition of the membrane casting solution, and the casting thickness. The results showed that the PVDF membranes offered good performances and excellent stability in VFB applications, where it could, performance-wise, truly substitute Nafion in VFB applications, but at a much lower cost.

  11. π-Extended triptycene-based material for capillary gas chromatographic separations.

    PubMed

    Yang, Yinhui; Wang, Qinsi; Qi, Meiling; Huang, Xuebin

    2017-10-02

    Triptycene-based materials feature favorable physicochemical properties and unique molecular recognition ability that offer good potential as stationary phases for capillary gas chromatography (GC). Herein, we report the investigation of utilizing a π-extended triptycene material (denoted as TQPP) for GC separations. As a result, the TQPP capillary column exhibited high column efficiency of 4030 plates m -1 and high-resolution performance for a wide range of analytes, especially structural and positional isomers. Interestingly, the TQPP stationary phase showed unique shape selectivity for alkanes isomers and preferential retention for analytes with halogen atoms and H-bonding nature mainly through their halogen-bonding and H-bonding interactions. In addition, the TQPP column had good repeatability and reproducibility with the RSD values of 0.02-0.34% for run-to-run, 0.09-0.80% for day-to-day and 1.4-5.2% for column-to-column, respectively, and favorable thermal stability up to 280 °C. This work demonstrates the promising future of triptycene-based materials as a new class of stationary phases for GC separations. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Development of an analytical method for separation of phenolic acids by ultra-performance convergence chromatography (UPC2) using a column packed with a sub-2-μm particle.

    PubMed

    Jiang, Hai; Yang, Liu; Xing, Xudong; Yan, Meiling; Guo, Xinyue; Yang, Bingyou; Wang, Qiu-Hong; Kuang, Hai-Xue

    2018-05-10

    Phenolic acids are important active components of certain Traditional Chinese Medicines (TCM) and have a wide range of biological effects. Separation and purification of phenolic acids remains challenging due to difficulties with quality control using existing chromatographic methods The purpose of this study was to compare the effects of different chromatographic columns and conditions for the separation of phenolic acids. The BEH column was determined to be optimal, providing efficient separation in the shortest time (17.00 min) using gradient elution with carbon dioxide as the mobile phase, methanol/acetonitrile (70:30, v/v) with 1% TFA as the modifier, and a flow rate of 0.8 mL/min. Good peak shapes were obtained, and the peak asymmetry values were close to 1.00 for all phenolic acids. The resolution was more than 2.83 for all separated peaks. The developed method was subsequently applied to the determination of phenolic acids in Xanthii Fructus. These results are beneficial for quality control and standardization of herbal drugs using UPC 2 , providing an efficient, rapid and environmentally friendly scientific basis for future analysis of phenolic acids. Copyright © 2018. Published by Elsevier B.V.

  13. The Role of Cooperative Learning Type Team Assisted Individualization to Improve the Students' Mathematics Communication Ability in the Subject of Probability Theory

    ERIC Educational Resources Information Center

    Tinungki, Georgina Maria

    2015-01-01

    The importance of learning mathematics can not be separated from its role in all aspects of life. Communicating ideas by using mathematics language is even more practical, systematic, and efficient. In order to overcome the difficulties of students who have insufficient understanding of mathematics material, good communications should be built in…

  14. Study of Low Reynolds Number Effects on the Losses in Low-Pressure Turbine Blade Rows

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Dorney, Daniel J.

    1998-01-01

    Experimental data from jet-engine tests have indicated that unsteady blade row interactions and separation can have a significant impact on the efficiency of low-pressure turbine stages. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that Reynolds number effects may contribute to the lower efficiencies at cruise conditions. In the current study numerical experiments have been performed to study the models available for low Reynolds number flows, and to quantify the Reynolds number dependence of low-pressure turbine cascades and stages. The predicted aerodynamic results exhibit good agreement with design data.

  15. Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ring-opening polymerization for capillary LC and CEC.

    PubMed

    Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa

    2013-09-01

    A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cellulose acetate-based SiO2/TiO2 hybrid microsphere composite aerogel films for water-in-oil emulsion separation

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Ma, Jianjun; Ling, Jing; Li, Na; Wang, Di; Yue, Fan; Xu, Shimei

    2018-03-01

    The cellulose acetate (CA)/SiO2-TiO2 hybrid microsphere composite aerogel films were successfully fabricated via water vapor-induced phase inversion of CA solution and simultaneous hydrolysis/condensation of 3-aminopropyltrimethoxysilane (APTMS) and tetrabutyl titanate (TBT) at room temperature. Micro-nano hierarchical structure was constructed on the surface of the film. The film could separate nano-sized surfactant-stabilized water-in-oil emulsions only under gravity. The flux of the film for the emulsion separation was up to 667 L m-2 h-1, while the separation efficiency was up to 99.99 wt%. Meanwhile, the film exhibited excellent stability during multiple cycles. Moreover, the film performed excellent photo-degradation performance under UV light due to the photocatalytic ability of TiO2. Facile preparation, good separation and potential biodegradation maked the CA/SiO2-TiO2 hybrid microsphere composite aerogel films a candidate in oil/water separation application.

  17. β-cyclodextrin-ionic liquid polymer based dynamically coating for simultaneous determination of tetracyclines by capillary electrophoresis.

    PubMed

    Zhou, Chunyan; Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2017-04-01

    Tetracyclines are a group of broad spectrum antibiotics widely used in animal husbandry to prevent and treat diseases. However, the improper use of tetracyclines may result in the presence of their residues in animal tissues or waste. Recently, great attention has been drawn towards the green solvents ionic liquids. Ionic liquids have been employed as a coating material to modify the electroosmotic flow in capillary electrophoresis. In this study, a functionalized ionic liquid, mono-6-deoxy-6-(3-methylimidazolium)-β-cyclodextrin tosylate, was synthesized and used for the simultaneous separation and quantification of tetracyclines by capillary electrophoresis. Good separation efficiency could be achieved due to the multiple functions of β-cyclodextrin derived ionic liquid, including the electrostatic interaction, the hydrogen bonding, and the cavity structure in β-cyclodextrin ionic liquid which can entrap the tetracyclines to form inclusion complex. After optimization, baseline separation achieved in 25 min with the running buffer consisted of 10 mmol/L, pH 7.2 phosphate buffer and 20 mmol/L β-cyclodextrin ionic liquid. The satisfied result demonstrated that the β-cyclodextrin ionic liquid is an ideal background electrolyte modifier in the separation of tetracyclines with high stability and good reproducibility. And it is an effective strategy to design and synthesize specific ILs as additive applied in separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Separator Materials Used in Secondary Alkaline Batteries Characterized and Evaluated

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Nickel-cadmium (Ni/Cd) and nickel-hydrogen (Ni/H2) secondary alkaline batteries are vital to aerospace applications. Battery performance and cycle life are significantly affected by the type of separators used in those batteries. A team from NASA Lewis Research Center's Electrochemical Technology Branch developed standardized testing procedures to characterize and evaluate new and existing separator materials to improve performance and cycle life of secondary alkaline batteries. Battery separators must function as good electronic insulators and as efficient electrolyte reservoirs. At present, new types of organic and inorganic separator materials are being developed for Ni/Cd and Ni/H2 batteries. The separator material previously used in the NASA standard Ni/Cd was Pellon 2505, a 100-percent nylon-6 polymer that must be treated with zinc chloride (ZnCl2) to bond the fibers. Because of stricter Environmental Protection Agency regulation of ZnCl2 emissions, the battery community has been searching for new separators to replace Pellon 2505. As of today, two candidate separator materials have been identified; however, neither of the two materials have performed as well as Pellon 2505. The separator test procedures that were devised at Lewis are being implemented to expedite the search for new battery separators. The new test procedures, which are being carried out in the Separator Laboratory at Lewis, have been designed to guarantee accurate evaluations of the properties that are critical for sustaining proper battery operation. These properties include physical and chemical stability, chemical purity, gas permeability, electrolyte retention and distribution, uniformity, porosity, and area resistivity. A manual containing a detailed description of 12 separator test procedures has been drafted and will be used by the battery community to evaluate candidate separator materials for specific applications. These standardized procedures will allow for consistent, uniform, and reliable results that will ensure that separator materials have the desired properties for long life and good performance in secondary alkaline cells.

  19. Efficient synthesis of molecularly imprinted polymers with bio-recognition sites for the selective separation of bovine hemoglobin.

    PubMed

    Zhang, Zulei; Li, Lei

    2018-06-01

    We developed a facile approach to the construction of bio-recognition sites in silica nanoparticles for efficient separation of bovine hemoglobin based on amino-functionalized silica nanoparticles grafting by 3-aminopropyltriethoxylsilane providing hydrogen bonds with bovine hemoglobin through surface molecularly imprinting technology. The resulting amino-functionalized silica surface molecularly imprinted polymers were characterized using scanning electron microscope, transmission electronic microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermogravimetric analysis. Results showed that the as-synthesized imprinted polymers exhibited spherical morphology and favorable thermal stability. The binding adsorption experiments showed that the imprinted polymers can reach equilibrium within 1 h. The Langmuir isotherm and pseudo-second-order kinetic model fitted the adsorption data well. Meanwhile, the imprinted polymers possessed a maximum binding capacity up to 90.3 mg/g and highly selectivity for the recognition of bovine hemoglobin. Moreover, such high binding capacity and selectivity retained after eight cycles, indicating the good stability and reusability of the imprinted polymers. Finally, successful application in the selective recognition of bovine hemoglobin from a real bovine blood sample indicated that the imprinted polymers displayed great potentials in efficient purification and separation of target proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. LS Channel Estimation and Signal Separation for UHF RFID Tag Collision Recovery on the Physical Layer.

    PubMed

    Duan, Hanjun; Wu, Haifeng; Zeng, Yu; Chen, Yuebin

    2016-03-26

    In a passive ultra-high frequency (UHF) radio-frequency identification (RFID) system, tag collision is generally resolved on a medium access control (MAC) layer. However, some of collided tag signals could be recovered on a physical (PHY) layer and, thus, enhance the identification efficiency of the RFID system. For the recovery on the PHY layer, channel estimation is a critical issue. Good channel estimation will help to recover the collided signals. Existing channel estimates work well for two collided tags. When the number of collided tags is beyond two, however, the existing estimates have more estimation errors. In this paper, we propose a novel channel estimate for the UHF RFID system. It adopts an orthogonal matrix based on the information of preambles which is known for a reader and applies a minimum-mean-square-error (MMSE) criterion to estimate channels. From the estimated channel, we could accurately separate the collided signals and recover them. By means of numerical results, we show that the proposed estimate has lower estimation errors and higher separation efficiency than the existing estimates.

  1. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    PubMed

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF-coated capillaries for high-resolution gas chromatography (GC). We have explored a dynamic coating approach to fabricate a MOF-coated capillary for the GC separation of important raw chemicals and persistent organic pollutants with high resolution and excellent selectivity. We have combined a MOF-coated fiber for solid-phase microextraction with a MOF-coated capillary for GC separation, which provides an effective MOF-based tandem molecular sieve platform for selective microextraction and high-resolution GC separation of target analytes in complex samples. Microsized MOFs with good solvent stability are attractive stationary phases for high-performance liquid chromatography (HPLC). These materials have shown high resolution and good selectivity and reproducibility in both the normal-phase HPLC separation of fullerenes and substituted aromatics on MIL-101 packed columns and position isomers on a MIL-53(Al) packed column and the reversed-phase HPLC separation of a wide range of analytes from nonpolar to polar and acidic to basic solutes. Despite the above achievements, further exploration of MOFs in analytical chemistry is needed. Especially, analytical application-oriented engineering of MOFs is imperative for specific applications.

  2. Prediction of Classroom Reverberation Time using Neural Network

    NASA Astrophysics Data System (ADS)

    Liyana Zainudin, Fathin; Kadir Mahamad, Abd; Saon, Sharifah; Nizam Yahya, Musli

    2018-04-01

    In this paper, an alternative method for predicting the reverberation time (RT) using neural network (NN) for classroom was designed and explored. Classroom models were created using Google SketchUp software. The NN applied training dataset from the classroom models with RT values that were computed from ODEON 12.10 software. The NN was conducted separately for 500Hz, 1000Hz, and 2000Hz as absorption coefficient that is one of the prominent input variable is frequency dependent. Mean squared error (MSE) and regression (R) values were obtained to examine the NN efficiency. Overall, the NN shows a good result with MSE < 0.005 and R > 0.9. The NN also managed to achieve a percentage of accuracy of 92.53% for 500Hz, 93.66% for 1000Hz, and 93.18% for 2000Hz and thus displays a good and efficient performance. Nevertheless, the optimum RT value is range between 0.75 – 0.9 seconds.

  3. A preliminary study for the production of high specific activity radionuclides for nuclear medicine obtained with the isotope separation on line technique.

    PubMed

    Borgna, F; Ballan, M; Corradetti, S; Vettorato, E; Monetti, A; Rossignoli, M; Manzolaro, M; Scarpa, D; Mazzi, U; Realdon, N; Andrighetto, A

    2017-09-01

    Radiopharmaceuticals represent a fundamental tool for nuclear medicine procedures, both for diagnostic and therapeutic purposes. The present work aims to explore the Isotope Separation On-Line (ISOL) technique for the production of carrier-free radionuclides for nuclear medicine at SPES, a nuclear physics facility under construction at INFN-LNL. Stable ion beams of strontium, yttrium and iodine were produced using the SPES test bench (Front-End) to simulate the production of 89 Sr, 90 Y, 125 I and 131 I and collected with good efficiency on suitable targets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Performance and techno-economic assessment of several solid-liquid separation technologies for processing dilute-acid pretreated corn stover.

    PubMed

    Sievers, David A; Tao, Ling; Schell, Daniel J

    2014-09-01

    Solid-liquid separation of pretreated lignocellulosic biomass slurries is a critical unit operation employed in several different processes for production of fuels and chemicals. An effective separation process achieves good recovery of solute (sugars) and efficient dewatering of the biomass slurry. Dilute acid pretreated corn stover slurries were subjected to pressure and vacuum filtration and basket centrifugation to evaluate the technical and economic merits of these technologies. Experimental performance results were used to perform detailed process simulations and economic analysis using a 2000 tonne/day biorefinery model to determine differences between the various filtration methods and their process settings. The filtration processes were able to successfully separate pretreated slurries into liquor and solid fractions with estimated sugar recoveries of at least 95% using a cake washing process. A continuous vacuum belt filter produced the most favorable process economics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Determination of MDMA, MDEA and MDA in urine by high performance liquid chromatography with fluorescence detection.

    PubMed

    da Costa, José Luiz; da Matta Chasin, Alice Aparecida

    2004-11-05

    This paper describes the development and validation of analytical methodology for the determination of the use of MDMA, MDEA and MDA in urine. After a simple liquid extraction, the analyses were carried out on a high performance liquid chromatography (HPLC) in an octadecyl column, with fluorescence detection. The mobile phase using a sodium dodecyl sulfate ion-pairing reagent allows good separation and efficiency. The method showed good linearity and precision. Recovery was between 85 and 102% and detection limits were 10, 15 and 20 ng/ml for MDA, MDMA and MDEA, respectively. No interfering substances were detected with fluorescence detection.

  6. Pilot study on control of phytoplankton by zooplankton coupling with filter-feeding fish in surface water.

    PubMed

    Ma, Hua; Cui, Fuyi; Liu, Zhiquan; Fan, Zhenqiang

    2009-01-01

    A pilot-scale facility was originally designed to control phytoplankton in algae-laden reservoir water characterized by summer cyanobacteria blooms (mainly Microcystis flos-aquae). The system made good use of the different food habits of Daphnia magna and silver carp. Zooplankton (Daphnia magna), filter-feeding fish (silver carp), and zooplankton (Daphnia magna) were stocked in three separated tanks in sequence, respectively. Thus, single-cell phytoplankton and some Microcystis flos-aquae in small size were first grazed by Daphnia magna in the first tank, and in the second tank phytoplankton larger than 10 microm were filtered by silver carp, and the concentration of the remaining phytoplankton was further reduced to a rather low level by Daphnia magna in the third tank. The results showed that the system had good removal efficiencies of phytoplankton and chlorophyll a, 86.85% and 59.41%, respectively, and permanganate consumption (COD(Mn)) and turbidity were lowered as well. A high phytoplankton removal efficiency and low cost indicated that the system had a good advantage in pre-treating algae-laden source water in drinking water works.

  7. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  8. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles. Electronic supplementary information (ESI) available: Synthesis and characterization of SPEK-C; effect of the sulfonation degree on membrane formation; structure and properties of the self-assembled membranes; separation of cyt.c by the self-assembled membranes; size-selective separation of gold nanoparticles by the self-assembled membranes; comparison with commercial flat sheet ultrafiltration membranes. See DOI: 10.1039/c3nr03362g

  9. Hot water-repellent and mechanically durable superhydrophobic mesh for oil/water separation.

    PubMed

    Cao, Min; Luo, Xiaomin; Ren, Huijun; Feng, Jianyan

    2018-02-15

    The leakage of oil or organic pollutants into the ocean arouses a global catastrophe. The superhydrophobic materials have offered a new idea for the efficient, thorough and automated oil/water separation. However, most of such materials lose superhydrophobicity when exposed to hot water (e.g. >55 °C). In this study, a hot water-repellent superhydrophobic mesh used for oil/water separation was prepared with one-step spray of modified polyurethane and hydrophobic silica nanoparticles on the copper mesh. The as-prepared superhydrophobic mesh could be applied as the effective materials for the separation of oil/water mixture with a temperature up to 100 °C. In addition, the obtained mesh could selectively remove a wide range of organic solvents from water with high absorption capacity and good recyclability. Moreover, the as-prepared superhydrophobic mesh shows excellent mechanical durability, which makes it a promising material for practical oil/water separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  11. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites

    DOE PAGES

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; ...

    2017-08-04

    Mixed halide hybrid perovskites, CH 3NH 3Pb(I 1-xBrx) 3' represent good candidates for lowcost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material’s optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodiderich phases. It additionallymore » explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.« less

  12. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    NASA Astrophysics Data System (ADS)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-03-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid screening applications; however the 30 nm magnetic particles are preferable for specific detection applications. This immunomagnetic bioseparator can be integrated with either conventional culture methods or some rapid detection methods, such as biosensors and PCR, for more sensitive detection of foodborne pathogens.

  13. Facile construction of macroporous hybrid monoliths via thiol-methacrylate Michael addition click reaction for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-01-30

    A facile approach based on thiol-methacrylate Michael addition click reaction was developed for construction of porous hybrid monolithic materials. Three hybrid monoliths were prepared via thiol-methacrylate click polymerization by using methacrylate-polyhedral oligomeric silsesquioxane (POSS) (cage mixture, n=8, 10, 12, POSS-MA) and three multi-thiol crosslinkers, 1,6-hexanedithiol (HDT), trimethylolpropane tris(3-mercaptopropionate) (TPTM) and pentaerythritol tetrakis(3-mercaptopropionate) (PTM), respectively, in the presence of porogenic solvents (n-propanol and PEG 200) and a catalyst (dimethylphenylphosphine, DMPP). The obtained monoliths possessed high thermal and chemical stabilities. Besides, they all exhibited high column efficiencies and excellent separation abilities in capillary liquid chromatography (cLC). The highest column efficiency could reach ca. 195,000N/m for butylbenzene on the monolith prepared with POSS-MA and TPTM (monolith POSS-TPTM) in reversed-phase (RP) mode at 0.64mm/s. Good chromatographic performance were all achieved in the separations of polycyclic aromatic hydrocarbons (PAHs), phenols, anilines, EPA 610 as well as bovine serum albumin (BSA) digest. The high column efficiencies in the range of 51,400-117,000N/m (achieved on the monolith POSS-PTM in RP mode) convincingly demonstrated the high separation abilities of these thiol-methacrylate based hybrid monoliths. All the results demonstrated the feasibility of the phosphines catalyzed thiol-methacrylate Michael addition click reaction in fabrication of monolithic columns with high efficiency for cLC applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Saturated fatty acid determination method using paired ion electrospray ionization mass spectrometry coupled with capillary electrophoresis.

    PubMed

    Lee, Ji-Hyun; Kim, Su-Jin; Lee, Sul; Rhee, Jin-Kyu; Lee, Soo Young; Na, Yun-Cheol

    2017-09-01

    A sensitive and selective capillary electrophoresis-mass spectrometry (CE-MS) method for determination of saturated fatty acids (FAs) was developed by using dicationic ion-pairing reagents forming singly charged complexes with anionic FAs. For negative ESI detection, 21 anionic FAs at pH 10 were separated using ammonium formate buffer containing 40% acetonitrile modifier in normal polarity mode in CE by optimizing various parameters. This method showed good separation efficiency, but the sensitivity of the method to short-chain fatty acids was quite low, causing acetic and propionic acids to be undetectable even at 100 mgL -1 in negative ESI-MS detection. Out of the four dicationic ion-pairing reagents tested, N,N'-dibutyl 1,1'-pentylenedipyrrolidium infused through a sheath-liquid ion source during CE separation was the best reagent regarding improved sensitivity and favorably complexed with anionic FAs for detection in positive ion ESI-MS. The monovalent complex showed improved ionization efficiency, providing the limits of detection (LODs) for 15 FAs ranging from 0.13 to 2.88 μg/mL and good linearity (R 2  > 0.99) up to 150 μg/mL. Compared to the negative detection results, the effect was remarkable for the detection of short- and medium-chain fatty acids. The optimized CE-paired ion electrospray (PIESI)-MS method was utilized for the determination of FAs in cheese and coffee with simple pretreatment. This method may be extended for sensitive analysis of unsaturated fatty acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fabrication of superhydrophobic cotton fabrics using crosslinking polymerization method

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; Chen, Zhenxing; Sun, Yongli; Yang, Huawei; Zhang, Hongjie; Dou, Haozhen; Zhang, Luhong

    2018-05-01

    With the aim of removing and recycling oil and organic solvent from water, a facile and low-cost crosslinking polymerization method was first applied on surface modification of cotton fabrics for water/oil separation. Micro-nano hierarchical rough structure was constructed by triethylenetetramine (TETA) and trimesoyl chloride (TMC) that formed a polymeric layer on the surface of the fabric and anchored Al2O3 nanoparticles firmly between the fabric surface and the polymer layer. Superhydrophobic property was further obtained through self-assembly grafting of hydrophobic groups on the rough surface. The as-prepared cotton fabric exhibited superoleophilicity in atmosphere and superhydrophobicity both in atmosphere and under oil with the water contact angle of 153° and 152° respectively. Water/oil separation test showed that the as-prepared cotton fabric can handle with various oil-water mixtures with a high separation efficiency over 99%. More importantly, the separation efficiency remained above 98% over 20 cycles of reusing without losing its superhydrophobicity which demonstrated excellent reusability in oil/water separation process. Moreover, the as-prepared cotton fabric possessed good contamination resistance ability and self-cleaning property. Simulation washing process test showed the superhydrophobic cotton fabric maintained high value of water contact angle above 150° after 100 times washing, indicating great stability and durability. In summary, this work provides a brand-new way to surface modification of cotton fabric and makes it a promising candidate material for oil/water separation.

  16. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  17. Low roll-off and high efficiency orange OLEDs using green and red dopants in an exciplex forming co-host

    NASA Astrophysics Data System (ADS)

    Lee, Sunghun; Kim, Kwon-Hyeon; Yoo, Seung-Jun; Park, Young-Seo; Kim, Jang-Joo

    2013-09-01

    We present high efficiency orange emitting OLEDs with low driving voltage and low roll-off of efficiency using an exciplex forming co-host by (1) co-doping of green and red emitting phosphorescence dyes in the host and (2) red and green phosphorescent dyes doped in the host as separate red and green emitting layers. The orange OLEDs achieved a low turn-on voltage of 2.4 V and high external quantum efficiencies (EQE) of 25.0% and 22.8%, respectively. Moreover, the OLEDs showed low roll-off of efficiency with an EQE of over 21% and 19.6% at 10,000 cd/m2, respectively. The devices displayed good orange color with very little color shift with increasing luminance. The transient electroluminescence of the OLEDs indicated that both energy transfer and direct charge trapping took place in the devices.

  18. Novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst

    DOE PAGES

    Zhu, Xianglin; Wang, Peng; Li, Mengmeng; ...

    2017-04-25

    A novel high-efficiency visible-light responsive Ag 4(GeO 4) photocatalyst was prepared by a facile hydrothermal method. The photocatalytic activity of as-prepared Ag 4(GeO 4) was evaluated by photodegradation of methylene blue (MB) dye and water splitting experiments. The photodegradation efficiency and oxygen production efficiency of Ag 4(GeO 4) were detected to be 2.9 and 1.9 times higher than those of Ag 2O. UVvis diffuse reflectance spectroscopy (DRS), photoluminescence experiment and photoelectric effect experiments prove that the good light response and high carrier separation efficiency facilitated by the internal electric field are the main reasons for Ag 4(GeO 4)'s excellent catalyticmore » activity. Radical-trapping experiments reveal that the photogenerated holes are the main active species. Lastly, first-principles theoretical calculations provide more insight into understanding the photocatalytic mechanism of the Ag 4(GeO 4) catalyst.« less

  19. Biomimetic Multilayer Nanofibrous Membranes with Elaborated Superwettability for Effective Purification of Emulsified Oily Wastewater.

    PubMed

    Ge, Jianlong; Jin, Qing; Zong, Dingding; Yu, Jianyong; Ding, Bin

    2018-05-09

    Creating a porous membrane to effectively separate the emulsified oil-in-water emulsions with energy-saving property is highly desired but remains a challenge. Herein, a multilayer nanofibrous membrane was developed with the inspiration of the natural architectures of earth for gravity-driven water purification. As a result, the obtained biomimetic multilayer nanofibrous membranes exhibited three individual layers with designed functions; they were the inorganic nanofibrous layer to block the serious intrusion of oil to prevent the destructive fouling of the polymeric matrix; the submicron porous layer with designed honeycomb-like cavities to catch the smaller oil droplets and ensures a satisfactory water permeability; and the high porous fibrous substrate with larger pore size provided a template support and allows water to pass through quickly. Consequently, with the cooperation of these three functional layers, the resultant composite membrane possessed superior anti-oil-fouling property and robust oil-in-water emulsion separation performance with good separation efficiency and competitive permeation flux solely under the drive of gravity. The permeation flux of the membrane for the emulsion was up to 5163 L m -2 h -1 with a separation efficiency of 99.5%. We anticipate that our strategy could provide a facile route for developing a new generation of specific membranes for oily wastewater remediation.

  20. A flexible, robust and antifouling asymmetric membrane based on ultra-long ceramic/polymeric fibers for high-efficiency separation of oil/water emulsions.

    PubMed

    Wang, Kui; Yiming, Wubulikasimu; Saththasivam, Jayaprakash; Liu, Zhaoyang

    2017-07-06

    Polymeric and ceramic asymmetric membranes have dominated commercial membranes for water treatment. However, polymeric membranes are prone to becoming fouled, while ceramic membranes are mechanically fragile. Here, we report a novel concept to develop asymmetric membranes based on ultra-long ceramic/polymeric fibers, with the combined merits of good mechanical stability, excellent fouling resistance and high oil/water selectivity, in order to meet the stringent requirements for practical oil/water separation. The ultra-long dimensions of ceramic nanofibers/polymeric microfibers endow this novel membrane with mechanical flexibility and robustness, due to the integrated and intertwined structure. This membrane is capable of separating oil/water emulsions with high oil-separation efficiency (99.9%), thanks to its nanoporous selective layer made of ceramic nanofibers. Further, this membrane also displays superior antifouling properties due to its underwater superoleophobicity and ultra-low oil adhesion of the ceramic-based selective layer. This membrane exhibits high water permeation flux (6.8 × 10 4 L m -2 h -1 bar -1 ) at low operation pressures, which is attributed to its 3-dimensional (3D) interconnected fiber-based structure throughout the membrane. In addition, the facile fabrication process and inexpensive materials required for this membrane suggest its significant potential for industrial applications.

  1. An efficient numerical algorithm for transverse impact problems

    NASA Technical Reports Server (NTRS)

    Sankar, B. V.; Sun, C. T.

    1985-01-01

    Transverse impact problems in which the elastic and plastic indentation effects are considered, involve a nonlinear integral equation for the contact force, which, in practice, is usually solved by an iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein the iterations of the nonlinear problem are separated from the structural response computations. This makes the numerical procedures much simpler and also efficient. The proposed method is applied to some impact problems for which solutions are available, and they are found to be in good agreement. The effect of the magnitude of time increment on the results is also discussed.

  2. Whole cell entrapment techniques.

    PubMed

    Trelles, Jorge A; Rivero, Cintia W

    2013-01-01

    Microbial whole cells are efficient, ecological, and low-cost catalysts that have been successfully applied in the pharmaceutical, environmental, and alimentary industries, among others. Microorganism immobilization is a good way to carry out the bioprocess under preparative conditions. The main advantages of this methodology lie in their high operational stability, easy upstream separation and bioprocess scale-up feasibility. Cell entrapment is the most widely used technique for whole cell immobilization. This technique-in which the cells are included within a rigid network-is porous enough to allow the diffusion of substrates and products, protects the selected microorganism from the reaction medium, and has high immobilization efficiency (100 % in most cases).

  3. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    PubMed

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Preparation of chitosan-graft-(β-cyclodextrin) based sol-gel stationary phase for open-tubular capillary electrochromatography.

    PubMed

    Lü, Haixia; Li, Qingyin; Yu, Xiaowei; Yi, Jiaojiao; Xie, Zenghong

    2013-07-01

    A novel open-tubular CEC column coated with chitosan-graft-(β-CD) (CDCS) was prepared using sol-gel technique. In the sol-gel approach, owing to the 3D network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. The column efficiencies of 55,000∼163,000 plates/m for the isomeric xanthopterin and phenoxy acid herbicides using the sol-gel-derived CDCS columns were achieved. Good stabilities were demonstrated that the RSD values for the retention time of thiourea and isoxanthopterin were 1.3 and 1.4% (run to run, n = 5), 1.6 and 2.0% (day to day, n = 3), 2.9 and 3.1% (column to column, n = 3), respectively. The sol-gel-coated CDCS columns have shown improved separations of isomeric xanthopterin in comparison with CDCS-bonded capillary column. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Prawn Shell Derived Chitin Nanofiber Membranes as Advanced Sustainable Separators for Li/Na-Ion Batteries.

    PubMed

    Zhang, Tian-Wen; Shen, Bao; Yao, Hong-Bin; Ma, Tao; Lu, Lei-Lei; Zhou, Fei; Yu, Shu-Hong

    2017-08-09

    Separators, necessary components to isolate cathodes and anodes in Li/Na-ion batteries, are consumed in large amounts per year; thus, their sustainability is a concerning issue for renewable energy storage systems. However, the eco-efficient and environmentally friendly fabrication of separators with a high mechanical strength, excellent thermal stability, and good electrolyte wettability is still challenging. Herein, we reported the fabrication of a new type of separators for Li/Na-ion batteries through the self-assembly of eco-friendly chitin nanofibers derived from prawn shells. We demonstrated that the pore size in the chitin nanofiber membrane (CNM) separator can be tuned by adjusting the amount of pore generation agent (sodium dihydrogen citrate) in the self-assembly process of chitin nanofibers. By optimizing the pore size in CNM separators, the electrochemical performance of the LiFePO 4 /Li half-cell with a CNM separator is comparable to that with a commercialized polypropylene (PP) separator. More attractively, the CNM separator showed a much better performance in the LiFePO 4 /Li cell at 120 °C and Na 3 V 2 (PO 4 ) 3 /Na cell than the PP separator. The proposed fabrication of separators by using natural raw materials will play a significant contribution to the sustainable development of renewable energy storage systems.

  6. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution.

    PubMed

    Niknam Shahrak, Mahdi; Ghahramaninezhad, Mahboube; Eydifarash, Mohsen

    2017-04-01

    Heavy metals are emerging toxic pollutants in which the development of advanced materials for their efficient adsorption and separation is thus of great significance in environmental sciences point of view. In this study, one of the zinc-based zeolitic imidazolate framework materials, known as ZIF-8, has been synthesized and used for chromium(VI) contaminant removal from water for the first time. The as-synthesized ZIF-8 adsorbent was characterized with different methodologies such as powder X-ray diffraction (XRD), thermo-gravimetric analysis, FT-IR, nuclear magnetic resonance spectroscopy, and UV-Vis spectra of solid state. Various factors affecting removal percentage (efficiency) are experimentally investigated including pH of solution, adsorbent dosage, contact time and initial concentration of Cr(VI) to achieve the optimal condition. The obtained results indicate that the ZIF-8 shows good performance for the Cr(VI) removal from aqueous solution so that 60 min mixing of 2 g of ZIF-8 adsorbent with the 2.5 ppm of Cr(VI) solution in a neutral environment will result in the highest separation efficiency around 70%. The time needed to reach the equilibrium (maximum separation efficiency) is only 60 min for a concentration of 5 mg L -1 . Structure stability in the presence of water is also carefully examined by XRD determination of ZIF-8 under different contact times in aqueous solution, which suggests that the structure is going to be destructed after 60 min immersed in solution. Electrostatic interaction of Cr(VI) anions by positively charged ZIF-8 is responsible for Cr(VI) adsorption and separation. Moreover, equilibrium adsorption study reveals that the Cr(VI) removal process using ZIF-8 nicely fits the Langmuir and Toth isotherm models which mean the adsorbent has low heterogeneous surface with different distributions of adsorption energies during Cr(VI) adsorption. Equilibrium adsorption capacity is observed around 0.25 for 20 mg L -1 of initial Cr(VI) solutions.

  7. Evaluation of chromatin integrity of motile bovine spermatozoa capacitated in vitro.

    PubMed

    Reckova, Z; Machatkova, M; Rybar, R; Horakova, J; Hulinska, P; Machal, L

    2008-08-01

    The efficiency of in vitro embryo production is highly variable amongst individual sires in cattle. To eliminate that this variability is not caused by sperm chromatin damage caused by separation or capacitacion, chromatin integrity was evaluated. Seventeen of AI bulls with good NRRs but variable embryo production efficiency were used. For each bull, motile spermatozoa were separated on a Percoll gradient, resuspended in IVF-TALP medium and capacitated with or incubated without heparin for 6 h. Samples before and after separation and after 3-h and 6-h capacitacion or incubation were evaluated by the Sperm Chromatin Structure Assay (SCSA) and the proportion of sperm with intact chromatin structure was calculated. Based on changes in the non-DFI-sperm proportion, the sires were categorized as DNA-unstable (DNA-us), DNA-stable (DNA-s) and DNA-most stable (DNA-ms) bulls (n=3, n=5 and n=9, respectively). In DNA-us bulls, separation produced a significant increase of the mean non-DFI-sperm proportion (p

  8. Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues.

    PubMed

    Bauer, Alexander; Mayr, Herwig; Hopfner-Sixt, Katharina; Amon, Thomas

    2009-06-01

    The Austrian "green electricity act" (Okostromgesetz) has led to an increase in biogas power plant size and consequently to an increased use of biomass. A biogas power plant with a generating capacity of 500 kW(el) consumes up to 38,000 kg of biomass per day. 260 ha of cropland is required to produce this mass. The high water content of biomass necessitates a high transport volume for energy crops and fermentation residues. The transport and application of fermentation residues to farmland is the last step in this logistic chain. The use of fermentation residues as fertilizer closes the nutrient cycle and is a central element in the efficient use of biomass for power production. Treatment of fermentation residues by separation into liquid and solid phases may be a solution to the transport problem. This paper presents detailed results from the monitoring of two biogas plants and from the analysis of the separation of fermentation residues. Furthermore, two different separator technologies for the separation of fermentation residues of biogas plants were analyzed. The examined biogas plants correspond to the current technological state of the art and have designs developed specifically for the utilization of energy crops. The hydraulic retention time ranged between 45.0 and 83.7 days. The specific methane yields were 0.40-0.43 m(3)N CH(4) per kg VS. The volume loads ranged between 3.69 and 4.00 kg VS/m(3). The degree of degradation was between 77.3% and 82.14%. The screw extractor separator was better suited for biogas slurry separation than the rotary screen separator. The screw extractor separator exhibited a high throughput and good separation efficiency. The efficiency of slurry separation depended on the dry matter content of the fermentation residue. The higher the dry matter content, the higher the proportion of solid phase after separation. In this project, we found that the fermentation residues could be divided into 79.2% fluid phase with a dry matter content of 4.5% and 20.8% solid phase with a dry matter content of 19.3%. Dry matter, volatile solids and carbon, raw ash and phosphate--in relation to the mass--accumulated strongly in the solid phase. Nitrogen and ammonia nitrogen were slightly enriched in the solid phase. Only the potassium content decreased slightly in the solid phase.

  9. Electrospun Nanofiber-Coated Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hun

    Lithium-ion batteries are widely used as a power source for portable electronic devices and hybrid electric vehicles due to their excellent energy and power densities, long cycle life, and enhanced safety. A separator is considered to be the critical component in lithium-ion rechargeable batteries. The separator is placed between the positive and negative electrodes in order to prevent the physical contact of electrodes while allowing the transportation of ions. In most commercial lithium-ion batteries, polyolefin microporous membranes are commonly used as the separator due to their good chemical stability and high mechanical strength. However, some of their intrinsic natures, such as low electrolyte uptake, poor adhesion property to the electrodes, and low ionic conductivity, can still be improved to achieve higher performance of lithium-ion batteries. In order to improve these intrinsic properties, polyolefin microporous membranes can be coated with nanofibers by using electrospinning technique. Electrospinning is a simple and efficient method to prepare nanofibers which can absorb a significant amount of liquid electrolyte to achieve low internal resistance and battery performance. This research presents the preparation and investigation of composite membrane separators prepared by coating nanofibers onto polyolefin microporous membranes via electrospinning technique. Polyvinylidene fluoride polymers and copolymers were used for the preparation of electrospun nanofiber coatings because they have excellent electrochemical stability, good adhesion property, and high temperature resistance. The nanofiber coatings prepared by electrospinning form an interconnected and randomly orientated structure on the surface of the polyolefin microporous membranes. The size of the nanofibers is on a scale that does not interfere with the micropores in the membrane substrates. The resultant nanofiber-coated membranes have the potential to combine advantages of both the polyolefin separator membranes and the nanoscale fibrous polymer coatings. The polyolefin microporous membranes serve as the supporting substrate which provides the required mechanical strength for the assembling process of lithium-ion batteries. The electrospun nanofiber coatings improve the wettability of the composite membrane separators to the liquid electrolyte, which is desirable for the lithium-ion batteries with high kinetics and good cycling performance. The results show that the nanofiber-coated membranes have enhanced adhesion properties to the battery electrode which can help prevent the formation of undesirable gaps between the separators and electrodes during prolonged charge-discharge cycles, especially in large-format batteries. The improvement on adhesive properties of nanofiber-coated membranes was evaluated by peel test. Nanofiber coatings applied to polyolefin membrane substrates improve the adhesion of separator membranes to battery electrodes. Electrolyte uptakes, ionic conductivities and interfacial resistances of the nanofiber-coated membrane separators were studied by soaking the membrane separators with a liquid electrolyte solution of 1 M lithium hexafluorophosphate dissolved in ethylene carbonate/dimethylcarbonate/ethylmethyl carbonate (1:1:1 vol). The nanofiber coatings on the surface of the membrane substrates increase the electrolyte uptake capacity due to the high surface area and capillary effect of nanofibers. The nanofiber-coated membranes soaked in the liquid electrolyte solution exhibit high ionic conductivities and low interfacial resistances to the lithium electrode. The cells containing LiFePO 4 cathode and the nanofiber-coated membranes as the separator show high discharge specific capacities and good cycling stability at room temperature. The nanofiber coatings on the membrane substrates contribute to high ionic conductivity and good electrochemical performance in lithium-ion batteries. Therefore, these nanofiber-coated composite membranes can be directly used as novel battery separators for high performance of lithium-ion batteries. Coating polyolefin microporous membranes with electrospun nanofibers is a promising approach to obtain highperformance separators for advanced lithium-ion batteries.

  10. Ventricular beat classifier using fractal number clustering.

    PubMed

    Bakardjian, H

    1992-09-01

    A two-stage ventricular beat 'associative' classification procedure is described. The first stage separates typical beats from extrasystoles on the basis of area and polarity rules. At the second stage, the extrasystoles are classified in self-organised cluster formations of adjacent shape parameter values. This approach avoids the use of threshold values for discrimination between ectopic beats of different shapes, which could be critical in borderline cases. A pattern shape feature conventionally called a 'fractal number', in combination with a polarity attribute, was found to be a good criterion for waveform evaluation. An additional advantage of this pattern classification method is its good computational efficiency, which affords the opportunity to implement it in real-time systems.

  11. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellwied, R.; Bennett, M.J.; Bernardo, V.

    2001-10-02

    This report describes a multi-plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGSE896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 Tesla magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10**6 Au ions per second.

  12. [Determination of patulin in fruits and jam by solid phase extraction-ultra performance liquid chromatography].

    PubMed

    Lü, Weichao; Shen, Shuchang; Wang, Chao

    2017-11-08

    With magnesium silicate, silica gel, diatomite and calcium sulfate as raw materials, a new solid phase extraction column was prepared through a series of processes of grinding to ethanol homogenate, drying and packing into polypropylene tube. The sample was hydrolyzed by pectinase, extracted by acetonitrile and purified by solid phase extraction. The target compounds were separated on a C18 column (100 mm×2.1 mm, 1.8 μm), using 0.8% (v/v) tetrahydrofuran solution as mobile phase with a flow rate of 0.5 mL/min. The detection wavelength was 276 nm. The effect of pectinase on extraction yield and purification effect of solid-phase extraction column were investigated. The optimum chromatographic conditions were selected. There was a good linear relationship between the peak heights and the mass concentrations of patulin in the range of 0.1 to 10 mg/L with the correlation coefficient ( R 2 ) of 1. The limit of detection for this method was 10.22 μg/kg. The spiked recoveries of samples were 86.58%-94.84% with the relative standard deviations (RSDs) of 1.45%-2.28%. The results indicated that the self-made solid phase extraction column had a good purification efficiency, and the UPLC had a high separation efficiency. The method is simple, accurate and of great significance for the quality and safety control of fruit products.

  13. Phonon-Assisted Ultrafast Charge Transfer at van der Waals Heterostructure Interface.

    PubMed

    Zheng, Qijing; Saidi, Wissam A; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V; Petek, Hrvoje; Zhao, Jin

    2017-10-11

    The van der Waals (vdW) interfaces of two-dimensional (2D) semiconductor are central to new device concepts and emerging technologies in light-electricity transduction where the efficient charge separation is a key factor. Contrary to general expectation, efficient electron-hole separation can occur in vertically stacked transition-metal dichalcogenide heterostructure bilayers through ultrafast charge transfer between the neighboring layers despite their weak vdW bonding. In this report, we show by ab initio nonadiabatic molecular dynamics calculations, that instead of direct tunneling, the ultrafast interlayer hole transfer is strongly promoted by an adiabatic mechanism through phonon excitation occurring on 20 fs, which is in good agreement with the experiment. The atomic level picture of the phonon-assisted ultrafast mechanism revealed in our study is valuable both for the fundamental understanding of ultrafast charge carrier dynamics at vdW heterointerfaces as well as for the design of novel quasi-2D devices for optoelectronic and photovoltaic applications.

  14. Rationalizing the light-induced phase separation of mixed halide organic-inorganic perovskites.

    PubMed

    Draguta, Sergiu; Sharia, Onise; Yoon, Seog Joon; Brennan, Michael C; Morozov, Yurii V; Manser, Joseph S; Kamat, Prashant V; Schneider, William F; Kuno, Masaru

    2017-08-04

    Mixed halide hybrid perovskites, CH 3 NH 3 Pb(I 1-x Br x ) 3 , represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.

  15. A review of oxygen removal from oxygen-bearing coal-mine methane.

    PubMed

    Zhao, Peiyu; Zhang, Guojie; Sun, Yinghui; Xu, Ying

    2017-06-01

    In this article, a comparison will be made concerning the advantages and disadvantages of five kinds of coal mine methane (CMM) deoxygenation method, including pressure swing adsorption, combustion, membrane separation, non-metallic reduction, and cryogenic distillation. Pressure swing adsorption has a wide range of application and strong production capacity. To achieve this goal, adsorbent must have high selectivity, adsorption capacity, and adequate adsorption/desorption kinetics, remain stable after several adsorption/desorption cycles, and possess good thermal and mechanical stabilities. Catalytic combustion deoxygenation is a high-temperature exothermic redox chemical reaction, which releases large amounts of thermal energy. So, the stable and accurate control of the temperature is not easy. Meanwhile partial methane is lost. The key of catalytic combustion deoxygenation lies in the development of high-efficiency catalyst. Membrane separation has advantages of high separation efficiency and low energy consumption. However, there are many obstacles, including higher costs. Membrane materials have the requirements of both high permeability and high selectivity. The development of new membrane materials is a key for membrane separation. Cryogenic distillation has many excellence advantages, such as high purity production and high recovery. However, the energy consumption increases with decreasing CH 4 concentrations in feed gas. Moreover, there are many types of operational security problems. And that several kinds of deoxygenation techniques mentioned above have an economic value just for oxygen-bearing CMM with methane content above 30%. Moreover, all the above methods are not applicable to deoxygenation of low concentration CMM. Non-metallic reduction method cannot only realize cyclic utilization of deoxidizer but also have no impurity gases generation. It also has a relatively low cost and low loss rate of methane, and the oxygen is removed thoroughly. In particular, the non-metallic reduction method has good development prospects for low concentration oxygen-bearing CMM. This article also points out the direction of future development of coal mine methane deoxygenation.

  16. Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection λ-cyhalothrin in environmental water.

    PubMed

    Wang, Jixiang; Qiu, Hao; Shen, Hongqiang; Pan, Jianming; Dai, Xiaohui; Yan, Yongsheng; Pan, Guoqing; Sellergren, Börje

    2016-11-15

    Molecularly imprinted fluorescent polymers have shown great promise in biological or chemical separations and detections, due to their high stability, selectivity and sensitivity. In this work, molecularly imprinted fluorescent hollow nanoparticles, which could rapidly and efficiently detect λ-cyhalothrin (a toxic insecticide) in water samples, was reported. The molecularly imprinted fluorescent sensor showed excellent sensitivity (the limit of detection low to 10.26nM), rapid detection rate (quantitative detection of λ-cyhalothrin within 8min), regeneration ability (maintaining good fluorescence properties after 8 cycling operation) and appreciable selectivity over several structural analogs. Moreover, the fluorescent sensor was further used to detect λ-cyhalothrin in real samples form the Beijing-Hangzhou Grand Canal Water. Despite the relatively complex components of the environmental water, the molecularly imprinted fluorescent hollow nanosensor still showed good recovery, clearly demonstrating the potential value of this smart sensor nanomaterial in environmental monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    PubMed

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  18. Thin film separators with ion transport properties for energy applications

    NASA Astrophysics Data System (ADS)

    Li, Zhongyuan

    2017-09-01

    Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.

  19. Chiral separation of amino acids in biological fluids by micellar electrokinetic chromatography with laser-induced fluorescence detection.

    PubMed

    Thorsén, G; Bergquist, J

    2000-08-18

    A method is presented for the chiral analysis of amino acids in biological fluids using micellar electrokinetic chromatography (MEKC) and laser-induced fluorescence (LIF). The amino acids are derivatized with the chiral reagent (+/-)-1-(9-anthryl)-2-propyl chloroformate (APOC) and separated using a mixed micellar separation system. No tedious pre-purification of samples is required. The excellent separation efficiency and good detection capabilities of the MEKC-LIF system are exemplified in the analysis of urine and cerebrospinal fluid. This is the first time MEKC has been reported for chiral analysis of amino acids in biological fluids. The amino acids D-alanine, D-glutamine, and D-aspartic acid have been observed in cerebrospinal fluid, and D-alanine and D-glutamic acid in urine. To the best of our knowledge no measurements of either D-alanine in cerebrospinal fluid or D-glutamic acid in urine have been presented in the literature before.

  20. Selective separation of oil and water with mesh membranes by capillarity.

    PubMed

    Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S J; Lai, Zhiping

    2016-09-01

    The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Demulsification of water/oil/solid emulsions by hollow-fiber membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tirmizi, N.P.; Raghuraman, B.; Wiencek, J.

    1996-05-01

    The demulsification techniques investigated use preferential surface wetting to allow separation of oil and water phases in ultrafiltration and microfiltration membranes. A hydrophobic membrane allows the permeation of an oil phase at almost zero pressure and retains the water phase, even though the molecular weight of the water molecule (18) is much smaller than that of the oil molecule (198 for tetradecane, used in this study). Hydrophobic membranes having pore sizes from 0.02 to 0.2 {micro}m were tested for demulsification of water-in-oil emulsions and water/oil/solid mixtures. The dispersed (aqueous)-phase drop sizes ranged from 1 to 5 {micro}m. High separation rates,more » as well as good permeate quality, were obtained with microfiltration membranes. Water content of permeating oil was 32--830 ppm depending on operating conditions and interfacial properties. For emulsions with high surfactant content, simultaneous operation of a hydrophobic and hydrophilic membrane, or simultaneous membrane separation with electric demulsification was more efficient in obtaining complete phase separation.« less

  2. [Analysis of the stability and adaptability of near infrared spectra qualitative analysis model].

    PubMed

    Cao, Wu; Li, Wei-jun; Wang, Ping; Zhang, Li-ping

    2014-06-01

    The stability and adaptability of model of near infrared spectra qualitative analysis were studied. Method of separate modeling can significantly improve the stability and adaptability of model; but its ability of improving adaptability of model is limited. Method of joint modeling can not only improve the adaptability of the model, but also the stability of model, at the same time, compared to separate modeling, the method can shorten the modeling time, reduce the modeling workload; extend the term of validity of model, and improve the modeling efficiency. The experiment of model adaptability shows that, the correct recognition rate of separate modeling method is relatively low, which can not meet the requirements of application, and joint modeling method can reach the correct recognition rate of 90%, and significantly enhances the recognition effect. The experiment of model stability shows that, the identification results of model by joint modeling are better than the model by separate modeling, and has good application value.

  3. Microchip electrophoresis with electrochemical detection for the determination of analytes in the dopamine metabolic pathway

    PubMed Central

    Saylor, Rachel A.; Reid, Erin A.; Lunte, Susan M.

    2016-01-01

    A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor L-DOPA metabolism in a rat brain slice. PMID:25958983

  4. Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon.

    PubMed

    Ma, Jianqing; Yang, Qunfeng; Xu, Dongmei; Zeng, Xiaomei; Wen, Yuezhong; Liu, Weiping

    2017-02-01

    Powdered activated carbons (PACs) with micrometer size are showing great potential for enabling and improving technologies in water treatment. The critical problem in achieving practical application of PAC involves simple, effective fabrication of magnetic PAC and the design of a feasible reactor that can remove pollutants and recover the adsorbent efficiently. Herein, we show that such materials can be fabricated by the combination of PAC and magnetic Fe 3 O 4 with chitosan-Fe hydrogel through a simple co-precipitation method. According to the characterization results, CS-Fe/Fe 3 O 4 /PAC with different micrometers in size exhibited excellent magnetic properties. The adsorption of tetracycline was fast and efficient, and 99.9% removal was achieved in 30 min. It also possesses good usability and stability to co-existing ions, organics, and different pH values due to its dispersive interaction nature. Finally, the prepared CS-Fe/Fe 3 O 4 /PAC also performed well in the fluidized bed reactor with electromagnetic separation function. It could be easily separated by applying a magnetic field and was effectively in situ regenerated, indicating a potential of practical application for the removal of pollutants from water.

  5. Separation of tricyclic antidepressants by capillary zone electrophoresis with N,N,N',N'-tetramethyl-1,3-butanediamine (TMBD) as an effective electrolyte additive.

    PubMed

    Dell'Aquila, Caterina

    2002-09-05

    Five tricyclic antidepressants (TADs), desipramyne, nortriptyline, imipramine, doxepin and amitriptyline, were separated by using the N,N,N',N'-tetramethyl-1,3-butanediamine (TMBD) as additive in the background electrolyte solution. Because the tricyclic antidepressants are similar in structure, mass and pka values, their separation, by capillary zone electrophoresis, requires the careful manipulation of parameters, such as the pH and the composition of the electrolyte solution. As basic drugs, the TADs interact with the silanol groups on the capillary wall giving rise to peak broadening and asymmetry, non reproducible migration times and failing in selectivity. Different concentrations of TMBD (40, 60, 100 and 150 mM) were used at pH 9.5, but only a 100 mM TMBD allowed a good separation and a high efficiency for all the TADs. At this pH the separation was not possible without additive. This result is due to the reduced electroosmotic flow whose mobility is at a value of 10(-9) m(2) V(-1) s(-1).

  6. Novel fabrication of a robust superhydrophobic PU@ZnO@Fe3O4@SA sponge and its application in oil-water separations.

    PubMed

    Tran, Viet-Ha Thi; Lee, Byeong-Kyu

    2017-12-13

    We report a novel superhydrophobic material based on commercially available polyurethane (PU) sponge with high porosity, low density and good elasticity. The fabrication of a superhydrophobic sponge capable of efficiently separating oil from water was achieved by imitating or mimicking nature's designs. The original PU sponge was coated with zinc oxide (ZnO), stearic acid (SA) and iron oxide particles (Fe 3 O 4 ) via a facile and environmentally friendly method. After each treatment, the properties of the modified sponge were characterized, and the changes in wettability were examined. Water contact angle (WCA) measurements confirmed the excellent superhydrophobicity of the material withhigh static WCA of 161° andlow dynamic WCA (sliding WCA of 7° and shedding WCA of 8°). The fabricated sponge showed high efficiency in separation (over 99%) of different oils from water. Additionally, the fabricated PU@ZnO@Fe 3 O 4 @SA sponge could be magnetically guided to quickly absorb oil floating on the water surface. Moreover, the fabricated sponge showed excellent stability and reusability in terms of superhydrophobicity and oil absorption capacity. The durable, magnetic and superhydrophobic properties of the fabricated sponge render it applicable to the cleanup of marine oil spills and other oil-water separation issues, with eco-friendly recovery of the oil by simple squeezing process.

  7. RP-HPTLC densitometric determination and validation of vanillin and related phenolic compounds in accelerated solvent extract of Vanilla planifolia*.

    PubMed

    Sharma, Upendra Kumar; Sharma, Nandini; Gupta, Ajai Prakash; Kumar, Vinod; Sinha, Arun Kumar

    2007-12-01

    A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.

  8. Facile preparation of high density polyethylene superhydrophobic/superoleophilic coatings on glass, copper and polyurethane sponge for self-cleaning, corrosion resistance and efficient oil/water separation.

    PubMed

    Cheng, Yuanyuan; Wu, Bei; Ma, Xiaofan; Lu, Shixiang; Xu, Wenguo; Szunerits, Sabine; Boukherroub, Rabah

    2018-04-18

    Inspired by the lotus effect and water-repellent properties of water striders' legs, superhydrophobic surfaces have been intensively investigated from both fundamental and applied perspectives for daily and industrial applications. Various techniques are available for the fabrication of artificial superoleophilic/superhydrophobic (SS). However, most of these techniques are tedious and often require hazardous or expensive equipment, which hampers their implementation for practical applications. In the present work, we used a versatile and straightforward technique based on polymer drop-casting for the preparation SS materials that can be implemented on any substrate. High density polyethylene (HDPE) SS coatings were prepared on different substrates (glass, copper mesh and polyurethane (PU) sponge) by drop casting the parent polymer xylene-ethanol solution at room temperature. All the substrates exhibited a superhydrophobic behavior with a water contact angle (WCA) greater than 150°. Furthermore, the corrosion resistance, stability, self-cleaning property, and water/oil separation of the developed materials were also assessed. While copper mesh and PU sponge exhibited good ability for oil and organic solvents separation from water, the HDPE-functionalized PU sponge displayed good adsorption capacity, 32-90 times the weight of adsorbed substance vs. the weight of adsorbent. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. A quantitative structure–function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis

    PubMed Central

    Barter, Laura M. C.; Durrant, James R.; Klug, David R.

    2003-01-01

    Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865

  10. "Light sail" acceleration reexamined.

    PubMed

    Macchi, Andrea; Veghini, Silvia; Pegoraro, Francesco

    2009-08-21

    The dynamics of the acceleration of ultrathin foil targets by the radiation pressure of superintense, circularly polarized laser pulses is investigated by analytical modeling and particle-in-cell simulations. By addressing self-induced transparency and charge separation effects, it is shown that for "optimal" values of the foil thickness only a thin layer at the rear side is accelerated by radiation pressure. The simple "light sail" model gives a good estimate of the energy per nucleon, but overestimates the conversion efficiency of laser energy into monoenergetic ions.

  11. Nickel hydroxide/cobalt-ferrite magnetic nanocatalyst for alcohol oxidation.

    PubMed

    Bhat, Pooja B; Inam, Fawad; Bhat, Badekai Ramachandra

    2014-08-11

    A magnetically separable, active nickel hydroxide (Brønsted base) coated nanocobalt ferrite catalyst has been developed for oxidation of alcohols. High surface area was achieved by tuning the particle size with surfactant. The surface area of 120.94 m2 g(-1) has been achieved for the coated nanocobalt ferrite. Improved catalytic activity and selectivity were obtained by synergistic effect of transition metal hydroxide (basic hydroxide) on nanocobalt ferrite. The nanocatalyst oxidizes primary and secondary alcohols efficiently (87%) to corresponding carbonyls in good yields.

  12. Development and validation of an analytical method for the separation and determination of major bioactive curcuminoids in Curcuma longa rhizomes and herbal products using non-aqueous capillary electrophoresis.

    PubMed

    Anubala, S; Sekar, R; Nagaiah, K

    2014-06-01

    A simple, fast and efficient non-aqueous capillary electrophoresis method (NACE) was developed for the simultaneous determination of three major bioactive curcuminoids (CMNs) in Curcuma longa rhizomes and its herbal products. Good separation, resolution and reproducibility were achieved with the background electrolyte (BGE) consisting a mixture of 15.0 mM sodium tetraborate and 7.4 mM sodium hydroxide (NaOH) in 2:10:15 (v/v/v) of water, 1-propanol, and methanol. The influences of background electrolyte, sodium hydroxide, water, sodium dodecyl sulfate and hydroxylpropyl-β-cyclodextrin on separations were investigated. The separation was carried out in a fused-silica capillary tube with reverse polarity. Hydrodynamic injection of 25mbar for 12s was used for injecting samples and a voltage of 28 kV was applied for separation. The ultrasonication method was used for the extraction of CMNs from the turmeric herbal products and the extract was filtered and directly injected without any further treatments. The limits of detection and quantification were less than 5.0 and 14.6 µg/ml respectively for all CMNs. The percentage recoveries for CMNs were >97.2% (%RSD, <2.62). The results obtained by the method were compared with existing spectrophotometric and HPLC methods. The related compounds in the extract did not interfere in the determination of CMNs. The proposed NACE method is better than existing chromatographic and electrophoretic methods in terms of simple electrophoretic medium, fast analysis and good resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A two-stage DEA approach for environmental efficiency measurement.

    PubMed

    Song, Malin; Wang, Shuhong; Liu, Wei

    2014-05-01

    The slacks-based measure (SBM) model based on the constant returns to scale has achieved some good results in addressing the undesirable outputs, such as waste water and water gas, in measuring environmental efficiency. However, the traditional SBM model cannot deal with the scenario in which desirable outputs are constant. Based on the axiomatic theory of productivity, this paper carries out a systematic research on the SBM model considering undesirable outputs, and further expands the SBM model from the perspective of network analysis. The new model can not only perform efficiency evaluation considering undesirable outputs, but also calculate desirable and undesirable outputs separately. The latter advantage successfully solves the "dependence" problem of outputs, that is, we can not increase the desirable outputs without producing any undesirable outputs. The following illustration shows that the efficiency values obtained by two-stage approach are smaller than those obtained by the traditional SBM model. Our approach provides a more profound analysis on how to improve environmental efficiency of the decision making units.

  14. Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting

    PubMed Central

    Ming-jun, Deng; Shi-ru, Qu

    2015-01-01

    Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting. PMID:26779258

  15. Fuzzy State Transition and Kalman Filter Applied in Short-Term Traffic Flow Forecasting.

    PubMed

    Deng, Ming-jun; Qu, Shi-ru

    2015-01-01

    Traffic flow is widely recognized as an important parameter for road traffic state forecasting. Fuzzy state transform and Kalman filter (KF) have been applied in this field separately. But the studies show that the former method has good performance on the trend forecasting of traffic state variation but always involves several numerical errors. The latter model is good at numerical forecasting but is deficient in the expression of time hysteretically. This paper proposed an approach that combining fuzzy state transform and KF forecasting model. In considering the advantage of the two models, a weight combination model is proposed. The minimum of the sum forecasting error squared is regarded as a goal in optimizing the combined weight dynamically. Real detection data are used to test the efficiency. Results indicate that the method has a good performance in terms of short-term traffic forecasting.

  16. Dynamical phase separation using a microfluidic device: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Aymard, Benjamin; Vaes, Urbain; Radhakrishnan, Anand; Pradas, Marc; Gavriilidis, Asterios; Kalliadasis, Serafim; Complex Multiscale Systems Team

    2017-11-01

    We study the dynamical phase separation of a binary fluid by a microfluidic device both from the experimental and from the modeling points of view. The experimental device consists of a main channel (600 μm wide) leading into an array of 276 trapezoidal capillaries of 5 μm width arranged on both sides and separating the lateral channels from the main channel. Due to geometrical effects as well as wetting properties of the substrate, and under well chosen pressure boundary conditions, a multiphase flow introduced into the main channel gets separated at the capillaries. Understanding this dynamics via modeling and numerical simulation is a crucial step in designing future efficient micro-separators. We propose a diffuse-interface model, based on the classical Cahn-Hilliard-Navier-Stokes system, with a new nonlinear mobility and new wetting boundary conditions. We also propose a novel numerical method using a finite-element approach, together with an adaptive mesh refinement strategy. The complex geometry is captured using the same computer-aided design files as the ones adopted in the fabrication of the actual device. Numerical simulations reveal a very good qualitative agreement between model and experiments, demonstrating also a clear separation of phases.

  17. Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA] [L-ASP]) as selectors.

    PubMed

    Yujiao, Wu; Guoyan, Wang; Wenyan, Zhao; Hongfen, Zhang; Huanwang, Jing; Anjia, Chen

    2014-05-01

    In this paper, a simple, effective and green capillary electrophoresis separation and detection method was developed for the quantification of underivatized amino acids (dl-phenylalanine; dl-tryptophan) using β-Cyclodextrin and chiral ionic liquid ([TBA] [l-ASP]) as selectors. Separation parameters such as buffer concentrations, pH, β-CD and chiral ionic liquid concentrations and separation voltage were investigated for the enantioseparation in order to achieve the maximum possible resolution. A good separation was achieved in a background electrolyte composed of 15 mm sodium tetraborate, 5 mm β-CD and 4 mm chiral ionic liquid at pH 9.5, and an applied voltage of 10 kV. Under optimum conditions, linearity was achieved within concentration ranges from 0.08 to 10 µg/mL for the analytes with correlation coefficients from 0.9956 to 0.9998, and the analytes were separated in less than 6 min with efficiencies up to 970,000 plates/m. The proposed method was successfully applied to the determination of amino acid enantiomers in compound amino acids injections, such as 18AA-I, 18AA-II and 3AA.

  18. Physical effects of DCNQI derivatives doping as an N type organic semiconductor in organic photovoltaic cell performance.

    PubMed

    Lee, Joo Hyung; Oh, Se Young

    2014-08-01

    In the previous work, we have reported that organic photovoltaic (OPV) cells using DMDCNQI as an n-type second dopant material showed a high power conversion efficiency (PCE). In the present work, we have synthesized a novel DHDCNQI with long alkyl chains to improve the compatibility between the DHDCNQI dopant molecule and host P3HT polymer. We have fabricated OPV cells consisting of ITO/PEDOT:PSS/P3HT:PCBM:DHDCNQI/Al. We have investigated the characteristics of theses OPV cells using DCNQI derivative dopants from the measurements of the incident photon-to-current collection efficiency and photocurrent. The OPV cell using 3 wt% DHDCNQI exhibited a high PCE of 3.29% due to the high charge separation efficiency, good compatibility and low trap site effect.

  19. Electroactive polymer based porous membranes for energy storage applications

    NASA Astrophysics Data System (ADS)

    Costa, Carlos Miguel da Silva

    In the field of mobile applications the efficient storage of energy is one of the most critical issues. Lithium ion batteries are lighter, cheaper, show higher energy density (210Wh kg-1), no memory effect, longer service-life and higher number of charge/discharge cycles than other battery solutions. The separator membrane is placed between the anode and cathode and serves as the medium for the transfer of charge, being a critical components for the performance of the batteries. Polymers such as PVDF and its copolymers poly(vinylidene fluoride-co-trifluoroethylene), P(VDF-TrFE), poly(vinylidene fluoride-co-hexafluoropropylene), P(VDF-HFP), and poly(vinylidene fluoride-co-chlorotrifluoroethylene), P(VDF-CTFE) are increasingly investigated for their use as battery separators due to their high polarity, excellent thermal and mechanical properties, controllable porosity and wettability by organic solvents, being also chemically inert and stable in cathodic environment. Despite previous works in some of the PVDF co-polymers, there is no systematic investigations on poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), despite its large potential for this specific application. The objective of this work is thus establish the suitability of P(VDF-TrFE) for battery separators and to control of its structure, stability and ionic conductivity in order to increase performance of the material as battery separators. It is shown that solvent evaporation at room temperature allows the preparation of membranes with degrees of porosity from 70% to 80% leading to electrolyte solution uptakes from 250% up to 600%. The preparation of composites of P(VDF-TrFE) with lithium salts allows ionic conductivity values of the electrolytes of 2.3x10. -6 S/cm at 120 °C. These composites show good overall electrochemicalstability. A novel type of polymer blend based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide), P(VDF-TrFE)/PEO, was prepared and it was found that the microstructure, hydrophilicity and electrolyte uptake strongly depend on PEO content within the blend. For this blend, the best value of ionic conductivity at room temperature was 0.25 mS cm-1 for the 60/40 membrane. It was also verified that the ionic conductivity of the membrane is depend on the anion size of the salts present in the electrolyte solution, affecting also the electrolyte uptake value. Batteries fabricated with the separators developed in this work within Li/LiFePO4 and Li/Sn-C cells revealed very good cycling performance even at high current rates and 100% of depth of discharge (DOD), approaching the results achieved in liquid electrolytes. Good rate capability was observed in Li/LiFePO4 cathode cells, being able to deliver at 2C more that 90% of the capacity discharged at 0.1C. These results, in conjunction with the approximately 100% coulombic efficiency, indicate very good electrolyte/electrode compatibility. Thus, the developed materials showed suitable thermal, mechanical and electrochemical characteristics as well as high performance in battery applications, indicating the possibility of fabricating lithium-ion batteries with the battery separators developed in this work.

  20. Fe3O4@Polypyrrole Microspheres with High Magnetization and Superparamagnetism for Efficient and Fast Removal of Pb(II) Ions

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Wanyan; Xu, Wutong; Wang, Yan; Li, Ning; Zhang, Tingting; Wang, Hui

    2017-12-01

    Core-shell structured Fe3O4@PPy microspheres are synthesized successfully through a facile polyol reduction method in combination with a modified Stöber method. We show that the as-prepared Fe3O4@PPy microspheres with high saturation magnetization, superparamagnetism, and good dispersibility have a high efficient adsorption capacity for high efficient removal of Pb(II) ions of up to 391.71 mg g-1 and a fast adsorption equilibrium time of 20 min. Furthermore, the lead-adsorbed Fe3O4@PPy microspheres can be rapidly separated from solution because of the excellent superparamagnetic properties. The composite Fe3O4@PPy microspheres are characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The adsorption data from our experiments show that the adsorption process fits well with the pseudosecond- order kinetic model and the adsorption isotherm follows the Langmuir isotherm model. The thermodynamic studies show that the adsorption of Pb(II) on Fe3O4@PPy microspheres is an endothermic and spontaneous process. Comprehensive comparison among adsorbents for the removal of Pb(II) ions that literature reported, reusability, high adsorption efficiency, fast adsorption equilibrium, and rapid magnetic separation make these Fe3O4@PPy microspheres very promising application for removal of Pb(II) ions from contaminated water.

  1. Identification and determination of the saikosaponins in Radix bupleuri by accelerated solvent extraction combined with rapid-resolution LC-MS.

    PubMed

    Yang, Yun-Yun; Tang, You-Zhi; Fan, Chun-Lin; Luo, Hui-Tai; Guo, Peng-Ran; Chen, Jian-Xin

    2010-07-01

    A method based on accelerated solvent extraction combined with rapid-resolution LC-MS for efficient extraction, rapid separation, online identification and accurate determination of the saikosaponins (SSs) in Radix bupleuri (RB) was developed. The RB samples were extracted by accelerated solvent extraction using 70% aqueous ethanol v/v as solvent, at a temperature of 120 degrees C and pressure of 100 bar, with 10 min of static extraction time and three extraction cycles. Rapid-resolution LC separation was performed by using a C(18) column at gradient elution of water (containing 0.5% formic acid) and acetonitrile, and the major constituents were well separated within 20 min. A TOF-MS and an IT-MS were used for online identification of the major constituents, and 27 SSs were identified or tentatively identified. Five major bioactive SSs (SSa, SSc, SSd, 6''-O-acetyl-SSa and 6''-O-acetyl-SSd) with obvious peak areas and good resolution were chosen as benchmark substances, and a triple quadrupole MS operating in multiple-reaction monitoring mode was used for their quantitative analysis. A total of 16 RB samples from different regions of China were analyzed. The results indicated that the method was rapid, efficient, accurate and suitable for use in the quality control of RB.

  2. Carrier-separating demodulation of phase shifting self-mixing interferometry

    NASA Astrophysics Data System (ADS)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2017-03-01

    A carrier separating method associated with noise-elimination had been introduced into a sinusoidal phase-shifting self-mixing interferometer. The conventional sinusoidal phase shifting self-mixing interferometry was developed into a more competitive instrument with high computing efficiency and nanometer accuracy of λ / 100 in dynamical vibration measurement. The high slew rate electro-optic modulator induced a sinusoidal phase carrier with ultralow insertion loss in this paper. In order to extract phase-shift quickly and precisely, this paper employed the carrier-separating to directly generate quadrature signals without complicated frequency domain transforms. Moreover, most noises were evaluated and suppressed by a noise-elimination technology synthesizing empirical mode decomposition with wavelet transform. The overall laser system was described and inherent advantages such as high computational efficiency and decreased nonlinear errors of the established system were demonstrated. The experiment implemented on a high precision PZT (positioning accuracy was better than 1 nm) and compared with laser Doppler velocity meter. The good agreement of two instruments shown that the short-term resolution had improved from 10 nm to 1.5 nm in dynamic vibration measurement with reduced time expense. This was useful in precision measurement to improve the SMI with same sampling rate. The proposed signal processing was performed in pure time-domain requiring no preprocessing electronic circuits.

  3. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Tang, Shouwan; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Zou, Hanfa

    2013-08-02

    An organic-inorganic hybrid monolith was prepared by a single-step ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with poly(ethylenimine) (PEI). The obtained hybrid monoliths possessed high ordered 3D skeletal microstructure with dual retention mechanism that exhibits reversed-phase (RP) mechanism under polar mobile phase and hydrophilic-interaction liquid chromatography (HILIC) retention mechanism under less polar mobile phase. The high column efficiencies of 110,000N/m can be achieved for separation of alkylbenzenes in capillary reversed-phase liquid chromatography (cLC). Due to the robust property of hybrid monolith and the rich primary and secondary amino groups on its surface, the resulting hybrid monolith was easily modified with γ-gluconolactone and physically coated with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), respectively. The former was successfully applied for HILIC separation of neutral, basic and acidic polar compounds as well as small peptides, and the latter for enantioseparation of racemates in cLC. The high column efficiencies were achieved in all of those separations. These results demonstrated that the hybrid monolith (POSS-PEI) possessed high stability and good surface tailorbility, potentially being applied for other research fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols.

    PubMed

    Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2015-05-01

    Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water flows in open channels

    NASA Astrophysics Data System (ADS)

    Qian, Shouguo; Li, Gang; Shao, Fengjing; Xing, Yulong

    2018-05-01

    We construct and study efficient high order discontinuous Galerkin methods for the shallow water flows in open channels with irregular geometry and a non-flat bottom topography in this paper. The proposed methods are well-balanced for the still water steady state solution, and can preserve the non-negativity of wet cross section numerically. The well-balanced property is obtained via a novel source term separation and discretization. A simple positivity-preserving limiter is employed to provide efficient and robust simulations near the wetting and drying fronts. Numerical examples are performed to verify the well-balanced property, the non-negativity of the wet cross section, and good performance for both continuous and discontinuous solutions.

  6. Solvent-programmed microchip open-channel electrochromatography.

    PubMed

    Kutter, J P; Jacobson, S C; Matsubara, N; Ramsey, J M

    1998-08-01

    Open-channel electrochromatography in combination with solvent programming is demonstrated using a microchip device. Channel walls were coated with octadecylsilanes at ambient temperatures, yielding stationary phases for chromatographic separations of neutral dyes. The electroosmotic flow after coating was sufficient to ensure transport of all species and on-chip mixing of isocratic and gradient elution conditions with acetonitrile-buffer mixtures. Chips having different channel depths between 10.2 and 2.9 μm were evaluated for performance, and van Deemter plots were established. Channel depths of about 5 μm were found to be a good compromise between efficiency and ease of operation. Isocratic and gradient elution conditions were easily established and manipulated by computer-controlled application of voltages to the terminals of the microchip. Linear gradients with different slopes, start times, duration times, and start percentages of organic modifier proved to be powerful tools to tune selectivity and analysis time for the separation of a test mixture. Even very steep gradients still produced excellent efficiencies. Together with fast reconditioning times, complete runs could be finished in under 60 s.

  7. Synthesis and application of in-situ molecularly imprinted silica monolithic in pipette-tip solid-phase microextraction for the separation and determination of gallic acid in orange juice samples.

    PubMed

    Arabi, Maryam; Ghaedi, Mehrorang; Ostovan, Abbas

    2017-03-24

    A novel strategy was presented for the synthesis and application of functionalized silica monolithic as artificial receptor of gallic acid at micro-pipette tip. A sol-gel process was used to prepare the sorbent. In this in-situ polymerization reaction, tetraethyl orthosilicate (TEOS), 3-aminopropyl trimethoxysilane (APTMS), gallic acid and thiourea were used, respectively, as cross-linker, functionalized monomer, template and precursor to make crack-free and non-fragile structure. Such durable and inexpensive in-situ monolithic was successfully employed as useful tool for highly efficient extraction of gallic acid from orange juice samples. The effective parameters in extraction recovery were investigated and optimum conditions were obtained using experimental design methodology. Applying HPLC-UV for separation quantification at optimal conditions, the gallic acid was efficiently extracted without significant matrix interference. Good linearity for gallic acid in the range of 0.02-5.0mgL -1 with correlation coefficients of R 2 >0.999 revealed well applicability of the method for trace analysis. Copyright © 2017. Published by Elsevier B.V.

  8. Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.

    PubMed

    Zhang, Chen; Zhang, Jing; Huang, Yan-Ping; Liu, Zhao-Sheng

    2015-04-01

    A macromolecular crowding-assisted liquid-crystalline molecularly imprinted monolith (LC-MIM) was prepared successfully for the first time. The imprinted stationary phase was synthesized with polymethyl methacrylate (PMMA) or polystyrene (PS) as the crowding agent, 4-cyanophenyl dicyclohexyl propylene (CPCE) as the liquid-crystal monomer, and hydroquinidine as the pseudo-template for the chiral separation of cinchona alkaloids in HPLC. A low level of cross-linker (26%) has been found to be sufficient to achieve molecular recognition on the crowding-assisted LC-MIM due to the physical cross-linking of mesogenic groups in place of chemical cross-linking, and baseline separation of quinidine and quinine could be achieved with good resolution (R(s) = 2.96), selectivity factor (α = 2.16), and column efficiency (N = 2650 plates/m). In contrast, the LC-MIM prepared without crowding agents displayed the smallest diastereoselectivity (α = 1.90), while the crowding-assisted MIM with high level of cross-linker (80%) obtained the greatest selectivity factor (α = 7.65), but the lowest column efficiency (N = 177 plates/m).

  9. Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.

    2004-01-01

    A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.

  10. [Preparation of poly(methyl acrylate) microfluidic chips surface-modified by hyperbranched polyamide ester and their application in the separation of biomolecules].

    PubMed

    Liu, Bing; Lin, Donge; Xu, Lin; Lei, Yanhui; Bo, Qianglong; Shou, Chongqi

    2012-05-01

    The surface of poly (methyl acrylate) (PMMA) microfluidic chips were modified using hyperbranched polyamide ester via chemical bonding. The contact angles of the modified chips were measured. The surface morphology was observed by scanning electron microscope (SEM) and stereo microscope. The results showed that the surface of the modified chips was coated by a dense, uniform, continuous, hydrophilic layer of hyperbranched polyamide ester. The hydrophilic of the chip surface was markedly improved. The contact angle of the chips modified decreased from 89.9 degrees to 29.5 degrees. The electro osmotic flow (EOF) in the modified microchannel was lower than that in the unmodified microchannel. Adenosine and L-lysine were detected and separated via the modified PMMA microfluidic chips. Compared with unmodified chips, the modified chips successfully separated the two biomolecules. The detection peaks were clear and sharp. The separation efficiencies of adenosine and L-lysine were 8.44 x 10(4) plates/m and 9.82 x 10(4) plates/m respectively, and the resolutions (Rs) was 5.31. The column efficiencies and resolutions of the modified chips were much higher than those of the unmodified chips. It was also observed that the modified chips possessed good reproducibility of migration time. This research may provide a new and effective method to improve the hydrophilicity of the PMMA surface and the application of PMMA microfluidic chips in the determination of trace biomolecules.

  11. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  12. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  13. Crack Damage Detection Method via Multiple Visual Features and Efficient Multi-Task Learning Model.

    PubMed

    Wang, Baoxian; Zhao, Weigang; Gao, Po; Zhang, Yufeng; Wang, Zhe

    2018-06-02

    This paper proposes an effective and efficient model for concrete crack detection. The presented work consists of two modules: multi-view image feature extraction and multi-task crack region detection. Specifically, multiple visual features (such as texture, edge, etc.) of image regions are calculated, which can suppress various background noises (such as illumination, pockmark, stripe, blurring, etc.). With the computed multiple visual features, a novel crack region detector is advocated using a multi-task learning framework, which involves restraining the variability for different crack region features and emphasizing the separability between crack region features and complex background ones. Furthermore, the extreme learning machine is utilized to construct this multi-task learning model, thereby leading to high computing efficiency and good generalization. Experimental results of the practical concrete images demonstrate that the developed algorithm can achieve favorable crack detection performance compared with traditional crack detectors.

  14. Double-helix micro-channels on microfluidic chips for enhanced continuous on-chip derivatization followed by electrophoretic separation.

    PubMed

    Peng, Xianglu; Zhao, Lei; Guo, Jinxiu; Yang, Shenghong; Ding, Hui; Wang, Xiayan; Pu, Qiaosheng

    2015-10-15

    Micro-channels that contain a special inner structure are critical for efficient mixing and chemical reactions. In this paper, we described the facile fabrication of an integrated microchip with double-helix type micro-channels to improve mixing efficiency and to facilitate multi-step derivatization reactions prior to electrophoretic separation. With a prepared microchip, reagents, samples and reaction products could be driven through micro-channels by siphon, and no other pumping device was necessary. To test its performance, reductive amination of aldehydes with 8-aminonaphthalene-1,3,6-trisulfonate acid disodium (ANTS) was attempted via microchip electrophoresis with laser induced fluorescence (LIF). The effect of the geometry of the reaction micro-channel on the reaction's efficiency was evaluated. Under the selected conditions, successful derivatization of five aldehydes was realized for highly reproducible analysis. The relative standard deviations of the peak areas for 30 consecutive injections were in the range of 0.28-1.61%. The method was applied for the determination of aldehydes in real samples with standard addition recoveries of 87.8-102.8%. Good tolerance of organic solvents was achieved, and the proposed method can potentially be employed for rapid screening of excessively added aldehyde food flavoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Rapid separation and identification of phenolics in crude red grape skin extracts by high performance liquid chromatography coupled to diode array detection and tandem mass spectrometry.

    PubMed

    Ji, Mei; Li, Chen; Li, Qiang

    2015-10-02

    A rapid and efficient method was established for the simultaneous determination of structures and configurations for 45 phenolics isolated from crude red grape skin extracts without extensive sample preparation. Separation and compound assignments were achieved using high performance liquid chromatography coupled to diode array detection and tandem mass spectrometry (HPLC-DAD-MS(2)). A Poroshell 120 EC-C18 (100mm×3.0mm, 2.7μm) column was employed to separate the phenolics, which were eluted using a gradient of acetonitrile and water acidified with 0.2% formic acid. Phenolics were identified by comparison of their UV-vis spectra, mass spectra and MS(2) data with those in the literature. Using this procedure, five compounds were detected for the first time in Vitis amurensis. Good separation of most phenolics was achieved in 26min. The methods described here can be used for the characterization of phenolics in a variety of grapes and grape products. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Sol-gel technique for the preparation of beta-cyclodextrin derivative stationary phase in open-tubular capillary electrochromatography.

    PubMed

    Wang, Y; Zeng, Z; Guan, N; Cheng, J

    2001-07-01

    A novel open-tubular capillary electrochromatography (OT-CEC) column coated with 2,6-dibutyl-beta-cyclodextrin (DB-beta-CD) was prepared using sol-gel technique. In the sol-gel approach, owing to the three-dimensional network of sol-gel and the strong chemical bond between the stationary phase and the surface of capillary columns, good chromatographic characteristics and unique selectivity in separating isomers were shown. We achieved high efficiencies of 5-14 x 10(4) plates/m for the isomeric nitrophenols using the sol-gel-derived DB-beta-CD columns. The migration time reproducibility of the separation of the isomeric nitrophenols was better than 2.2% over five runs and 4.5% from column to column. These sol-gel-coated DB-beta-CD columns have shown improved separations of isomeric aminophenols, isomeric dihydroxybenzenes and isomeric nitrophenols, in comparison with the sol-gel matrix capillary column. The influences of buffer pH and methanol solvent on separation were investigated. The chiral resolution of enantiomers such as ibuprofen and binaphthol was explored primarily.

  17. [A quickly methodology for drug intelligence using profiling of illicit heroin samples].

    PubMed

    Zhang, Jianxin; Chen, Cunyi

    2012-07-01

    The aim of the paper was to evaluate a link between two heroin seizures using a descriptive method. The system involved the derivation and gas chromatographic separation of samples followed by a fully automatic data analysis and transfer to a database. Comparisons used the square cosine function between two chromatograms assimilated to vectors. The method showed good discriminatory capabilities. The probability of false positives was extremely slight. In conclusion, this method proved to be efficient and reliable, which appeared suitable for estimating the links between illicit heroin samples.

  18. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    NASA Astrophysics Data System (ADS)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  19. [Studies on determination of p-aminophenol and its related compounds prepared with catalytic hydrogenation by reversed-phase high performance liquid chromatography].

    PubMed

    Li, S; Gu, H; Zheng, M; Zhan, Y

    1997-07-01

    Catalytic hydrogenation of nitrobenzene with supported palladium catalyst is a new method to produce p-aminophenol. p-Aminophenol, aniline and 4,4'-diaminodiphenyl ether obtained from this method were determined by reversed phase high performance liquid chromatography. The factors, e.g., concentration of methanol, pH and ionic strength which could affect separation efficiency were studied. UV spectra of p-aminophenol, aniline and 4,4'-diaminodiphenyl ether were recorded. Good separation was performed by using a 100 mm x 4.6 mm column with 5 microm Hypersil ODS, a mixture of 60% aqueous 8.0 mmol/L KH2PO4 buffered to 6.5 with 4.0 mmol/L Na2HPO4 and 40% methanol as mobile phase at a flow rate of 1.0 mL/min, and UV spectrophotometric detector at 232 nm wavelength. The calibration curves of p-aminophenol, aniline and 4,4'-diaminodiphenyl ether have good linearity over concentration range of 5-250, 5-150 and 0.2-120 mg/L, respectively. Minimum detectable limits at a signal-to-noise ratio of 2 were 0.1, 0.6 and 0.6 ng. This method has been applied to analysis of the reaction products of ultrasonic catalytic hydrogenation and industrial samples with good results and reproducibility.

  20. Enhanced Oxidative Dehydrogenation of Ethane with Facilitated Transport Membranes for Low Cost Production of Ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemser, Stuart; Shangguan, Ning; Pennisi, Kenneth

    This SBIR program has been extremely successful. We have met or exceeded all of the key objectives. We have successfully demonstrated the product and process feasibility. Compact Membrane Systems proposed a membrane separation technology which can efficiently separate ethylene from ethane in the presence of H 2O and CO 2. The CMS ethylene/ethane separation will significantly improve the economics of the Oxidative Dehydrogenation (ODH) process. We have developed membranes with high ethylene flux and high ethylene/ethane selectivity. These membranes have also shown good resistance to high concentration CO 2 and CO. Economic analysis shows at least **% cost savings comparedmore » with conventional distillation used for ethylene/ethane separation. Given our success to date, we have been able to establish key direct partnerships with other collaborators. The primary objective of the Phase I program was to develop a stable membrane that is capable of providing very efficient and cost effective production of ethylene from ethane. The CMS fluorinated membrane developed during this program was found to be able to provide very good C 2H 4/C 2H 6 selectivity and outstanding C 2H 4 permeance. With the development of the fast and highly selective ethylene CMS membrane, we have achieved all our Phase I program objectives. This is especially true of the estimated cost of ethylene production that is projected to be over **% less than the conventional method (distillation) at scale applications (** Nm3/h). The final result is better than the Phase I goal of 30% less. In summary, during the Phase I, we developed a CMS membrane with a high C 2H 4 permeance good C 2H 4/C 2H 6 selectivity. The stability and anti-fouling ability of the CMS membrane was demonstrated by exposing the membrane to a C 2H 4/C 2H 6 mixture gas for 7 weeks. A membrane based ODH production and separation system was designed and the economic and engineering evaluation using the VMGSim models predicted a cost of $***. As previously stated this is at least a 35% cost reduction from the conventional methods and higher than the Phase I goal (25% cost reduction). The successful Phase I research attracted the interest from several major industrial players who are willing to provide partnership and support of further research. Successful development of the fluoropolymer membranes for C 2H 4/C 2H 6 separation in the process of ODH will provide significant benefits to the public: 1. Development of a highly economically profitable use of shale gas resource; 2. More economic growth and job creations based on the rich shale gas resource in US; 3. Huge energy savings compared with the conventional production of ethylene.« less

  1. Magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles for visible light photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.

    Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superiormore » rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.« less

  3. Ovum pick-up in sheep: a comparison between different aspiration devices for optimal oocyte retrieval.

    PubMed

    Rodríguez, C; Anel, L; Alvarez, M; Anel, E; Boixo, J C; Chamorro, C A; de Paz, P

    2006-04-01

    In vivo ovum pick-up (OPU) in sheep may be improved with a proper choice of aspiration elements (needle and tubing) and aspiration vacuum pressure. In the present study, two experiments were carried out. In Expt 1, visible follicles in ovaries of slaughtered ewes (treated separately according to their diameters: small<3 mm, medium 3-5 mm and large>5 mm) were aspirated using different combinations of the three studied factors such as aspiration flow rate (10, 20, 30, 40 and 50 ml water/min), needle gauge (18 and 20 G) and tubing inner diameter (1, 2 or 3 mm internal diameter). In Expt 2, a study with two 18 G needles of different lengths (18 G: 82 mm; 18 GL: 600 mm) was carried out, using ovaries obtained post-mortem, and performing in vivo laparoscopic follicular aspiration on ewes. We considered good quality oocytes as those with both complete compact cumulus and a homogeneous cytoplasm. Recovery rate, proportion of good quality oocytes (good quality oocytes/100 oocytes recovered) and overall efficiency (good quality oocytes/100 follicles aspirated) were noted. In Expt 1, aspiration flow rate affect remarkable proportion of good quality oocytes (69.5%, 50.5%, 44.8%, 36.5% and 28.3% for flows from 10 to 50 ml/min respectively, p<0.05). Needle gauge did not affect aspiration device efficiency. Thin and intermediate tubings were more effective (overall efficiency rates: 34.9%, 32.3% and 28.1% for 1, 2 and 3 mm respectively, p<0.05). Follicle size did not affect recovery rate, but proportion of good quality oocytes was higher for large (77.9%) and medium (64.4%) follicles (p<0.05). Finally, some combinations of the aspiration device showed greater effectiveness. In Expt 2, needle length did not influence recovery rate, but good quality oocytes rate was significantly modified both post-mortem and in vivo (good quality rate for 18 G vs 18 GL needles: 69.5% vs 47.7% and 58.1% vs 25.4%, post-mortem and in vivo respectively, p<0.05). We conclude that low-aspiration flow rates (10 and 20 ml/min) with thin or intermediate tubings (1 and 2 mm), and any short needle (18 G or 20 G) are the most adequate aspiration factors for OPU in sheep.

  4. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests comparing with the commercial one currently available. The high column efficiency and good reproducibility present that the large-porous silica microspheres obtained can be used as a matrix for peptide and protein separation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    PubMed Central

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.

    2011-01-01

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed. PMID:21520147

  6. Rotor design of high tip speed low loading transonic fan.

    NASA Technical Reports Server (NTRS)

    Erwin, J. R.; Vitale, N. G.

    1972-01-01

    This paper describes the design concepts, principles and details of a high tip speed transonic rotor having low aerodynamic loading. The purpose of the NASA sponsored investigation was to determine whether good efficiency and large stall margin could be obtained by designing a rotor to avoid flow separation associated with strong normal shocks. Fully supersonic flow through the outboard region of the rotor with compression accomplished by weak oblique shocks were major design concepts employed. Computer programs were written and used to derive blade sections consistent from the all-supersonic tip region to the all-subsonic hub region. Preliminary test results indicate attainment of design pressure ratio and design flow at design speed with about a 1.6 point decrement in efficiency and large stall margin.

  7. The effects of RPM and recycle on separation efficiency in a clinical blood cell centrifuge.

    PubMed

    Drumheller, P D; Van Wie, B J; Petersen, J N; Oxford, R J; Schneider, G W

    1987-11-01

    A COBE blood cell centrifuge, model 2997 with a single stage channel, was modified to allow computer controlled sampling, and to allow recycle of red blood cells (RBCs) and plasma streams using bovine whole blood. The effects of recycle of the packed RBC and plasma product streams, and of the centrifuge RPM on platelet and white blood cell (WBC) separation efficiencies were quantified using a central composite factorial experimental design. These data were then fit using second order models. Both the model for the WBC separation efficiency and the model for the platelet separation efficiency predict that RPM has the greatest effect on separation efficiency and that RBC and plasma recycle have detrimental effects at moderate to low RPM, but have negligible impact on separation efficiency at high RPM.

  8. Recurrent Neural Networks With Auxiliary Memory Units.

    PubMed

    Wang, Jianyong; Zhang, Lei; Guo, Quan; Yi, Zhang

    2018-05-01

    Memory is one of the most important mechanisms in recurrent neural networks (RNNs) learning. It plays a crucial role in practical applications, such as sequence learning. With a good memory mechanism, long term history can be fused with current information, and can thus improve RNNs learning. Developing a suitable memory mechanism is always desirable in the field of RNNs. This paper proposes a novel memory mechanism for RNNs. The main contributions of this paper are: 1) an auxiliary memory unit (AMU) is proposed, which results in a new special RNN model (AMU-RNN), separating the memory and output explicitly and 2) an efficient learning algorithm is developed by employing the technique of error flow truncation. The proposed AMU-RNN model, together with the developed learning algorithm, can learn and maintain stable memory over a long time range. This method overcomes both the learning conflict problem and gradient vanishing problem. Unlike the traditional method, which mixes the memory and output with a single neuron in a recurrent unit, the AMU provides an auxiliary memory neuron to maintain memory in particular. By separating the memory and output in a recurrent unit, the problem of learning conflicts can be eliminated easily. Moreover, by using the technique of error flow truncation, each auxiliary memory neuron ensures constant error flow during the learning process. The experiments demonstrate good performance of the proposed AMU-RNNs and the developed learning algorithm. The method exhibits quite efficient learning performance with stable convergence in the AMU-RNN learning and outperforms the state-of-the-art RNN models in sequence generation and sequence classification tasks.

  9. Classification Studies in an Advanced Air Classifier

    NASA Astrophysics Data System (ADS)

    Routray, Sunita; Bhima Rao, R.

    2016-10-01

    In the present paper, experiments are carried out using VSK separator which is an advanced air classifier to recover heavy minerals from beach sand. In classification experiments the cage wheel speed and the feed rate are set and the material is fed to the air cyclone and split into fine and coarse particles which are collected in separate bags. The size distribution of each fraction was measured by sieve analysis. A model is developed to predict the performance of the air classifier. The objective of the present model is to predict the grade efficiency curve for a given set of operating parameters such as cage wheel speed and feed rate. The overall experimental data with all variables studied in this investigation is fitted to several models. It is found that the present model is fitting good to the logistic model.

  10. Magnetic graphene oxide for adsorption of organic dyes from aqueous solution

    NASA Astrophysics Data System (ADS)

    Drashya, Lal, Shyam; Hooda, Sunita

    2018-05-01

    Graphene oxide (GO), a 2-D carbon nanomaterial, large surface area, oxygen-containing groups (like: hydroxyl, epoxy and carboxyl) and excellent water dispersibility due to it is good adsorbent dye removal from pollutant water1. But it's difficult to separate GO from water after adsorption. Therefore, Iron oxide was introduced in Graphene oxide by decorating method to make separation more efficient2. We present herein a one step process to prepare Magnetic Graphene oxide (MGO). The Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD) and Raman Spectroscopy characterized the chemical structure of the MGO composite. The adsorption of dyes onto MGO was studied in relation to initial concentration of Dyes, contact time, adsorbent dose, temperature and pH value of solution. We have studied adsorption capacity of different dyes (Methylene blue and crystal violet) by MGO.

  11. Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.

    2014-03-01

    Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.

  12. Microwave-assisted RAFT polymerization of well-constructed magnetic surface molecularly imprinted polymers for specific recognition of benzimidazole residues

    NASA Astrophysics Data System (ADS)

    Chen, Fangfang; Wang, Jiayu; Chen, Huiru; Lu, Ruicong; Xie, Xiaoyu

    2018-03-01

    Magnetic nanoparticles have been widely used as support core for fast separation, which could be directly separated from complicated matrices using an external magnet in few minutes. Surface imprinting based on magnetic core has shown favorable adsorption and separation performance, including good adsorption capacity, fast adsorption kinetics and special selectivity adsorption. Reversible addition-fragmentation chain transfer (RAFT) is an ideal choice for producing well-defined complex architecture with mild reaction conditions. We herein describe the preparation of well-constructed magnetic molecularly imprinted polymers (MMIPs) for the recognition of benzimidazole (BMZ) residues via the microwave-assisted RAFT polymerization. The merits of RAFT polymerization assisting with microwave heating allowed successful and more efficient preparation of well-constructed imprinted coats. Moreover, the polymerization time dramatically shortened and was just 1/24th of the time taken by conventional heating. The results indicated that a uniform nanoscale imprinted layer was formed on the Fe3O4 core successfully, and enough saturation magnetization of MMIPs (16.53 emu g-1) was got for magnetic separation. The desirable adsorption capacity (30.18 μmol g-1) and high selectivity toward template molecule with a selectivity coefficient (k) of 13.85 of MMIPs were exhibited by the adsorption isothermal assay and competitive binding assay, respectively. A solid phase extraction enrichment approach was successfully established for the determination of four BMZ residues from apple samples using MMIPs coupled to HPLC. Overall, this study provides a versatile approach for highly efficient fabrication of well-constructed MMIPs for enrichment and determination of target molecules from complicated samples.

  13. Separation and recovery of fine particles from waste circuit boards using an inflatable tapered diameter separation bed.

    PubMed

    Duan, Chenlong; Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui

    2014-01-01

    Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (-0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5-0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25-0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (-0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution.

  14. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  15. Design and implementation of Skype USB user gateway software

    NASA Astrophysics Data System (ADS)

    Qi, Yang

    2017-08-01

    With the widespread application of VoIP, the client with private protocol becomes more and more popular. Skype is one of the representatives. How to connect Skype with PSTN just by Skype client has gradually become hot. This paper design and implement the software based on a kind of USB User Gateway. With the software Skype user can freely communicate with PSTN phone. FSM is designed as the core of the software, and Skype control is separated by the USB Gateway control. In this way, the communication becomes more flexible and efficient. In the actual user testing, the software obtains good results.

  16. Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis.

    PubMed

    Wang, Fangjun; Dong, Jing; Jiang, Xiaogang; Ye, Mingliang; Zou, Hanfa

    2007-09-01

    A 150 microm internal diameter capillary monolithic column with a strong cation-exchange stationary phase was prepared by direct in situ polymerization of ethylene glycol methacrylate phosphate and bisacrylamide in a trinary porogenic solvent consisting dimethylsulfoxide, dodecanol, and N,N'-dimethylformamide. This phosphate monolithic column exhibits higher dynamic binding capacity, faster kinetic adsorption of peptides, and more than 10 times higher permeability than the column packed with commercially available strong cation-exchange particles. It was applied as a trap column in a nanoflow liquid chromatography-tandem mass spectrometry system for automated sample injection and online multidimensional separation. It was observed that the sample could be loaded at a flow rate as high as 40 microL/min with a back pressure of approximately 1300 psi and without compromising the separation efficiency. Because of its good orthogonality to the reversed phase separation mechanism, the phosphate monolithic trap column was coupled with a reversed-phase column for online multidimensional separation of 19 microg of the tryptic digest of yeast proteins. A total of 1522 distinct proteins were identified from 5608 unique peptides (total of 54,780 peptides) at the false positive rate only 0.46%.

  17. The effect of geometry and operation conditions on the performance of a gas-liquid cylindrical cyclone separator with new structure

    NASA Astrophysics Data System (ADS)

    Han, Qing; Zhang, Chi; Xu, Bo; Chen, Jiangping

    2013-07-01

    The hydrodynamic flow behavior, effects of geometry and working conditions of a gas-liquid cylindrical cyclone separator with a new structure are investigated by computational fluid dynamic and experiment. Gas liquid cylindrical cyclone separator is widely used in oil industry, refrigeration system because of its simple structure, high separating efficiency, little maintenance and no moving parts nor internal devices. In this work, a gas liquid cylindrical cyclone separator with new structure used before evaporator in refrigeration system can remove the vapor from the mixture and make evaporator compact by improving its heat exchange efficiency with the lower inlet quality. It also decreases evaporator pressure drop and reduces compressor work. The two pipes are placed symmetrically which makes each of them can be treated as inlet. It means when the fluids flow reverse, the separator performance will not be influence. Four samples with different geometry parameters are tested by experiment with different inlet quality (0.18-0.33), inlet mass flow rate (65-100kg/h). Compared with the experimental data, CFD simulation results show a good agreement. Eulerian multiphase model and Reynolds Stress Turbulence model are applied in the CFD simulation and obtained the inner flow field such as phase path lines, tangential velocity profiles and pressure and volume of fraction distribution contours. The separator body diameter (24, 36, 48mm) and inlet diameter (3.84, 4.8, 5.76mm) decide the maximum tangential velocity which results in the centrifugal force. The tangential velocity profiles are simulated and compared among different models. The higher tangential velocity makes higher quality of gas outlet but high pressure drop at the same time. Decreasing the inlet diameter increases quality of gas outlet pipe and pressure drop. High gas outlet quality is cost at high pressure drop. Increasing of separator diameter makes gas outlet quality increase first and then decrease but the pressure drop decreases all the way. The offset (0, 2.4, 3.6mm) of gas outlet is an insensitive factor which influences the quality and pressure drop little.

  18. Separation and determination of polyurethane amine catalysts in polyether polyols by using UHPLC-Q-TOF-MS on a reversed-phase/cation-exchange mixed-mode column.

    PubMed

    Li, Jiaxiao; Zhu, Marcel

    2018-02-01

    A simple, selective, and accurate ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol-based sample by solid-phase extraction, and further baseline separated on a reversed-phase/cation-exchange mixed-mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High-resolution quadrupole time-of-flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N'-bis[3-(dimethylamino)propyl]urea, N-[2-(2-dimethylaminoethoxy)ethyl]-N-methyl-1,3-propanediamine, and N,N,N',N'-tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20-5.0 or 0.1-2.0 μg/mL with the correlation coefficients (R 2 ) ranging from 0.986 to 0.997. Method recovery ranged within 81-105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0-6.2%. The limits of detection were in the range of 0.007-0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Separating live from dead longleaf pine seeds: good and bad news

    Treesearch

    James P. Barnett; R. Kasten Dumroese

    2006-01-01

    Of all southern pine seeds, longleaf pine (Pinus palutris Mill.) are the most difficult to collect, process, treat, and store while maintaining good seed quality. As a result, interest in techniques for separating filled dead from live longleaf pine seeds has developed. The good news is that new technologies are becoming available to evaluate seed...

  20. Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; Huang, Gui-Fang; Hu, Wang-Yu; Xiong, Dan-Ni; Zhou, Bing-Xin; Chang, Shengli; Huang, Wei-Qing

    2017-07-01

    Promoting the spatial separation of photoexcited charge carriers is of paramount significance for photocatalysis. In this work, binary g-C3N4/CeO2 nanosheets are first prepared by pyrolysis and subsequent exfoliation method, then decorated with ZnO nanoparticles to construct g-C3N4/CeO2/ZnO ternary nanocomposites with multi-heterointerfaces. Notably, the type-II staggered band alignments existing between any two of the constituents, as well as the efficient three-level transfer of electron-holes in unique g-C3N4/CeO2/ZnO ternary composites, leads to the robust separation of photoexcited charge carriers, as verified by its photocurrent increased by 8 times under visible light irradiation. The resulting g-C3N4/CeO2/ZnO ternary nanocomposites unveil appreciably increased photocatalytic activity, faster than that of pure g-C3N4, ZnO and g-C3N4/CeO2 by a factor of 11, 4.6 and 3.7, respectively, and good stability toward methylene blue (MB) degradation. The remarkably enhanced photocatalytic activity of g-C3N4/CeO2/ZnO ternary heterostructures can be interpreted in terms of lots of active sites of nanosheet shapes and the efficient charge separation owing to the resulting type-II band alignment with more than one heterointerface and the efficient three-level electron-hole transfer. A plausible mechanism is also elucidated via active species trapping experiments with various scavengers, which indicating that the photogenerated holes and •OH radicals play a crucial role in photodegradation reaction under visible light irradiation. This work suggest that the rational design and construction of type II multi-heterostructures is powerful for developing highly efficient and reusable visible-light photocatalysts for environmental purification and energy conversion.

  1. Design of high-efficiency Joule-Thomson cycles for high-temperature superconductor power cable cooling

    NASA Astrophysics Data System (ADS)

    Jin, Lingxue; Lee, Cheonkyu; Baek, Seungwhan; Jeong, Sangkwon

    2018-07-01

    Liquid nitrogen (LN2) is commonly used as the coolant of a high temperature superconductor (HTS) power cable. The LN2 is continuously cooled by a subcooler to maintain an appropriate operating temperature of the cable. This paper proposes two Joule-Thomson (JT) refrigeration cycles for subcooling the LN2 coolant by using nitrogen itself as the working fluid. Additionally, an innovative HTS cooling cycle, of which the cable coolant and the refrigerant are unified and supplied from the same source, is suggested and analyzed in detail. Among these cycles, the highest COP is obtained in the JT cycle with a vacuum pump (Cycle A) which is 0.115 at 78 K, and the Carnot efficiency is 32.8%. The integrated HTS cooling cycle (Cycle C) can reach the maximum COP of 0.087, and the Carnot efficiency of 24.8%. Although Cycle C has a relatively low cycle efficiency when compared to that of the separated refrigeration cycle, it can be a good alternative in engineering applications, because the assembled hardware has few machinery components in a more compact configuration than the other cycles.

  2. A computational model of pattern separation efficiency in the dentate gyrus with implications in schizophrenia

    PubMed Central

    Faghihi, Faramarz; Moustafa, Ahmed A.

    2015-01-01

    Information processing in the hippocampus begins by transferring spiking activity of the entorhinal cortex (EC) into the dentate gyrus (DG). Activity pattern in the EC is separated by the DG such that it plays an important role in hippocampal functions including memory. The structural and physiological parameters of these neural networks enable the hippocampus to be efficient in encoding a large number of inputs that animals receive and process in their life time. The neural encoding capacity of the DG depends on its single neurons encoding and pattern separation efficiency. In this study, encoding by the DG is modeled such that single neurons and pattern separation efficiency are measured using simulations of different parameter values. For this purpose, a probabilistic model of single neurons efficiency is presented to study the role of structural and physiological parameters. Known neurons number of the EC and the DG is used to construct a neural network by electrophysiological features of granule cells of the DG. Separated inputs as activated neurons in the EC with different firing probabilities are presented into the DG. For different connectivity rates between the EC and DG, pattern separation efficiency of the DG is measured. The results show that in the absence of feedback inhibition on the DG neurons, the DG demonstrates low separation efficiency and high firing frequency. Feedback inhibition can increase separation efficiency while resulting in very low single neuron’s encoding efficiency in the DG and very low firing frequency of neurons in the DG (sparse spiking). This work presents a mechanistic explanation for experimental observations in the hippocampus, in combination with theoretical measures. Moreover, the model predicts a critical role for impaired inhibitory neurons in schizophrenia where deficiency in pattern separation of the DG has been observed. PMID:25859189

  3. Quantitative property-property relationship (QPPR) approach in predicting flotation efficiency of chelating agents as mineral collectors.

    PubMed

    Natarajan, R; Nirdosh, I; Venuvanalingam, P; Ramalingam, M

    2002-07-01

    The QPPR approach has been used to model cupferrons as mineral collectors. Separation efficiencies (Es) of these chelating agents have been correlated with property parameters namely, log P, log Koc, substituent-constant sigma, Mullikan and ESP derived charges using multiple regression analysis. Es of substituted-cupferrons in the flotation of a uranium ore could be predicted within experimental error either by log P or log Koc and an electronic parameter. However, when a halo, methoxy or phenyl substituent was in para to the chelating group, experimental Es was greater than the predicted values. Inclusion of a Boolean type indicative parameter improved significantly the predictability power. This approach has been extended to 2-aminothiophenols that were used to float a zinc ore and the correlations were found to be reasonably good.

  4. Robust electromagnetic absorption by graphene/polymer heterostructures

    NASA Astrophysics Data System (ADS)

    Lobet, Michaël; Reckinger, Nicolas; Henrard, Luc; Lambin, Philippe

    2015-07-01

    Polymer/graphene heterostructures present good shielding efficiency against GHz electromagnetic perturbations. Theory and experiments demonstrate that there is an optimum number of graphene planes, separated by thin polymer spacers, leading to maximum absorption for millimeter waves Batrakov et al (2014 Sci. Rep. 4 7191). Here, electrodynamics of ideal polymer/graphene multilayered material is first approached with a well-adapted continued-fraction formalism. In a second stage, rigorous coupled wave analysis is used to account for the presence of defects in graphene that are typical of samples produced by chemical vapor deposition, namely microscopic holes, microscopic dots (embryos of a second layer) and grain boundaries. It is shown that the optimum absorbance of graphene/polymer multilayers does not weaken to the first order in defect concentration. This finding testifies to the robustness of the shielding efficiency of the proposed absorption device.

  5. Hydrodynamic injection with pneumatic valving for microchip electrophoresis with total analyte utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.

    2011-04-26

    A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersectionmore » geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.« less

  6. Separation of furostanol saponins by supercritical fluid chromatography.

    PubMed

    Yang, Jie; Zhu, Lingling; Zhao, Yang; Xu, Yongwei; Sun, Qinglong; Liu, Shuchen; Liu, Chao; Ma, Baiping

    2017-10-25

    Supercritical fluid chromatography (SFC) has good separation efficiency and is suitable for separating weakly polar compounds. Furostanol saponins, as an important kind of steroidal saponins, generally have two sugar chains, which are polar and hydrophilic. The hydroxyl group at the C-22 position of furostanol saponins is active and easily reacts with lower alcohols under appropriate conditions. The separation of hydrophilic furostanol saponins was tested by SFC in this study. The effects of chromatographic conditions on the separation of the mixed furostanol saponins and their hydroxyl derivatives at the C-22 position were studied. The conditions for SFC, which included different column polarity, modifier, additive, and column temperature, were tested. After optimization, the mixed 10 similar structures of furostanol saponins were separated in 22min on the Diol column at a temperature of 40°C. The mobile phase was CO 2 (mobile phase A) and methanol (containing 0.2% NH 3 ∙H 2 O and 3% H 2 O) (mobile phase B). The backpressure was maintained isobarically at 11.03MPa. SFC was found to be effective in separating the furostanol saponins that shared the same aglycone but varied in sugar chains. SFC was sensitive to the number and type of sugars. The resolution of furostanol saponin isomers was not ideal. The extract of Dioscorea zingiberensis C. H. Wright was profiled by SFC-quadrupole time-of-flight mass spectrometry. The main saponins of the extract were well separated. Therefore, SFC could be used for separating hydrophilic furostanol saponins and analyzing traditional Chinese medicines that mainly contained steroidal saponins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.

    2014-07-01

    A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less

  8. Key factors of eddy current separation for recovering aluminum from crushed e-waste.

    PubMed

    Ruan, Jujun; Dong, Lipeng; Zheng, Jie; Zhang, Tao; Huang, Mingzhi; Xu, Zhenming

    2017-02-01

    Recovery of e-waste in China had caused serious pollutions. Eddy current separation is an environment-friendly technology of separating nonferrous metallic particles from crushed e-waste. However, due to complex particle characters, separation efficiency of traditional eddy current separator was low. In production, controllable operation factors of eddy current separation are feeding speed, (ωR-v), and S p . There is little special information about influencing mechanism and critical parameters of these factors in eddy current separation. This paper provided the special information of these key factors in eddy current separation of recovering aluminum particles from crushed waste refrigerator cabinets. Detachment angles increased as the increase of (ωR-v). Separation efficiency increased with the growing of detachment angles. Aluminum particles were completely separated from plastic particles in critical parameters of feeding speed 0.5m/s and detachment angles greater than 6.61deg. S p /S m of aluminum particles in crushed waste refrigerators ranged from 0.08 to 0.51. Separation efficiency increased as the increase of S p /S m . This enlightened us to develop new separator to separate smaller nonferrous metallic particles in e-waste recovery. High feeding speed destroyed separation efficiency. However, greater S p of aluminum particles brought positive impact on separation efficiency. Greater S p could increase critical feeding speed to offer greater throughput of eddy current separation. This paper will guide eddy current separation in production of recovering nonferrous metals from crushed e-waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Separation and Recovery of Fine Particles from Waste Circuit Boards Using an Inflatable Tapered Diameter Separation Bed

    PubMed Central

    Sheng, Cheng; Wu, Lingling; Zhao, Yuemin; He, Jinfeng; Zhou, Enhui

    2014-01-01

    Recovering particle materials from discarded printed circuit boards can enhance resource recycling and reduce environmental pollution. Efficiently physically separating and recovering fine metal particles (−0.5 mm) from the circuit boards are a key recycling challenge. To do this, a new type of separator, an inflatable tapered diameter separation bed, was developed to study particle motion and separation mechanisms in the bed's fluid flow field. For 0.5–0.25 mm circuit board particles, metal recovery rates ranged from 87.56 to 94.17%, and separation efficiencies ranged from 87.71 to 94.20%. For 0.25–0.125 mm particles, metal recovery rates ranged from 84.76 to 91.97%, and separation efficiencies ranged from 84.74 to 91.86%. For superfine products (−0.125 mm), metal recovery rates ranged from 73.11 to 83.04%, and separation efficiencies ranged from 73.00 to 83.14%. This research showed that the inflatable tapered diameter separation bed achieved efficient particle separation and can be used to recover fine particles under a wide range of operational conditions. The bed offers a new mechanical technology to recycle valuable materials from discarded printed circuit boards, reducing environmental pollution. PMID:25379546

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at highmore » current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.« less

  11. Hand-held analyser based on microchip electrophoresis with contactless conductivity detection for measurement of chemical warfare agent degradation products

    NASA Astrophysics Data System (ADS)

    Duran, Karolina-Petkovic; Zhu, Yonggang; Chen, Chuanpin; Swallow, Anthony; Stewart, Robert; Hoobin, Pam; Leech, Patrick; Ovenden, Simon

    2008-12-01

    This paper reports on the development of a hand-held device for on-site detection of organophosphonate nerve agent degradation products. This field-deployable analyzer relies on efficient microchip electrophoresis separation of alkyl methylphosphonic acids and their sensitive contactless conductivity detection. Miniaturized, low-powered design is coupled with promising analytical performance for separating the breakdown products of chemical warfare agents such as Soman, Sarin and VX . The detector has a detection limit of about 10 μg/mL and has a good linear response in the range 10-300 μg/mL concentration range. Applicability to environmental samples is demonstrated .The new hand-held analyzer offers great promise for converting conventional ion chromatography or capillary electrophoresis sophisticated systems into a portable forensic laboratory for faster, simpler and more reliable on-site screening.

  12. Optimization of GRIN lenses coupling system for twin-core fiber interconnection with single core fibers

    NASA Astrophysics Data System (ADS)

    Chen, Gongdai; Deng, Hongchang; Yuan, Libo

    2018-07-01

    We aim at a more compact, flexible, and simpler core-to-fiber coupling approach, optimal combinations of two graded refractive index (GRIN) lenses have been demonstrated for the interconnection between a twin-core single-mode fiber and two single-core single-mode fibers. The optimal two-lens combinations achieve an efficient core-to-fiber separating coupling and allow the fibers and lenses to coaxially assemble. Finally, axial deviations and transverse displacements of the components are discussed, and the latter increases the coupling loss more significantly. The gap length between the two lenses is designed to be fine-tuned to compensate for the transverse displacement, and the good linear compensation relationship contributes to the device manufacturing. This approach has potential applications in low coupling loss and low crosstalk devices without sophisticated alignment and adjustment, and enables the channel separating for multicore fibers.

  13. Recycling of rare earth particle by mini-hydrocyclones.

    PubMed

    Yu, Jian-Feng; Fu, Jian; Cheng, Hao; Cui, Zhengwei

    2017-03-01

    Mini-hydrocyclones were applied to separate the fine rare earth particles from the suspensions. The effects of the flow rate, split ratio, and feed concentration on the total separation efficiency and grade separation efficiency were studied. The combined effects of the flow rate (1200-1600L/h), split ratio (20-60%) and concentration (0.6-1.0wt%) on the total separation efficiency in mini-hydrocyclones were investigated using a response surface methodology. The optimum operating parameters for a total separation efficiency of 92.5% were: feed flow rate=1406L/h, split ratio=20%, and feed concentration=1wt%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The use of Whatman-31ET paper for an efficient method for radiochemical purity test of 131I-Hippuran

    NASA Astrophysics Data System (ADS)

    Rezka Putra, Amal; Maskur; Sugiharto, Yono; Chairuman; Hardi Gunawan, Adang; Awaludin, Rohadi

    2018-01-01

    Current chromatography methods used for radiochemical purity test of 131I-Hippuran is time consuming. Therefore, in this study we explored several static and mobile phases in order to have a chromatography method which is accurate and efficient or less time consuming. In this study, stationary phases (Whatman-1, 31ET, and 3MM papers) and several mobile phases were explored to separate 131I-Hippuran from its impurity (131I iodide ion). The results of this study showed that the most efficient chromatography system for measurement of radiochemical purity of 131I-Hippuran was by using Whatman-31ET paper and n-butanol: acetic acid: water (4:1:1) as a static phase and mobile phase respectively. Developing time for this method was of approximately 75.7 ± 2.7 minutes. The result of radiochemical purity (%RCP) of 131I-Hippuran measured with this chromatography system either using Whatman-1 or Whatman-31ET paper strips was 98.7%. The short size of Whatman-31ET paper strip (1 x 8 cm) was found to have shorter developing time compared to that of long size paper. This system showed a good separation of 131I-Hippuran from its impurities and gave %RCP of 98.1% ± 0.04% with developing time approximately 44.3 ± 9.4 minutes. The short size of Whatman-31ET paper strips was found to be more efficient compared to that of Whatman-1 and Whatman-3MM paper strips in term of developing time.

  15. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  16. Gas chromatographic analysis of fatty acid methyl esters of milk fat by an ionic liquid derived from L-phenylalanine as the stationary phase.

    PubMed

    Mendoza, Laura González; González-Álvarez, Jaime; Gonzalo, Carla Fernández; Arias-Abrodo, Pilar; Altava, Belén; Luis, Santiago V; Burguete, Maria Isabel; Gutiérrez-Álvarez, María Dolores

    2015-10-01

    A Gas Chromatography (GC) method has been developed for the separation and characterization of the different fatty acids in anhydrous milk fat (AMF) by means of an ionic liquid stationary phase, characterized by a monocationic imidazolium salt derived from L-phenylalanine. The inner surface of a fused silica capillary column was modified using this ionic liquid functionality and 3-aminopropyldiethoxymethyl silane. This coated GC column, which exhibited good thermal stability (270°C) and good efficiency (2700 plates/m), has been characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the method have been evaluated, obtaining relative standard deviations (RSD) from 0.99% to 4.0% and from 2.8% to 9.2%, respectively. Furthermore, recoveries from 90% and 99% have been achieved. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide separator for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Nanping; Wang, Yan; Yan, Jing; Ju, Jingge; Li, Zongjie; Fan, Lanlan; Zhao, Huijuan; Kang, Weimin; Cheng, Bowen

    2017-09-01

    In this study, F-doped tree-like nanofiber structural poly-m-phenyleneisophthalamide (PMIA) membranes are prepared via one-step electrospinning approach and their application performance as separators for lithium-sulfur batteries are discussed. The F-doped PMIA membrane can be regarded as matrix to form gel polymer electrolyte. The F doping endows the PMIA membranes with extraordinary high electrolyte uptake, excellent ability of preserving the liquid electrolyte and forceful chemisorption to polysulfides. And the tree-like structure effectively blocks polysulfides by the physical confinement. The lithium-sulfur cell with the F-doped PMIA separator exhibits high first-cycle discharge capacity of 1222.5 mAh g-1 and excellent cycling stability with good capacity retention of 745.7 mAh g-1 and coulombic efficiency of 97.97% after 800 cycles. The remarkable performance can be ascribed to the suppressed shuttle effects through both the physical trapping of polysulfides by the gel polymer electrolyte based on matrix with F-doped PMIA membrane and the tree-like structure in a working cell.

  18. Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Moin, Parviz

    2016-01-01

    This paper focuses on numerical and practical aspects associated with a parallel implementation of a two-layer zonal wall model for large-eddy simulation (LES) of compressible wall-bounded turbulent flows on unstructured meshes. A zonal wall model based on the solution of unsteady three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations on a separate near-wall grid is implemented in an unstructured, cell-centered finite-volume LES solver. The main challenge in its implementation is to couple two parallel, unstructured flow solvers for efficient boundary data communication and simultaneous time integrations. A coupling strategy with good load balancing and low processors underutilization is identified. Face mapping and interpolation procedures at the coupling interface are explained in detail. The method of manufactured solution is used for verifying the correct implementation of solver coupling, and parallel performance of the combined wall-modeled LES (WMLES) solver is investigated. The method has successfully been applied to several attached and separated flows, including a transitional flow over a flat plate and a separated flow over an airfoil at an angle of attack.

  19. Behavior of macroporous vinyl silica and silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2017-06-30

    80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Magnetic zeolite NaA: synthesis, characterization based on metakaolin and its application for the removal of Cu2+, Pb2+.

    PubMed

    Liu, Haibo; Peng, Shuchuan; Shu, Lin; Chen, Tianhu; Bao, Teng; Frost, Ray L

    2013-06-01

    The optimum parameters for synthesis of zeolite NaA based on metakaolin were investigated according to results of cation exchange capacity and static water adsorption of all synthesis products and selected X-ray diffraction (XRD). Magnetic zeolite NaA was synthesized by adding Fe3O4 in the precursor of zeolite. Zeolite NaA and magnetic zeolite NaA were characterized with scanning electron microscopy (SEM) and XRD. Magnetic zeolite NaA with different Fe3O4 loadings was prepared and used for removal of heavy metals (Cu(2+), Pb(2+)). The results show the optimum parameters for synthesis zeolite NaA are SiO2/Al2O3=2.3, Na2O/SiO2=1.4, H2O/Na2O=50, crystallization time 8h, crystallization temperature 95 °C. The addition of Fe3O4 makes the NaA zeolite with good magnetic susceptibility and good magnetic stability regardless of the Fe3O4 loading, confirming the considerable separation efficiency. Additionally, Fe3O4 loading had a little effect on removal of heavy metal by magnetic zeolite, however, the adsorption capacity still reaches 2.3 mmol g(-1) for Cu(2+), Pb(2+) with a removal efficiency of over 95% in spite of 4.7% Fe3O4 loading. This indicates magnetic zeolite can be used to remove metal heavy at least Cu(2+), Pb(2+) from water with metallic contaminants and can be separated easily after a magnetic process. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Light harvesting and charge management by Ni4S3 modified metal-organic frameworks and rGO in the process of photocatalysis.

    PubMed

    Liu, Duanduan; Jin, Zhiliang; Zhang, Yongke; Wang, Guorong; Ma, Bingzhen

    2018-06-01

    Harvesting and charge management is obtained by means of Ni 4 S 3 modified Metal-organic Frameworks (MOF) and rGO, namely, the Uio-66 (Zr)/rGO combined with Ni 4 S 3 photocatalyst was successfully prepared with the solvothermal method. The Ni 4 S 3 acted as the electron transfer agent greatly improve the electrons transmission from the excited state dye to the rGO/MOF surface for proton reduction reaction. The hydrogen production amount over EY-sensitized rGO/MOF/Ni 4 S 3 photocatalyst has reached 280 μmol for 5 h, which is about 14 times than that of the pure Ni 4 S 3 photocatalyst and 185 times than that of the pure rGO/MOF photocatalyst under visible light irradiation (λ ≥ 420 nm). In the composite, the rGO acts as electron-transfer mediator and Ni 4 S 3 serves as H 2 -evolution active site. A series of studies shown that the Ni 4 S 3 modified MOF and rGO provided more active sites and improved the efficiency of photo-generated charge separation by means of several characterizations such as SEM, XRD, XPS, Element Mapping, UV-vis DRS, BET, Photocurrent, Voltammetric Scanning, Fluorescence Spectra and FTIR. and the results of which were in good agreement with each other. The photoelectron migration rate and photogenerated charge separation efficiency of the composite can be obviously increased with graphene as a good electron acceptor and transfer medium and Ni 4 S 3 as hydrogen producing active site. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. High Selectivity Gas Separation Membrane Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nachlas, Jesse; Corn, Isaac; Wegst, Ulrike

    Global energy consumption is projected to be more than double of today’s levels by 2050. Economic and environmental pressures are putting significant limits on fossil fuel resources, and there is a significant push for improved efficiency in many industrial processes. Membranes for gas separation represent a significant opportunity for reduced energy consumption and improved efficiencies in a wide range of industrial applications by replacing typical high temperature processes or energy intensive processes with low temperature energy efficient processes. Carbon membranes represent an attractive class of membrane materials that offer the potential to improve the reliability, corrosion resistance and temperature capabilitymore » of polymeric membranes, which limit their adoption for many industrial applications. However, there are still a number of technical hurdles which must be overcome before carbon membranes can be made commercially ready including elimination of manufacturing defects, and improved performance (permeability and selectivity) relative to polymeric membranes. Examples of potential application of carbon membranes include production of oxygen enriched air (OEA) for combustion applications, separation of carbon dioxide (CO 2) from flue gas to improve the commercial feasibility of CO 2 sequestration, separation of hydrogen from CO/CO 2 during hydrogen manufacturing, and separation of H 2 from hydrocarbons during refinery operations to improve the kinetics of cracking reactions. As a result of these benefits there is a strong driving force to develop processing technologies capable of producing carbon membranes and possessing high reliability, for a wide range of applications. The DOE provides significant support for research and development is this area, as they have recognized the significant impact a low cost carbon membrane technology can have on energy consumption and polluting emissions across a broad range of industrial applications. In this SBIR Phase I project, we developed a novel polymer precursor composition, which led to highly reproducible crack-free porous carbon membranes that were capable of producing 30-50% oxygen for OEA from a pressurized air feed, thereby meeting the primary Phase I objective, and possessing a selectivity of ~20:1 for CO 2/N 2 separation. We also successfully developed a method for fabricating a ceramic support from low-cost fly ash. In general, the effectiveness of a carbon membrane at separating various gases is a function of the pore structure and size. The novel processing method utilized is capable of accurately controlling pore structure during the fabrication process opening the possibility to create a membrane technology platform that can operate across a broad range of gas compositions and applications. Nanoporous carbon membrane technology offers a very attractive option for important industrial gas separation processes that are typically energy intensive and expensive to install and operate. Highly efficient gas separation represents a key enabling technology for increasing efficiency and lowering cost in various applications involving advanced power generation systems, metallurgical operations and chemical processes. These benefits will be translated to the public through lower cost for goods and services in addition to lower cost for energy. Increased national security will come from decreased dependence on imported oil by making local resources, such as coal and natural gas, competitive in energy generation markets. Finally, making low cost oxygen available in these industries results in cleaner power production and reduced emissions of polluting gases.« less

  3. Simultaneous determination of piracetam and its four impurities by RP-HPLC with UV detection.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Siddiqui, Farhan Ahmed; Mirza, Agha Zeeshan; Qureshi, Faiza; Zuberi, M Hashim

    2010-08-01

    A simple and rapid high-performance liquid chromatographic method for the separation and determination of piracetam and its four impurities, 2-oxopyrrolidin-1-yl)acetic acid, pyrrolidin-2-one, methyl (2-oxopyrrolidin-1-yl)acetate, and ethyl (2-oxopyrrolidin-1-yl)acetate, was developed. The separation was achieved on a reversed-phase C(18) Nucleosil column (25 cm x 0.46 cm, 10 microm). The mobile phase is composed of an aqueous solution containing 0.2 g/L of triethyl amine-acetonitrile (85:15, v/v). The pH of the mobile phase was adjusted to 6.5 with phosphoric acid at a flow rate of 1 mL/min at ambient temperature and UV detection at 205 nm. The developed method was found to give good separation between the pure drug and its four related substance. The polynomial regression data for the calibration plots showed good linear relationship in the concentration range of 50-10,000 ng/mL, 25-10,000 ng/mL, 45-10,000 ng/mL, 34-10,000 ng/mL, and 55-10,000 ng/mL, respectively, with r(2) = 0.9999. The method was validated for precision, accuracy, ruggedness, and recovery. The minimum quantifiable amounts were found to be 50 ng/mL of piracetam, 25 ng/mL of 2-oxopyrrolidin-1-yl)acetic acid, 45 ng/mL of pyrrolidin-2-one, 34 ng/mL of methyl (2-oxopyrrolidin-1-yl)acetate, and 55 ng/mL of ethyl (2-oxopyrrolidin-1-yl)acetate. Statistical analysis proves that the method is reproducible and selective for the estimation of piracetam as well as its related substance. As the method could effectively separate the drug from the related substances, it can be employed as a stability-indicating one. The proposed method shows high efficiency, allowing the separation of the main component piracetam from other impurities.

  4. Factors Affecting Aerosol Radiative Forcing from Both Production-based and Consumption-based View

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lin, J.; Ni, R.

    2017-12-01

    Aerosol radiative forcing (RF) is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. This problem becomes more complicated when taking into account the role of international trade, which means reallocated aerosol RF due to separation of regions producing goods and emissions and regions consuming those goods. Here we analyze major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA) and black carbon (BC), extending the work of Lin et al. (2016, Nature Geoscience). We contrast five factors determining production-based (RFp, due to a region's production of goods) and consumption-based (RFc, due to a region's consumption) forcing by 11 major regions, including population size, per capita output, emission intensity (emission per output), chemical efficiency (mass per unit emission) and radiative efficiency (RF per unit mass). Comparing across the 11 regions, East Asia produces the strongest RFp and RFc of SIOA and BC and the second largest RFp and RFc of POA primarily due to its high emission intensity. Although Middle East and North Africa has low emissions, its RFp is strengthened by its largest chemical efficiency for POA and BC and second largest chemical efficiency for SIOA. However, RFp of South-East Asia and Pacific is greatly weakened by its lowest chemical efficiency. Economic trade means that net importers (Western Europe, North America and Pacific OECD) have higher RFc than RFp by 50-100%. And such forcing difference is mainly due to the high emission intensity of the exporters supplying these regions. For North America, SIOA's RFc is 50% stronger than RFp, for that emission intensity of SIOA is 5.2 times in East Asia and 2.5 times in Latin America and Caribbean compared with that in North America, and the chemical efficiency in the top four exporters are 1.4-2.1 times of North America. For East Asia, the RFc of SIOA is 20% lower than RFp due to the relatively low emission intensity and chemical efficiency of the top two exporters (Pacific OECD and Western Europe). Overall, economic, emission and atmospheric factors all play important roles in differentiating regions' RFp and RFc.

  5. Electrostatic separation for recycling silver, silicon and polyethylene terephthalate from waste photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zisheng; Sun, Bo; Yang, Jie; Wei, Yusheng; He, Shoujie

    2017-04-01

    Electrostatic separation technology has been proven to be an effective and environmentally friendly way of recycling electronic waste. In this study, this technology was applied to recycle waste solar panels. Mixed particles of silver and polyethylene terephthalate, silicon and polyethylene terephthalate, and silver and silicon were separated with a single-roll-type electrostatic separator. The influence of high voltage level, roll speed, radial position corona electrode and angular position of the corona electrode on the separation efficiency was studied. The experimental data showed that separation of silver/polyethylene terephthalate and silicon/polyethylene terephthalate needed a higher voltage level, while separation of silver and silicon needed a smaller angular position for the corona electrode and a higher roll speed. The change of the high voltage level, roll speed, radial position of the corona electrode, and angular position of the corona electrode has more influence on silicon separation efficiency than silver separation efficiency. An integrated process is proposed using a two-roll-type corona separator for multistage separation of a mixture of these three materials. The separation efficiency for silver and silicon were found to reach 96% and 98%, respectively.

  6. Monolithic column based on a poly(glycidyl methacrylate-co-4-vinylphenylboronic acid-co-ethylene dimethacrylate) copolymer for capillary liquid chromatography of small molecules and proteins.

    PubMed

    Lin, Zian; Huang, Hui; Sun, Xiaobo; Lin, Yao; Zhang, Lan; Chen, Guonan

    2012-07-13

    A new polymer monolith with three modes of reverse-phase, hydrophilic and cation-exchange interaction was synthesized in 100 μm i.d. fused-silica capillary by in situ polymerization procedure. The pre-polymerization mixture consisted of glycidyl methacrylate (GMA) and 4-vinylphenylboronic acid (VPBA) as bifunctional monomers, ethylene dimethacrylate (EDMA) as crosslinker, 1,4-butanediol (BDO) and diethylene glycol (DEG) as binary porogenic solvents, and azobisisobutyronitrile (AIBN) as initiator. The resulting poly(GMA-co-VPBA-co-EDMA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of monolithic column. The column performance was assessed by the separation of a series of neutral solutes, charge solutes, phenols and anilines. Compared with poly(GMA-co-EDMA) monolith, the proposed monolith exhibited more flexible adjustment of selectivity in terms of hydrophobic, hydrophilic, as well as cation-exchange interaction in the same chromatographic conditions. High column efficiencies for benzene derivatives with 70,000-102,000 theoretical plates/m could be obtained at a linear velocity of 0.265 mm/s. The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention times were less than 8.23%. Additionally, the purposed monolith was also applied to efficient separation of alkaloids and proteins for demonstrating its potential in biomolecule separation. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  7. Separation efficiency of the MASHA facility for short-lived mercury isotopes

    NASA Astrophysics Data System (ADS)

    Rodin, A. M.; Belozerov, A. V.; Chernysheva, E. V.; Dmitriev, S. N.; Gulyaev, A. V.; Gulyaeva, A. V.; Itkis, M. G.; Kliman, J.; Kondratiev, N. A.; Krupa, L.; Novoselov, A. S.; Oganessian, Yu. Ts.; Podshibyakin, A. V.; Salamatin, V. S.; Siváček, I.; Stepantsov, S. V.; Vanin, D. V.; Vedeneev, V. Yu.; Yukhimchuk, S. A.; Granja, C.; Pospisil, S.

    2014-06-01

    The mass-separator MASHA built to identify Super Heavy Elements by their mass-to-charge ratios is described. The results of the off- and on-line measurements of its separation efficiency are presented. In the former case four calibrated leaks of noble gases were used. In the latter the efficiency was measured via 284 MeV Ar beam and with using the hot catcher. The ECR ion source was used in both cases. The -radioactive isotopes of mercury produced in the complete fusion reaction Ar+SmHg+xn were detected at the mass-separator focal plane. The half-lives and the separation efficiency for the short-lived mercury isotopes were measured. Potentialities of the MEDIPIX detector system have been demonstrated for future use at the mass-separator MASHA.

  8. The ethics of separating conjoined twins: two arguments against.

    PubMed

    Kallberg, Luke

    2018-02-01

    I argue that the separation of conjoined twins in infancy or early childhood is unethical (rare exceptions aside). Cases may be divided into three types: both twins suffer from lethal abnormalities, only one twin has a lethal abnormality, or neither twin does. In the first kind of case, there is no reason to separate, since both twins will die regardless of treatment. In the third kind of case, I argue that separation at an early age is unethical because the twins are likely to achieve an irreplaceably good quality of life-the goods of conjoinment-that separation takes away. Evaluation of this possibility requires maturation past early childhood. Regarding the second type, I point out that with conceivable but unrecorded exceptions, these cases will consistently involve sacrifice separation. I present an argument that sacrifice separation is unethical, but in some cases a moral dilemma may exist in which separation and refraining from separation are both unethical. Perhaps in such cases a decision can be made on non-moral grounds; however, the possibility of such a decision serves not to mitigate but to underscore the fact that the separation is unethical. My conclusion, which applies to all three types of cases, is that it is unethical to separate conjoined twins before their developing personalities give some reliable indication as to whether they desire separation and whether they will achieve those goods of conjoinment.

  9. Synthesis of fluorescent label, DBD-beta-proline, and the resolution efficiency for chiral amines by reversed-phase chromatography.

    PubMed

    Min, Jun Zhe; Toyo'oka, Toshimasa; Kato, Masaru; Fukushima, Takeshi

    2005-01-01

    DBD-d(and l)-beta-proline, new fluorescent chiral derivatization reagents, were synthesized from the reaction of 4-(N,N-dimethylaminosulfonyl)-7- fl uoro-2,1,3-benzoxadiazole (DBD-F) with beta-proline. The racemic mixture synthesized was separated by a chiral stationary phase (CSP) column, Chiralpak AD-H, with n-hexane-EtOH-TFA-diethylamine (70:30:0.1:0.1) as the mobile phase. The dl-forms were decided according to the results obtained from a circular dichroism (CD) detector after separation by the CSP column. The fractionated enantiomers reacted with chiral amine to produce a couple of diastereomers. The labeling proceeded in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and pyridine as the activation reagents. The reaction conditions were mild and no racemization occurred during the diastereomer formation. The resulting diastereomers fluoresced at around 570 nm (excitation at around 460 nm). Good linearity of the calibration curves was obtained in the range 1-75 pmol and the detection limits on chromatogram were less than 1 pmol. The separability of the diastereomers was compared with the diastereomers derived from DBD-d(or l)-proline. The resolution values (Rs) obtained from the diastereomers of three chiral amines with DBD-d(or l)-beta-proline were higher than those derived from DBD-d(or l)-proline, e.g. dl-phenylalanine methylester (dl-PAME), 2.23 vs 1.37; (R)(S)-1-phenylethylamine [(R)(S)-PEA], 2.09 vs 1.13; and (R)(S)-1-(1-naphthyl)ethylamines [(R)(S)-NEA], 5.19 vs 1.23. The results suggest that the position of COOH group on pyrrolidine moiety in the structures is one of the important factors for the efficient separation of a couple of the diastereomers.

  10. Applicability of Separation Potentials to Determining the Parameters of Cascade Efficiency in Enrichment of Ternary Mixtures

    NASA Astrophysics Data System (ADS)

    Palkin, V. A.; Igoshin, I. S.

    2017-01-01

    The separation potentials suggested by various researchers for separating multicomponent isotopic mixtures are considered. An estimation of their applicability to determining the parameters of the efficiency of enrichment of a ternary mixture in a cascade with an optimum scheme of connection of stages made up of elements with three takeoffs is carried out. The separation potential most precisely characterizing the separative power and other efficiency parameters of stages and cascade schemes has been selected based on the results of the estimation made.

  11. Pneumatic jigging: Influence of operating parameters on separation efficiency of solid waste materials.

    PubMed

    Abd Aziz, Mohd Aizudin; Md Isa, Khairuddin; Ab Rashid, Radzuwan

    2017-06-01

    This article aims to provide insights into the factors that contribute to the separation efficiency of solid particles. In this study, a pneumatic jigging technique was used to assess the separation of solid waste materials that consisted of copper, glass and rubber insulator. Several initial experiments were carried out to evaluate the strengths and limitations of the technique. It is found that despite some limitations of the technique, all the samples prepared for the experiments were successfully separated. The follow-up experiments were then carried out to further assess the separation of copper wire and rubber insulator. The effects of air flow and pulse rates on the separation process were examined. The data for these follow-up experiments were analysed using a sink float analysis technique. The analysis shows that the air flow rate was very important in determining the separation efficiency. However, the separation efficiency may be influenced by the type of materials used.

  12. Fabrication and Wettability Study of WO3 Coated Photocatalytic Membrane for Oil-Water Separation: A Comparative Study with ZnO Coated Membrane.

    PubMed

    Gondal, Mohammed A; Sadullah, Muhammad S; Qahtan, Talal F; Dastageer, Mohamed A; Baig, Umair; McKinley, Gareth H

    2017-05-10

    Superhydrophilic and underwater superoleophobic surfaces were fabricated by facile spray coating of nanostructured WO 3 on stainless steel meshes and compared its performance in oil-water separation with ZnO coated meshes. The gravity driven oil-water separation system was designed using these surfaces as the separation media and it was noticed that WO 3 coated stainless steel mesh showed high separation efficiency (99%), with pore size as high as 150 µm, whereas ZnO coated surfaces failed in the process of oil-water separation when the pore exceeded 50 µm size. Since, nanostructured WO 3 is a well known catalyst, the simultaneous photocatalytic degradation of organic pollutants present in the separated water from the oil water separation process were tested using WO 3 coated surfaces under UV radiation and the efficiency of this degradation was found to be quite significant. These results assure that with little improvisation on the oil water separation system, these surfaces can be made multifunctional to work simultaneously for oil-water separation and demineralization of organic pollutants from the separated water. Fabrication of the separating surface, their morphological characteristics, wettability, oil water separation efficiency and photo-catalytic degradation efficiency are enunciated.

  13. Thinner, More-Efficient Oxygen-Separation Cells

    NASA Technical Reports Server (NTRS)

    Clark, Douglas J.; Galica, Leo M.; Losey, Robert W.

    1992-01-01

    Better gas-distribution plates fabricated more easily. Oxygen-separation cell redesigned to make it more efficient, smaller, lighter, and easier to manufacture. Potential applications include use as gas separators, filters, and fuel cells.

  14. Discrimination of orbital angular momentum modes of the terahertz vortex beam using a diffractive mode transformer.

    PubMed

    Liu, Changming; Wei, Xuli; Niu, Liting; Wang, Kejia; Yang, Zhengang; Liu, Jinsong

    2016-06-13

    We present an efficient method to discriminate orbital angular momentum (OAM) of the terahertz (THz) vortex beam using a diffractive mode transformer. The mode transformer performs a log-polar coordinate transformation of the input THz vortex beam, which consists of two 3D-printed diffractive elements. A following lens separates each transformed OAM mode to a different lateral position in its focal plane. This method enables a simultaneous measurement over multiple OAM modes of the THz vortex beam. We experimentally demonstrate the measurement of seven individual OAM modes and two multiplexed OAM modes, which is in good agreement with simulations.

  15. Carbon quantum dots coated BiVO{sub 4} inverse opals for enhanced photoelectrochemical hydrogen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nan, Feng; Shen, Mingrong; Fang, Liang, E-mail: zhkang@suda.edu.cn, E-mail: lfang@suda.edu.cn

    Carbon quantum dots (CQDs) coated BiVO{sub 4} inverse opal (io-BiVO{sub 4}) structure that shows dramatic improvement of photoelectrochemical hydrogen generation has been fabricated using electrodeposition with a template. The io-BiVO{sub 4} maximizes photon trapping through slow light effect, while maintaining adequate surface area for effective redox reactions. CQDs are then incorporated to the io-BiVO{sub 4} to further improve the photoconversion efficiency. Due to the strong visible light absorption property of CQDs and enhanced separation of the photoexcited electrons, the CQDs coated io-BiVO{sub 4} exhibit a maximum photo-to-hydrogen conversion efficiency of 0.35%, which is 6 times higher than that of themore » pure BiVO{sub 4} thin films. This work is a good example of designing composite photoelectrode by combining quantum dots and photonic crystal.« less

  16. Evolved phase separation toward balanced charge transport and high efficiency in polymer solar cells.

    PubMed

    Fan, Haijun; Zhang, Maojie; Guo, Xia; Li, Yongfang; Zhan, Xiaowei

    2011-09-01

    Understanding effect of morphology on charge carrier transport within polymer/fullerene bulk heterojunction is necessary to develop high-performance polymer solar cells. In this work, we synthesized a new benzodithiophene-based polymer with good self-organization behavior as well as favorable morphology evolution of its blend films with PC(71)BM under improved processing conditions. Charge carrier transport behavior of blend films was characterized by space charge limited current method. Evolved blend film morphology by controlling blend composition and additive content gradually reaches an optimized state, featured with nanoscale fibrilla polymer phase in moderate size and balanced mobility ratio close to 1:1 for hole and electron. This optimized morphology toward more balanced charge carrier transport accounts for the best power conversion efficiency of 3.2%, measured under simulated AM 1.5 solar irradiation 100 mW/cm(2), through enhancing short circuit current and reducing geminate recombination loss.

  17. A Polyoxovanadate-Resorcin[4]arene-Based Porous Metal-Organic Framework as an Efficient Multifunctional Catalyst for the Cycloaddition of CO2 with Epoxides and the Selective Oxidation of Sulfides.

    PubMed

    Lu, Bing-Bing; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2017-10-02

    In this work, we report a new polyoxovanadate-resorcin[4]arene-based metal-organic framework (PMOF), [Co 2 L 0.5 V 4 O 12 ]·3DMF·5H 2 O (1), assembled with a newly functionalized wheel-like resorcin[4]arene ligand (L). 1 features an elegant porous motif and represents a rare example of PMOFs composed of both a resorcin[4]arene ligand and polyoxovanadate. Remarkably, 1 shows open V sites in the channel, which makes 1 an efficient heterogeneous Lewis acid catalyst for the cycloaddition of carbon dioxide to epoxides with high conversion and selectivity. Strikingly, 1 also exhibits high catalytic activity for the heterogeneous oxidative desulfurization of sulfides. Particularly, the heterogeneous catalyst 1 can be easily separated and reused with good catalytic activity.

  18. The study of ionization by electron impact of a substance simulating spent nuclear fuel components

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Bochkarev, E. I.; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P.

    2015-11-01

    Plasma sources of model substances are necessary to solve problems associated with development of the spent nuclear fuel (SNF) plasma separation method. Lead was chosen to simulate kinetic and dynamic properties of the heavy SNF components. In this paper we present the results of a study of a lead vapor discharge with a lead concentration of 1012-1013 cm-3. Ionization was carried out by an electron beam (with energy of up to 500 eV per electron) inside a centimeter gap between planar electrodes. The discharge was numerically modeled using the hydrodynamic and single-particle approximation. Current-voltage characteristics and single ionization efficiency were obtained as functions of the vapors concentration and thermoelectric current. An ion current of hundreds of microamperes at the ionization efficiency near tenths of a percent was experimentally obtained. These results are in good agreement with our model.

  19. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    PubMed

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  20. On optimal infinite impulse response edge detection filters

    NASA Technical Reports Server (NTRS)

    Sarkar, Sudeep; Boyer, Kim L.

    1991-01-01

    The authors outline the design of an optimal, computationally efficient, infinite impulse response edge detection filter. The optimal filter is computed based on Canny's high signal to noise ratio, good localization criteria, and a criterion on the spurious response of the filter to noise. An expression for the width of the filter, which is appropriate for infinite-length filters, is incorporated directly in the expression for spurious responses. The three criteria are maximized using the variational method and nonlinear constrained optimization. The optimal filter parameters are tabulated for various values of the filter performance criteria. A complete methodology for implementing the optimal filter using approximating recursive digital filtering is presented. The approximating recursive digital filter is separable into two linear filters operating in two orthogonal directions. The implementation is very simple and computationally efficient, has a constant time of execution for different sizes of the operator, and is readily amenable to real-time hardware implementation.

  1. In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance.

    PubMed

    Zhang, Shouwei; Li, Jiaxing; Zeng, Meiyi; Zhao, Guixia; Xu, Jinzhang; Hu, Wenping; Wang, Xiangke

    2013-12-11

    Water-soluble magnetic-functionalized graphitic carbon nitride (g-C3N4) composites were synthesized successfully by in situ decorating spinel ZnFe2O4 nanoparticles on g-C3N4 sheets (CN-ZnFe) through a one-step solvothermal method. The magnetic properties of CN-ZnFe can be effectively controlled via tuning the coverage density and the size of ZnFe2O4 nanoparticles. The results indicate that the CN-ZnFe exhibits excellent photocatalytic efficiency for methyl orange (MO) and fast separation from aqueous solution by magnet. Interestingly, the catalytic performance of the CN-ZnFe is strongly dependent on the loading of ZnFe2O4. The optimum activity of 160CN-ZnFe photocatalyst is almost 6.4 and 5.6 times higher than those of individual g-C3N4 and ZnFe2O4 toward MO degradation, respectively. By carefully investigating the influence factors, a possible mechanism is proposed and it is believed that the synergistic effect of g-C3N4 and ZnFe2O4, the smaller particle size, and the high solubility in water contribute to the effective electron-hole pairs separation and excellent photocatalytic efficiency. This work could provide new insights that g-C3N4 sheets function as good support to develop highly efficient g-C3N4-based magnetic photocatalysts in environmental pollution cleanup.

  2. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    PubMed

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Construction of a hydrazone-linked chiral covalent organic framework-silica composite as the stationary phase for high performance liquid chromatography.

    PubMed

    Zhang, Kai; Cai, Song-Liang; Yan, Yi-Lun; He, Zi-Hao; Lin, Hui-Mei; Huang, Xiao-Ling; Zheng, Sheng-Run; Fan, Jun; Zhang, Wei-Guang

    2017-10-13

    Covalent organic frameworks (COFs), as an emerging class of crystalline porous organic polymers, have great potential for applications in chromatographic separation owning to their fascinating crystalline structures and outstanding properties. However, development of COF materials as novel stationary phases in high performance liquid chromatography (HPLC) is just in its infancy. Herein, we report the design and construction of a new hydrazone-linked chiral COF, termed BtaMth COF, from a chiral hydrazide building block (Mth) and present a one-pot synthetic method for the fabrication of BtaMth@SiO 2 composite for HPLC separation of isomers. The as-synthesized BtaMth chiral COF displays good crystallinity, high porosity, as well as excellent chemical stability. Meanwhile, the fabricated HPLC column by using BtaMth@SiO 2 composite as the new stationary phase exhibits high resolution performances for the separation of positional isomers including nitrotoluene and nitrochlorobenzene, as well as cis-trans isomers including beta-cypermethrin and metconazole. Additionally, some effects such as the composition of the mobile phase and column temperature for HPLC separations on the BtaMth@SiO 2 packed column also have been studied in detail. The successful applications indicate the great potentials of hydrazone-linked chiral COF-silica composite as novel stationary phase for the efficient HPLC separation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. F γ: A new observable for photon-hadron discrimination in hybrid air shower events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niechciol, M.; Risse, M.; Ruehl, P.

    To semore » arch for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. In this paper, we present a new observable, F γ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. F γ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known X max observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), F γ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable F γ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Finally and furthermore, F γ complements nicely to X max such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.« less

  5. Preparation of polymer monolithic column functionalized by arsonic acid groups for mixed-mode capillary liquid chromatography.

    PubMed

    Qin, Zhang-Na; Yu, Qiong-Wei; Wang, Ren-Qi; Feng, Yu-Qi

    2018-04-27

    A mixed-mode polymer monolithic column functionalized by arsonic acid groups was prepared by single-step in situ copolymerization of monomers p-methacryloylaminophenylarsonic acid (p-MAPHA) and pentaerythritol triacrylate (PETA). The prepared poly(p-MAPHA-co-PETA) monolithic column has a homogeneous monolithic structure with good permeability and mechanical stability. Zeta potential measurements reveal that the monolithic stationary phase holds a negative surface charge when the mobile phase resides in the pH range of 3.0-8.0. The retention mechanisms of prepared monolithic column are explored by the separation of selected polycyclic aromatic hydrocarbons (PAHs), nucleosides, and three basic compounds. The results indicate that the column functions in three different separation modes associated with reversed-phase chromatography based on hydrophobic interaction, hydrophilic interaction chromatography, and cation-exchange chromatography. The column efficiency of prepared monolithic column is estimated to be 70,000 and 76,000 theoretical plates/m for thiourea and naphthalene, respectively, at a linear flow velocity of 0.85 mm/s using acetonitrile/H 2 O (85/15, v/v) as the mobile phase. Furthermore, an analysis of the retention factors obtained for the PAHs indicates that the prepared monolithic column exhibits good reproducibility with relative standard deviations of 2.9%, 4.0%, and 4.7% based on run-to-run injections, column-to-column preparation, and batch-to-batch preparation, respectively. Finally, we investigate the separation performance of the proposed monolithic column for select phenols, sulfonamides, nucleobases and nucleosides. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. F γ: A new observable for photon-hadron discrimination in hybrid air shower events

    DOE PAGES

    Niechciol, M.; Risse, M.; Ruehl, P.; ...

    2017-10-21

    To semore » arch for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. In this paper, we present a new observable, F γ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. F γ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known X max observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), F γ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable F γ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Finally and furthermore, F γ complements nicely to X max such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.« less

  7. Ordered mesoporous silica functionalized with β-cyclodextrin derivative for stereoisomer separation of flavanones and flavanone glycosides by nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Silva, Mariana; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel; Marina, María Luisa; Aturki, Zeineb; Fanali, Salvatore

    2017-03-24

    In this paper a chiral stationary phase (CSP) was prepared by the immobilization of a β-CD derivative (3,5-dimethylphenylcarbamoylated β-CD) onto the surface of amino-functionalized spherical ordered mesoporous silica (denoted as SM) via a urea linkage using the Staudinger reaction. The CSP was packed into fused silica capillaries 100μm I.D. and evaluated by means of nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC) using model compounds for the enantio- and the diastereomeric separation. The compounds flavanone, 2'-hydroxyflavanone, 4'-hydroxyflavanone, 6-hydroxyflavanone, 4'-methoxyflavanone, 7-methoxyflavanone, hesperetin, hesperidin, naringenin, and naringin were studied using reversed and polar organic elution modes. Baseline stereoisomer resolution and good results in terms of peak efficiency and short analysis time of all studied flavonoids and flavanones glycosides were achieved in reversed phase mode, using as mobile phase a mixture of MeOH/H 2 O, 10mM ammonium acetate pH 4.5 at different ratios. For the polar organic mode using 100% of MeOH as mobile phase, the CSP showed better performances and the baseline chiral separation of several studied compounds occurred in an analysis time of less than 10min. Good results were also achieved by CEC employing two different mobile phases. The use of MeOH/H 2 O, 5mM ammonium acetate buffer pH 6.0 (90/10, v/v) was very effective for the chiral resolution of flavanone and its methoxy and hydroxy derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Design of A Cyclone Separator Using Approximation Method

    NASA Astrophysics Data System (ADS)

    Sin, Bong-Su; Choi, Ji-Won; Lee, Kwon-Hee

    2017-12-01

    A Separator is a device installed in industrial applications to separate mixed objects. The separator of interest in this research is a cyclone type, which is used to separate a steam-brine mixture in a geothermal plant. The most important performance of the cyclone separator is the collection efficiency. The collection efficiency in this study is predicted by performing the CFD (Computational Fluid Dynamics) analysis. This research defines six shape design variables to maximize the collection efficiency. Thus, the collection efficiency is set up as the objective function in optimization process. Since the CFD analysis requires a lot of calculation time, it is impossible to obtain the optimal solution by linking the gradient-based optimization algorithm. Thus, two approximation methods are introduced to obtain an optimum design. In this process, an L18 orthogonal array is adopted as a DOE method, and kriging interpolation method is adopted to generate the metamodel for the collection efficiency. Based on the 18 analysis results, the relative importance of each variable to the collection efficiency is obtained through the ANOVA (analysis of variance). The final design is suggested considering the results obtained from two optimization methods. The fluid flow analysis of the cyclone separator is conducted by using the commercial CFD software, ANSYS-CFX.

  9. PVC removal from mixed plastics by triboelectrostatic separation.

    PubMed

    Park, Chul-Hyun; Jeon, Ho-Seok; Park, Jai-Koo

    2007-06-01

    Ever increasing oil price and the constant growth in generation of waste plastics stimulate a research on material separation for recycling of waste plastics. At present, most waste plastics cause serious environmental problems due to the disposal by reclamation and incineration. Particularly, polyvinyl chloride (PVC) materials among waste plastics generates hazardous HCl gas, dioxins containing Cl, and so on, which lead to air pollution and shorten the life of incinerator, and it makes difficultly recycling of other plastics. Therefore, we designed a bench scale triboelectrostatic separator for PVC removal from mixed plastics (polyvinyl chloride/polyethylene terephthalate), and then carried out material separation tests. In triboelectrostatic separation, PVC and PET particles are charged negatively and positively, respectively, due to the difference of the work function of plastics in tribo charger of the fluidized-bed, and are separated by means of splitter through an opposite electric field. In this study, the charge efficiency of PVC and PET was strongly dependent on the tribo charger material (polypropylene), relative humidity (below 30%), air velocity (over 10 m/s), and mixture ratio (PET:PVC=1:1). At the optimum conditions (electrode potential of 20 kV and splitter position of -2 cm), PVC rejection and PET recovery in PET products were 99.60 and 98.10%, respectively, and the reproducibility of optimal test was very good (+/-1%). In addition, as a change of splitter position, we developed the technique to recover high purity PET (over 99.99%) although PET recovery decreases by degrees.

  10. Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.

    2006-01-01

    A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.

  11. Action Algebras and Model Algebras in Denotational Semantics

    NASA Astrophysics Data System (ADS)

    Guedes, Luiz Carlos Castro; Haeusler, Edward Hermann

    This article describes some results concerning the conceptual separation of model dependent and language inherent aspects in a denotational semantics of a programming language. Before going into the technical explanation, the authors wish to relate a story that illustrates how correctly and precisely posed questions can influence the direction of research. By means of his questions, Professor Mosses aided the PhD research of one of the authors of this article and taught the other, who at the time was a novice supervisor, the real meaning of careful PhD supervision. The student’s research had been partially developed towards the implementation of programming languages through denotational semantics specification, and the student had developed a prototype [12] that compared relatively well to some industrial compilers of the PASCAL language. During a visit to the BRICS lab in Aarhus, the student’s supervisor gave Professor Mosses a draft of an article describing the prototype and its implementation experiments. The next day, Professor Mosses asked the supervisor, “Why is the generated code so efficient when compared to that generated by an industrial compiler?” and “You claim that the efficiency is simply a consequence of the Object- Orientation mechanisms used by the prototype programming language (C++); this should be better investigated. Pay more attention to the class of programs that might have this good comparison profile.” As a result of these aptly chosen questions and comments, the student and supervisor made great strides in the subsequent research; the advice provided by Professor Mosses made them perceive that the code generated for certain semantic domains was efficient because it mapped to the “right aspect” of the language semantics. (Certain functional types, used to represent mappings such as Stores and Environments, were pushed to the level of the object language (as in gcc). This had the side-effect of generating code for arrays in the same way as that for functional denotational types. For example, PASCAL arrays belong to the “language inherent” aspect, while the Store domain seems to belong to the “model dependent” aspect. This distinction was important because it focussed attention on optimizing the model dependent semantic domains to obtain a more efficient implementation.) The research led to a nice conclusion: The guidelines of Action Semantics induce a clear separation of the model and language inherent aspects of a language’s semantics. A good implementation of facets, particularly the model dependent ones, leads to generation of an efficient compiler. In this article we discuss the separation of the language inherent and model-inherent domains at the theoretical and conceptual level. In doing so, the authors hope to show how Professor Mosses’s influence extended beyond his technical advice to his professional and personal examples on the supervision of PhD research.

  12. Separation of In-Vitro-Derived Megakaryocytes and Platelets Using Spinning-Membrane Filtration

    PubMed Central

    Schlinker, Alaina C.; Radwanski, Katherine; Wegener, Christopher; Min, Kyungyoon; Miller, William M.

    2015-01-01

    In-vitro-derived platelets (PLTs) could potentially overcome problems associated with donated PLTs, including contamination and alloimmunization. Although several groups have produced functional PLTs from stem cells in vitro, the challenge of developing this technology to yield transfusable PLT units has yet to be addressed. The asynchronous nature of in vitro PLT generation makes a single harvest point infeasible for collecting PLTs as soon as they are formed. The current standard of performing manual centrifugations to separate PLTs from nucleated cells at multiple points during culture is labor-intensive, imprecise, and difficult to standardize in accordance with current Good Manufacturing Practices (cGMP). In an effort to develop a more effective method, we adapted a commercially-available, spinning-membrane filtration device to separate in-vitro-derived PLTs from nucleated cells and recover immature megakaryocytes (MKs), the precursor cells to PLTs, for continued culture. Processing a mixture of in-vitro-derived MKs and PLTs on the adapted device yielded a pure PLT population and did not induce PLT pre-activation. MKs recovered from the separation process were unaffected with respect to viability and ploidy, and were able to generate PLTs after reseeding in culture. Being able to efficiently harvest in-vitro-derived PLTs brings this technology one step closer to clinical relevance. PMID:25312394

  13. Interfacial damage identification of steel and concrete composite beams based on piezoceramic wave method.

    PubMed

    Yan, Shi; Dai, Yong; Zhao, Putian; Liu, Weiling

    2018-01-01

    Steel-concrete composite structures are playing an increasingly important role in economic construction because of a series of advantages of great stiffness, good seismic performance, steel material saving, cost efficiency, convenient construction, etc. However, in service process, due to the long-term effects of environmental impacts and dynamic loading, interfaces of a composite structure might generate debonding cracks, relative slips or separations, and so on, lowering the composite effect of the composite structure. In this paper, the piezoceramics (PZT) are used as transducers to perform experiments on interface debonding slips and separations of composite beams, respectively, aimed at proposing an interface damage identification model and a relevant damage detection innovation method based on PZT wave technology. One part of various PZT patches was embedded in concrete as "smart aggregates," and another part of the PZT patches was pasted on the surface of the steel beam flange, forming a sensor array. A push-out test for four specimens was carried out and experimental results showed that, under the action of the external loading, the received signal amplitudes will increasingly decrease with increase of debonding slips along the interface. The proposed signal energy-based interface damage detection algorithm is highly efficient in surface state evaluations of composite beams.

  14. Ion chromatographic determination of hydroxide ion on monolithic reversed-phase silica gel columns coated with nonionic and cationic surfactants.

    PubMed

    Xu, Qun; Mori, Masanobu; Tanaka, Kazuhiko; Ikedo, Mikaru; Hu, Wenzhi; Haddad, Paul R

    2004-07-02

    The determination of hydroxide by ion chromatography (IC) is demonstrated using a monolithic octadecylsilyl (ODS)-silica gel column coated first with a nonionic surfactant (polyoxyethylene (POE)) and then with a cationic surfactant (cetyltrimethylammonium bromide (CTAB)). This stationary phase, when used in conjunction with a 10 mmol/l sodium sulfate eluent at pH 8.2, was found to be suitable for the rapid and efficient separation of hydroxide from some other anions, based on a conventional ion-exchange mechanism. The peak directions and detection responses for these ions were in agreement with their known limiting equivalent ionic conductance values. Under these conditions, a linear calibration plot was obtained for hydroxide ion over the range 16 micromol/l to 15 mmol/l, and the detection limit determined at a signal-to-noise ratio of 3 was 6.4 micromol/l. The double-coated stationary phase described above was shown to be superior to a single coating of cetyltrimethylammonium bromide alone, in terms of separation efficiency and stability of the stationary phase. A range of samples comprising solutions of some strong and weak bases was analyzed by the proposed method and the results obtained were in good agreement with those obtained by conventional potentiometric pH measurement.

  15. DNS of Low-Pressure Turbine Cascade Flows with Elevated Inflow Turbulence Using a Discontinuous-Galerkin Spectral-Element Method

    NASA Technical Reports Server (NTRS)

    Garai, Anirban; Diosady, Laslo T.; Murman, Scott M.; Madavan, Nateri K.

    2016-01-01

    Recent progress towards developing a new computational capability for accurate and efficient high-fidelity direct numerical simulation (DNS) and large-eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy- stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy, and is implemented in a computationally efficient manner on a modern high performance computer architecture. An inflow turbulence generation procedure based on a linear forcing approach has been incorporated in this framework and DNS conducted to study the effect of inflow turbulence on the suction- side separation bubble in low-pressure turbine (LPT) cascades. The T106 series of airfoil cascades in both lightly (T106A) and highly loaded (T106C) configurations at exit isentropic Reynolds numbers of 60,000 and 80,000, respectively, are considered. The numerical simulations are performed using 8th-order accurate spatial and 4th-order accurate temporal discretization. The changes in separation bubble topology due to elevated inflow turbulence is captured by the present method and the physical mechanisms leading to the changes are explained. The present results are in good agreement with prior numerical simulations but some expected discrepancies with the experimental data for the T106C case are noted and discussed.

  16. Plasmon-mediated Energy Conversion in Metal Nanoparticle-doped Hybrid Nanomaterials

    NASA Astrophysics Data System (ADS)

    Dunklin, Jeremy R.

    Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was obtained between measured and estimated thermal profiles for AuNP-polymer dispersions. Concurrently, in situ reduction of AuNPs on two-dimensional semiconducting tungsten disulfide (WS2) addressed two current material limitations for efficient light harvesting: low monolayer content and lack of optoelectronic tunability. Order-of-magnitude increases in WS2 monolayer content, enhanced broadband optical extinction, and energetic electron injection were probed using a combination of spectroscopic techniques and continuum electromagnetic descriptions. Together, engineering these plasmon-mediated hybrid nanomaterials to facilitate local exchange of optical, thermal, and electronic energy supports design and implementation into several emerging sustainable water and energy applications.

  17. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    NASA Astrophysics Data System (ADS)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.

    2017-04-01

    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  18. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    NASA Astrophysics Data System (ADS)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  19. A "hydrokinematic" method of measuring the glide efficiency of a human swimmer.

    PubMed

    Naemi, Roozbeh; Sanders, Ross H

    2008-12-01

    The aim of this study was to develop and test a method of quantifying the glide efficiency, defined as the ability of the body to maintain its velocity over time and to minimize deceleration through a rectilinear glide. The glide efficiency should be determined in a way that accounts for both the inertial and resistive characteristics of the gliding body as well as the instantaneous velocity. A displacement function (parametric curve) was obtained from the equation of motion of the body during a horizontal rectilinear glide. The values of the parameters in the displacement curve that provide the best fit to the displacement-time data of a body during a rectilinear horizontal glide represent the glide factor and the initial velocity of the particular glide interval. The glide factor is a measure of glide efficiency and indicates the ability of the body to minimize deceleration at each corresponding velocity. The glide efficiency depends on the hydrodynamic characteristic of the body, which is influenced by the body's shape as well as by the body's size. To distinguish the effects of size and shape on the glide efficiency, a size-related glide constant and a shape-related glide coefficient were determined as separate entities. The glide factor is the product of these two parameters. The goodness of fit statistics indicated that the representative displacement function found for each glide interval closely represents the real displacement data of a body in a rectilinear horizontal glide. The accuracy of the method was indicated by a relative standard error of calculation of less than 2.5%. Also the method was able to distinguish between subjects in their glide efficiency. It was found that the glide factor increased with decreasing velocity. The glide coefficient also increased with decreasing Reynolds number. The method is sufficiently accurate to distinguish between individual swimmers in terms of their glide efficiency. The separation of glide factor to a size-related glide constant and a shape-related glide coefficient enabled the effect of size and shape to be quantified.

  20. Factor structure and diagnostic efficiency of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, criteria for avoidant personality disorder in Hispanic men and women with substance use disorders.

    PubMed

    Becker, Daniel F; Añez, Luis Miguel; Paris, Manuel; Bedregal, Luis; Grilo, Carlos M

    2009-01-01

    This study examined the internal consistency, factor structure, and diagnostic efficiency of the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV), criteria for avoidant personality disorder (AVPD) and the extent to which these metrics may be affected by sex. Subjects were 130 monolingual Hispanic adults (90 men, 40 women) who had been admitted to a specialty clinic that provides psychiatric and substance abuse services to Spanish-speaking patients. All were reliably assessed with the Spanish-Language Version of the Diagnostic Interview for DSM-IV Personality Disorders. The AVPD diagnosis was determined by the best-estimate method. After evaluating internal consistency of the AVPD criterion set, an exploratory factor analysis was performed using principal components extraction. Afterward, diagnostic efficiency indices were calculated for all AVPD criteria. Subsequent analyses examined men and women separately. For the overall group, internal consistency of AVPD criteria was good. Exploratory factor analysis revealed a 1-factor solution (accounting for 70% of the variance), supporting the unidimensionality of the AVPD criterion set. The best inclusion criterion was "reluctance to take risks," whereas "interpersonally inhibited" was the best exclusion criterion and the best predictor overall. When men and women were examined separately, similar results were obtained for both internal consistency and factor structure, with slight variations noted between sexes in the patterning of diagnostic efficiency indices. These psychometric findings, which were similar for men and women, support the construct validity of the DSM-IV criteria for AVPD and may also have implications for the treatment of this particular clinical population.

  1. Ternary Solar Cells Based on Two Small Molecule Donors with Same Conjugated Backbone: The Role of Good Miscibility and Hole Relay Process.

    PubMed

    Xiao, Liangang; Liang, Tianxiang; Gao, Ke; Lai, Tianqi; Chen, Xuebin; Liu, Feng; Russell, Thomas P; Huang, Fei; Peng, Xiaobin; Cao, Yong

    2017-09-06

    Ternary organic solar cells (OSCs) are very attractive for further enhancing the power conversion efficiencies (PCEs) of binary ones but still with a single active layer. However, improving the PCEs is still challenging because a ternary cell with one more component is more complicated on phase separation behavior. If the two donors or two acceptors have similar chemical structures, good miscibility can be expected to reduce the try-and-error work. Herein, we report ternary devices based on two small molecule donors with the same backbone but different substituents. Whereas both binary devices show PCEs about 9%, the PCE of the ternary cells is enhanced to 10.17% with improved fill factor and short-circuit current values and external quantum efficiencies almost in the whole absorption wavelength region from 440 to 850 nm. The same backbone enables the donors miscible at molecular level, and the donor with a higher HOMO level plays hole relay process to facilitate the charge transportation in the ternary devices. Since side-chain engineering has been well performed to tune the active materials' energy levels in OSCs, our results suggest that their ternary systems are promising for further improving the binary cells' performance although their absorptions are not complementary.

  2. Implementation of enterprise resource planning using Odoo module sales and CRM. Case study: PT Ecosains Hayati

    NASA Astrophysics Data System (ADS)

    Terminanto, A.; Hidayat, R.; Hidayanto, A. N.

    2017-12-01

    Marketing is the most important part of PT Ecosains Hayati as a distributor company. Sales looking for prospective buyers and provide product price quotations. Quotations are made by accessing various data in a separate document. It makes the work process less efficient. Implementation of ERP system could improve the efficiency of sales work. It used RAD method that faster than other methods. The selected ERP system is Odoo, which contains various business application programs. Gap and efficiency analysis were performed to compare business processes before and after using Odoo. User Acceptance Test (UAT) is conducted to determine user acceptance of the applications and features available in Odoo module. After implementation of Odoo, there was an increase in the efficiency of the quotations business process by 63% in numberf of activity and by 50% in number of the actors involved. Odoo customization is done on 26 of the 41 module menus used. Based on UAT results, the implementation of Odoo meets the usability aspect with the overall average value 3.7. This indicates that users have a good level of understanding in the use of Odoo, and the features on Odoo can meet the needs of users.

  3. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    PubMed

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  4. Microfluidic size separation of cells and particles using a swinging bucket centrifuge

    PubMed Central

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-01-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900

  5. Efficient 3He/4He separation in a nanoporous graphenylene membrane.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-08-16

    Helium-3 is a precious noble gas, which is essential in many advanced technologies such as cryogenics, isotope labeling and nuclear weapons. The current imbalance of 3 He demand and supply shortage leads to the search for an efficient membrane with high performance for 3 He separation. In this study, based on first-principles calculations, we demonstrated that highly efficient 3 He harvesting can be achieved in a nanoporous graphenylene membrane with industrially-acceptable selectivity and permeance. The quantum tunneling effect leads to 3 He harvesting with high efficiency via kinetic sieving. Both the quantum tunneling effect and zero-point energy (ZPE) determine the 3 He/ 4 He separation via thermally-driven equilibrium sieving, where the ZPE effect dominates efficient 3 He/ 4 He separation between two reservoirs. The quantum effects revealed in this work suggest that the nanoporous graphenylene membrane is promising for efficient 3 He harvesting that can be exploited for industrial applications.

  6. Droplet-based magnetically activated cell separation: analysis of separation efficiency based on the variation of flow-induced circulation in a pendent drop.

    PubMed

    Kim, Youngho; Lee, Sang Ho; Kim, Byungkyu

    2009-12-01

    Under the assumption that separation efficiencies are mainly affected by the velocity of flow-induced circulation due to buffer injection in a pendent drop, this paper describes an analysis of the separation efficiency of a droplet-based magnetically activated cell separation (DMACS) system. To investigate the velocity of the flow-induced circulation, we supposed that numerous flows in a pendent drop could be considered as a "theoretically normalized" flow (or conceptually normalized flow, CNF) based on the Cauchy-Goursat theorem. With the morphological characteristics (length and duration time) of a pendent drop depending on the initial volume, we obtained the velocities of the CNF. By measuring the separation efficiencies for different initial volumes and by analyzing the separation efficiency in terms of the velocity of the CNF, we found that the separation efficiencies (in the case of a low rate of buffer injection; 5 and 15 microl x min(-1)) are mainly affected by the velocity of the CNF. Moreover, we confirmed that the phenomenological features of a pendent drop cause a fluctuation of its separation efficiencies over a range of specific volumes (initial volumes ranging from 40 to 80 microl), because of the "sweeping-off" phenomenon, that is, positive cells gathered into the positive fraction are forced to move away from the magnetic side by flow-induced circulation due to buffer injection. In addition, from the variation of the duration time, that is, the interval between the beginning of injection of the buffer solution and the time at which a pendent drop detaches, it could also be confirmed that a shorter duration time leads to decrease of the number of positive cells in negative fraction regardless of the rate of buffer injection (5, 15, and 50 microl x min(-1)). Therefore, if a DMACS system is operated with a 15 microl x min(-1) buffer injection flow rate and an initial volume of 80 microl or more, we would have the best efficiency of separation in the negative fraction.

  7. Efficient photocatalytic hydrogen production by platinum-loaded carbon-doped cadmium indate nanoparticles.

    PubMed

    Thornton, Jason M; Raftery, Daniel

    2012-05-01

    Undoped and carbon doped cadmium indate (CdIn(2)O(4)) powders were synthesized using a sol-gel pyrolysis method and evaluated for hydrogen generation activity under UV-visible irradiation without the use of a sacrificial reagent. Each catalyst powder was loaded with a platinum cocatalyst in order to increase electron-hole pair separation and promote surface reactions. Carbon-doped indium oxide and cadmium oxide were also prepared and analyzed for comparison. UV-vis diffuse reflectance spectra indicate the band gap for C-CdIn(2)O(4) to be 2.3 eV. C-doped In(2)O(4) showed a hydrogen generation rate approximately double that of the undoped material. When compared to platinized TiO(2) in methanol, which was used as a control material, C-CdIn(2)O(4) showed a 4-fold increase in hydrogen production. The quantum efficiency of the material was calculated at different wavelength intervals and found to be 8.7% at 420-440 nm. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm.

  8. Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C2N membrane.

    PubMed

    Qu, Yuanyuan; Li, Feng; Zhao, Mingwen

    2017-05-03

    Isotopes separation through quantum sieving effect of membranes is quite promising for industrial applications. For the light hydrogen isotopologues (eg. H 2 , D 2 ), the confinement of potential wells in porous membranes to isotopologues was commonly regarded to be crucial for highly efficient separation ability. Here, we demonstrate from first-principles that a potential barrier is also favorable for efficient hydrogen isotopologues separation. Taking an already-synthesized two-dimensional carbon nitride (C 2 N-h2D) as an example, we predict that the competition between quantum tunneling and zero-point-energy (ZPE) effects regulated by the tensile strain leads to high selectivity and permeance. Both kinetic quantum sieving and equilibrium quantum sieving effects are considered. The quantum effects revealed in this work offer a prospective strategy for highly efficient hydrogen isotopologues separation.

  9. 20 CFR Appendix B to Part 625 - Standard for Claim Determinations-Separation Information

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... separation was voluntary, and the reason does not constitute good cause,” rather than merely the phrase... mailed or hand-delivered. (b) An explanation of any circumstances (such as nonworkdays, good cause, etc... used to supplement the employer-information requirements. Such a program should stress the availability...

  10. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography

    PubMed Central

    Ito, Yoichiro; Clary, Robert

    2016-01-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1–2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate. PMID:27790621

  11. Comparison in partition efficiency of protein separation between four different tubing modifications in spiral high-speed countercurrent chromatography.

    PubMed

    Ito, Yoichiro; Clary, Robert

    2016-12-01

    High-speed countercurrent chromatography with a spiral tube assembly can retain a satisfactory amount of stationary phase of polymer phase systems used for protein separation. In order to improve the partition efficiency a simple tool to modify the tubing shapes was fabricated, and the following four different tubing modifications were made: intermittently pressed at 10 mm width, flat, flat-wave, and flat-twist. Partition efficiencies of the separation column made from these modified tubing were examined in protein separation with an aqueous-aqueous polymer phase system at flow rates of 1-2 ml/min under 800 rpm. The results indicated that the column with all modified tubing improved the partition efficiency at a flow rate of 1 ml/min, but at a higher flow rate of 2 ml/min the columns made of flattened tubing showed lowered partition efficiency apparently due to the loss of the retained stationary phase. Among all the modified columns, the column with intermittently pressed tubing gave the best peak resolution. It may be concluded that the intermittently pressed and flat-twist improve the partition efficiency in a semi-preparative separation while other modified tubing of flat and flat-wave configurations may be used for analytical separations with a low flow rate.

  12. Simultaneous microemulsion liquid chromatographic analysis of fat-soluble vitamins in pharmaceutical formulations: optimization using genetic algorithm.

    PubMed

    Momenbeik, Fariborz; Roosta, Mostafa; Nikoukar, Ali Akbar

    2010-06-11

    An environmentally benign and simple method has been proposed for separation and determination of fat-soluble vitamins using isocratic microemulsion liquid chromatography. Optimization of parameters affecting the separation selectivity and efficiency including surfactant concentration, percent of cosurfactant (1-butanol), and percent of organic oily solvent (diethyl ether), temperature and pH were performed simultaneously using genetic algorithm method. A new software package, MLR-GA, was developed for this purpose. The results indicated that 73.6mM sodium dodecyl sulfate, 13.64% (v/v) 1-butanol, 0.48% (v/v) diethyl ether, column temperature of 32.5 degrees C and 0.02M phosphate buffer of pH 6.99 are the best conditions for separation of fat-soluble vitamins. At the optimized conditions, the calibration plots for the vitamins were obtained and detection limits (1.06-3.69microgmL(-1)), accuracy (recoveries>94.3), precision (RSD<3.96) and linearity (0.01-10mgmL(-1)) were estimated. Finally, the amount of vitamins in multivitamin syrup and a sample of fish oil capsule were determined. The results showed a good agreement with those reported by manufactures. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.

  14. Preparation and evaluation of open-tubular capillary columns modified with metal-organic framework incorporated polymeric porous layer for liquid chromatography.

    PubMed

    Zhu, Manman; Zhang, Lingyi; Chu, Zhanying; Wang, Shulei; Chen, Kai; Zhang, Weibing; Liu, Fan

    2018-07-01

    An open tubular capillary liquid phase chromatographic column (1 m × 25 µm i.d.× 375 µm o.d.) was prepared by incorporating metal organic framework particles modified with vancomycin directly into zwitterionic polymer coating synthesized by the copolymerization of [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide and N,N'-methylenebisacrylamide. The incorporation of IRMOF-3 (isoreticular metal organic framework-3) particles improved selectivity of zwitterionic polymer coating with absolute column efficiency reaching 79900 plates for p-xylene. Besides strong hydrophilic interaction, the separation of neutral, basic, and acidic compounds demonstrates that π-π stacking interaction and the coordination effect of unsaturated Zn 2+ of MOF also contribute to separation of various analytes. The RSD values (run-to-run, day-to-day, column-to-column, n = 3) of retention time of neutral compounds were less than 0.71%, 0.69% and 3.08% respectively, suggesting good repeatability. In addition, the column was applied to the analysis of the trypsin digest of bovine serum albumin, revealing the potential in separating biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system.

    PubMed

    Zhang, Ming; Guiraud, Pascal

    2017-12-01

    The treatment of nanoparticle (NP) polluted aqueous suspensions by flotation can be problematic due to the low probability of collision between particles and bubbles. To overcome this limitation, the present work focuses on developing an enhanced flotation technique using the surface-functionalized microbubbles - colloidal gas aphrons (CGAs). The CGA generator was adapted to be air flow rate controlled based on the classical Sebba system; thus it could be well adopted in a continuous flotation process. Cetyl trimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) were employed for CGA creation. Positively surface-charged CTAB-CGAs (∼44.1 μm in size) and negatively surface-charged SDS-CGAs (∼42.1 μm in size) were produced at the optimum stirring speed of 8000 rpm. The half-life of CGAs varied from 100 s to 340 s under the tested conditions, which was largely sufficient for transferring CGAs from bubble generator to flotation cell. The air flow led to less stable CTAB-CGAs but apparently enhanced the stability of SDS-CGAs at higher air flow rates. In the presence of air flow, the drainage behavior was not much related to the type of surfactants. The continuous CGA-flotation trials highlighted the effective separation of silica nanoparticles - the removal efficiencies of different types of SiO 2 NPs could reach approximately 90%-99%; however, at equivalent surfactant concentrations, no greater than 58% of NPs were removed when surfactants and bubbles were separately added into the flotation cell. The SiO 2 NPs with small size were removed more efficiently by the CGA-flotation process. For the flotation with CTAB-CGAs, the neutral and basic initial SNP suspension was recommended, whereas the SDS-CGAs remained high flotation efficiency over all investigated pH. The good performance of CGA-flotation might be interpreted: most of the surfactant molecules well covered/coated on the surfaces of stable CGAs and thus fully contacted with NPs, resulting in the efficient utilization of surfactants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.

    PubMed

    Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael

    2014-04-01

    We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.

  17. Membraneless laminar flow cell for electrocatalytic CO 2 reduction with liquid product separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flowmore » cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.« less

  18. Membraneless laminar flow cell for electrocatalytic CO 2 reduction with liquid product separation

    DOE PAGES

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; ...

    2017-03-16

    The production of liquid fuel products via electrochemical reduction of CO 2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O 2) from reaching the cathode. Ion-conducting membranes have been applied in CO 2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flowmore » cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO 2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.« less

  19. Development of a method for the analysis of nucleotides from the mantle tissue of the mussel Mytilus galloprovincialis.

    PubMed

    Blanco López, S L; Moal, J; San Juan Serrano, F

    2000-09-01

    Reversed-phase HPLC was applied to obtain a sensitive and efficient means for quantitating nucleotides in the mussel Mytilus galloprovincialis. We obtained a good separation of adenylic, guanylic, uridylic and cytidylic nucleotides. Adenine nucleotides play a critical role in the regulation and integration of cellular metabolism; particularly in the mantle tissue in the mussel, they are involved in the regulation of the enzyme glycogen phosphorylase, a key enzyme in the transfer of bioenergetic reserves (glycogen) to gametogenic development; it is of great importance to have a measure of the concentrations in vivo during the reproductive cycle of the organism. Different elution conditions were tested: isocratic versus step gradient elution, different mobile phase pH and the type and proportion of ion-pairing agent added to the mobile phase. The best method was selected and the separation and accurate determination of adenine, citidine, guanine and uridine nucleotides was accomplished within a 20-min run, with UV-Vis detection (254 nm).

  20. Neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides by high performance liquid chromatography.

    PubMed

    Yan, Jun; Shi, Songshan; Wang, Hongwei; Liu, Ruimin; Li, Ning; Chen, Yonglin; Wang, Shunchun

    2016-01-20

    A novel analytical method for neutral monosaccharide composition analysis of plant-derived oligo- and polysaccharides was developed using hydrophilic interaction liquid chromatography coupled to a charged aerosol detector. The effects of column type, additives, pH and column temperature on retention and separation were evaluated. Additionally, the method could distinguish potential impurities in samples, including chloride, sulfate and sodium, from sugars. The results of validation demonstrated that this method had good linearity (R(2) ≥ 0.9981), high precision (relative standard deviation ≤ 4.43%), and adequate accuracy (94.02-103.37% recovery) and sensitivity (detection limit: 15-40 ng). Finally, the monosaccharide compositions of the polysaccharide from Eclipta prostrasta L. and stachyose were successfully profiled through this method. This report represents the first time that all of these common monosaccharides could be well-separated and determined simultaneously by high performance liquid chromatography without additional derivatization. This newly developed method is convenient, efficient and reliable for monosaccharide analysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Pilot scale experiment with MBR operated in intermittent aeration condition: analysis of biological performance.

    PubMed

    Capodici, M; Di Bella, G; Di Trapani, D; Torregrossa, M

    2015-02-01

    The effect of intermittent aeration (IA) on a MBR system was investigated. The study was aimed at analyzing different working conditions and the influence of different IA cycles on the biological performance of the MBR pilot plant, in terms of organic carbon and ammonium removal as well as extracellular polymeric substances (EPSs) production. The membrane modules were placed in a separate compartment, continuously aerated. This configuration allowed to disconnect from the filtration stage the biological phenomena occurring into the IA bioreactor. The observed results highlighted good efficiencies, in terms of organic carbon and ammonium removal. It was noticed a significant soluble microbial products (SMPs) release, likely related to the higher metabolic stress that anoxic conditions exerted on the biomass. However, the proposed configuration, with the membranes in a separate compartment, allowed to reduce the EPSs in the membrane tank even during the non-aerated phase, thus lowering fouling development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    PubMed

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. 2010 Elsevier Ltd. All rights reserved.

  3. A superhydrophobic copper mesh as an advanced platform for oil-water separation

    NASA Astrophysics Data System (ADS)

    Ren, Guina; Song, Yuanming; Li, Xiangming; Zhou, Yanli; Zhang, Zhaozhu; Zhu, Xiaotao

    2018-01-01

    Improving the separation efficiency and simplifying the separation process would be highly desired for oil-water separation yet still challenging. Herein, to address this challenge, we fabricated a superhydrophobic copper mesh by an immersion process and exploited it as an advanced platform for oil-water separation. To realize oil-water separation efficiently, the obtained mesh was enfolded directly to form a boat-like device, and it could also be mounted on an open end of a glass barrel to form the oil skimmer device. For these devices, they can collect the floating oils through the pores of the copper mesh while repelling water completely, and the oil collection efficiency is up to 99.5%. Oils collected in the devices can be easily sucked out into a container for storing, without requiring mechanical handing for recycling. Importantly, the miniature boat and the oil skimmer devices can retain their enhanced oil collection efficiency even after 10 cycles of oil-water separation. Moreover, exploiting its superhydrophobicity under oil, the obtained copper mesh was demonstrated as a novel platform to remove tiny water droplets from oil.

  4. Sugar assimilation and digestive efficiency in Wahlberg's epauletted fruit bat (Epomophorus wahlbergi).

    PubMed

    Downs, Colleen T; Mqokeli, Babalwa; Singh, Preshnee

    2012-03-01

    Fruit- and nectar-feeding bats have high energy demands because of the cost of flight, and sugar is a good fuel because it is easily digested and absorbed. This study investigated the digestive efficiency of different sugars at different concentrations in Wahlberg's epauletted fruit bat (Epomophorus wahlbergi). We predicted that the sugar type and concentration would affect the total amount of solution consumed, while the total energy gained and the apparent assimilation efficiency would be high, irrespective of sugar type or concentration. Equicaloric solutions of two sugar types, glucose and sucrose, at low (10%), medium (15%) and high (25%) concentrations were offered in separate trials to bats. Total amount of solution consumed, total energy gained from each solution, and apparent assimilation efficiency, were measured. Bats had higher total volumetric intake of glucose and sucrose at the low concentrations than at the higher concentrations. However, bats maintained similar total energy intake on the respective glucose and sucrose concentrations. Bats were found to have high assimilation efficiencies on both glucose and sucrose irrespective of concentration. As bats used both sugars efficiently to maximize and maintain energy gain, it is expected that they feed opportunistically on fruit in the wild depending on temporal and spatial availability to obtain their energy requirements. Furthermore, fruit with high sucrose or glucose content will be consumed. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Analysis of the volatile organic matter of engine piston deposits by direct sample introduction thermal desorption gas chromatography/mass spectrometry.

    PubMed

    Diaby, M; Kinani, S; Genty, C; Bouchonnet, S; Sablier, M; Le Negrate, A; El Fassi, M

    2009-12-01

    This article establishes an alternative method for the characterization of volatiles organic matter (VOM) contained in deposits of the piston first ring grooves of diesel engines using a ChromatoProbe direct sample introduction (DSI) device coupled to gas chromatography/mass spectrometry (GC/MS) analysis. The addition of an organic solvent during thermal desorption leads to an efficient extraction and a good chromatographic separation of extracted products. The method was optimized investigating the effects of several solvents, the volume added to the solid sample, and temperature programming of the ChromatoProbe DSI device. The best results for thermal desorption were found using toluene as an extraction solvent and heating the programmable temperature injector from room temperature to 300 degrees C with a temperature step of 105 degrees C. With the use of the optimized thermal desorption conditions, several components have been positively identified in the volatile fraction of the deposits: aromatics, antioxidants, and antioxidant degradation products. Moreover, this work highlighted the presence of diesel fuel in the VOM of the piston deposits and gave new facts on the absence of the role of diesel fuel in the deposit formation process. Most importantly, it opens the possibility of quickly performing the analysis of deposits with small amounts of samples while having a good separation of the volatiles.

  6. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography.

    PubMed

    Che, Yulan; Xu, Yi; Wang, Renjie; Chen, Li

    2017-08-01

    A rapid and sensitive analytical method was developed to detect pathogenic bacteria which combined magnetic enrichment, fluorescence labeling with polyethylene glycol (PEG) magnetophoretic chromatography. As pathogenic bacteria usually exist in complex matrixes at low concentration, an efficient enrichment is essential for diagnosis. In order to capture series types of pathogenic bacteria in samples, amino-modified magnetic nanoparticles (Fe 3 O 4 @SiO 2 -NH 2 ) were prepared for efficient enrichment by the electrostatic interaction with pathogenic bacteria. It was shown that the capture efficiency reached up to 95.4% for Escherichia coli (E. coli). Furthermore, quantitative analysis of the bacteria was achieved by using acridine orange (AO) as a fluorescence probe for the captured E. coli due to its ability of staining series types of bacteria and rapid labeling. In order to remove the free magnetic nanoparticles and redundant fluorescent reagent, the labeled suspension was poured into a PEG separation column and was separated by applying an external magnetic field. The presence of 100 cfu mL -1 E. coli could be detected for semi-quantitative analysis by observing the separation column with the naked eye, and the concentration could be further evaluated by fluorescence detection. All the above processes were finished within 80 min. It was demonstrated that a good linear relationship existed between the fluorescence intensity and the concentration of E. coli ranging from 10 2 to 10 6  cfu mL -1 , with a detection limit of 100 cfu mL -1 when E. coli acted as target bacteria. The recovery rate of E. coli was 93.6∼102.0% in tap water and cooked meat samples, and the RSD was lower than 7% (n = 6); the result coincided with the conventional plate count method. Graphical abstract ᅟ.

  7. Trace analysis of endocrine disrupting compounds in environmental water samples by use of solid-phase extraction and gas chromatography with mass spectrometry detection.

    PubMed

    Azzouz, Abdelmonaim; Ballesteros, Evaristo

    2014-09-19

    A novel analytical method using a continuous solid-phase extraction system in combination with gas chromatography-mass spectrometry for the simultaneous separation and determination of endocrine disrupting compounds (EDCs) is reported. The method was applied to major EDCs of various types including parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in water. Samples were preconcentrated by using an automatic solid-phase extraction module containing a sorbent column, and retained analytes eluted with acetonitrile for derivatization with a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and trimethylchlorosilane. A number of variables potentially influencing recovery of the target compounds such as the type of SPE sorbent (Silica gel, Florisil, RP-C18, Amberlite XAD-2 and XAD-4, Oasis HLB and LiChrolut EN), eluent and properties of the water including pH and ionic strength, were examined. LiChrolut EN was found to be the most efficient sorbent for retaining the analytes, with ∼100% efficiency. The ensuing method was validated with good analytical results including low limits of detection (0.01-0.08ng/L for 100mL of sample) and good linearity (r(2)>0.997) throughout the studied concentration ranges. The method exhibited good accuracy (recoveries of 90-101%) and precision (relative standard deviations less than 7%) in the determination of EDCs in drinking, river, pond, well, swimming pool and waste water. Waste water samples were found to contain the largest number and highest concentrations of analytes (3.2-390ng/L). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Fabrication of superhydrophobic nano-aluminum films on stainless steel meshes by electrophoretic deposition for oil-water separation

    NASA Astrophysics Data System (ADS)

    Xu, Zhe; Jiang, Deyi; Wei, Zhibo; Chen, Jie; Jing, Jianfeng

    2018-01-01

    Stainless steel meshes with superhydrophobic surfaces were successfully fabricated via a facile electrophoretic deposition process. The surface morphology and chemical compositions were characterized by a field emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscope (EDS), X-ray diffraction (XRD) and fourier-transform infrared spectrophotometer (FTIR). After stearic acid modification, the obtained nano-aluminum films on stainless steel meshes showed an excellent superhydrophobic properties with a water contact angle of 160° ± 1.2° and a water sliding angle of less than 5°. In addition, on the basis of the superhydrophobic meshes, a simple, continuous oil-water separation apparatus was designed, and the oil-water separation efficiency was up to 95.8% ± 0.9%. Meanwhile, after 20 oil-water separation cycles, the separation efficiency without significant reduction suggested the stable performance of superhydrophobic stainless steel meshes on the oil-water separation. Moreover, the flow rate of oil-water mixture and effective separation length were investigated to determine their effects on the oil-water separation efficiency, respectively. Our work provides a cost-efficient method to prepare stable superhydrophobic nano-Al films on stainless steel meshes, and it has promising practical applications on oil-water separation.

  9. Programmed release triggered by osmotic gradients in multicomponent vesicles

    NASA Astrophysics Data System (ADS)

    Dong, Ruo-Yu; Jang, Hyun-Sook; Granick, Steve

    Polymersomes, a good candidate for encapsulation and delivery of active ingredients, can be constructed with inter-connected multiple compartments. These so-called multisomes on the one hand enable the spatial separation of various incompatible contents or processes, and on the other hand provide an efficient route for inter-compartment communication via the interface semipermeable membrane. Here we show that by establishing osmotic imbalances between different compartments, interesting synergetic morphology changes of the multisomes can be observed. And by further carefully adjusting the osmotic gradients and the arrangement of compartments, we can realize a cascade rupture of these individual units, which may be a new step towards controlled mixing and timed sequences of chemical reactions.

  10. Experimental Evaluation and Comparison of Thermal Conductivity of High-Voltage Insulation Materials for Vacuum Electronic Devices

    NASA Astrophysics Data System (ADS)

    Suresh, C.; Srikrishna, P.

    2017-07-01

    Vacuum electronic devices operate with very high voltage differences between their sub-assemblies which are separated by very small distances. These devices also emit large amounts of heat that needs to be dissipated. Hence, there exists a requirement for high-voltage insulators with good thermal conductivity for voltage isolation and efficient heat dissipation. However, these voltage insulators are generally poor conductors of heat. In the present work, an effort has been made to obtain good high-voltage insulation materials with substantial improvement in their thermal conductivity. New mixtures of composites were formed by blending varying percentages (by volumes) of aluminum nitride powders with that of neat room-temperature vulcanizing (RTV) silicone elastomer compound. In this work, a thermal conductivity test setup has been devised for the quantification of the thermal conductivity of the insulators. The thermal conductivities and high-voltage isolation capabilities of various blended composites were quantified and were compared with that of neat RTV to evaluate the relative improvement.

  11. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation

    NASA Astrophysics Data System (ADS)

    Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong

    2012-11-01

    Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N2 adsorption method has confirmed the major contribution of SiO2 NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO2 NPs). By employing the F-PBZ/SiO2 NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N2 adsorption method has confirmed the major contribution of SiO2 NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification. Electronic supplementary information (ESI) available: Detailed synthesis and structural confirmation of BAF-tfa, FT-IR results, OCA results and Movie S1. See DOI: 10.1039/c2nr33063f

  12. A rapid method for the sequential separation of polonium, plutonium, americium and uranium in drinking water.

    PubMed

    Lemons, B; Khaing, H; Ward, A; Thakur, P

    2018-06-01

    A new sequential separation method for the determination of polonium and actinides (Pu, Am and U) in drinking water samples has been developed that can be used for emergency response or routine water analyses. For the first time, the application of TEVA chromatography column in the sequential separation of polonium and plutonium has been studied. This method utilizes a rapid Fe +3 co-precipitation step to remove matrix interferences, followed by plutonium oxidation state adjustment to Pu 4+ and an incubation period of ~ 1 h at 50-60 °C to allow Po 2+ to oxidize to Po 4+ . The polonium and plutonium were then separated on a TEVA column, while separation of americium from uranium was performed on a TRU column. After separation, polonium was micro-precipitated with copper sulfide (CuS), while actinides were micro co-precipitated using neodymium fluoride (NdF 3 ) for counting by the alpha spectrometry. The method is simple, robust and can be performed quickly with excellent removal of interferences, high chemical recovery and very good alpha peak resolution. The efficiency and reliability of the procedures were tested by using spiked samples. The effect of several transition metals (Cu 2+ , Pb 2+ , Fe 3+ , Fe 2+ , and Ni 2+ ) on the performance of this method were also assessed to evaluate the potential matrix effects. Studies indicate that presence of up to 25 mg of these cations in the samples had no adverse effect on the recovery or the resolution of polonium alpha peaks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Development of gas chromatography-flame ionization detection system with a single column and liquid nitrogen-free for measuring atmospheric C2-C12 hydrocarbons.

    PubMed

    Liu, Chengtang; Mu, Yujing; Zhang, Chenglong; Zhang, Zhibo; Zhang, Yuanyuan; Liu, Junfeng; Sheng, Jiujiang; Quan, Jiannong

    2016-01-04

    A liquid nitrogen-free GC-FID system equipped with a single column has been developed for measuring atmospheric C2-C12 hydrocarbons. The system is consisted of a cooling unit, a sampling unit and a separation unit. The cooling unit is used to meet the temperature needs of the sampling unit and the separation unit. The sampling unit includes a dehydration tube and an enrichment tube. No breakthrough of the hydrocarbons was detected when the temperature of the enrichment tube was kept at -90 °C and sampling volume was 400 mL. The separation unit is a small round oven attached on the cooling column. A single capillary column (OV-1, 30 m × 0.32 mm I.D.) was used to separate the hydrocarbons. An optimal program temperature (-60 ∼ 170 °C) of the oven was achieved to efficiently separate C2-C12 hydrocarbons. There were good linear correlations (R(2)=0.993-0.999) between the signals of the hydrocarbons and the enrichment amount of hydrocarbons, and the relative standard deviation (RSD) was less than 5%, and the method detection limits (MDLs) for the hydrocarbons were in the range of 0.02-0.10 ppbv for sampling volume of 400 mL. Field measurements were also conducted and more than 50 hydrocarbons from C2 to C12 were detected in Beijing city. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Separation of cancer cells from white blood cells by pinched flow fractionation.

    PubMed

    Pødenphant, Marie; Ashley, Neil; Koprowska, Kamila; Mir, Kalim U; Zalkovskij, Maksim; Bilenberg, Brian; Bodmer, Walter; Kristensen, Anders; Marie, Rodolphe

    2015-12-21

    In this paper, the microfluidic size-separation technique pinched flow fractionation (PFF) is used to separate cancer cells from white blood cells (WBCs). The cells are separated at efficiencies above 90% for both cell types. Circulating tumor cells (CTCs) are found in the blood of cancer patients and can form new tumors. CTCs are rare cells in blood, but they are important for the understanding of metastasis. There is therefore a high interest in developing a method for the enrichment of CTCs from blood samples, which also enables further analysis of the separated cells. The separation is challenged by the size overlap between cancer cells and the 10(6) times more abundant WBCs. The size overlap prevents high efficiency separation, however we demonstrate that cell deformability can be exploited in PFF devices to gain higher efficiencies than expected from the size distribution of the cells.

  15. Sample of CFD optimization of a centrifugal compressor stage

    NASA Astrophysics Data System (ADS)

    Galerkin, Y.; Drozdov, A.

    2015-08-01

    Industrial centrifugal compressor stage is a complicated object for gas dynamic design when the goal is to achieve maximum efficiency. The Authors analyzed results of CFD performance modeling (NUMECA Fine Turbo calculations). Performance prediction in a whole was modest or poor in all known cases. Maximum efficiency prediction was quite satisfactory to the contrary. Flow structure in stator elements was in a good agreement with known data. The intermediate type stage “3D impeller + vaneless diffuser+ return channel” was designed with principles well proven for stages with 2D impellers. CFD calculations of vaneless diffuser candidates demonstrated flow separation in VLD with constant width. The candidate with symmetrically tampered inlet part b3 / b2 = 0,73 appeared to be the best. Flow separation takes place in the crossover with standard configuration. The alternative variant was developed and numerically tested. The obtained experience was formulated as corrected design recommendations. Several candidates of the impeller were compared by maximum efficiency of the stage. The variant with gas dynamic standard principles of blade cascade design appeared to be the best. Quasi - 3D non-viscid calculations were applied to optimize blade velocity diagrams - non-incidence inlet, control of the diffusion factor and of average blade load. “Geometric” principle of blade formation with linear change of blade angles along its length appeared to be less effective. Candidates’ with different geometry parameters were designed by 6th math model version and compared. The candidate with optimal parameters - number of blades, inlet diameter and leading edge meridian position - is 1% more effective than the stage of the initial design.

  16. 10 CFR 2.317 - Separate hearings; consolidation of proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (a) Separate hearings. On motion by the parties or upon request of the presiding officer for good... it is found that the action will be conducive to the proper dispatch of its business and to the ends...) Consolidation of proceedings. On motion and for good cause shown or on its own initiative, the Commission or the...

  17. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Rashidi, Ali Morad; Shirkhanloo, Hamid; Rahighi, Reza

    2016-01-01

    A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL(-1)), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL(-1)). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L(-1) for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24-15.6, 0.015-0.95 and 0.039-2.33 µg L(-1) for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned metal ions in river water, human urine and saliva sample with good recoveries in range of 94.2-103.0%. The accuracy of the method was underpinned by correct analysis of a standard reference material (SRM: 2668 level I, Urine). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    DOEpatents

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  19. CANDELS: The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey

    NASA Technical Reports Server (NTRS)

    Grogin, Norman A.; Koekemoer, anton M.; Faber, S. M.; Ferguson, Henry C.; Kocevski, Dale D.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; hide

    2011-01-01

    The Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, from z approx. 8 - 1.5. It will image > 250,000 distant galaxies using three separate cameras on the Hubble Space Tele8cope, from the mid-UV to near-IR, and will find and measure Type Ia supernovae beyond z > 1.5 to test their accuracy as standard candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10(exp 9) solar mass to z approx. 2, reaching the knee of the UV luminosity function of galaxies to z approx. 8. The survey covers approximately 800 square arc minutes and is divided into two parts. The CANDELS/Deep survey (5(sigma) point-source limit H =27.7mag) covers approx. 125 square arcminutes within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 50(sigma) point-source limit of H ? or approx. = 27.0 mag. Together with the Hubble Ultradeep Fields, the strategy creates a three-tiered "wedding cake" approach that has proven efficient for extragalactic surveys. Data from the survey are non-proprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design.

  20. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  1. A new submarine oil-water separation system

    NASA Astrophysics Data System (ADS)

    Cai, Wen-Bin; Liu, Bo-Hong

    2017-12-01

    In order to solve the oil field losses of environmental problems and economic benefit caused by the separation of lifting production liquid to offshore platforms in the current offshore oil production, from the most basic separation principle, a new oil-water separation system has been processed of adsorption and desorption on related materials, achieving high efficiency and separation of oil and water phases. And the submarine oil-water separation device has been designed. The main structure of the device consists of gas-solid phase separation device, period separating device and adsorption device that completed high efficiency separation of oil, gas and water under the adsorption and desorption principle, and the processing capacity of the device is calculated.

  2. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  3. Multiple dual mode counter-current chromatography with variable duration of alternating phase elution steps.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N

    2014-06-20

    The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mixed cellulose ester filter as a separator for air-diffusion cathode microbial fuel cells.

    PubMed

    Wang, Zejie; Lim, Bongsu

    2017-04-01

    Separator is important to prevent bio-contamination of the catalyst layer of air-diffusion cathode microbial fuel cells (MFCs). Mixed cellulose ester filter (MCEF) was examined as a separator for an air-cathode MFC in the present study. The MCEF-MFC produced a maximum power density of 780.7 ± 18.7 mW/m 2 , which was comparable to 770.9 ± 35.9 mW/m 2 of MFC with Nafion membrane (NFM) as a separator. Long-term examination demonstrated a more stable performance of the MCEF-MFC than NFM-MFC. After 25 cycles, the maximum voltage of the MCEF-MFC decreased by only 1.3% from 425.1 ± 4.3 mV (initial 5 cycles) to 419.5 ± 2.3 mV (last 5 cycles). However, it was decreased by 9.1% from 424.8 ± 5.7 to 386 ± 2.5 mV for the NFM-MFC. The coulombic efficiency (CE) of the MCEF-MFC did not change (from 3.11 ± 0.09% to 3.13 ± 0.02%), while it decreased by 9.12% from 3.18 ± 0.04% to 2.89 ± 0.02% for the NFM-MFC. The MCEF separator was with less biofouling than the NFM separator over 60 days' operation, which might be the reason for the more table long-term performance of the MCEF-MFC. The results demonstrated that MCEF was feasible as a separator to set up good-performing and cost-effective air-diffusion cathode MFC.

  5. High Temperature Stable Separator for Lithium Batteries Based on SiO2 and Hydroxypropyl Guar Gum

    PubMed Central

    Carvalho, Diogo Vieira; Loeffler, Nicholas; Kim, Guk-Tae; Passerini, Stefano

    2015-01-01

    A novel membrane based on silicon dioxide (SiO2) and hydroxypropyl guar gum (HPG) as binder is presented and tested as a separator for lithium-ion batteries. The separator is made with renewable and low cost materials and an environmentally friendly manufacturing processing using only water as solvent. The separator offers superior wettability and high electrolyte uptake due to the optimized porosity and the good affinity of SiO2 and guar gum microstructure towards organic liquid electrolytes. Additionally, the separator shows high thermal stability and no dimensional-shrinkage at high temperatures due to the use of the ceramic filler and the thermally stable natural polymer. The electrochemical tests show the good electrochemical stability of the separator in a wide range of potential, as well as its outstanding cycle performance. PMID:26512701

  6. Simultaneous extraction and determination of phthalate esters in aqueous solution by yolk-shell magnetic mesoporous carbon-molecularly imprinted composites based on solid-phase extraction coupled with gas chromatography-mass spectrometry.

    PubMed

    Yang, Rui; Liu, Yuxin; Yan, Xiangyang; Liu, Shaomin

    2016-12-01

    A rapid, sensitive and accurate method for the simultaneous extraction and determination of five types of trace phthalate esters (PAEs) in environmental water and beverage samples using magnetic molecularly imprinted solid-phase extraction (MMIP-SPE) coupled with gas chromatography-mass spectrometry (GC-MS) was developed. A novel type of molecularly imprinted polymers on the surface of yolk-shell magnetic mesoporous carbon (Fe 3 O 4 @void@C-MIPs) was used as an efficient adsorbent for selective adsorption of phthalate esters based on magnetic solid-phase extraction (MSPE). The real samples were first preconcentrated by Fe 3 O 4 @void@C-MIPs, subsequently extracted by eluent and finally determined by GC-MS after magnetic separation. Several variables affecting the extraction efficiency of the analytes, including the type and volume of the elution solvent, amount of adsorbent, extraction time, desorption time and pH of the sample solution, were investigated and optimized. Validation experiments indicated that the developed method presented good linearity (R 2 >0.9961), satisfactory precision (RSD<6.7%), and high recovery (86.1-103.1%). The limits of detection ranged from 1.6ng/L to 5.2ng/L and the enrichment factor was in the range of 822-1423. The results indicated that the novel method had the advantages of convenience, good sensitivity, and high efficiency, and it could also be successfully applied to the analysis of PAEs in real samples. Copyright © 2016. Published by Elsevier B.V.

  7. The rheology and phase separation kinetics of mixed-matrix membrane dopes

    NASA Astrophysics Data System (ADS)

    Olanrewaju, Kayode Olaseni

    Mixed-matrix hollow fiber membranes are being developed to offer more efficient gas separations applications than what the current technologies allow. Mixed-matrix membranes (MMMs) are membranes in which molecular sieves incorporated in a polymer matrix enhance separation of gas mixtures based on the molecular size difference and/or adsorption properties of the component gases in the molecular sieve. The major challenges encountered in the efficient development of MMMs are associated with some of the paradigm shifts involved in their processing, as compared to pure polymer membranes. For instance, mixed-matrix hollow fiber membranes are prepared by a dry-wet jet spinning method. Efficient large scale processing of hollow fibers by this method requires knowledge of two key process variables: the rheology and kinetics of phase separation of the MMM dopes. Predicting the rheological properties of MMM dopes is not trivial; the presence of particles significantly affects neat polymer membrane dopes. Therefore, the need exists to characterize and develop predictive capabilities for the rheology of MMM dopes. Furthermore, the kinetics of phase separation of polymer solutions is not well understood. In the case of MMM dopes, the kinetics of phase separation are further complicated by the presence of porous particles in a polymer solution. Thus, studies on the phase separation kinetics of polymer solutions and suspensions of zeolite particles in polymer solutions are essential. Therefore, this research thesis aims to study the rheology and phase separation kinetics of mixed-matrix membrane dopes. In our research efforts to develop predictive models for the shear rheology of suspensions of zeolite particles in polymer solutions, it was found that MFI zeolite suspensions have relative viscosities that dramatically exceed the Krieger-Dougherty predictions for hard sphere suspensions. Our investigations showed that the major origin of this discrepancy is the selective absorption of solvent molecules from the suspending polymer solution into the zeolite pores. Consequently, both the viscosity of the polymer solution and the particle contribution to the suspension viscosity are greatly increased. A predictive model for the viscosity of porous zeolite suspensions incorporating a solvent absorption parameter, alpha, into the Krieger-Dougherty model was developed. We experimentally determined the solvent absorption parameter and our results are in good agreement with the theoretical pore volume of MFI particles. In addition, fundamental studies were conducted with spherical nonporous silica suspensions to elucidate the role of colloidal and hydrodynamic forces on the rheology of mixed-matrix membrane dopes. Also in this thesis, details of a novel microfluidic device for measuring the phase separation kinetics of membrane dopes are presented. We have used this device to quantify the phase separation kinetics (PSK) of polymer solutions and MMM dopes upon contact with an array of relevant nonsolvent. For the polymer solution, we found that PSK is governed by the micro-rheological and thermodynamic properties of the polymer solution and nonsolvent. For the MMM dopes, we found that the PSK may increase with increase in particles surface area due to surface diffusion enhancement. In addition, it was found that the dispersed particles alter the thermodynamic properties of the dope based on the hydrophilicity and porosity of the particle.

  8. Column-coupling strategies for multidimensional electrophoretic separation techniques.

    PubMed

    Kler, Pablo A; Sydes, Daniel; Huhn, Carolin

    2015-01-01

    Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.

  9. Removal of algal blooms from freshwater by the coagulation-magnetic separation method.

    PubMed

    Liu, Dan; Wang, Peng; Wei, Guanran; Dong, Wenbo; Hui, Franck

    2013-01-01

    This research investigated the feasibility of changing waste into useful materials for water treatment and proposed a coagulation-magnetic separation technique. This technique was rapid and highly effective for clearing up harmful algal blooms in freshwater and mitigating lake eutrophication. A magnetic coagulant was synthesized by compounding acid-modified fly ash with magnetite (Fe(3)O(4)). Its removal effects on algal cells and dissolved organics in water were studied. After mixing, coagulation, and magnetic separation, the flocs obtained from the magnet surface were examined by SEM. Treated samples were withdrawn for the content determination of chlorophyll-a, turbidity, chemical oxygen demand (COD), total nitrogen, and total phosphorus. More than 99 % of algal cells were removed within 5 min after the addition of magnetic coagulant at optimal loadings (200 mg L(-1)). The removal efficiencies of COD, total nitrogen, and phosphorus were 93, 91, and 94 %, respectively. The mechanism of algal removal explored preliminarily showed that the magnetic coagulant played multiple roles in mesoporous adsorption, netting and bridging, as well as high magnetic responsiveness to a magnetic field. The magnetic-coagulation separation method can rapidly and effectively remove algae from water bodies and greatly mitigate eutrophication of freshwater using a new magnetic coagulant. The method has good performance, is low cost, can turn waste into something valuable, and provides reference and directions for future pilot and production scale-ups.

  10. Dispersive solid-phase microextraction and capillary electrophoresis separation of food colorants in beverages using diamino moiety functionalized silica nanoparticles as both extractant and pseudostationary phase.

    PubMed

    Liu, Feng-Jie; Liu, Chuan-Ting; Li, Wei; Tang, An-Na

    2015-01-01

    In this work, a new method for the determination of food colorants in beverage samples is developed, using diamino moiety functionalized silica nanoparticles (dASNPs) as both adsorbents in dispersive solid-phase microextraction (dSPME) and pseudostationary phases (PSPs) in capillary electrophoresis (CE) separation. dASNPs were firstly used as adsorbents for the preconcentration of four colorants by the dSPME process. After that, colorants were efficiently separated by CE using 30 mM phosphate buffer (pH 6.0) containing 2 mM β-CD and 0.9 mg/mL dASNPs as additives. All factors influencing dSPME and CE separations were optimized in detail. The investigated analytes showed good linearities with correlation coefficients (R(2)) higher than 0.9932. The limits of detection for the four food colorants were between 0.030 and 0.36 mg/L, which are lower than those reported previously. The established method was also used to analyze four colorants in beverage samples with recoveries ranging from 82.7% to 114.6%. To the best of our knowledge, this is the first time to use NPs both as extractants in dSPME and pseudostationary phases in CE for the analytical purpose. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cell separation using tilted-angle standing surface acoustic waves

    PubMed Central

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-01-01

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼97%. We illustrate that taSSAW is capable of effectively separating particles–cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological–biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice. PMID:25157150

  12. Cell separation using tilted-angle standing surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Peng, Zhangli; Lin, Sz-Chin Steven; Geri, Michela; Li, Sixing; Li, Peng; Chen, Yuchao; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2014-09-09

    Separation of cells is a critical process for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers a means to separate cells on the basis of their size and physical properties in a label-free, contactless, and biocompatible manner. The separation sensitivity and efficiency of currently available acoustic-based approaches, however, are limited, thereby restricting their widespread application in research and health diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves (taSSAW), which are oriented at an optimally designed inclination to the flow direction in the microfluidic channel. We demonstrate that this design significantly improves the efficiency and sensitivity of acoustic separation techniques. To optimize our device design, we carried out systematic simulations of cell trajectories, matching closely with experimental results. Using numerically optimized design of taSSAW, we successfully separated 2- and 10-µm-diameter polystyrene beads with a separation efficiency of ∼ 99%, and separated 7.3- and 9.9-µm-polystyrene beads with an efficiency of ∼ 97%. We illustrate that taSSAW is capable of effectively separating particles-cells of approximately the same size and density but different compressibility. Finally, we demonstrate the effectiveness of the present technique for biological-biomedical applications by sorting MCF-7 human breast cancer cells from nonmalignant leukocytes, while preserving the integrity of the separated cells. The method introduced here thus offers a unique route for separating circulating tumor cells, and for label-free cell separation with potential applications in biological research, disease diagnostics, and clinical practice.

  13. 20 CFR 416.554 - Waiver of adjustment or recovery-against equity and good conscience.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... eligible couple that is legally separated and/or living apart for that part of an overpayment not received... subsequently found that the money was improperly paid. Recovery would be considered “against equity and good conscience.” Example 3: Mr. and Mrs. Smith—members of an eligible couple—separate in July. Later in July, Mr...

  14. Detection of Chlorogenic Acid in Honeysuckle Using Infrared-Assisted Extraction Followed by Capillary Electrophoresis with UV Detector

    PubMed Central

    Tang, Zhuxing; Zang, Shuliang; Zhang, Xiangmin

    2012-01-01

    In this study, a novel infrared-assisted extraction method coupled capillary electrophoresis (CE) is employed to determine chlorogenic acid from a traditional Chinese medicine (TCM), honeysuckle. The effects of pH and the concentration of the running buffer, separation voltage, injection time, IR irradiation time, and anhydrous ethanol in the extraction concentration were investigated. The optimal conditions were as follows: extraction time, 30 min; extraction solvent, 80% (v/v) ethanol in water solution; and 50 mmol/L borate buffer (pH 8.7) was used as the running buffer at a separation voltage of 16 kV. The samples were injected electrokinetically at 16 kV for 8 s. Good linearity (r2 > 0.9996) was observed over the concentration ranges investigated, and the stability of the solutions was high. Recoveries of the chlorogenic acid were from 95.53% to 106.62%, and the relative standard deviation was below 4.1%. By using this novel IR-assisted extraction method, a higher extraction efficiency than those extracted with conventional heat-reflux extraction was found. The developed IR-assisted extraction method is simple, low-cost, and efficient, offering a great promise for the quick determination of active compounds in TCM. The results indicated that IR-assisted extraction followed by CE is a reliable method for quantitative analysis of active ingredient in TCM. PMID:22291060

  15. Preparation of Magnetic Sorbent with Surface Modified by C18for Removal of Selected Organic Pollutants from Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Kuráň, Pavel; Pilnaj, Dominik; Ciencialová, Lucie; Pšenička, Martin

    2017-12-01

    Magnetic sorbents have great potential in environmental applications due to their simple synthesis and separation in magnetic field, usability in heterogeneous systems and low toxicity. Possible syntheses, surface modifications and characteristics were described by Li et al 2013. This type of solid-phase extraction is being successfully used in various fields as health care, microbiology, biotechnologies or sample preconcentration in analytical chemistry. In this preliminary study we report on the preparation and application of magnetically separable sorbent with surface modified by C18 alkyl chain for purification of water contaminated by environmentally hazardous organic compounds. Magnetic cores were co-precipitated from Fe2+ and Fe3+ chlorides in alkalic aqueous solution. Surface of synthetized Fe3O4 was modified with SiO2 by tetraethylorthosilicate to assure physico-chemical stability. Furthermore, Fe3O4/SiO2 complex has been treated by C18 functional group, which provides good affinity towards hydrophobic substances in water. Efficiency of sorption under various conditions has been examined on benzene, toluene, ethylbenzene and xylenes (BTEX), compounds found in petroleum products which contaminate air, soil and groundwater near of store tanks. Sorption kinetics was followed by gas chromatography with mass spectrometry. The preliminary sorption kinetics data and efficiency of BTEX removal point at the possible application of prepared magnetic sorbent for BTEX removal, especially for ethylbenzene and xylenes.

  16. Increase The Sugar Concentration of The Solution Sugar by Reverse Osmotic Membrane

    NASA Astrophysics Data System (ADS)

    Redjeki, S.; Hapsari, N.; Iriani

    2018-01-01

    Sugar is one of the basic needs of people and food and drink industry. As technology advances and the demand for efficient usage of sugar rises, crystal sugar is seen as less advantageous than liquid sugar. If sugar is always dissolved in water before use, then it will be more efficient and practical for consumers to use sugar in liquid form than in crystal form. Other than that, liquid sugar is also attractive to consumers because it is economical, hygienic, instantly soluble in hot and cold water, fresher and longer-lasting, able to thicken and enrich the texture of foods and drinks, and functions as sweetener, syrup, and flavor enhancer. Liquid sugar is also more beneficial for sugar producers because of simpler production process, cheaper production cost, and similar yield with no extra cost. In sugar production, separation process is found in most of its stages and therefore the use of membrane technology for separating solute and water content has a good potential. In this research, water content reduction of sugar solution was done in order to increase the sugar concentration of the solution. The parameters of this research were 4%, 5%, and 6% starting concentration of sugar solution; 20, 40, and 60 minutes of process time; and 85 and 60 PSI ΔP. The best result was acquired on 4% starting concentration, 60 PSI ΔP, and 60 minutes process time.

  17. Improved design of a tangential entry cyclone separator for separation of particles from exhaust gas of diesel engine.

    PubMed

    Mukhopadhyay, N

    2011-01-01

    An effective design of cyclone separator with tangential inlet is developed applying an equation derived from the correlation of collection efficiency with maximum pressure drop components of the cyclone, which can efficiently remove the particles around 1microm of the exhaust gas of diesel engine.

  18. Oil-water separation property of polymer-contained wastewater from polymer-flooding oilfields in Bohai Bay, China.

    PubMed

    Chen, Hua-xing; Tang, Hong-ming; Duan, Ming; Liu, Yi-gang; Liu, Min; Zhao, Feng

    2015-01-01

    In this study, the effects of gravitational settling time, temperature, speed and time of centrifugation, flocculant type and dosage, bubble size and gas amount were investigated. The results show that the simple increase in settling time and temperature is of no use for oil-water separation of the three wastewater samples. As far as oil-water separation efficiency is concerned, increasing centrifugal speed and centrifugal time is highly effective for L sample, and has a certain effect on J sample, but is not valid for S sample. The flocculants are highly effective for S and L samples, and the oil-water separation efficiency increases with an increase in the concentration of inorganic cationic flocculants. There exist critical reagent concentrations for the organic cationic and the nonionic flocculants, wherein a higher or lower concentration of flocculant would cause a decrease in the treatment efficiency. Flotation is an effective approach for oil-water separation of polymer-contained wastewater from the three oilfields. The oil-water separation efficiency can be enhanced by increasing floatation agent concentration, flotation time and gas amount, and by decreasing bubble size.

  19. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    PubMed

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the constituent components. Published by Elsevier B.V.

  20. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    NASA Astrophysics Data System (ADS)

    Wang, Huiqi; Li, Zheng; Niu, Qian; Ma, Jiutong; Jia, Qiong

    2015-10-01

    A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  1. Two dimensional self-assembly zinc porphyrins and zinc phthalocyanines heterojunctions with record high power conversion efficiencies.

    PubMed

    Yu, Junting; Jiang, Zhou; Hao, Yifan; Zhu, Qianhong; Zhao, Mingliang; Jiang, Xue; Zhao, Jijun

    2018-05-15

    Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D Zinc-porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and band levels between those 2D ZnPors and our previous proposed ZnPcs, eleven type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cell. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which prevails all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells. © 2018 IOP Publishing Ltd.

  2. Two dimensional self-assembly zinc porphyrin and zinc phthalocyanine heterojunctions with record high power conversion efficiencies

    NASA Astrophysics Data System (ADS)

    Yu, Junting; Jiang, Zhou; Hao, Yifan; Zhu, Qianhong; Zhao, Mingliang; Jiang, Xue; Zhao, Jijun

    2018-06-01

    Compared to inorganic solar cells, the power conversion efficiencies (PCEs) of organic solar cells are much lower, but they are compensated by many merits such as lower cost, less weight, and tunable structures, making them prospective for further applications. Porphyrin and phthalocyanine are the two most significant materials for organic solar cells due to their strong light-absorbing properties and semiconductor characteristics. However, there is little research on the 2D heterojunction solar cells based on these two materials, meanwhile the PCEs of them are still low. Here we have self-assembled several 2D zinc porphyrins (ZnPors) and performed first-principles simulation to demonstrate their good stability, suitable light harvesting, and high charge carrier mobility. By perfectly matching lattice constants and molecular energy levels between those 2D ZnPors and our previous proposed zinc phthalocyanines (ZnPcs), 11 type-II organic heterojunctions are constructed to further improve their charge separation capability. Those advantages endow 2D ZnPors and ZnPcs appreciable PCEs for solar cells. Among them, the theoretical PCE of 2D ZnPors/ZnPcs heterojunctions achieves as high as 19.84%, which exceeds all reported organic solar cells, and even approaches the PCEs of inorganic solar cells. These results indicate that our 2D ZnPors and 2D ZnPcs are good candidate materials for future organic solar cells.

  3. Robust and durable superhydrophobic cotton fabrics for oil/water separation.

    PubMed

    Zhou, Xiaoyan; Zhang, Zhaozhu; Xu, Xianghui; Guo, Fang; Zhu, Xiaotao; Men, Xuehu; Ge, Bo

    2013-08-14

    By introducing the incorporation of polyaniline and fluorinated alkyl silane to the cotton fabric via a facile vapor phase deposition process, the fabric surface possessed superhydrophobicity with the water contact angle of 156° and superoleophilicity with the oil contact angle of 0°. The as-prepared fabric can be applied as effective materials for the separation of water and oil mixture with separation efficiency as high as 97.8%. Compared with other materials for oil/water separation, the reported process was simple, time-saving, and repeatable for at least 30 times. Moreover, the obtained fabric kept stable superhydrophobicity and high separation efficiency under extreme environment conditions of high temperature, high humidity, strong acidic or alkaline solutions, and mechanical forces. Therefore, this reported fabric has the advantages of scalable fabrication, high separation efficiency, stable recyclability, and excellent durability, exhibiting the strong potential for industrial production.

  4. Vertical phase separation in bulk heterojunction solar cells formed by in situ polymerization of fulleride

    PubMed Central

    Zhang, Lipei; Xing, Xing; Zheng, Lingling; Chen, Zhijian; Xiao, Lixin; Qu, Bo; Gong, Qihuang

    2014-01-01

    Vertical phase separation of the donor and the acceptor in organic bulk heterojunction solar cells is crucial to improve the exciton dissociation and charge transport efficiencies. This is because whilst the exciton diffusion length is limited, the organic film must be thick enough to absorb sufficient light. However, it is still a challenge to control the phase separation of a binary blend in a bulk heterojunction device architecture. Here we report the realization of vertical phase separation induced by in situ photo-polymerization of the acrylate-based fulleride. The power conversion efficiency of the devices with vertical phase separation increased by 20%. By optimising the device architecture, the power conversion efficiency of the single junction device reached 8.47%. We believe that in situ photo-polymerization of acrylate-based fulleride is a universal and controllable way to realise vertical phase separation in organic blends. PMID:24861168

  5. DFT study on the interfacial properties of vertical and in-plane BiOI/BiOIO3 hetero-structures.

    PubMed

    Dai, Wen-Wu; Zhao, Zong-Yan

    2017-04-12

    Composite photocatalysts with hetero-structures usually favor the effective separation of photo-generated carriers. In this study, BiOIO 3 was chosen to form a hetero-structure with BiOI, due to its internal polar field and good lattice matching with BiOI. The interfacial properties and band offsets were focused on and analyzed in detail by DFT calculations. The results show that the charge depletion and accumulation mainly occur in the region near the interface. This effect leads to an interfacial electric field and thus, the photo-generated electron-hole pairs can be easily separated and transferred along opposite directions at the interface, which is significant for the enhancement of the photocatalytic activity. Moreover, according to the analysis of band offsets, the vertical BiOI/BiOIO 3 belongs to the type-II hetero-structure, while the in-plane BiOI/BiOIO 3 belongs to the type-I hetero-structure. The former type of hetero-structure has more favorable effects to enhance the photocatalytic activity of BiOI than that of the latter type of hetero-structure. In the case of the vertical BiOI/BiOIO 3 hetero-structure, photo-generated electrons can move from the conduction band of BiOI to that of BiOIO 3 , while holes can move from the valence band of BiOIO 3 to that of BiOI under solar radiation. In addition, the introduced internal electric field functions as a selector that can promote the separation of photo-generated carriers, resulting in the higher photocatalytic quantum efficiency. These findings illustrate the underlying mechanism for the reported experiments, and can be used as a basis for the design of novel highly efficient composite photocatalysts with hetero-structures.

  6. Facile Fabrication of a Polyethylene Mesh for Oil/Water Separation in a Complex Environment.

    PubMed

    Zhao, Tianyi; Zhang, Dongmei; Yu, Cunming; Jiang, Lei

    2016-09-14

    Low cost, eco-friendly, and easily scaled-up processes are needed to fabricate efficient oil/water separation materials, especially those useful in harsh environments such as highly acidic, alkaline, and salty environments, to deal with serious oil spills and industrial organic pollutants. Herein, a highly efficient oil/water separation mesh with durable chemical stability was fabricated by simply scratching and pricking a conventional polyethylene (PE) film. Multiscaled morphologies were obtained by this scratching and pricking process and provided the mesh with a special wettability performance termed superhydrophobicity, superoleophilicity, and low water adhesion, while the inert chemical properties of PE delivered chemical etching resistance to the fabricated mesh. In addition to a highly efficient oil/corrosive liquid separation, the fabricated PE mesh was also reusable and exhibited ultrafast oil/water separation solely by gravity. The easy operation, chemical durability, reusability, and efficiency of the novel PE mesh give it high potential for use in industrial and consumer applications.

  7. Rare earth separations by selective borate crystallization

    PubMed Central

    Yin, Xuemiao; Wang, Yaxing; Bai, Xiaojing; Wang, Yumin; Chen, Lanhua; Xiao, Chengliang; Diwu, Juan; Du, Shiyu; Chai, Zhifang; Albrecht-Schmitt, Thomas E.; Wang, Shuao

    2017-01-01

    Lanthanides possess similar chemical properties rendering their separation from one another a challenge of fundamental chemical and global importance given their incorporation into many advanced technologies. New separation strategies combining green chemistry with low cost and high efficiency remain highly desirable. We demonstrate that the subtle bonding differences among trivalent lanthanides can be amplified during the crystallization of borates, providing chemical recognition of specific lanthanides that originates from Ln3+ coordination alterations, borate polymerization diversity and soft ligand coordination selectivity. Six distinct phases are obtained under identical reaction conditions across lanthanide series, further leading to an efficient and cost-effective separation strategy via selective crystallization. As proof of concept, Nd/Sm and Nd/Dy are used as binary models to demonstrate solid/aqueous and solid/solid separation processes. Controlling the reaction kinetics gives rise to enhanced separation efficiency of Nd/Sm system and a one-step quantitative separation of Nd/Dy with the aid of selective density-based flotation. PMID:28290448

  8. Efficient nonlinear metasurface based on nonplanar plasmonic nanocavities

    DOE PAGES

    Wang, Feng; Martinson, Alex B. F.; Harutyunyan, Hayk

    2017-04-03

    Since their discovery in the 1960s, nonlinear optical effects have revolutionized optical technologies and laser industry. Development of efficient nanoscale nonlinear sources will pave the way for new applications in photonic circuitry, quantum optics and biosensing. However, nonlinear signal generation at dimensions smaller than the wavelength of light brings new challenges. The fundamental difficulty of designing an efficient nonlinear source is that some of the contributing factors involved in nonlinear wave-mixing at the nanoscale are often hard to satisfy simultaneously. Here, we overcome these limitations by developing a new type of nonplanar plasmonic metasurfaces, which can greatly enhance the secondmore » harmonic generation (SHG) at visible frequencies and achieve conversion efficiency of ~6 × 10 -5 at a peak pump intensity of ~0.5 GW/cm 2. This is 4-5 orders of magnitude larger than the efficiencies observed for nonlinear thin films and doubly resonant plasmonic antennas. The proposed metasurface consists of an array of metal-dielectric-metal (MDM) nanocavities formed by conformally cross-linked nanowires separated by an ultrathin nonlinear material layer. The nonplanar MDM geometry minimizes the destructive interference of nonlinear emission into the far-field, provides strongly enhanced independently tunable resonances both for fundamental and harmonic frequencies, a good mutual overlap of the modes and a strong interaction with the nonlinear spacer. Lastly, our findings enable the development of efficient nanoscale single photon sources, integrated frequency converters, and other nonlinear devices.« less

  9. Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.

    2003-11-01

    Network data analysis methods are the only way to properly separate real gravitational wave (GW) transient events from detector noise. They can be divided into two generic classes: the coincidence method and the coherent analysis. The former uses lists of selected events provided by each interferometer belonging to the network and tries to correlate them in time to identify a physical signal. Instead of this binary treatment of detector outputs (signal present or absent), the latter method involves first the merging of the interferometer data and looks for a common pattern, consistent with an assumed GW waveform and a given source location in the sky. The thresholds are only applied later, to validate or not the hypothesis made. As coherent algorithms use more complete information than coincidence methods, they are expected to provide better detection performances, but at a higher computational cost. An efficient filter must yield a good compromise between a low false alarm rate (hence triggering on data at a manageable rate) and a high detection efficiency. Therefore, the comparison of the two approaches is achieved using so-called receiving operating characteristics (ROC), giving the relationship between the false alarm rate and the detection efficiency for a given method. This paper investigates this question via Monte Carlo simulations, using the network model developed in a previous article. Its main conclusions are the following. First, a three-interferometer network such as Virgo-LIGO is found to be too small to reach good detection efficiencies at low false alarm rates: larger configurations are suitable to reach a confidence level high enough to validate as true GW a detected event. In addition, an efficient network must contain interferometers with comparable sensitivities: studying the three-interferometer LIGO network shows that the 2-km interferometer with half sensitivity leads to a strong reduction of performances as compared to a network of three interferometers with full sensitivity. Finally, it is shown that coherent analyses are feasible for burst searches and are clearly more efficient than coincidence strategies. Therefore, developing such methods should be an important goal of a worldwide collaborative data analysis.

  10. TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse.

    PubMed

    Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2018-04-04

    The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.

  11. Direct synthesis of mesostructured carbon nanofibers decorated with silver-nanoparticles as a multifunctional membrane for water treatment

    NASA Astrophysics Data System (ADS)

    Aboueloyoun Taha, Ahmed

    2015-12-01

    One-dimensional (1D) porous carbon nanofibers (CNFs) decorated by silver (Ag) nanoparticles (NPs) were prepared using a one-pot/self-template synthesis strategy by combining electrospinning and carbonization methods. The characterization results revealed that AgNPs were homogenously distributed along the CNFs and possessed a relatively uniform nano-size of about 12 nm. The novel membrane distinctively displayed enhanced photocatalytic activity under visible-light irradiation. The membrane exhibited excellent dye degradation and bacteria disinfection in batch experiments. The high photocatalytic activity can be attributed to the highly accessible surface areas, good light absorption capability, and high separation efficiency of photogenerated electron-hole pairs. The as-prepared membranes can be easily recycled because of their 1D property.

  12. Minerals and design of new waste forms for conditioning nuclear waste

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  13. Immobilization of TiO2 Nanoparticles on Chlorella pyrenoidosa Cells for Enhanced Visible-Light-Driven Photocatalysis

    PubMed Central

    Cai, Aijun; Guo, Aiying; Ma, Zichuan

    2017-01-01

    TiO2 nanoparticles are immobilized on chlorella cells using the hydrothermal method. The morphology, structure, and the visible-light-driven photocatalytic activity of the prepared chlorella/TiO2 composite are investigated by various methods. The chlorella/TiO2 composite is found to exhibit larger average sizes and higher visible-light intensities. The sensitization of the photosynthesis pigment originating from chlorella cells provides the anatase TiO2 with higher photocatalytic activities under the visible-light irradiation. The latter is linked to the highly efficient charge separation of the electron/hole pairs. The results also suggest that the photocatalytic activity of the composite remains substantial after four cycles, suggesting a good stability. PMID:28772899

  14. Synthesis and characterization of ionic liquid immobilized on magnetic nanoparticles: A recyclable heterogeneous organocatalyst for the acetylation of alcohols

    NASA Astrophysics Data System (ADS)

    Ghorbani-Choghamarani, Arash; Norouzi, Masoomeh

    2016-03-01

    Herein, we describe a simple and efficient procedure for the preparation of 3-((3-(trisilyloxy)propyl)propionamide)-1-methylimidazolium chloride ionic liquid supported on magnetic nanoparticle (TPPA-IL-Fe3O4). The structure of this magnetic ionic liquid is fully characterized by FT-IR, TGA, XRD, VSM, SEM, EDX and DLS techniques. TPPA-IL-Fe3O4 is employed as a catalyst for the acetylation of alcohols with acetic anhydride under mild and heterogeneous conditions at room temperature with good to excellent yields. The magnetic catalyst could be readily separate from the reaction media by simple magnetic decantation, and reused several times without significant loss of its catalytic activity.

  15. [The development and validation of the methods for the quantitative determination of sibutramine derivatives in dietary supplements].

    PubMed

    Stern, K I; Malkova, T L

    The objective of the present study was the development and validation of sibutramine demethylated derivatives, desmethyl sibutramine and didesmethyl sibutramine. Gas-liquid chromatography with the flame ionization detector was used for the quantitative determination of the above substances in dietary supplements. The conditions for the chromatographic determination of the analytes in the presence of the reference standard, methyl stearate, were proposed allowing to achieve the efficient separation. The method has the necessary sensitivity, specificity, linearity, accuracy, and precision (on the intra-day and inter-day basis) which suggests its good validation characteristics. The proposed method can be employed in the analytical laboratories for the quantitative determination of sibutramine derivatives in biologically active dietary supplements.

  16. Application of composite dictionary multi-atom matching in gear fault diagnosis.

    PubMed

    Cui, Lingli; Kang, Chenhui; Wang, Huaqing; Chen, Peng

    2011-01-01

    The sparse decomposition based on matching pursuit is an adaptive sparse expression method for signals. This paper proposes an idea concerning a composite dictionary multi-atom matching decomposition and reconstruction algorithm, and the introduction of threshold de-noising in the reconstruction algorithm. Based on the structural characteristics of gear fault signals, a composite dictionary combining the impulse time-frequency dictionary and the Fourier dictionary was constituted, and a genetic algorithm was applied to search for the best matching atom. The analysis results of gear fault simulation signals indicated the effectiveness of the hard threshold, and the impulse or harmonic characteristic components could be separately extracted. Meanwhile, the robustness of the composite dictionary multi-atom matching algorithm at different noise levels was investigated. Aiming at the effects of data lengths on the calculation efficiency of the algorithm, an improved segmented decomposition and reconstruction algorithm was proposed, and the calculation efficiency of the decomposition algorithm was significantly enhanced. In addition it is shown that the multi-atom matching algorithm was superior to the single-atom matching algorithm in both calculation efficiency and algorithm robustness. Finally, the above algorithm was applied to gear fault engineering signals, and achieved good results.

  17. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.

    PubMed

    Flores, Efracio Mamani; Gouvea, Rogério Almeida; Piotrowski, Maurício Jeomar; Moreira, Mário Lucio

    2018-02-14

    The engineering of semiconductor materials for the development of solar cells is of great importance today. Two topics are considered to be of critical importance for the efficiency of Grätzel-type solar cells, the efficiency of charge separation and the efficiency of charge carrier transfer. Thus, one research focus is the combination of semiconductor materials with the aim of reducing charge recombination, which occurs by spatial charge separation. From an experimental point of view, the combining of materials can be achieved by decorating a core with a shell of another material resulting in a core-shell system, which allows control of the desired photoelectronic properties. In this context, a computational simulation is mandatory for the atomistic understanding of possible semiconductor combinations and for the prediction of their properties. Considering the construction of ZnO/ZnX (X = S, Se or Te) interfaces, we seek to investigate the electronic influence of the shell (ZnX) on the core (ZnO) and, consequently, find out which of the interfaces would present the appropriate properties for (Grätzel-type) solar cell applications. To perform this study, we have employed density functional theory (DFT) calculations, considering the Perdew-Burke-Ernzerhof (PBE) functional. However, it is well-known that plain DFT fails to describe strong electronic correlated materials where, in general, an underestimation of the band gap is obtained. Thus, to obtain the correct description of the electronic properties, a Hubbard correction was employed, i.e. PBE+U calculations. The PBE+U methodology provided the correct electronic structure properties for bulk ZnO in good agreement with experimental values (99.4%). The ZnO/ZnX interfaces were built and were composed of six ZnO layers and two ZnX layers, which represents the decoration process. The core-shell band gap was 2.2 eV for ZnO/ZnS, ∼1.71 eV for ZnO/ZnSe and ∼0.95 eV for ZnO/ZnTe, which also exhibited a type-II band alignment. Bader charge analysis showed an accumulation of charges in the 6th layer of ZnO for the three ZnO/ZnX interfaces. On the basis of these results, we have proposed that ZnO/ZnS and ZnO/ZnSe core-shell structures can be applied as good candidates (with better efficiency) for photovoltaic devices.

  18. In situ preparation of multilayer coated capillary column with HKUST-1 for separation of neutral small organic molecules by open tubular capillary electrochromatography.

    PubMed

    Xu, Yin-Yin; Lv, Wen-Juan; Ren, Cui-Ling; Niu, Xiao-Ying; Chen, Hong-Li; Chen, Xing-Guo

    2018-01-12

    The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu 3 (BTC) 2 or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column-to-column for three batches of 10-LC, 15-LC and 20-LC OT capillary columns were in the range from 2.3% to 7.2%. Moreover, the fabricated 10-LC, 15-LC and 20-LC OT capillary columns exhibited good repeatability and stability for separation, which could be used successively for more than 120 runs with no observable changes on the separation efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Continuous, high-flux and efficient oil/water separation assisted by an integrated system with opposite wettability

    NASA Astrophysics Data System (ADS)

    Li, Jian; Long, Yifei; Xu, Changcheng; Tian, Haifeng; Wu, Yanxia; Zha, Fei

    2018-03-01

    To resolve the drawbacks that single-mesh involved for oil/water separation, such as batch processing mode, only one phase was purified and the quick decrease in flux et al., herein, a two-way separation T-tube device was designed by integrating a pair of meshes with opposite wettability, i.e., underwater superoleophobic and superhydrophobic/superoleophilic properties. Such integrated system can continuously separate both oil and water phase from the oil/water mixtures simultaneously through one-step procedure with high flux (above 3.675 L m-2 s-1) and high separation efficiency larger than 99.8% regardless of the heavy oil or light oil involved in the mixture. Moreover, the as-prepared two meshes still maintained high separation efficiency larger than above 98.9% even after 50 cycle-usages. It worthy mentioned that this two-way separation mode essentially solves the oil liquid accumulation problem that is the single separation membrane needs to tolerate a large hydrostatic pressure caused by the accumulated liquid. We deeply believe this two-way separation system would provide a new strategy for realizing practical applications in oil spill clean-up via a continuous mode.

  20. Fission yield measurements at IGISOL

    NASA Astrophysics Data System (ADS)

    Lantz, M.; Al-Adili, A.; Gorelov, D.; Jokinen, A.; Kolhinen, V. S.; Mattera, A.; Moore, I.; Penttilä, H.; Pomp, S.; Prokofiev, A. V.; Rakopoulos, V.; Rinta-Antila, S.; Simutkin, V.; Solders, A.

    2016-06-01

    The fission product yields are an important characteristic of the fission process. In fundamental physics, knowledge of the yield distributions is needed to better understand the fission process. For nuclear energy applications good knowledge of neutroninduced fission-product yields is important for the safe and efficient operation of nuclear power plants. With the Ion Guide Isotope Separator On-Line (IGISOL) technique, products of nuclear reactions are stopped in a buffer gas and then extracted and separated by mass. Thanks to the high resolving power of the JYFLTRAP Penning trap, at University of Jyväskylä, fission products can be isobarically separated, making it possible to measure relative independent fission yields. In some cases it is even possible to resolve isomeric states from the ground state, permitting measurements of isomeric yield ratios. So far the reactions U(p,f) and Th(p,f) have been studied using the IGISOL-JYFLTRAP facility. Recently, a neutron converter target has been developed utilizing the Be(p,xn) reaction. We here present the IGISOL-technique for fission yield measurements and some of the results from the measurements on proton induced fission. We also present the development of the neutron converter target, the characterization of the neutron field and the first tests with neutron-induced fission.

  1. Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation.

    PubMed

    Zhou, Cailong; Chen, Zhaodan; Yang, Hao; Hou, Kun; Zeng, Xinjuan; Zheng, Yanfen; Cheng, Jiang

    2017-03-15

    Phytic acid, which is a naturally occurring component that is widely found in many plants, can strongly bond toxic mineral elements in the human body, because of its six phosphate groups. Some of the metal ions present the property of bonding with phytic acid to form insoluble coordination complexes aggregations, even at room temperature. Herein, a superhydrophobic cotton fabric was prepared using a novel and facile nature-inspired strategy that introduced phytic acid metal complex aggregations to generate rough hierarchical structures on a fabric surface, followed by PDMS modification. This superhydrophobic surface can be constructed not only on cotton fabric, but also on filter paper, polyethylene terephthalate (PET) fabric, and sponge. Ag I , Fe III , Ce III , Zr IV , and Sn IV are very commendatory ions in our study. Taking phytic acid-Fe III -based superhydrophobic fabric as an example, it showed excellent resistance to ultraviolet (UV) irradiation, high temperature, and organic solvent immersion, and it has good resistance to mechanical wear and abrasion. The superhydrophobic/superoleophilic fabric was successfully used to separate oil/water mixtures with separation efficiencies as high as 99.5%. We envision that these superantiwetting fabrics, modified with phytic acid-metal complexes and PDMS, are environmentally friendly, low cost, sustainable, and easy to scale up, and thereby exhibit great potentials in practical applications.

  2. [Fabrications of a poly (methyl methacrylate) (PMMA) microfluidic chip-based DNA analysis device].

    PubMed

    Du, Xiao-Guang

    2009-12-01

    A DNA analysis device based on poly(methyl methacrylate) (PMMA) microfluidic chips was developed. A PMMA chip with cross microchannels was fabricated by a simple hot embossing. Microchannels were modified with a static adsorptive coating method using 2% hydroxyethyl cellulose. A high-voltage power unit, variable in the range 0-1 800 V, was used for on-chip DNA sample injection and gel electrophoretic separation. High speed, high resolution DNA analysis was obtained with the home-built PMMA chip in a sieving matrix containing 2% hydroxyethyl cellulose with a blue intercalating dye, TO-PRO-3 (TP3), by using diode laser induced fluorescence detection based on optical fibers with a 670 nm long-pass filter. The DNA analysis device was applied for the separation of phiX-174/HaeIII DNA digest sample with 11 fragments ranging from 72 to 1 353 bp. A separation efficiency of 1.14 x 10(6) plates/m was obtained for the 603 bp fragments, while the R of 271/281 bp fragments was 1.2. The device was characterized by simple design, low cost for fabrication and operation, reusable PMMA chips, and good reproducibility. A portable microfluidic device for DNA analysis can be developed for clinical diagnosis and disease screening.

  3. Rapid determination of piracetam in human plasma and cerebrospinal fluid by micellar electrokinetic chromatography with sample direct injection.

    PubMed

    Yeh, Hsin-Hua; Yang, Yuan-Han; Ko, Ju-Yun; Chen, Su-Hwei

    2006-07-07

    A simple micellar electrokinetic chromatography (MEKC) method with UV detection at 200 nm for analysis of piracetam in plasma and in cerebrospinal fluid (CSF) by direct injection without any sample pretreatment is described. The separation of piracetam from biological matrix was performed at 25 degrees C using a background electrolyte consisting of Tris buffer with sodium dodecyl sulfate (SDS) as the electrolyte solution. Several parameters affecting the separation of the drug from biological matrix were studied, including the pH and concentrations of the Tris buffer and SDS. Under optimal MEKC condition, good separation with high efficiency and short analyses time is achieved. Using imidazole as an internal standard (IS), the linear ranges of the method for the determination of piracetam in plasma and in CSF were all between 5 and 500 microg/mL; the detection limit of the drug in plasma and in CSF (signal-to-noise ratio=3; injection 0.5 psi, 5s) was 1.0 microg/mL. The applicability of the proposed method for determination of piracetam in plasma and CSF collected after intravenous administration of 3g piracetam every 6h and oral administration 1.2g every 6h in encephalopathy patients with aphasia was demonstrated.

  4. Rapid separation and sensitive determination of banned aromatic amines with plastic microchip electrophoresis.

    PubMed

    Li, Ruina; Wang, Lili; Gao, Xiaotong; Du, Gangfeng; Zhai, Honglin; Wang, Xiayan; Guo, Guangsheng; Pu, Qiaosheng

    2013-03-15

    Rapid analysis of trace amount of aromatic amines in environmental samples and daily necessities has attracted considerable attentions because some of them are strongly toxic and carcinogenic. In this study, fast and efficient electrophoretic separation and sensitive determination of 5 banned aromatic amines were explored for practical analysis using disposable plastic microchips combined with a low-cost laser-induced fluorescence detector. The effect of running buffer and its additive was systematically investigated. Under the selected condition, 5 fluorescein isothiocyanate labeled aromatic amines could be baseline separated within 90s by using a 10mmol/L borate buffer containing 2% (w/v) hydroxypropyl cellulose. Calibration curves of peak areas vs. concentrations were linear up to 40 or 120μmol/L for different analytes and limits of detection were in a range of 1-3nmol/L. Theoretical plate numbers of 6.8-8.5×10(5)/m were readily achieved. The method exhibited good repeatability, relative standard deviations (n=5) of peak areas and migration times were no more than 4.6% and 0.9%, respectively. The established method was successfully applied in the quantitative analysis of these banned aromatic amines in real samples of waste water and textile, recoveries of added standards were 85-110%. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Properties of water as a novel stationary phase in capillary gas chromatography.

    PubMed

    Gallant, Jonathan A; Thurbide, Kevin B

    2014-09-12

    A novel method of separation that uses water as a stationary phase in capillary gas chromatography (GC) is presented. Through applying a water phase to the interior walls of a stainless steel capillary, good separations were obtained for a large variety of analytes in this format. It was found that carrier gas humidification and backpressure were key factors in promoting stable operation over time at various temperatures. For example, with these measures in place, the retention time of an acetone test analyte was found to reduce by only 44s after 100min of operation at a column temperature of 100°C. In terms of efficiency, under optimum conditions the method produced about 20,000 plates for an acetone test analyte on a 250μm i.d.×30m column. Overall, retention on the stationary phase generally increased with analyte water solubility and polarity, but was relatively little correlated with analyte volatility. Conversely, non-polar analytes were essentially unretained in the system. These features were applied to the direct analysis of different polar analytes in both aqueous and organic samples. Results suggest that this approach could provide an interesting alternative tool in capillary GC separations. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.

    PubMed

    Shang, Yanwei; Si, Yang; Raza, Aikifa; Yang, Liping; Mao, Xue; Ding, Bin; Yu, Jianyong

    2012-12-21

    Superhydrophobic and superoleophilic nanofibrous membranes exhibiting robust oil-water separation performance were prepared by a facile combination of electrospun cellulose acetate (CA) nanofibers and a novel in situ polymerized fluorinated polybenzoxazine (F-PBZ) functional layer that incorporated silica nanoparticles (SiO(2) NPs). By employing the F-PBZ/SiO(2) NPs modification, the pristine hydrophilic CA nanofibrous membranes were endowed with a superhydrophobicity with the water contact angle of 161° and a superoleophilicity with the oil contact angle of 3°. Surface morphological studies have indicated that the wettability of resultant membranes could be manipulated by tuning the surface composition as well as the hierarchical structures. The quantitative hierarchical roughness analysis using the N(2) adsorption method has confirmed the major contribution of SiO(2) NPs on enhancing the porous structure, and a detailed correlation between roughness and solid-liquid interface pinning is proposed. Furthermore, the as-prepared membranes exhibited fast and efficient separation for oil-water mixtures and excellent stability over a wide range of pH conditions, which would make them a good candidate in industrial oil-polluted water treatments and oil spill cleanup, and also provided a new insight into the design and development of functional nanofibrous membranes through F-PBZ modification.

  7. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    PubMed

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  8. Using economic benefits for recycling in a separate collection centre managed as a "reverse supermarket": a sociological survey.

    PubMed

    De Feo, Giovanni; Polito, Anna Rita

    2015-04-01

    Separate collection centres (SCCs), where citizens can deliver recyclable fractions of municipal solid waste (MSW), in an "urban mining" perspective, can be considered a sort of "reverse supermarket", where people can deliver their recyclables in order to either obtain a waste fee reduction or shopping vouchers. The latter is the case of Baronissi, a town of around 17,000 inhabitants in the Province of Salerno, in the Campania region of Italy. The principal aim of the study was to investigate by means of a sociological survey the relationship between citizens and the separate collection program, with particular emphasis on the role played by the SCC. The separate collection system was evaluated either good or very good by 95.8% of the sample, while 99.2% expressed a good or very good evaluation of the quality of the service inside the separate collection centre: SCC users acted as a community as highlighted by the negative response of the Chi-square test for independence. Respecting the environment prevailed over saving time, obtaining eco-points, or saving money as the main reason why people went to the SCC. The majority of the respondents agreed if only putrescibles and residue should be collected directly from their homes, while all the other materials should be collected exclusively at the SCC, allowing to save money for the management of the kerbside collection system with a consequent further waste fee reduction for the residents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. New Photocatalysis for Effective Degradation of Organic Pollutants in Water

    NASA Astrophysics Data System (ADS)

    Zarei Chaleshtori, M.; Saupe, G. B.; Masoud, S.

    2009-12-01

    The presence of harmful compounds in water supplies and in the discharge of wastewater from chemical industries, power plants, and agricultural sources is a topic of global concern. The processes and technologies available at the present time for the treatment of polluted water are varied that include traditional water treatment processes such as biological, thermal and chemical treatment. All these water treatment processes, have limitations of their own and none is cost effective. Advanced oxidation processes have been proposed as an alternative for the treatment of this kind of wastewater. Heterogeneous photocatalysis has recently emerged as an efficient method for purifying water. TiO2 has generally been demonstrated to be the most active semiconductor material for decontamination water. One significant factor is the cost of separation TiO2, which is generally a powder having a very small particle size from the water after treatment by either sedimentation or ultrafiltration. The new photocatalyst, HTiNbO5, has been tested to determine whether its photocatalytic efficiency is good enough for use in photocatalytic water purification since it has high surface area and relatively large particle size. The larger particle sizes of the porous materials facilitate catalyst removal from a solution, after purification has taken place. It can be separated from water easily than TiO2, a significant technical improvement that might eliminate the tedious final filtration necessary with a slurry. These materials are characterized and tested as water decontamination photocatalysts. The new catalyst exhibited excellent catalytic activity, but with a strong pH dependence on the photo efficiency. These results suggest that elimination of the ion exchange character of the catalyst may greatly improve its performance at various pHs. This new research proposes to study the effects of a topotactic dehydration reaction on these new porous material catalysts.

  10. A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells.

    PubMed

    Tang, Man; Wen, Cong-Ying; Wu, Ling-Ling; Hong, Shao-Li; Hu, Jiao; Xu, Chun-Miao; Pang, Dai-Wen; Zhang, Zhi-Ling

    2016-04-07

    The detection of circulating tumor cells (CTCs), a kind of "liquid biopsy", represents a potential alternative to noninvasive detection, characterization and monitoring of carcinoma. Many previous studies have shown that the number of CTCs has a significant relationship with the stage of cancer. However, CTC enrichment and detection remain notoriously difficult because they are extremely rare in the bloodstream. Herein, aided by a microfluidic device, an immunomagnetic separation system was applied to efficiently capture and in situ identify circulating tumor cells. Magnetic nanospheres (MNs) were modified with an anti-epithelial-cell-adhesion-molecule (anti-EpCAM) antibody to fabricate immunomagnetic nanospheres (IMNs). IMNs were then loaded into the magnetic field controllable microfluidic chip to form uniform IMN patterns. The IMN patterns maintained good stability during the whole processes including enrichment, washing and identification. Apart from its simple manufacture process, the obtained microfluidic device was capable of capturing CTCs from the bloodstream with an efficiency higher than 94%. The captured cells could be directly visualized with an inverted fluorescence microscope in situ by immunocytochemistry (ICC) identification, which decreased cell loss effectively. Besides that, the CTCs could be recovered completely just by PBS washing after removal of the permanent magnets. It was observed that all the processes showed negligible influence on cell viability (viability up to 93%) and that the captured cells could be re-cultured for more than 5 passages after release without disassociating IMNs. In addition, the device was applied to clinical samples and almost all the samples from patients showed positive results, which suggests it could serve as a valuable tool for CTC enrichment and detection in the clinic.

  11. Rapidly separating microneedles for transdermal drug delivery.

    PubMed

    Zhu, Dan Dan; Wang, Qi Lei; Liu, Xu Bo; Guo, Xin Dong

    2016-09-01

    The applications of polymer microneedles (MNs) into human skin emerged as an alternative of the conventional hypodermic needles. However, dissolving MNs require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin, which may lead to the low drug delivery efficiency. To address these issues, we introduce rapidly separating MNs that can rapidly deliver drugs into the skin in a minimally invasive way. For the rapidly separating MNs, drug loaded dissolving MNs are mounted on the top of solid MNs, which are made of biodegradable polylactic acid which eliminate the biohazardous waste. These MNs have sufficient mechanical strength to be inserted into the skin with the drug loaded tips fully embedded for subsequent dissolution. Compared with the traditional MNs, rapidly separating MNs achieve over 90% of drug delivery efficiency in 30s while the traditional MNs needs 2min to achieve the same efficiency. With the in vivo test in mice, the micro-holes caused by rapidly separating MNs can heal in 1h, indicating that the rapidly separating MNs are safe for future applications. These results indicate that the design of rapidly separating dissolvable MNs can offer a quick, high efficient, convenient, safe and potentially self-administered method of drug delivery. Polymer microneedles offer an attractive, painless and minimally invasive approach for transdermal drug delivery. However, dissolving microneedles require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin due to the skin deformation, which may lead to the low drug delivery efficiency. In this work we proposed rapidly separating microneedles which can deliver over 90% of drug into the skin in 30s. The in vitro and in vivo results indicate that the new design of these microneedles can offer a quick, high efficient, convenient and safe method for transdermal drug delivery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Organised surfactant assemblies in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo; Fernandez de la Campa, Maria del Rosario; Gonzalez, Elisa Blanco; Fernandez-Sanchez, Maria Luisa

    1999-02-01

    The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in "slurry" techniques. Controversial results and statements published so far are critically discussed. The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with. Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography. Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.

  13. Estimating the distance separating fluorescent protein FRET pairs

    PubMed Central

    van der Meer, B. Wieb; Blank, Paul S.

    2014-01-01

    Förster resonance energy transfer (FRET) describes a physical phenomenon widely applied in biomedical research to estimate separations between biological molecules. Routinely, genetic engineering is used to incorporate spectral variants of the green fluorescent protein (GFPs), into cellular expressed proteins. The transfer efficiency or rate of energy transfer between donor and acceptor FPs is then assayed. As appreciable FRET occurs only when donors and acceptors are in close proximity (1–10 nm), the presence of FRET may indicate that the engineered proteins associate as interacting species. For a homogeneous population of FRET pairs the separations between FRET donors and acceptors can be estimated from a measured FRET efficiency if it is assumed that donors and acceptors are randomly oriented and rotate extensively during their excited state (dynamic regime). Unlike typical organic fluorophores, the rotational correlation-times of FPs are typically much longer than their fluorescence lifetime; accordingly FPs are virtually static during their excited state. Thus, estimating separations between FP FRET pairs is problematic. To overcome this obstacle, we present here a simple method for estimating separations between FPs using the experimentally measured average FRET efficiency. This approach assumes that donor and acceptor fluorophores are randomly oriented, but do not rotate during their excited state (static regime). This approach utilizes a Monte-Carlo simulation generated look-up table that allows one to estimate the separation, normalized to the Förster distance, from the average FRET efficiency. Assuming a dynamic regime overestimates the separation significantly (by 10% near 0.5 and 30% near 0.75 efficiencies) compared to assuming a static regime, which is more appropriate for estimates of separations between FPs. PMID:23811334

  14. Effects of chemical composition of fly ash on efficiency of metal separation in ash-melting of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Takashi, E-mail: t-okada@u-fukui.ac.jp; Tomikawa, Hiroki

    2013-03-15

    Highlights: ► Separation of Pb and Zn from Fe and Cu in ash-melting of municipal solid waste. ► Molar ratio of Cl to Na and K in fly ash affected the metal-separation efficiency. ► The low molar ratio and a non-oxidative atmosphere were better for the separation. - Abstract: In the process of metal separation by ash-melting, Fe and Cu in the incineration residue remain in the melting furnace as molten metal, whereas Pb and Zn in the residue are volatilized. This study investigated the effects of the chemical composition of incineration fly ash on the metal-separation efficiency of themore » ash-melting process. Incineration fly ash with different chemical compositions was melted with bottom ash in a lab-scale reactor, and the efficiency with which Pb and Zn were volatilized preventing the volatilization of Fe and Cu was evaluated. In addition, the behavior of these metals was simulated by thermodynamic equilibrium calculations. Depending on the exhaust gas treatment system used in the incinerator, the relationships among Na, K, and Cl concentrations in the incineration fly ash differed, which affected the efficiency of the metal separation. The amounts of Fe and Cu volatilized decreased by the decrease in the molar ratio of Cl to Na and K in the ash, promoting metal separation. The thermodynamic simulation predicted that the chlorination volatilization of Fe and Cu was prevented by the decrease in the molar ratio, as mentioned before. By melting incineration fly ash with the low molar ratio in a non-oxidative atmosphere, most of the Pb and Zn in the ash were volatilized leaving behind Fe and Cu.« less

  15. Gender Equality or Primacy of the Mother? Ambivalent Descriptions of Good Parents

    ERIC Educational Resources Information Center

    Perl-Littunen, Satu

    2007-01-01

    The ideology of gender equality is accepted as the norm in the Nordic countries. When asked to describe what they thought was required to be a good mother and a good father, Finnish informants (N = 387) showed uneasiness in describing good parents separately, however, often describing only a good mother. This article aims to explore the ambivalent…

  16. Facile one-pot synthesis of cellulose nanocrystal-supported hollow CuFe2O4 nanoparticles as efficient catalyst for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Sufeng; Zhao, Dongyan; Hou, Chen; Liang, Chen; Li, Hao

    2018-06-01

    A facile and efficient one-pot method for the synthesis of well-dispersed hollow CuFe2O4 nanoparticles (H-CuFe2O4 NPs) in the presence of cellulose nanocrystals (CNC) as the support was described. Based on the one-pot solvothermal condition control, magnetic H-CuFe2O4 NPs were in-situ grown on the CNC surface uniformly. TEM images indicated good dispersity of H-CuFe2O4 NPs with uniform size of 300 nm. The catalytic activity of H-CuFe2O4/CNC was tested in the catalytic reduction of 4-nitrophenol (4-NP) in aqueous solution. Compared with most CNC-based ferrite catalysts, H-CuFe2O4/CNC catalyst exhibited an excellent catalytic activity toward the reduction of 4-NP. The catalytic performance of H-CuFe2O4/CNC catalyst was remarkably enhanced with the rate constant of 3.24 s-1 g-1, which was higher than H-CuFe2O4 NPs (0.50 s-1 g-1). The high catalytic activity was attributed to the introduction of CNC and the special hollow mesostructure of H-CuFe2O4 NPs. In addition, the H-CuFe2O4/CNC catalyst promised good conversion efficiency without significant decrease even after 10 cycles, confirming relatively high stability. Because of its environmental sustainability and magnetic separability, H-CuFe2O4/CNC catalyst was shown to indicate that the ferrite nanoparticles supported on CNC were acted as a promising catalyst and exhibited potential applications in numerous ferrite based catalytic reactions.

  17. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  18. Centrifugeless dispersive liquid-liquid microextraction based on salting-out phenomenon followed by high performance liquid chromatography for determination of Sudan dyes in different species.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Arghavani-Beydokhti, Somayeh; Asghari, Alireza

    2018-04-01

    In this work, a novel method, namely centrifugeless dispersive liquid-liquid microextraction, is introduced for the efficient extraction of banned Sudan dyes from foodstuff and water samples. In this method, which is based upon the salting-out phenomenon, in order to accelerate the extraction process, the extraction solvent (1-undecanol, 75 μL) is dispersed into the sample solution. Then the mixture is passed through a small column filled with 5 g sodium chloride, used as a separating reagent. In this condition, fine droplets of the extraction solvent are floated on the mixture, and the phase separation is simply achieved. This method is environmentally friendly, simple, and very fast, so that the overall extraction time is only 7 min. Under the optimal experimental conditions, the preconcentration factors in the range of 90-121 were obtained for the analytes. Also good linearities were obtained in the range of 2.5-1200 ng mL -1 (r 2  ≥ 0.993). Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Motion of Skyrmions in Well-Separated Two-Lane Racetracks

    NASA Astrophysics Data System (ADS)

    Lai, P.; Zhao, G. P.; Morvan, F. J.; Wu, S. Q.; Ran, N.

    Magnetic skyrmions are topological structures which can be used to store information as data bits in metallic racetrack memories. Their good properties, such as their stability, small size and low currents needed to drive them make them better candidates than traditional magnetic domain walls for the building of the next generation data storage. A skyrmion racetrack memory has been suggested, with the binary data encoded in the distance between skyrmions when the racetrack is a single lane. Here, we propose a new skyrmion-based two-lane racetrack structure separated by a high-K (high magnetocrystalline anisotropy) middle lane, which confines the skyrmions in their respective lanes. This design gives a new data presentation for the skyrmions on the racetrack. Phase diagrams for the skyrmion motion on the proposed racetrack as functions of the current density, middle lane anisotropy, middle lane width and DMI constant have been calculated and given, demonstrating that skyrmions can be driven in different lanes of the racetrack. This design offers the possibility of building an ultrafast and energy-efficient skyrmion transport device.

  20. Graphene-ZIF8 composite material as stationary phase for high-resolution gas chromatographic separations of aliphatic and aromatic isomers.

    PubMed

    Yang, Xiaohong; Li, Changxia; Qi, Meiling; Qu, Liangti

    2016-08-19

    This work presents the separation performance of graphene-ZIF8 (G-Z) composite material as stationary phase for capillary gas chromatography (GC). The G-Z stationary phase achieved high column efficiency of 5000 plates/m determined by n-dodecane (k=1.22) at 120°C and showed weakly polar nature. Importantly, it exhibited high selectivity and resolving capability for branched alkane isomers and aromatic positional isomers, showing clear advantages over the reported neat graphene and ZIF8. In addition, it attained high resolution for geometric cis-/trans-isomers. The G-Z column exhibited good column thermal stability up to 300°C and column repeatability with RSD values of retention times in the range of 0.01-0.19% for intra-day, 0.05-0.88% for inter-day and 0.66-5.6% for between-column, respectively, Moreover, the G-Z column was employed for the determination of minor impurity isomers in real reagent samples, which demonstrates its promising potential in GC applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Flow chemistry and polymer-supported pseudoenantiomeric acylating agents enable parallel kinetic resolution of chiral saturated N-heterocycles

    NASA Astrophysics Data System (ADS)

    Kreituss, Imants; Bode, Jeffrey W.

    2017-05-01

    Kinetic resolution is a common method to obtain enantioenriched material from a racemic mixture. This process will deliver enantiopure unreacted material when the selectivity factor of the process, s, is greater than 1; however, the scalemic reaction product is often discarded. Parallel kinetic resolution, on the other hand, provides access to two enantioenriched products from a single racemic starting material, but suffers from a variety of practical challenges regarding experimental design that limit its applications. Here, we describe the development of a flow-based system that enables practical parallel kinetic resolution of saturated N-heterocycles. This process provides access to both enantiomers of the starting material in good yield and high enantiopurity; similar results with classical kinetic resolution would require selectivity factors in the range of s = 100. To achieve this, two immobilized quasienantiomeric acylating agents were designed for the asymmetric acylation of racemic saturated N-heterocycles. Using the flow-based system we could efficiently separate, recover and reuse the polymer-supported reagents. The amide products could be readily separated and hydrolysed to the corresponding amines without detectable epimerization.

  2. A novel, environmentally friendly sodium lauryl ether sulfate-, cocamidopropyl betaine-, cocamide monoethanolamine-containing buffer for MEKC on microfluidic devices.

    PubMed

    Hoeman, Kurt W; Culbertson, Christopher T

    2008-12-01

    A new buffer has been developed for fast, high-efficiency separations of amino acids by MEKC. This buffer was more environmentally friendly than the most commonly used surfactant-containing buffers for MEKC separations. It used a commercially available dishwashing soap by Seventh Generation (Burlington, VT, USA), which contained three micelle-forming agents. The mixed micelles were composed of sodium lauryl ether sulfate (anionic), cocamidopropyl betaine (zwitterionic), and cocamide monoethanolamine (non-ionic). The optimized buffer contained 5.0% w/w Seventh Generation Free & Clear dishwashing soap, 10 mM sodium borate, and was completely void of organics. The lack of organics and the biodegradability of the surfactant molecules made this buffer more environmentally friendly than typical SDS-containing buffers. This new buffer also had a different selectivity and provided faster separations with higher separation efficiencies than SDS-based buffers. Fast separations of BODIPY FL labeled amino acids yielded peaks with separation efficiencies greater than 100,000 in less than 20 s.

  3. Separation of CHO cells using hydrocyclones.

    PubMed

    Pinto, Rodrigo C V; Medronho, Ricardo A; Castilho, Leda R

    2008-01-01

    Hydrocyclones are simple and robust separation devices with no moving parts. In the past few years, their use in animal cell separation has been proposed. In this work, the use of different hydrocyclone configurations for Chinese hamster ovary (CHO) cell separation was investigated following an experimental design. It was shown that cell separation efficiencies for cultures of the wild-type CHO.K1 cell line and of a recombinant CHO cell line producing granulocyte-macrophage colony stimulating factor (GM-CSF) were kept above 97%. Low viability losses were observed, as measured by trypan blue exclusion and by determination of intracellular lactate dehydrogenase (LDH) released to the culture medium. Mathematical models were proposed to predict the flow rate, flow ratio and separation efficiency as a function of hydrocyclone geometry and pressure drop. When cells were monitored for any induction of apoptosis upon passage through the hydrocyclones, no increase in apoptotic cell concentration was observed within 48 h of hydrocycloning. Thus, based on the high separation efficiencies, the robustness of the equipment, and the absence of apoptosis induction, hydrocyclones seem to be specially suited for use as cell retention devices in long-term perfusion runs.

  4. Preparation and evaluation of a hydrophilic interaction and cation-exchange chromatography stationary phase modified with 2-methacryloyloxyethyl phosphorylcholine.

    PubMed

    Xiong, Caifeng; Yuan, Jie; Wang, Zhiying; Wang, Siyao; Yuan, Chenchen; Wang, Lili

    2018-04-20

    In this work, 2-methacryloyloxyethyl phosphorylcholine (MPC) was used as a ligand to prepare a novel mixed-mode chromatography (MMC) stationary phase by the thiol-ene click reaction onto silica (MPC-silica). It was found that this MPC-silica showed the retention characteristics of hydrophilic interaction chromatography (HILIC) and weak cation exchange chromatography (WCX) under suitable mobile phase conditions. In detail, acidic and basic hydrophilic compounds and puerarin from pueraria were separated quickly with HILIC mode. Meanwhile, six standard proteins were allowed to reach baseline separation in WCX mode, and protein separation from egg white was also achieved with this mode. In addition, reduced/denatured lysozyme could be refolded with the MPC-silica column. In the meantime, the MPC-silica has been applied for refolding with simultaneous purification of recombinant human Delta-like1-RGD (rhDll1-RGD) expressed in Escherichia coli. The results show that the mass recovery and purity of rhDll1-RGD could reach 63.4% and 97% by one step, respectively. Furthermore, the reporter assay results demonstrated that refolded with simultaneously purified rhDll1-RGD could efficiently activate the signalling pathway in a dose-dependent manner. In general, this MPC-silica has good resolution and selectivity in the separation of polar compounds and protein samples in different high-performance liquid chromatography (HPLC) modes, and it successfully achieved refolding with simultaneous purification of denatured protein. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Hydroquinone and Quinone-Grafted Porous Carbons for Highly Selective CO2 Capture from Flue Gases and Natural Gas Upgrading.

    PubMed

    Wang, Jun; Krishna, Rajamani; Yang, Jiangfeng; Deng, Shuguang

    2015-08-04

    Hydroquinone and quinone functional groups were grafted onto a hierarchical porous carbon framework via the Friedel-Crafts reaction to develop more efficient adsorbents for the selective capture and removal of carbon dioxide from flue gases and natural gas. The oxygen-doped porous carbons were characterized with scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. CO2, CH4, and N2 adsorption isotherms were measured and correlated with the Langmuir model. An ideal adsorbed solution theory (IAST) selectivity for the CO2/N2 separation of 26.5 (298 K, 1 atm) was obtained on the hydroquinone-grafted carbon, which is 58.7% higher than that of the pristine porous carbon, and a CO2/CH4 selectivity value of 4.6 (298 K, 1 atm) was obtained on the quinone-grafted carbon (OAC-2), which represents a 28.4% improvement over the pristine porous carbon. The highest CO2 adsorption capacity on the oxygen-doped carbon adsorbents is 3.46 mmol g(-1) at 298 K and 1 atm. In addition, transient breakthrough simulations for CO2/CH4/N2 mixture separation were conducted to demonstrate the good separation performance of the oxygen-doped carbons in fixed bed adsorbers. Combining excellent adsorption separation properties and low heats of adsorption, the oxygen-doped carbons developed in this work appear to be very promising for flue gas treatment and natural gas upgrading.

  6. Superhydrophobic meshes that can repel hot water and strong corrosive liquids used for efficient gravity-driven oil/water separation.

    PubMed

    Li, Jian; Kang, Ruimei; Tang, Xiaohua; She, Houde; Yang, Yaoxia; Zha, Fei

    2016-04-14

    Oil-polluted water has become a worldwide problem due to increasing industrial oily wastewater as well as frequent oil-spill pollution. Compared with underwater superoleophobic (water-removing) filtration membranes, superhydrophobic/superoleophilic (oil-removing) materials have advantages as they can be used for the filtration of heavy oil or the absorption of floating oil from water/oil mixtures. However, most of the superhydrophobic materials used for oil/water separation lose their superhydrophobicity when exposed to hot (e.g. >50 °C) water and strong corrosive liquids. Herein, we demonstrate superhydrophobic overlapped candle soot (CS) and silica coated meshes that can repel hot water (about 92 °C) and strong corrosive liquids, and were used for the gravity driven separation of oil-water mixtures in hot water and strong acidic, alkaline, and salty environments. To the best of our knowledge, we are unaware of any previously reported studies on the use of superhydrophobic materials for the separation of oil from hot water and corrosive aqueous media. In addition, the as-prepared robust superhydrophobic CS and silica coated meshes can separate a series of oils and organic solvents like kerosene, toluene, petroleum ether, heptane and chloroform from water with a separation efficiency larger than 99.0%. Moreover, the as-prepared coated mesh still maintained a separation efficiency above 98.5% and stable recyclability after 55 cycles of separation. The robust superhydrophobic meshes developed in this work can therefore be practically used as a highly efficient filtration membrane for the separation of oil from harsh water conditions, benefiting the environment and human health.

  7. Highly efficient and ultra-small volume separation by pressure-driven liquid chromatography in extended nanochannels.

    PubMed

    Ishibashi, Ryo; Mawatari, Kazuma; Kitamori, Takehiko

    2012-04-23

    The rapidly developing interest in nanofluidic analysis, which is used to examine liquids ranging in amounts from the attoliter to the femtoliter scale, correlates with the recent interest in decreased sample amounts, such as in the field of single-cell analysis. For general nanofluidic analysis, the fact that a pressure-driven flow does not limit the choice of solvents (aqueous or organic) is important. This study shows the first pressure-driven liquid chromatography technique that enables separation of atto- to femtoliter sample volumes, with a high separation efficiency within a few seconds. The apparent diffusion coefficient measurement of the unretentive sample suggests that there is no increase in the viscosity of toluene in the extended nanospace, unlike in aqueous solvents. Evaluation of the normal phase separation, therefore, should involve only the examination of the effect of the small size of the extended nanospace. Compared to a conventionally packed high-performance liquid chromatography column, the separation here results in a faster separation (4 s) by 2 orders of magnitude, a smaller injection volume (10(0) fL) by 9 orders, and a higher separation efficiency (440,000 plates/m) by 1 order. Moreover, the separation behavior agrees with the theory showing that this high efficiency was due to the small and controlled size of the separation channel, where the diffusion through the channel depth direction is fast enough to be neglected. Our chip-based platform should allow direct and real-time analysis or screening of ultralow volume of sample. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Gas separation using ultrasound and light absorption

    DOEpatents

    Sinha, Dipen N [Los Alamos, NM

    2012-07-31

    An apparatus and method for separating a chosen gas from a mixture of gases having no moving parts and utilizing no chemical processing is described. The separation of particulates from fluid carriers thereof has been observed using ultrasound. In a similar manner, molecular species may be separated from carrier species. It is also known that light-induced drift may separate light-absorbing species from carrier species. Therefore, the combination of temporally pulsed absorption of light with ultrasonic concentration is expected to significantly increase the efficiency of separation by ultrasonic concentration alone. Additionally, breaking the spatial symmetry of a cylindrical acoustic concentrator decreases the spatial distribution of the concentrated particles, and increases the concentration efficiency.

  9. In-tube electro-membrane extraction with a sub-microliter organic solvent consumption as an efficient technique for synthetic food dyes determination in foodstuff samples.

    PubMed

    Bazregar, Mohammad; Rajabi, Maryam; Yamini, Yadollah; Asghari, Alireza; Abdossalami asl, Yousef

    2015-09-04

    A simple and efficient extraction technique with a sub-microliter organic solvent consumption termed as in-tube electro-membrane extraction (IEME) is introduced. This method is based upon the electro-kinetic migration of ionized compounds by the application of an electrical potential difference. For this purpose, a thin polypropylene (PP) sheet placed inside a tube acts as a support for the membrane solvent, and 30μL of an aqueous acceptor solution is separated by this solvent from 1.2mL of an aqueous donor solution. This method yielded high extraction recoveries (63-81%), and the consumption of the organic solvent used was only 0.5μL. By performing this method, the purification is high, and the utilization of the organic solvent, used as a mediator, is very simple and repeatable. The proposed method was evaluated by extraction of four synthetic food dyes (Amaranth, Ponceau 4R, Allura Red, and Carmoisine) as the model analytes. Optimization of variables affecting the method was carried out in order to achieve the best extraction efficiency. These variables were the type of membrane solvent, applied extraction voltage, extraction time, pH range, and concentration of salt added. Under the optimized conditions, IEME-HPLC-UV provided a good linearity in the range of 1.00-800ngmL(-1), low limits of detection (0.3-1ngmL(-1)), and good extraction repeatabilities (RSDs below 5.2%, n=5). It seems that this design is a proper one for the automation of the method. Also the consumption of the organic solvent in a sub-microliter scale, and its simplicity, high efficiency, and high purification can help one getting closer to the objectives of the green chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Temperature behavior of CLYC/MPPC detectors

    NASA Astrophysics Data System (ADS)

    Glodo, Jarek; McClish, Mickel; Hawrami, Rastgo; O'Dougherty, Patrick; Tower, Josh; Gueorguiev, Andrey; Shah, Kanai S.

    2013-09-01

    He-3 tubes are the most popular thermal neutron detectors. They are easy to use, have good sensitivity for neutron detection, and are insensitive to gamma radiation. Due to low stockpiles of the He-3 gas, alternatives are being sought to replace these devices in many applications. One of the possible alternatives to these devices are scintillators incorporating isotopes with high cross-section for neutron capture (e.g. Li-6 or B-10). Cs2LiYCl6:Ce (CLYC) is one of the scintillators that recently has been considered for neutron detection. This material offers good detection efficiency (~80%), bright response (70,000 photons/neutron), high gamma ray equivalent energy of the neutron signal (>3MeV), and excellent separation between gamma and neutron radiation with pulse shape discrimination. A He-3 tube alternative based on a CLYC scintillator was constructed using a silicon photomultiplier (SiPM) for the optical readout. SiPMs are very compact optical detectors that are an alternative to usually bulky photomultiplier tubes. Constructed detector was characterized for its behavior across a temperature range of -20°C to 50°C.

  11. Synthesis of 3D porous ferromagnetic NiFe2O4 and using as novel adsorbent to treat wastewater.

    PubMed

    Hou, Xiangyu; Feng, Jing; Liu, Xiaohan; Ren, Yueming; Fan, Zhuangjun; Wei, Tong; Meng, Jian; Zhang, Milin

    2011-10-15

    Three dimensions (3D) porous NiFe(2)O(4) is synthesized by a sol-gel method using egg white. The obtained NiFe(2)O(4) shows both good ferromagnetic properties and high adsorption capacity. The porous NiFe(2)O(4) shows good adsorption properties for organic dyes (Methylene Blue (138.50 mg/g), Fuchsine Red (14.61 mg/g), Methyl Violet (19.06 mg/g)) and heavy metal ions (Cu (II) (55.83 mg/g), Cr (VI) (36.95 mg/g) and Ni (II) (37.02 mg/g)) due to its 3D interconnected porous structure. The maximum adsorption of Methylene Blue (MB) fit the pseudo-second-order model and Langmuir isotherm equation well. More interestingly, the ferromagnetic NiFe(2)O(4) can be separated under a magnetic field conveniently and keeps high removal efficiency (>97%) during seven reusable cycles. These results suggest that the porous NiFe(2)O(4) is a promising favorable and reusable adsorbent. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Dispersive solid-phase extraction based on magnetic dummy molecularly imprinted microspheres for selective screening of phthalates in plastic bottled beverages.

    PubMed

    Qiao, Jindong; Wang, Mingyu; Yan, Hongyuan; Yang, Gengliang

    2014-04-02

    A new magnetic dummy molecularly imprinted dispersive solid-phase extraction (MAG-MIM-dSPE) coupled with gas chromatography-FID was developed for selective determination of phthalates in plastic bottled beverages. The new magnetic dummy molecularly imprinted microspheres (MAG-MIM) using diisononyl phthalate as a template mimic were synthesized by coprecipitation coupled with aqueous suspension polymerization and were successfully applied as the adsorbents for MAG-MIM-dSPE to extract and isolate five phthalates from plastic bottled beverages. Validation experiments showed that the MAG-MIM-dSPE method had good linearity at 0.0040-0.40 μg/mL (0.9991-0.9998), good precision (3.1-6.9%), and high recovery (89.5-101.3%), and limits of detection were obtained in a range of 0.53-1.2 μg/L. The presented MAG-MIM-dSPE method combines the quick separation of magnetic particles, special selectivity of MIM, and high extraction efficiency of dSPE, which could potentially be applied to selective screening of phthalates in beverage products.

  13. Ideal versus real automated twin column recycling chromatography process.

    PubMed

    Gritti, Fabrice; Leal, Mike; McDonald, Thomas; Gilar, Martin

    2017-07-28

    The full baseline separation of two compounds (selectivity factors α<1.03) is either impractical (too long analysis times) or even impossible when using a single column of any length given the pressure limitations of current LC instruments. The maximum efficiency is that of an infinitely long column operated at infinitely small flow rates. It is determined by the maximum allowable system pressure, the column permeability (particle size), the viscosity of the eluent, and the intensity of the effective diffusivity of the analytes along the column. Alternatively, the twin-column recycling separation process (TCRSP) can overcome the efficiency limit of the single-column approach. In the TCRSP, the sample mixture may be transferred from one to a second (twin) column until its band has spread over one column length. Basic theory of chromatography is used to confirm that the speed-resolution performance of the TCRSP is intrinsically superior to that of the single-column process. This advantage is illustrated in this work by developing an automated TCRSP for the challenging separation of two polycyclic aromatic hydrocarbon (PAH) isomers (benzo[a]anthracene and chrysene) in the reversed-phase retention mode at pressure smaller than 5000psi. The columns used are the 3.0mm×150mm column packed with 3.5μm XBridge BEH-C 18 material (α=1.010) and the 3.0mm or 4.6mm×150mm columns packed with the same 3.5μm XSelect HSST 3 material (α=1.025). The isocratic mobile phase is an acetonitrile-water mixture (80/20, v/v). Remarkably, significant differences are observed between the predicted retention times and efficiencies of the ideal TCRSP (given by the number of cycles multiplied by the retention time and efficiency of one column) and those of the real TCRSP. The fundamental explanation lies in the pressure-dependent retention of these PAHs or in the change of their partial molar volume as they are transferred from the mobile to the stationary phase. A revisited retention and efficiency model is then built to predict the actual performance of real TCRSPs. The experimental and calculated resolution data are found in very good agreement for a change, Δv m =-10cm 3 /mol, of the partial molar volume of the two PAH isomers upon transfer from the acetonitrile-water eluent mixture to the silica-C 18 stationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Separation and simultaneous quantitation of PGF2α and its epimer 8-iso-PGF2α using modifier-assisted differential mobility spectrometry tandem mass spectrometry.

    PubMed

    Liang, Chunsu; Sun, Hui; Meng, Xiangjun; Yin, Lei; Fawcett, J Paul; Yu, Huaidong; Liu, Ting; Gu, Jingkai

    2018-03-01

    Because many therapeutic agents are contaminated by epimeric impurities or form epimers as a result of metabolism, analytical tools capable of determining epimers are increasingly in demand. This article is a proof-of-principle report of a novel DMS-MS/MS method to separate and simultaneously quantify epimers, taking PGF2 α and its 8-epimer, 8- iso -PGF2 α , as an example. Good accuracy and precision were achieved in the range of 10-500 ng/mL with a run time of only 1.5 min. Isopropanol as organic modifier facilitated a good combination of sensitivity and separation. The method is the first example of the quantitation of epimers without chromatographic separation.

  15. Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)

    NASA Astrophysics Data System (ADS)

    Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.

    2012-04-01

    Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was achieved by this gettering process. The other main remaining component is H2, which can be further reduced by operating the Ti getter at lower temperature. Furthermore, a system was designed to degas ice samples, followed by Ar separation by gettering. Ice from an alpine glacier was successfully processed on this system.

  16. Removal of oil droplets from water using carbonized rice husk: enhancement by surface modification using polyethylenimine.

    PubMed

    Lin, Kun-Yi Andrew; Yang, Hongta; Petit, Camille; Chen, Shen-Yi

    2015-06-01

    Carbonized rice husk (CRH) is a promising material to separate oil from water owing to its abundance, low-cost, and environmentally benign characteristics. However, CRH's performance is somewhat limited by its similar surface charge to that of oil, leading to repulsive interactions. To improve the separation efficiency of CRH, CRH was modified via impregnation with a cationic biocompatible polymer, polyethlyenimine (PEI) to form PEI-CRH. The modified sample exhibits a remarkably higher (10-50 times) oil/water (O/W) separation efficiency than that of the unmodified one. Small PEI-CRH particles (about 64 μm) are found to adsorb oil droplets faster and larger quantities than bigger particles (about 113 and 288 μm). PEI-CRH exhibits higher separation efficiency at high temperatures owing to the destabilization of the emulsion. It is also found that the oil adsorption mechanism involves a chemical interaction between PEI-CRH and oil droplets. The addition of NaCl considerably improves the separation efficiency, while the addition of a cationic surfactant has the opposite effect. In acidic emulsions, PEI-CRH adsorbs more oil than in neutral or basic conditions owing to favorable attractive forces between oil droplets and the surface of PEI-CRH. PEI-CRH can be easily regenerated by washing with ethanol. These promising features of PEI-CRH indicate that PEI-CRH could be an efficient and low-cost adsorbent for the O/W separation applications.

  17. Separating biological cells

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1979-01-01

    Technique utilizing electric field to promote biological cell separation from suspending medium in zero gravity increases speed, reduces sedimentation, and improves efficiency of separation in normal gravity.

  18. Essays on optimal capacity and optimal regulation of interconnection infrastructures

    NASA Astrophysics Data System (ADS)

    Boffa, Federico

    The integration between geographically differentiated markets or between vertically related industries generate effects on welfare that depend on the structure of the underlying markets. My thesis investigates the impact of geographical interconnection on welfare, and illustrates welfare-enhancing modes of regulation of vertically integrated industries and of geographically integrated markets. The first chapter analyzes the effects of interconnection between two formerly fully-separated markets under the assumptions that producers in the two markets are capacity-constrained, and tacitly collude whenever it is rational for them to do so. I find that there exists a set of assumptions under which interconnection brings about greater collusion, hence it reduces overall welfare. The second chapter analyzes the optimal interconnection capacity allocation mechanism for a benevolent electricity regulator when generation is not competitive. The regulator's intervention should not only ensure that interconnection capacity is efficiently allocated to the most efficient firms, but it should also induce a higher welfare in the upstream generation market. In a two-node setting, with one firm per node, I show that the regulatory intervention becomes more effective as the cost asymmetries between the two firms become more pronounced. The third chapter illustrates a regulation mechanism for vertically related industries. Ownership shares of the upstream industry (that displays economies of scale) are allocated to the downstream (competitive) firms in proportion to their shares in the final goods market. I show that the mechanism combines the benefits of vertical integration with those of vertical separation. The advantages of vertical integration consist in avoiding double marginalization, and in internalizing the reduction in average cost resulting from the upstream increase in output; on the other hand, vertical separation allows to preserve the competitiveness of the downstream sector. I also show that this mechanism improves in efficiency with respect to the Demsetz auction, and, finally, that it displays desirable properties as far as collusion and quality levels are concerned. The fourth chapter empirically estimates the benefit of removing the most crucial transmission bottleneck in the Italian electricity market, by building additional transmission capacity. Benefits are found to be relevant.

  19. Rapid screening, identification, and purification of neuraminidase inhibitors from Lithospermum erythrorhizon Sieb.et Zucc. by ultrafiltration with HPLC-ESI-TOF-MS combined with semipreparative HPLC.

    PubMed

    Zhang, Minmin; Zhao, Hengqiang; Zhao, Zhiguo; Yan, Huijiao; Lv, Ruimin; Cui, Li; Yuan, Jinpeng; Wang, Daijie; Geng, Yanling; Liu, Daicheng; Wang, Xiao

    2016-06-01

    We put forward an efficient strategy based on bioassay guidance for the rapid screening, identification, and purification of the neuraminidase inhibitors from traditional Chinese medicines, and apply to the discovery of anti-influenza components from Lithospermiun erythrorhizon Sieb.et Zucc. Ultrafiltration with high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry was employed for the rapid screening and preliminarily identification of anti-influenza components from Zicao. Semipreparative high-performance liquid chromatography was used for the rapid separation and purification of the target compounds. NMR spectroscopy, mass spectrometry, and UV spectroscopy were used for further structural identification, and the activity of the compounds was verified by in vitro assay. Five compounds were found to have neuraminidase inhibitory activity by this method. Subsequently, the five compounds were separated by semipreparative high-performance liquid chromatography with the purity over 98% for all of them by high-performance liquid chromatography test. Combined with the NMR spectroscopy, mass spectrometry, and UV spectroscopy data, they were identified as alkannin, acetylalkannin, isobutyrylalkannin, β,β-dimethylacryloylalkannin and isovalerylalkannin. The in vitro assay showed that all five compounds had good neuraminidase inhibitory activities. These results suggested that the method is highly efficient, and it can provide platform and methodology supports for the rapid discovery of anti-influenza active ingredients from complex Chinese herbal medicines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ultrafast preparation of a polyhedral oligomeric silsesquioxane-based ionic liquid hybrid monolith via photoinitiated polymerization, and its application to capillary electrochromatography of aromatic compounds.

    PubMed

    Zhang, Bingyu; Lei, Xiaoyun; Deng, Lijun; Li, Minsheng; Yao, Sicong; Wu, Xiaoping

    2018-06-06

    An ionic liquid hybrid monolithic capillary column was prepared within 7 min via photoinitiated free-radical polymerization of an ionic liquid monomer (1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide); VBIMNTF 2 ) and a methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) acting as a cross-linker. The effects of composition of prepolymerization solution and initiation time on the porous structure and electroosmotic flow (EOF) of monolithic column were investigated. The hybrid monolith was characterized by scanning electron microscopy and FTIR. Owing to the introduction of a rigid nanosized POSS silica core and ionic liquids with multiple interaction sites, the monolithic column has a well-defined 3D skeleton morphology, good mechanical stability, and a stable anodic electroosmotic flow. The hybrid monolithic stationary phase was applied to the capillary electrochromatographic separation of various alkylbenzenes, phenols, anilines and polycyclic aromatic hydrocarbons (PAHs). The column efficiency is highest (98,000 plates/m) in case of alkylbenzenes. Mixed-mode retention mechanisms including hydrophobic interactions, π-π stacking, electrostatic interaction and electrophoretic mobility can be observed. This indicates the potential of this material in terms of efficient separation of analytes of different structural type. Graphical Abstract Preparation of a mixed-mode ionic liquid hybrid monolithic column via photoinitiated polymerization of methacryl substituted polyhedral oligomeric silsesquioxane (POSS-MA) and 1-butyl-3-vinylimidazolium-bis[(trifluoromethyl)sulfonyl]imide (VBIMNTF 2 ) ionic liquid for use in capillary electrochromatography.

  1. Isolation of sutherlandins A, B, C and D from Sutherlandia frutescens (L.) R. Br. by counter-current chromatography using spiral tubing support rotors.

    PubMed

    Chen, Cuiping; Folk, William R; Lazo-Portugal, Rodrigo; Finn, Thomas M; Knight, Martha

    2017-07-28

    Spiral countercurrent-chromatography has great potential for improving the capacity and efficiency of purification of secondary metabolites, and here we describe applications useful for the isolation of flavonoids from the widely used South African medicinal plant, Sutherlandia frutescens (L.) R. Br. In the spiral tubing support rotor, STS-4 for high-speed counter-current chromatography, several polar butanol aqueous solvent systems were selected using a logK plot, and the novel flavonol glycosides (sutherlandins A-D) were well separated by the optimized solvent system (ethyl acetate:n-butanol:acetic acid:water; 5:1:0.3:6 by vol.). The yield of purified flavonoids from 0.9g extract varied from 8.6mg to 54mg of the sutherlandins for a total of 85.3mg. The same extract was fractionated in the new STS-12 rotor of the same outside dimensions but with more radial channels forming 12 loops of the tubing instead of 4. The rotor holds more layers and increased length of tubing. From 0.9g extract the STS-12 rotor yielded more recovery of 110.4mg total with amounts varying from 11.2mg to 64mg of the sutherlandins and apparent increased separation efficiency as noted by less volume of each fraction peak. Thus from 1-g amounts of extract, good recovery of the flavonoids was achieved in the butanol aqueous solvent system. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas

    DOE PAGES

    Singh, Rajinder P.; Dahe, Ganpat J.; Dudeck, Kevin W.; ...

    2014-12-31

    Sustainable reliance on hydrocarbon feedstocks for energy generation requires CO₂ separation technology development for energy efficient carbon capture from industrial mixed gas streams. High temperature H₂ selective glassy polymer membranes are an attractive option for energy efficient H₂/CO₂ separations in advanced power production schemes with integrated carbon capture. They enable high overall process efficiencies by providing energy efficient CO₂ separations at process relevant operating conditions and correspondingly, minimized parasitic energy losses. Polybenzimidazole (PBI)-based materials have demonstrated commercially attractive H₂/CO₂ separation characteristics and exceptional tolerance to hydrocarbon fuel derived synthesis (syngas) gas operating conditions and chemical environments. To realize a commerciallymore » attractive carbon capture technology based on these PBI materials, development of high performance, robust PBI hollow fiber membranes (HFMs) is required. In this work, we discuss outcomes of our recent efforts to demonstrate and optimize the fabrication and performance of PBI HFMs for use in pre-combustion carbon capture schemes. These efforts have resulted in PBI HFMs with commercially attractive fabrication protocols, defect minimized structures, and commercially attractive permselectivity characteristics at IGCC syngas process relevant conditions. The H₂/CO₂ separation performance of these PBI HFMs presented in this document regarding realistic process conditions is greater than that of any other polymeric system reported to-date.« less

  3. Triplet Tuning - a New ``BLACK-BOX'' Computational Scheme for Photochemically Active Molecules

    NASA Astrophysics Data System (ADS)

    Lin, Zhou; Van Voorhis, Troy

    2017-06-01

    Density functional theory (DFT) is an efficient computational tool that plays an indispensable role in the design and screening of π-conjugated organic molecules with photochemical significance. However, due to intrinsic problems in DFT such as self-interaction error, the accurate prediction of energy levels is still a challenging task. Functionals can be parameterized to correct these problems, but the parameters that make a well-behaved functional are system-dependent rather than universal in most cases. To alleviate both problems, optimally tuned range-separated hybrid functionals were introduced, in which the range-separation parameter, ω, can be adjusted to impose Koopman's theorem, ɛ_{HOMO} = -I. These functionals turned out to be good estimators for asymptotic properties like ɛ_{HOMO} and ɛ_{LUMO}. In the present study, we propose a ``black-box'' procedure that allows an automatic construction of molecule-specific range-separated hybrid functionals following the idea of such optimal tuning. However, instead of focusing on ɛ_{HOMO} and ɛ_{LUMO}, we target more local, photochemistry-relevant energy levels such as the lowest triplet state, T_1. In practice, we minimize the difference between two E_{{T}_1}'s that are obtained from two DFT-based approaches, Δ-SCF and linear-response TDDFT. We achieve this minimization using a non-empirical adjustment of two parameters in the range-separated hybrid functional - ω, and the percentage of Hartree-Fock contribution in the short-range exchange, c_{HF}. We apply this triplet tuning scheme to a variety of organic molecules with important photochemical applications, including laser dyes, photovoltaics, and light-emitting diodes, and achieved good agreements with the spectroscopic measurements for E_{{T}_1}'s and related local properties. A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2015). O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 125, 234109 (2006). L. Kronik, T. Stein, S. Refaely-Abramson, and R. Baer, J. Chem. Theory Comput. 8, 1515 (2012). Z. Lin and T. A. Van Voorhis, in preparation for submission to J. Chem. Theory Comput.

  4. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).

    PubMed

    Moon, Hui-Sung; Kwon, Kiho; Kim, Seung-Il; Han, Hyunju; Sohn, Joohyuk; Lee, Soohyeon; Jung, Hyo-Il

    2011-03-21

    Circulating tumor cells (CTCs) are highly correlated with the invasive behavior of cancer, so their isolations and quantifications are important for biomedical applications such as cancer prognosis and measuring the responses to drug treatments. In this paper, we present the development of a microfluidic device for the separation of CTCs from blood cells based on the physical properties of cells. For use as a CTC model, we successfully separated human breast cancer cells (MCF-7) from a spiked blood cell sample by combining multi-orifice flow fractionation (MOFF) and dielectrophoretic (DEP) cell separation technique. Hydrodynamic separation takes advantage of the massive and high-throughput filtration of blood cells as it can accommodate a very high flow rate. DEP separation plays a role in precise post-processing to enhance the efficiency of the separation. The serial combination of these two different sorting techniques enabled high-speed continuous flow-through separation without labeling. We observed up to a 162-fold increase in MCF-7 cells at a 126 µL min(-1) flow rate. Red and white blood cells were efficiently removed with separation efficiencies of 99.24% and 94.23% respectively. Therefore, we suggest that our system could be used for separation and detection of CTCs from blood cells for biomedical applications. This journal is © The Royal Society of Chemistry 2011

  5. Magnetic N-doped carbon nanotubes: A versatile and efficient material for the determination of polycyclic aromatic hydrocarbons in environmental water samples.

    PubMed

    Menezes, Helvécio Costa; de Barcelos, Stella Maris Resende; Macedo, Damiana Freire Dias; Purceno, Aluir Dias; Machado, Bruno Fernades; Teixeira, Ana Paula Carvalho; Lago, Rochel Monteiro; Serp, Philippe; Cardeal, Zenilda Lourdes

    2015-05-11

    This paper describes a new, efficient and versatile method for the sampling and preconcentration of PAH in environmental water matrices using special hybrid magnetic carbon nanotubes. These N-doped amphiphilic CNT can be easily dispersed in any aqueous matrix due to the N containing hydrophilic part and at the same time show high efficiency for the adsorption of different PAH contaminants due to the very hydrophobic surface. After adsorption, the CNT can be easily removed from the medium by a simple magnetic separation. GC/MS analyses showed that the CNT method is more efficient than the use of polydimethylsiloxane (PDMS) with much lower solvent consumption, technical simplicity and time, showing good linearity (range 0.18-80.00 μg L(-1)) and determination coefficient (R(2) > 0.9810). The limit of detection ranged from 0.05 to 0.42 μg L(-1) with limit of quantification from 0.18 to 1.40 μg L(-1). Recovery (n=9) ranged from 80.50 ± 10 to 105.40 ± 12%. Intraday precision (RSD, n=9) ranged from 1.91 to 9.01%, whereas inter day precision (RSD, n=9) ranged from 7.02 to 17.94%. The method was applied to the analyses of PAH in four lake water samples collected in Belo Horizonte City, Brazil. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Manipulating energy transfer in copolymer-based nanocomposites by their controlled nanocaging and release of an ionic styryl dye: a case of an ultrasensitive pH sensor.

    PubMed

    Manna, Anamika; Sahoo, Dibakar; Chakravorti, Sankar

    2012-03-01

    We report an interesting pH-tunable energy transfer between an acceptor ionic styryl dye 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide and a donor charge-transfer dye 1,8-naphthalimide in a vesicular medium. The polyethylene-b-polyethylene glycol block copolymer intercalates with the sodium dodecyl sulfate anionic surfactant to form self-aggregated nanocomposites. These nanocomposites interact with the donor molecules in aqueous solution to form "vesicles", and the donor molecules become attached on the outer wall by hydrogen bonding. The acceptor molecules are observed to be loaded in the vesicular interior. By controlling the spectral overlap of the donor and acceptor molecules by changing the pH of the medium, the energy-transfer efficiency in vesicles has been studied. The efficiency of energy transfer in vesicular media (55%) is found to be less compared to that in aqueous media (80%) at pH 7. The fall in efficiency has been attributed to the perturbation imparted by the vesicular wall due to the good matching of the donor-acceptor distance with the wall thickness. At low pH, the efficiency shows an abrupt increase (95%) due to the release of the acceptor molecules from the vesicular medium causing subsequent reduction of donor-acceptor separation and an increase of the spectral overlap at that pH.

  7. Low temperature synthesis of hierarchical TiO 2 nanostructures for high performance perovskite solar cells by pulsed laser deposition

    DOE PAGES

    Yang, Bin; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; ...

    2016-06-10

    A promising way to advance perovskite solar cells is to improve the quality of the electron transport material e.g., titanium dioxide (TiO 2) in a direction that increases electron transport and extraction. Although dense TiO 2 films are easily grown in solution, efficient electron extraction suffers due to a lack of interfacial contact area with the perovskite. Conversely, mesoporous films do offer high surface-area-to-volume ratios, thereby promoting efficient electron extraction, but their morphology is relatively difficult to control via conventional solution synthesis methods. Here, a pulsed laser deposition method was used to assemble TiO 2 nanoparticles into TiO 2 hierarchicalmore » nanoarchitectures having the anatase crystal structure, and prototype solar cells employing these structures yielded power conversion efficiencies of ~ 14%. Our approach demonstrates a way to grow high aspect-ratio TiO 2 nanostructures for improved interfacial contact between TiO 2 and perovskite materials, leading to high electron-hole pair separation and electron extraction efficiencies for superior photovoltaic performance. In addition, compared to conventional solution-processed TiO 2 films that require 500 °C to obtain a good crystallinity, our relatively low temperature (300 °C) TiO 2 processing method may promote reduced energy-consumption during device fabrication as well as enable compatibility with various flexible polymer substrates.« less

  8. Generation of a Parabolic Trough Collector Efficiency Curve from Separate Measurements of Outdoor Optical Efficiency and Indoor Receiver Heat Loss: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, C.; Burkholder, F.; Stynes, K.

    2010-10-01

    The overall efficiency of a parabolic trough collector is a function of both the fraction of direct normal radiation absorbed by the receiver (the optical efficiency) and the heat lost to the environment when the receiver is at operating temperature. The overall efficiency can be determined by testing the collector under actual operating conditions or by separately measuring these two components. This paper describes how outdoor measurement of the optical efficiency is combined with laboratory measurements of receiver heat loss to obtain an overall efficiency curve. Further, it presents a new way to plot efficiency that is more robust overmore » a range of receiver operating temperatures.« less

  9. Efficiency and Impact of Positive and Negative Magnetic Separation on Monocyte Derived Dendritic Cell Generation.

    PubMed

    Kowalewicz-Kulbat, Magdalena; Ograczyk, Elżbieta; Włodarczyk, Marcin; Krawczyk, Krzysztof; Fol, Marek

    2016-06-01

    The immunomagnetic separation technique is the basis of monocyte isolation and further generation of monocyte-derived dendritic cells. To compare the efficiency of monocyte positive and negative separation, concentration of beads, and their impact on generated dendritic cells. Monocytes were obtained using monoclonal antibody-coated magnetic beads followed the Ficoll-Paque gradient separation of mononuclear cell fraction from the peripheral blood of 6 healthy volunteers. CD14 expression was analyzed by flow cytometry. Both types of magnetic separation including recommended and reduced concentrations of beads did not affect the yield and the purity of monocytes and their surface CD14 expression. However, DCs originated from the "positively" separated monocytes had noticeable higher expression of CD80.

  10. INTEGRATION OF HEAT PUMPS IN PERVAPORATION SYSTEMS FOR IMPROVED ENERGY EFFICIENCY

    EPA Science Inventory

    The removal of organic compounds from water by pervaporation is highly energy efficient when the separation factor offered by the pervaporation process is high. In cases where the separation factor is relatively small, consequential amounts of water permeate the membrane per uni...

  11. Membrane-assisted vapor stripping: energy efficient hybrid distillation-vapor permeation process for alcohol-water separation

    EPA Science Inventory

    BACKGROUND: Energy efficient alternatives to distillation for alcohol recovery from dilute solution are needed to improve biofuel sustainability. A process integrating steam stripping with a vapor compression step and a vapor permeation membrane separation step is proposed. The...

  12. Removing Bacillus subtilis from fermentation broth using alumina nanoparticles.

    PubMed

    Mu, Dashuai; Mu, Xin; Xu, Zhenxing; Du, Zongjun; Chen, Guanjun

    2015-12-01

    In this study, an efficient separation technology using Al2O3 nanoparticles (NPs) was developed for removing Bacillus subtilis from fermentation broth. The dosage of alumina nanoparticles used for separating B. subtilis increased during the culture process and remained stable in the stationary phase of the culture process. The pH of the culture-broth was also investigated for its effects on flocculation efficiency, and showed an acidic pH could enhance the flocculation efficiency. The attachment mechanisms of Al2O3 NPs to the B. subtilis surface were investigated, and the zeta potential analysis showed that Al2O3 NPs could attach to B. subtilis via electrostatic attachment. Finally, the metabolite content and the antibacterial effect of the fermentation supernatants were detected and did not significantly differ between alumina nanoparticle separation and centrifugation separation. Together, these results indicate a great potential for a highly efficient and economical method for removing B. subtilis from fermentation broth using alumina nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  14. Insight into the Extraction Mechanism of Americium(III) over Europium(III) with Pyridylpyrazole: A Relativistic Quantum Chemistry Study.

    PubMed

    Kong, Xiang-He; Wu, Qun-Yan; Wang, Cong-Zhi; Lan, Jian-Hui; Chai, Zhi-Fang; Nie, Chang-Ming; Shi, Wei-Qun

    2018-05-10

    Separation of trivalent actinides (An(III)) and lanthanides (Ln(III)) is one of the most important steps in spent nuclear fuel reprocessing. However, it is very difficult and challenging to separate them due to their similar chemical properties. Recently the pyridylpyrazole ligand (PypzH) has been identified to show good separation ability toward Am(III) over Eu(III). In this work, to explore the Am(III)/Eu(III) separation mechanism of PypzH at the molecular level, the geometrical structures, bonding nature, and thermodynamic behaviors of the Am(III) and Eu(III) complexes with PypzH ligands modified by alkyl chains (Cn-PypzH, n = 2, 4, 8) have been systematically investigated using scalar relativistic density functional theory (DFT). According to the NBO (natural bonding orbital) and QTAIM (quantum theory of atoms in molecules) analyses, the M-N bonds exhibit a certain degree of covalent character, and more covalency appears in Am-N bonds compared to Eu-N bonds. Thermodynamic analyses suggest that the 1:1 extraction reaction, [M(NO 3 )(H 2 O) 6 ] 2+ + PypzH + 2NO 3 - → M(PypzH)(NO 3 ) 3 (H 2 O) + 5H 2 O, is the most suitable for Am(III)/Eu(III) separation. Furthermore, the extraction ability and the Am(III)/Eu(III) selectivity of the ligand PypzH is indeed enhanced by adding alkyl-substituted chains in agreement with experimental observations. Besides this, the nitrogen atom of pyrazole ring plays a more significant role in the extraction reactions related to Am(III)/Eu(III) separation compared to that of pyridine ring. This work could identify the mechanism of the Am(III)/Eu(III) selectivity of the ligand PypzH and provide valuable theoretical information for achieving an efficient Am(III)/Eu(III) separation process for spent nuclear fuel reprocessing.

  15. Mechanism, synthesis and modification of nano zerovalent iron in water treatment

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Jiao; Wang, Jing-Kang; Ferguson, Steven; Wang, Ting; Bao, Ying; Hao, Hong-Xun

    2016-05-01

    Owing to its strong reducing ability, high reaction activity, excellent adsorption properties, good mobility and relatively low cost, nano zerovalent iron (nZVI) is an extremely promising nanomaterial for use in water treatment. In this paper, the working mechanisms of nZVI in the degradation of various contaminants in water are outlined and discussed. Synthesis methods and their respective advantages and disadvantages are discussed in detail. Furthermore, a variety of modification methods which have been developed to improve the mobility and stability of nZVI as well as to facilitate the separation of nZVI from degraded systems are also summarized and discussed. Numerous studies indicate that nZVI has considerable potential to become an efficient, versatile and practical approach for large-scale water treatment.

  16. Application of a Channel Design Method to High-Solidity Cascades and Tests of an Impulse Cascade with 90 Degrees of Turning

    NASA Technical Reports Server (NTRS)

    Stanitz, John D; Sheldrake, Leonard J

    1953-01-01

    A technique is developed for the application of a channel design method to the design of high-solidity cascades with prescribed velocity distributions as a function of arc length along the blade-element profile. The technique is applied to both incompressible and subsonic compressible, nonviscous, irrotational fluid motion. For compressible flow, the ratio of specific heats is assumed equal to -1.0. An impulse cascade with 90 degree turning was designed for incompressible flow and was tested at the design angle of attack over a range of downstream Mach number from 0.2 to coke flow. To achieve good efficiency, the cascade was designed for prescribed velocities and maximum blade loading according to limitations imposed by considerations of boundary-layer separation.

  17. Engineering quantum hyperentangled states in atomic systems

    NASA Astrophysics Data System (ADS)

    Nawaz, Mehwish; -Islam, Rameez-ul; Abbas, Tasawar; Ikram, Manzoor

    2017-11-01

    Hyperentangled states have boosted many quantum informatics tasks tremendously due to their high information content per quantum entity. Until now, however, the engineering and manipulation of such states were limited to photonic systems only. In present article, we propose generating atomic hyperentanglement involving atomic internal states as well as atomic external momenta states. Hypersuperposition, hyperentangled cluster, Bell and Greenberger-Horne-Zeilinger states are engineered deterministically through resonant and off-resonant Bragg diffraction of neutral two-level atoms. Based on the characteristic parameters of the atomic Bragg diffraction, such as comparatively large interaction times and spatially well-separated outputs, such decoherence resistant states are expected to exhibit good overall fidelities and offer the evident benefits of full controllability, along with extremely high detection efficiency, over the counterpart photonic states comprised entirely of flying qubits.

  18. Circulation and Directional Amplification in the Josephson Parametric Converter

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  19. Method of recognizing the high-speed railway noise barriers based on the distance image

    NASA Astrophysics Data System (ADS)

    Ma, Le; Shao, Shuangyun; Feng, Qibo; Liu, Bingqian; Kim, Chol Ryong

    2016-10-01

    The damage or lack of the noise barriers is one of the important hidden troubles endangering the safety of high-speed railway. In order to obtain the vibration information of the noise barriers, the online detection systems based on laser vision were proposed. The systems capture images of the laser stripe on the noise barriers and export data files containing distance information between the detection systems on the train and the noise barriers. The vibration status or damage of the noise barriers can be estimated depending on the distance information. In this paper, we focused on the method of separating the area of noise barrier from the background automatically. The test results showed that the proposed method is in good efficiency and accuracy.

  20. Development of a Peer Teaching-Assessment Program and a Peer Observation and Evaluation Tool

    PubMed Central

    Trujillo, Jennifer M.; Barr, Judith; Gonyeau, Michael; Van Amburgh, Jenny A.; Matthews, S. James; Qualters, Donna

    2008-01-01

    Objectives To develop a formalized, comprehensive, peer-driven teaching assessment program and a valid and reliable assessment tool. Methods A volunteer taskforce was formed and a peer-assessment program was developed using a multistep, sequential approach and the Peer Observation and Evaluation Tool (POET). A pilot study was conducted to evaluate the efficiency and practicality of the process and to establish interrater reliability of the tool. Intra-class correlation coefficients (ICC) were calculated. Results ICCs for 8 separate lectures evaluated by 2-3 observers ranged from 0.66 to 0.97, indicating good interrater reliability of the tool. Conclusion Our peer assessment program for large classroom teaching, which includes a valid and reliable evaluation tool, is comprehensive, feasible, and can be adopted by other schools of pharmacy. PMID:19325963

  1. A High-Efficiency Superhydrophobic Plasma Separator

    PubMed Central

    Liu, Changchun; Liao, Shih-Chuan; Song, Jinzhao; Mauk, Michael G.; Li, Xuanwen; Wu, Gaoxiang; Ge, Dengteng; Greenberg, Robert M.; Yang, Shu; Bau, Haim H.

    2016-01-01

    To meet stringent limit-of-detection specifications for low abundance target molecules, a relatively large volume of plasma is needed for many blood-based clinical diagnostics. Conventional centrifugation methods for plasma separation are not suitable for on-site testing or bedside diagnostics. Here, we report a simple, yet high-efficiency, clamshell-style, superhydrophobic plasma separator that is capable of separating a relatively large volume of plasma from several hundred microliters of whole blood (finger-prick blood volume). The plasma separator consists of a superhydrophobic top cover with a separation membrane and a superhydrophobic bottom substrate. Unlike previously reported membrane-based plasma separators, the separation membrane in our device is positioned at the top of the sandwiched whole blood film to increase the membrane separation capacity and plasma yield. In addition, the device’s superhydrophobic characteristics (i) facilitates the formation of well-defined, contracted, thin blood film with a high contact angle; (ii) minimizes biomolecular adhesion to surfaces; (iii) increases blood clotting time; and (iv) reduces blood cell hemolysis. The device demonstrated a “blood in-plasma out” capability, consistently extracting 65±21.5 μL of plasma from 200 μL of whole blood in less than 10 min without electrical power. The device was used to separate plasma from Schistosoma mansoni genomic DNA-spiked whole blood with a recovery efficiency of > 84.5 ± 25.8 %. The S. mansoni genomic DNA in the separated plasma was successfully tested on our custom-made microfluidic chip by using loop mediated isothermal amplification (LAMP) method. PMID:26732765

  2. Color separation system with angularly positioned light source module for pixelized backlighting.

    PubMed

    Chen, Po-Chou; Lin, Hui-Hsiung; Chen, Cheng-Huan; Lee, Chi-Hung; Lu, Mao-Hong

    2010-01-18

    A color-separation system that angularly positions color LEDs to produce color separation and a lens array to focus this light onto the pixels is proposed. The LED rays from different incident angles are mapped into corresponding sub-pixel positions to efficiently display color image, which can be used to replace the absorbing color filter in the conventional liquid crystal layer. In this paper, the prototype backlight has been designed, fabricated and characterized. The measurement results of this module showed that a gain factor of transmission efficiency three times more than that of conventional color filters efficiency improvement and a larger color gamut are expected.

  3. Integrating Education: Parekhian Multiculturalism and Good Practice

    ERIC Educational Resources Information Center

    McGlynn, Claire

    2009-01-01

    This paper explores the concept of good practice in integrating education in divided societies. Using Northern Ireland as a case study, the paper draws on data from eight schools (both integrated Catholic and Protestant, and separate) that are identified as exemplifying good practice in response to cultural diversity. Analysis is provided through…

  4. 19 CFR Appendix to Part 181 - Rules of Origin Regulations

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... identified separately for sales promotion, marketing and after-sales service of goods on the financial... promotion, marketing and after-sales service of goods on the financial statements or cost accounts of the... sales promotion, marketing and after-sales service of goods on the financial statements or cost accounts...

  5. 19 CFR Appendix to Part 181 - Rules of Origin Regulations

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... identified separately for sales promotion, marketing and after-sales service of goods on the financial... promotion, marketing and after-sales service of goods on the financial statements or cost accounts of the... sales promotion, marketing and after-sales service of goods on the financial statements or cost accounts...

  6. 19 CFR Appendix to Part 181 - Rules of Origin Regulations

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... identified separately for sales promotion, marketing and after-sales service of goods on the financial... promotion, marketing and after-sales service of goods on the financial statements or cost accounts of the... sales promotion, marketing and after-sales service of goods on the financial statements or cost accounts...

  7. 19 CFR Appendix to Part 181 - Rules of Origin Regulations

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... identified separately for sales promotion, marketing and after-sales service of goods on the financial... promotion, marketing and after-sales service of goods on the financial statements or cost accounts of the... sales promotion, marketing and after-sales service of goods on the financial statements or cost accounts...

  8. Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles.

    PubMed

    Tian, Fei; Zhang, Wei; Cai, Lili; Li, Shanshan; Hu, Guoqing; Cong, Yulong; Liu, Chao; Li, Tiejun; Sun, Jiashu

    2017-09-12

    The microfluidic passive control of microparticles largely relies on the hydrodynamic effects of the carrier media such as Newtonian fluids and viscoelastic fluids. Yet the viscoelastic/Newtonian interfacial effect has been scarcely investigated, especially for high-resolution particle separation. Here we report a microfluidic co-flow of Newtonian (water or PBS) and viscoelastic fluids (PEO) for the size-dependent separation of microparticles. The co-flow condition generates a stable viscoelastic/Newtonian interface, giving rise to the wall-directed elastic lift forces that compete with the center-directed lift forces, and efficiently hinders the migration of microparticles from the Newtonian to the viscoelastic fluid in a size-dependent manner. An almost complete separation of a binary mixture of 1 μm and 2 μm polystyrene particles is achieved by the co-flow of water and a very dilute PEO solution (100 ppm), whereas the sole use of water or PEO could not lead to an efficient separation. This co-flow microfluidic system is also applied for the separation of Staphylococcus aureus (1 μm) from platelets (2-3 μm) with >90% efficiencies and purities.

  9. Synthesis of pH-sensitive and recyclable magnetic nanoparticles for efficient separation of emulsified oil from aqueous environments

    NASA Astrophysics Data System (ADS)

    Lü, Ting; Zhang, Shuang; Qi, Dongming; Zhang, Dong; Vance, George F.; Zhao, Hongting

    2017-02-01

    Emulsified oil wastewaters, arisen from oil industry and oil spill accidents, cause severe environmental and ecological problems. In this study, a series of pH-sensitive magnetic nanomaterials (MNPs) were synthesized and characterized for their evaluation in separation of emulsified oil from aqueous environments. A coprecipitation method was used to produce Fe3O4 magnetic nanoparticles that were coated in a 2-step process with first silica to form a surface for anchoring an (3-aminopropyl)triethoxysilane (APTES) molecular layer. Detailed studies were conducted on effects of MNPs dosage, APTES anchoring density (DA) and pH on oil-water separation performance of the synthetic MNPs. Results showed that, under both acidic and neutral conditions, MNPs with high DA exhibited enhanced oil-water separation performance, while under alkaline condition, the oil-water separation process was minimal. Alkaline conditions allowed the MNPs to be recycled up to 9 cycles without showing any significant decrease in oil-water separation efficiency. An examination of the oil-water separation mechanism found that electrostatic interaction and interfacial activity both played important roles in oil-water separation. In conclusion, pH-sensitive MNPs can be easily synthesized and recycled, providing a promising, cost-effective and environmentally-friendly process for the efficient treatment of emulsified oil wastewater.

  10. Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations.

    PubMed

    Han, Ki-Ho; Frazier, A Bruno

    2006-02-01

    This paper presents the characterization of continuous single-stage and three-stage cascade paramagnetic capture (PMC) mode magnetophoretic microseparators for high efficiency separation of red and white blood cells from diluted whole blood based on their native magnetic properties. The separation mechanism for both PMC microseparators is based on a high gradient magnetic separation (HGMS) method. This approach enables separation of blood cells without the use of additives such as magnetic beads. Experimental results for the single-stage PMC microseparator show that 91.1% of red blood cells were continuously separated from the sample at a volumetric flow rate of 5 microl h-1. In addition, the three-stage cascade PMC microseparator continuously separated 93.5% of red blood cells and 97.4% of white blood cells from whole blood at a volumetric flow rate of 5 microl h-1.

  11. A computationally efficient method for full-core conjugate heat transfer modeling of sodium fast reactors

    DOE PAGES

    Hu, Rui; Yu, Yiqi

    2016-09-08

    For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less

  12. Coencapsulation of (-)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility.

    PubMed

    Chen, Xing; McClements, David Julian; Wang, Jian; Zou, Liqiang; Deng, Sumeng; Liu, Wei; Yan, Chi; Zhu, Yuqing; Cheng, Ce; Liu, Chengmei

    2018-04-11

    Particle-stabilized W 1 /O/W 2 emulsion gels were fabricated using a two-step procedure: ( i) a W 1 /O emulsion was formed containing saccharose (for osmotic stress balance) and gelatin (as a gelling agent) in the aqueous phase and polyglycerol polyricinoleate (a lipophilic surfactant) in the oil phase; ( ii) this W 1 /O emulsion was then homogenized with another water phase (W 2 ) containing wheat gliadin nanoparticles (hydrophilic emulsifier). The gliadin nanoparticles in the external aqueous phase aggregated at pH 5.5, which led to the formation of particle-stabilized W 1 /O/W 2 emulsion gels with good stability to phase separation. These emulsion gels were then used to coencapsulate a hydrophilic bioactive (epigallocatechin-3-gallate, EGCG) in the internal aqueous phase (encapsulation efficiency = 65.5%) and a hydrophobic bioactive (quercetin) in the oil phase (encapsulation efficiency = 97.2%). The emulsion gels improved EGCG chemical stability and quercetin solubility under simulated gastrointestinal conditions, which led to a 2- and 4-fold increase in their effective bioaccessibility, respectively.

  13. Preparation and evaluation of surface-bonded tricationic ionic liquid silica as stationary phases for high-performance liquid chromatography.

    PubMed

    Qiao, Lizhen; Shi, Xianzhe; Lu, Xin; Xu, Guowang

    2015-05-29

    Two tricationic ionic liquids were prepared and then bonded onto the surface of supporting silica materials through "thiol-ene" click chemistry as new stationary phases for high-performance liquid chromatography. The obtained columns of tricationic ionic liquids were evaluated respectively in the reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode, and possess ideal column efficiency of 80,000 plates/m in the RPLC mode with naphthalene as the test solute. The tricationic ionic liquid stationary phases exhibit good hydrophobic and shape selectivity to hydrophobic compounds, and RPLC retention behavior with multiple interactions. In the HILIC mode, the retention and selectivity were evaluated through the efficient separation of nucleosides and bases as well as flavonoids, and the typical HILIC retention behavior was demonstrated by investigating retention changes of hydrophilic solutes with water volume fraction in mobile phase. The results show that the tricationic ionic liquid columns possess great prospect for applications in analysis of hydrophobic and hydrophilic samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. CdS nanoparticles immobilized on porous carbon polyhedrons derived from a metal-organic framework with enhanced visible light photocatalytic activity for antibiotic degradation

    NASA Astrophysics Data System (ADS)

    Yang, Cao; Cheng, Jianhua; Chen, Yuancai; Hu, Yongyou

    2017-10-01

    The CdS/MOF-derived porous carbon (MPC) composite as an efficient visible-light-driven photocatalyst was prepared through the pyrolysis of ZIF-8 and subsequent growth of CdS. The porous and functionalized MPC enables intimate and discrete growth of CdS nanoparticles. This unique structure not only reduces the bulk recombination owing to nano-size effect of CdS, but also suppresses the surface recombination due to the discrete growth of CdS nanoparticles on MPC polyhedrons, which facilitates electron transfer and charge separation. Moreover, such a composite material possessed good adsorption ability toward the antibiotic pollutants because of the amino-functionalized surface. As a result, the as-prepared CdS/MPC composites showed excellent photocatalytic performance for the antibiotic degradation, significantly improving the photoactivity of CdS. Importantly, the CdS/MPC composite with the CdS loading of 20 wt% exhibited the highest photocatalytic efficiency of approximately 91% and apparent rate constant of 0.024 min-1.

  15. An Investigation into the Postbuckling Response of a Single Blade-Stiffened Composite Panel

    NASA Astrophysics Data System (ADS)

    Spediacci, Alexander Daniel

    The large strength reserves of stiffened composite structures in the postbuckling range appeal to the aerospace industry because of the high strength-to weight-ratio. Design and analysis of these large-scale, complex structures is technical, and requires major computational effort. Using the building-block approach, a smaller, single-stringer panel can be a useful and efficient tool for initial design, and can reveal critical behavior of a larger, multi-stringer panel. A characterization, through finite element modeling, of buckling and postbuckling response of a single blade-stiffened composite panel is proposed. Several factors affecting buckling and postbuckling behavior are investigated, including specimen length, initial imperfections, mode switching, and skin stringer separation. Two specimens are repeatedly tested under quasi- static compression loading well into the postbuckling range, showing no sign of damage. The test data from the specimens are used to compare and validate the nonlinear finite element models, show good correlation with the models. Ultimately, this work will serve to demonstrate the safety of stiffened structures operating in the postbuckling range and allow for thinner, lighter structures, which can increase the overall efficiency of aircraft.

  16. Two-port connecting-layer-based sandwiched grating by a polarization-independent design.

    PubMed

    Li, Hongtao; Wang, Bo

    2017-05-02

    In this paper, a two-port connecting-layer-based sandwiched beam splitter grating with polarization-independent property is reported and designed. Such the grating can separate the transmission polarized light into two diffraction orders with equal energies, which can realize the nearly 50/50 output with good uniformity. For the given wavelength of 800 nm and period of 780 nm, a simplified modal method can design a optimal duty cycle and the estimation value of the grating depth can be calculated based on it. In order to obtain the precise grating parameters, a rigorous coupled-wave analysis can be employed to optimize grating parameters by seeking for the precise grating depth and the thickness of connecting layer. Based on the optimized design, a high-efficiency two-port output grating with the wideband performances can be gained. Even more important, diffraction efficiencies are calculated by using two analytical methods, which are proved to be coincided well with each other. Therefore, the grating is significant for practical optical photonic element in engineering.

  17. Copper catalyzed oxidative homocoupling of terminal alkynes to 1,3-diynes: a Cu3(BTC)2 MOF as an efficient and ligand free catalyst for Glaser-Hay coupling.

    PubMed

    Devarajan, Nainamalai; Karthik, Murugan; Suresh, Palaniswamy

    2017-11-07

    A straightforward and efficient method has been demonstrated for the oxidative coupling of terminal alkynes using a simple Cu 3 (BTC) 2 -metal organic framework as a sustainable heterogeneous copper catalyst. A series of symmetrical 1,3-diynes bearing diverse functional groups have been synthesized in moderate to excellent yields via a Cu 3 (BTC) 2 catalyzed Glaser-Hay reaction. The presence of the coordinatively unsaturated open Cu II sites in Cu 3 (BTC) 2 catalyzes the homocoupling in the presence of air, as an environment friendly oxidant without the use of external oxidants, ligands or any additives. The present methodology avoids stoichiometric reagents and harsher or special reaction conditions, and shows good functional group tolerance. The as-prepared catalyst could be separated easily by simple filtration and reused several times without any notable loss in activity. The hot filtration test has investigated the true heterogeneity of the catalyst. Additionally, the powder X-ray diffraction pattern of the reused catalyst revealed the high stability of the catalyst.

  18. Vacancy-Rich Monolayer BiO2-x as a Highly Efficient UV, Visible, and Near-Infrared Responsive Photocatalyst.

    PubMed

    Li, Jun; Wu, Xiaoyong; Pan, Wenfeng; Zhang, Gaoke; Chen, Hong

    2018-01-08

    Vacancy-rich layered materials with good electron-transfer property are of great interest. Herein, a full-spectrum responsive vacancy-rich monolayer BiO 2-x has been synthesized. The increased density of states at the conduction band (CB) minimum in the monolayer BiO 2-x is responsible for the enhanced photon response and photo-absorption, which were confirmed by UV/Vis-NIR diffuse reflectance spectra (DRS) and photocurrent measurements. Compared to bulk BiO 2-x , monolayer BiO 2-x has exhibited enhanced photocatalytic performance for rhodamine B and phenol removal under UV, visible, and near-infrared light (NIR) irradiation, which can be attributed to the vacancy V Bi-O ''' as confirmed by the positron annihilation spectra. The presence of V Bi-O ''' defects in monolayer BiO 2-x promoted the separation of electrons and holes. This finding provides an atomic level understanding for developing highly efficient UV, visible, and NIR light responsive photocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography.

    PubMed

    Zeng, Jiao; Liu, Shengquan; Wang, Menglin; Yao, Shouzhuo; Chen, Yingzhuang

    2017-05-01

    In this work, a porous structure and good permeability monolithic column was polymerized in UV transparent fused-silica capillaries via photo-initiated thiol-ene click polymerization of 2,4,6,8-tetravinyl-2,4,6,8-tetramethylcyclotetrasiloxane (TMTVS), pentaerythritol tetra(3-mercaptopropionate)(PETMP), itaconic acid, respectively, in the presence of porogenic solvents (tetrahydrofuranand methanol) and an initiator (2,2-dimethoxy-2-phenylacetophenone) (DMPA) within 30 min. The physical properties of this monolith were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy and nitrogen adsorption/desorption measurements. For an overall evaluation of the monolith in chromatographic application, separations of polycyclic aromatic hydrocarbons (PAHs), phenols, amides and bases were carried out. The column efficiency of this monolith could be as high as 112 560 N/m. It also possesses a potential application in fabrication of monoliths with high efficiency for c-LC. In addition, the resulting monolithic column demonstrated the potential use in analysis of environment waters. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. CNTs-Modified Nb3O7F Hybrid Nanocrystal towards Faster Carrier Migration, Lower Bandgap and Higher Photocatalytic Activity.

    PubMed

    Huang, Fei; Li, Zhen; Yan, Aihua; Zhao, Hui; Liang, Huagen; Gao, Qingyu; Qiang, Yinghuai

    2017-01-06

    Novel semiconductor photocatalysts have been the research focus and received much attention in recent years. The key issues for novel semiconductor photocatalysts are to effectively harvest solar energy and enhance the separation efficiency of the electron-hole pairs. In this work, novel Nb 3 O 7 F/CNTs hybrid nanocomposites with enhanced photocatalytic activity have been successfully synthesized by a facile hydrothermal plus etching technique. The important finding is that appropriate pH values lead to the formation of Nb 3 O 7 F nanocrystal directly. A general strategy to introdue interaction between Nb 3 O 7 F and CNTs markedly enhances the photocatalytic activity of Nb 3 O 7 F. Comparatively, Nb 3 O 7 F/CNTs nanocomposites exhibit higher photodegradation efficiency and faster photodegradation rate in the solution of methylene blue (MB) under visible-light irradiation. The higher photocatalytic activity may be attributed to more exposed active sites, higher carrier migration and narrower bandgap because of good synergistic effect. The results here may inspire more engineering, new design and facile fabrication of novel photocatalysts with highly photocatalytic activity.

  1. Fabrication of Au nanoparticles supported on CoFe2O4 nanotubes by polyaniline assisted self-assembly strategy and their magnetically recoverable catalytic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Jiang, Yanzhou; Chi, Maoqiang; Yang, Zezhou; Nie, Guangdi; Lu, Xiaofeng; Wang, Ce

    2016-02-01

    This article reports the fabrication of magnetically responsive Au nanoparticles supported on CoFe2O4 nanotubes through polyaniline (PANI) assisted self-assembly strategy which can be used as an efficient magnetically recoverable nanocatalyst. The central magnetic CoFe2O4 nanotubes possess a strong magnetic response under an externally magnetic field, enabling an easy and efficient separation from the reaction system for reuse. The thorn-like PANI layer on the surface of CoFe2O4 nanotubes provides large surface area for supporting Au nanocatalysts due to the electrostatic interactions. The as-prepared CoFe2O4/PANI/Au nanotube assemblies exhibit a high catalytic activity for the hydrogenation of 4-nitrophenol by sodium borohydride (NaBH4) at room temperature, with an apparent kinetic rate constant (Kapp) of about 7.8 × 10-3 s-1. Furthermore, the composite nanocatalyst shows a good recoverable property during the catalytic process. This work affords a reliable way in developing multifunctional nanocomposite for catalysis and other potential applications in many fields.

  2. Investigations on the charge transfer mechanism at donor/acceptor interfaces in the quest for descriptors of organic solar cell performance.

    PubMed

    Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi

    2018-05-07

    Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.

  3. Impact of Fluorine Atoms on Perylene Diimide Derivative for Fullerene-Free Organic Photovoltaics.

    PubMed

    Zhao, Liang; Sun, Hua; Liu, Xiaoyuan; Liu, Changmei; Shan, Haiquan; Xia, Jiuxu; Xu, Zongxiang; Chen, Fei; Chen, Zhi-Kuan; Huang, Wei

    2017-08-17

    The incorporation of fluorine atoms in organic semiconducting materials has attracted much attention recently due to its unique function to manipulate the molecular packing, film morphology and molecular energy levels. In this work, two perylenediimide (PDI) derivatives FPDI-CDTph and FPDI-CDTph2F were designed and synthesized to investigate the impact of fluorination on non-fullerene acceptors. Both FPDI-CDTph and FPDI-CDTph2F exhibited strong and broad absorption profiles, suitable lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels, and good electron transport ability. Compared with FPDI-CDTph, the fluorinated acceptor (FPDI-CDTph2F) afforded an optimal bulk heterojunction morphology with an interconnected and nanoscale phase separated structure that allowed more efficient exciton dissociation and balanced charge transport. Consequently, organic solar cells based on FPDI-CDTph2F showed a much higher power conversion efficiency (PCE) of 6.03 % than that of FPDI-CDTph based devices (4.10 %) without any post-fabrication treatment. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Multiple scales in metapopulations of public goods producers

    NASA Astrophysics Data System (ADS)

    Bauer, Marianne; Frey, Erwin

    2018-04-01

    Multiple scales in metapopulations can give rise to paradoxical behavior: in a conceptual model for a public goods game, the species associated with a fitness cost due to the public good production can be stabilized in the well-mixed limit due to the mere existence of these scales. The scales in this model involve a length scale corresponding to separate patches, coupled by mobility, and separate time scales for reproduction and interaction with a local environment. Contrary to the well-mixed high mobility limit, we find that for low mobilities, the interaction rate progressively stabilizes this species due to stochastic effects, and that the formation of spatial patterns is not crucial for this stabilization.

  5. Atomistically derived cohesive zone model of intergranular fracture in polycrystalline graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guin, Laurent; Department of Mechanical Engineering, Columbia University, New York, New York 10027; Raphanel, Jean L.

    2016-06-28

    Pristine single crystal graphene is the strongest known two-dimensional material, and its nonlinear anisotropic mechanical properties are well understood from the atomic length scale up to a continuum description. However, experiments indicate that grain boundaries in the polycrystalline form reduce the mechanical behavior of polycrystalline graphene. Herein, we perform atomistic-scale molecular dynamics simulations of the deformation and fracture of graphene grain boundaries and express the results as continuum cohesive zone models (CZMs) that embed notions of the grain boundary ultimate strength and fracture toughness. To facilitate energy balance, we employ a new methodology that simulates a quasi-static controlled crack propagationmore » which renders the kinetic energy contribution to the total energy negligible. We verify good agreement between Griffith's critical energy release rate and the work of separation of the CZM, and we note that the energy of crack edges and fracture toughness differs by about 35%, which is attributed to the phenomenon of bond trapping. This justifies the implementation of the CZM within the context of the finite element method (FEM). To enhance computational efficiency in the FEM implementation, we discuss the use of scaled traction-separation laws (TSLs) for larger element sizes. As a final result, we have established that the failure characteristics of pristine graphene and high tilt angle bicrystals differ by less than 10%. This result suggests that one could use a unique or a few typical TSLs as a good approximation for the CZMs associated with the mechanical simulations of the polycrystalline graphene.« less

  6. Synthetic Vortex Generator Jets Used to Control Separation on Low-Pressure Turbine Airfoils

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Volino, Ralph J.

    2005-01-01

    Low-pressure turbine (LPT) airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and lower cost by reducing the number of airfoils in an engine. When the adverse pressure gradient on the suction side of these airfoils becomes strong enough, the boundary layer will separate. Separation bubbles, particularly those that fail to reattach, can result in a significant loss of lift and a subsequent degradation of engine efficiency. The problem is particularly relevant in aircraft engines. Airfoils optimized to produce maximum power under takeoff conditions may still experience boundary layer separation at cruise conditions because of the thinner air and lower Reynolds numbers at altitude. Component efficiency can drop significantly between takeoff and cruise conditions. The decrease is about 2 percent in large commercial transport engines, and it could be as large as 7 percent in smaller engines operating at higher altitudes. Therefore, it is very beneficial to eliminate, or at least reduce, the separation bubble.

  7. Pump Propels Liquid And Gas Separately

    NASA Technical Reports Server (NTRS)

    Harvey, Andrew; Demler, Roger

    1993-01-01

    Design for pump that handles mixtures of liquid and gas efficiently. Containing only one rotor, pump is combination of centrifuge, pitot pump, and blower. Applications include turbomachinery in powerplants and superchargers in automobile engines. Efficiencies lower than those achieved in separate components. Nevertheless, design is practical and results in low consumption of power.

  8. Flotation of algae for water reuse and biomass production: role of zeta potential and surfactant to separate algal particles.

    PubMed

    Kwak, Dong-Heui; Kim, Mi-Sug

    2015-01-01

    The effect of chemical coagulation and biological auto-flocculation relative to zeta potential was examined to compare flotation and sedimentation separation processes for algae harvesting. Experiments revealed that microalgae separation is related to auto-flocculation of Anabaena spp. and requires chemical coagulation for the whole period of microalgae cultivation. In addition, microalgae separation characteristics which are associated with surfactants demonstrated optimal microalgae cultivation time and separation efficiency of dissolved CO2 flotation (DCF) as an alternative to dissolved air flotation (DAF). Microalgae were significantly separated in response to anionic surfactant rather than cationic surfactant as a function of bubble size and zeta potential. DAF and DCF both showed slightly efficient flotation; however, application of anionic surfactant was required when using DCF.

  9. Catalytic reactive separation system for energy-efficient production of cumene

    DOEpatents

    Buelna, Genoveva [Nuevo Laredo, MX; Nenoff, Tina M [Albuquerque, NM

    2009-07-28

    The present invention relates to an atmospheric pressure, reactive separation column packed with a solid acid zeolite catalyst for producing cumene from the reaction of benzene with propylene. Use of this un-pressurized column, where simultaneous reaction and partial separation occur during cumene production, allow separation of un-reacted, excess benzene from other products as they form. This high-yielding, energy-efficient system allows for one-step processing of cumene, with reduced need for product purification. Reacting propylene and benzene in the presence of beta zeolite catalysts generated a selectivity greater than 85% for catalytic separation reactions at a reaction temperature of 115 degrees C and at ambient pressure. Simultaneously, up to 76% of un-reacted benzene was separated from the product; which could be recycled back to the reactor for re-use.

  10. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua

    2018-04-01

    Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.

  11. Conversion of CO2 to CO using radio-frequency atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Foote, Alexander; Dedrick, James; O'Connell, Deborah; North, Michael; Gans, Timo

    2016-09-01

    Low temperature plasmas can be used for the in situ generation of CO, from relatively non-toxic CO2 . CO is very useful in many industrial chemical processes and so, via low temperature plasmas, CO2, a waste product, can be converted into a valuable chemical. The key challenges in using this method, for CO production, are optimising the energy efficiency, maximising the conversion of CO2 into CO and then separating the CO from the other species produced in the plasma. Very high yields of CO, greater than 90%, have been achieved at atmospheric pressure using argon as a carrier gas with admixtures up to 1.5% with energy efficiencies of up to 4%. The plasma generated in continuous and spatially homogeneous and is driven at a frequency of 40.68 MHz. A zero dimensional global model has also been used to simulate the chemical kinetics of the plasma to determine the dominant dissociation processes and is in good agreement with the experimentally determined yields. The model is used to determine how important a role the vibrational states of CO2 are, in a highly collisional plasma, to the production of CO and there can provide insight into how to improve the energy efficiency and suppress unwanted reactions.

  12. Efficient spectroscopic imaging by an optimized encoding of pre-targeted resonances

    PubMed Central

    Zhang, Zhiyong; Shemesh, Noam; Frydman, Lucio

    2016-01-01

    A “relaxation-enhanced” (RE) selective-excitation approach to acquire in vivo localized spectra with flat baselines and very good signal-to-noise ratios –particularly at high fields– has been recently proposed. As RE MRS targets a subset of a priori known resonances, new possibilities arise to acquire spectroscopic imaging data in a faster, more efficient manner. Hereby we present one such opportunity based on what we denominate Relaxation-Enhanced Chemical-shift-Encoded Spectroscopically-Separated (RECESS) imaging. RECESS delivers spectral/spatial correlations of various metabolites, by collecting a gradient echo train whose timing is defined by the chemical shifts of the various selectively excited resonances to be disentangled. Different sites thus impart distinct, coherent phase modulations on the images; condition number considerations allow one to disentangle these contributions of the various sites by a simple matrix inversion. The efficiency of the ensuing spectral/spatial correlation method is high enough to enable the examination of additional spatial axes via their phase encoding in CPMG-like spin-echo trains. The ensuing single-shot 1D spectral / 2D spatial RECESS method thus accelerates the acquisition of quality MRSI data by factors that, depending on the sensitivity, range between 2 and 50. This is illustrated with a number of phantom, of ex vivo and of in vivo acquisitions. PMID:26910285

  13. An Energy-Efficient Cluster-Based Vehicle Detection on Road Network Using Intention Numeration Method

    PubMed Central

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate. PMID:25793221

  14. An energy-efficient cluster-based vehicle detection on road network using intention numeration method.

    PubMed

    Devasenapathy, Deepa; Kannan, Kathiravan

    2015-01-01

    The traffic in the road network is progressively increasing at a greater extent. Good knowledge of network traffic can minimize congestions using information pertaining to road network obtained with the aid of communal callers, pavement detectors, and so on. Using these methods, low featured information is generated with respect to the user in the road network. Although the existing schemes obtain urban traffic information, they fail to calculate the energy drain rate of nodes and to locate equilibrium between the overhead and quality of the routing protocol that renders a great challenge. Thus, an energy-efficient cluster-based vehicle detection in road network using the intention numeration method (CVDRN-IN) is developed. Initially, sensor nodes that detect a vehicle are grouped into separate clusters. Further, we approximate the strength of the node drain rate for a cluster using polynomial regression function. In addition, the total node energy is estimated by taking the integral over the area. Finally, enhanced data aggregation is performed to reduce the amount of data transmission using digital signature tree. The experimental performance is evaluated with Dodgers loop sensor data set from UCI repository and the performance evaluation outperforms existing work on energy consumption, clustering efficiency, and node drain rate.

  15. Probabilistic fusion of stereo with color and contrast for bilayer segmentation.

    PubMed

    Kolmogorov, Vladimir; Criminisi, Antonio; Blake, Andrew; Cross, Geoffrey; Rother, Carsten

    2006-09-01

    This paper describes models and algorithms for the real-time segmentation of foreground from background layers in stereo video sequences. Automatic separation of layers from color/contrast or from stereo alone is known to be error-prone. Here, color, contrast, and stereo matching information are fused to infer layers accurately and efficiently. The first algorithm, Layered Dynamic Programming (LDP), solves stereo in an extended six-state space that represents both foreground/background layers and occluded regions. The stereo-match likelihood is then fused with a contrast-sensitive color model that is learned on-the-fly and stereo disparities are obtained by dynamic programming. The second algorithm, Layered Graph Cut (LGC), does not directly solve stereo. Instead, the stereo match likelihood is marginalized over disparities to evaluate foreground and background hypotheses and then fused with a contrast-sensitive color model like the one used in LDP. Segmentation is solved efficiently by ternary graph cut. Both algorithms are evaluated with respect to ground truth data and found to have similar performance, substantially better than either stereo or color/ contrast alone. However, their characteristics with respect to computational efficiency are rather different. The algorithms are demonstrated in the application of background substitution and shown to give good quality composite video output.

  16. On Wind Tunnel Tests and Computations Concerning the Problem of Shrouded Propellers

    NASA Technical Reports Server (NTRS)

    Kruger, W.

    1949-01-01

    Results of measurements on a shrouded propeller are given. The propeller is designed for the high ratio of advance and high thrust loading. The effect of the shape of propeller and shroud upon the aerodynamic coefficients of the propulsion unit can be seen from the results. The highest efficiency measured is 0.71. The measurements permit the conclusion that the maximum efficiency can be essentially improved by shroud profiles of small chord and thickness. The largest static thrust factor of merit measured reaches according to Bendemann, a value of about zeta = 1.1. By the use of a nose split flap the static thrust for thin shroud profiles with small nose radius can be about doubled. In a separate section numerical investigations of the behavior of shrouded propellers for the ideal case and for the case with energy losses are carried out. The calculations are based on the assumption that the slipstream cross section depends solely on the shape of the shroud and not on the propeller loading. The reliability of this hypothesis is confirmed experimentally and by flow photographs for a shroud with small circulation. Calculation and test are also in good agreement concerning efficiency and static thrust factor of merit. The prospects of applicability for shrouded propellers and their essential advantages are discussed.

  17. Surface nanodroplets for highly efficient liquid-liquid microextraction

    NASA Astrophysics Data System (ADS)

    Li, Miaosi; Lu, Ziyang; Yu, Haitao; Zhang, Xuehua

    2016-11-01

    Nanoscale droplets on a substrate are an essential element for a wide range of applications, such as laboratory-on-chip devices, simple and highly efficient miniaturized reactors for concentrating products, high-throughput single-bacteria or single-biomolecular analysis, encapsulation, and high-resolution imaging techniques. The solvent exchange process is a simple bottom-up approach for producing droplets at solid-liquid interfaces that are only several tens to hundreds of nanometers in height, or a few femtoliters in volume Oil nanodroplets can be produced on a substrate by solvent exchange in which a good solvent of oil is displaced by a poor solvent. Our previous work has significantly advanced understanding of the principle of solvent exchange, and the droplet size can be well-controlled by several parameters, including flow rates, flow geometry, gravitational effect and composition of solutions. In this work, we studied the microextraction effect of surface nanodroplets. Oil nanodroplets have been demonstrated to provide highly-efficient liquid-liquid microextraction of hydrophobic solute in a highly diluted solution. This effect proved the feasibility of nanodroplets as a platform for preconcentrating compounds for in situ highly sensitive microanalysis without further separation. Also the long lifetime and temporal stability of surface nanodroplets allow for some long-term extraction process and extraction without addition of stabilisers.

  18. Rapid and continuous magnetic separation in droplet microfluidic devices.

    PubMed

    Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H

    2015-02-07

    We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.

  19. Enantiomeric separation of triazole fungicides with 3-μm and 5-μml particle chiral columns by reverse-phase high-performance liquid chromatography.

    PubMed

    Qiu, Jing; Dai, Shouhui; Zheng, Chuangmu; Yang, Shuming; Chai, Tingting; Bie, Mei

    2011-07-01

    This study used chiral columns packed with 3-μm and 5-μm particles to comparatively separate enantiomers of 9 triazole fungicides, and Lux Cellulose-1 columns with chiral stationary phase of cellulose-tris-(3,5-dimethylphenylcarbamate) were used on reverse-phase high-performance liquid chromatography with flow rates of 0.3 and 1.0 mL min(-1) for 3-μm and 5-μm columns, respectively. The (+)-enantiomers of hexaconazole (1), tetraconazole (4), myclobutanil (7), fenbuconazole (8) and the (-)-enantiomers of flutriafol (2), diniconazole (3), epoxiconazole (5), penconazole (6), triadimefon (9) were firstly eluted from both columns, the elution orders identified with an optical rotation detector didn't change with variety of column particles and mobile phases (acetronitrile/water and methanol/water). The plots of natural logarithms of the selectivity factors (ln α) for all fungicides except penconazole (6) versus the inverse of temperature (1/T) were linear in range of 5-40°C. The thermodynamic parameters (ΔH°, ΔS°, ΔΔH° and ΔΔS°) were calculated using Van't Hoff equations to understand the thermosynamic driving forces for enantioseparation. This work will be very helpful to obtain good enantiomeric separation and establish more efficient analytical method for triazole fungicides. Chirality, 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

  20. Production of 64Cu and 67Cu radiopharmaceuticals using zinc target irradiated with accelerator neutrons

    NASA Astrophysics Data System (ADS)

    Kawabata, Masako; Hashimoto, Kazuyuki; Saeki, Hideya; Sato, Nozomi; Motoishi, Shoji; Nagai, Yasuki

    2014-09-01

    Copper radioisotopes have gained a lot of attention in radiopharmaceuticals owing to their unique decay characteristics. The longest half-life β emitter, 67Cu, is thought to be suitable for targeted radio-immunotherapy. Adequate production of 67Cu to meet the demands of clinical studies has not been fully established. Another attractive copper isotope, 64Cu has possible applications as a diagnostic imaging tracer combined with a therapeutic effect. This work proposes a production method using accelerator neutrons in which two copper radioisotopes can be produced: 1) 68Zn(n,x)67Cu and 2) 64Zn(n,p)64Cu using ~14 MeV neutrons generated by natC(d, n) reaction, both from natural or enriched zinc oxides. The generated 64,67Cu were separated from the target zinc oxide using a chelating and an anion exchange columns and were labelled with two widely studied chelators where the labelling efficiency was found to be acceptably good. The major advantage of this method is that a significant amount of 64,67Cu with a very few impurity radionuclides are produced which also makes the separation procedure simple. Provided an accelerator supplying an Ed = ~ 40 MeV, a wide application of 64,67Cu based drugs in nuclear medicine is feasible in the near future. We will present the characteristics of this production method using accelerator neutrons including the chemical separation processes.

  1. Fabrication of magnetically responsive HKUST-1/Fe3O4 composites by dry gel conversion for deep desulfurization and denitrogenation.

    PubMed

    Tan, Peng; Xie, Xiao-Yan; Liu, Xiao-Qin; Pan, Ting; Gu, Chen; Chen, Peng-Fei; Zhou, Jia-Yu; Pan, Yichang; Sun, Lin-Bing

    2017-01-05

    Selective adsorption by use of metal-organic frameworks (MOFs) is an effective method for purification of hydrocarbon fuels. In consideration that the adsorption processes proceed in liquid phases, separation and recycling of adsorbents should be greatly facilitated if MOFs were endowed with magnetism. In the present study, we reported for the first time a dry gel conversion (DGC) strategy to fabricate magnetically responsive MOFs as adsorbents for deep desulfurization and denitrogenation. The solvent is separated from the solid materials in the DGC strategy, and vapor is generated at elevated temperatures to induce the growth of MOFs around magnetic Fe 3 O 4 nanoparticles. This strategy can greatly simplify the complicated procedures of the well-known layer-by-layer method and avoid the blockage of pores confronted by introducing magnetic Fe 3 O 4 nanoparticles to the pores of MOFs. Our results show that the adsorbents are capable of efficiently removing aromatic sulfur and nitrogen compounds from model fuels, for example removing 0.62mmolg -1 S and 0.89mmolg -1 N of thiophene and indole, respectively. In addition, the adsorbents are facile to separate from liquid phases by use of an external field. After 6 cycles, the adsorbents still show a good adsorption capacity that is comparable to the fresh one. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Rapid and continuous magnetic separation in droplet microfluidic devices

    PubMed Central

    Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; Strey, Helmut H.

    2015-01-01

    We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries. PMID:25501881

  3. Mesoporous Cladophora cellulose separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pan, Ruijun; Cheung, Ocean; Wang, Zhaohui; Tammela, Petter; Huo, Jinxing; Lindh, Jonas; Edström, Kristina; Strømme, Maria; Nyholm, Leif

    2016-07-01

    Much effort is currently made to develop inexpensive and renewable materials which can replace the polyolefin microporous separators conventionally used in contemporary lithium-ion batteries. In the present work, it is demonstrated that mesoporous Cladophora cellulose (CC) separators constitute very promising alternatives based on their high crystallinity, good thermal stability and straightforward manufacturing. The CC separators, which are fabricated using an undemanding paper-making like process involving vacuum filtration, have a typical thickness of about 35 μm, an average pore size of about 20 nm, a Young's modulus of 5.9 GPa and also exhibit an ionic conductivity of 0.4 mS cm-1 after soaking with 1 M LiPF6 EC: DEC (1/1, v/v) electrolyte. The CC separators are demonstrated to be thermally stable at 150 °C and electrochemically inert in the potential range between 0 and 5 V vs. Li+/Li. A LiFePO4/Li cell containing a CC separator showed good cycling stability with 99.5% discharge capacity retention after 50 cycles at a rate of 0.2 C. These results indicate that the renewable CC separators are well-suited for use in high-performance lithium-ion batteries.

  4. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    PubMed

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  5. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    PubMed

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs < 6.4%, n = 3) and reproducibility (RSDs < 12.6%, five parallel-made solid phase extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.

  6. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    PubMed

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Facile Preparation of Nanostructured, Superhydrophobic Filter Paper for Efficient Water/Oil Separation

    PubMed Central

    Wang, Jianhua; Wong, Jessica X. H.; Kwok, Honoria; Li, Xiaochun; Yu, Hua-Zhong

    2016-01-01

    In this paper, we present a facile and cost-effective method to obtain superhydrophobic filter paper and demonstrate its application for efficient water/oil separation. By coupling structurally distinct organosilane precursors (e.g., octadecyltrichlorosilane and methyltrichlorosilane) to paper fibers under controlled reaction conditions, we have formulated a simple, inexpensive, and efficient protocol to achieve a desirable superhydrophobic and superoleophilic surface on conventional filter paper. The silanized superhydrophobic filter paper showed nanostructured morphology and demonstrated great separation efficiency (up to 99.4%) for water/oil mixtures. The modified filter paper is stable in both aqueous solutions and organic solvents, and can be reused multiple times. The present study shows that our newly developed binary silanization is a promising method of modifying cellulose-based materials for practical applications, in particular the treatment of industrial waste water and ecosystem recovery. PMID:26982055

  8. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem

    Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance of the resultant composite membranes is restricted because these nanoparticles are not exposed to liquid electrolytes and have limited effect on improving the cell performance. Hence, we introduced new nanoparticle-on-nanofiber hybrid membrane separators by combining electrospraying with electrospinning techniques. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. To design a high-performance separator with enhanced mechanical properties and good thermal stability, electrospun SiO2/nylon 6,6 nanofiber membranes were fabricated. It was found that SiO2/nylon 6,6 nanofiber membranes had superior thermal stability and mechanical strength. Electrospinning has serious drawbacks such as low spinning rate and high production cost. Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning. SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells exhibited good cycling and C-rate performance.

  9. Novel Polyimide Battery Separator Imbibed with Room-Temperature Ionic Liquids

    NASA Technical Reports Server (NTRS)

    Viggiano, Rocco; Nguyen, Baochau; Wu, James; Dai, Liming; Meador, Mary Ann

    2017-01-01

    The journey to Mars will require advancements in many existing technologies, including space power and energy storage systems. According to the 2015 NASA Technology Roadmaps, energy storage is a critical technology area to develop for both terrestrial as well as future long-term space missions. Currently, batteries represent one of the major areas in need of advancement, both in terms of energy density as well as safety. Recently, concerns regarding the fire safety of commercial lithium-ion batteries have prompted efforts to produce nonflammable battery components, namely the electrolyte and separator. Commercial lithium-ion batteries utilize polyolefin separators imbibed with a lithium salt dissolved in cyclic carbonates. This separator/electrolyte combination imparts good ionic conductivities in the range of 10(exp -2) to 10(exp -3) S/cm. However, the cyclic carbonates and polyolefin separator are inherently flammable. Room-temperature ionic liquids (RTILs) appear to be a safer alternative to cyclic carbonates. They offer good ionic conductivities, similar to those observed in cyclic carbonates, but are inherently nonvolatile and nonflammable giving them a safety advantage. Many promising RTILs for battery electrolytes are not compatible with commercial polyolefin separator materials. Polyimide aerogels possess an open-porous, fibrillar network architecture which offers a high degree of porosity (typically greater than 85 porous), required for lithium ion conduction, as well as good mechanical properties. Furthermore, these materials are compatible with all tested RTILs. By creating a polyimide gel and imbibing the gel with a RTIL containing a lithium salt instead of super critically drying them to form aerogels, a nonflammable separator/electrolyte system with conductivities in the range of 1x10(exp -3) S/cm has been demonstrated.

  10. Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex.

    PubMed

    Riesová, Martina; Svobodová, Jana; Ušelová, Kateřina; Tošner, Zdeněk; Zusková, Iva; Gaš, Bohuslav

    2014-10-17

    In this paper we determine acid dissociation constants, limiting ionic mobilities, complexation constants with β-cyclodextrin or heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, and mobilities of resulting complexes of profens, using capillary zone electrophoresis and affinity capillary electrophoresis. Complexation parameters are determined for both neutral and fully charged forms of profens and further corrected for actual ionic strength and variable viscosity in order to obtain thermodynamic values of complexation constants. The accuracy of obtained complexation parameters is verified by multidimensional nonlinear regression of affinity capillary electrophoretic data, which provides the acid dissociation and complexation parameters within one set of measurements, and by NMR technique. A good agreement among all discussed methods was obtained. Determined complexation parameters were used as input parameters for simulations of electrophoretic separation of profens by Simul 5 Complex. An excellent agreement of experimental and simulated results was achieved in terms of positions, shapes, and amplitudes of analyte peaks, confirming the applicability of Simul 5 Complex to complex systems, and accuracy of obtained physical-chemical constants. Simultaneously, we were able to demonstrate the influence of electromigration dispersion on the separation efficiency, which is not possible using the common theoretical approaches, and predict the electromigration order reversals of profen peaks. We have shown that determined acid dissociation and complexation parameters in combination with tool Simul 5 Complex software can be used for optimization of separation conditions in capillary electrophoresis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Non-ideality by sedimentation velocity of halophilic malate dehydrogenase in complex solvents.

    PubMed Central

    Solovyova, A; Schuck, P; Costenaro, L; Ebel, C

    2001-01-01

    We have investigated the potential of sedimentation velocity analytical ultracentrifugation for the measurement of the second virial coefficients of proteins, with the goal of developing a method that allows efficient screening of different solvent conditions. This may be useful for the study of protein crystallization. Macromolecular concentration distributions were modeled using the Lamm equation with the approximation of linear concentration dependencies of the diffusion constant, D = D(o) (1 + k(D)c), and the reciprocal sedimentation coefficient s = s(o)/(1 + k(s)c). We have studied model distributions for their information content with respect to the particle and its non-ideal behavior, developed a strategy for their analysis by direct boundary modeling, and applied it to data from sedimentation velocity experiments on halophilic malate dehydrogenase in complex aqueous solvents containing sodium chloride and 2-methyl-2,4-pentanediol, including conditions near phase separation. Using global modeling for three sets of data obtained at three different protein concentrations, very good estimates for k(s) and s degrees and also for D degrees and the buoyant molar mass were obtained. It was also possible to obtain good estimates for k(D) and the second virial coefficients. Modeling of sedimentation velocity profiles with the non-ideal Lamm equation appears as a good technique to investigate weak inter-particle interactions in complex solvents and also to extrapolate the ideal behavior of the particle. PMID:11566761

  12. Clusius-Dickel Separations (CDS): A new look at an old technique

    NASA Technical Reports Server (NTRS)

    Grodzka, P. G.

    1975-01-01

    The history, applications, and theoretical basis of the CDS technique are reviewed. The advantage to be realized by conduction of CDSs in low-g, space environments are deduced. The results are reported of investigations aimed at further improving CDS efficiencies by altering convective flow patterns. The question of whether multicellular flow or turbulence can introduce a new separation mechanism which would boost separation efficiencies at least an order of magnitude is considered. Results are presented and discussed.

  13. UMR’S DESIGN FOR AN ENVIRONMENTAL STEP AHEAD: SOLAR THERMAL ELECTRIC PANELS

    EPA Science Inventory

    Not only is the STEP hybrid system effective in its aesthetics but also it is more efficient than its two stand-alone counterparts. The estimated overall efficiency of the STEP system is estimated to be 15-45 percent as compared to a separate thermal and separate electric sy...

  14. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-03-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH3NH3PbI3). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  15. Nonuniform Effect of Carrier Separation Efficiency and Light Absorption in Type-II Perovskite Nanowire Solar Cells.

    PubMed

    Wang, Weiping; He, Jialun; Cao, Yiyan; Kong, Lijing; Zheng, Xuanli; Wu, Yaping; Chen, Xiaohong; Li, Shuping; Wu, Zhiming; Kang, Junyong

    2017-12-01

    Coaxial structures exhibit great potential for the application of high-efficiency solar cells due to the novel mechanism of radial charge separation. Here, we intensively investigate the nonuniform effect of carrier separation efficiency (CSE) and light absorption in perovskite-based type-II coaxial nanowire solar cells (ZnO/CH 3 NH 3 PbI 3 ). Results show that the CSE rapidly decreases along the radial direction in the shell, and the value at the outer side becomes extremely low for the thick shell. Besides, the position of the main light absorption gradually moves to the outer side with the increase of the shell thickness. As a result, the external quantum efficiency shows a positional dependence with a maximal value close to the border of the nanowire. Eventually, in our case, it is found that the maximal power conversion efficiency of the solar cells reduces from 19.5 to 17.9% under the effect of the nonuniformity of CSE and light absorption. This work provides a basis for the design of high-efficiency solar cells, especially type-II nanowire solar cells.

  16. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation.

    PubMed

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-11-21

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil-water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil-water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO 2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning.

  17. A highly efficient, stable, durable, and recyclable filter fabricated by femtosecond laser drilling of a titanium foil for oil-water separation

    PubMed Central

    Ye, Sen; Cao, Qiang; Wang, Qingsong; Wang, Tianyuan; Peng, Qing

    2016-01-01

    It has been a long standing challenge to efficiently separate oil and water since prehistoric times, and now it has become even more desirable in oily wastewater purification and oil spill cleanup. Here we introduce a super oil–water separation filter with superhydrophilicity and underwater superoleophobicity, fabricated using femtosecond laser micro-hole drilling of a titanium foil. Such a simply-made filter, without any modification, can achieve a separation efficiency exceeding 99% in eight typical oil–water mixtures. It remains highly efficient after 40 cycles of recycling and after suffering erosion by corrosive media. Furthermore, the used filter, polluted with oil, could be recovered by ultraviolet illumination. The flux of filtered water is tunable by simply selecting the aperture of the microhole or the spacing between adjacent microholes. Such advanced functionality is due to roughness and the TiO2 layers on the ablated surface during fabrication. With superhydrophilic and superoleophobic surfaces, this oil-water filer is also suitable for applications in anti-fouling, anti-smudge, anti-fog, and self-cleaning. PMID:27869194

  18. Promoting Charge Separation and Injection by Optimizing the Interfaces of GaN:ZnO Photoanode for Efficient Solar Water Oxidation.

    PubMed

    Wang, Zhiliang; Zong, Xu; Gao, Yuying; Han, Jingfeng; Xu, Zhiqiang; Li, Zheng; Ding, Chunmei; Wang, Shengyang; Li, Can

    2017-09-13

    Photoelectrochemical water splitting provides an attractive way to store solar energy in molecular hydrogen as a kind of sustainable fuel. To achieve high solar conversion efficiency, the most stringent criteria are effective charge separation and injection in electrodes. Herein, efficient photoelectrochemical water oxidation is realized by optimizing charge separation and surface charge transfer of GaN:ZnO photoanode. The charge separation can be greatly improved through modified moisture-assisted nitridation and HCl acid treatment, by which the interfaces in GaN:ZnO solid solution particles are optimized and recombination centers existing at the interfaces are depressed in GaN:ZnO photoanode. Moreover, a multimetal phosphide of NiCoFeP was employed as water oxidation cocatalyst to improve the charge injection at the photoanode/electrolyte interface. Consequently, it significantly decreases the overpotential and brings the photocurrent to a benchmark of 3.9 mA cm -2 at 1.23 V vs RHE and a solar conversion efficiency over 1% was obtained.

  19. Preparation and evaluation of silica-UIO-66 composite as liquid chromatographic stationary phase for fast and efficient separation.

    PubMed

    Yan, Zhiming; Zheng, Jiangnan; Chen, Jinfeng; Tong, Ping; Lu, Minghua; Lin, Zian; Zhang, Lan

    2014-10-31

    A silica-UIO-66 composite was fabricated by a simple hydrothermal method and then applied as liquid chromatographic stationary phase for fast and efficient separation. X-ray diffraction patterns showed the presence of UIO-66 crystals in the silica-UIO-66 composites; while scanning electron microscope (SEM) images revealed that silica-UIO-66 composites were a homogeneous mixture of silica bead and UIO-66 crystals. A variety of substituted aromatics, chlorobenzene compounds and polycyclic aromatic hydrocarbons (PAHs) were used to evaluate the retention properties of the silica-UIO-66 composite packed column. Under the optimized conditions, baseline separation of ethylbenzene (EB) and styrene was obtained with high resolution and short retention time. In addition, the silica-UIO-66 composite packed column also showed some advantages in separation of positional isomers, with which baseline separation of EB and xylene, chlorotoluene and dichlorobenzene isomers was achieved. Moreover, the retention mechanisms of these compounds were also discussed in detail. The relative standard deviations (RSDs) for the separation of EB and xylene, chlorotoluene and dichlorobenzene isomers, as well as EB and styrene were 0.42-0.9%, 1.0-1.9%, 0.75-2.0%, and 0.9-2.1% for the retention time, peak area, peak height, and half peak width, respectively. The column efficiencies for EB, p-chlorotoluene, p-dichlorobenzene and styrene were 8780, 9060, 9990 and 5130 plates/m. The successful applications suggested high potentials of silica-MOFs composite as stationary phase for fast and efficient liquid chromatography separation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Carbon membranes for efficient water-ethanol separation.

    PubMed

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-28

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  1. Carbon membranes for efficient water-ethanol separation

    NASA Astrophysics Data System (ADS)

    Gravelle, Simon; Yoshida, Hiroaki; Joly, Laurent; Ybert, Christophe; Bocquet, Lydéric

    2016-09-01

    We demonstrate, on the basis of molecular dynamics simulations, the possibility of an efficient water-ethanol separation using nanoporous carbon membranes, namely, carbon nanotube membranes, nanoporous graphene sheets, and multilayer graphene membranes. While these carbon membranes are in general permeable to both pure liquids, they exhibit a counter-intuitive "self-semi-permeability" to water in the presence of water-ethanol mixtures. This originates in a preferred ethanol adsorption in nanoconfinement that prevents water molecules from entering the carbon nanopores. An osmotic pressure is accordingly expressed across the carbon membranes for the water-ethanol mixture, which agrees with the classic van't Hoff type expression. This suggests a robust and versatile membrane-based separation, built on a pressure-driven reverse-osmosis process across these carbon-based membranes. In particular, the recent development of large-scale "graphene-oxide" like membranes then opens an avenue for a versatile and efficient ethanol dehydration using this separation process, with possible application for bio-ethanol fabrication.

  2. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    PubMed

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2016-05-01

    Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.

  4. A multi-stage oil-water-separating process design for the sea oil spill recovery robot

    NASA Astrophysics Data System (ADS)

    Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming

    2018-03-01

    Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.

  5. Evaluation of target efficiencies for solid-liquid separation steps in biofuels production.

    PubMed

    Kochergin, Vadim; Miller, Keith

    2011-01-01

    Development of liquid biofuels has entered a new phase of large scale pilot demonstration. A number of plants that are in operation or under construction face the task of addressing the engineering challenges of creating a viable plant design, scaling up and optimizing various unit operations. It is well-known that separation technologies account for 50-70% of both capital and operating cost. Additionally, reduction of environmental impact creates technological challenges that increase project cost without adding to the bottom line. Different technologies vary in terms of selection of unit operations; however, solid-liquid separations are likely to be a major contributor to the overall project cost. Despite the differences in pretreatment approaches, similar challenges arise for solid-liquid separation unit operations. A typical process for ethanol production from biomass includes several solid-liquid separation steps, depending on which particular stream is targeted for downstream processing. The nature of biomass-derived materials makes it either difficult or uneconomical to accomplish complete separation in a single step. Therefore, setting realistic efficiency targets for solid-liquid separations is an important task that influences overall process recovery and economics. Experimental data will be presented showing typical characteristics for pretreated cane bagasse at various stages of processing into cellulosic ethanol. Results of generic material balance calculations will be presented to illustrate the influence of separation target efficiencies on overall process recoveries and characteristics of waste streams.

  6. Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer.

    PubMed

    Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong

    2018-02-01

    Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m 2 h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Solids, organic load and nutrient concentration reductions in swine waste slurry using a polyacrylamide (PAM)-aided solids flocculation treatment.

    PubMed

    Walker, Paul; Kelley, Tim

    2003-11-01

    Increased swine production results in concentration of wastes generated within a limited geographical area, which may lead to land application rates exceeding the local or regional assimilatory capacity. This may result in pollutant transfer through surface water or soil-groundwater systems, environmental degradation, and/or odor concerns. Existing swine waste pit storage and lagoon treatment technologies may be inadequate to store or treat waste prior to land application without these concerns resulting. Efficient swine waste solids separation may reduce environmental health concerns and generate a value-added bioresource (solids). This study evaluated the efficiency of a polyacrylamide (PAM) flocculant-aided solids separation treatment to reduce pollution indicator concentrations in raw (untreated) swine waste slurry. Swine waste slurry solids separation efficiency through gravity settling (sedimentation) was evaluated before and after the addition of a proprietary polymeric (PAM) flocculant. Results indicated that polymer amendments at concentrations of 62.5-750 mg/l improved slurry solids separation efficiency and significantly reduced concentrations of other associated aquatic pollution indicators in a majority of analyses conducted (33 of 50 total analyses conducted). Results also suggested that PAM-aided solids separation from swine waste slurry might facilitate further treatment and/or disposal and therefore reduce associated environmental degradation potential.

  8. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  9. The efficient simulation of separated three-dimensional viscous flows using the boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Van Dalsem, W. R.; Steger, J. L.

    1985-01-01

    A simple and computationally efficient algorithm for solving the unsteady three-dimensional boundary-layer equations in the time-accurate or relaxation mode is presented. Results of the new algorithm are shown to be in quantitative agreement with detailed experimental data for flow over a swept infinite wing. The separated flow over a 6:1 ellipsoid at angle of attack, and the transonic flow over a finite-wing with shock-induced 'mushroom' separation are also computed and compared with available experimental data. It is concluded that complex, separated, three-dimensional viscous layers can be economically and routinely computed using a time-relaxation boundary-layer algorithm.

  10. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  11. Durable underwater superoleophobic PDDA/halloysite nanotubes decorated stainless steel mesh for efficient oil-water separation

    NASA Astrophysics Data System (ADS)

    Hou, Kun; Zeng, Yicheng; Zhou, Cailong; Chen, Jiahui; Wen, Xiufang; Xu, Shouping; Cheng, Jiang; Lin, Yingguang; Pi, Pihui

    2017-09-01

    A durable underwater superoleophobic mesh was conveniently prepared by layer-by-layer (LBL) assembly of poly (diallyldimethylammonium chloride) (PDDA) and halloysite nanotubes (HNTs) on a stainless steel mesh. The hierarchical structure and roughness of the PDDA/HNTs coating surface were controlled by adjusting the number of layer deposition cycles. When the PDDA/HNTs coating with 10 deposition cycles was decorated on the mesh with pore size of about 54 μm, the underwater superoleophobic mesh was obtained. The as-prepared underwater superoleophobic PDDA/HNTs decorated mesh exhibits outstanding oil-water separation performance with a separation efficiency of over 97% for various oil/water mixtures, which allowed water to pass through while repelled oil completely. In addition, the as-prepared decorated mesh still maintained high separation efficiency above 97% after repeated 20 separation times for hexane/water mixture or chloroform/water mixture. More importantly, the as-prepared decorated mesh is durable enough to resist chemical and mechanical challenges, such as strong alkaline, salt aqueous and sand abrasion. Therefore, the as-prepared decorated mesh has practical utility in oil-water separation due to its stable oil-water performance, remarkable chemical and mechanical durability and the facile and eco-friendly preparation process.

  12. Time-frequency analysis of time-varying modulated signals based on improved energy separation by iterative generalized demodulation

    NASA Astrophysics Data System (ADS)

    Feng, Zhipeng; Chu, Fulei; Zuo, Ming J.

    2011-03-01

    Energy separation algorithm is good at tracking instantaneous changes in frequency and amplitude of modulated signals, but it is subject to the constraints of mono-component and narrow band. In most cases, time-varying modulated vibration signals of machinery consist of multiple components, and have so complicated instantaneous frequency trajectories on time-frequency plane that they overlap in frequency domain. For such signals, conventional filters fail to obtain mono-components of narrow band, and their rectangular decomposition of time-frequency plane may split instantaneous frequency trajectories thus resulting in information loss. Regarding the advantage of generalized demodulation method in decomposing multi-component signals into mono-components, an iterative generalized demodulation method is used as a preprocessing tool to separate signals into mono-components, so as to satisfy the requirements by energy separation algorithm. By this improvement, energy separation algorithm can be generalized to a broad range of signals, as long as the instantaneous frequency trajectories of signal components do not intersect on time-frequency plane. Due to the good adaptability of energy separation algorithm to instantaneous changes in signals and the mono-component decomposition nature of generalized demodulation, the derived time-frequency energy distribution has fine resolution and is free from cross term interferences. The good performance of the proposed time-frequency analysis is illustrated by analyses of a simulated signal and the on-site recorded nonstationary vibration signal of a hydroturbine rotor during a shut-down transient process, showing that it has potential to analyze time-varying modulated signals of multi-components.

  13. Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency.

    PubMed

    Wang, Fuxian; Septina, Wilman; Chemseddine, Abdelkrim; Abdi, Fatwa F; Friedrich, Dennis; Bogdanoff, Peter; van de Krol, Roel; Tilley, S David; Berglund, Sean P

    2017-10-25

    A new strategy of using forward gradient self-doping to improve the charge separation efficiency in metal oxide photoelectrodes is proposed. Gradient self-doped CuBi 2 O 4 photocathodes are prepared with forward and reverse gradients in copper vacancies using a two-step, diffusion-assisted spray pyrolysis process. Decreasing the Cu/Bi ratio of the CuBi 2 O 4 photocathodes introduces Cu vacancies that increase the carrier (hole) concentration and lowers the Fermi level, as evidenced by a shift in the flat band toward more positive potentials. Thus, a gradient in Cu vacancies leads to an internal electric field within CuBi 2 O 4 , which can facilitate charge separation. Compared to homogeneous CuBi 2 O 4 photocathodes, CuBi 2 O 4 photocathodes with a forward gradient show highly improved charge separation efficiency and enhanced photoelectrochemical performance for reduction reactions, while CuBi 2 O 4 photocathodes with a reverse gradient show significantly reduced charge separation efficiency and photoelectrochemical performance. The CuBi 2 O 4 photocathodes with a forward gradient produce record AM 1.5 photocurrent densities for CuBi 2 O 4 up to -2.5 mA/cm 2 at 0.6 V vs RHE with H 2 O 2 as an electron scavenger, and they show a charge separation efficiency of 34% for 550 nm light. The gradient self-doping accomplishes this without the introduction of external dopants, and therefore the tetragonal crystal structure and carrier mobility of CuBi 2 O 4 are maintained. Lastly, forward gradient self-doped CuBi 2 O 4 photocathodes are protected with a CdS/TiO 2 heterojunction and coated with Pt as an electrocatalyst. These photocathodes demonstrate photocurrent densities on the order of -1.0 mA/cm 2 at 0.0 V vs RHE and evolve hydrogen with a faradaic efficiency of ∼91%.

  14. Electrostatic separation for recycling waste printed circuit board: a study on external factor and a robust design for optimization.

    PubMed

    Hou, Shibing; Wu, Jiang; Qin, Yufei; Xu, Zhenming

    2010-07-01

    Electrostatic separation is an effective and environmentally friendly method for recycling waste printed circuit board (PCB) by several kinds of electrostatic separators. However, some notable problems have been detected in its applications and cannot be efficiently resolved by optimizing the separation process. Instead of the separator itself, these problems are mainly caused by some external factors such as the nonconductive powder (NP) and the superficial moisture of feeding granule mixture. These problems finally lead to an inefficient separation. In the present research, the impacts of these external factors were investigated and a robust design was built to optimize the process and to weaken the adverse impact. A most robust parameter setting (25 kv, 80 rpm) was concluded from the experimental design. In addition, some theoretical methods, including cyclone separation, were presented to eliminate these problems substantially. This will contribute to efficient electrostatic separation of waste PCB and make remarkable progress for industrial applications.

  15. Plasma creatinine and creatine quantification by capillary electrophoresis diode array detector.

    PubMed

    Zinellu, Angelo; Caria, Marcello A; Tavera, Claudio; Sotgia, Salvatore; Chessa, Roberto; Deiana, Luca; Carru, Ciriaco

    2005-07-15

    Traditional clinical assays for nonprotein nitrogen compounds, such as creatine and creatinine, have focused on the use of enzymes or chemical reactions that allow measurement of each analyte separately. Most of these assays are mainly directed to urine quantification, so that their applicability on plasma samples is frequently hard to perform. This work describes a simple free zone capillary electrophoresis method for the simultaneous measurement of creatinine and creatine in human plasma. The effect of analytical parameters such as concentration and pH of Tris-phosphate running buffer and cartridge temperature on resolution, migration times, peak areas, and efficiency was investigated. Good separation was achieved using a 60.2-cm x 75-microm uncoated silica capillary, 75 mmol/L Tris-phosphate buffer, pH 2.25, at 15 degrees C, in less than 8 min. We compared the present method to a validated capillary electrophoresis assay, by measuring plasma creatinine in 120 normal subjects. The obtained data were compared by the Passing-Bablok regression and the Bland-Altman test. Moreover the performance of the developed method was assessed by measuring creatine and creatinine in 16 volunteers prior to and after a moderate physical exercise.

  16. Magneto-Thermo-Triboelectric Generator (MTTG) for thermal energy harvesting

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Yeop; Lee, James; Lee, Dong-Gun

    2016-04-01

    We present a novel thermal energy harvesting system using triboelectric effect. Recently, there has been intensive research efforts on energy harvesting using triboelectric effect, which can produce surprising amount of electric power (when compared to piezoelectric materials) by rubbing or touching (i.e, electric charge by contact and separation) two different materials together. Numerous studies have shown the possibility as an attractive alternative with good transparency, flexibility and low cost abilities for its use in wearable device and smart phone applications markets. However, its application has been limited to only vibration source, which can produce sustained oscillation with maintaining contact and separation states repeatedly for triboelectric effect. Thus, there has been no attempt toward thermal energy source. The proposed approach can convert thermal energy into electricity by pairing triboelectric effect and active ferromagnetic materials The objective of the research is to develop a new manufacturing process of design, fabrication, and testing of a Magneto-Thermo-Triboelectric Generator (MTTG). The results obtained from the approach show that MTTG devices have a feasible power energy conversion capability from thermal energy sources. The tunable design of the device is such that it has efficient thermal capture over a wide range of operation temperature in waste heat.

  17. Color line scan camera technology and machine vision: requirements to consider

    NASA Astrophysics Data System (ADS)

    Paernaenen, Pekka H. T.

    1997-08-01

    Color machine vision has shown a dynamic uptrend in use within the past few years as the introduction of new cameras and scanner technologies itself underscores. In the future, the movement from monochrome imaging to color will hasten, as machine vision system users demand more knowledge about their product stream. As color has come to the machine vision, certain requirements for the equipment used to digitize color images are needed. Color machine vision needs not only a good color separation but also a high dynamic range and a good linear response from the camera used. Good dynamic range and linear response is necessary for color machine vision. The importance of these features becomes even more important when the image is converted to another color space. There is always lost some information when converting integer data to another form. Traditionally the color image processing has been much slower technique than the gray level image processing due to the three times greater data amount per image. The same has applied for the three times more memory needed. The advancements in computers, memory and processing units has made it possible to handle even large color images today cost efficiently. In some cases he image analysis in color images can in fact even be easier and faster than with a similar gray level image because of more information per pixel. Color machine vision sets new requirements for lighting, too. High intensity and white color light is required in order to acquire good images for further image processing or analysis. New development in lighting technology is bringing eventually solutions for color imaging.

  18. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane

    PubMed Central

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-01-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer. PMID:26339313

  19. Enhanced H-filter based on Fåhræus-Lindqvist effect for efficient and robust dialysis without membrane.

    PubMed

    Zheng, Wei-Chao; Xie, Rui; He, Li-Qun; Xi, Yue-Heng; Liu, Ying-Mei; Meng, Zhi-Jun; Wang, Wei; Ju, Xiao-Jie; Chen, Gang; Chu, Liang-Yin

    2015-07-01

    A novel microfluidic device for highly efficient and robust dialysis without membrane is highly desired for the development of portable or wearable microdialyzer. Here we report an enhanced H-filter with pillar array based on Fåhræus-Lindqvist effect (F-L effect) for highly efficient and robust membraneless dialysis of simplified blood for the first time. The H-filter employs two fluids laminarly flowing in the microchannel for continuously membraneless dialysis. With pillar array in the microchannel, the two laminar flows, with one containing blood cells and small molecules and another containing dialyzate solution, can form a cell-free layer at the interface as selective zones for separation. This provides enhanced mixing yet extremely low shear for extraction of small molecules from the blood-cell-containing flow into the dialyzate flow, resulting in robust separation with reduced cell loss and improved efficiency. We demonstrate this by first using Chlorella pyrenoidosa as model cells to quantitatively study the separation performances, and then using simplified human blood for dialysis. The advanced H-filter, with highly efficient and robust performance for membraneless dialysis, shows great potential as promising candidate for rapid blood analysis/separation, and as fundamental structure for portable dialyzer.

  20. Magnetic nanoparticles conjugated to chiral imidazolidinone as recoverable catalyst

    NASA Astrophysics Data System (ADS)

    Mondini, Sara; Puglisi, Alessandra; Benaglia, Maurizio; Ramella, Daniela; Drago, Carmelo; Ferretti, Anna M.; Ponti, Alessandro

    2013-11-01

    The immobilization of an ad hoc designed chiral imidazolidin-4-one onto iron oxide magnetic nanoparticles (MNPs) is described, to afford MNP-supported MacMillan's catalyst. Morphological and structural analysis of the materials, during preparation, use, and recycle, has been carried out by transmission electron microscopy. The supported catalyst was tested in the Diels-Alder reaction of cyclopentadiene with cinnamic aldehyde, affording the products in good yields and enantiomeric excesses up to 93 %, comparable to those observed with the non-supported catalyst. Recovery of the chiral catalyst has been successfully performed by simply applying an external magnet to achieve a perfect separation of the MNPs from the reaction product. The recycle of the catalytic system has been also investigated. Noteworthy, this immobilized MacMillan's catalyst proved to be able to efficiently promote the reaction in pure water.

  1. Neural control of fast nonlinear systems--application to a turbocharged SI engine with VCT.

    PubMed

    Colin, Guillaume; Chamaillard, Yann; Bloch, Gérard; Corde, Gilles

    2007-07-01

    Today, (engine) downsizing using turbocharging appears as a major way in reducing fuel consumption and pollutant emissions of spark ignition (SI) engines. In this context, an efficient control of the air actuators [throttle, turbo wastegate, and variable camshaft timing (VCT)] is needed for engine torque control. This paper proposes a nonlinear model-based control scheme which combines separate, but coordinated, control modules. Theses modules are based on different control strategies: internal model control (IMC), model predictive control (MPC), and optimal control. It is shown how neural models can be used at different levels and included in the control modules to replace physical models, which are too complex to be online embedded, or to estimate nonmeasured variables. The results obtained from two different test benches show the real-time applicability and good control performance of the proposed methods.

  2. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  3. Mesoscopic model for binary fluids

    NASA Astrophysics Data System (ADS)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  4. Sonochemical synthesis of magnetic responsive Fe3O4@TMU-17-NH2 composite as sorbent for highly efficient ultrasonic-assisted denitrogenation of fossil fuel.

    PubMed

    Mirzaie, Abbas; Musabeygi, Tahereh; Afzalinia, Ahmad

    2017-09-01

    In this work, a novel magnetic responsive composite was fabricated by encapsulation of Fe 3 O 4 nanoparticles into an amino-functionalized MOF (TMU-17-NH 2 ) under ultrasound irradiation. The prepared materials were characterized by several techniques such as elemental analyses, PXRD, FT-IR, N 2 adsorption, TGA and ICP. This composite has been applied to the adsorptive removal of nitrogen-contain compounds in model liquid fuel. The prepared composite demonstrates very good performance for the removal of NCCs. The maximum adsorption capacity of IND and QUI over prepared composite calculated 375.93 and 310.18mg·g -1 at 25°C, respectively. The composite material is magnetically separable and reusable for several times. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Application of membrane processes to alcohol-water separation: Improving the energy efficiency of biofuel production

    EPA Science Inventory

    Pervaporation • Membrane-based separation process • Not filtration Separation based on solution-diffusion transport through non-porous or “molecularly-porous” membrane Permeate is a vapor • Permeate contains only volatile compounds • Able to separate mixtures of mis...

  6. Separation of natural product using columns packed with Fused-Core particles.

    PubMed

    Yang, Peilin; Litwinski, George R; Pursch, Matthias; McCabe, Terry; Kuppannan, Krishna

    2009-06-01

    Three HPLC columns packed with 3 microm, sub-2 microm, and 2.7 microm Fused-Core (superficially porous) particles were compared in separation performance using two natural product mixtures containing 15 structurally related components. The Ascentis Express C18 column packed with Fused-Core particles showed an 18% increase in column efficiency (theoretical plates), a 76% increase in plate number per meter, a 65% enhancement in separation speed and a 19% increase in back pressure compared to the Atlantis T3 C18 column packed with 3 microm particles. Column lot-to-lot variability for critical pairs in the natural product mixture was observed with both columns, with the Atlantis T3 column exhibiting a higher degree of variability. The Ascentis Express column was also compared with the Acquity BEH column packed with sub-2 microm particles. Although the peak efficiencies obtained by the Ascentis Express column were only about 74% of those obtained by the Acquity BEH column, the 50% lower back pressure and comparable separation speed allowed high-efficiency and high-speed separation to be performed using conventional HPLC instrumentation.

  7. PFB Coal Fired Combined Cycle Development Program. Advanced hot gas cleanup concept evaluation (Task 4. 3). Volume A. Aerodyne cyclone evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes the results of testing of a rotary flow cyclone, manufactured by Aerodyne Development Corporation under license by Siemens Kraftwerk Union. This cyclone was selected for evaluation due to the unusually high separative efficiencies claimed by the manufacturer (based on developer data), and relative lack of open literature data. The most significant finding of this work was the observation that electrostatic forces could enhance or, in fact, dominate the separation process. Separative efficiencies, with electrostatic forces present, were found to be substantially independent of flow rate and, by inference, could be independent of unit size. Hence this findingmore » offers a major hope that large cyclones employed in the hot gas cleanup train of the CFCC system may not suffer the performance degradation compared to small cyclones, as projected from conventional inertial theory. The separative efficiencies of the Aerodyne cyclone separator were found from both the cold flow and the hot flow tests to be disappointingly poorer than expectations (in agreement with Westinghouse results), and even poorer than conventional cyclones. (LTN)« less

  8. Laser-structured Janus wire mesh for efficient oil-water separation.

    PubMed

    Liu, Yu-Qing; Han, Dong-Dong; Jiao, Zhi-Zhen; Liu, Yan; Jiang, Hao-Bo; Wu, Xuan-Hang; Ding, Hong; Zhang, Yong-Lai; Sun, Hong-Bo

    2017-11-23

    We report here the fabrication of a Janus wire mesh by a combined process of laser structuring and fluorosilane/graphene oxide (GO) modification of the two sides of the mesh, respectively, toward its applications in efficient oil/water separation. Femtosecond laser processing has been employed to make different laser-induced periodic surface structures (LIPSS) on each side of the mesh. Surface modification with fluorosilane on one side and GO on the other side endows the two sides of the Janus mesh with distinct wettability. Thus, one side is superhydrophobic and superoleophilic in air, and the other side is superhydrophilic in air and superoleophobic under water. As a proof of concept, we demonstrated the separation of light/heavy oil and water mixtures using this Janus mesh. To realize an efficient separation, the intrusion pressure that is dominated by the wire mesh framework and the wettability should be taken into account. Our strategy may open up a new way to design and fabricate Janus structures with distinct wettability; and the resultant Janus mesh may find broad applications in the separation of oil contaminants from water.

  9. Determination of short chain carboxylic acids in vegetable oils and fats using ion exclusion chromatography electrospray ionization mass spectrometry.

    PubMed

    Viidanoja, Jyrki

    2015-02-27

    A new method for quantification of short chain C1-C6 carboxylic acids in vegetable oils and fats by employing Liquid Chromatography Mass Spectrometry (LC-MS) has been developed. The method requires minor sample preparation and applies non-conventional Electrospray Ionization (ESI) liquid phase chemistry. Samples are first dissolved in chloroform and then extracted using water that has been spiked with stable isotope labeled internal standards that are used for signal normalization and absolute quantification of selected acids. The analytes are separated using Ion Exclusion Chromatography (IEC) and detected with Electrospray Ionization Mass Spectrometry (ESI-MS) as deprotonated molecules. Prior to ionization the eluent that contains hydrochloric acid is modified post-column to ensure good ionization efficiency of the analytes. The averaged within run precision and between run precision were generally lower than 8%. The accuracy was between 85 and 115% for most of the analytes. The Lower Limit of Quantification (LLOQ) ranged from 0.006 to 7mg/kg. It is shown that this method offers good selectivity in cases where UV detection fails to produce reliable results. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optic flow informs distance but not profitability for honeybees.

    PubMed

    Shafir, Sharoni; Barron, Andrew B

    2010-04-22

    How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs.

  11. Optic flow informs distance but not profitability for honeybees

    PubMed Central

    Shafir, Sharoni; Barron, Andrew B.

    2010-01-01

    How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs. PMID:20018787

  12. Collisional excitation of ArH+ by hydrogen atoms

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    The rotational excitation of the 36ArH+ ion in collisions with hydrogen atoms is investigated in this work. The potential energy surface (PES) describing the 36ArH+-H interaction, with the ion bond length r fixed at the average of r over the radial v = 0 vibrational state distribution, was obtained with a coupled cluster method that included single, double, and (perturbatively) triple excitations [RCCSD(T)]. A deep minimum (De = 3135 cm-1) in the PES was found in linear H-ArH+ geometry at an ion-atom separation Re = 4.80a0. Energy-dependent cross-sections and rate coefficients as a function of temperature for this collision pair were computed in close-coupling (CC) calculations. Since the PES possesses a deep well, this is a good system to test the performance of the quantum statistical (QS) method developed by Manolopoulos and co-workers as a more efficient method to compute the cross-sections. Good agreement was found between rate coefficients obtained by the CC and QS methods at several temperatures. In a simple application, the excitation of ArH+ is simulated for conditions under which this ion is observed in absorption.

  13. Validation of pharmaceutical potency determinations by quantitative nuclear magnetic resonance spectrometry.

    PubMed

    Webster, Gregory K; Marsden, Ian; Pommerening, Cynthia A; Tyrakowski, Christina M

    2010-05-01

    With the changing development paradigms in the pharmaceutical industry, laboratories are challenged to release materials for clinical studies with rapid turnaround times. To minimize cost demands, many businesses are looking to develop ways of using early Good Manufacturing Practice (GMP) materials of active pharmaceutical ingredients (API) for Good Laboratory Practice (GLP) toxicology studies. To make this happen, the analytical laboratory releases the material by one of three scenarios: (1) holding the GLP release until full GMP testing is ready, (2) issuing a separate lot number for a portion of the GMP material and releasing the material for GLP use, or (3) releasing the lot of material for GLP using alternate (equivalent) method(s) not specified for GMP release testing. Many companies are finding the third scenario to be advantageous in terms of cost and efficiency through the use of quantitative nuclear magnetic resonance (q-NMR). The use of q-NMR has proved to be a single-point replacement for routine early development testing that previously combined elements of identity testing, chromatographic assay, moisture analysis, residual solvent analysis, and elemental analysis. This study highlights that q-NMR can be validated to meet current regulatory analytical method guidelines for routine pharmaceutical analysis.

  14. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 3(2) full factorial design.

    PubMed

    Setia, Anupama; Kansal, Sahil; Goyal, Naveen

    2013-07-01

    Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.

  15. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach

    PubMed Central

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653

  16. An efficient polymeric micromotor doped with Pt nanoparticle@carbon nanotubes for complex bio-media.

    PubMed

    Li, Yana; Wu, Jie; Xie, Yuzhe; Ju, Huangxian

    2015-04-14

    A highly efficient polymeric tubular micromotor doped with Pt nanoparticle@carbon nanotubes is fabricated by template-assisted electrochemical growth. The micromotors preserve good navigation in multi-media and surface modification, along with simple synthesis, easy functionalization and good biocompatibility, displaying great promise in biological applications.

  17. A simplified sheathless cell separation approach using combined gravitational-sedimentation-based prefocusing and dielectrophoretic separation.

    PubMed

    Luo, Tao; Fan, Lei; Zeng, Yixiao; Liu, Ya; Chen, Shuxun; Tan, Qiulin; Lam, Raymond H W; Sun, Dong

    2018-05-04

    Prefocusing of the cell mixture is necessary for achieving a high-efficiency and continuous dielectrophoretic (DEP) cell separation. However, prefocusing through sheath flow requires a complex and tedious peripheral system for multi-channel fluid control, hindering the integration of DEP separation systems with other microfluidic functionalities for comprehensive clinical and biological tasks. This paper presented a simplified sheathless cell separation approach that combines gravitational-sedimentation-based sheathless prefocusing and DEP separation methods. Through gravitational sedimentation in a tubing, which was inserted into the inlet of a microfluidic chip with an adjustable steering angle, the cells were focused into a stream at the upstream region of a microchannel prior to separation. Then, a DEP force was applied at the downstream region of the microchannel for the active separation of the cells. Through this combined strategy, the peripheral system for the sheath flow was no longer required, and thus the integration of cell separation system with additional microfluidic functionalities was facilitated. The proposed sheathless scheme focused the mixture of cells with different sizes and dielectric properties into a stream in a wide range of flow rates without changing the design of the microfluidic chip. The DEP method is a label-free approach that can continuously separate cells on the basis of the sizes or dielectric properties of the cells and thus capable of greatly flexible cell separation. The efficiency of the proposed approach was experimentally assessed according to its performance in the separation of human acute monocytic leukemia THP-1 cells from yeast cells with respect to different sizes and THP-1 cells from human acute myelomonocytic leukemia OCI-AML3 cells with respect to different dielectric properties. The experimental results revealed that the separation efficiency of the method can surpass 90% and thus effective in separating cells on the basis of either size or dielectric property.

  18. Fabrication of magnetic Fe@ZnO0.6S0.4 nanocomposite for visible-light-driven photocatalytic inactivation of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Peng, Ziling; Wu, Dan; Wang, Wei; Tan, Fatang; Ng, Tsz Wai; Chen, Jianguo; Qiao, Xueliang; Wong, Po Keung

    2017-02-01

    Bacterial inactivation by magnetic photocatalysts has now received growing interests due to the easy separation for recycle and reuse of photocatalysts. In this study, magnetic Fe@ZnO0.6S0.4 photocatalyst was prepared by a facile two-step precipitation method. Multiple techniques such as X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffused reflectance spectra (UV-vis DRS) and vibrating sample magnetometer (VSM) were employed to characterize the structure, morphology and physicochemical properties of the photocatalyst. The as-obtained Fe@ZnO0.6S0.4 possessing magnetic property was easily collected from the reaction system by a magnet. Under white light-emitting-diode (LED) lamp irradiation, Fe@ZnO0.6S0.4 nanocomposite could completely inactivate 7-log of Escherichia coli K-12 within 5 h. More importantly, almost no decrease of photocatalytic efficiency in bacterial inactivation was observed even after five consecutive cycles, demonstrating Fe@ZnO0.6S0.4 exhibited good stability for reuse. The low released rate of Fe2+/Fe3+ and Zn2+ from Fe@ZnO0.6S0.4 composite further indicated the photocatalyst showed low cytotoxicity to bacterium and high stability under LED lamp irradiation. Facile preparation, high photocatalytic efficiency, good stability and reusability, and magnetic recovery property endow Fe@ZnO0.6S0.4 nanocomposite to be a promising photocatalytic material for bacterial inactivation.

  19. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  20. Separation of mouse testis cells on a Celsep (TM) apparatus and their usefulness as a source of high molecular weight DNA or RNA

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Gizang-Ginsberg, E.; Engelmyer, E.; Gavin, B. J.; Ponzetto, C.

    1985-01-01

    The use of a self-contained unit-gravity cell separation apparatus for separation of populations of mouse testicular cells is described. The apparatus, a Celsep (TM), maximizes the unit area over which sedimentation occurs, reduces the amount of separation medium employed, and is quite reproducible. Cells thus isolated have been good sources for isolation of DNA, and notably, high molecular weight RNA.

  1. "Double-Cable" Conjugated Polymers with Linear Backbone toward High Quantum Efficiencies in Single-Component Polymer Solar Cells.

    PubMed

    Feng, Guitao; Li, Junyu; Colberts, Fallon J M; Li, Mengmeng; Zhang, Jianqi; Yang, Fan; Jin, Yingzhi; Zhang, Fengling; Janssen, René A J; Li, Cheng; Li, Weiwei

    2017-12-27

    A series of "double-cable" conjugated polymers were developed for application in efficient single-component polymer solar cells, in which high quantum efficiencies could be achieved due to the optimized nanophase separation between donor and acceptor parts. The new double-cable polymers contain electron-donating poly(benzodithiophene) (BDT) as linear conjugated backbone for hole transport and pendant electron-deficient perylene bisimide (PBI) units for electron transport, connected via a dodecyl linker. Sulfur and fluorine substituents were introduced to tune the energy levels and crystallinity of the conjugated polymers. The double-cable polymers adopt a "face-on" orientation in which the conjugated BDT backbone and the pendant PBI units have a preferential π-π stacking direction perpendicular to the substrate, favorable for interchain charge transport normal to the plane. The linear conjugated backbone acts as a scaffold for the crystallization of the PBI groups, to provide a double-cable nanophase separation of donor and acceptor phases. The optimized nanophase separation enables efficient exciton dissociation as well as charge transport as evidenced from the high-up to 80%-internal quantum efficiency for photon-to-electron conversion. In single-component organic solar cells, the double-cable polymers provide power conversion efficiency up to 4.18%. This is one of the highest performances in single-component organic solar cells. The nanophase-separated design can likely be used to achieve high-performance single-component organic solar cells.

  2. Superhydrophilic graphene oxide@electrospun cellulose nanofiber hybrid membrane for high-efficiency oil/water separation.

    PubMed

    Ao, Chenghong; Yuan, Wei; Zhao, Jiangqi; He, Xu; Zhang, Xiaofang; Li, Qingye; Xia, Tian; Zhang, Wei; Lu, Canhui

    2017-11-01

    Inspired from fishscales, membranes with special surface wettability have been applied widely for the treatment of oily waste water. Herein, a novel superhydrophilic graphene oxide (GO)@electrospun cellulose nanofiber (CNF) membrane was successfully fabricated. This membrane exhibited a high separation efficiency, excellent antifouling properties, as well as a high flux for the gravity-driven oil/water separation. Moreover, the GO@CNF membrane was capable to effectively separate oil/water mixtures in a broad pH range or with a high concentration of salt, suggesting that this membrane was quite promising for future real-world practice in oil spill cleanup and oily wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A narrow open tubular column for high efficiency liquid chromatographic separation.

    PubMed

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; Xiang, Piliang; Ren, Jiangtao; Meng, Yunzhu; Zhang, Kaiqi; Juan Lu, Joann; Liu, Shaorong

    2018-04-30

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow (e.g., 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar. The column is coated with octadecylsilane and both isocratic and gradient separations are performed. We reveal a focusing effect that may be used to interpret the efficiency enhancement. We also demonstrate the feasibility of using this technique for separating complex peptide samples. This high-resolution and fast separation technique is promising and can lead to a powerful tool for trace sample analysis.

  4. Saying Good-by: An Example of Using a Good-by Technique and Concomitant Psychodrama in the Resolving of Family Grief.

    ERIC Educational Resources Information Center

    Kaminski, Robert C.

    A structured technique for saying "good-bye," or terminating a relationship, an important aspect of the therapeutic relationship, is presented. It consists of three distinct phases that are all dynamically interrelated, and can also be structured into separation caused by death. The technique is described in terms of three specific areas…

  5. Impacts of Good Practices on Cognitive Development, Learning Orientations, and Graduate Degree Plans during the First Year of College

    ERIC Educational Resources Information Center

    Cruce, Ty M.; Wolniak, Gregory C.; Seifert, Tricia A.; Pascarella, Ernest T.

    2006-01-01

    This study estimated separately the unique effects of three dimensions of good practice and the global effects of a composite measure of good practices on the cognitive development, orientations to learning, and educational aspirations of students during their first year of college. Analyses of longitudinal data from a representative sample of…

  6. Separation of rare oligodendrocyte progenitor cells from brain using a high-throughput multilayer thermoplastic-based microfluidic device.

    PubMed

    Didar, Tohid Fatanat; Li, Kebin; Veres, Teodor; Tabrizian, Maryam

    2013-07-01

    Despite the advances made in the field of regenerative medicine, the progress in cutting-edge technologies for separating target therapeutic cells are still at early stage of development. These cells are often rare, such as stem cells or progenitor cells that their overall properties should be maintained during the separation process for their subsequent application in regenerative medicine. This work, presents separation of oligodendrocyte progenitor cells (OPCs) from rat brain primary cultures using an integrated thermoplastic elastomeric (TPE)- based multilayer microfluidic device fabricated using hot-embossing technology. OPCs are frequently used in recovery, repair and regeneration of central nervous system after injuries. Indeed, their ability to differentiate in vitro into myelinating oligodendrocytes, are extremely important for myelin repair. OPCs form 5-10% of the glial cells population. The traditional macroscale techniques for OPCs separation require pre-processing of cells and/or multiple time consuming steps with low efficiency leading very often to alteration of their properties. The proposed methodology implies to separate OPCs based on their smaller size compared to other cells from the brain tissue mixture. Using aforementioned microfluidic chip embedded with a 5 μm membrane pore size and micropumping system, a separation efficiency more than 99% was achieved. This microchip was able to operate at flow rates up to 100 μl/min, capable of separating OPCs from a confluent 75 cm(2) cell culture flask in less than 10 min, which provides us with a high-throughput and highly efficient separation expected from any cell sorting techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Non-aqueous capillary electrophoretic separation of cholesterol and 25-hydroxycholesterol after derivatization with Girard P reagent.

    PubMed

    Gregus, Michal; Roberg-Larsen, Hanne; Lundanes, Elsa; Foret, Frantisek; Kuban, Petr; Wilson, Steven Ray

    2017-10-01

    Capillary electrophoresis (CE) can provide high separation efficiency with very simple instrumentation, but has yet to be explored regarding oxysterols/cholesterol. Cholesterol and 25-hydroxycholesterol (both are 4-ene-3-ketosteroids) were quantitatively transformed into hydrazones using Girard P reagent after enzymatic oxidation by cholesterol oxidase. Separation was achieved using non-aqueous capillary electrophoresis with UV detection at 280nm; the "charge-tagging" Girard P reagent ensured both charge and chromophore (which are requirements for CE-UV). Excess reagent was also separated from the two analytes, eliminating the need for removal prior to the analysis. The compounds were separated in less than 5min with excellent separation efficiency, using separation electrolytes fully compatible with mass spectrometry. The CE-UV method was used to optimize steps for charge-tagging, revealing that the procedure is affected by the analyte/reagent ratio and reaction time, but also the analyte structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    PubMed

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Impaired neurogenesis of the dentate gyrus is associated with pattern separation deficits: A computational study.

    PubMed

    Faghihi, Faramarz; Moustafa, Ahmed A

    2016-09-01

    The separation of input patterns received from the entorhinal cortex (EC) by the dentate gyrus (DG) is a well-known critical step of information processing in the hippocampus. Although the role of interneurons in separation pattern efficiency of the DG has been theoretically known, the balance of neurogenesis of excitatory neurons and interneurons as well as its potential role in information processing in the DG is not fully understood. In this work, we study separation efficiency of the DG for different rates of neurogenesis of interneurons and excitatory neurons using a novel computational model in which we assume an increase in the synaptic efficacy between excitatory neurons and interneurons and then its decay over time. Information processing in the EC and DG was simulated as information flow in a two layer feed-forward neural network. The neurogenesis rate was modeled as the percentage of new born neurons added to the neuronal population in each time bin. The results show an important role of an optimal neurogenesis rate of interneurons and excitatory neurons in the DG in efficient separation of inputs from the EC in pattern separation tasks. The model predicts that any deviation of the optimal values of neurogenesis rates leads to different decreased levels of the separation deficits of the DG which influences its function to encode memory.

  10. Inlet Diameter and Flow Volume Effects on Separation and Energy Efficiency of Hydrocyclones

    NASA Astrophysics Data System (ADS)

    Erikli, Ş.; Olcay, A. B.

    2015-08-01

    This study investigates hydrocyclone performance of an oil injected screw compressor. Especially, the oil separation efficiency of a screw compressor plays a significant role for air quality and non-stop working hour of compressors has become an important issue when the efficiency in energy is considered. In this study, two separation efficiency parameters were selected to be hydrocyclone inlet diameter and flow volume height between oil reservoir surface and top of the hydrocyclone. Nine different cases were studied in which cyclone inlet diameter and flow volume height between oil reservoir surface and top were investigated in regards to separation and energy performance aspects and the effect of the parameters on the general performance appears to be causing powerful influence. Flow inside the hydrocyclone geometry was modelled by Reynolds Stress Model (RSM) and hydro particles were tracked by Discrete Phase Model (DPM). Besides, particle break up was modelled by the Taylor Analogy Breakup (TAB) model. The reversed vortex generation was observed at different planes. The upper limit of the inlet diameter of the cyclone yields the centrifugal force on particles to decrease while the flow becomes slower; and the larger diameter implies slower flow. On the contrary, the lower limit is increment in speed causes breakup problems that the particle diameters become smaller; consequently, it is harder to separate them from gas.

  11. Electrochemical separation of hydrogen from reformate using PEM fuel cell technology

    NASA Astrophysics Data System (ADS)

    Gardner, C. L.; Ternan, M.

    This article is an examination of the feasibility of electrochemically separating hydrogen obtained by steam reforming a hydrocarbon or alcohol source. A potential advantage of this process is that the carbon dioxide rich exhaust stream should be able to be captured and stored thereby reducing greenhouse gas emissions. Results are presented for the performance of the anode of proton exchange membrane (PEM) electrochemical cell for the separation of hydrogen from a H 2-CO 2 gas mixture and from a H 2-CO 2-CO gas mixture. Experiments were carried out using a single cell state-of-the-art PEM fuel cell. The anode was fed with either a H 2-CO 2 gas mixture or a H 2-CO 2-CO gas mixture and hydrogen was evolved at the cathode. All experiments were performed at room temperature and atmospheric pressure. With the H 2-CO 2 gas mixture the hydrogen extraction efficiency is quite high. When the gas mixture included CO, however, the hydrogen extraction efficiency is relatively poor. To improve the efficiency for the separation of the gas mixture containing CO, the effect of periodic pulsing on the anode potential was examined. Results show that pulsing can substantially reduce the anode potential thereby improving the overall efficiency of the separation process although the anode potential of the CO poisoned and pulsed cell still lies above that of an unpoisoned cell.

  12. High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles.

    PubMed

    Zhu, Yang; Morisato, Kei; Hasegawa, George; Moitra, Nirmalya; Kiyomura, Tsutomu; Kurata, Hiroki; Kanamori, Kazuyoshi; Nakanishi, Kazuki

    2015-08-01

    The optimization of a porous structure to ensure good separation performances is always a significant issue in high-performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high-performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high-performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high-performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36,000 m(-1). Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans-stilbene with separation factor as 7 and theoretical plate number as 76,000 m(-1) for cis-stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long- established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Increased Mechanical Cost of Walking in Children with Diplegia: The Role of the Passenger Unit Cannot Be Neglected

    ERIC Educational Resources Information Center

    Van de Walle, P.; Hallemans, A.; Truijen, S.; Gosselink, R.; Heyrman, L.; Molenaers, G.; Desloovere, K.

    2012-01-01

    Gait efficiency in children with cerebral palsy is decreased. To date, most research did not include the upper body as a separate functional unit when exploring these changes in gait efficiency. Since children with spastic diplegia often experience problems with trunk control, they could benefit from separate evaluation of the so-called "passenger…

  14. Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, R.; Hazen, T.C.; Joyner, D.C.

    2011-04-15

    Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from themore » beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.« less

  15. Mixed-Matrix Membranes Containing Carbon Nanotubes Composite with Hydrogel for Efficient CO2 Separation.

    PubMed

    Zhang, Haiyang; Guo, Ruili; Hou, Jinpeng; Wei, Zhong; Li, Xueqin

    2016-10-26

    In this study, a carbon nanotubes composite coated with N-isopropylacrylamide hydrogel (NIPAM-CNTs) was synthesized. Mixed-matrix membranes (MMMs) were fabricated by incorporating NIPAM-CNTs composite filler into poly(ether-block-amide) (Pebax MH 1657) matrix for efficient CO 2 separation. The as-prepared NIPAM-CNTs composite filler mainly plays two roles: (i) The extraordinary smooth one-dimensional nanochannels of CNTs act as the highways to accelerate CO 2 transport through membranes, increasing CO 2 permeability; (ii) The NIPAM hydrogel layer coated on the outer walls of CNTs acts as the super water absorbent to increase water content of membranes, appealing both CO 2 permeability and CO 2 /gas selectivity. MMM containing 5 wt % NIPAM-CNTs exhibited the highest CO 2 permeability of 567 barrer, CO 2 /CH 4 selectivity of 35, and CO 2 /N 2 selectivity of 70, transcending 2008 Robeson upper bound line. The improved CO 2 separation performance of MMMs is mainly attributed to the construction of the efficient CO 2 transport pathways by NIPAM-CNTs. Thus, MMMs incorporated with NIPAM-CNTs composite filler can be used as an excellent membrane material for efficient CO 2 separation.

  16. Thermoresponsive N-alkoxyalkylacrylamide polymers as a sieving matrix for high-resolution DNA separations on a microfluidic chip

    PubMed Central

    Root, Brian E.; Hammock, Mallory L.; Barron, Annelise E.

    2012-01-01

    In recent years, there has been an increasing demand for a wide range of DNA separations that require the development of materials to meet the needs of high resolution and high throughput. Here, we demonstrate the use of thermoresponsive N-alkoxyalkylacrylamide polymers as a sieving matrix for DNA separations on a microfluidic chip. The viscosities of the N-alkoxyalkylacrylamide polymers are more than an order of magnitude lower than that of a linear polyacrylamide of corresponding molecular weight, allowing rapid loading of the microchip. At 25 °C, N-alkoxyalkylacrylamide polymers can provide improved DNA separations compared to LPA in terms of reduced separation time and increased separation efficiency, particularly for the larger DNA fragments. The improved separation efficiency in N-alkoxyalkylacrylamide polymers is attributed to the peak widths increasing only slightly with DNA fragment size, while the peak widths increase appreciably above 150 bp using an LPA matrix. Upon elevating the temperature to 50 °C, the increase in viscosity of the N-alkoxyalkylacrylamide solutions is dependent upon their overall degree of hydrophobicity. The most hydrophobic polymers exhibit an LCST below 50 °C, undergoing a coil-to-globule transition followed by chain aggregation. DNA separation efficiency at 50 °C therefore decreases significantly with increasing hydrophobic character of the polymers, and no separations were possible with solutions with an LCST below 50 °C. The work reported here demonstrates the potential for this class of polymer to be used for applications such as PCR product and RFLP sizing, and provides insight into the effect of polymer hydrophobicity on DNA separations. PMID:19053065

  17. In-tube extraction and GC-MS analysis of volatile components from wild and cultivated sea buckthorn (Hippophae rhamnoides L. ssp. Carpatica) berry varieties and juice.

    PubMed

    Socaci, Sonia A; Socaciu, Carmen; Tofană, Maria; Raţi, Ioan V; Pintea, Adela

    2013-01-01

    The health benefits of sea buckthorn (Hippophae rhamnoides L.) are well documented due to its rich content in bioactive phytochemicals (pigments, phenolics and vitamins) as well as volatiles responsible for specific flavours and bacteriostatic action. The volatile compounds are good biomarkers of berry freshness, quality and authenticity. To develop a fast and efficient GC-MS method including a minimal sample preparation technique (in-tube extraction, ITEX) for the discrimination of sea buckthorn varieties based on their chromatographic volatile fingerprint. Twelve sea buckthorn varieties (wild and cultivated) were collected from forestry departments and experimental fields, respectively. The extraction of volatile compounds was performed using the ITEX technique whereas separation and identification was performed using a GC-MS QP-2010. Principal component analysis (PCA) was applied to discriminate the differences among sample composition. Using GC-MS analysis, from the headspace of sea buckthorn samples, 46 volatile compounds were separated with 43 being identified. The most abundant derivatives were ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, octanoic acid and butanoic acid, as well as 3-methylbutyl 3-methylbutanoate, 3-methylbutyl 2-methylbutanoate and benzoic acid ethyl ester (over 80% of all volatile compounds). Principal component analysis showed that the first two components explain 79% of data variance, demonstrating a good discrimination between samples. A reliable, fast and eco-friendly ITEX/GC-MS method was applied to fingerprint the volatile profile and to discriminate between wild and cultivated sea buckthorn berries originating from the Carpathians, with relevance to food science and technology. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Monolithic column modified with bifunctional ionic liquid and styrene stationary phases for capillary electrochromatography.

    PubMed

    Mao, Zhenkun; Chen, Zilin

    2017-01-13

    A novel monolithic column with ionic liquid and styrene-modified bifunctional group was prepared for capillary electrochromatography (CEC) by in situ copolymerization in a ternary porogenic solvent. Ionic liquid (1-allyl-methylimidazolium chloride, AlMeIm + Cl - ) and styrene served as the bifunctional monomer, while ethylene dimethacrylate (EDMA) was used as the cross-linker. The monomer of AlMeIm + Cl - was introduced as anion-exchange group, while styrene as hydrophobic and aromatic group; the similar conjugated structure in AlMeIm + Cl - and styrene was beneficial for offeing obvious synergistic effect. The bifunctional stationary phase possessed powerful selectivity for the separation of neutral compounds, acidic analytes and phenols. The highest column efficiency was 2.70×10 5 platesm -1 (theoretical plates, N) for toluene. A relatively strong electroosmotic flow (EOF) was obtained in a wide range of pH values from 2.0 to 12.0, which could successfully achieve the rapid separation of the analytes within 10min. The proposed monolithic column was characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The results indicated that the resultant monolithic column had good permeability and excellent mechanical stability. Good reproducibility was obtained with relative standard deviations (RSDs) of the retention time in the range of 0.24-0.47% and 0.81-2.17% for run-to-run (n=5) and day-to-day (n=5), while 1.09-2.70% and 0.98-1.70% for column-to-column (n=3) and batch-to-batch (n=3), respectively. The combination of AlMeIm + Cl - and styrene was a promising option in the fabrication of the organic polymer monolithic column. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Evaluation of in-situ fatty acid extraction protocols for the analysis of staphylococcal cell membrane associated fatty acids by gas chromatography.

    PubMed

    Crompton, Marcus J; Dunstan, R Hugh

    2018-05-01

    The composition and integrity of the bacterial cytoplasmic membrane is critical to the survival of staphylococci in dynamic environments and it is important to investigate how the cell membrane responds to changes in the environmental conditions. The staphylococcal membrane differs from eukaryotic and many other bacterial cell membranes by having a high abundance of branch fatty acids and relatively few unsaturated fatty acids. The range of available methods for extraction and efficient analyses of staphylococcal fatty acids was initially appraised to identify the best potential procedures for appraisal. Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213) was grown under optimal conditions to generate a cell biomass to compare the efficiencies of three approaches to extract and prepare methyl esters of the membrane fatty acids: (1) acidic direct transesterification of lipids, (2) modified basic direct transesterification of membrane lipids with adjusted reaction times and temperatures, and (3) base catalysed hydrolysis followed by acid catalysed esterification in two separate chemical reactions (MIDI process). All methods were able to extract fatty acids from the cell mass effectively where these lipids represented approximately 5% of the cellular dry mass. The acidic transesterification method had the least number of steps, the lowest coefficient of variation at 6.7% and good resistance to tolerating water. Basic transesterification was the least accurate method showing the highest coefficient of variation (26%). The MIDI method showed good recoveries, but had twice the number of steps and a coefficient of variation of 16%. It was also found that there was no need to use an anti-oxidant such as BHT for the protection of polyunsaturated fatty acids when the GC-MS injection liner was clean. It was concluded that the acidic transesterification procedures formed the most efficient and reproducible method for the analyses of staphylococcal membrane fatty acids. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  20. Separation and screening of short-chain chlorinated paraffins in environmental samples using comprehensive two-dimensional gas chromatography with micro electron capture detection.

    PubMed

    Xia, Dan; Gao, Lirong; Zhu, Shuai; Zheng, Minghui

    2014-11-01

    Short-chain chlorinated paraffins (SCCPs) are highly complex technical mixtures with thousands of isomers and numerous homologs. They are classified as priority candidate persistent organic pollutants under the Stockholm Convention for their persistence, bioaccumulation, and toxicity. Analyzing SCCPs is challenging because of the complexity of the mixtures. Chromatograms of SCCPs acquired using one-dimensional (1D) gas chromatography (GC) contain a large characteristic "peak" with a broad and unresolved profile. Comprehensive two-dimensional GC (GC×GC) shows excellent potential for separating complex mixtures. In this study, GC×GC coupled with micro electron capture detection (μECD) was used to separate and screen SCCPs. The chromatographic parameters, including the GC column types, oven temperature program, and modulation period, were systematically optimized. The SCCP congeners were separated into groups using a DM-1 column connected to a BPX-50 column. The SCCP congeners in technical mixtures were separated according to the number of chlorine substituents for a given carbon chain length and according to the number of carbon atoms plus chlorine atoms for different carbon chain lengths. A fish tissue sample was analyzed to illustrate the feasibility of the GC×GC-μECD method in analyzing biological samples. Over 1,500 compounds were identified in the fish extract, significantly more than were identified using 1D GC. The detection limits for five selected SCCP congeners were between 1 and 5 pg/L using the GC×GC method, and these were significantly lower than those achieved using 1D GC. This method is a good choice for analysis of SCCPs in environmental samples, exhibiting good separation and good sensitivity.

  1. Microelectrophoresis of selected mineral particles

    NASA Technical Reports Server (NTRS)

    Herren, B. J.; Tipps, R. W.; Alexander, K. D.

    1982-01-01

    Particle mobilities of ilmenite, labradorite plagioclase, enstatite pyroxene, and olivine were measured with a Rank microelectrophoresis system to evaluate indicated mineral separability. Sodium bicarbonate buffer suspension media with and without additives (0.0001 M DTAB and 5 percent v/v ethylene glycol) were used to determine differential adsorption by mineral particles and modification of relative mobilities. Good separability between some minerals was indicated; additives did not enhance separability.

  2. Efficient extraction and preparative separation of four main isoflavonoids from Dalbergia odorifera T. Chen leaves by deep eutectic solvents-based negative pressure cavitation extraction followed by macroporous resin column chromatography.

    PubMed

    Li, Lu; Liu, Ju-Zhao; Luo, Meng; Wang, Wei; Huang, Yu-Yan; Efferth, Thomas; Wang, Hui-Mei; Fu, Yu-Jie

    2016-10-15

    In this study, green and efficient deep eutectic solvent-based negative pressure cavitation-assisted extraction (DES-NPCE) followed by macroporous resin column chromatography was developed to extract and separate four main isoflavonoids, i.e. prunetin, tectorigenin, genistein and biochanin A from Dalbergia odorifera T. Chen leaves. The extraction procedure was optimized systematically by single-factor experiments and a Box-Behnken experimental design combined with response surface methodology. The maximum extraction yields of prunetin, tectorigenin, genistein and biochanin A reached 1.204, 1.057, 0.911 and 2.448mg/g dry weight, respectively. Moreover, the direct enrichment and separation of four isoflavonoids in DES extraction solution was successfully achieved by macroporous resin AB-8 with recovery yields of more than 80%. The present study provides a convenient and efficient method for the green extraction and preparative separation of active compounds from plants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Enhancing Enantiomeric Separation with Strain: The Case of Serine on Cu(531)

    DOE PAGES

    Wang, Yonghui; Yang, Sha; Fuentes-Cabrera, Miguel; ...

    2017-05-26

    Serine has two enantiomers, d and l, which exhibit identical physical and chemical properties but have dramatically different physiological effects. For the pharmaceutical industry, it is very important to be able to separate both enantiomers. Here we study the enantioselectivity of the (531) surfaces of Cu, Ag, Au, and Pd using density functional theory with an accurate treatment of the van der Waals interactions. Among these surfaces, it is found that Cu(531) is the most efficient for energetically separating serine enantiomers. This greater efficiency is ultimately related to a conformational strain imposed in serine and most of all in themore » supporting substrate. Motivated by this, we decorated the step sites of Cu(531) with Ni atoms and showed that serine enantioselectivity increases by 36% as compared to that of pristine Cu(531). Furthermore, these results suggest that efficient enantiomeric separation of small chiral molecules could be achieved with bimetallic stepped surfaces for which strain, both in the surface and the molecule, increases significantly upon deposition.« less

  4. Investigation of thermal treatment on selective separation of post consumer plastics prior to froth flotation.

    PubMed

    Guney, Ali; Poyraz, M Ibrahim; Kangal, Olgac; Burat, Firat

    2013-09-01

    Plastics have become the widely used materials because of their advantages, such as cheapness, endurance, lightness, and hygiene. However, they cause waste and soil pollution and they do not easily decompose. Many promising technologies are being investigated for separating mixed thermoplastics, but they are still uneconomical and unreliable. Depending on their surface characteristics, these plastics can be separated from each other by flotation method which is useful mineral processing technique with its low cost and simplicity. The main objective of this study is to investigate the flotation characteristics of PET and PVC and determine the effect of plasticizer reagents on efficient plastic separation. For that purpose, various parameters such as pH, plasticizer concentration, plasticizer type, conditioning temperature and thermal conditioning were investigated. As a result, PET particles were floated with 95.1% purity and 65.3% efficiency while PVC particles were obtained with 98.1% purity and 65.3% efficiency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Effects of ozone and peroxone on algal separation via dispersed air flotation.

    PubMed

    Nguyen, Truc Linh; Lee, D J; Chang, J S; Liu, J C

    2013-05-01

    Effects of pre-oxidation on algal separation by dispersed air flotation were examined. Ozone (O3) and peroxone (O3 and H2O2) could induce cell lysis, release of intracellular organic matter (IOM), and mineralization of organic substances. Separation efficiency of algal cells improved when pre-oxidized. Total of 76.4% algal cells was separated at 40 mg/L of N-cetyl-N-N-N-trimethylammonium bromide (CTAB), while 95% were separated after 30-min ozonation. Pre-oxidation by ozone and peroxone also enhanced flotation separation efficiency of dissolved organic carbon (DOC), polysaccharide, and protein, in which peroxone process exerted more significantly than O3. Two main mechanisms were involved in flotation separation of unoxidized algal suspension, namely hydrophobic cell surface and cell flocculation resulting from CTAB adsorption. However, flocculation by CTAB was hindered for pre-oxidized algal suspensions. It implied that the compositional changes in extracellular organic matter (EOM) by pre-oxidation were more determined for flotation separation of pre-oxidized cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Comparison of high-performance liquid chromatography separation of red wine anthocyanins on a mixed-mode ion-exchange reversed-phase and on a reversed-phase column.

    PubMed

    Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich

    2010-09-03

    Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex separation that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-phase column was reported to separate anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the separation of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary phases. Also interesting is the separation of the polymeric fraction, which elutes as a clearly separated peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode phase, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode phase with increased efficiency should provide an interesting perspective for separation of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension separation in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.

  7. Modeling and identifying the sources of radiocesium contamination in separate sewerage systems.

    PubMed

    Pratama, Mochamad Adhiraga; Yoneda, Minoru; Yamashiki, Yosuke; Shimada, Yoko; Matsui, Yasuto

    2018-05-01

    The Fukushima Dai-ichi nuclear power plant accident released radiocesium in large amounts. The released radionuclides contaminated much of the surrounding environment, including sewers in urban areas of Fukushima prefecture. In this study we attempted to identify and quantify the sources of radiocesium contamination in separate sewerage systems and developed a compartment model based on the Radionuclide Migration in Urban Environments and Drainage Systems (MUD) model. Measurements of the time-dependent radiocesium concentration in sewer sludge combined with meteorological, demographic, and radiocesium dietary intake data indicated that rainfall-derived inflow and infiltration (RDII) and human excretion were the chief contributors of radiocesium contamination in a separate sewerage system. The quantities of contamination derived from RDII and human excretion were calculated and used in the modified MUD model to simulate radiocesium contamination in sewers in three urban areas in Fukushima prefecture: Fukushima, Koriyama, and Nihonmatsu Cities. The Nash efficiency coefficient (0.88-0.92) and determination coefficient (0.89-0.93) calculated in an evaluation of our compartment model indicated that the model produced satisfactory results. We also used the model to estimate the total volume of sludge with radiocesium concentrations in excess of the clearance level, based on the number of months elapsed after the accident. Estimations by our model suggested that wastewater treatment plants (WWTPs) in Fukushima, Koriyama, and Nihonmatsu generated about 1,750,000m 3 of radioactive sludge in total, a level in good agreement with the real data. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Use of vancomycin silica stationary phase in packed capillary electrochromatography I. Enantiomer separation of basic compounds.

    PubMed

    Desiderio, C; Aturki, Z; Fanali, S

    2001-02-01

    Chiral separation of basic compounds was achieved by using 75 or 100 microm ID fused-silica capillaries packed with a vanoomycin-modified diol silica stationary phase. The capillary was firstly packed for about 12 cm with a slurry mixture composed of diolsilica (3:1) then with the vancomycin modified diol-silica (3:1) (23 cm), and finally with diol-silica (3:1) for about 2 cm. Frits were prepared by a heating wire at the two ends of the capillary; the detector window was prepared at 8.5 cm from the end of the capillary where vancomycin was not present. The influence of the mobile phase composition (pH and concentration, organic modifier type and concentration) on the velocity of the electroosmotic flow, chiral resolution and enantioselectivity was studied. Good enantiomeric resolution was achieved for atenolol, oxprenolol, propranolol, and venlafaxine using a mobile phase composition of 100 mM ammonium acetate solution (pH 6)/water/acetonitrile (5:5:90 v/v/v) while for terbutaline a mixture of 5:15:80 v/v/v provided the best separations. The use of methanol instead of acetonitrile caused a general increase of enantiomer resolution of the studied compounds together with a reduction of efficiency and detector response. However, the combination of acetonitrile and methanol in the mobile phase (as, e.g., 10% methanol and 80% acetonitrile) allowed to improve the enantiomer resolution with satisfactory detector response.

  9. Mitigation of crosstalk based on CSO-ICA in free space orbital angular momentum multiplexing systems

    NASA Astrophysics Data System (ADS)

    Xing, Dengke; Liu, Jianfei; Zeng, Xiangye; Lu, Jia; Yi, Ziyao

    2018-09-01

    Orbital angular momentum (OAM) multiplexing has caused a lot of concerns and researches in recent years because of its great spectral efficiency and many OAM systems in free space channel have been demonstrated. However, due to the existence of atmospheric turbulence, the power of OAM beams will diffuse to beams with neighboring topological charges and inter-mode crosstalk will emerge in these systems, resulting in the system nonavailability in severe cases. In this paper, we introduced independent component analysis (ICA), which is known as a popular method of signal separation, to mitigate inter-mode crosstalk effects; furthermore, aiming at the shortcomings of traditional ICA algorithm's fixed iteration speed, we proposed a joint algorithm, CSO-ICA, to improve the process of solving the separation matrix by taking advantage of fast convergence rate and high convergence precision of chicken swarm algorithm (CSO). We can get the optimal separation matrix by adjusting the step size according to the last iteration in CSO-ICA. Simulation results indicate that the proposed algorithm has a good performance in inter-mode crosstalk mitigation and the optical signal-to-noise ratio (OSNR) requirement of received signals (OAM+2, OAM+4, OAM+6, OAM+8) is reduced about 3.2 dB at bit error ratio (BER) of 3.8 × 10-3. Meanwhile, the convergence speed is much faster than the traditional ICA algorithm by improving about an order of iteration times.

  10. Rapid and continuous magnetic separation in droplet microfluidic devices

    DOE PAGES

    Brouzes, Eric; Kruse, Travis; Kimmerling, Robert; ...

    2014-12-03

    Here, we present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization.more » We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.« less

  11. Magnetically separable nanoferrite-anchored glutathione: Aqueous homocoupling of arylboronic acids under microwave irradiation

    EPA Science Inventory

    A highly active, stable and magnetically separable glutathione based organocatalyst provided good to excellent yields to symmetric biaryls in the homocoupling of arylboronic acids under microwave irradiation. Symmetrical biaryl motifs are present in a wide range of natural p...

  12. Development of Electrospun Nanomaterials and their Applications in Separation Science

    NASA Astrophysics Data System (ADS)

    Newsome, Toni Elwell

    In separations, efficiency is inversely related to the diameter of the sorbent particles of the stationary phase. Thus, materials research in separation science has primarily been directed towards reducing the diameter of the sorbent particle used in the stationary phase. In this dissertation, innovative methods designed for the fabrication and application of electrospun sorbent nanomaterials for separation science are described. Electrospinning is a facile, cost-effective technique that relies on repulsive electrostatic forces to produce nanofibers from a viscoelastic solution. Here, electrospinning is used to generate polymer, carbon, and silica-based nanofibers which are employed as sorbent nanomaterials in extractions and separations. Electrospun carbon nanofibers have proven to be ideal extractive phases for solid-phase microextraction (SPME) when coupled to gas chromatography (GC) for headspace sampling of volatile analytes. Herein, these carbon nanofibers were employed in the direct extraction of nonvolatile analytes and coupled to liquid chromatography (LC) for the first time. The high surface area of the coatings led to enhanced extraction efficiencies; they offered a 3-33 fold increase in efficiency relative to a commercial SPME phase. Carbon nanofibers proved to be stable when immersed in liquids common to LC demonstrating the enhanced stability of these coatings in SPME coupled to LC relative to conventional SPME fibers. The enhanced chemical and mechanical stability of the carbon SPME coatings considerably expanded the range of compounds applicable to SPME and extended the lifetimes of the fibers. Electrospun nanofibers have also proven to be ideal stationary phases in ultra-thin layer chromatography (UTLC). Nanofibers provide faster separations and enhanced separation efficiencies compared to commercial particle-based stationary phases in a relatively short distance. Here, the electrospun-UTLC technology was extended for the first time to nanofibers composed of silica, the most commonly used surface for TLC. An electrospinning method was optimized to produce silica-based nanofibers with the smallest diameter possible (300-380 nm) while maintaining homogenous nanofiber morphology. Highly efficient separations were performed in 15 mm with observed plate heights as low as 8.6 mum. Silica-based nanofibers proved to be chemically stable with a wide variety of TLC reagents demonstrating the enhanced compatibility of these phases with common TLC methods relative to polymer and carbon nanofiber UTLC plates. The extension of electrospun UTLC to silica-based nanofibers vastly expanded the range of analytes and TLC methods which can be used with this technology. The main disadvantage of conventional TLC development methods is that the mobile phase velocity decreases with increasing separation distance. Here, the chromatographic performance of electrospun polymer stationary phases was further improved by using a forced-flow mobile phase in planar electrochromatography (PEC) in which mobile phase velocity does not diminish with increasing distance. Separations were performed on polymer nanofiber UTLC plates in 1-2 min. Compared to UTLC, PEC offered unique selectivity, decreased analysis times (> 4 times faster), and enhanced efficiency (2-3 times lower plate height). In addition, two-dimensional (2D) separations of a complex analyte mixture using UTLC followed by PEC required only 11 min and exhibited a significant increase in separation number (70-77).

  13. Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase.

    PubMed

    Šatínský, Dalibor; Brabcová, Ivana; Maroušková, Alena; Chocholouš, Petr; Solich, Petr

    2013-07-01

    A simple, rapid, and environmentally friendly HPLC method was developed and validated for the separation of four compounds (4-aminophenol, caffeine, paracetamol, and propyphenazone) with different chemical properties. A "green" mobile phase, employing water as the major eluent, was proposed and applied to the separation of analytes with different polarity on polyethylene glycol (PEG) stationary phase. The chromatography separation of all compounds and internal standard benzoic acid was performed using isocratic elution with a low-toxicity mobile phase consisting of 0.04% (v/v) triethylamine and water. HPLC separation was carried out using a PEG reversed-phase stationary phase Supelco Discovery HS PEG column (15 × 4 mm; particle size 3 μm) at a temperature of 30 °C and flow rate at 1.0 mL min(-1). The UV detector was set at 210 nm. In this study, a PEG stationary phase was shown to be suitable for the efficient isocratic separation of compounds that differ widely in hydrophobicity and acid-base properties, particularly 4-aminophenol (log P, 0.30), caffeine (log P, -0.25), and propyphenazone (log P, 2.27). A polar PEG stationary phase provided specific selectivity which allowed traditional chromatographic problems related to the separation of analytes with different polarities to be solved. The retention properties of the group of structurally similar substances (aromatic amines, phenolic compounds, and xanthine derivatives) were tested with different mobile phases. The proposed green chromatography method was successfully applied to the analysis of active substances and one degradation impurity (4-aminophenol) in commercial preparation. Under the optimum chromatographic conditions, standard calibration was carried out with good linearity correlation coefficients for all compounds in the range (0.99914-0.99997, n = 6) between the peak areas and concentration of compounds. Recovery of the sample preparation was in the range 100 ± 5% for all compounds. The intraday method precision was determined as RSD, and the values were lower than 1.00%.

  14. Fast trace determination of nine odorant and estrogenic chloro- and bromo-phenolic compounds in real water samples through automated solid-phase extraction coupled with liquid chromatography tandem mass spectrometry.

    PubMed

    Yuan, Su-Fen; Liu, Ze-Hua; Lian, Hai-Xian; Yang, Chuang-Tao; Lin, Qing; Yin, Hua; Lin, Zhang; Dang, Zhi

    2018-02-01

    A fast and reliable method was developed for simultaneous trace determination of nine odorous and estrogenic chloro- and bromo-phenolic compounds (CPs and BPs) in water samples using solid-phase extraction (SPE) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). For sample preparation, the extraction efficiencies of two widely applied cartridges Oasis HLB and Sep-Pak C18 were compared, and the Oasis HLB cartridge showed much better extraction performance; pH of water sample also plays important role on extraction, and pH = 2-3 was found to be most appropriate. For separation of the target compounds, small addition of ammonium hydroxide can obviously improve the detection sensitivity, and the optimized addition concentration was determined as 0.2%. The developed efficient method was validated and showed excellent linearity (R 2  > 0.995), low limit of detection (LOD, 1.9-6.2 ng/L), and good recovery efficiencies of 57-95% in surface and tap water with low relative standard deviation (RSD, 1.3-17.4%). The developed method was finally applied to one tap and one surface water samples and most of these nine targets were detected, but all of them were below their odor thresholds, and their estrogen equivalent (EEQ) were also very low.

  15. Cu2O/CuO Bilayered Composite as a High-Efficiency Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xu, Di; Wu, Qingyong; Diao, Peng

    2016-10-01

    Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm-2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.

  16. Graphene-based Recyclable Photo-Absorbers for High-Efficiency Seawater Desalination.

    PubMed

    Wang, Xiangqing; Ou, Gang; Wang, Ning; Wu, Hui

    2016-04-13

    Today's scientific advances in water desalination dramatically increase our ability to transform seawater into fresh water. As an important source of renewable energy, solar power holds great potential to drive the desalination of seawater. Previously, solar assisted evaporation systems usually relied on highly concentrated sunlight or were not suitable to treat seawater or wastewater, severely limiting the large scale application of solar evaporation technology. Thus, a new strategy is urgently required in order to overcome these problems. In this study, we developed a solar thermal evaporation system based on reduced graphene oxide (rGO) decorated with magnetic nanoparticles (MNPs). Because this material can absorb over 95% of sunlight, we achieved high evaporation efficiency up to 70% under only 1 kW m(-2) irradiation. Moreover, it could be separated from seawater under the action of magnetic force by decorated with MNPs. Thus, this system provides an advantage of recyclability, which can significantly reduce the material consumptions. Additionally, by using photoabsorbing bulk or layer materials, the deposition of solutes offen occurs in pores of materials during seawater desalination, leading to the decrease of efficiency. However, this problem can be easily solved by using MNPs, which suggests this system can be used in not only pure water system but also high-salinity wastewater system. This study shows good prospects of graphene-based materials for seawater desalination and high-salinity wastewater treatment.

  17. Highly Efficient, Low-Cost, and Magnetically Recoverable FePt⁻Ag Nanocatalysts: Towards Green Reduction of Organic Dyes.

    PubMed

    Liu, Yang; Zhang, Yuanyuan; Kou, Qiangwei; Chen, Yue; Sun, Yantao; Han, Donglai; Wang, Dandan; Lu, Ziyang; Chen, Lei; Yang, Jinghai; Xing, Scott Guozhong

    2018-05-14

    Nowadays, synthetic organic dyes and pigments discharged from numerous industries are causing unprecedentedly severe water environmental pollution, and conventional water treatment processes are hindered due to the corresponding sophisticated aromatic structures, hydrophilic nature, and high stability against light, temperature, etc. Herein, we report an efficient fabrication strategy to develop a new type of highly efficient, low-cost, and magnetically recoverable nanocatalyst, i.e., FePt⁻Ag nanocomposites, for the reduction of methyl orange (MO) and rhodamine B (RhB), by a facile seed deposition process. X-ray diffraction results elaborate that the as-synthesized FePt⁻Ag nanocomposites are pure disordered face-centered cubic phase. Transmission electron microscopy studies demonstrate that the amount of Ag seeds deposited onto the surfaces of FePt nanocrystals increases when increasing the additive amount of silver colloids. The linear correlation of the MO and RhB concentration versus reaction time catalyzed by FePt⁻Ag nanocatalysts is in line with pseudo-first-order kinetics. The reduction rate constants of MO and RhB increase with the increase of the amount of Ag seeds. FePt⁻Ag nanocomposites show good separation ability and reusability, and could be repeatedly applied for nearly complete reduction of MO and RhB for at least six successive cycles. Such cost-effective and recyclable nanocatalysts provide a new material family for use in environmental protection applications.

  18. Development and Utilization of Host Materials for White Phosphorescent Organic Light-Emitting Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ching; Chen, Shaw

    Our project was primarily focused on the MYPP 2015 goal for white phosphorescent organic devices (PhOLEDs or phosphorescent organic light-emitting diodes) for solid-state lighting with long lifetimes and high efficiencies. Our central activity was to synthesize and evaluate a new class of host materials for blue phosphors in the PhOLEDs, known to be a weak link in the device operating lifetime. The work was a collaborative effort between three groups, one primarily responsible for chemical design and characterization (Chen), one primarily responsible for device development (Tang) and one primarily responsible for mechanistic studies and degradation analysis (Rothberg). The host materialsmore » were designed with a novel architecture that chemically links groups with good ability to move electrons with those having good ability to move “holes” (positive charges), the main premise being that we could suppress the instability associated with physical separation and crystallization of the electron conducting and hole conducting materials that might cause the devices to fail. We found that these materials do prevent crystallization and that this will increase device lifetimes but that efficiencies were reduced substantially due to interactions between the materials creating new low energy “charge transfer” states that are non-luminescent. Therefore, while our proposed strategy could in principle improve device lifetimes, we were unable to find a materials combination where the efficiency was not substantially compromised. In the course of our project, we made several important contributions that are peripherally related to the main project goal. First, we were able to prepare the proposed new family of materials and develop synthetic routes to make them efficiently. These types of materials that can transport both electrons and holes may yet have important roles to play in organic device technology. Second we developed an important new method for controlling the deposition profile of material so that arbitrary concentration gradients can be implemented in layers with mixed composition. These concentration profiles are known to increase device efficiency and longevity and we confirmed that experimentally. Third, we investigated a new method for analyzing degradation in devices using mass spectrometry to look for degradation products. We showed that these methods are not simple to interpret unambiguously and need to be used with caution.« less

  19. Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.

    PubMed

    Ibrahim, Mohammed E A; Lucy, Charles A

    2012-10-15

    Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Facile on-site detection of substituted aromatic pollutants in water using thin layer chromatography combined with surface-enhanced Raman spectroscopy.

    PubMed

    Li, Dawei; Qu, Lulu; Zhai, Wenlei; Xue, Jinqun; Fossey, John S; Long, Yitao

    2011-05-01

    A novel facile method for on-site detection of substituted aromatic pollutants in water using thin layer chromatography (TLC) combined with surface-enhanced Raman spectroscopy (SERS) was explored. Various substituted aromatics in polluted water were separated by a convenient TLC protocol and then detected using a portable Raman spectrometer with the prepared silver colloids serving as SERS-active substrates. The effects of operating conditions on detection efficacy were evaluated, and the application of TLC-SERS to on-site detection of artificial and real-life samples of aromatics/polluted water was systematically investigated. It was shown that commercially available Si 60-F(254) TLC plates were suitable for separation and displayed low SERS background and good separation efficiency, 2 mM silver colloids, 20 mM NaCl (working as aggregating agent), 40 mW laser power, and 50 s intergration time were appropriate for the detection regime. Furthermore, qualitative and quantitative detection of most of substituted aromatic pollutants was found to be readily accomplished using the developed TLC-SERS technique, which compared well with GC-MS in terms of identification ability and detection accuracy, and a limit of detection (LOD) less than 0.2 ppm (even at ppb level for some analytes) could be achieved under optimal conditions. The results reveal that the presented convenient method could be used for the effective separation and detection of the substituted aromatic pollutants of water on site, thus reducing possible influences of sample transportation and contamination while shortening the overall analysis time for emergency and routine monitoring of the substituted aromatics/polluted water.

Top