Sample records for good testing ground

  1. Figure-ground asymmetries in the Implicit Association Test (IAT).

    PubMed

    Rothermund, K; Wentura, D

    2001-01-01

    Based on the assumption that binary classification tasks are often processed asymmetrically (figure-ground asymmetries), two experiments showed that association alone cannot account for effects observed in the Implicit Association Test (IAT). Experiment 1 (N = 16) replicated a standard version of the IAT effect using old vs. young names as target categories and good and bad words as attribute categories. However, reliable compatibility effects were also found for a modified version of the task in which neutral words vs. nonwords instead of good vs. bad words were used as attribute categories. In Experiment 2 (N = 8), a reversed IAT effect was observed after the figure-ground asymmetry in the target dimension had been inverted by a previous go/nogo detection task in which participants searched for exemplars of the category "young." The experiments support the hypothesis that figure-ground asymmetries produce compatibility effects in the IAT and suggest that IAT effects do not rely exclusively on evaluative associations between the target and attribute categories.

  2. Gaia Launch Imminent: A Review of Practices (Good and Bad) in Building the Gaia Ground Segment

    NASA Astrophysics Data System (ADS)

    O'Mullane, W.

    2014-05-01

    As we approach launch the Gaia ground segment is ready to process a steady stream of complex data coming from Gaia at L2. This talk will focus on the software engineering aspects of the ground segment. Of course in a short paper it is difficult to cover everything but an attempt will be made to highlight some good things, like the Dictionary Tool and some things to be careful with like computer aided software engineering tools. The usefulness of some standards like ECSS will be touched upon. Testing is also certainly part of this story as are Challenges or Rehearsals so they will not go without mention.

  3. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  4. X-29 High Alpha Test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Underwood, Pamela J.; Owens, Lewis R.; Wahls, Richard A.; Williams, Susan

    2003-01-01

    This paper describes the X-29A research program at the National Transonic Facility. This wind tunnel test leveraged the X-29A high alpha flight test program by enabling ground-to-flight correlation studies with an emphasis on Reynolds number effects. The background and objectives of this test program, as well as the comparison of high Reynolds number wind tunnel data to X-29A flight test data are presented. The effects of Reynolds number on the forebody pressures at high angles of attack are also presented. The purpose of this paper is to document this test and serve as a reference for future ground-to-flight correlation studies, and high angle-of-attack investigations. Good ground-to-flight correlations were observed for angles of attack up to 50 deg, and Reynolds number effects were also observed.

  5. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  6. Grounding, bonding and shielding for safety and signal interference control

    NASA Technical Reports Server (NTRS)

    Forsyth, T. J.; Bautista, AL

    1990-01-01

    Aircraft models and other aerodynamic tests are conducted at the NASA Ames Research Center National Full Scale Aerodynamics Complex (NFAC). The models, tested in NFAC's wind tunnels, are sometimes heavily instrumented and are connected to a data acquisition system. Besides recording data for evaluation, certain critical information must be monitored to be sure the model is within operational limits. The signals for these parameters are for the most part low-level signals that require good instrumentation amplification. These amplifiers need to be grounded and shielded for common mode rejection and noise reduction. The instrumentation also needs to be grounded to prevent electrical shock hazards. The purpose of this paper is to present an understanding of the principles and purpose of grounding, bonding, and shielding.

  7. Processing Relative Clauses by Hungarian Typically Developing Children

    ERIC Educational Resources Information Center

    Kas, Bence; Lukacs, Agnes

    2012-01-01

    Hungarian is a language with morphological case marking and relatively free word order. These typological characteristics make it a good ground for testing the crosslinguistic validity of theories on processing sentences with relative clauses. Our study focused on effects of structural factors and processing capacity. We tested 43 typically…

  8. Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

    NASA Astrophysics Data System (ADS)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Boudin, Frédérick; Durand, Stéphane; Lavenant, Nicolas

    2015-12-01

    Fractured aquifers which bear valuable water resources are often difficult to characterize with classical hydrogeological tools due to their intrinsic heterogeneities. Here we implement ground surface deformation tools (tiltmetry and optical leveling) to monitor groundwater pressure changes induced by a classical hydraulic test at the Ploemeur observatory. By jointly analyzing complementary time constraining data (tilt) and spatially constraining data (vertical displacement), our results strongly suggest that the use of these surface deformation observations allows for estimating storativity and structural properties (dip, root depth, and lateral extension) of a large hydraulically active fracture, in good agreement with previous studies. Hence, we demonstrate that ground surface deformation is a useful addition to traditional hydrogeological techniques and opens possibilities for characterizing important large-scale properties of fractured aquifers with short-term well tests as a controlled forcing.

  9. Flight service environmental effects on composite materials and structures

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Baker, Donald J.

    1992-01-01

    NASA Langley and the U.S. Army have jointly sponsored programs to assess the effects of realistic flight environments and ground-based exposure on advanced composite materials and structures. Composite secondary structural components were initially installed on commercial transport aircraft in 1973; secondary and primary structural components were installed on commercial helicopters in 1979; and primary structural components were installed on commercial aircraft in the mid-to-late 1980's. Service performance, maintenance characteristics, and residual strength of numerous components are reported. In addition to data on flight components, 10 year ground exposure test results on material coupons are reported. Comparison between ground and flight environmental effects for several composite material systems are also presented. Test results indicate excellent in-service performance with the composite components during the 15 year period. Good correlation between ground-based material performance and operational structural performance has been achieved.

  10. Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1

    NASA Technical Reports Server (NTRS)

    Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.

    1986-01-01

    The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.

  11. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    NASA Astrophysics Data System (ADS)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  12. Ground reaction forces on stairs. Part II: knee implant patients versus normals.

    PubMed

    Stacoff, Alex; Kramers-de Quervain, Inès A; Luder, Gerhard; List, Renate; Stüssi, Edgar

    2007-06-01

    The goal of this study was to compare selected parameters of vertical ground reaction forces (GRF) of good outcome patients with different prosthesis designs with a matched control group during level walking, stair ascent and descent. Forty subjects, 29 with three main implant designs (including four subjects with a passive knee flexion restriction), and 11 healthy controls were measured with 8-10 repetitions. Vertical ground reaction forces were measured during two consecutive steps with force plates embedded in the walkway and the staircase. Defined parameters of the force signals were used to compare the results of the test groups. The results show, that, postoperatively, good outcome patients produce gait patterns of the vertical ground reaction force which are comparable to normal healthy subjects with the exception of a few distinct differences: a significant reduction (p<0.05) in the vertical loading on the operated side during level walking at take-off, at weight acceptance and take-off during stair ascent of the normal stair. During stair descent, the patients did not reduce load on the operated side, but increased load variation and side-to-side asymmetry; thus, the mechanical loads on the implants were high, which may be important information with respect to loading protocols of knee implant simulators. No systematic differences in any of the test parameters were found between posterior cruciate-retaining (LCS MB and Innex CR) versus non-retaining (LCS RP and Innex UCOR) implant designs. The restricted group showed significant reductions (p<0.05) of several loading parameters as well as an increased side-to-side asymmetry. About one third of the force parameters of the good outcome patients showed a side-to-side asymmetry between two consecutive steps, which was over a proposed level of acceptance.

  13. Slanted-edge MTF testing for establishing focus alignment at infinite conjugate of space optical systems with gravity sag effects

    NASA Astrophysics Data System (ADS)

    Newswander, T.; Riesland, David W.; Miles, Duane; Reinhart, Lennon

    2017-09-01

    For space optical systems that image extended scenes such as earth-viewing systems, modulation transfer function (MTF) test data is directly applicable to system optical resolution. For many missions, it is the most direct metric for establishing the best focus of the instrument. Additionally, MTF test products can be combined to predict overall imaging performance. For fixed focus instruments, finding the best focus during ground testing is critical to achieving good imaging performance. The ground testing should account for the full-imaging system, operational parameters, and operational environment. Testing the full-imaging system removes uncertainty caused by breaking configurations and the combination of multiple subassembly test results. For earth viewing, the imaging system needs to be tested at infinite conjugate. Operational environment test conditions should include temperature and vacuum. Optical MTF testing in the presence of operational vibration and gravity release is less straightforward and may not be possible on the ground. Gravity effects are mitigated by testing in multiple orientations. Many space telescope systems are designed and built to have optimum performance in a gravity-free environment. These systems can have imaging performance that is dominated by aberration including astigmatism. This paper discusses how the slanted edge MTF test is applied to determine the best focus of a space optical telescope in ground testing accounting for gravity sag effects. Actual optical system test results and conclusions are presented.

  14. Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2017-01-01

    Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signatures at specified distances and off-track angles, using an inviscid, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft configuration with a powered nacelle. For efficiency, boom carpets are decomposed into sets of independent meshes and computed in parallel. This also facilitates the use of more effective meshing strategies - each off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also presented for the two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Burgers' equation method (NASA's sBOOM), and ground noise metrics are computed with LCASB.

  15. 21 CFR 58.202 - Grounds for disqualification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....202 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Disqualification of Testing Facilities § 58.202... adversely affected the validity of the nonclinical laboratory studies; and (c) Other lesser regulatory...

  16. 21 CFR 58.202 - Grounds for disqualification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....202 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL GOOD LABORATORY PRACTICE FOR NONCLINICAL LABORATORY STUDIES Disqualification of Testing Facilities § 58.202... adversely affected the validity of the nonclinical laboratory studies; and (c) Other lesser regulatory...

  17. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  18. Ground vibrations from heavy freight trains

    NASA Astrophysics Data System (ADS)

    Dawn, T. M.

    1983-03-01

    Ground vibration from heavy freight trains on good quality welded track are found to have only a weak dependence on train speed above 30 km/h. At the site on which these tests were carried out a critical speed was found at which the vibration reached a peak. The frequencies of vibration produced appear to be functions of track and vehicle dimensions and the critical speed occurs at the coincidence of sleeper passage frequency and the total vehicle on track resonance frequency.

  19. Shuttle structural dynamics characteristics: The analysis and verification

    NASA Technical Reports Server (NTRS)

    Modlin, C. T., Jr.; Zupp, G. A., Jr.

    1985-01-01

    The space shuttle introduced a new dimension in the complexity of the structural dynamics of a space vehicle. The four-body configuration exhibited structural frequencies as low as 2 hertz with a model density on the order of 10 modes per hertz. In the verification process, certain mode shapes and frequencies were identified by the users as more important than others and, as such, the test objectives were oriented toward experimentally extracting those modes and frequencies for analysis and test correlation purposes. To provide the necessary experimental data, a series of ground vibration tests (GVT's) was conducted using test articles ranging from the 1/4-scale structural replica of the space shuttle to the full-scale vehicle. The vibration test and analysis program revealed that the mode shapes and frequency correlations below 10 hertz were good. The quality of correlation of modes between 10 and 20 hertz ranged from good to fair and that of modes above 20 hertz ranged from poor to good. Since the most important modes, based on user preference, were below 10 hertz, it was judged that the shuttle structural dynamic models were adequate for flight certifications.

  20. The General Aviation Propulsion (GAP) Program

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The General Aviation Propulsion (GAP) Program Turbine Engine Element focused on the development of an advanced small turbofan engine. Goals were good fuel consumption and thrust-to-weight ratio, and very low production cost. The resulting FJX-2 turbofan engine showed the potential to meet all of these goals. The development of the engine was carried through to proof of concept testing of a complete engine system. The proof of concept engine was ground tested at sea level and in altitude test chambers. A turboprop derivative was also sea-level tested.

  1. Field Tests of the Magnetotelluric Method to Detect Gas Hydrates, Mallik, Mackenzie Delta, Canada

    NASA Astrophysics Data System (ADS)

    Craven, J. A.; Roberts, B.; Bellefleur, G.; Spratt, J.; Wright, F.; Dallimore, S. R.

    2008-12-01

    The magnetotelluric method is not generally utilized at extreme latitudes due primarily to difficulties in making the good electrical contact with the ground required to measure the electric field. As such, the magnetotelluric technique has not been previously investigated to direct detect gas hydrates in on-shore permafrost environments. We present the results of preliminary field tests at Mallik, Northwest Territories, Canada, that demonstrate good quality magnetotelluric data can be obtained in this environment using specialized electrodes and buffer amplifiers similar to those utilized by Wannamaker et al (2004). This result suggests that subsurface images from larger magnetotelluric surveys will be useful to complement other techniques to detect, quantify and characterize gas hydrates.

  2. Atomic oxygen interaction with spacecraft materials: Relationship between orbital and ground-based testing for materials certification

    NASA Technical Reports Server (NTRS)

    Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.

    1993-01-01

    The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.

  3. Reconnaissance of ground-water resources of the Squaxin Island Indian Reservation, Washington

    USGS Publications Warehouse

    Lum, W.E.; Walters, Kenneth Lyle

    1976-01-01

    A supply of fresh ground water for the Squaxin Island Indian Reservation, Washington, exists in saturated deposits underlying the 3.09-square-mile island. Four test wells tapped a water-bearing zone of sand and gravel and had yields ranging from 27 to 170 gpm, with drawdowns of about 5 feet to about 65 feet. Except for high concentrations of iron and manganese (which can be treated and reduced for domestic use), the water quality is good. Conditions for drain-field waste disposal from septic tanks are good in at least the northern two-thirds of the island. The danger of inducing seawater encroachment can be minimized by maintaining pumping levels above sea level, using a network of several wells pumped intermittently into a storage facility, and spacing these wells to spread out the effects of pumping. In the northern half of the island, wells 100 to 200 feet deep may yield 25 to 100 gpm with minimum chances of seawater encroachment. The southern half of the island has a smaller apparent potential for ground-water development and an increased possibility of seawater encroachment. (Woodard-USGS)

  4. Aeromechanical stability of a hingeless rotor in hover and forward flight: Analysis and wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Yeager, W. T., Jr.; Hamouda, M. N. H.; Mantay, W. R.

    1983-01-01

    A research effort of analysis and testing was conducted to investigate the ground resonance phenomenon of a soft in-plane hingeless rotor. Experimental data were obtained using a 9 ft. (2.74 m) diameter model rotor in hover and forward flight. Eight model rotor configurations were investigated. Configuration parameters included pitch flap coupling, blade sweep and droop, and precone of the blade feathering axis. An analysis based on a comprehensive analytical model of rotorcraft aerodynamics and dynamics was used. The moving block was used to experimentally determine the regressing lead lag mode damping. Good agreement was obtained between the analysis and test. Both analysis and experiment indicated ground resonance instability in hover. An outline of the analysis, a description of the experimental model and procedures, and comparison of the analytical and experimental data are presented.

  5. Thermal Response Testing Takes a Step Forward

    DOE PAGES

    Clemenzi, Rick; Ewbank, Garen; Siglin, Judy; ...

    2017-09-01

    Oak Ridge National Labs has independently confirmed the accuracy of a new breakthrough Advanced Thermal Response Test (TRT) method that it claims “uses less than half of the test time, allows for a fluctuating or interruptible heat flux, performs quality validation of a GHEX installation, and yields new insights into ground thermal conductivity that warrant further research.” The new Advanced TRT approach will reduce costs and, for the first time, also determine the actual thermal conductivity of grout as it is installed. As everyone in the ground source heat pump (GSHP) industry knows, assuring the quality of the grout jobmore » of a ground heat exchanger (GHEX) is an especially vexing problem. Unless one is standing at the borehole head the entire time grouting is underway, they basically have no idea how good or bad the grouting job is or even if the loop pipe itself is installed correctly. This problem has been further brought to light with formal third party grout reports confirming that grout had been poured from the surface and that many loops were shorter than the specified depth in several projects« less

  6. Thermal Response Testing Takes a Step Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemenzi, Rick; Ewbank, Garen; Siglin, Judy

    Oak Ridge National Labs has independently confirmed the accuracy of a new breakthrough Advanced Thermal Response Test (TRT) method that it claims “uses less than half of the test time, allows for a fluctuating or interruptible heat flux, performs quality validation of a GHEX installation, and yields new insights into ground thermal conductivity that warrant further research.” The new Advanced TRT approach will reduce costs and, for the first time, also determine the actual thermal conductivity of grout as it is installed. As everyone in the ground source heat pump (GSHP) industry knows, assuring the quality of the grout jobmore » of a ground heat exchanger (GHEX) is an especially vexing problem. Unless one is standing at the borehole head the entire time grouting is underway, they basically have no idea how good or bad the grouting job is or even if the loop pipe itself is installed correctly. This problem has been further brought to light with formal third party grout reports confirming that grout had been poured from the surface and that many loops were shorter than the specified depth in several projects« less

  7. Aquifer tests and simulation of ground-water flow in Triassic sedimentary rocks near Colmar, Bucks and Montgomery Counties, Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Bird, Philip H.

    2003-01-01

    This report presents the results of a study by the U.S. Geological Survey in cooperation with the U.S. Environmental Protection Agency to evaluate ground-water flow in Triassic sedimentary rocks near Colmar, in Bucks and Montgomery Counties, Pa. The study was conducted to help the U.S. Environmental Protection Agency evaluate remediation alternatives at the North Penn Area 5 Superfund Site near Colmar, where ground water has been contaminated by volatile organic solvents (primarily trichloroethene). The investigation focused on determining the (1) drawdown caused by separately pumping North PennWater Authority wells NP–21 and NP–87, (2) probable paths of groundwater movement under present-day (2000) conditions (with NP–21 discontinued), and (3) areas contributing recharge to wells if pumping from wells NP-21 or NP–87 were restarted and new recovery wells were installed. Drawdown was calculated from water levels measured in observation wells during aquifer tests of NP–21 and NP–87. The direction of ground-water flow was estimated by use of a three-dimensional ground-water-flow model.Aquifer tests were conducted by pumping NP–21 for about 7 days at 257 gallons per minute in June 2000 and NP–87 for 3 days at 402 gallons per minute in May 2002. Drawdown was measured in 45 observation wells during the NP–21 test and 35 observation wells during the NP–87 test. Drawdown in observation wells ranged from 0 to 6.8 feet at the end of the NP–21 test and 0.5 to 12 feet at the end of the NP–87 test. The aquifer tests showed that ground-water levels declined mostly in observation wells that were completed in the geologic units penetrated by the pumped wells. Because the geologic units dip about 27 degrees to the northwest, shallow wells up dip to the southeast of the pumped well showed a good hydraulic connection to the geologic units stressed by pumping. Most observation wells down dip from the pumping well penetrated units higher in the stratigraphic section that were not well connected to the units stressed by pumping. The best hydraulic connection to the pumped wells was indicated by large drawdown in observation wells that penetrate the water-bearing unit encountered below 400 feet below land surface in wells NP–21 and NP–87. The hydraulic connection between wells NP–21 (or NP–87) and observation wells in the southern area of ground-water contamination near the BAE Systems facility is good because the observation wells probably penetrate this water-bearing unit.A 3-dimensional, finite-difference, groundwater- flow model was used to simulate flow paths and areas contributing recharge to wells for current (2000) conditions of pumping in the Colmar area and for hypothetical situations of pumping suggested by the U.S. Environmental Protection Agency that might be used for remediation. Simulations indicate that under current conditions, ground water in the northern area of contamination near the former Stabilus facility moves to the northwest and discharges mostly to West Branch Neshaminy Creek; in the southern area of contamination near BAE Systems facility, ground water probably moves west and discharges to a tributary of West Branch Neshaminy Creek near well NP–21. Model simulations indicate that if NP–21 or NP–87 are pumped at 400 gallons per minute, groundwater recharge is likely captured from the southern area of contamination, but ground-water recharge from the northern area of contamination is less likely to be captured by the pumping. Simulations also indicate that pumping of a new recovery well near BAE Systems facility at 8 gallons per minute and two new recovery wells near the former Stabilus facility at a total of about 30 gallons per minute probably would capture most of the ground-water recharge in the areas where contamination is greatest.

  8. Digital-computer model of ground-water flow in Tooele Valley, Utah

    USGS Publications Warehouse

    Razem, Allan C.; Bartholoma, Scott D.

    1980-01-01

    A two-dimensional, finite-difference digital-computer model was used to simulate the ground-water flow in the principal artesian aquifer in Tooele Valley, Utah. The parameters used in the model were obtained through field measurements and tests, from historical records, and by trial-and-error adjustments. The model was calibrated against observed water-level changes that occurred during 1941-50, 1951-60, 1961-66, 1967-73, and 1974-78. The reliability of the predictions is good in most parts of the valley, as is shown by the ability of the model to match historical water-level changes.

  9. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 2

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shane M.; Godley, Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis methods and test data is shown to be very good.

  10. Comparison of Analysis, Simulation, and Measurement of Wire-to-Wire Crosstalk. Part 1

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Yavoich, Brian James; Hodson, Shame M.; Godley, Richard Franklin

    2010-01-01

    In this investigation, we compare crosstalk analysis, simulation, and measurement results for electrically short configurations. Methods include hand calculations, PSPICE simulations, Microstripes transient field solver, and empirical measurement. In total, four representative physical configurations are examined, including a single wire over a ground plane, a twisted pair over a ground plane, generator plus receptor wires inside a cylindrical conduit, and a single receptor wire inside a cylindrical conduit. Part 1 addresses the first two cases, and Part 2 addresses the final two. Agreement between the analysis, simulation, and test data is shown to be very good.

  11. Is under the ground under the big blue water named for the land next to us good for putting away bad air?

    NASA Astrophysics Data System (ADS)

    Hills, D. J.

    2017-12-01

    Putting bad air under the ground in rocks can help the world be safe from hotter air and keep people happy. A lot of the bad air is made near the big blue water named for the land next to us so we are looking at the ground under that big blue water to see if the rocks will hold the bad air for a very, very, very long time. There are a lot of rocks that are good to put the bad air in with other good rocks on top of them to hold the bad air in under the ground under the big blue water. We are helping decide what good rocks are the best to put the bad air in with the best rocks on top of them to hold it in. We are figuring out how much bad air these rocks can hold in to keep people safe from hotter air and keep them happy. Some of these rocks are not far under the ground, but that might worry some people that the bad air is too close. Some of these good rocks are really far under the ground, but that might take a lot of money to put in the bad air. We are trying to figure out what will be best to keep the bad air under the ground and make the most people happy.

  12. Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank.

    PubMed

    Yang, Xianfeng; Zhang, Zhiqiang; Yang, Jialing; Sun, Yuxin

    2016-01-01

    The crashworthiness of helicopter fuel tank is vital to the survivability of the passengers and structures. In order to understand and improve the crashworthiness of the soft fuel tank of helicopter during the crash, this paper investigated the dynamic behavior of the nylon woven fabric composite fuel tank striking on the ground. A fluid-structure interaction finite element model of the fuel tank based on the arbitrary Lagrangian-Eulerian method was constructed to elucidate the dynamic failure behavior. The drop impact tests were conducted to validate the accuracy of the numerical simulation. Good agreement was achieved between the experimental and numerical results of the impact force with the ground. The influences of the impact velocity, the impact angle, the thickness of the fuel tank wall and the volume fraction of water on the dynamic responses of the dropped fuel tank were studied. The results indicated that the corner of the fuel tank is the most vulnerable location during the impact with ground.

  13. Recent Progress Towards Predicting Aircraft Ground Handling Performance

    NASA Technical Reports Server (NTRS)

    Yager, T. J.; White, E. J.

    1981-01-01

    The significant progress which has been achieved in development of aircraft ground handling simulation capability is reviewed and additional improvements in software modeling identified. The problem associated with providing necessary simulator input data for adequate modeling of aircraft tire/runway friction behavior is discussed and efforts to improve this complex model, and hence simulator fidelity, are described. Aircraft braking performance data obtained on several wet runway surfaces is compared to ground vehicle friction measurements and, by use of empirically derived methods, good agreement between actual and estimated aircraft braking friction from ground vehilce data is shown. The performance of a relatively new friction measuring device, the friction tester, showed great promise in providing data applicable to aircraft friction performance. Additional research efforts to improve methods of predicting tire friction performance are discussed including use of an instrumented tire test vehicle to expand the tire friction data bank and a study of surface texture measurement techniques.

  14. Testing electrostatic equilibrium in the ionosphere by detailed comparison of ground magnetic deflection and incoherent scatter radar.

    NASA Astrophysics Data System (ADS)

    Cosgrove, R. B.; Schultz, A.; Imamura, N.

    2016-12-01

    Although electrostatic equilibrium is always assumed in the ionosphere, there is no good theoretical or experimental justification for the assumption. In fact, recent theoretical investigations suggest that the electrostatic assumption may be grossly in error. If true, many commonly used modeling methods are placed in doubt. For example, the accepted method for calculating ionospheric conductance??field line integration??may be invalid. In this talk we briefly outline the theoretical research that places the electrostatic assumption in doubt, and then describe how comparison of ground magnetic field data with incoherent scatter radar (ISR) data can be used to test the electrostatic assumption in the ionosphere. We describe a recent experiment conducted for the purpose, where an array of magnetometers was temporalily installed under the Poker Flat AMISR.

  15. Amphibian embryos as a biological test for environmental pollutants in leachates, industrial effluents, surface and ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.

    1995-12-31

    Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10more » embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.« less

  16. Mobility of lightweight robots over snow

    NASA Astrophysics Data System (ADS)

    Lever, James H.; Shoop, Sally A.

    2006-05-01

    Snowfields are challenging terrain for lightweight (<50 kg) unmanned ground vehicles. Deep sinkage, high snowcompaction resistance, traction loss while turning and ingestion of snow into the drive train can cause immobility within a few meters of travel. However, for suitably designed vehicles, deep snow offers a smooth, uniform surface that can obliterate obstacles. Key requirements for good over-snow mobility are low ground pressure, large clearance relative to vehicle size and a drive system that tolerates cohesive snow. A small robot will invariably encounter deep snow relative to its ground clearance. Because a single snowstorm can easily deposit 30 cm of fresh snow, robots with ground clearance less than about 10 cm must travel over the snow rather than gain support from the underlying ground. This can be accomplished using low-pressure tracks (< 1.5 kPa). Even still, snow-compaction resistance can exceed 20% of vehicle weight. Also, despite relatively high traction coefficients for low track pressures, differential or skid steering is difficult because the outboard track can easily break traction as the vehicle attempts to turn against the snow. Short track lengths (relative to track separation) or coupled articulated robots offer steering solutions for deep snow. This paper presents preliminary guidance to design lightweight robots for good mobility over snow based on mobility theory and tests of PackBot, Talon and SnoBot, a custom-designed research robot. Because many other considerations constrain robot designs, this guidance can help with development of winterization kits to improve the over-snow performance of existing robots.

  17. MODFLOW/MT3DMS-based simulation of variable-density ground water flow and transport

    USGS Publications Warehouse

    Langevin, C.D.; Guo, W.

    2006-01-01

    This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport. ?? 2006 National Ground Water Association.

  18. The good of non-sentient entities: Organisms, artifacts, and synthetic biology.

    PubMed

    Basl, John; Sandler, Ronald

    2013-12-01

    Synthetic organisms are at the same time organisms and artifacts. In this paper we aim to determine whether such entities have a good of their own, and so are candidates for being directly morally considerable. We argue that the good of non-sentient organisms is grounded in an etiological account of teleology, on which non-sentient organisms can come to be teleologically organized on the basis of their natural selection etiology. After defending this account of teleology, we argue that there are no grounds for excluding synthetic organisms from having a good also grounded in their teleological organization. However, this comes at a cost; traditional artifacts will also be seen as having a good of their own. We defend this as the best solution to the puzzle about what to say about the good of synthetic organisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Limits to ground control in autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Wan, Alfred D. M.; Braspenning, Peter J.; Vreeswijk, Gerrard A. W.

    1995-01-01

    In this paper the autonomy concept used by ESA and NASA is critically evaluated. Moreover, a more proper ground control/spacecraft organizational structure is proposed on the basis of a new, more elaborated concept of autonomy. In an extended theoretical discussion its definitional properties and functionalities are established. The rather basic property of adaptivity leads to the categorization of behaviour into the modes of satisfaction and avoidance behaviour. However, the autonomy property with the most profound consequences is goal-robustness. The mechanism that implements goal-robustness tests newly generated goals and externally received goals on consistency with high-level goals. If goals appear not to be good instantiations or more acceptable replacements of existing goals, they are rejected. This means that ground control has to cooperate with the spacecraft instead of (intermittently) commanding it.

  20. Ground Water at Grant Village Site, Yellowstone National Park, Wyoming

    USGS Publications Warehouse

    Gordon, Ellis D.; McCullough, Richard A.; Weeks, Edwin P.

    1961-01-01

    On behalf of the National Park Service, the U.S. Geological Survey during the summer of 1959 made a study of ground-water conditions in the area of the Grant Village site, along the shore of the West Thumb of Yellowstone Lake, 1 to 2 miles south of the present facilities at West Thumb. The water supply for the present development at West Thumb is obtained from Duck Lake, but the quantity of water available from this source probably will be inadequate for the planned development at Grant Village. During the investigation, 11 auger holes were bored and 6 test wells were drilled. Aquifer tests by pumping and bailing methods were made at two of the test wells. All material penetrated in the auger holes and test wells is of Quaternary age except the welded tuff of possible Pliocene age that was penetrated in the lower part of test well 4. Small to moderate quantities of water were obtained from the test wells in the area. Test well 2 yielded 35 gpm (gallons per minute) at a temperature of nearly 100 deg F. Test well 6 yielded about 15 gpm at a temperature of 48 deg F. The yield of this well might be increased by perforation of additional sections of casing, followed by further development of the well. Water from the other four test wells was of inadequate quantity, too highly mineralized, or too warm to be effectively utilized. Most of the ground water sampled had high concentrations of silica and iron, and part of the water was excessively high in fluoride content. Otherwise, the ground water was of generally suitable quality for most uses. The most favorable area for obtaining water supplies from wells is near the lakeshore, where a large part of the water pumped would be ground-water flow diverted from its normal discharge into the lake. Moderate quantities of relatively cool water of fairly good quality may be available near the lakeshore between test wells 5 and 6 and immediately east of test well 6.

  1. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, andmore » in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.« less

  2. Determination of Ground Effect from Tests of a Glider in Towed Flight

    NASA Technical Reports Server (NTRS)

    Wetmore, J W; Turner, L I , Jr

    1940-01-01

    Report presents the results of an investigation made to find the effect of ground on the aerodynamic characteristics of a Franklin PS-2 glider. The lift, the drag, and the angle of attack of the glider in towed flight were determined at several heights from 0.14 to 1.19 span lengths and at various speeds for each height. Two wing arrangements were tested: the plain wing, and the wing with a nearly full-span 30-percent-chord split flap deflected 45 degrees. The experimental results for the plain wing were in good agreement with theoretical values calculated by the method of Wieselsberger for both the angle of attack and the drag coefficient at a height of 0.21 span length; Tani's refinements of the theory had a practically negligible effect on the computed values in this case.

  3. Investigation of difficult component effects on finite element model vibration prediction for the Bell AH-1G helicopter. Volume 1: Ground vibration test results

    NASA Technical Reports Server (NTRS)

    Dompka, R. V.

    1989-01-01

    Under the NASA-sponsored Design Analysis Methods for VIBrationS (DAMVIBS) program, a series of ground vibration tests and NASTRAN finite element model (FEM) correlations were conducted on the Bell AH-1G helicopter gunship to investigate the effects of difficult components on the vibration response of the airframe. Previous correlations of the AH-1G showed good agreement between NASTRAN and tests through 15 to 20 Hz, but poor agreement in the higher frequency range of 20 to 30 Hz. Thus, this effort emphasized the higher frequency airframe vibration response correlations and identified areas that need further R and T work. To conduct the investigations, selected difficult components (main rotor pylon, secondary structure, nonstructural doors/panels, landing gear, engine, fuel, etc.) were systematically removed to quantify their effects on overall vibratory response of the airframe. The entire effort was planned and documented, and the results reviewed by NASA and industry experts in order to ensure scientific control of the testing, analysis, and correlation exercise. In particular, secondary structure and damping had significant effects on the frequency response of the airframe above 15 Hz. Also, the nonlinear effects of thrust stiffening and elastomer mounts were significant on the low frequency pylon modes below main rotor 1p (5.4 Hz). The results of the ground vibration testing are presented.

  4. Scientific Ground of a New Optical Device for Contactless Measurement of the Small Spatial Displacements of Control Object Surfaces

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, I. P.; Parinov, I. A.

    2017-06-01

    It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.

  5. Comparison of Heat and Bromide as Ground Water Tracers Near Streams

    USGS Publications Warehouse

    Constantz, J.; Cox, M.H.; Su, G.W.

    2003-01-01

    Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.

  6. Adaptive ground implemented phase array

    NASA Technical Reports Server (NTRS)

    Spearing, R. E.

    1973-01-01

    The simulation of an adaptive ground implemented phased array of five antenna elements is reported for a very high frequency system design that is tolerant to the radio frequency interference environment encountered by a tracking data relay satellite. Signals originating from satellites are received by the VHF ring array and both horizontal and vertical polarizations from each of the five elements are multiplexed and transmitted down to ground station. A panel on the transmitting end of the simulation chamber contains up to 10 S-band RFI sources along with the desired signal to simulate the dynamic relationship between user and TDRS. The 10 input channels are summed, and desired and interference signals are separated and corrected until the resultant sum signal-to-interference ratio is maximized. Testing performed with this simulation equipment demonstrates good correlation between predicted and actual results.

  7. En route noise levels from propfan test assessment airplane

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.; Willshire, William L., Jr.

    1994-01-01

    The en route noise test was designed to characterize propagation of propfan noise from cruise altitudes to the ground. In-flight measurements of propfan source levels and directional patterns were made by a chase plane flying in formation with the propfan test assessment (PTA) airplane. Ground noise measurements were taken during repeated flights over a distributed microphone array. The microphone array on the ground was used to provide ensemble-averaged estimates of mean flyover noise levels, establish confidence limits for those means, and measure propagation-induced noise variability. Even for identical nominal cruise conditions, peak sound levels for individual overflights varied substantially about the average, particularly when overflights were performed on different days. Large day-to-day variations in peak level measurements appeared to be caused by large day-to-day differences in propagation conditions and tended to obscure small variations arising from operating conditions. A parametric evaluation of the sensitivity of this prediction method to weather measurement and source level uncertainties was also performed. In general, predictions showed good agreement with measurements. However, the method was unable to predict short-term variability of ensemble-averaged data within individual overflights. Although variations in absorption appear to be the dominant factor in variations of peak sound levels recorded on the ground, accurate predictions of those levels require that a complete description of operational conditions be taken into account. The comprehensive and integrated methods presented in this paper have adequately predicted ground-measured sound levels. On average, peak sound levels were predicted within 3 dB for each of the three different cruise conditions.

  8. Use of Passive Diffusion Samplers for Monitoring Volatile Organic Compounds in Ground Water

    USGS Publications Warehouse

    Harte, Philip T.; Brayton, Michael J.; Ives, Wayne

    2000-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC's) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC's in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: * Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. * Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. * Reduction in sampling time by as much as 80 percent of that required for 'purge type' sampling methods. * An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  9. Phase I: energy conservation potential of Portland Cement particle size distribution control. Progress report, November 1978-January 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmuth, R.A.

    1979-03-01

    Progress is reported on the energy conservation potential of Portland cement particle size distribution control. Results of preliminary concrete tests, Series IIIa and Series IIIb, effects of particle size ranges on strength and drying shrinkage, are presented. Series IV, effects of mixing and curing temperature, tests compare the properties of several good particle size controlled cements with normally ground cements at low and high temperatures. The work on the effects of high alkali and high sulfate clinker cements (Series V) has begun.

  10. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley P.

    2004-01-01

    Propulsion ground test facilities face the daily challenges of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Due to budgetary and schedule constraints, NASA and industry customers are pushing to test more components, for less money, in a shorter period of time. As these new rocket engine component test programs are undertaken, the lack of technology maturity in the test articles, combined with pushing the test facilities capabilities to their limits, tends to lead to an increase in facility breakdowns and unsuccessful tests. Over the last five years Stennis Space Center's propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and broken numerous test facility and test article parts. While various initiatives have been implemented to provide better propulsion test techniques and improve the quality, reliability, and maintainability of goods and parts used in the propulsion test facilities, unexpected failures during testing still occur quite regularly due to the harsh environment in which the propulsion test facilities operate. Previous attempts at modeling the lifecycle of a propulsion component test project have met with little success. Each of the attempts suffered form incomplete or inconsistent data on which to base the models. By focusing on the actual test phase of the tests project rather than the formulation, design or construction phases of the test project, the quality and quantity of available data increases dramatically. A logistic regression model has been developed form the data collected over the last five years, allowing the probability of successfully completing a rocket propulsion component test to be calculated. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),..,X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure. Logistic regression has primarily been used in the fields of epidemiology and biomedical research, but lends itself to many other applications. As indicated the use of logistic regression is not new, however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from the models provide project managers with insight and confidence into the affectivity of rocket engine component ground test projects. The initial success in modeling rocket propulsion ground test projects clears the way for more complex models to be developed in this area.

  11. Stellar clusters in the Gaia era

    NASA Astrophysics Data System (ADS)

    Bragaglia, Angela

    2018-04-01

    Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the wealth of exquisite information we are expecting from the more advanced catalogues, but already offers good opportunities and indicates the vast potentialities. Gaia results can be efficiently complemented by ground-based data, in particular by large spectroscopic and photometric surveys. Examples of some scientific results of the Gaia-ESO survey are presented, as a teaser for what will be possible once advanced Gaia releases and ground-based data will be combined.

  12. Improved Forecasting Methods for Naval Manpower Studies

    DTIC Science & Technology

    2015-03-25

    Using monthly data is likely to improve the overall fit of the models and the accuracy of the BP test . A measure of unemployment to control for...measure of the relative goodness of fit of a statistical model. It is grounded in the concept of information entropy, in effect, offering a relative...the Kullback – Leibler divergence, DKL(f,g1); similarly, the information lost from using g2 to

  13. A Supervised Approach to Windowing Detection on Dynamic Networks

    DTIC Science & Technology

    2017-07-01

    A supervised approach to windowing detection on dynamic networks Benjamin Fish University of Illinois at Chicago 1200 W. Harrison St. Chicago...Using this framework, we introduce windowing algorithms that take a supervised approach : they leverage ground truth on training data to find a good...windowing of the test data. We compare the supervised approach to previous approaches and several baselines on real data. ACM Reference format: Benjamin

  14. Summary of paper: Area navigation implementation for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, Fujiko

    1987-01-01

    The development of an area navigation program and the implementation of this software on a microcomputer-based Loran-C receiver to provide high-quality, practical area navigation information for general aviation are described. This software provides range and bearing angle to a selected waypoint, cross-track error, course deviation indication (CDI), ground speed, and estimated time of arrival at the waypoint. The range/bearing calculation, using an elliptical Earth model, provides very good accuracy; the error does not exceed more than -.012 nm (range) or 0.09 degree (bearing) for a maximum range to 530 nm. The alpha-beta filtering is applied in order to reduce the random noise on Loran-C raw data and in the ground speed calculation. Due to alpha-beta filtering, the ground speed calculation has good stability for constant or low-accelerative flight. The execution time of this software is approximately 0.2 second. Flight testing was done with a prototype Loran-C front-end receiver, with the Loran-C area navigation software demonstrating the ability to provide navigation for the pilot to any point in the Loran-C coverage area in true area navigation fashion without line-of-sight and range restriction typical of VOR area navigation.

  15. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  16. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  17. Embracing Safe Ground Test Facility Operations and Maintenance

    NASA Technical Reports Server (NTRS)

    Dunn, Steven C.; Green, Donald R.

    2010-01-01

    Conducting integrated operations and maintenance in wind tunnel ground test facilities requires a balance of meeting due dates, efficient operation, responsiveness to the test customer, data quality, effective maintenance (relating to readiness and reliability), and personnel and facility safety. Safety is non-negotiable, so the balance must be an "and" with other requirements and needs. Pressure to deliver services faster at increasing levels of quality in under-maintained facilities is typical. A challenge for management is to balance the "need for speed" with safety and quality. It s especially important to communicate this balance across the organization - workers, with a desire to perform, can be tempted to cut corners on defined processes to increase speed. Having a lean staff can extend the time required for pre-test preparations, so providing a safe work environment for facility personnel and providing good stewardship for expensive National capabilities can be put at risk by one well-intending person using at-risk behavior. This paper documents a specific, though typical, operational environment and cites management and worker safety initiatives and tools used to provide a safe work environment. Results are presented and clearly show that the work environment is a relatively safe one, though still not good enough to keep from preventing injury. So, the journey to a zero injury work environment - both in measured reality and in the minds of each employee - continues. The intent of this paper is to provide a benchmark for others with operational environments and stimulate additional sharing and discussion on having and keeping a safe work environment.

  18. SEQUenCE: a service user-centred quality of care instrument for mental health services.

    PubMed

    Hester, Lorraine; O'Doherty, Lorna Jane; Schnittger, Rebecca; Skelly, Niamh; O'Donnell, Muireann; Butterly, Lisa; Browne, Robert; Frorath, Charlotte; Morgan, Craig; McLoughlin, Declan M; Fearon, Paul

    2015-08-01

    To develop a quality of care instrument that is grounded in the service user perspective and validate it in a mental health service. The instrument (SEQUenCE (SErvice user QUality of CarE)) was developed through analysis of focus group data and clinical practice guidelines, and refined through field-testing and psychometric analyses. All participants were attending an independent mental health service in Ireland. Participants had a diagnosis of bipolar affective disorder (BPAD) or a psychotic disorder. Twenty-nine service users participated in six focus group interviews. Seventy-one service users participated in field-testing: 10 judged the face validity of an initial 61-item instrument; 28 completed a revised 52-item instrument from which 12 items were removed following test-retest and convergent validity analyses; 33 completed the resulting 40-item instrument. Test-retest reliability, internal consistency and convergent validity of the instrument. The final instrument showed acceptable test-retest reliability at 5-7 days (r = 0.65; P < 0.001), good convergent validity with the Verona Service Satisfaction Scale (r = 0.84, P < 0.001) and good internal consistency (Cronbach's alpha = 0.87). SEQUenCE is a valid, reliable scale that is grounded in the service user perspective and suitable for routine use. It may serve as a useful tool in individual care planning, service evaluation and research. The instrument was developed and validated with service users with a diagnosis of either BPAD or a psychotic disorder; it does not yet have established external validity for other diagnostic groups. © The Author 2015. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  19. Comparison of Pumped and Diffusion Sampling Methods to Monitor Concentrations of Perchlorate and Explosive Compounds in Ground Water, Camp Edwards, Cape Cod, Massachusetts, 2004-05

    USGS Publications Warehouse

    LeBlanc, Denis R.; Vroblesky, Don A.

    2008-01-01

    Laboratory and field tests were conducted at Camp Edwards on the Massachusetts Military Reservation on Cape Cod to examine the utility of passive diffusion sampling for long-term monitoring of concentrations of perchlorate and explosive compounds in ground water. The diffusion samplers were constructed of 1-inch-diameter rigid, porous polyethylene tubing. The results of laboratory tests in which diffusion samplers were submerged in containers filled with ground water containing perchlorate, RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) indicate that concentrations inside the diffusion samplers equilibrated with concentrations in the containers within the 19-day-long test period. Field tests of the diffusion samplers were conducted in 15 wells constructed of 2- or 2.5-inch-diameter polyvinyl chloride pipe with 10-foot-long slotted screens. Concentrations of perchlorate, RDX, and HMX in the diffusion samplers placed in the wells for 42 to 52 days were compared to concentrations in samples collected by low-flow pumped sampling from 53 days before to 109 days after retrieval of the diffusion samples. The results of the field tests indicate generally good agreement between the pumped and diffusion samples for concentrations of perchlorate, RDX, and HMX. The concentration differences indicate no systematic bias related to contaminant type or concentration levels.

  20. Ground-water resources and water-supply alternatives in the Wawona area of Yosemite National Park, California

    USGS Publications Warehouse

    Borchers, J.W.

    1996-01-01

    Planning efforts to implement the 1980 General Management Plan, which recommends relocating park administrative facilities and employee housing from Yosemite Valley in Yosemite National Park, California, have focused on the availability of water at potential relocation sites within the park. Ground-water resources and water-supply alternatives in the Wawona area, one of several potential relocation sites, were evaluated between June 1991 and October 1993. Ground water flowing from Biledo Spring near the headwaters of Rainier Creek, about 5 miles southeast of Wawona, is probably the most reliable source of good quality ground water for Wawona. A dilute calcium bicarbonate ground water flows from the spring at about 250 gallons per minute. No Giardia was detected in a water sample collected from Biledo Spring in July 1992. The concentration of dissolved 222radon at Biledo Spring was 420 picoCuries per liter, exceeding the primary drinking-water standard of 300 picoCuries per liter proposed by the U.S. Environmental Protection Agency. This concentration, however, was considerably lower than the concentrations of dissolved 222radon measured in ground water at Wawona. The median value for 15 wells sampled at Wawona was 4,500 picoCuries per liter. Water- quality samples from 45 wells indicate that ground water in the South Fork Merced River valley at Wawona is segregated vertically. Shallow wells produce a dilute calcium sodium bicarbonate water that results from chemical dissolution of minerals as water flows through fractured granitic rock from hillside recharge areas toward the valley floor. Tritium concentrations indicate that ground water in the shallow wells originated as precipitation after the 1960's when testing of atmospheric nuclear devices stopped. Ground water from the deep flowing wells in the valley floor is older sodium calcium chloride water. This older water probably originated either as precipitation during a climatically cooler period or as precipitation from altitudes between 1,400 and 3,700 feet higher than precipitation that recharged the local shallow ground-water-flow system. Chloride and associated cations in the deepground-water-flow system may result from upward leakage of saline ground water or from leaching of saline fluid inclusions in the granitic rocks. Water-level and pressure-gage measurements for 38 wells in the South Fork Merced River valley also indicate that the ground water in the valley is segregated vertically. Hydraulic head in deep fractures is as much as 160 feet above the valley floor. Vertical hydraulic gradients between the shallow and deep systems are as high as 4.5 feet per foot in one of two test holes drilled for this study. Measure- ments of in situ stress in the two test holes indicate that the vertical segregation of ground water may be related to pressures in the earth that squeeze horizontal fractures closed at depth. Fractures within a few hundred feet of land surface are poorly connected to fractures deeper beneath the valley. About 100 privately owned wells currently are in use at Wawona; but, the ground-water-flow system may not be an adequate source of good quality ground water for relocated park facilities. Yields from existing wells are low (median 4-5 gallons per minute) and traditional methods for locating high-yielding wells in fractured rocks have not been successful in this area. Concentrations of dissolved 222radon (median 4,500 picoCuries per liter) are high, and the development of deep ground water could cause deeper saline water to migrate upward into producing wells. The South Fork Merced River, the primary source of water supply for Wawona, does not meet current demands during late summer and autumn. Data collected between 1958 and 1968 indicate that 25 percent of the time discharge of the South Fork River at Wawona during the dry season (August through October) was less than 2 cubic feet per second the discharge rate at which the National Park Service is res

  1. Maybe Some Big Ground Shakes One Hundred Years Ago in a Big State Near the Ocean Were Caused by People

    NASA Astrophysics Data System (ADS)

    Hough, S. E.; Tsai, V. C.; Walker, R.; Page, M. T.; Aminzadeh, F.

    2016-12-01

    Sometimes people put water deep into the ground to make it go away and sometimes this causes the ground to shake. Sometimes people take other stuff out of the ground because a lot of people buy this stuff to power cars. Usually when people take this stuff out of the ground it does not cause ground shakes. At least this is what we used to believe. For our study, we looked at ground shakes that caused houses to fall down almost 100 years ago in a big state near the water. They were large ground shakes. One was close to a big city where people make movies and one was a really big shake in another city in the same state. We asked the question, is it possible that these ground shakes happened because people took stuff out of the ground? We considered the places where the ground shakes happened and the places where people took a lot of stuff out of the ground. We show there is a pretty good chance that taking stuff out of the ground caused some pretty big ground shakes. We explain how ground shakes can happen when people take stuff out of the ground. Ground shakes happen on things called faults. When you take stuff out of the ground, usually that makes it harder for the fault to move. This is a good thing. But when the stuff is still deep under the ground, sometimes it also pushes against faults that are close by and helps keep them from moving. So when you take stuff out, it does not push on faults as much, and so sometimes that close-by fault can move and cause ground shakes. We use a computer to show that our idea can explain some of what we see. The idea is not perfect but we think it is a pretty good idea. Our idea explains why it does not usually cause ground shakes when people take stuff out of the ground, but sometimes big ground shakes happen. Our idea suggests that ground shakes caused by people can sometimes be very large. So if people take stuff out of the ground or put stuff in the ground, they need to know if there are faults close by.

  2. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  3. Quantifying confidence in density functional theory predictions of magnetic ground states

    NASA Astrophysics Data System (ADS)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.

  4. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  5. Education in a Devolved Scotland: A Quantitative Analysis. Report to the Economic and Social Research Council. CEP Special Paper No. 30

    ERIC Educational Resources Information Center

    Machin, Stephen; McNally, Sandra; Wyness, Gill

    2013-01-01

    Education is an area that is highly devolved in the UK, and the fact that all four constituent countries have pursued very different policies in the recent past provides a good testing ground to undertake a comparative review of the merits or otherwise of the education reforms that have taken place. There is, of course, an important policy context…

  6. 3-D Characterization of Seismic Properties at the Smart Weapons Test Range, YPG

    DTIC Science & Technology

    2001-10-01

    confidence limits around each interpolated value. Ground truth was accomplished through cross-hole seismic measurements and borehole logs. Surface wave... seismic method, as well as estimating the optimal orientation and spacing of the seismic array . A variety of sources and receivers was evaluated...location within the array is partially related to at least two seismic lines. Either through good fortune or foresight by the designers of the SWTR site

  7. Delineation and Analysis of Uncertainty of Contributing Areas to Wells at the Southbury Training School, Southbury, Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Stone, Janet Radway; Mullaney, John R.

    2000-01-01

    Contributing areas to public-supply wells at the Southbury Training School in Southbury, Connecticut, were mapped by simulating ground-water flow in stratified glacial deposits in the lower Transylvania Brook watershed. The simulation used nonlinear regression methods and informational statistics to estimate parameters of a ground-water flow model using drawdown data from an aquifer test. The goodness of fit of the model and the uncertainty associated with model predictions were statistically measured. A watershed-scale model, depicting large-scale ground-water flow in the Transylvania Brook watershed, was used to estimate the distribution of groundwater recharge. Estimates of recharge from 10 small basins in the watershed differed on the basis of the drainage characteristics of each basin. Small basins having well-defined stream channels contributed less ground-water recharge than basins having no defined channels because potential ground-water recharge was carried away in the stream channel. Estimates of ground-water recharge were used in an aquifer-scale parameter-estimation model. Seven variations of the ground-water-flow system were posed, each representing the ground-water-flow system in slightly different but realistic ways. The model that most closely reproduced measured hydraulic heads and flows with realistic parameter values was selected as the most representative of the ground-water-flow system and was used to delineate boundaries of the contributing areas. The model fit revealed no systematic model error, which indicates that the model is likely to represent the major characteristics of the actual system. Parameter values estimated during the simulation are as follows: horizontal hydraulic conductivity of coarse-grained deposits, 154 feet per day; vertical hydraulic conductivity of coarse-grained deposits, 0.83 feet per day; horizontal hydraulic conductivity of fine-grained deposits, 29 feet per day; specific yield, 0.007; specific storage, 1.6E-05. Average annual recharge was estimated using the watershed-scale model with no parameter estimation and was determined to be 24 inches per year in the valley areas and 9 inches per year in the upland areas. The parameter estimates produced in the model are similar to expected values, with two exceptions. The estimated specific yield of the stratified glacial deposits is lower than expected, which could be caused by the layered nature of the deposits. The recharge estimate produced by the model was also lower?about 32 percent of the average annual rate. This could be caused by the timing of the aquifer test with respect to the annual cycle of ground-water recharge, and by some of the expected recharge going to parts of the flow system that were not simulated. The data used in the calibration were collected during an aquifer test from October 30 to November 4, 1996. The model fit was very good, as indicated by the correlation coefficient (0.999) between the weighted simulated values and weighted observed values. The model also reproduced the general rise in ground-water levels caused by ground-water recharge and the cyclic fluctuations caused by pumping prior to the aquifer test. Contributing areas were delineated using a particle-tracking procedure. Hypothetical particles of water were introduced at each model cell in the top layer and were tracked to determine whether or not they reached the pumped well. A deterministic contributing area was calculated using the calibrated model, and a probabilistic contributing area was calculated using a Monte Carlo approach along with the calibrated model. The Monte Carlo simulation was done, using the parameter variance/covariance matrix generated by the regression model, to estimate probabilities associated with the contributing area to the wells. The probabilities arise from uncertainty in the estimated parameter values, which in turn arise from the adequacy of the data available to comprehensively describe the groundwater-flow sy

  8. Alternative analytical forms to model diatomic systems based on the deformed exponential function.

    PubMed

    da Fonsêca, José Erinaldo; de Oliveira, Heibbe Cristhian B; da Cunha, Wiliam Ferreira; Gargano, Ricardo

    2014-07-01

    Using a deformed exponential function and the molecular-orbital theory for the simplest molecular ion, two new analytical functions are proposed to represent the potential energy of ground-state diatomic systems. The quality of these new forms was tested by fitting the ab initio electronic energies of the system LiH, LiNa, NaH, RbH, KH, H2, Li2, K2, H 2 (+) , BeH(+) and Li 2 (+) . From these fits, it was verified that these new proposals are able to adequately describe homonuclear, heteronuclear and cationic diatomic systems with good accuracy. Vibrational spectroscopic constant results obtained from these two proposals are in good agreement with experimental data.

  9. Lifetime test and heritage on orbit of coolers for space use

    NASA Astrophysics Data System (ADS)

    Narasaki, Katsuhiro; Tsunematsu, Shoji; Ootsuka, Kiyomi; Kanao, Kenichi; Okabayashi, Akinobu; Mitsuda, Kazuhisa; Murakami, Hiroshi; Nakagawa, Takao; Kikuchi, Kenichi; Sato, Ryota; Sugita, Hiroyuki; Sato, Youichi; Murakami, Masahide; Kobayashi, Masanori

    2012-04-01

    This report describes the results and operating status of ground lifetime testing and achievements on orbit of coolers for space use. Ground lifetime tests of coolers of three types were conducted to demonstrate their long life and reliability. Three single-stage Stirling coolers were tested for 89,016, 71,871 and 68,273 h from 1998, a two-stage Stirling cooler was tested for 72,906 h, and a 4-K class cooler with a two-stage Stirling cooler and a Joule-Thomson cooler was tested for over 2.5 years. After lifetime tests were completed, a few coolers were investigated to determine the cause of the cooling performance degradation. Additionally, the filled gas of the coolers was analyzed. These coolers have shown good results on orbit. Three single-stage Stirling coolers were carried on the X-ray astronomical satellite "SUZAKU" (launched in July 2005), Japanese lunar polar orbiter "KAGUYA" (launched in September 2007), and the Japanese Venus Climate Orbiter "AKATSUKI" (launched in June 2010). Two units of a two-stage Stirling cooler were carried on the infrared astronomical satellite "AKARI" launched in February 2006. A 4-K class cooler was carried on the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) aboard the Japanese Experiment Module (JEM) of the International Space Station (ISS). SMILES was launched in September 2009.

  10. Unresolved Galaxy Classifier for ESA/Gaia mission: Support Vector Machines approach

    NASA Astrophysics Data System (ADS)

    Bellas-Velidis, Ioannis; Kontizas, Mary; Dapergolas, Anastasios; Livanou, Evdokia; Kontizas, Evangelos; Karampelas, Antonios

    A software package Unresolved Galaxy Classifier (UGC) is being developed for the ground-based pipeline of ESA's Gaia mission. It aims to provide an automated taxonomic classification and specific parameters estimation analyzing Gaia BP/RP instrument low-dispersion spectra of unresolved galaxies. The UGC algorithm is based on a supervised learning technique, the Support Vector Machines (SVM). The software is implemented in Java as two separate modules. An offline learning module provides functions for SVM-models training. Once trained, the set of models can be repeatedly applied to unknown galaxy spectra by the pipeline's application module. A library of galaxy models synthetic spectra, simulated for the BP/RP instrument, is used to train and test the modules. Science tests show a very good classification performance of UGC and relatively good regression performance, except for some of the parameters. Possible approaches to improve the performance are discussed.

  11. Low-cost approach for a software-defined radio based ground station receiver for CCSDS standard compliant S-band satellite communications

    NASA Astrophysics Data System (ADS)

    Boettcher, M. A.; Butt, B. M.; Klinkner, S.

    2016-10-01

    A major concern of a university satellite mission is to download the payload and the telemetry data from a satellite. While the ground station antennas are in general easy and with limited afford to procure, the receiving unit is most certainly not. The flexible and low-cost software-defined radio (SDR) transceiver "BladeRF" is used to receive the QPSK modulated and CCSDS compliant coded data of a satellite in the HAM radio S-band. The control software is based on the Open Source program GNU Radio, which also is used to perform CCSDS post processing of the binary bit stream. The test results show a good performance of the receiving system.

  12. Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure

    NASA Astrophysics Data System (ADS)

    Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling

    2017-11-01

    A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.

  13. A novel approach for simulating the optical misalignment caused by satellite platform vibration in the ground test of satellite optical communication systems.

    PubMed

    Wang, Qiang; Tan, Liying; Ma, Jing; Yu, Siyuan; Jiang, Yijun

    2012-01-16

    Satellite platform vibration causes the misalignment between incident direction of the beacon and optical axis of the satellite optical communication system, which also leads to the instability of the laser link and reduces the precision of the system. So how to simulate the satellite platform vibration is a very important work in the ground test of satellite optical communication systems. In general, a vibration device is used for simulating the satellite platform vibration, but the simulation effect is not ideal because of the limited randomness. An approach is reasonable, which uses a natural random process for simulating the satellite platform vibration. In this paper, we discuss feasibility of the concept that the effect of angle of arrival fluctuation is taken as an effective simulation of satellite platform vibration in the ground test of the satellite optical communication system. Spectrum characteristic of satellite platform vibration is introduced, referring to the model used by the European Space Agency (ESA) in the SILEX program and that given by National Aeronautics and Space Development Agency (NASDA) of Japan. Spectrum characteristic of angle of arrival fluctuation is analyzed based on the measured data from an 11.16km bi-directional free space laser transmission experiment. Spectrum characteristic of these two effects is compared. The results show that spectra of these two effects have similar variation trend with the variation of frequency and feasibility of the concept is proved by the comparison results. At last the procedure of this method is proposed, which uses the power spectra of angle of arrival fluctuation to simulate that of the satellite platform vibration. The new approach is good for the ground test of satellite optical communication systems.

  14. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  15. Unmanned Ground Vehicle for Autonomous Non-Destructive Testing of FRP Bridge Decks

    NASA Astrophysics Data System (ADS)

    Klinkhachorn, P.; Mercer, A. Scott; Halabe, Udaya B.; GangaRao, Hota V. S.

    2007-03-01

    Current non-destructive techniques for defect analysis of FRP bridge decks have a narrow scope. These techniques are very good at detecting certain types of defects but are not robust enough to detect all defects by themselves. For example, infrared thermography (IRT) can detect air filled defects and Ground Penetrating Radar (GPR) is good at detecting water filled ones. These technologies can be combined to create a more robust defect detection scheme. To accomplish this, an Unmanned Ground Vehicle (UGV) has been designed that incorporates both IR and GPR analysis to create a comprehensive defect map of a bridge deck. The UGV autonomously surveys the deck surface and acquires data. The UGV has two 1.5 GHz ground coupled GPR antennas that are mounted on the front of the UGV to collect GPR data. It also incorporates an active heating source and a radiometric IR camera to capture IR images of the deck, even in less than ideal weather scenarios such as cold cloudy days. The UGV is designed so that it can collect data in an assembly line fashion. It moves in 1 foot increments. When moving, it collects GPR data from the two antennas. When it stops it heats a section of the deck. The next time it stops to heat a section, the IR camera is analyzing the preheated deck section while preparing for the next section. Because the data is being continually collected using this method, the UGV can survey the entire deck in an efficient and timely manner.

  16. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  17. Protection of Conductive and Non-conductive Advanced Polymer-based Paints from Highly Aggressive Oxidative Environments

    NASA Technical Reports Server (NTRS)

    Gudimenko, Y.; Ng, R.; Iskanderova, Z.; Kleiman, J.; Grigorevsky, A.; Kiseleva, L.; Finckenor, M.; Edwards, D.

    2005-01-01

    Research has been continued to further improve the space durability of conductive and non-conductive polymer-based paints and of conductive thermal control paints for space applications. Efforts have been made to enhance the space durability and stability of functional Characteristics in ground-based space environment imitating conditions, using specially developed surface modification treatment. The results of surface modification of new conductive paints, including the ground-based testing in aggressive oxidative environments, such as atomic oxygen/UV and oxygen plasma, and performance evaluation are presented. Functional properties and performance characteristics, such as thermal optical properties (differential solar absorptance and thermal emittance representing the thermal optical performance of thermal control paints) and surface resistivity characteristics of pristine, surface modified, and tested materials were verified. Extensive surface analysis studies have been performed using complementary surface analyses including SEM/EDS and XPS. Test results revealed that the successfully treated materials exhibit reduced mass loss and no surface morphology change, thus indicating good protection from the severe oxidative environment. It was demonstrated that the developed surface modification treatment could be applied successfully to charge dissipative and conductive paints.

  18. Operational Analysis in the Launch Environment

    NASA Technical Reports Server (NTRS)

    James, George; Kaouk, Mo; Cao, Tim; Fogt, Vince; Rocha, Rodney; Schultz, Ken; Tucker, Jon-Michael; Rayos, Eli; Bell,Jeff; Alldredge, David; hide

    2012-01-01

    The launch environment is a challenging regime to work due to changing system dynamics, changing environmental loading, joint compression loads that cannot be easily applied on the ground, and control effects. Operational testing is one of the few feasible approaches to capture system level dynamics since ground testing cannot reproduce all of these conditions easily. However, the most successful applications of Operational Modal Testing involve systems with good stationarity and long data acquisition times. This paper covers an ongoing effort to understand the launch environment and the utility of current operational modal tools. This work is expected to produce a collection of operational tools that can be applied to non-stationary launch environment, experience dealing with launch data, and an expanding database of flight parameters such as damping. This paper reports on recent efforts to build a software framework for the data processing utilizing existing and specialty tools; understand the limits of current tools; assess a wider variety of current tools; and expand the experience with additional datasets as well as to begin to address issues raised in earlier launch analysis studies.

  19. HIFiRE-1 Turbulent Shock Boundary Layer Interaction - Flight Data and Computations

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Prabhu, Dinesh

    2015-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratory (AFRL) and Australian Defence Science and Technology Organisation (DSTO). This flight contained a cylinder-flare induced shock boundary layer interaction (SBLI). Computations of the interaction were conducted for a number of times during the ascent. The DPLR code used for predictions was calibrated against ground test data prior to exercising the code at flight conditions. Generally, the computations predicted the upstream influence and interaction pressures very well. Plateau pressures on the cylinder were predicted well at all conditions. Although the experimental heat transfer showed a large amount of scatter, especially at low heating levels, the measured heat transfer agreed well with computations. The primary discrepancy between the experiment and computation occurred in the pressures measured on the flare during second stage burn. Measured pressures exhibited large overshoots late in the second stage burn, the mechanism of which is unknown. The good agreement between flight measurements and CFD helps validate the philosophy of calibrating CFD against ground test, prior to exercising it at flight conditions.

  20. A Hybrid Model for Spatially and Temporally Resolved Ozone Exposures in the Continental United States

    PubMed Central

    Di, Qian; Rowland, Sebastian; Koutrakis, Petros; Schwartz, Joel

    2017-01-01

    Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. We propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. We used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. We trained the model with AQS 8-hour daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km×1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. PMID:27332675

  1. GROUND-WATER POLLUTION PROBLEMS IN THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    An evaluation of principal sources of ground-water contamination has been carried out in seven southeastern States--Alabama, Florida, Georgia, Mississippi, North Carolina, South Carolina, and Virginia. Natural ground-water quality is good to excellent, except for the presence of ...

  2. The Great Observatories Origins Deep Survey (GOODS): Overview and Status

    NASA Astrophysics Data System (ADS)

    Hook, R. N.; GOODS Team

    2002-12-01

    GOODS is a very large project to gather deep imaging data and spectroscopic followup of two fields, the Hubble Deep Field North (HDF-N) and the Chandra Deep Field South (CDF-S), with both space and ground-based instruments to create an extensive multiwavelength public data set for community research on the distant Universe. GOODS includes a SIRTF Legacy Program (PI: Mark Dickinson) and a Hubble Treasury Program of ACS imaging (PI: Mauro Giavalisco). The ACS imaging was also optimized for the detection of high-z supernovae which are being followed up by a further target of opportunity Hubble GO Program (PI: Adam Riess). The bulk of the CDF-S ground-based data presently available comes from an ESO Large Programme (PI: Catherine Cesarsky) which includes both deep imaging and multi-object followup spectroscopy. This is currently complemented in the South by additional CTIO imaging. Currently available HDF-N ground-based data forming part of GOODS includes NOAO imaging. Although the SIRTF part of the survey will not begin until later in the year the ACS imaging is well advanced and there is also a huge body of complementary ground-based imaging and some follow-up spectroscopy which is already publicly available. We summarize the current status of GOODS and give an overview of the data products currently available and present the timescales for the future. Many early science results from the survey are presented in other GOODS papers at this meeting. Support for the HST GOODS program presented here and in companion abstracts was provided by NASA thorugh grant number GO-9425 from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  3. Cone penetrometer testing and discrete-depth ground water sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.

    Cone penetrometer testing (CPT), combined with discrete-depth ground water sampling methods, can significantly reduce the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can then be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs). To expedite characterization, a five-week field screening program was implemented that consisted of a shallow ground water survey, CPT soundings and pore-pressure measurements, and discrete-depth ground water sampling. Based on continuous lithologic informationmore » provided by the CPT soundings, four predominantly coarse-grained, water yielding stratigraphic packages were identified. Seventy-nine discrete-depth ground water samples were collected using either shallow ground water survey techniques, the BAT Enviroprobe, or the QED HydroPunch I, depending on subsurface conditions. Using results from these efforts, a 20-well monitoring network was designed and installed to monitor critical points within each stratigraphic package. Good correlation was found for hydraulic head and chemical results between discrete-depth screening data and monitoring well data. Understanding the vertical VOC distribution and concentrations produced substantial time and cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings that had to be installed. Additionally, significant long-term cost savings will result from reduced sampling costs, because fewer wells comprise the monitoring network. The authors estimate these savings to be 50% for site characterization costs, 65% for site characterization time, and 60% for long-term monitoring costs.« less

  4. Song and speech: examining the link between singing talent and speech imitation ability.

    PubMed

    Christiner, Markus; Reiterer, Susanne M

    2013-01-01

    In previous research on speech imitation, musicality, and an ability to sing were isolated as the strongest indicators of good pronunciation skills in foreign languages. We, therefore, wanted to take a closer look at the nature of the ability to sing, which shares a common ground with the ability to imitate speech. This study focuses on whether good singing performance predicts good speech imitation. Forty-one singers of different levels of proficiency were selected for the study and their ability to sing, to imitate speech, their musical talent and working memory were tested. Results indicated that singing performance is a better indicator of the ability to imitate speech than the playing of a musical instrument. A multiple regression revealed that 64% of the speech imitation score variance could be explained by working memory together with educational background and singing performance. A second multiple regression showed that 66% of the speech imitation variance of completely unintelligible and unfamiliar language stimuli (Hindi) could be explained by working memory together with a singer's sense of rhythm and quality of voice. This supports the idea that both vocal behaviors have a common grounding in terms of vocal and motor flexibility, ontogenetic and phylogenetic development, neural orchestration and auditory memory with singing fitting better into the category of "speech" on the productive level and "music" on the acoustic level. As a result, good singers benefit from vocal and motor flexibility, productively and cognitively, in three ways. (1) Motor flexibility and the ability to sing improve language and musical function. (2) Good singers retain a certain plasticity and are open to new and unusual sound combinations during adulthood both perceptually and productively. (3) The ability to sing improves the memory span of the auditory working memory.

  5. Song and speech: examining the link between singing talent and speech imitation ability

    PubMed Central

    Christiner, Markus; Reiterer, Susanne M.

    2013-01-01

    In previous research on speech imitation, musicality, and an ability to sing were isolated as the strongest indicators of good pronunciation skills in foreign languages. We, therefore, wanted to take a closer look at the nature of the ability to sing, which shares a common ground with the ability to imitate speech. This study focuses on whether good singing performance predicts good speech imitation. Forty-one singers of different levels of proficiency were selected for the study and their ability to sing, to imitate speech, their musical talent and working memory were tested. Results indicated that singing performance is a better indicator of the ability to imitate speech than the playing of a musical instrument. A multiple regression revealed that 64% of the speech imitation score variance could be explained by working memory together with educational background and singing performance. A second multiple regression showed that 66% of the speech imitation variance of completely unintelligible and unfamiliar language stimuli (Hindi) could be explained by working memory together with a singer's sense of rhythm and quality of voice. This supports the idea that both vocal behaviors have a common grounding in terms of vocal and motor flexibility, ontogenetic and phylogenetic development, neural orchestration and auditory memory with singing fitting better into the category of “speech” on the productive level and “music” on the acoustic level. As a result, good singers benefit from vocal and motor flexibility, productively and cognitively, in three ways. (1) Motor flexibility and the ability to sing improve language and musical function. (2) Good singers retain a certain plasticity and are open to new and unusual sound combinations during adulthood both perceptually and productively. (3) The ability to sing improves the memory span of the auditory working memory. PMID:24319438

  6. Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM

    NASA Technical Reports Server (NTRS)

    Jullien, Pierre

    2008-01-01

    During re-entry, spacecrafts are subjected to extreme thermal loads. On mars, they may go through dust storms. These external heat loads are leading the design of re-entry vehicles or are affecting it for spacecraft facing solid propellant jet stream. Sizing the Thermal Protection System require a good knowledge of such solicitations and means to model and reproduce them on earth. Through its work on European projects, ASTRIUM has developed the full range of competences to deal with such issues. For instance, we have designed and tested the heat-shield of the Huygens probe which landed on Titan. In particular, our plasma generators aim to reproduce a wide variety of re-entry conditions. Heat loads are generated by the huge speed of the probes. Such conditions cannot be fully reproduced. Ground tests focus on reproducing local aerothermal loads by using slower but hotter flows. Our inductive plasma torch enables to test little samples at low TRL. Amongst the arc-jets, one was design to test architecture design of ISS crew return system and others fit more severe re-entry such as sample returns or Venus re-entry. The last developments aimed in testing samples in seeded flows. First step was to design and test the seeding device. Special diagnostics characterizing the resulting flow enabled us to fit it to the requirements.

  7. Designing the Successful Grounds Organization

    ERIC Educational Resources Information Center

    Gratto, Fred

    2011-01-01

    The most important component of any service organization is people. This is especially true of grounds management, because effective maintenance is dependent on good supervision and knowledgeable people. The grounds management function, therefore, must have personnel who are competent and committed. They must fully understand the scope of their …

  8. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  9. An analysis of sound absorbing linings for the interior of the NASA Ames 80 x 120-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Wilby, J. F.; White, P. H.

    1985-01-01

    It is desirable to achieve low frequency sound absorption in the tests section of the NASA Ames 80X120-ft wind tunnel. However, it is difficult to obtain information regarding sound absorption characteristics of potential treatments because of the restrictions placed on the dimensions of the test chambers. In the present case measurements were made in a large enclosure for aircraft ground run-up tests. The normal impedance of the acoustic treatment was measured using two microphones located close to the surface of the treatment. The data showed reasonably good agreement with analytical methods which were then used to design treatments for the wind tunnel test section. A sound-absorbing lining is proposed for the 80X120-ft wind tunnel.

  10. School environments and physical activity: the development and testing of an audit tool

    PubMed Central

    Jones, Natalia R; Jones, Andy; van Sluijs, Esther MF; Panter, Jenna; Harrison, Flo; Griffin, Simon J

    2013-01-01

    The aim of this study was to develop, test, and employ an audit tool to objectively assess the opportunities for physical activity within school environments. A 44 item tool was developed and tested at 92 primary schools in the county of Norfolk, England, during summer term of 2007. Scores from the tool covering 6 domains of facility provision were examined against objectively measured hourly moderate to vigorous physical activity levels in 1868 9-10 year old pupils attending the schools. The tool was found to have acceptable reliability and good construct validity, differentiating the physical activity levels of children attending the highest and lowest scoring schools. The characteristics of school grounds may influence pupil’s physical activity levels. PMID:20435506

  11. Soil runway friction evaluation in support of USAF C-17 transport aircraft operations

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    A series of NASA Diagonal-Braked Vehicle (DBV) test runs were performed on the soil runway 7/25 at Holland landing zone, Fort Bragg, North Carolina, near Pope Air Force Base in March 1995 at the request of the Air Force C-17 System Program Office. These ground vehicle test results indicated that the dry runway friction level was suitable for planned C-17 transport aircraft landing and take-off operations at various gross weights. These aircraft operations were successfully carried out. On-board aircraft deceleration measurements were comparable to NASA DBV measurements. Additional tests conducted with an Army High Mobility Multi-Purpose Wheeled Vehicle equipped with a portable decelerometer, showed good agreement with NASA DBV data.

  12. Block ground interaction of rockfalls

    NASA Astrophysics Data System (ADS)

    Volkwein, Axel; Gerber, Werner; Kummer, Peter

    2016-04-01

    During a rockfall the interaction of the falling block with the ground is one of the most important factors that define the evolution of a rockfall trajectory. It steers the rebound, the rotational movement, possibly brake effects, friction losses and damping effects. Therefore, if most reliable rockfall /trajectory simulation software is sought a good understanding of the block ground interaction is necessary. Today's rockfall codes enable the simulation of a fully 3D modelled block within a full 3D surface . However, the details during the contact, i.e. the contact duration, the penetration depth or the dimension of the marks in the ground are usually not part of the simulation. Recent field tests with rocks between 20 and 80 kg have been conducted on a grassy slope in 2014 [1]. A special rockfall sensor [2] within the blocks measured the rotational velocity and the acting accelerations during the tests. External video records and a so-called LocalPositioningSystem deliver information on the travel velocity. With these data not only the flight phases of the trajectories but also the contacts with the ground can be analysed. During the single jumps of a block the flight time, jump length, the velocity, and the rotation are known. During the single impacts their duration and the acting accelerations are visible. Further, the changes of rotational and translational velocity influence the next jump of the block. The change of the rotational velocity over the whole trajectory nicely visualizes the different phases of a rockfall regarding general acceleration and deceleration in respect to the inclination and the topography of the field. References: [1] Volkwein A, Krummenacher B, Gerber W, Lardon J, Gees F, Brügger L, Ott T (2015) Repeated controlled rockfall trajectory testing. [Abstract] Geophys. Res. Abstr. 17: EGU2015-9779. [2] Volkwein A, Klette J (2014) Semi-Automatic Determination of Rockfall Trajectories. Sensors 14: 18187-18210.

  13. Field measurements and analyses of environmental vibrations induced by high-speed Maglev.

    PubMed

    Li, Guo-Qiang; Wang, Zhi-Lu; Chen, Suwen; Xu, You-Lin

    2016-10-15

    Maglev, offers competitive journey-times compared to the railway and subway systems in markets for which distance between the stations is 100-1600km owing to its high acceleration and speed; however, such systems may have excessive vibration. Field measurements of Maglev train-induced vibrations were therefore performed on the world's first commercial Maglev line in Shanghai, China. Seven test sections along the line were selected according to the operating conditions, covering speeds from 150 to 430km/h. Acceleration responses of bridge pier and nearby ground were measured in three directions and analyzed in both the time and frequency domain. The effects of Maglev train speed on vibrations of the bridge pier and ground were studied in terms of their peak accelerations. Attenuation of ground vibration was investigated up to 30m from the track centerline. Effects of guideway configuration were also analyzed based on the measurements through two different test sections with same train speed of 300km/h. The results showed that peak accelerations exhibited a strong correlation with both train speed and distance off the track. Guideway configuration had a significant effect on transverse vibration, but a weak impact on vertical and longitudinal vibrations of both bridge pier and ground. Statistics indicated that, contrary to the commonly accepted theory and experience, vertical vibration is not always dominant: transverse and longitudinal vibrations should also be considered, particularly near turns in the track. Moreover, measurements of ground vibration induced by traditional high-speed railway train were carried out with the same testing devices in Bengbu in the Anhui Province. Results showed that the Maglev train generates significantly different vibration signatures as compared to the traditional high-speed train. The results obtained from this paper can provide good insights on the impact of Maglev system on the urban environment and the quality of human life nearby. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Miniaturized printed K shaped monopole antenna with truncated ground plane for 2.4/5.2/5.5/5.8 wireless lan applications

    NASA Astrophysics Data System (ADS)

    Chandan, Bharti, Gagandeep; Srivastava, Toolika; Rai, B. S.

    2018-04-01

    A novel truncated ground plane monopole antenna is proposed for wide band wireless local area network (WLAN) applications. The antenna contains a rectangular patch with a rectangular ring, a circular slot and a truncated ground plane printed on opposite sides of a low cost substrate FR4. The operating frequency bands for the antenna are band1 (2.4-2.88 GHz) and band 2 (4.8-6.3 GHz) with ≤ - 10 dB return loss which covers 2.4/5.2/5.5/5.8 GHz WLAN bands. The antenna is compact with overall dimension 26×40×0.8 mmł and with the dimension of patch 16×16×0.8 mm3. The two bands of antenna is obtained by cutting a rectangular ring and a circular slot in the patch and return loss is improved by cutting two rectangular slot in the ground plane. Performance measures of the antenna are shown in terms of return loss, current distribution, radiation pattern and gain. To verify the simulated results, the antenna is also fabricated and tested. The simulated and fabricated results have been found in good agreement.

  15. Cost analysis of ground-water supplies in the North Atlantic region, 1970

    USGS Publications Warehouse

    Cederstrom, Dagfin John

    1973-01-01

    The cost of municipal and industrial ground water (or, more specifically, large supplies of ground water) at the wellhead in the North Atlantic Region in 1970 generally ranged from 1.5 to 5 cents per thousand gallons. Water from crystalline rocks and shale is relatively expensive. Water from sandstone is less so. Costs of water from sands and gravels in glaciated areas and from Coastal Plain sediments range from moderate to very low. In carbonate rocks costs range from low to fairly high. The cost of ground water at the wellhead is low in areas of productive aquifers, but owing to the cost of connecting pipe, costs increase significantly in multiple-well fields. In the North Atlantic Region, development of small to moderate supplies of ground water may offer favorable cost alternatives to planners, but large supplies of ground water for delivery to one point cannot generally be developed inexpensively. Well fields in the less productive aquifers may be limited by costs to 1 or 2 million gallons a day, but in the more favorable aquifers development of several tens of millions of gallons a day may be practicable and inexpensive. Cost evaluations presented cannot be applied to any one specific well or specific site because yields of wells in any one place will depend on the local geologic and hydrologic conditions; however, with such cost adjustments as may be necessary, the methodology presented should have wide applicability. Data given show the cost of water at the wellhead based on the average yield of several wells. The cost of water delivered by a well field includes costs of connecting pipe and of wells that have the yields and spacings specified. Cost of transport of water from the well field to point of consumption and possible cost of treatment are not evaluated. In the methodology employed, costs of drilling and testing, pumping equipment, engineering for the well field, amortization at 5% percent interest, maintenance, and cost of power are considered. The report includes an analysis of test drilling costs leading to a production well field. The discussion shows that test drilling is a relatively low cost item and that more than a minimum of test holes in a previously unexplored area is, above all, simple insurance in keeping down costs and may easily result in final lower costs for the system. Use of the jet drill for testing is considered short sighted and may result in higher total costs and possibly failure to discover good aquifers. Economic development of ground water supplies will depend on obtaining qualified hydrologic and engineering advice, on carrying out adequate test drilling, and on utilizing high-quality (at times, more costly) material.

  16. A ground-based comparison of the Muscle Atrophy Research and Exercise System (MARES) and a commercially available isokinetic dynamometer

    NASA Astrophysics Data System (ADS)

    English, Kirk L.; Hackney, Kyle J.; De Witt, John K.; Ploutz-Snyder, Robert J.; Goetchius, Elizabeth L.; Ploutz-Snyder, Lori L.

    2013-11-01

    IntroductionInternational Space Station (ISS) crewmembers perform muscle strength and endurance testing pre- and postflight to assess the physiologic adaptations associated with long-duration exposure to microgravity. However, a reliable and standardized method to document strength changes in-flight has not been established. To address this issue, a proprietary dynamometer, the Muscle Atrophy Research and Exercise System (MARES) has been developed and flown aboard the ISS. The aims of this ground-based investigation were to: (1) evaluate the test-retest reliability of MARES and (2) determine its agreement with a commercially available isokinetic dynamometer previously used for pre- and postflight medical testing. MethodsSix males (179.5±4.7 cm; 82.0±8.7 kg; 31.3±4.0 yr) and four females (163.2±7.3 cm; 63.2±1.9 kg; 32.3±6.8 yr) completed two testing sessions on a HUMAC NORM isokinetic dynamometer (NORM) and two sessions on MARES using a randomized, counterbalanced, cross-over design. Peak torque values at 60° and 180° s-1 were calculated from five maximal repetitions of knee extension (KE) and knee flexion (KF) for each session. Total work at 180° s-1 was determined from the area under the torque versus displacement curve during 20 maximal repetitions of KE and KF. ResultsIntraclass correlation coefficients were relatively high for both devices (0.90-0.99). Only one dependent measure, KE peak torque at 60° s-1 exhibited good concordance between devices (ρ=0.92) and a small average difference (0.9±17.3 N m). ConclusionMARES demonstrated acceptable test-retest reliability and thus should serve as a good tool to monitor in-flight strength changes. However, due to poor agreement with NORM, it is not advisable to compare absolute values obtained on these devices.

  17. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding itself. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. An apparent deficiency in the current understanding is a lack of knowledge about flow directions and rates away from major areas of testing. Efforts are necessary to delineate areas of downgradient flow and to identify factors that constrain and control flow within these areas. These efforts also should identify the areas most critical to gaining detailed understanding and to establishing long-term monitoring sites necessary for effective remediation.

  18. 12 CFR 390.36 - Good faith certification.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 5 2014-01-01 2014-01-01 false Good faith certification. 390.36 Section 390.36... Proceedings § 390.36 Good faith certification. (a) General requirement. Every filing or submission of record... filing or submission of record is well-grounded in fact and is warranted by existing law or a good faith...

  19. 12 CFR 1780.7 - Good faith certification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Good faith certification. 1780.7 Section 1780.7... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE General Rules § 1780.7 Good faith... record is well-grounded in fact and is warranted by existing law or a good faith, nonfrivolous argument...

  20. 12 CFR 390.36 - Good faith certification.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 5 2012-01-01 2012-01-01 false Good faith certification. 390.36 Section 390.36... Proceedings § 390.36 Good faith certification. (a) General requirement. Every filing or submission of record... filing or submission of record is well-grounded in fact and is warranted by existing law or a good faith...

  1. 12 CFR 390.36 - Good faith certification.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 5 2013-01-01 2013-01-01 false Good faith certification. 390.36 Section 390.36... Proceedings § 390.36 Good faith certification. (a) General requirement. Every filing or submission of record... filing or submission of record is well-grounded in fact and is warranted by existing law or a good faith...

  2. 12 CFR 1780.7 - Good faith certification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Good faith certification. 1780.7 Section 1780.7... DEVELOPMENT RULES OF PRACTICE AND PROCEDURE RULES OF PRACTICE AND PROCEDURE General Rules § 1780.7 Good faith... record is well-grounded in fact and is warranted by existing law or a good faith, nonfrivolous argument...

  3. Aspects of the Development of Housing for the Spaceflight of Pregnant and Lactating Rats with Neonates

    NASA Technical Reports Server (NTRS)

    Hinds, William E.; Mayer, David J.; Evans, Juli; Spratt, Shahn; Lane, Philip K.; Rodriguez, Shari L.; Navidi, Meena; Armstrong, Rachel; Lemos, Bonnie; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Recent and upcoming spaceflights are investigating the effect of weightlessness on developing neural and organ systems. Pregnant rats and dams with neonates have to be accommodated in cages that support the special requirements of these animals. Extensive ground testing of cage concepts, the effect of launch and landing stresses on the maintenance of pregnancy and maternal behavior at different neonatal ages, and techniques for monitoring adaptability to change are discussed. A spaceflight opportunity for the NlH.R3 payload of rat families at three different postnatal ages demonstrated that the survival of very young animals was not good but that older newborns could be returned to Earth in reasonably good health. The development of cages for the Research Animal Holding Facility (RAHF) to support the flight of neonates on Neurolab was continued and incorporated modifications that were demonstrated by the NIH.R3 flight. Other modifications to the RAHF are discussed. Data from biocompatibility and experiment verification testing are presented.

  4. Modeling axisymmetric flow and transport

    USGS Publications Warehouse

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  5. Statistical Modeling of Fire Occurrence Using Data from the Tōhoku, Japan Earthquake and Tsunami.

    PubMed

    Anderson, Dana; Davidson, Rachel A; Himoto, Keisuke; Scawthorn, Charles

    2016-02-01

    In this article, we develop statistical models to predict the number and geographic distribution of fires caused by earthquake ground motion and tsunami inundation in Japan. Using new, uniquely large, and consistent data sets from the 2011 Tōhoku earthquake and tsunami, we fitted three types of models-generalized linear models (GLMs), generalized additive models (GAMs), and boosted regression trees (BRTs). This is the first time the latter two have been used in this application. A simple conceptual framework guided identification of candidate covariates. Models were then compared based on their out-of-sample predictive power, goodness of fit to the data, ease of implementation, and relative importance of the framework concepts. For the ground motion data set, we recommend a Poisson GAM; for the tsunami data set, a negative binomial (NB) GLM or NB GAM. The best models generate out-of-sample predictions of the total number of ignitions in the region within one or two. Prefecture-level prediction errors average approximately three. All models demonstrate predictive power far superior to four from the literature that were also tested. A nonlinear relationship is apparent between ignitions and ground motion, so for GLMs, which assume a linear response-covariate relationship, instrumental intensity was the preferred ground motion covariate because it captures part of that nonlinearity. Measures of commercial exposure were preferred over measures of residential exposure for both ground motion and tsunami ignition models. This may vary in other regions, but nevertheless highlights the value of testing alternative measures for each concept. Models with the best predictive power included two or three covariates. © 2015 Society for Risk Analysis.

  6. Experimental evaluation of ALS point cloud ground extraction over different land cover in the Malopolska Province

    NASA Astrophysics Data System (ADS)

    Korzeniowska, Karolina; Mandlburger, Gottfried; Klimczyk, Agata

    2013-04-01

    The paper presents an evaluation of different terrain point extraction algorithms for Airborne Laser Scanning (ALS) point clouds. The research area covers eight test sites in the Małopolska Province (Poland) with varying point density between 3-15points/m² and surface as well as land cover characteristics. In this paper the existing implementations of algorithms were considered. Approaches based on mathematical morphology, progressive densification, robust surface interpolation and segmentation were compared. From the group of morphological filters, the Progressive Morphological Filter (PMF) proposed by Zhang K. et al. (2003) in LIS software was evaluated. From the progressive densification filter methods developed by Axelsson P. (2000) the Martin Isenburg's implementation in LAStools software (LAStools, 2012) was chosen. The third group of methods are surface-based filters. In this study, we used the hierarchic robust interpolation approach by Kraus K., Pfeifer N. (1998) as implemented in SCOP++ (Trimble, 2012). The fourth group of methods works on segmentation. From this filtering concept the segmentation algorithm available in LIS was tested (Wichmann V., 2012). The main aim in executing the automatic classification for ground extraction was operating in default mode or with default parameters which were selected by the developers of the algorithms. It was assumed that the default settings were equivalent to the parameters on which the best results can be achieved. In case it was not possible to apply an algorithm in default mode, a combination of the available and most crucial parameters for ground extraction were selected. As a result of these analyses, several output LAS files with different ground classification were achieved. The results were described on the basis of qualitative and quantitative analyses, both being in a formal description. The classification differences were verified on point cloud data. Qualitative verification of ground extraction was made on the basis of a visual inspection of the results (Sithole G., Vosselman G., 2004; Meng X. et al., 2010). The results of these analyses were described as a graph using weighted assumption. The quantitative analyses were evaluated on a basis of Type I, Type II and Total errors (Sithole G., Vosselman G., 2003). The achieved results show that the analysed algorithms yield different classification accuracies depending on the landscape and land cover. The simplest terrain for ground extraction was flat rural area with sparse vegetation. The most difficult were mountainous areas with very dense vegetation where only a few ground points were available. Generally the LAStools algorithm gives good results in every type of terrain, but the ground surface is too smooth. The LIS Progressive Morphological Filter algorithm gives good results in forested flat and low slope areas. The surface-based algorithm from SCOP++ gives good results in mountainous areas - both forested and built-up because it better preserves steep slopes, sharp ridges and breaklines, but sometimes it fails to remove off-terrain objects from the ground class. The segmentation-based algorithm in LIS gives quite good results in built-up flat areas, but in forested areas it does not work well. Bibliography: Axelsson, P., 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIII (Pt. B4/1), 110- 117 Kraus, K., Pfeifer, N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry & Remote Sensing 53 (4), 193-203 LAStools website http://www.cs.unc.edu/~isenburg/lastools/ (verified in September 2012) Meng, X., Currit, N., Zhao, K., 2010. Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues. Remote Sensing 2, 833-860 Sithole, G., Vosselman, G., 2003. Report: ISPRS Comparison of Filters. Commission III, Working Group 3. Department of Geodesy, Faculty of Civil Engineering and Geosciences, Delft University of technology, The Netherlands Sithole, G., Vosselman, G., 2004. Experimental comparison of filter algorithms for bare-Earth extraction form airborne laser scanning point clouds. ISPRS Journal of Photogrammetry & Remote Sensing 59, 85-101 Trimble, 2012 http://www.trimble.com/geospatial/aerial-software.aspx (verified in November 2012) Wichmann, V., 2012. LIS Command Reference, LASERDATA GmbH, 1-231 Zhang, K., Chen, S.-C., Whitman, D., Shyu, M.-L., Yan, J., Zhang, C., 2003. A progressive morphological filter for removing non-ground measurements from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872-882

  7. Snug as a Bug: Goodness of Fit and Quality of Models.

    PubMed

    Jupiter, Daniel C

    In elucidating risk factors, or attempting to make predictions about the behavior of subjects in our biomedical studies, we often build statistical models. These models are meant to capture some aspect of reality, or some real-world process underlying the phenomena we are examining. However, no model is perfect, and it is thus important to have tools to assess how accurate models are. In this commentary, we delve into the various roles that our models can play. Then we introduce the notion of the goodness of fit of models and lay the ground work for further study of diagnostic tests for assessing both the fidelity of our models and the statistical assumptions underlying them. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. The Afghan symptom checklist: a culturally grounded approach to mental health assessment in a conflict zone.

    PubMed

    Miller, Kenneth E; Omidian, Patricia; Quraishy, Abdul Samad; Quraishy, Naseema; Nasiry, Mohammed Nader; Nasiry, Seema; Karyar, Nazar Mohammed; Yaqubi, Abdul Aziz

    2006-10-01

    This article describes a methodology for developing culturally grounded assessment measures in conflict and postconflict situations. A mixed-method design was used in Kabul, Afghanistan, to identify local indicators of distress and develop the 22-item Afghan Symptom Checklist (ASCL). The ASCL contains several indigenous items and items familiar to Western mental health professionals. The ASCL was pilot tested and subsequently administered to 324 adults in 8 districts of Kabul. It demonstrated excellent reliability (alpha=.93) and good construct validity, correlating strongly with a measure of exposure to war-related violence and loss (r=.70). Results of the survey indicate moderate levels of distress among Afghan men and markedly higher levels of distress and impaired functioning among women (and widows in particular). (c) 2007 APA, all rights reserved

  9. The gene normalization task in BioCreative III

    PubMed Central

    2011-01-01

    Background We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). Results We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. Conclusions By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance. PMID:22151901

  10. The gene normalization task in BioCreative III.

    PubMed

    Lu, Zhiyong; Kao, Hung-Yu; Wei, Chih-Hsuan; Huang, Minlie; Liu, Jingchen; Kuo, Cheng-Ju; Hsu, Chun-Nan; Tsai, Richard Tzong-Han; Dai, Hong-Jie; Okazaki, Naoaki; Cho, Han-Cheol; Gerner, Martin; Solt, Illes; Agarwal, Shashank; Liu, Feifan; Vishnyakova, Dina; Ruch, Patrick; Romacker, Martin; Rinaldi, Fabio; Bhattacharya, Sanmitra; Srinivasan, Padmini; Liu, Hongfang; Torii, Manabu; Matos, Sergio; Campos, David; Verspoor, Karin; Livingston, Kevin M; Wilbur, W John

    2011-10-03

    We report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k). We received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively. By using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.

  11. Testing of the Prototype Mars Drill and Sample Acquisition System in the Mars Analog Site of the Antarctica's Dry Valleys

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.

    2011-12-01

    We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  12. 12 CFR 908.23 - Good faith certification.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Good faith certification. 908.23 Section 908.23... OPERATIONS RULES OF PRACTICE AND PROCEDURE IN HEARINGS ON THE RECORD General Rules § 908.23 Good faith... filing or submission of record is well-grounded in fact and is warranted by existing law or a good faith...

  13. 12 CFR 908.23 - Good faith certification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Good faith certification. 908.23 Section 908.23... OPERATIONS RULES OF PRACTICE AND PROCEDURE IN HEARINGS ON THE RECORD General Rules § 908.23 Good faith... filing or submission of record is well-grounded in fact and is warranted by existing law or a good faith...

  14. What kind of scientific observations can we still doing with a small ground-based telescopes? Case Study of Oukaimeden Observatory

    NASA Astrophysics Data System (ADS)

    Benkhaldoun, Zouhair

    2015-08-01

    We propose to discuss the issue based on the experience gained at the Oukaimeden Observatory since 1988. Indeed, during the past few years, this observatory located in the Moroccan High Atlas, is experiencing a substantial rise in term of scientific work. After being selected in the last 80’s, for a solar helioseismology experiment (IRIS Experiment) and having been the subject of several site testing campaigns, it is quickly becoming one of the most important sky surveyor in the region, and beyond.It has in fact proven, especially thanks to its very good seeing and recent discoveries of comets and near-Earth asteroids, that we still need to invest in observation from the ground with instruments of modest size and costs. The site has a median seeing of about 0.9 arcsec with frequent peaks at 0.5-0.6 arcsec. It has very good climate statistics especially in terms of the number of good photometrical night (280 per year).In this work, we propose to review the qualities of the site of the Oukaimeden observatory, the projects that have been developed, the projects under development and finally the potential it represents for the community to turn it into a unique observation location in the region. We will also present some scientific results from various programs previously developed, as well as projections on the basis of projects currently discussed.

  15. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  16. Calibration of satellite sensors after launch

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.

    1986-01-01

    A simple and accurate method for the postflight calibration of satellite Visible Infrared Spin-Scan Radiometers (VISSR) is presented, and the results of inflight testing are reported. The calibration source for the VISSR with its effective wavelength of 610 nm is the radiance of sunlight, measured in calibrated reflectance units, scattered by the atmospheric gas above ocean which is far from land. Only the lowest 20 percent of the full-scale VISSR response is calibrated. VISSR testing aboard two geostationary operational evironmental satellites between 1980 and 1983 showed significant calibration coefficient variations of only + or - 12 percent and + or - 2 percent. Good agreement was found between values of aerosol optical thickness measured by VISSR and those measured from the ground.

  17. Experimental, Numerical and Analytical Characterization of Slosh Dynamics Applied to In-Space Propellant Storage, Management and Transfer

    NASA Technical Reports Server (NTRS)

    Storey, Jedediah M.; Kirk, Daniel; Gutierrez, Hector; Marsell, Brandon; Schallhorn, Paul; Lapilli, Gabriel D.

    2015-01-01

    Experimental and numerical results are presented from a new cryogenic fluid slosh program at the Florida Institute of Technology (FIT). Water and cryogenic liquid nitrogen are used in various ground-based tests with an approximately 30 cm diameter spherical tank to characterize damping, slosh mode frequencies, and slosh forces. The experimental results are compared to a computational fluid dynamics (CFD) model for validation. An analytical model is constructed from prior work for comparison. Good agreement is seen between experimental, numerical, and analytical results.

  18. Concurrent validity of Physiological Cost Index in walking over ground and during robotic training in subacute stroke patients.

    PubMed

    Delussu, Anna Sofia; Morone, Giovanni; Iosa, Marco; Bragoni, Maura; Paolucci, Stefano; Traballesi, Marco

    2014-01-01

    Physiological Cost Index (PCI) has been proposed to assess gait demand. The purpose of the study was to establish whether PCI is a valid indicator in subacute stroke patients of energy cost of walking in different walking conditions, that is, over ground and on the Gait Trainer (GT) with body weight support (BWS). The study tested if correlations exist between PCI and ECW, indicating validity of the measure and, by implication, validity of PCI. Six patients (patient group (PG)) with subacute stroke and 6 healthy age- and size-matched subjects as control group (CG) performed, in a random sequence in different days, walking tests overground and on the GT with 0, 30, and 50% BWS. There was a good to excellent correlation between PCI and ECW in the observed walking conditions: in PG Pearson correlation was 0.919 (p < 0.001); in CG Pearson correlation was 0.852 (p < 0.001). In conclusion, the high significant correlations between PCI and ECW, in all the observed walking conditions, suggest that PCI is a valid outcome measure in subacute stroke patients.

  19. USGS GeoData Digital Raster Graphics

    USGS Publications Warehouse

    ,

    2001-01-01

    Passive diffusion samplers have been tested at a number of sites where volatile organic compounds (VOC?s) are the principal contaminants in ground water. Test results generally show good agreement between concentrations of VOC?s in samples collected with diffusion samplers and concentrations in samples collected by purging the water from a well. Diffusion samplers offer several advantages over conventional and low-flow ground-water sampling procedures: ? Elimination of the need to purge a well before collecting a sample and to dispose of contaminated water. ? Elimination of cross-contamination of samples associated with sampling with non-dedicated pumps or sample delivery tubes. ? Reduction in sampling time by as much as 80 percent of that required for ?purge type? sampling methods. ? An increase in the frequency and spatial coverage of monitoring at a site because of the associated savings in time and money. The successful use of diffusion samplers depends on the following three primary factors: (1) understanding site conditions and contaminants of interest (defining sample objectives), (2) validating of results of diffusion samplers against more widely acknowledged sampling methods, and (3) applying diffusion samplers in the field.

  20. 49 CFR 234.249 - Ground tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ground tests. 234.249 Section 234.249 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Inspections and Tests § 234.249 Ground tests. A test for grounds on each energy bus...

  1. 49 CFR 234.249 - Ground tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ground tests. 234.249 Section 234.249 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Inspections and Tests § 234.249 Ground tests. A test for grounds on each energy bus...

  2. Geometric correction and digital elevation extraction using multiple MTI datasets

    USGS Publications Warehouse

    Mercier, Jeffrey A.; Schowengerdt, Robert A.; Storey, James C.; Smith, Jody L.

    2007-01-01

    Digital Elevation Models (DEMs) are traditionally acquired from a stereo pair of aerial photographs sequentially captured by an airborne metric camera. Standard DEM extraction techniques can be naturally extended to satellite imagery, but the particular characteristics of satellite imaging can cause difficulties. The spacecraft ephemeris with respect to the ground site during image collects is the most important factor in the elevation extraction process. When the angle of separation between the stereo images is small, the extraction process typically produces measurements with low accuracy, while a large angle of separation can cause an excessive number of erroneous points in the DEM from occlusion of ground areas. The use of three or more images registered to the same ground area can potentially reduce these problems and improve the accuracy of the extracted DEM. The pointing capability of some sensors, such as the Multispectral Thermal Imager (MTI), allows for multiple collects of the same area from different perspectives. This functionality of MTI makes it a good candidate for the implementation of a DEM extraction algorithm using multiple images for improved accuracy. Evaluation of this capability and development of algorithms to geometrically model the MTI sensor and extract DEMs from multi-look MTI imagery are described in this paper. An RMS elevation error of 6.3-meters is achieved using 11 ground test points, while the MTI band has a 5-meter ground sample distance.

  3. 49 CFR 234.249 - Ground tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ground tests. 234.249 Section 234.249... EMERGENCY NOTIFICATION SYSTEMS Maintenance, Inspection, and Testing Inspections and Tests § 234.249 Ground tests. A test for grounds on each energy bus furnishing power to circuits that affect the safety of...

  4. "Slow-scanning" in Ground-based Mid-infrared Observations

    NASA Astrophysics Data System (ADS)

    Ohsawa, Ryou; Sako, Shigeyuki; Miyata, Takashi; Kamizuka, Takafumi; Okada, Kazushi; Mori, Kiyoshi; Uchiyama, Masahito S.; Yamaguchi, Junpei; Fujiyoshi, Takuya; Morii, Mikio; Ikeda, Shiro

    2018-04-01

    Chopping observations with a tip-tilt secondary mirror have conventionally been used in ground-based mid-infrared observations. However, it is not practical for next generation large telescopes to have a large tip-tilt mirror that moves at a frequency larger than a few hertz. We propose an alternative observing method, a "slow-scanning" observation. Images are continuously captured as movie data, while the field of view is slowly moved. The signal from an astronomical object is extracted from the movie data by a low-rank and sparse matrix decomposition. The performance of the "slow-scanning" observation was tested in an experimental observation with Subaru/COMICS. The quality of a resultant image in the "slow-scanning" observation was as good as in a conventional chopping observation with COMICS, at least for a bright point-source object. The observational efficiency in the "slow-scanning" observation was better than that in the chopping observation. The results suggest that the "slow-scanning" observation can be a competitive method for the Subaru telescope and be of potential interest to other ground-based facilities to avoid chopping.

  5. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, M. S.

    2011-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at Calspan-University of Buffalo Research Center (CUBRC), the test flow field calibration. It showed the versatility of the CUBRC Large Energy National Shock Tunnel (LENS) II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results.

  6. Flight and ground tests of a very low density elastomeric ablative material

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.; Chapman, A. J., III

    1972-01-01

    A very low density ablative material, a silicone-phenolic composite, was flight tested on a recoverable spacecraft launched by a Pacemaker vehicle system; and, in addition, it was tested in an arc heated wind tunnel at three conditions which encompassed most of the reentry heating conditions of the flight tests. The material was composed, by weight, of 71 percent phenolic spheres, 22.8 percent silicone resin, 2.2 percent catalyst, and 4 percent silica fibers. The tests were conducted to evaluate the ablator performance in both arc tunnel and flight tests and to determine the predictability of the albator performance by using computed results from an existing one-dimensional numerical analysis. The flight tested ablator experienced only moderate surface recession and retained a smooth surface except for isolated areas where the char was completely removed, probably following reentry and prior to or during recovery. Analytical results show good agreement between arc tunnel and flight test results. The thermophysical properties used in the analysis are tabulated.

  7. Development of hybrid fog detection algorithm (FDA) using satellite and ground observation data for nighttime

    NASA Astrophysics Data System (ADS)

    Kim, So-Hyeong; Han, Ji-Hae; Suh, Myoung-Seok

    2017-04-01

    In this study, we developed a hybrid fog detection algorithm (FDA) using AHI/Himawari-8 satellite and ground observation data for nighttime. In order to detect fog at nighttime, Dual Channel Difference (DCD) method based on the emissivity difference between SWIR and IR1 is most widely used. DCD is good at discriminating fog from other things (middle/high clouds, clear sea and land). However, it is difficult to distinguish fog from low clouds. In order to separate the low clouds from the pixels that satisfy the thresholds of fog in the DCD test, we conducted supplementary tests such as normalized local standard derivation (NLSD) of BT11 and the difference of fog top temperature (BT11) and air temperature (Ta) from NWP data (SST from OSTIA data). These tests are based on the larger homogeneity of fog top than low cloud tops and the similarity of fog top temperature and Ta (SST). Threshold values for the three tests were optimized through ROC analysis for the selected fog cases. In addition, considering the spatial continuity of fog, post-processing was performed to detect the missed pixels, in particular, at edge of fog or sub-pixel size fog. The final fog detection results are presented by fog probability (0 100 %). Validation was conducted by comparing fog detection probability with the ground observed visibility data from KMA. The validation results showed that POD and FAR are ranged from 0.70 0.94 and 0.45 0.72, respectively. The quantitative validation and visual inspection indicate that current FDA has a tendency to over-detect the fog. So, more works which reducing the FAR is needed. In the future, we will also validate sea fog using CALIPSO data.

  8. Towards a better understanding of helicopter external noise

    NASA Astrophysics Data System (ADS)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  9. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  10. Comparison of Water Vapor Measurements from Ground-based and Space-based GPS Atmospheric Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Colon-Pagan, Ian; Kuo, Ying-Hwa

    2008-10-01

    In this study, we compare precipitable water vapor (PWV) values from ground-based GPS water vapor sensing and COSMIC radio occultation (RO) measurements over the Caribbean Sea, Gulf of Mexico, and United States regions as well as global analyses from NCEP and ECMWF models. The results show good overall agreement; however, the PWV values estimated by ground-based GPS receivers tend to have a slight dry bias for low PWV values and a slight wet bias for higher PWV values, when compared with GPS RO measurements and global analyses. An application of a student T-test indicates that there is a significant difference between both ground- and space-based GPS measured datasets. The dry bias associated with space-based GPS is attributed to the missing low altitude data, where the concentration of water vapor is large. The close agreements between space-based and global analyses are due to the fact that these global analyses assimilate space-based GPS RO data from COSMIC, and the retrieval of water vapor profiles from space-based technique requires the use of global analyses as the first guess. This work is supported by UCAR SOARS and a grant from the National Oceanic and Atmospheric Administration, Educational Partnership Program under the cooperative agreement NA06OAR4810187.

  11. Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning.

    PubMed

    Looney, Pádraig; Stevenson, Gordon N; Nicolaides, Kypros H; Plasencia, Walter; Molloholli, Malid; Natsis, Stavros; Collins, Sally L

    2018-06-07

    We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the "ground-truth" data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.

  12. Examining spectral properties of Landsat 8 OLI for predicting above-ground carbon of Labanan Forest, Berau

    NASA Astrophysics Data System (ADS)

    Suhardiman, A.; Tampubolon, B. A.; Sumaryono, M.

    2018-04-01

    Many studies revealed significant correlation between satellite image properties and forest data attributes such as stand volume, biomass or carbon stock. However, further study is still relevant due to advancement of remote sensing technology as well as improvement on methods of data analysis. In this study, the properties of three vegetation indices derived from Landsat 8 OLI were tested upon above-ground carbon stock data from 50 circular sample plots (30-meter radius) from ground survey in PT. Inhutani I forest concession in Labanan, Berau, East Kalimantan. Correlation analysis using Pearson method exhibited a promising results when the coefficient of correlation (r-value) was higher than 0.5. Further regression analysis was carried out to develop mathematical model describing the correlation between sample plots data and vegetation index image using various mathematical models.Power and exponential model were demonstrated a good result for all vegetation indices. In order to choose the most adequate mathematical model for predicting Above-ground Carbon (AGC), the Bayesian Information Criterion (BIC) was applied. The lowest BIC value (i.e. -376.41) shown by Transformed Vegetation Index (TVI) indicates this formula, AGC = 9.608*TVI21.54, is the best predictor of AGC of study area.

  13. How to make a good animation: A grounded cognition model of how visual representation design affects the construction of abstract physics knowledge

    NASA Astrophysics Data System (ADS)

    Chen, Zhongzhou; Gladding, Gary

    2014-06-01

    Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's intuition, which leads to a significant variance in their effectiveness. In this paper we propose a cognitive mechanism based on grounded cognition, suggesting that visual perception affects understanding by activating "perceptual symbols": the basic cognitive unit used by the brain to construct a concept. A good visual representation activates perceptual symbols that are essential for the construction of the represented concept, whereas a bad representation does the opposite. As a proof of concept, we conducted a clinical experiment in which participants received three different versions of a multimedia tutorial teaching the integral expression of electric potential. The three versions were only different by the details of the visual representation design, only one of which contained perceptual features that activate perceptual symbols essential for constructing the idea of "accumulation." On a following post-test, participants receiving this version of tutorial significantly outperformed those who received the other two versions of tutorials designed to mimic conventional visual representations used in classrooms.

  14. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Ground tests. 236.107 Section 236.107...: All Systems Inspections and Tests; All Systems § 236.107 Ground tests. (a) Except as provided in paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits, the...

  15. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Ground tests. 236.107 Section 236.107...: All Systems Inspections and Tests; All Systems § 236.107 Ground tests. (a) Except as provided in paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits, the...

  16. The Meaning of Good Parent-Child Relationships for Mexican American Adolescents

    ERIC Educational Resources Information Center

    Crockett, Lisa J.; Brown, Jill; Russell, Stephen T.; Shen, Yuh-Ling

    2007-01-01

    Perceptions of good parent-adolescent relationships were explored among 19 Mexican American high school students aged 14-17 who participated in focus group interviews on what it means for Mexican American teenagers to have good relationships with parents. Using a grounded theory approach, five general themes emerged in the responses, corresponding…

  17. Reflectivity of the atmosphere-inhomogeneous surfaces system Laboratory simulation

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Kaufman, Y. J.; Fraser, R. S.

    1984-01-01

    Theoretical two- and three-dimensional solutions of the radiative transfer equation have been applied to the earth-atmosphere system. Such solutions have not been verified experimentally. A laboratory experiment simulates such a system to test the theory. The atmosphere was simulated by latex spheres suspended in water and the ground by a nonuniform surface, half white and half black. A stable radiation source provided uniform illumination over the hydrosol. The upward radiance along a line orthogonal to the boundary of the two-halves field was recorded for different amounts of the hydrosol. The simulation is a well-defined radiative transfer experiment to test radiative transfer models involving nonuniform surfaces. Good agreement is obtained between the measured and theoretical results.

  18. Enhancement of surface durability of space materials and structures in LEO environment

    NASA Astrophysics Data System (ADS)

    Gudimenko, Y.; Ng, R.; Kleiman, J. I.; Iskanderova, Z. A.; Tennyson, R. C.; Hughes, P. C.; Milligan, D.; Grigorevski, A.; Shuiski, M.; Kiseleva, L.; Edwards, D.; Finckenor, M.

    2003-09-01

    Results of on-going program that involves surface modification treatments of thin polymer films and various organic-based thermal control coatings by an innovative Photosil surface modification technology for space durability improvement are presented, as well as results of ground-based testing in an oxygen plasma asher and in fast atomic oxygen (FAO) beam facility. In addition, independent ground-based FAO + VUV test results from NASA Marshall Space Flight Center (MSFC) are also presented. Recent results are presented to further improve the AO durability of conductive thermal control paints, never previously treated by the Photosil process. The thermal control coatings evaluated in this program represent existing commercially available space-approved materials and experimental coatings, which are still under development. Functional properties and performance characteristics, such as AO stability, thermal optical properties, surface resistivity, and outgassing characteristics of pristine and treated materials were also verified. FAO+VUV exposure tests results revealed that some of the successfully treated materials did not show any mass loss or surface morphology change, thus indicating good protection from the severe oxidative environment. A few complementary surface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS) have been used to examine the composition and structure of the protective surface-modified layer.

  19. Coupled rotor/fuselage dynamic analysis of the AH-1G helicopter and correlation with flight vibrations data

    NASA Technical Reports Server (NTRS)

    Corrigan, J. C.; Cronkhite, J. D.; Dompka, R. V.; Perry, K. S.; Rogers, J. P.; Sadler, S. G.

    1989-01-01

    Under a research program designated Design Analysis Methods for VIBrationS (DAMVIBS), existing analytical methods are used for calculating coupled rotor-fuselage vibrations of the AH-1G helicopter for correlation with flight test data from an AH-1G Operational Load Survey (OLS) test program. The analytical representation of the fuselage structure is based on a NASTRAN finite element model (FEM), which has been developed, extensively documented, and correlated with ground vibration test. One procedure that was used for predicting coupled rotor-fuselage vibrations using the advanced Rotorcraft Flight Simulation Program C81 and NASTRAN is summarized. Detailed descriptions of the analytical formulation of rotor dynamics equations, fuselage dynamic equations, coupling between the rotor and fuselage, and solutions to the total system of equations in C81 are included. Analytical predictions of hub shears for main rotor harmonics 2p, 4p, and 6p generated by C81 are used in conjunction with 2p OLS measured control loads and a 2p lateral tail rotor gearbox force, representing downwash impingement on the vertical fin, to excite the NASTRAN model. NASTRAN is then used to correlate with measured OLS flight test vibrations. Blade load comparisons predicted by C81 showed good agreement. In general, the fuselage vibration correlations show good agreement between anslysis and test in vibration response through 15 to 20 Hz.

  20. Ground Processing Affordability for Space Vehicles

    NASA Technical Reports Server (NTRS)

    Ingalls, John; Scott, Russell

    2011-01-01

    Launch vehicles and most of their payloads spend the majority of their time on the ground. The cost of ground operations is very high. So, why so often is so little attention given to ground processing during development? The current global space industry and economic environment are driving more need for efficiencies to save time and money. Affordability and sustainability are more important now than ever. We can not continue to treat space vehicles as mere science projects. More RLV's (Reusable Launch Vehicles) are being developed for the gains of reusability which are not available for ELV's (Expendable Launch Vehicles). More human-rated vehicles are being developed, with the retirement of the Space Shuttles, and for a new global space race, yet these cost more than the many unmanned vehicles of today. We can learn many lessons on affordability from RLV's. DFO (Design for Operations) considers ground operations during design, development, and manufacturing-before the first flight. This is often minimized for space vehicles, but is very important. Vehicles are designed for launch and mission operations. You will not be able to do it again if it is too slow or costly to get there. Many times, technology changes faster than space products such that what is launched includes outdated features, thus reducing competitiveness. Ground operations must be considered for the full product Lifecycle, from concept to retirement. Once manufactured, launch vehicles along with their payloads and launch systems require a long path of processing before launch. Initial assembly and testing always discover problems to address. A solid integration program is essential to minimize these impacts, as was seen in the Constellation Ares I-X test rocket. For RLV's, landing/recovery and post-flight turnaround activities are performed. Multi-use vehicles require reconfiguration. MRO (Maintenance, Repair, and Overhaul) must be well-planned--- even for the unplanned problems. Defect limits and standard repairs need to be in-place as well as easily added. Many routine inspections and maintenance can be like an aircraft overhaul. Modifications and technology upgrades should be expected. Another factor affecting ground operations efficiency is trending. It is essential for RLV's, and also useful for ELV's which fly the same or similar models again. Good data analysis of technical and processing performance will determine fixes and improvements needed for safety, design, and future processing. Collecting such data on new or low-frequency vehicles is a challenge. Lessons can be learned from the Space Shuttle, or even the Concorde aircraft. For all of the above topics, efficient business systems must be established for comprehensive program management and good throughput. Drawings, specifications, and manuals for an entire launch vehicle are often in different formats from multiple vendors, plus they have proprietary constraints. Nonetheless, the integration team must ensure that all data needed is compatible and visible to each appropriate team member. Ground processing systems for scheduling, tracking, problem resolution, etc. must be well laid-out. The balance between COTS (commercial off the shelf) and custom software is difficult. Multiple customers, vendors, launch sites, and landing sites add to the complexity of efficient IT (Information Technology) tools.

  1. Structural dynamic model obtained from flight use with piloted simulation and handling qualities analysis

    NASA Technical Reports Server (NTRS)

    Powers, Bruce G.

    1996-01-01

    The ability to use flight data to determine an aircraft model with structural dynamic effects suitable for piloted simulation. and handling qualities analysis has been developed. This technique was demonstrated using SR-71 flight test data. For the SR-71 aircraft, the most significant structural response is the longitudinal first-bending mode. This mode was modeled as a second-order system, and the other higher order modes were modeled as a time delay. The distribution of the modal response at various fuselage locations was developed using a uniform beam solution, which can be calibrated using flight data. This approach was compared to the mode shape obtained from the ground vibration test, and the general form of the uniform beam solution was found to be a good representation of the mode shape in the areas of interest. To calibrate the solution, pitch-rate and normal-acceleration instrumentation is required for at least two locations. With the resulting structural model incorporated into the simulation, a good representation of the flight characteristics was provided for handling qualities analysis and piloted simulation.

  2. Subsurface temperature data in Jemez Mountains, New Mexico. Circular 151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, M.; Weidman, C.; Edwards, C.L.

    1976-01-01

    Temperature data taken in 13 drill tests around the Valles Caldera are presented. Seven of these tests were shallow auger holes (less than approximately 30m), 4 were rotary holes of intermediate depth (140 m to 170 m), and 2 were relatively deep tests (350 m and 730 m). Heat-flow measurements were obtained in the 4 intermediate drill tests whereas only geothermal gradients were measured in the remaining tests. Potential ground-water movement, lack of good thermal conductivity control, and the shallow depth of many of the drill tests makes the heat-flow pattern in the area uncertain. Two trends appear likely: highermore » heat flows are to the western side of the Valles Caldera (as opposed to the eastern side) and heat flows increase rapidly in approaching the margin of the Valles Caldera from the west. Both observations suggest a relatively shallow heat source located beneath the western part of the Valles Caldera.« less

  3. Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail

    NASA Technical Reports Server (NTRS)

    Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy

    2004-01-01

    This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loehle, Stefan; Zander, Fabian; Hermann, Tobias

    Three different types of rocks were tested in a high enthalpy air plasma flow. Two terrestrial rocks, basalt and argillite, and an ordinary chondrite, with a 10 mm diameter cylindrical shape were tested in order to observe decomposition, potential fragmentation, and spectral signature. The goal was to simulate meteoroid ablation to interpret meteor observation and compare these observations with ground based measurements. The test flow with a local mass-specific enthalpy of 70 MJ kg{sup −1} results in a surface heat flux at the meteorite fragment surface of approximately 16 MW m{sup −2}. The stagnation pressure is 24 hPa, which correspondsmore » to a flight condition in the upper atmosphere around 80 km assuming an entry velocity of 10 km s{sup −1}. Five different diagnostic methods were applied simultaneously to characterize the meteorite fragmentation and destruction in the ground test: short exposure photography, regular video, high-speed imaging with 10 kHz frame rate, thermography, and Echelle emission spectroscopy. This is the first time that comprehensive testing of various meteorite fragments under the same flow condition was conducted. The data sets indeed show typical meteorite ablation behavior. The cylindrically shaped fragments melt and evaporate within about 4 s. The spectral data allow the identification of the material from the spectra which is of particular importance for future spectroscopic meteor observations. For the tested ordinary chondrite sample a comparison to an observed meteor spectra shows good agreement. The present data show that this testing methodology reproduces the ablation phenomena of meteoritic material alongside the corresponding spectral signatures.« less

  5. Experimental Simulation of Meteorite Ablation during Earth Entry using a Plasma Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Loehle, Stefan; Zander, Fabian; Hermann, Tobias; Eberhart, Martin; Meindl, Arne; Oefele, Rainer; Vaubaillon, Jeremie; Colas, Francois; Vernazza, Pierre; Drouard, Alexis; Gattacceca, Jerome

    2017-03-01

    Three different types of rocks were tested in a high enthalpy air plasma flow. Two terrestrial rocks, basalt and argillite, and an ordinary chondrite, with a 10 mm diameter cylindrical shape were tested in order to observe decomposition, potential fragmentation, and spectral signature. The goal was to simulate meteoroid ablation to interpret meteor observation and compare these observations with ground based measurements. The test flow with a local mass-specific enthalpy of 70 MJ kg-1 results in a surface heat flux at the meteorite fragment surface of approximately 16 MW m-2. The stagnation pressure is 24 hPa, which corresponds to a flight condition in the upper atmosphere around 80 km assuming an entry velocity of 10 km s-1. Five different diagnostic methods were applied simultaneously to characterize the meteorite fragmentation and destruction in the ground test: short exposure photography, regular video, high-speed imaging with 10 kHz frame rate, thermography, and Echelle emission spectroscopy. This is the first time that comprehensive testing of various meteorite fragments under the same flow condition was conducted. The data sets indeed show typical meteorite ablation behavior. The cylindrically shaped fragments melt and evaporate within about 4 s. The spectral data allow the identification of the material from the spectra which is of particular importance for future spectroscopic meteor observations. For the tested ordinary chondrite sample a comparison to an observed meteor spectra shows good agreement. The present data show that this testing methodology reproduces the ablation phenomena of meteoritic material alongside the corresponding spectral signatures.

  6. Cultural Resources Intensive Survey and Testing of Mississippi River Levee Berms, Crittenden and Desha Counties, Arkansas and Mississippi, Scott, Cape Girardeau and Pemiscot Counties, Missouri Item R-618 Knowlton; Desha County, Arkansas.

    DTIC Science & Technology

    1983-11-01

    grave goods such as copper beads, pipes, raw, rare materials, and conch shells from the Gulf are common (Haag 1971:18). The Hopewellilan concept of...WILMSEN, E. N. 1970 Lithic Analysis and Cultural Inference: A Paleo-Indian Case. Anthropological Papers of the University of Arizona 16. 1973...ground celt of black porphyry (Figure C-3:d). It shows some chipping along one longitudinal side. This tool is 10 centimeters in length, 3.5 centimeters

  7. Diurnal variation of stratospheric chlorine monoxide - A critical test of chlorine chemistry in the ozone layer

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; De Zafra, R.; Parrish, A.; Barrett, J. W.

    1984-01-01

    Ground-based observations of a mm-wave spectral line at 278 GHz have yielded stratospheric chlorine monoxide column density diurnal variation records which indicate that the mixing ratio and column density of this compound above 30 km are about 20 percent lower than model predictions based on 2.1 parts/billion of total stratospheric chlorine. The observed day-to-night variation is, however, in good agreement with recent model predictions, both confirming the existence of a nighttime reservoir for chlorine and verifying the predicted general rate of its storage and retrieval.

  8. Distribution and concentration of suspended matter in Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Philpot, W.

    1977-01-01

    The author has identified the following significant results. The problem of remote sensing of suspended matter in water was analyzed in terms of the single-scattering albedo, and a semiempirical relationship between satellite radiance measurements and the concentration of suspended matter in the water was developed. The relationship was tested using data from the 7 July 1973 LANDSAT overpass of Delaware Bay with good results. Suspended sediment concentration maps for the entire Delaware Bay were prepared using radiance values extracted from LANDSAT MSS imagery and correlating them with ground truth samples collected from boats and helicopter.

  9. Geohydrology and conceptual model of a ground-water-flow system near a Superfund site in Cheshire, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Barlow, P.M.; Starn, J.J.

    1996-01-01

    Degradation of ground-water quality has been identified in an area of the north-central part of the town of Cheshire, Connecticut. An investigation by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, was done during 1994-95 to characterize the unconsolidated glacial deposits and the sedimentary bedrock, integrate the local geohydrologic conditions with the regional geohydrologic system, and develop a conceptual understanding of ground-water flow in the study area. A regional ground-water-flow model developed for the region near the study area indicates that perennial streams, including Judd Brook and the Tenmile River, form hydrologic divides that separate the larger region into hydraulically independent flow systems. In the local study area, synoptic water-level measurements made in June 1995 indicate that ground water near the water table flows west and southwestward from the low hill on the eastern side of the area toward the pond and wetlands along Judd Brook. Water-level data indicate that there is good hydraulic connection between the unconsolidated materials and underlying fractured bedrock. Unconsolidated materials in the study area consist principally of glacial stratified deposits that are fine sand, silt, and clay of glaci- olacustrine origin; locally these overlie thin glacial till. The glacial sediments range in thickness from a few feet to about 25 ft in the eastern part of the study area and are as much as 100 ft thick in the western and southern part of the study area beneath the Judd Brook and Tenmile River valleys. Fluvial redbeds of the New Haven Arkose underlie the glacial deposits in the region; in the study area, the redbeds consist of (1) channel sandstone units, which are coarse sandstone to fine conglomerate, generally in 6- to 15-ft- thick sequences; and (2) overbank mudstone units, which are siltstone and silty sandstone with some fine sandstone, generally in 6- to 50-ft-thick sequences. Thin-bedded zones of siltstone that are particularly fissile are present locally within the mudstone units. Rock units strike northward and dip eastward at about 20. The eastward-dipping strata are cut by a consistent set of west to west-northwest dipping, high-angle fractures. These fractures are oriented perpendicular to bedding and are present mostly in the channel sandstone units, but locally extend into the mudstone units as well. Borehole-geophysical logging indicates that ground water flows along bedding planes in fissile zones and between fissile zones in high-angle fractures, which are perpendicular to bedding. The combined fracture types form an aquifer system in which ground water follows a stair-step flowpath, flowing horizontally through fissile zones and vertically through high-angle fractures. Heat-pulse flow meter measurements and borehole fluid-conductivity and temperature logs indicate that only a small subset of the fissile zones and some high-angle fractures are hydraulically significant. A generalized local-scale ground-water flow model based on a nonspecific, but realistic, rock and fracture geometry was developed for the study area. Simulations show that under nonpumping conditions at a hypothetical well located in the middle of the model, ground-water flow was separated into upper and lower zones in which flow paths differed but were generally from northeast to southwest. Several short-duration aquifer tests conducted in the study area indicate that there is good hydraulic connection in the fractures between the pumping well (CS-221) and two bedrock wells located approximately 100 ft to the north and south along bedding strike. During the short duration of the aquifer tests, there was no hydraulic connection in bedrock wells located to the east, perpendicular to the strike. A range of transmissivity of 27 to 46 ft2/d was calculated from the aquifer-test data for the fractured-bedrock aquifer at CS-221 and TH-2. Individual fracture zones identified by bo

  10. Finding common ground to achieve a "good death": family physicians working with substitute decision-makers of dying patients. A qualitative grounded theory study.

    PubMed

    Tan, Amy; Manca, Donna

    2013-01-22

    Substitute decision-makers are integral to the care of dying patients and make many healthcare decisions for patients. Unfortunately, conflict between physicians and surrogate decision-makers is not uncommon in end-of-life care and this could contribute to a "bad death" experience for the patient and family. We aim to describe Canadian family physicians' experiences of conflict with substitute decision-makers of dying patients to identify factors that may facilitate or hinder the end-of-life decision-making process. This insight will help determine how to best manage these complex situations, ultimately improving the overall care of dying patients. Grounded Theory methodology was used with semi-structured interviews of family physicians in Edmonton, Canada, who experienced conflict with substitute decision-makers of dying patients. Purposeful sampling included maximum variation and theoretical sampling strategies. Interviews were audio-taped, and transcribed verbatim. Transcripts, field notes and memos were coded using the constant-comparative method to identify key concepts until saturation was achieved and a theoretical framework emerged. Eleven family physicians with a range of 3 to 40 years in clinical practice participated.The family physicians expressed a desire to achieve a "good death" and described their role in positively influencing the experience of death.Finding Common Ground to Achieve a "Good Death" for the Patient emerged as an important process which includes 1) Building Mutual Trust and Rapport through identifying key players and delivering manageable amounts of information, 2) Understanding One Another through active listening and ultimately, and 3) Making Informed, Shared Decisions. Facilitators and barriers to achieving Common Ground were identified. Barriers were linked to conflict. The inability to resolve an overt conflict may lead to an impasse at any point. A process for Resolving an Impasse is described. A novel framework for developing Common Ground to manage conflicts during end-of-life decision-making discussions may assist in achieving a "good death". These results could aid in educating physicians, learners, and the public on how to achieve productive collaborative relationships during end-of-life decision-making for dying patients, and ultimately improve their deaths.

  11. A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and turbulent flow chromatography applications.

    PubMed

    Fairhurst, Robert E; Chassaing, Christophe; Venn, Richard F; Mayes, Andrew G

    2004-12-15

    Spherical molecularly imprinted polymers (MIPs) specific to the beta-blocker propranolol have been synthesised using two different approaches and compared to traditional ground monolithic MIPs in HPLC and TFC applications. TFC is a LC technique used for rapid extraction of compounds directly from complex matrices. It can be easily coupled to HPLC and MS for automation of an extraction/analysis procedure. Spherical MIP beads were produced using a suspension polymerisation technique and silica/MIP composite beads by grafting MIP to spherical silica particles using a surface-bound initiator species. Synthesis of both beaded and silica-grafted MIPs was more practical than using the traditional grinding method and yields of spherical particles of the required size between 80 and 100% were routinely achieved. Under HPLC conditions, beaded and ground MIP materials showed a degree of chiral separation for all of the nine beta-blockers tested. The beaded MIP, however, showed much better flow properties and peak shape than the ground material. Silica-grafted MIP showed some separation in five of the drugs and a large improvement in peak shape and analysis times compared with both ground and beaded MIPs. The materials prepared were also used in extraction columns for Turbulent Flow Chromatography (TFC). Although no imprinting effect was observed under typical TFC conditions, beaded polymer materials showed promise for use as TFC extraction columns due to the good flow properties and clean extracts obtained.

  12. A Risk-Based Approach for Aerothermal/TPS Analysis and Testing

    NASA Technical Reports Server (NTRS)

    Wright, Michael J.; Grinstead, Jay H.; Bose, Deepak

    2007-01-01

    The current status of aerothermal and thermal protection system modeling for civilian entry missions is reviewed. For most such missions, the accuracy of our simulations is limited not by the tools and processes currently employed, but rather by reducible deficiencies in the underlying physical models. Improving the accuracy of and reducing the uncertainties in these models will enable a greater understanding of the system level impacts of a particular thermal protection system and of the system operation and risk over the operational life of the system. A strategic plan will be laid out by which key modeling deficiencies can be identified via mission-specific gap analysis. Once these gaps have been identified, the driving component uncertainties are determined via sensitivity analyses. A Monte-Carlo based methodology is presented for physics-based probabilistic uncertainty analysis of aerothermodynamics and thermal protection system material response modeling. These data are then used to advocate for and plan focused testing aimed at reducing key uncertainties. The results of these tests are used to validate or modify existing physical models. Concurrently, a testing methodology is outlined for thermal protection materials. The proposed approach is based on using the results of uncertainty/sensitivity analyses discussed above to tailor ground testing so as to best identify and quantify system performance and risk drivers. A key component of this testing is understanding the relationship between the test and flight environments. No existing ground test facility can simultaneously replicate all aspects of the flight environment, and therefore good models for traceability to flight are critical to ensure a low risk, high reliability thermal protection system design. Finally, the role of flight testing in the overall thermal protection system development strategy is discussed.

  13. Are running speeds maximized with simple-spring stance mechanics?

    PubMed

    Clark, Kenneth P; Weyand, Peter G

    2014-09-15

    Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds (n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R(2) statistic (where an R(2) of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds (R(2) <0.85 vs. R(2) ≥ 0.91, respectively), and deviated most at top speed (R(2) = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds. Copyright © 2014 the American Physiological Society.

  14. Analysis of Controller Communication in En Route Air Traffic Control.

    ERIC Educational Resources Information Center

    Seamster, Thomas L.; And Others

    To contribute to an understanding of the elements of good air traffic controller communication with the objective of providing recommendations to improve controller communication training, two studies analyzed team communication, ground-air communication, and ground-line communication. The simulated and live traffic analyses examined established…

  15. Researching on Real 3d Modeling Constructed with the Oblique Photogrammetry and Terrestrial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Han, Youmei; Jiao, Minglian; Shijuan

    2018-04-01

    With the rapid development of the oblique photogrammetry, many cities have built some real 3D model with this technology. Although it has the advantages of short period, high efficiency and good air angle effect, the near ground view angle of these real 3D models are not very good. With increasing development of smart cities, the requirements of reality, practicality and accuracy on real 3D models are becoming higher. How to produce and improve the real 3D models quickly has become one of the hot research directions of geospatial information. To meet this requirement In this paper, Combined with the characteristics of current oblique photogrammetry modeling and the terrestrial photogrammetry, we proposed a new technological process, which consists of close range sensor design, data acquisition and processing. The proposed method is being tested by using oblique photography images acquired. The results confirm the effectiveness of the proposed approach.

  16. An in-flight simulation of approach and landing of a STOL transport with adverse ground effect

    NASA Technical Reports Server (NTRS)

    Ellis, D. R.

    1976-01-01

    The results of an in-flight simulation program undertaken to study the problems of landing a representative STOL transport in the presence of adverse ground effects are presented. Landings were performed with variations in ground effect magnitude, ground effect lag, and thrust response. Other variations covered the effects of augmented lift response, SAS-failures, turbulence, segmented approach, and flare warning. The basic STOL airplane required coordinated use of both stick and throttle for consistently acceptable landings, and the presence of adverse ground effects made the task significantly more difficult. Ground effect lag and good engine response gave noticeable improvement, as did augmented lift response.

  17. Is the ground state of Yang-Mills theory Coulombic?

    NASA Astrophysics Data System (ADS)

    Heinzl, T.; Ilderton, A.; Langfeld, K.; Lavelle, M.; Lutz, W.; McMullan, D.

    2008-08-01

    We study trial states modelling the heavy quark-antiquark ground state in SU(2) Yang-Mills theory. A state describing the flux tube between quarks as a thin string of glue is found to be a poor description of the continuum ground state; the infinitesimal thickness of the string leads to UV artifacts which suppress the overlap with the ground state. Contrastingly, a state which surrounds the quarks with non-Abelian Coulomb fields is found to have a good overlap with the ground state for all charge separations. In fact, the overlap increases as the lattice regulator is removed. This opens up the possibility that the Coulomb state is the true ground state in the continuum limit.

  18. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOEpatents

    Andrews, L.B.

    1998-08-18

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined. 17 figs.

  19. Apparatus for and method of testing an electrical ground fault circuit interrupt device

    DOEpatents

    Andrews, Lowell B.

    1998-01-01

    An apparatus for testing a ground fault circuit interrupt device includes a processor, an input device connected to the processor for receiving input from an operator, a storage media connected to the processor for storing test data, an output device connected to the processor for outputting information corresponding to the test data to the operator, and a calibrated variable load circuit connected between the processor and the ground fault circuit interrupt device. The ground fault circuit interrupt device is configured to trip a corresponding circuit breaker. The processor is configured to receive signals from the calibrated variable load circuit and to process the signals to determine a trip threshold current and/or a trip time. A method of testing the ground fault circuit interrupt device includes a first step of providing an identification for the ground fault circuit interrupt device. Test data is then recorded in accordance with the identification. By comparing test data from an initial test with test data from a subsequent test, a trend of performance for the ground fault circuit interrupt device is determined.

  20. Estimation of regression laws for ground motion parameters using as case of study the Amatrice earthquake

    NASA Astrophysics Data System (ADS)

    Tiberi, Lara; Costa, Giovanni

    2017-04-01

    The possibility to directly associate the damages to the ground motion parameters is always a great challenge, in particular for civil protections. Indeed a ground motion parameter, estimated in near real time that can express the damages occurred after an earthquake, is fundamental to arrange the first assistance after an event. The aim of this work is to contribute to the estimation of the ground motion parameter that better describes the observed intensity, immediately after an event. This can be done calculating for each ground motion parameter estimated in a near real time mode a regression law which correlates the above-mentioned parameter to the observed macro-seismic intensity. This estimation is done collecting high quality accelerometric data in near field, filtering them at different frequency steps. The regression laws are calculated using two different techniques: the non linear least-squares (NLLS) Marquardt-Levenberg algorithm and the orthogonal distance methodology (ODR). The limits of the first methodology are the needed of initial values for the parameters a and b (set 1.0 in this study), and the constraint that the independent variable must be known with greater accuracy than the dependent variable. While the second algorithm is based on the estimation of the errors perpendicular to the line, rather than just vertically. The vertical errors are just the errors in the 'y' direction, so only for the dependent variable whereas the perpendicular errors take into account errors for both the variables, the dependent and the independent. This makes possible also to directly invert the relation, so the a and b values can be used also to express the gmps as function of I. For each law the standard deviation and R2 value are estimated in order to test the quality and the reliability of the found relation. The Amatrice earthquake of 24th August of 2016 is used as case of study to test the goodness of the calculated regression laws.

  1. Ground cross-modal impedance as a tool for analyzing ground/plate interaction and ground wave propagation.

    PubMed

    Grau, L; Laulagnet, B

    2015-05-01

    An analytical approach is investigated to model ground-plate interaction based on modal decomposition and the two-dimensional Fourier transform. A finite rectangular plate subjected to flexural vibration is coupled with the ground and modeled with the Kirchhoff hypothesis. A Navier equation represents the stratified ground, assumed infinite in the x- and y-directions and free at the top surface. To obtain an analytical solution, modal decomposition is applied to the structure and a Fourier Transform is applied to the ground. The result is a new tool for analyzing ground-plate interaction to resolve this problem: ground cross-modal impedance. It allows quantifying the added-stiffness, added-mass, and added-damping from the ground to the structure. Similarity with the parallel acoustic problem is highlighted. A comparison between the theory and the experiment shows good matching. Finally, specific cases are investigated, notably the influence of layer depth on plate vibration.

  2. Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets

    NASA Astrophysics Data System (ADS)

    Santos, Vinicius Rafael N. dos; Al-Nuaimy, Waleed; Porsani, Jorge Luís; Hirata, Nina S. Tomita; Alzubi, Hamzah S.

    2014-01-01

    The accuracy of detecting buried targets using ground penetrating radar (GPR) depends mainly on features that are extracted from the data. The objective of this study is to test three spectral features and evaluate the quality to provide a good discrimination among three types of materials (concrete, metallic and plastic) using the 200 MHz GPR system. The spectral features which were selected to check the interaction of the electromagnetic wave with the type of material are: the power spectral density (PSD), short-time Fourier transform (STFT) and the Wigner-Ville distribution (WVD). The analyses were performed with simulated data varying the sizes of the targets and the electrical properties (relative dielectric permittivity and electrical conductivity) of the soil. To check if the simulated data are in accordance with the real data, the same approach was applied on the data obtained in the IAG/USP test site. A noticeable difference was found in the amplitude of the studies' features in the frequency domain and these results show the strength of the signal processing to try to differentiate buried materials using GPR, and so can be used in urban planning and geotechnical studies.

  3. A Model For Rapid Estimation of Economic Loss

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2012-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  4. Using Socioeconomic Data to Calibrate Loss Estimates

    NASA Astrophysics Data System (ADS)

    Holliday, J. R.; Rundle, J. B.

    2013-12-01

    One of the loftier goals in seismic hazard analysis is the creation of an end-to-end earthquake prediction system: a "rupture to rafters" work flow that takes a prediction of fault rupture, propagates it with a ground shaking model, and outputs a damage or loss profile at a given location. So far, the initial prediction of an earthquake rupture (either as a point source or a fault system) has proven to be the most difficult and least solved step in this chain. However, this may soon change. The Collaboratory for the Study of Earthquake Predictability (CSEP) has amassed a suite of earthquake source models for assorted testing regions worldwide. These models are capable of providing rate-based forecasts for earthquake (point) sources over a range of time horizons. Furthermore, these rate forecasts can be easily refined into probabilistic source forecasts. While it's still difficult to fully assess the "goodness" of each of these models, progress is being made: new evaluation procedures are being devised and earthquake statistics continue to accumulate. The scientific community appears to be heading towards a better understanding of rupture predictability. Ground shaking mechanics are better understood, and many different sophisticated models exists. While these models tend to be computationally expensive and often regionally specific, they do a good job at matching empirical data. It is perhaps time to start addressing the third step in the seismic hazard prediction system. We present a model for rapid economic loss estimation using ground motion (PGA or PGV) and socioeconomic measures as its input. We show that the model can be calibrated on a global scale and applied worldwide. We also suggest how the model can be improved and generalized to non-seismic natural disasters such as hurricane and severe wind storms.

  5. Geophysical and botanical monitoring of simulated graves in a tropical rainforest, Colombia, South America

    NASA Astrophysics Data System (ADS)

    Molina, Carlos Martin; Pringle, Jamie K.; Saumett, Miguel; Evans, Gethin T.

    2016-12-01

    In most Latin American countries there are significant numbers of missing people and forced disappearances, currently 80,000 only in Colombia. Successful detection of shallow buried human remains by forensic search teams is currently difficult in varying terrain and climates. Within this research we built four simulated clandestine burial styles in tropical rainforests, as this is a common scenario and depositional environment encountered in Latin America, to gain knowledge of optimum forensic geophysics detection techniques. The results of geophysically monitoring these burials using ground penetrating radar, magnetic susceptibility, bulk ground conductivity and electrical resistivity are presented from one to forty three weeks post-burial. Radar survey results with both the 250 MHz and 500 MHz frequency antennae showed good detection of modern simulated burials on 2D profiles and horizontal time slices but poor detection on the other simulated graves. Magnetic susceptibility, bulk ground conductivity and electrical resistivity results were generally poor at detecting the simulated targets. Observations of botanical variations on the test site show rapid regrowth of Malvaceae and Petiveria alliacea vegetation over all burials that are common in these forests, which can make detection more difficult.

  6. Advancing Empirical Scholarship to Further Develop Evaluation Theory and Practice

    ERIC Educational Resources Information Center

    Christie, Christina A.

    2011-01-01

    Good theory development is grounded in empirical inquiry. In the context of educational evaluation, the development of empirically grounded theory has important benefits for the field and the practitioner. In particular, a shift to empirically derived theory will assist in advancing more systematic and contextually relevant evaluation practice, as…

  7. Study of borehole probing methods to improve the ground characterization

    NASA Astrophysics Data System (ADS)

    Naeimipour, Ali

    Collecting geological information allows for optimizing ground control measures in underground structures. This includes understanding of the joints and discontinuities and rock strength to develop rock mass classifications. An ideal approach to collect such information is through correlating the drilling data from the roofbolters to assess rock strength and void location and properties. The current instrumented roofbolters are capable of providing some information on these properties but not fully developed for accurate ground characterization. To enhance existing systems additional instrumentation and testing was conducted in laboratory and field conditions. However, to define the geology along the boreholes, the use of probing was deemed to be most efficient approach for locating joints and structures in the ground and evaluation of rock strength. Therefore, this research focuses on selection and evaluation of proper borehole probes that can offer a reliable assessment of rock mass structure and rock strength. In particular, attention was paid to borehole televiewer to characterize rock mass structures and joints and development of mechanical rock scratcher for determination of rock strength. Rock bolt boreholes are commonly drilled in the ribs and the roof of underground environments. They are often small (about 1.5 inches) and short (mostly 2-3 meter). Most of them are oriented upward and thus, mostly dry or perhaps wet but not filled with water. No suitable system is available for probing in such conditions to identify the voids/joints and specifically to measure rock strength for evaluation of rock mass and related optimization of ground support design. A preliminary scan of available borehole probes proved that the best options for evaluation of rock structure is through analysis of borehole images, captured by optical televiewers. Laboratory and field trials with showed that these systems can be used to facilitate measurement of the location, frequency and partially condition of discontinuities. Two of the more promising tools have been tested during this project, which are QL40OBI Optical TV and Slim Borehole Scanner (SBS) manufacture by ALT-Mount Sopris and DMT, respectively. The field experiment with QL40OBI showed that the images generated for downward and sub-horizontal boreholes are of good quality and can be used to evaluate the joint conditions. However, this device is not suitable for use inside the upward drillholes. The Slim Borehole Scanner (SBS) manufactured by DMT in Germany has the required features for borescoping the roofbolt holes. This includes the ease of operation and suitable geometry along with an unwrapped 360-degree picture of the borehole wall. This instrument was concluded to be the best option yet for obtaining images from boreholes with any arbitrary orientation. In addition, a new tool, called Rock Strength Borehole Probe (RSBP), was developed for estimation of the rock strength through scratching the rock surface in the borehole. This device is designed to be a light, flexible, quick, non-disruptive, and cost effective alternative to estimate the rock strength inside the boreholes in underground mines and tunnels. An extensive number of laboratory tests under variable conditions were conducted to develop equations to estimate the Uniaxial Compressive Strength (UCS) and Brazilian Tensile Strength (BTS) of the rock from measured cutting forces. In these experiments, 27 different rock types were tested by full scale scratch tests, including the cutting tests by a miniature disc. The results show a good correlation between the normal force and the compressive strength of sedimentary/metamorphic rock if the depth of scratch is known. No significant correlation was observed for igneous rocks, due to the impacts of grain size. Current studies show promising results for using RSBP. The laboratory and field tests proved the functionality of this tool. This probe is capable of entering boreholes of 45 mm (1¾ in) diameter in any direction and create a groove on the walls and by measurement of the location and cutting forces, estimate rock strength. Additional testing in various underground operations are needed for fine tune the operational features of this probe and make it more accurate. The combination of rock strength and joint conditions will allow for development of rock mass classification that could be used for 3D imaging of the ground conditions around an underground opening as well as hazard maps for the roof.

  8. Successful completion of a cyclic ground test of a mercury ion auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  9. Successful completion of a cyclic ground test of a mercury Ion Auxiliary Propulsion System

    NASA Technical Reports Server (NTRS)

    Francisco, David R.; Low, Charles A., Jr.; Power, John L.

    1988-01-01

    An engineering model Ion Auxiliary Propulsion System (IAPS) 8-cm thruster (S/N 905) has completed a life test at NASA Lewis Research Center. The mercury ion thruster successfully completed and exceeded the test goals of 2557 on/off cycles and 7057 hr of operation at full thrust. The final 1200 cycles and 3600 hr of the life test were conducted using an engineering model of the IAPS power electronics unit (PEU) and breadboard digital controller and interface unit (DCIU). This portion of the test is described in this paper with a charted history of thruster operating parameters and off-normal events. Performance and operating characteristics were constant throughout the test with only minor variations. The engineering model power electronics unit operated without malfunction; the flight software in the digital controller and interface unit was exercised and verified. Post-test inspection of the thruster revealed facility enhanced accelerator grid erosion but overall the thruster was in good condition. It was concluded that the thruster performance was not drastically degraded by time or cycles. Additional cyclic testing is currently under consideration.

  10. Knightsat Flight Design Review

    DTIC Science & Technology

    2007-08-03

    spring loaded hinges were obtained from McMaster under part number 15205A42. The fasteners used to attach each shutter to its corresponding hinge were... Coefficient of thermal expansion) is fairly well matched to the cell’s germanium substrate. Copper is not a good choice since it expands and contracts...Temperature: K Ground Station Transmission Line Temp.: 290 K Ground Station Sky Temperature: 450 K G.S. Transmission Line Coefficient : 0.7943 Ground Station

  11. A comparative study of Widal test with blood culture in the diagnosis of typhoid fever in febrile patients.

    PubMed

    Andualem, Gizachew; Abebe, Tamrat; Kebede, Nigatu; Gebre-Selassie, Solomon; Mihret, Adane; Alemayehu, Haile

    2014-09-17

    Typhoid fever is a major health problem in developing countries and its diagnosis on clinical ground is difficult. Diagnosis in developing countries including Ethiopia is mostly done by Widal test. However, the value of the test has been debated. Hence, evaluating the result of this test is necessary for correct interpretation of the result. The main aim of this study was to compare the result of Widal test and blood culture in the diagnosis of typhoid fever in febrile patients. Blood samples were collected from 270 febrile patients with symptoms clinically similar to typhoid fever and visiting St. Paul's General Specialized Hospitals from mid December 2010 to March 2011. Blood culture was used to isolate S.typhi and S.paratyphi. Slide agglutination test and tube agglutination tests were used for the determination of antibody titer. An antibody titer of ≥1:80 for anti TO and ≥1:160 for anti TH were taken as a cut of value to indicate recent infection of typhoid fever. One hundred and eighty six (68.9%) participants were females and eighty four (31.1%) were males. 7 (2.6%) cases of S. typhi and 4 (1.5%) cases of S. paratyphi were identified with the total prevalence of typhoid fever 4.1%. The total number of patients who have indicative of recent infection by either of O and H antigens Widal test is 88 (32.6%). The sensitivity, specificity, Positive predictive Value and Negative predictive Value of Widal test were 71.4%, 68.44%, 5.7% and 98.9% respectively. Widal test has a low sensitivity, specificity and PPV, but it has good NPV which indicates that negative Widal test result have a good indication for the absence of the disease.

  12. 78 FR 45104 - Model Manufactured Home Installation Standards: Ground Anchor Installations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... test methods for establishing working load design values of ground anchor assemblies used for new... anchor installations and establish standardized test methods to determine ground anchor performance and... currently no national test method for rating and certifying ground anchor assemblies in different soil...

  13. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Technical Reports Server (NTRS)

    Simpson, Myles A.; Tran, Boi N.

    1992-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  14. Comparison ofdvanced turboprop interior noise control ground and flight test data

    NASA Astrophysics Data System (ADS)

    Simpson, Myles A.; Tran, Boi N.

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  15. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  16. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Tran, B. N.

    1991-08-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  17. Static and yawed-rolling mechanical properties of two type 7 aircraft tires

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.; Mccarty, J. L.

    1981-01-01

    Selected mechanical properties of 18 x 5.5 and 49 x 17 size, type 7 aircraft tires were evaluated. The tires were subjected to pure vertical loads and to combined vertical and lateral loads under both static and rolling conditions. Parameters for the static tests consisted of tire load in the vertical and lateral directions, and parameters for the rolling tests included tire vertical load, yaw angle, and ground speed. Effects of each of these parameters on the measured tire characteristics are discussed and, where possible, compared with previous work. Results indicate that dynamic tire properties under investigation were generally insensitive to speed variations and therefore tend to support the conclusion that many tire dynamic characteristics can be obtained from static and low speed rolling tests. Furthermore, many of the tire mechanical properties are in good agreement with empirical predictions based on earlier research.

  18. Landing impact studies of a 0.3-scale model air cushion landing system for a Navy fighter airplane

    NASA Technical Reports Server (NTRS)

    Leland, T. J. W.; Thompson, W. C.

    1975-01-01

    An experimental study was conducted in order to determine the landing-impact behavior of a 0.3-scale, dynamically (but not physically) similar model of a high-density Navy fighter equipped with an air cushion landing system. The model was tested over a range of landing contact attitudes at high forward speeds and sink rates on a specialized test fixture at the Langley aircraft landing loads and traction facility. The investigation indicated that vertical acceleration at landing impact was highly dependent on the pitch angle at ground contact, the higher acceleration of approximately 5g occurring near zero body-pitch attitude. A limited number of low-speed taxi tests were made in order to determine model stability characteristics. The model was found to have good pitch-damping characteristics but stability in roll was marginal.

  19. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  20. Derivative Analysis of AVIRIS Hyperspectral Data for the Detection of Plant Stress

    NASA Technical Reports Server (NTRS)

    Estep, Lee; Berglund, Judith

    2001-01-01

    A remote sensing campaign was conducted over a U.S. Department of Agriculture test site at Shelton, Nebraska. The test field was set off in blocks that were differentially treated with nitrogen. Four replicates of 0-kg/ha to 200-kg/ha, in 50-kg/ha increments, were present. Low-altitude AVIRIS hyperspectral data were collected over the site in 224 spectral bands. Simultaneously, ground data were collected to support the airborne imagery. In an effort to evaluate published, derivative-based algorithms for the detection of plant stress, different derivative-based approaches were applied to the collected AVIRIS image cube. The results indicate that, given good quality hyperspectral imagery, derivative techniques compare favorably with simple, well known band ratio algorithms for detection of plant stress.

  1. 24 CFR 904.107 - Responsibilities of homebuyer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... maintaining the common areas and property, including fixtures and equipment, in good condition and appearance... includes the work (labor and materials) of keeping the dwelling structure, grounds and equipment in good... common areas and property. (d) Inspections. A homebuyer shall agree to permit officials, employees, or...

  2. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...

  3. 14 CFR 23.726 - Ground load dynamic tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground load dynamic tests. 23.726 Section 23.726 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Landing Gear § 23.726 Ground load dynamic tests. (a) If compliance with the ground load requirements of...

  4. Accuracy assessment of high resolution satellite imagery orientation by leave-one-out method

    NASA Astrophysics Data System (ADS)

    Brovelli, Maria Antonia; Crespi, Mattia; Fratarcangeli, Francesca; Giannone, Francesca; Realini, Eugenio

    Interest in high-resolution satellite imagery (HRSI) is spreading in several application fields, at both scientific and commercial levels. Fundamental and critical goals for the geometric use of this kind of imagery are their orientation and orthorectification, processes able to georeference the imagery and correct the geometric deformations they undergo during acquisition. In order to exploit the actual potentialities of orthorectified imagery in Geomatics applications, the definition of a methodology to assess the spatial accuracy achievable from oriented imagery is a crucial topic. In this paper we want to propose a new method for accuracy assessment based on the Leave-One-Out Cross-Validation (LOOCV), a model validation method already applied in different fields such as machine learning, bioinformatics and generally in any other field requiring an evaluation of the performance of a learning algorithm (e.g. in geostatistics), but never applied to HRSI orientation accuracy assessment. The proposed method exhibits interesting features which are able to overcome the most remarkable drawbacks involved by the commonly used method (Hold-Out Validation — HOV), based on the partitioning of the known ground points in two sets: the first is used in the orientation-orthorectification model (GCPs — Ground Control Points) and the second is used to validate the model itself (CPs — Check Points). In fact the HOV is generally not reliable and it is not applicable when a low number of ground points is available. To test the proposed method we implemented a new routine that performs the LOOCV in the software SISAR, developed by the Geodesy and Geomatics Team at the Sapienza University of Rome to perform the rigorous orientation of HRSI; this routine was tested on some EROS-A and QuickBird images. Moreover, these images were also oriented using the world recognized commercial software OrthoEngine v. 10 (included in the Geomatica suite by PCI), manually performing the LOOCV since only the HOV is implemented. The software comparison guaranteed about the overall correctness and good performances of the SISAR model, whereas the results showed the good features of the LOOCV method.

  5. Some validation results of orbital and ground based CO and CH4 total content measurements in background and industrial regions

    NASA Astrophysics Data System (ADS)

    Rakitin, Vadim; Shtabkin, Yury; Elansky, Nikolai; Skorokhod, Andrey; Safronov, Alexandr; Dzhola, Anatoly

    2015-04-01

    The results of ground-based spectroscopic measurements of CO and CH4 total content (TC) in Moscow, Zvenigorod (53 km toward West from the Moscow center), ZOTTO station (Central Siberia) and Beijing (China) during 2010-2014 years for conditions of typical and anomalous emission rates are presented and compared with satellite TC data (the latest versions of MOPITT, AIRS, IASI products). The empiric coefficients and relationships between data of ground-based and satellite CO and CH4 total contents (TC) are discussed. The comparison demonstrated a good agreement (R2 ~ 0.6-0.9) of satellite and ground-based CO TC data in low pollution conditions and systematic underestimation of satellite CO TC (150-300 %) in condition of intense surface emissions (events of wild fires in Siberia in 2011-2012 and strong atmospheric pollutions in Beijing). The best correlation (R2 ~ 0.4) for polluted conditions of Beijing was obtained in summer time-period for averaged AIRS v.6 CO TC data for 1o*1o grid, but K=Ugrb/Ustl = 2.5, where Ugrb and Ustlare ground based and satellite diurnal TC values relatively. Under excluding of the days with low ABL heights (HABL ≥1000m selection) the correlation between satellite and ground based CO TC diurnal data increases (R2 ~ 0.7, K=1.5). Orbital AIRS CH4 total columns good enough correlate with ground-based data (R2 ~0.4-0.7). IASI CH4TC diurnal data have no correlation with AIRS and ground-based TC.

  6. Mapping the Antarctic grounding line with CryoSat-2 radar altimetry

    NASA Astrophysics Data System (ADS)

    Bamber, J. L.; Dawson, G. J.

    2017-12-01

    The grounding line, where grounded ice begins to float, is the boundary at which the ocean has the greatest influence on the ice-sheet. Its position and dynamics are critical in assessing the stability of the ice-sheet, for mass budget calculations and as an input into numerical models. The most reliable approaches to map the grounding line remotely are to measure the limit of tidal flexure of the ice shelf using differential synthetic aperture radar interferometry (DInSAR) or ICESat repeat-track measurements. However, these methods are yet to provide satisfactory spatial and temporal coverage of the whole of the Antarctic grounding zone. It has not been possible to use conventional radar altimetry to map the limit of tidal flexure of the ice shelf because it performs poorly near breaks in slope, commonly associated with the grounding zone. The synthetic aperture radar interferometric (SARin) mode of CryoSat-2, performs better over steeper margins of the ice sheet and allows us to achieve this. The SARin mode combines "delay Doppler" processing with a cross-track interferometer, and enables us to use elevations based on the first return (point of closest approach or POCA) and "swath processed" elevations derived from the time-delayed waveform beyond the first return, to significantly improve coverage. Here, we present a new method to map the limit of tidal motion from a combination of POCA and swath data. We test this new method on the Siple Coast region of the Ross Ice Shelf, and the mapped grounding line is in good agreement with previous observations from DinSAR and ICESat measurements. There is, however, an approximately constant seaward offset between these methods and ours, which we believe is due to the poorer precision of CryoSat-2. This new method has improved the coverage of the grounding zone across the Siple Coast, and can be applied to the rest of Antarctica.

  7. High Alpha Technology Program (HATP) ground test to flight comparisons

    NASA Technical Reports Server (NTRS)

    Hall, R. M.; Banks, D. W.; Fisher, David F.; Ghaffari, F.; Murri, D. G.; Ross, J. C.; Lanser, Wendy R.

    1994-01-01

    This status paper reviews the experimental ground test program of the High Alpha Technology Program (HATP). The reasons for conducting this ground test program had their origins during the 1970's when several difficulties were experienced during the development programs of both the F-18 and F-16. A careful assessment of ground test to flight correlations appeared to be important for reestablishing a high degree of confidence in our ground test methodology. The current paper will then focus on one aspect of the HATP program that is intended to improve the correlation between ground test and flight, high-alpha gritting. The importance of this work arises from the sensitivity of configurations with smooth-sided forebodies to Reynolds number. After giving examples of the effects of Reynolds number, the paper will highlight efforts at forebody gritting. Finally, the paper will conclude by summarizing the charter of the HATP Experimental Aerodynamics Working Group and future experimental testing plans.

  8. Space shuttle: Longitudinal aerodynamic characteristics of low aspect ratio wing configurations in ground effect for a moving and stationary ground surface

    NASA Technical Reports Server (NTRS)

    Romere, P. O.; Chambliss, E. B.

    1972-01-01

    A 0.05-scale model of the NASA-MSC Orbiter 040A Configuration was tested. Test duration was approximately 80 hours during which the model was tested in and out of ground effect with a stationary and moving ground belt. Model height from ground plane surface was varied from one and one-half wing span to landing touchdown while angle of attack varied from -4 to 20 degrees. Eleven effectiveness and alternate configuration geometries were tested to insure complete analysis of low aspect ratio wing aircraft in the presence of ground effect. Test Mach number was approximately 0.067 with a corresponding dynamic pressure value of 6.5 psf.

  9. Investigations in the ionosphere on Kosmos 378. VII. Simultaneous ground-based and satellite measurements of the parameters of the high latitude ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afonin, V.V.; Gdalevich, G.L.; Gubskii, V.F.

    1975-01-01

    The parameters of the high-latitude ionospheric plasma at night were measured simultaneously in the winter of 1970 by Kosmos 378 and by the ground-based observatory at Noril'sk. A comparison of ground-based and satellite measurements showed good agreement of n/sub e/ when the Chapman approximation for the ..cap alpha..-layer and Jacchia's 1971 model of the upper atmosphere are used.

  10. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Ground tests. 236.107 Section 236.107 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION...: All Systems Inspections and Tests; All Systems § 236.107 Ground tests. (a) Except as provided in...

  11. Understanding Ozone: Exploring the Good and Bad Facets of a Famous Gas.

    ERIC Educational Resources Information Center

    Hanif, Muhammad

    1995-01-01

    Presents activities that help students distinguish between the beneficial layer of stratospheric ozone and the dangerous ground-level or tropospheric ozone, understand the chemical processes of ozone breakdown in the stratosphere, find the sources of ground-level ozone, and explore the differences in the patterns of ozone concentration over the…

  12. 21 CFR 111.15 - What sanitation requirements apply to your physical plant and grounds?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What sanitation requirements apply to your physical plant and grounds? 111.15 Section 111.15 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CURRENT GOOD MANUFACTURING...

  13. Towards policy relevant environmental modeling: contextual validity and pragmatic models

    USGS Publications Warehouse

    Miles, Scott B.

    2000-01-01

    "What makes for a good model?" In various forms, this question is a question that, undoubtedly, many people, businesses, and institutions ponder with regards to their particular domain of modeling. One particular domain that is wrestling with this question is the multidisciplinary field of environmental modeling. Examples of environmental models range from models of contaminated ground water flow to the economic impact of natural disasters, such as earthquakes. One of the distinguishing claims of the field is the relevancy of environmental modeling to policy and environment-related decision-making in general. A pervasive view by both scientists and decision-makers is that a "good" model is one that is an accurate predictor. Thus, determining whether a model is "accurate" or "correct" is done by comparing model output to empirical observations. The expected outcome of this process, usually referred to as "validation" or "ground truthing," is a stamp on the model in question of "valid" or "not valid" that serves to indicate whether or not the model will be reliable before it is put into service in a decision-making context. In this paper, I begin by elaborating on the prevailing view of model validation and why this view must change. Drawing from concepts coming out of the studies of science and technology, I go on to propose a contextual view of validity that can overcome the problems associated with "ground truthing" models as an indicator of model goodness. The problem of how we talk about and determine model validity has much to do about how we perceive the utility of environmental models. In the remainder of the paper, I argue that we should adopt ideas of pragmatism in judging what makes for a good model and, in turn, developing good models. From such a perspective of model goodness, good environmental models should facilitate communication, convey—not bury or "eliminate"—uncertainties, and, thus, afford the active building of consensus decisions, instead of promoting passive or self-righteous decisions.

  14. Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

    NASA Image and Video Library

    2002-03-13

    Scaled Composites' Doug Shane examines the screen of his ground control station during tests in New Mexico. Shane used this configuration as the ground control station to remotely pilot the Proteus aircraft during a NASA sponsored series of tests.

  15. ["Grounded theory" develops medicine. Popular research method for exploring human behavior can discover new connections].

    PubMed

    Thulesius, Hans; Barfod, Toke; Ekström, Helene; Håkansson, Anders

    2004-09-30

    Grounded theory (GT) is a popular research method for exploring human behavior. GT was developed by the medical sociologists Glaser and Strauss while they studied dying in hospitals in the 1960s resulting in the book "Awareness of dying". The goal of a GT is to generate conceptual theories by using all types of data but without applying existing theories and hypotheses. GT procedures are mostly inductive as opposed to deductive research where hypotheses are tested. A good GT has a core variable that is a central concept connected to many other concepts explaining the main action in the studied area. A core variable answers the question "What's going on?". Examples of core variables are: "Cutting back after a heart attack"--how people adapt to life after a serious illness; and "Balancing in palliative cancer care"--a process of weighing, shifting, compensating and compromising when treating people with a progressive and incurable illness trajectory.

  16. Efficient Raman sideband cooling of trapped ions to their motional ground state

    NASA Astrophysics Data System (ADS)

    Che, H.; Deng, K.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.

    2017-07-01

    Efficient cooling of trapped ions is a prerequisite for various applications of the ions in precision spectroscopy, quantum information, and coherence control. Raman sideband cooling is an effective method to cool the ions to their motional ground state. We investigate both numerically and experimentally the optimization of Raman sideband cooling strategies and propose an efficient one, which can simplify the experimental setup as well as reduce the number of cooling pulses. Several cooling schemes are tested and compared through numerical simulations. The simulation result shows that the fixed-width pulses and varied-width pulses have almost the same efficiency for both the first-order and the second-order Raman sideband cooling. The optimized strategy is verified experimentally. A single 25Mg+ ion is trapped in a linear Paul trap and Raman sideband cooled, and the achieved average vibrational quantum numbers under different cooling strategies are evaluated. A good agreement between the experimental result and the simulation result is obtained.

  17. Forecasting sensitivity on tilt of power spectrum of primordial gravitational waves after Planck satellite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qing-Guo; Wang, Sai; Zhao, Wen, E-mail: huangqg@itp.ac.cn, E-mail: wangsai@itp.ac.cn, E-mail: wzhao7@ustc.edu.cn

    2015-10-01

    By taking into account the contamination of foreground radiations, we employ the Fisher matrix to forecast the future sensitivity on the tilt of power spectrum of primordial tensor perturbations for several ground-based (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD) experiments of B-mode polarizations. For the fiducial model n{sub t}=0, our results show that the satellite experiments give good sensitivity on the tensor tilt n{sub t} to the level σ{sub n{sub t}}∼<0.1 for r∼>2×10{sup −3}, while the ground-based and balloon-borne experiments give worse sensitivity. By considering the BICEP2/Keck Array and Planck (BKP) constraint onmore » the tensor-to-scalar ratio r, we see that it is impossible for these experiments to test the consistency relation n{sub t}=−r/8 in the canonical single-field slow-roll inflation models.« less

  18. Well-construction, water-level, and water-quality data for ground-water monitoring wells for the J4 hydrogeologic study, Arnold Air Force Base, Tennessee

    USGS Publications Warehouse

    Haugh, C.J.

    1996-01-01

    Between December 1993 and March 1994, 27 wells were installed at 12 sites near the J4 test cell at Arnold Engineering Development Center in Coffee County, Tennessee. The wells ranged from 28 to 289 feet deep and were installed to provide information on subsurface lithology, aquifer characteristics, ground-water levels, and ground-water quality. This information will be used to help understand the effects of dewatering operations at the J4 test cell on the local ground-water-flow system. The J4 test cell, extending approximately 250 feet below land surface, is used in the testing of rocket motors. Ground water must be pumped continuously from around the test cell to keep it structurally intact. The amount of water discharged from the J4 test cell was monitored to estimate the average rate of ground-water withdrawal at the J4 test cell. Ground- water levels were monitored continuously at 14 wells for 12 months. Water-quality samples were collected from 26 of the new wells, 9 existing wells, and the ground-water discharge from the J4 test cell. All samples were analyzed for common inorganic ions, trace metals, and volatile organic compounds.

  19. COST Action TU1208 - Working Group 1 - Design and realisation of Ground Penetrating Radar equipment for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Benedetto, Andrea; D'Amico, Sebastiano; Ferrara, Vincenzo; Frezza, Fabrizio; Persico, Raffaele; Tosti, Fabio

    2017-04-01

    This work aims at presenting the main results achieved by Working Group (WG) 1 "Novel Ground Penetrating Radar instrumentation" of the COST (European COoperation in Science and Technology) Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" (www.cost.eu, www.GPRadar.eu). The principal goal of the Action, which started in April 2013 and is ending in October 2017, is to exchange and increase scientific-technical knowledge and experience of Ground Penetrating Radar techniques in civil engineering, whilst promoting throughout Europe the effective use of this safe non-destructive technique. The Action involves more than 300 Members from 28 COST Countries, a Cooperating State, 6 Near Neighbour Countries and 6 International Partner Countries. The most interesting achievements of WG1 include: 1. The state of the art on GPR systems and antennas was composed; merits and limits of current GPR systems in civil engineering applications were highlighted and open issues were identified. 2. The Action investigated the new challenge of inferring mechanical (strength and deformation) properties of flexible pavement from electromagnetic data. A semi-empirical method was developed by an Italian research team and tested over an Italian test site: a good agreement was found between the values measured by using a light falling weight deflectometer (LFWD) and the values estimated by using the proposed semi-empirical method, thereby showing great promises for large-scale mechanical inspections of pavements using GPR. Subsequently, the method was tested on a real scale, on an Italian road in the countryside: again, a good agreement between LFWD and GPR data was achieved. As a third step, the method was tested at larger scale, over three different road sections within the districts of Madrid and Guadalajara, in Spain: GPR surveys were carried out at the speed of traffic for a total of 39 kilometers, approximately; results were collected by using different GPR antennas provided by the Italian company IDS Ingegneria dei Sistemi; in cooperation with the Spanish company Euroconsult, an instrumented lorry equipped with a curviameter was used in the same road sections. Curviameter and GPR results were compared, with very good agreement. 3. A reconfigurable stepped-frequency GPR prototype was improved and widely tested. The original version of this prototype was designed and realised in Italy, in 2008. In June 2014, with the support of the Action TU1208 (and in particular by exploiting the Short Term Scientific Mission (STSM) networking tool), this prototype was brought to Norway: tests were carried out in laboratory, on roads and archaelogical sites; results were compared with those obtained by using a commercial system manufactured by the Norwegian manufacturer 3d-radar. As a result of this work, it was possible to understand how to improve the Italian prototype. Changes to the hardware were implemented in cooperation with the company Florence Engineering. In the improved version of the prototype, a more advanced technique is used for the reconfiguration of the integration times. In July 2015, by exploiting again the STSM tool, the prototype was brought to Malta: tests were carried out in buildings, churches, archaeological and geological sites; results were compared with those obtained by using a commercial pulsed system manufactured by IDS Ingegneria dei Sistemi. It is worth pointing out that this was the first time GPR measurements were carried out in Malta, where no GPR systems are available. Finally, in January 2016 the improved prototype was again brought to Malta in order to be used during the experimental sessions of a TU1208 Training School. This is an excellent example of a successful scientific activity where STSM and TS COST networking tools were effectively exploited, the cooperation with industry was of central importance, and a less research-intensive Country was deliberately chosen, to test the improved system. 4. A cheap frequency-modulated continuous-wave GPR prototype was designed and realized by an Italian research team; detailled instructions, describing how to build this radar step-by-step, will be available by the end of the Action. The idea behind this initiative is to support and encourage institutes in less research-intensive Countries, who cannot afford a commercial system, to build their own prototype for training purposes and to start familiarizing with the GPR technique. 5. A new stepped-frequency ground-coupled multi-antenna GPR system for road and bridge inspection was developed by 3d-radar (manufacturer based in Norway) and presented during the GPR 2014 conference as a contribution to COST Action TU1208. The starting point was an analogous commercial system, with air-coupled antennas. For road inspection, air-coupled antennas offer practical advantages over ground-coupled antennas (mainly, the possibility to carry out measurements at higher speeds); moreover, they allow enhanced detection of shallow layers inside the road structure. On the other hand, data from ground-coupled array contain much more details from individual scatterers, making them more suitable to image the granularity of the road base materials and for bridge deck inspection, where reinforcement rebar has to be imaged. Ground-coupled GPR systems also provide higher penetrating depth due to a stronger coupling of energy into the ground. The novel stepped-frequency ground-coupled GPR exploits an array of boomerang-shaped monopole elements. 6. Recommendations for the safety of people and equipment during GPR prospecting were produced. Despite the increasing demand of GPR surveys all over the world, safety matters are rarely considered. The Action put efforts into debating them, with scientists and professionals performing GPR surveys. As an outcome of this activity, a book was published where a series of recommendations are provided. These include general hints, recommendations for surveys carried out in challenging environmental situations, description of risks associated to specific applications, instructions for first medical aid, information about GPR electromagnetic emissions and associated risks, and finally suggestions for a safe use of the equipment and for a respectful interaction with the environment. 7. WG1 contributed to the TU1208 Education Pack, an open-access educational package conceived to teach GPR in University courses. 8. Three Training Schools were organised on radar systems and antennas, in cooperation with the European School of Antennas (ESoA): two editions of the Training School "Future Radar Systems: Radar2020" and a Training School on "UWB Antennas, Technologies and Applications". These courses were held in the Karlsruhe Institute of Technology, in Karlsruhe, Germany. Acknowledgement: The Authors are deeply grateful to COST (European Cooperation in Science and Technology, www.cost.eu), for funding and supporting the COST Action TU1208 "Civil engineering applications of Ground Penetrating Radar" (www.GPRadar.eu).

  20. The application of epoxy resin coating in grounding grid

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  1. A method for evaluating horizontal well pumping tests.

    PubMed

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  2. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the distribution of water-bearing formations and the location of wells.

  3. Putting everything together: rocks, trees, animals, and stuff to keep the lights on

    NASA Astrophysics Data System (ADS)

    Martinez, C.; Haines, S. S.; Semmens, D. J.; Diffendorfer, J.; Bagstad, K.; Garman, S.

    2016-12-01

    To keep the lights on and drive cars, there is important stuff in the rocks under our feet that we need. When we take those rocks out of the ground to get this stuff, we sometimes take away some trees and other green things that we like too. Taking away the trees and green things may not be good for the animals living in them or eating them. Keep in mind that we as humans are also considered to be animals too.Since we need the stuff in the rocks to keep the lights on and the trees and green things to keep animals living and happy, it would be good to try and take some of the stuff out of the ground while keeping some of the green things. Before pulling the rocks out of the ground, it would be good to know what would happen to the trees and green things and how many would be taken away if we did decide to take some stuff out of the rocks.To understand how many trees and green things would be taken away, we can use known relationships and numbers to help us tie everything together (the stuff, rocks, trees, and animals) to try and guess what would happen to the them if we take some stuff out of the ground. The numbers and ideas needed to use the relationships that tie everything together come from different people and these people know and understand a lot about each of these things. Our work uses ideas from all these people in order to understand how taking rocks, or stuff in the rocks, out of the ground might also take away trees and green things animals need to live. This understanding could help us manage to take some stuff out of the ground while still keeping the trees, green things, and animals living and happy.

  4. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.

    2012-12-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.

  5. Note: cryogenic microstripline-on-Kapton microwave interconnects.

    PubMed

    Harris, A I; Sieth, M; Lau, J M; Church, S E; Samoska, L A; Cleary, K

    2012-08-01

    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and crosstalk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.

  6. Phase unwrapping in three dimensions with application to InSAR time series.

    PubMed

    Hooper, Andrew; Zebker, Howard A

    2007-09-01

    The problem of phase unwrapping in two dimensions has been studied extensively in the past two decades, but the three-dimensional (3D) problem has so far received relatively little attention. We develop here a theoretical framework for 3D phase unwrapping and also describe two algorithms for implementation, both of which can be applied to synthetic aperture radar interferometry (InSAR) time series. We test the algorithms on simulated data and find both give more accurate results than a two-dimensional algorithm. When applied to actual InSAR time series, we find good agreement both between the algorithms and with ground truth.

  7. Flow of supersonic jets across flat plates: Implications for ground-level flow from volcanic blasts

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Prisco, David; Austin, Joanna M.; Kieffer, Susan W.

    2014-04-01

    We report on laboratory experiments examining the interaction of a jet from an overpressurized reservoir with a canonical ground surface to simulate lateral blasts at volcanoes such as the 1980 blast at Mount St. Helens. These benchmark experiments test the application of supersonic jet models to simulate the flow of volcanic jets over a lateral topography. The internal shock structure of the free jet is modified such that the Mach disk shock is elevated above the surface. In elevation view, the width of the shock is reduced in comparison with a free jet, while in map view the dimensions are comparable. The distance of the Mach disk shock from the vent is in good agreement with free jet data and can be predicted with existing theory. The internal shock structures can interact with and penetrate the boundary layer. In the shock-boundary layer interaction, an oblique shock foot is present in the schlieren images and a distinctive ground signature is evident in surface measurements. The location of the oblique shock foot and the surface demarcation are closely correlated with the Mach disk shock location during reservoir depletion, and therefore, estimates of a ground signature in a zone devastated by a blast can be based on the calculated shock location from free jet theory. These experiments, combined with scaling arguments, suggest that the imprint of the Mach disk shock on the ground should be within the range of 4-9 km at Mount St. Helens depending on assumed reservoir pressure and vent dimensions.

  8. Democracy "Is" Working

    ERIC Educational Resources Information Center

    Owen-Smith, Jason; Scott, Christopher Thomas; McCormick, Jennifer B.

    2012-01-01

    As contemporary students of science and science policy, these authors find it hard to gainsay the easy abstractions of Hurlbut and Robert's commentary. "Good science is an achievement of a good society." They also share much common ground on the details. For instance, they endorse the majority of Hurlbut and Robert's thoughts with regard to the…

  9. 21 CFR 161.170 - Canned Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., the common or usual name or names of each species of fish enumerated in paragraph (a)(2)(i) of this... accordance with good manufacturing practice; and then washing. Canned Pacific salmon is prepared in one of... good manufacturing practices. (iii) “Minced salmon” consists of salmon which has been minced or ground...

  10. Finding common ground to achieve a “good death”: family physicians working with substitute decision-makers of dying patients. A qualitative grounded theory study

    PubMed Central

    2013-01-01

    Background Substitute decision-makers are integral to the care of dying patients and make many healthcare decisions for patients. Unfortunately, conflict between physicians and surrogate decision-makers is not uncommon in end-of-life care and this could contribute to a “bad death” experience for the patient and family. We aim to describe Canadian family physicians’ experiences of conflict with substitute decision-makers of dying patients to identify factors that may facilitate or hinder the end-of-life decision-making process. This insight will help determine how to best manage these complex situations, ultimately improving the overall care of dying patients. Methods Grounded Theory methodology was used with semi-structured interviews of family physicians in Edmonton, Canada, who experienced conflict with substitute decision-makers of dying patients. Purposeful sampling included maximum variation and theoretical sampling strategies. Interviews were audio-taped, and transcribed verbatim. Transcripts, field notes and memos were coded using the constant-comparative method to identify key concepts until saturation was achieved and a theoretical framework emerged. Results Eleven family physicians with a range of 3 to 40 years in clinical practice participated. The family physicians expressed a desire to achieve a “good death” and described their role in positively influencing the experience of death. Finding Common Ground to Achieve a “Good Death” for the Patient emerged as an important process which includes 1) Building Mutual Trust and Rapport through identifying key players and delivering manageable amounts of information, 2) Understanding One Another through active listening and ultimately, and 3) Making Informed, Shared Decisions. Facilitators and barriers to achieving Common Ground were identified. Barriers were linked to conflict. The inability to resolve an overt conflict may lead to an impasse at any point. A process for Resolving an Impasse is described. Conclusions A novel framework for developing Common Ground to manage conflicts during end-of-life decision-making discussions may assist in achieving a “good death”. These results could aid in educating physicians, learners, and the public on how to achieve productive collaborative relationships during end-of-life decision-making for dying patients, and ultimately improve their deaths. PMID:23339822

  11. Subscale Validation of the Subsurface Active Filtration of Exhaust (SAFE) Approach to the NTP Ground Testing

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Borowski, Stanley K.; Bulman, Mel; Joyner, Russell; Martin, Charles R.

    2015-01-01

    Nuclear thermal propulsion (NTP) has been recognized as an enabling technology for missions to Mars and beyond. However, one of the key challenges of developing a nuclear thermal rocket is conducting verification and development tests on the ground. A number of ground test options are presented, with the Sub-surface Active Filtration of Exhaust (SAFE) method identified as a preferred path forward for the NTP program. The SAFE concept utilizes the natural soil characteristics present at the Nevada National Security Site to provide a natural filter for nuclear rocket exhaust during ground testing. A validation method of the SAFE concept is presented, utilizing a non-nuclear sub-scale hydrogen/oxygen rocket seeded with detectible radioisotopes. Additionally, some alternative ground test concepts, based upon the SAFE concept, are presented. Finally, an overview of the ongoing discussions of developing a ground test campaign are presented.

  12. Application of damage tolerance methodology in certification of the Piaggio P-180 Avanti

    NASA Technical Reports Server (NTRS)

    Johnson, Jerry

    1992-01-01

    The Piaggio P-180 Avanti, a twin pusher-prop engine nine-passenger business aircraft was certified in 1990, to the requirements of FAR Part 23 and Associated Special Conditions for Composite Structure. Certification included the application of a damage tolerant methodology to the design of the composite forward wing and empennage (vertical fin, horizontal stabilizer, tailcone, and rudder) structure. This methodology included an extensive analytical evaluation coupled with sub-component and full-scale testing of the structure. The work from the Damage Tolerance Analysis Assessment was incorporated into the full-scale testing. Damage representing hazards such as dropped tools, ground equipment, handling, and runway debris, was applied to the test articles. Additional substantiation included allowing manufacturing discrepancies to exist unrepaired on the full-scale articles and simulated bondline failures in critical elements. The importance of full-scale testing in the critical environmental conditions and the application of critical damage are addressed. The implication of damage tolerance on static and fatigue testing is discussed. Good correlation between finite element solutions and experimental test data was observed.

  13. Space to Ground: Who Doesn't Enjoy a Good View of Planet Earth?: 02/10/2017

    NASA Image and Video Library

    2017-02-10

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  14. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  15. Ground based measurements on reflectance towards validating atmospheric correction algorithms on IRS-P6 AWiFS data

    NASA Astrophysics Data System (ADS)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.

    In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with aggregated ground measurements which showed a very good correlation of 0.96 in all four spectral bands (i.e. green, red, NIR and SWIR). In order to quantify the accuracy of the proposed method in the estimation of the surface reflectance, the root mean square error (RMSE) associated to the proposed method was evaluated. The analysis of the ground measured versus retrieved AWiFS reflectance yielded smaller RMSE values in case of all four spectral bands. EOS TERRA/AQUA MODIS derived AOD exhibited very good correlation of 0.92 and the data sets provides an effective means for carrying out atmospheric corrections in an operational way. Keywords: Atmospheric correction, 6S code, MODIS, Spectroradiometer, Sun-Photometer

  16. Evaluation of multiple tracer methods to estimate low groundwater flow velocities.

    PubMed

    Reimus, Paul W; Arnold, Bill W

    2017-04-01

    Four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or "shut-in" periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity data are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a "ground truth" velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. The advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them are discussed. Published by Elsevier B.V.

  17. Definition of ground test for verification of large space structure control

    NASA Technical Reports Server (NTRS)

    Doane, G. B., III; Glaese, J. R.; Tollison, D. K.; Howsman, T. G.; Curtis, S. (Editor); Banks, B.

    1984-01-01

    Control theory and design, dynamic system modelling, and simulation of test scenarios are the main ideas discussed. The overall effort is the achievement at Marshall Space Flight Center of a successful ground test experiment of a large space structure. A simplified planar model of ground test experiment of a large space structure. A simplified planar model of ground test verification was developed. The elimination from that model of the uncontrollable rigid body modes was also examined. Also studied was the hardware/software of computation speed.

  18. Technical Bases to Aid in the Decision of Conducting Full Power Ground Nuclear Tests for Space Fission Reactors

    NASA Astrophysics Data System (ADS)

    Hixson, Laurie L.; Houts, Michael G.; Clement, Steven D.

    2004-02-01

    The extent to which, if any, full power ground nuclear testing of space reactors should be performed has been a point of discussion within the industry for decades. Do the benefits outweigh the risks? Are there equivalent alternatives? Can a test facility be constructed (or modified) in a reasonable amount of time? Is the test article an accurate representation of the flight system? Are the costs too restrictive? The obvious benefits of full power ground nuclear testing; obtaining systems integrated reliability data on a full-scale, complete end-to-end system; come at some programmatic risk. Safety related information is not obtained from a full-power ground nuclear test. This paper will discuss and assess these and other technical considerations essential in the decision to conduct full power ground nuclear-or alternative-tests.

  19. Ground Vibration Testing Options for Space Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry

    2011-01-01

    New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.

  20. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  1. Surge current and electron swarm tunnel tests of thermal blanket and ground strap materials

    NASA Technical Reports Server (NTRS)

    Hoffmaster, D. K.; Inouye, G. T.; Sellen, J. M., Jr.

    1977-01-01

    The results are described of a series of current conduction tests with a thermal control blanket to which grounding straps have been attached. The material and the ground strap attachment procedure are described. The current conduction tests consisted of a surge current examination of the ground strap and a dilute flow, energetic electron deposition and transport through the bulk of the insulating film of this thermal blanket material. Both of these test procedures were used previously with thermal control blanket materials.

  2. EREP geothermal. [northern California

    NASA Technical Reports Server (NTRS)

    Johnston, E. W. (Principal Investigator); Dunklee, A. L.; Wychgram, D. C.

    1974-01-01

    The author has identified the following significant results. A reasonably good agreement was found for the radiometric temperatures calculated from the ground truth data and the radiometric temperatures measured by the S192 scanner. This study showed that the S192 scanner data could be used to create good thermal images, particularly with the x-5 detector array.

  3. Transonic and supersonic ground effect aerodynamics

    NASA Astrophysics Data System (ADS)

    Doig, G.

    2014-08-01

    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  4. Definition of ground test for Large Space Structure (LSS) control verification

    NASA Technical Reports Server (NTRS)

    Waites, H. B.; Doane, G. B., III; Tollison, D. K.

    1984-01-01

    An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/Marshall Space Flight Center will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.

  5. An intelligent position-specific training system for mission operations

    NASA Technical Reports Server (NTRS)

    Schneider, M. P.

    1992-01-01

    Marshall Space Flight Center's (MSFC's) payload ground controller training program provides very good generic training; however, ground controller position-specific training can be improved by including position-specific training systems in the training program. This report explains why MSFC needs to improve payload ground controller position-specific training. The report describes a generic syllabus for position-specific training systems, a range of system designs for position-specific training systems, and a generic development process for developing position-specific training systems. The report also describes a position-specific training system prototype that was developed for the crew interface coordinator payload operations control center ground controller position. The report concludes that MSFC can improve the payload ground controller training program by incorporating position-specific training systems for each ground controller position; however, MSFC should not develop position-specific training systems unless payload ground controller position experts will be available to participate in the development process.

  6. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  7. Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Laurin, Gaia Vaglio; Balling, Johannes; Corona, Piermaria; Mattioli, Walter; Papale, Dario; Puletti, Nicola; Rizzo, Maria; Truckenbrodt, John; Urban, Marcel

    2018-01-01

    The objective of this research is to test Sentinel-1 SAR multitemporal data, supported by multispectral and SAR data at other wavelengths, for fine-scale mapping of above-ground biomass (AGB) at the provincial level in a Mediterranean forested landscape. The regression results indicate good accuracy of prediction (R2=0.7) using integrated sensors when an upper bound of 400 Mg ha-1 is used in modeling. Multitemporal SAR information was relevant, allowing the selection of optimal Sentinel-1 data, as broadleaf forests showed a different response in backscatter throughout the year. Similar accuracy in predictions was obtained when using SAR multifrequency data or joint SAR and optical data. Predictions based on SAR data were more conservative, and in line with those from an independent sample from the National Forest Inventory, than those based on joint data types. The potential of S1 data in predicting AGB can possibly be improved if models are developed per specific groups (deciduous or evergreen species) or forest types and using a larger range of ground data. Overall, this research shows the usefulness of Sentinel-1 data to map biomass at very high resolution for local study and at considerable carbon density.

  8. Aircraft and ground vehicle friction measurements obtained under winter runway conditions

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    Tests with specially instrumented NASA B-737 and B-727 aircraft together with several different ground friction measuring devices have been conducted for a variety of runway surface types and wetness conditions. This effort is part of the Joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions, and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow-, and ice-covered runway conditions is discussed together with ground vehicle friction data obtained under similar runway conditions. For the wet, compacted snow- and ice-covered runway conditions, the relationship between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, and surface contaminant-type are discussed. The test results indicate that use of properly maintained and calibrated ground vehicles for monitoring runway friction conditions should be encouraged particularly under adverse weather conditions.

  9. What is good medical ethics? A very personal response to a difficult question.

    PubMed

    Farsides, Bobbie

    2015-01-01

    A personal reflection upon a career in medical ethics leads to four conclusions on what makes for 'good medical ethics'. Good medical ethics is practical in approach, philosophically well grounded, cross disciplinary, and while it might not be a necessary feature, the experience of the author suggests that it is the work of 'good people'. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. An unexplained three-dimensional percept emerging from a bundle of lines.

    PubMed

    Altschuler, Eric L; Huang, Abigail E; Kim, Hee J; Battaglini, Luca; Roncato, Sergio

    2017-10-01

    Perceptual grouping has been extensively studied, but some areas are still unexplored-in particular, the figural organizations that emerge when bundles of intersecting lines are drawn. Here, we will describe some figural organizations that emerge after the superimposition of bundles of lines forming the profile of regular triangular waves. By manipulating the lines' jaggedness and junction geometry (regular or irregular X junction) we could generate the following organizations: (a) a grid, or a figural configuration in which both the lines and closed contours are perceived, (b) a figure-ground organization composed of figures separated by portions of the background, and (c) a corrugated surface appearing as a multifaceted polyhedral shell crossed by ridges and valleys. An experiment was conducted with the aim at testing the role of the good-continuation and closure Gestalt factors. Good continuation prevails when the lines are straight or close to straightness, but its role is questionable in the appearance of a corrugated surface. This perceptual organization occurs despite the violation of the good-continuation rule and consists of a structure of such complexity so as to challenge algorithms of computer vision and stimulate a deeper understanding of the perceptual interpretation of groups of lines.

  11. Advanced Testing Method for Ground Thermal Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Clemenzi, Rick; Liu, Su

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce themore » cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.« less

  12. [Overall design and proof-test of an integrated environmental control and life support system (ECLSS) for demonstration and verification].

    PubMed

    Rui, Jia-bai; Zheng, Chuan-xian; Zeng, Qing-tang

    2002-12-01

    Objective. To test and demonstrate embryonic form of our future space station ECLSS, which will also form an advanced research and test ground facility. Method. The following functions of the system were tested and demonstrated: integrated solid amine CO2 collection and concentration, Sabatier CO2 reduction, urine processing thermoelectric integrated membrane evaporation, solid polymer water electrolysis O2 generation, concentrated ventilation, temperature and humidity control, the measurement and control system, and other non-regenerative techniques. All of these were demonstrated in a sealed adiabatic module, and passed the proof-tests. Result. The principal technical requirements of the system and each regenerative subsystem were met. The integration of system general and each subsystem was successful, and the partial closed loop of the system's integration has been realized basically. Conclusion. The reasonableness of the project design was verified, and the major system technical requirements were satisfied. The suitability and harmonization among system general and each subsystem were good, the system operated normally, and the parameters measured were correct.

  13. Good School Maintenance. A Manual of Programs and Procedures for Buildings--Grounds--Equipment.

    ERIC Educational Resources Information Center

    Harroun, Jack T., Ed.

    This guide provides a basic program for managers and supervisors responsible for the care of buildings, grounds, and equipment; provides the maintenance staff member with basic information and solutions to typical problems; and is intended to be used as a training tool and a reference source. The manual is divided into five categories. (1) "Basics…

  14. Collaborative study of an enzymatic digestion method for the isolation of light filth from ground beef or hamburger.

    PubMed

    Alioto, P; Andreas, M

    1976-01-01

    Collaborative results are presented for a proposed method for light filth extraction from ground beef or hamburger. The method involves enzymatic digestion, wet sieving, and extraction with light mineral oil from 40% isopropanol. Recoveries are good and filter papers are clean. This method has been adopted as official first action.

  15. Burial of downed deadwood is strongly affected by log attributes, forest ground vegetation, edaphic conditions, and climate zones

    Treesearch

    Jogeir N. Stokland; Christopher W. Woodall; Jonas Fridman; Göran Ståhl

    2016-01-01

    Deadwood can represent a substantial portion of forest ecosystem carbon stocks and is often reported following good practice guidance associated with national greenhouse gas inventories. In high-latitude forest ecosystems, a substantial proportion of downed deadwood is overgrown by ground vegetation and buried in the humus layer. Such burial obfuscates the important...

  16. Comparison of ground beetle (Coleoptera: Carabidae) assemblages in Rocky Mountain savannas invaded and un-invaded by an exotic forb, spotted knapweed

    Treesearch

    Allison K. Hansen; Yvette K. Ortega; Diana L. Six

    2009-01-01

    We compared ground beetle (Carabidae) assemblages between spotted knapweed (Centaurea maculosa Lam.) -invaded (invaded) and un-invaded (native) habitats in Rocky Mountain savannas. Carabids play important roles in biotic communities and are known as a good indictor group of environmental change. Carabid species activity-abundance and diversity were estimated, and...

  17. Aerocapture for manned Mars missions - Status and challenges

    NASA Astrophysics Data System (ADS)

    Walberg, Gerald D.

    1991-08-01

    The current status for manned Mars missions and the associated challenges are summarized. Mission benefits are considered to increase with increasing Mars entry velocity. However, significant benefits accrue at moderate entry velocities between 7 and 8 km/sec, which is the realistically achievable range in view of g-limits and heating constraints. Blunt, low mass/drag coefficient (reference area) vehicles with L/Ds from 0.3 to 0.5 are found to be the preferred configurations, taking into account their adequate control authority and good payload packaging characteristics. The overall design characteristics of Mars aerocapture vehicles can be established with good confidence, using flight and ground test data and the state-of-the-art flow field analysis techniques. The principal challenges are identified as follows: to refine the knowledge of the Martian atmosphere in order to reduce design conservatism, to extend present stagnation region heating analyses to the entire vehicle forebody, and to develop reflective low-wall-catalycity TPS systems for enabling reusable vehicles.

  18. Emotive concept nouns and motor responses: attraction or repulsion?

    PubMed

    Freina, Laura; Baroni, Giulia; Borghi, Anna M; Nicoletti, Roberto

    2009-06-01

    We carried out three experiments aimed at testing whether hand posture affects the compatibility effect that Chen and Bargh (1999) found between a word's emotional connotation and arm movement direction. In the present study, participants responded by pressing two buttons: one placed near their body, the other far away. In Experiment 1, in which they pressed the response button with their hand open, RTs were shorter when participants pressed the far button for positive words and the near button for negative words, as if they simulated reaching for something good and avoiding something bad. However, in Experiments 2 and 3, in which participants pressed the response button with a tennis ball in their hand, RTs were shorter when participants pressed the near button for positive words and the far button for negative words, as if they simulated drawing a good thing closer and pushing a bad thing away. Results are discussed within the framework of theories on concept grounding in emotion and action systems.

  19. Bandwidth enhancement of monopole antenna with DGS for SHF and reconfigurable structure for WiMAX, WLAN and C-band applications

    NASA Astrophysics Data System (ADS)

    Beigi, P.; Mohammadi, P.

    2017-11-01

    In this study a reconfigurable antenna for WiMAX, WLAN, C-bands and SHF applications has been presented. The main body of antenna includes rectangular and L-shaped slotted ground plane and a rectangular patch with slotted feed line, for impedance bandwidth enhancement. In the proposed antenna, a PIN diode is used to adjust the frequency band to SHF, WiMAX, WLAN and C-bands applications. When PIN diode is forward-biased, the antenna covers the 3.5-31 GHz frequency range (i.e. a 160% bandwidth) and when the PIN diode is in its off-state, it operates between 3.4-5.8 GHz. The designed antenna, with a very small size of 12 × 18 × 1.6 mm3, has been fabricated and tested. The radiation pattern is approximately omnidirectional. Simulations and experimental results are in a good agreement with each other and suggest good performance for the presented antenna.

  20. Aerocapture for manned Mars missions - Status and challenges

    NASA Technical Reports Server (NTRS)

    Walberg, Gerald D.

    1991-01-01

    The current status for manned Mars missions and the associated challenges are summarized. Mission benefits are considered to increase with increasing Mars entry velocity. However, significant benefits accrue at moderate entry velocities between 7 and 8 km/sec, which is the realistically achievable range in view of g-limits and heating constraints. Blunt, low mass/drag coefficient (reference area) vehicles with L/Ds from 0.3 to 0.5 are found to be the preferred configurations, taking into account their adequate control authority and good payload packaging characteristics. The overall design characteristics of Mars aerocapture vehicles can be established with good confidence, using flight and ground test data and the state-of-the-art flow field analysis techniques. The principal challenges are identified as follows: to refine the knowledge of the Martian atmosphere in order to reduce design conservatism, to extend present stagnation region heating analyses to the entire vehicle forebody, and to develop reflective low-wall-catalycity TPS systems for enabling reusable vehicles.

  1. [Near-infrared reflectance spectroscopy predicts protein, moisture and ash in beans].

    PubMed

    Gao, Huiyu; Wang, Guodong; Men, Jianhua; Wang, Zhu

    2017-05-01

    To explore the potential of near-infrared reflectance( NIR)spectroscopy to determine macronutrient contents in beans. NIR spectra and analytical measurements of protein, moisture and ash were collected from 70 kinds of beans. Reference methods were used to analyze all the ground beans samples. NIR spectra on intact and ground beans samples were registered. Partial least-squares( PLS)regression models were developed with principal components analysis( PCA) to assign 49 bean accessions to a calibration data set and 21 accessions to an external validation set. For intact beans, the relative predictive determinant( RPD) values for protein and ash( 3. 67 and 3. 97, respectively) were good for screening. RPD value for moisture was only 1. 39, which was not recommended. For ground beans, the RPD values for protein, moisture and ash( 6. 63, 5. 25 and 3. 57, respectively) were good enough for screening. The protein, moisture and ash levels for intact and ground beans were all significantly correlated( P < 0. 001) between the NIR and reference method and there was no statistically significant difference in the mean with these three traits. This research demonstrates that NIR is a promising technique for simultaneous sorting ofmultiple traits in beans with no or easy sample preparation.

  2. An analytical model for train-induced ground vibrations from railways

    NASA Astrophysics Data System (ADS)

    Karlström, A.; Boström, A.

    2006-04-01

    To investigate ground vibrations from railways an analytical approach is taken. The ground is modelled as a stratified half-space with linearly viscoelastic layers. On top of the ground a rectangular embankment is placed, supporting the rails and the sleepers. The rails are modelled as Euler-Bernoulli beams where the propagating forces (wheel loads) are acting and the sleepers are modelled with an anisotropic Kirchhoff plate. The solution is based on Fourier transforms in time and along the track. In the transverse direction the fields in the embankment are developed in Fourier series and in the half-space with Fourier transforms. The resulting numerical scheme is very efficient, permitting displacement fields far outside the track to be calculated. Numerical examples are given for an X2 train that operates at the site Ledsgard in Sweden. The displacements are simulated at 70 and 200 km/h and are compared with the displacements from simpler models. The simulations are also validated against measurements, with very good agreement. At 70 km/h the track displacements agree almost exactly and at 200 km/h the displacements are a very good approximation of the measurement.

  3. Effects of finite ground plane on the radiation characteristics of a circular patch antenna

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arun K.

    1990-02-01

    An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.

  4. A novel method of basal crevasse height estimation and subsequent rifting

    NASA Astrophysics Data System (ADS)

    Logan, L.; Catania, G. A.; Lavier, L. L.; Choi, E.

    2012-12-01

    Basal crevasses may play an important precursory role in the location and propagation of rifts and in ice shelf disintegration. Here we develop a novel method for estimating the locations and heights of basal crevasses formed at the grounding line of ice shelves and ice streams. We assume a thin-elastic beam formulation (TEB) with a tensional plastic yielding criterion to capture the physics of a tidally flexed grounding line. Observations of basal crevasses in the Siple Coast area match well with predictions produced by this method. Areas with large misfit can be delineated by examining the strain rate field; indeed, in our estimations those crevasses which deviate most from the TEB prediction lie directly in a shear margin. We test the method against other areas in the Larsen Ice Shelf, and find again a good match. Thus we suggest the TEB as an alternative to other crevasse estimation methods, as it produces a good fit in predominantly tensile regions, requires no tuning or prior information, and is computationally free to implement into large scale ice models which aim at physically simulating calving and fracture processes. We pursue modeling basal crevasses as they evolve with a thermomechanical finite-difference 3-dimensional model called SNAC. Viscoelastoplastic ice follows Mohr-Coulomb tension failure with Glen's flow law. We examine the conditions necessary for a basal crevasse formed on the downstream side of an ice rise to propagate the full thickness of the ice, developing into a rift.

  5. Extraction-Separation Performance and Dynamic Modeling of Orion Test Vehicles with Adams Simulation: 3rd Edition

    NASA Technical Reports Server (NTRS)

    Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith

    2017-01-01

    NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.

  6. The DESMEX Project - Deep Electromagnetic Sounding for Mineral EXploration

    NASA Astrophysics Data System (ADS)

    Meyer, U.; Becken, M.; Stolz, R.; Nittinger, C.; Cherevatova, M.; Siemon, B.; Martin, T.; Petersen, H.; Steuer, A.

    2017-12-01

    The DESMEX project (Deep Electromagnetic Sounding for Mineral Exploration) aims to develop independent semi-airborne frequency domain systems for mineral exploration down to depths of 1 km and deeper. Two different helicopter-towed systems are being designed and tested using source installations on ground. One system uses among other equipment conventional three axis induction coils, a 3D-fluxgate and a high precision inertial motion unit. The use of the two different magnetometers allows to record data in a broad frequency range from 1 Hz to 10 kHz. The second system uses a newly developed SQUID-based sensing system of a similar frequency range and a self made inertial motion unit. Horizontal electric dipole transmitters provided by the Leibniz Institute for Applied Geophysics in Hannover and the Institute of Geophysics and Meteorology of the University in Cologne are used as ground based sources. First system tests showed a good performance of both systems with general noise levels below 50 pT/root(Hz). Test flights above the common survey area proved that the desired depth of investigation can be achieved and that the data is consistent with the subsurface conductivity structures. In order to verify the data acquired from the newly developed system at shallow depths and to provide a better starting model for later inversion calculations helicopter borne frequency domain electromagnetics has been acquired and fully processed over the test site Schleiz - Greiz in Germany. To further relate the subsurface conductivity models to the subsurface geology and mineralogy, petrophysical investigations have been performed on rock samples from the site of investigation and analogue samples.

  7. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    NASA Technical Reports Server (NTRS)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  8. Hydrology and water quality of the Forest County Potawatomi Indian Reservation, Wisconsin

    USGS Publications Warehouse

    Lidwin, R.A.; Krohelski, J.T.

    1993-01-01

    Water quality of three lakes on the Reservation is variable and depends on the degree of connection with the ground-water system. In general, Bug Lake and Devils Lake are in poor hydraulic connection with the ground-water system, and their waters contain low concentrations of dissolved solids and alkalinity and low pH. King Lake is in good hydraulic connection with the ground-water system, and its waters contain higher concentrations of dissolved solids and alkalinity and higher pH than Bug and Devils Lakes.

  9. Characterization of earthquake-induced ground motion from the L'Aquila seismic sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, Luca; Akinci, Aybige; Mayeda, Kevin; Munafo', Irene; Herrmann, Robert B.; Mercuri, Alessia

    2011-01-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data [peak ground acceleration (PGA), peak ground velocity (PGV) and spectral acceleration (SA)] gathered during the Mw 6.15 L'Aquila earthquake (2009 April 6, 01:32 UTC). The L'Aquila main shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12 777 high-quality, high-gain waveforms with excellent S/N ratios (4259 vertical and 8518 horizontal time histories). Seismograms were selected from the recordings of 170 foreshocks and aftershocks of the sequence (the complete set of all earthquakes with ML≥ 3.0, from 2008 October 1 to 2010 May 10). All waveforms were downloaded from the ISIDe web page (), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L'Aquila sequence (2.8 ≤Mw≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-1998 recently described by Malagnini (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ˜80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  10. Validation of the TOPEX rain algorithm: Comparison with ground-based radar

    NASA Astrophysics Data System (ADS)

    McMillan, A. C.; Quartly, G. D.; Srokosz, M. A.; Tournadre, J.

    2002-02-01

    Recently developed algorithms have shown the potential recovery of rainfall information from spaceborne dual-frequency altimeters. Given the long mission achieved with TOPEX and the prospect of several other dual-frequency altimeters, we need to validate the altimetrically derived values so as to foster their integration with rain information from different sensors. Comparison with some alternative climatologies shows the bimonthly means for TOPEX to be low. Rather than apply a bulk correction we investigate individual rain events to understand the cause of TOPEX's underestimation. In this paper we compare TOPEX with near-simultaneous ground-based rain radars based at a number of locations, examining both the detection of rain and the quantitative values inferred. The altimeter-only algorithm is found to flag false rain events in very low wind states (<3.8 m s-1) the application of an extra test, involving the liquid water path as sensed by the microwave radiometer, removes the spurious detections. Some false detections of rain also occur at high wind speeds (>20 m s-1), where the empirical dual-frequency relationship is less well defined. In the intermediate range of wind speeds, the TOPEX detections are usually good, with the instrument picking up small-scale variations that cannot be recovered from infrared or passive microwave techniques. The magnitude of TOPEX's rain retrievals can differ by a factor of 2 from the ground-based radar, but this may reflect the uncertainties in the validation data. In general, over these individual point comparisons TOPEX values appear to exceed the ``ground truth.'' Taking account of all the factors affecting the comparisons, we conclude that the TOPEX climatology could be improved by, in the first instance, incorporating the radiometric test and employing a better estimate of the melting layer height. Appropriate corrections for nonuniform beam filling and drizzle fraction are harder to define globally.

  11. An accurate and computationally efficient algorithm for ground peak identification in large footprint waveform LiDAR data

    NASA Astrophysics Data System (ADS)

    Zhuang, Wei; Mountrakis, Giorgos

    2014-09-01

    Large footprint waveform LiDAR sensors have been widely used for numerous airborne studies. Ground peak identification in a large footprint waveform is a significant bottleneck in exploring full usage of the waveform datasets. In the current study, an accurate and computationally efficient algorithm was developed for ground peak identification, called Filtering and Clustering Algorithm (FICA). The method was evaluated on Land, Vegetation, and Ice Sensor (LVIS) waveform datasets acquired over Central NY. FICA incorporates a set of multi-scale second derivative filters and a k-means clustering algorithm in order to avoid detecting false ground peaks. FICA was tested in five different land cover types (deciduous trees, coniferous trees, shrub, grass and developed area) and showed more accurate results when compared to existing algorithms. More specifically, compared with Gaussian decomposition, the RMSE ground peak identification by FICA was 2.82 m (5.29 m for GD) in deciduous plots, 3.25 m (4.57 m for GD) in coniferous plots, 2.63 m (2.83 m for GD) in shrub plots, 0.82 m (0.93 m for GD) in grass plots, and 0.70 m (0.51 m for GD) in plots of developed areas. FICA performance was also relatively consistent under various slope and canopy coverage (CC) conditions. In addition, FICA showed better computational efficiency compared to existing methods. FICA's major computational and accuracy advantage is a result of the adopted multi-scale signal processing procedures that concentrate on local portions of the signal as opposed to the Gaussian decomposition that uses a curve-fitting strategy applied in the entire signal. The FICA algorithm is a good candidate for large-scale implementation on future space-borne waveform LiDAR sensors.

  12. 45 CFR 160.548 - Appeal of the ALJ's decision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... extension within the initial 30 day period and shows good cause. (b) If a party files a timely notice of... such hearing is relevant and material and that there were reasonable grounds for the failure to adduce... the Board for good cause shown. Reply briefs are not permitted. (4) The Board must rule on the motion...

  13. 24 CFR 5.703 - Physical condition standards for HUD housing that is decent, safe, sanitary and in good repair...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... components, such as fencing and retaining walls, grounds, lighting, mailboxes/project signs, parking lots... exterior. Each building on the site must be structurally sound, secure, habitable, and in good repair. Each... source of potable water (note for example that single room occupancy units need not contain water...

  14. Good Work and Aesthetic Education: William Morris, the Arts and Crafts Movement, and beyond

    ERIC Educational Resources Information Center

    Petts, Jeffrey

    2008-01-01

    A notion of "good work," derived from William Morris and the Arts and Crafts Movement but also part of a wider tradition in philosophy (associated with pragmatism and Everyday Aesthetics) understanding the global significance of, and opportunities for, aesthetic experience, grounds both art making and appreciation in the organization of labor…

  15. But for the Bad, There Would Not Be Good: Grounding Valence in Brightness through Shared Relational Structures

    ERIC Educational Resources Information Center

    Lakens, Daniel; Semin, Gun R.; Foroni, Francesco

    2012-01-01

    Light and dark are used pervasively to represent positive and negative concepts. Recent studies suggest that black and white stimuli are automatically associated with negativity and positivity. However, structural factors in experimental designs, such as the shared opposition in the valence (good vs. bad) and brightness (light vs. dark) dimensions…

  16. Summary of the modeling and test correlations of a NASTRAN finite element vibrations model for the AH-1G helicopter, task 1

    NASA Technical Reports Server (NTRS)

    Cronkhite, J. D.; Berry, V. L.; Dompka, R. V.

    1987-01-01

    The AH-1G NASTRAN finite element model (FEM) is described and the correlations with measured data that were conducted to verify the model are summarized. Comparisons of the AH-1G NASTRAN FEM calculations with measured data include the following: (1) fuselage and tailboom static load deflection (stiffness) testing, (2) airframe ground vibration testing (0-30 H<), (3) airframe flight vibration testing (main rotor, 2,4, and 6/rev), and (4) tailboom effective skin static testing. A description of the modeling rationale and techniques used to develop the NASTRAN FEM is presented in conjunction with all previous correlation work. In general, the correlations show good agreement between analysis and test in stiffness and vibration response through 15 to 20 Hz. For higher frequencies (equal to or greater than 4/rev (21.6 Hz)), the vibration responses generally did not agree well. Also, the lateral (2/rev (10.8 Hz)) flight vibration responses were much lower in the FEM than test, indicating that there is a significant excitation source other than at the main rotor hub that is affecting the lateral vibrations, such as downwash impingement on the vertical tail.

  17. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... alternating current power distribution circuits grounded in the interest of safety. [49 FR 3384, Jan. 26, 1984] ... paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits, the...

  18. 49 CFR 236.107 - Ground tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... alternating current power distribution circuits grounded in the interest of safety. [49 FR 3384, Jan. 26, 1984] ... paragraph (b) of this section, a test for grounds on each energy bus furnishing power to circuits, the...

  19. Suomi-NPP Mission On-Orbit Experience with Toroid Ball Bearing Retainers Under Unidirectional and Reversing Motion

    NASA Technical Reports Server (NTRS)

    Bruegman, Otto; Thakore, Kamal; Loewenthal, Stu; Cymerman, John

    2016-01-01

    The Advanced Technology Microwave Sounder (ATMS) instrument scan system on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft has experienced several randomly occurring increased torque 'events' since its on-orbit activation in November 2011. Based on a review of on-orbit telemetry data and data gathered from scan mechanism bearing life testing on the ground, the conclusion was drawn that some degradation of Teflon toroid ball retainers was occurring in the instrument Scan Drive Mechanism. A life extension program was developed and executed on-orbit with very good results to date. The life extension program consisted of reversing the mechanism for a limited number of consecutive scans every day.

  20. Kinetic analysis of elastomeric lag damper for helicopter rotors

    NASA Astrophysics Data System (ADS)

    Liu, Yafang; Wang, Jidong; Tong, Yan

    2018-02-01

    The elastomeric lag dampers suppress the ground resonance and air resonance that play a significant role in the stability of the helicopter. In this paper, elastomeric lag damper which is made from silicone rubber is built. And a series of experiments are conducted on this elastomeric lag damper. The stress-strain curves of elastomeric lag dampers employed shear forces at different frequency are obtained. And a finite element model is established based on Burgers model. The result of simulation and tests shows that the simple, linear model will yield good predictions of damper energy dissipation and it is adequate for predicting the stress-strain hysteresis loop within the operating frequency and a small-amplitude oscillation.

  1. Preoptimised VB: a fast method for the ground and excited states of ionic clusters II. Delocalised preoptimisation for He 2+, Ar 2+, He 3+ and Ar 3+

    NASA Astrophysics Data System (ADS)

    Archirel, Pierre

    1997-09-01

    We generalise the preoptimisation of orbitals within VB (Part I of this series) through letting the orbitals delocalise on the neighbouring fragments. The method is more accurate than the local preoptimisation. The method is tested on the rare gas clusters He 2+, Ar 2+, He 3+ and Ar 3+. The results are in good agreement with previously published data on these systems. We complete these data with higher excited states. The binding energies of (ArCO) +, (ArN 2) + and N 4+ are revisited. The simulation of the SCF method is extended to Cu +H 2O.

  2. A Comprehensive Analysis of Swiss Alpine Glaciers Using Helicopter-Borne Ground-Penetrating-Radar

    NASA Astrophysics Data System (ADS)

    Rabenstein, L.; Maurer, H.; Bauder, A.; Langhammer, L.; Lucas, C.; Rutishauser, A.; Lathion, P.

    2014-12-01

    Detailed information exists on the surface area of glaciers in Switzerland and long-term mass balance observations are available but because glacial thickness remains elusive and so only a rough estimate of the present ice volume is available. After the successful recording of approximately 1000 km of helicopter ground penetrating radar (GPR) profiles on Swiss glaciers during the last three years, the Swiss Competence Center for Energy Research (SCCER) and the Swiss Geophysical Commission (SGPK) began an initiative to obtain for the first time an accurate estimate of the total ice volume located in the Swiss Alps. Steps towards this goal include the delineation of 3D bedrock topography beneath glacerized regions. The final ice volume estimation will comprise an ice flux computation model constrained by a dense network of helicopter-borne GPR profiles. Different systems that have been recently tested for acquiring helicopter GPR data in the Swiss Alps include towed systems (the HERA-G+ and the BGR-P30) and rigidly mounted systems of standard commercial GPR ground units (the GSSI and PulsEkko), all operating in the frequency range of 30 to 70 Mhz. Some measurements were ground-truthed using the same GPR antenna systems. Analyses of these data sets revealed a wealth of useful information on the glacier bed topography and some internal structures. For instance, at depths between 30 and 60 m, we often observe zones of low backscattering followed by a more reflective zone. In the glacial accumulation areas these features are interpreted as firn layers, in which the water percolates down to its base. The same test flights also provided useful technical information on the radar installation. For towed systems it is difficult to maintain a constant orientation of the antennas during the flight. In contrast, the rigidly mounted systems do not suffer from the orientation problem, but ringing effects are pronounced. We applied an SVD-based (singular value decomposition) multi-channel filter, which enabled this "system ringing" to be removed. Mostly, ground GPR surveys on coincident lines produce better quality GPR images of the glacier bed. However, it turned out that the orientation of the antennas relative to the glacier may be more important to retrieve good quality GPR data, than the surveying mode (airborne or ground).

  3. ALLTEM UXO detection and discrimination

    USGS Publications Warehouse

    Asch, T.H.; Wright, D.L.; Moulton, C.W.; Irons, T.P.; Nabighian, M.N.

    2008-01-01

    ALLTEM is a multi-axis electromagnetic induction system designed for unexploded ordnance (UXO) applications. It uses a continuous triangle-wave excitation and provides good late-time signal-to-noise ratio (SNR) especially for ferrous targets. Multi-axis transmitter (Tx) and receiver (Rx) systems such as ALLTEM provide a richer data set from which to invert for the target parameters required to distinguish between clutter and UXO. Inversions of field data over the Army's UXO Calibration Grid and Blind Test Grid at the Yuma Proving Ground (YPG), Arizona in 2006 produced polarizability moment values for many buried UXO items that were reasonable and generally repeatable for targets of the same type buried at different orientations and depths. In 2007 a test stand was constructed that allows for collection of data with varying spatial data density and accurate automated position control. The behavior of inverted ALLTEM test stand data as a function of spatial data density, sensor SNR, and position error has been investigated. The results indicate that the ALLTEM inversion algorithm is more tolerant of sensor noise and position error than has been reported for single-axis systems. A high confidence level in inversion-derived target parameters is required when a target is declared to be harmless scrap metal that may safely be left in the ground. Unless high confidence can be demonstrated, state regulators will likely require that targets be dug regardless of any "no-dig" classifications produced from inversions, in which case remediation costs would not be decreased.

  4. The African disability scooter: efficiency testing in paediatric amputees in Malawi

    PubMed Central

    Beckles, Verona; McCahill, Jennifer L.; Stebbins, Julie; Mkandawire, Nyengo; Church, John C. T.; Lavy, Chris

    2016-01-01

    Abstract Purpose: The African Disability Scooter (ADS) was developed for lower limb amputees, to improve mobility and provide access to different terrains. The aim of this study was to test the efficiency of the ADS in Africa over different terrains. Method: Eight subjects with a mean age of 12 years participated. Energy expenditure and speed were calculated over different terrains using the ADS, a prosthetic limb, and crutches. Repeated testing was completed on different days to assess learning effect. Results: Speed was significantly faster with the ADS on a level surface compared to crutch walking. This difference was maintained when using the scooter on rough terrain. Oxygen cost was halved with the scooter on level ground compared to crutch walking. There were no significant differences in oxygen consumption or heart rate. There were significant differences in oxygen cost and speed between days using the scooter over level ground, suggesting the presence of a learning effect. Conclusions: This study demonstrates that the ADS is faster and more energy efficient than crutch walking in young individuals with amputations, and should be considered as an alternative to a prosthesis where this is not available. The presence of a learning effect suggests supervision and training is required when the scooter is first issued.Implications for RehabilitationThe African Disability Scooter:is faster than crutch walking in amputees;is more energy efficient than walking with crutches;supervised use is needed when learning to use the device;is a good alternative/adjunct for mobility. PMID:25316033

  5. Overview of Experimental Capabilities - Supersonics

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2007-01-01

    This viewgraph presentation gives an overview of experimental capabilities applicable to the area of supersonic research. The contents include: 1) EC Objectives; 2) SUP.11: Elements; 3) NRA; 4) Advanced Flight Simulator Flexible Aircraft Simulation Studies; 5) Advanced Flight Simulator Flying Qualities Guideline Development for Flexible Supersonic Transport Aircraft; 6) Advanced Flight Simulator Rigid/Flex Flight Control; 7) Advanced Flight Simulator Rapid Sim Model Exchange; 8) Flight Test Capabilities Advanced In-Flight Infrared (IR) Thermography; 9) Flight Test Capabilities In-Flight Schlieren; 10) Flight Test Capabilities CLIP Flow Calibration; 11) Flight Test Capabilities PFTF Flowfield Survey; 12) Ground Test Capabilities Laser-Induced Thermal Acoustics (LITA); 13) Ground Test Capabilities Doppler Global Velocimetry (DGV); 14) Ground Test Capabilities Doppler Global Velocimetry (DGV); and 15) Ground Test Capabilities EDL Optical Measurement Capability (PIV) for Rigid/Flexible Decelerator Models.

  6. Prototype space erectable radiator system ground test article development

    NASA Technical Reports Server (NTRS)

    Alario, Joseph P.

    1988-01-01

    A prototype heat rejecting system is being developed by NASA-JSC for possible space station applications. This modular system, the Space-Erectable Radiator System Ground Test Article (SERS-GTA) with high-capacity radiator panels, can be installed and replaced on-orbit. The design, fabrication and testing of a representative ground test article are discussed. Acceptance test data for the heat pipe radiator panel and the whiffletree clamping mechanism have been presented.

  7. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  8. Surface fatigue life of CBN and vitreous ground carburized and hardened AISI 9310 spur gears

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Patel, P. R.

    1988-01-01

    Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9310 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temeprature of 320 K (116 F), an outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.

  9. Ground Instructor Written Test Guide--Basic-Advanced. Revised 1972.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The test guide was prepared to assist applicants who are preparing for the Ground Instructor Written Test. It supersedes the 1967 examination guide. The guide outlines the scope of the basic aeronautical knowledge requirements for a ground instructor; acquaints the applicant with source material that may be used to acquire this basic knowledge;…

  10. Applications Guide for Propagation and Interference Analysis Computer Programs (0.1 to 20 GHz)

    DTIC Science & Technology

    1978-03-01

    146 A33 average ground . . . . . .. ....... 147 A34 good ground . . . ........ . . . .. 148 A35 sea water . ..................... 149 A36...fresh water . . . . . . . . . . . . 150 A37 smooth plains ........ ......... . 152 A38 rolling plains .................... 153 A39 hills . s...sec. 4.1), e) circular polarization [25, sec. 3.5], f) frequency and temperature variations of the complex dielectric constant of water [25, sec

  11. A New Non-Destructive TDR System Combined with a Piezoelectric Stack for Measuring Properties of Geomaterials

    PubMed Central

    Choi, Chanyong; Song, Minwoo; Kim, Daehyeon; Yu, Xiong

    2016-01-01

    Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test). Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry) system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test), it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control. PMID:28773563

  12. A New Non-Destructive TDR System Combined with a Piezoelectric Stack for Measuring Properties of Geomaterials.

    PubMed

    Choi, Chanyong; Song, Minwoo; Kim, Daehyeon; Yu, Xiong

    2016-06-02

    Dry density and water content are two important factors affecting the degree of soil compaction. Conventional methods such as the sand cone test and the plate load test are used to measure such properties for evaluating the degree of compaction and the stiffness of soil in the field. However, these tests are generally very time-consuming and are inherent with some errors depending on the operator (in particular for the sand cone test). Elastic modulus is an indicator to describe the stress-strain behavior of soil and in some cases is used as a design input parameter. Although a rod type TDR (Time Domain Reflectometry) system has been recently proposed to overcome some shortcomings of the conventional methods (particularly the sand cone test), it requires driving the probes into the ground, thus implying that it is still a time-consuming and destructive testing method. This study aims to develop a new non-destructive TDR system that can rapidly measure the dry density, water content, and elastic modulus of soil on the surface of compacted soil, without disturbing the ground. In this study, the Piezoelectric Stack, which is an instrument for measuring the elastic modulus of soil, has been added to the TDR system with a flat type probe, leading to a non-destructive TDR system that is capable of measuring the dry density, water content, and elastic modulus of soil. The new TDR system developed is light enough for an engineer to carry. Results of the standard compaction and TDR tests on sand showed that the dry densities and the moisture contents measured with the new TDR system were in good agreement with those measured with the standard compaction test, respectively. Consequently, it appears that the new TDR system developed will be very useful to advance the current practice of compaction quality control.

  13. Numerical Study of Wake Vortex Interaction with the Ground Using the Terminal Area Simulation System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Han, Jongil

    1999-01-01

    A sensitivity study for the in-ground effect on aircraft wake vortices has been conducted using a validated large eddy simulation model. The numerical results are compared with observed data and show good agreement for vortex decay and lateral vortex transport. The vortex decay rate is strongly influenced by the ground, but appears somewhat insensitive to ambient turbulence. In addition, the results show that the ground can affect the trajectory and descent-rate of a wake vortex pair at elevations up to about 3 b(sub o) (where b(sub o) is the initial vortex separation). However, the ground does not influence the average circulation of the vortices until the cores descend to within about 0.6 b(sub o), after which time the ground greatly enhances their rate of demise. Vortex rebound occurs in the simulations, but is more subtle than shown in previous numerical studies.

  14. Sonic boom prediction for the Langley Mach 2 low-boom configuration

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    1992-01-01

    Sonic boom pressure signatures and aerodynamic force data for the Langley Mach 2 low sonic boom configuration were computed using the TranAir full-potential code. A solution-adaptive Cartesian grid scheme is utilized to compute off-body flow field data. Computations were performed with and without nacelles at several angles of attack. Force and moment data were computed to measure nacelle effects on the aerodynamic characteristics and sonic boom footprints of the model. Pressure signatures were computed both on and off ground-track. Near-field pressure signature computations on ground-track were in good agreement with experimental data. Computed off ground-track signatures showed that maximum pressure peaks were located off ground-track and were significantly higher than the signatures on ground-track. Bow shocks from the nacelle inlets increased lift and drag, and also increased the magnitude of the maximum pressure both on and off ground-track.

  15. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    PubMed

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  16. Development and preliminary validation of an interactive remote physical therapy system.

    PubMed

    Mishra, Anup K; Skubic, Marjorie; Abbott, Carmen

    2015-01-01

    In this paper, we present an interactive physical therapy system (IPTS) for remote quantitative assessment of clients in the home. The system consists of two different interactive interfaces connected through a network, for a real-time low latency video conference using audio, video, skeletal, and depth data streams from a Microsoft Kinect. To test the potential of IPTS, experiments were conducted with 5 independent living senior subjects in Kansas City, MO. Also, experiments were conducted in the lab to validate the real-time biomechanical measures calculated using the skeletal data from the Microsoft Xbox 360 Kinect and Microsoft Xbox One Kinect, with ground truth data from a Vicon motion capture system. Good agreements were found in the validation tests. The results show potential capabilities of the IPTS system to provide remote physical therapy to clients, especially older adults, who may find it difficult to visit the clinic.

  17. In-flight photogrammetric camera calibration and validation via complementary lidar

    NASA Astrophysics Data System (ADS)

    Gneeniss, A. S.; Mills, J. P.; Miller, P. E.

    2015-02-01

    This research assumes lidar as a reference dataset against which in-flight camera system calibration and validation can be performed. The methodology utilises a robust least squares surface matching algorithm to align a dense network of photogrammetric points to the lidar reference surface, allowing for the automatic extraction of so-called lidar control points (LCPs). Adjustment of the photogrammetric data is then repeated using the extracted LCPs in a self-calibrating bundle adjustment with additional parameters. This methodology was tested using two different photogrammetric datasets, a Microsoft UltraCamX large format camera and an Applanix DSS322 medium format camera. Systematic sensitivity testing explored the influence of the number and weighting of LCPs. For both camera blocks it was found that when the number of control points increase, the accuracy improves regardless of point weighting. The calibration results were compared with those obtained using ground control points, with good agreement found between the two.

  18. Ratio maps of iron ore deposits Atlantic City district, Wyoming

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1973-01-01

    Preliminary results of a spectral rationing technique are shown for a region at the southern end of the Wind River Range, Wyoming. Digital ratio graymaps and analog ratio images have been produced for the test site, but ground truth is not yet available for thorough interpretation of these products. ERTS analog ratio images were found generally better than either ERTS single-channel images or high altitude aerial photos for the discrimination of vegetation from non-vegetation in the test site region. Some linear geological features smaller than the ERTS spatial resolution are seen as well in ERTS ratio and single-channel images as in high altitude aerial photography. Geochemical information appears to be extractable from ERTS data. Good preliminary quantitative agreement between ERTS-derived ratios and laboratory-derived reflectance ratios of rocks and minerals encourage plans to use lab data as training sets for a simple ratio gating logic approach to automatic recognition maps.

  19. Geology and ground-water in western Santa Cruz County, California, with particular emphasis on the Santa Margarita Sandstone

    USGS Publications Warehouse

    Akers, J.P.; Jackson, L.E.

    1977-01-01

    The water-bearing potential of the geologic formations in the western part of Santa Cruz County, Calif., is evaluated. Most of the sedimentary formations in this area are fine-grained rocks of Tertiary age that have been folded and faulted. These rocks, in general, yield supplies of water sufficient only for individual domestic supplies. The Lompico and Santa Margarita Sandstones, however, are coarser grained and have the potential to yield moderate quantities of water (50-100 gallons per minute). Areas where the Lompico Sandstone might warrant explorations are (1) near and on the west side of the Ben Lomond fault, (2) near and south of the outcrop of the Lompico Sandstone between Ben Lomond and Felton, and (3) in the area near Bald Mountain School. The Santa Margarita Sandstone should be explored by test drilling in the area between Davenport and Bonnie Doon. The quality of ground water is generally good, although saline water occurs in the San Lorenzo Formation near Redwood Grove and Riverside Grove. (Woodard-USGS)

  20. Numerical simulation on the seismic absorption effect of the cushion in rigid-pile composite foundation

    NASA Astrophysics Data System (ADS)

    Han, Xiaolei; Li, Yaokun; Ji, Jing; Ying, Junhao; Li, Weichen; Dai, Baicheng

    2016-06-01

    In order to quantitatively study the seismic absorption effect of the cushion on a superstructure, a numerical simulation and parametric study are carried out on the overall FEA model of a rigid-pile composite foundation in ABAQUS. A simulation of a shaking table test on a rigid mass block is first completed with ABAQUS and EERA, and the effectiveness of the Drucker-Prager constitutive model and the finite-infinite element coupling method is proved. Dynamic time-history analysis of the overall model under frequent and rare earthquakes is carried out using seismic waves from the El Centro, Kobe, and Bonds earthquakes. The different responses of rigid-pile composite foundations and pile-raft foundations are discussed. Furthermore, the influence of thickness and modulus of cushion, and ground acceleration on the seismic absorption effect of the cushion are analyzed. The results show that: 1) the seismic absorption effect of a cushion is good under rare earthquakes, with an absorption ratio of about 0.85; and 2) the seismic absorption effect is strongly affected by cushion thickness and ground acceleration.

  1. Ground-based measurements of inflight antenna patterns for imaging radar systems

    NASA Astrophysics Data System (ADS)

    Seifert, Pedro; Lentz, Harald; Zink, Manfred; Heel, Franz

    1992-11-01

    An approach is presented on how to determine the inflight antenna pattern in the cross-track direction for air- and spaceborne synthetic aperture radar (SAR) systems. In the 1991 Oberpfaffenhofen DC-8/E-SAR calibration campaign there was a good opportunity to test ground-based measurement equipment comprising 18 precision calibration receivers and nine polarimetric active radar calibrators (PARC's), all operating in C-band. These devices were designed and manufactured by the Institute of Navigation at the University of Stuttgart (INS). These instruments are capable of handling various pulse lengths, PRF's, and have a very high dynamic range. Together with precise internal clocks, these instruments are suitable for recording the actual radar transmit pulse shape for the later evaluation of the desired inflight antenna pattern. Lining up these devices in the cross-track direction, each receiver yields an azimuth cut of the three-dimensional antenna pattern. The elevation pattern was then obtained by time correlation of these azimuth cuts. Further results concerning pulse shapes, squint angles, and H-V pattern misalignment are presented.

  2. 20 Meter Solar Sail Analysis and Correlation

    NASA Technical Reports Server (NTRS)

    Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.

    2005-01-01

    This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.

  3. The scaling of model test results to predict intake hot gas reingestion for STOVL aircraft with augmented vectored thrust engines

    NASA Technical Reports Server (NTRS)

    Penrose, C. J.

    1987-01-01

    The difficulties of modeling the complex recirculating flow fields produced by multiple jet STOVL aircraft close to the ground have led to extensive use of experimental model tests to predict intake Hot Gas Reingestion (HGR). Model test results reliability is dependent on a satisfactory set of scaling rules which must be validated by fully comparable full scale tests. Scaling rules devised in the U.K. in the mid 60's gave good model/full scale agreement for the BAe P1127 aircraft. Until recently no opportunity has occurred to check the applicability of the rules to the high energy exhaust of current ASTOVL aircraft projects. Such an opportunity has arisen following tests on a Tethered Harrier. Comparison of this full scale data and results from tests on a model configuration approximating to the full scale aircraft geometry has shown discrepancies between HGR levels. These discrepancies although probably due to geometry and other model/scale differences indicate some reexamination of the scaling rules is needed. Therefore the scaling rules are reviewed, further scaling studies planned are described and potential areas for further work are suggested.

  4. Control and Non-Payload Communications (CNPC) Prototype Radio - Generation 2 Flight Test Report

    NASA Technical Reports Server (NTRS)

    Ishac, Joseph A.; Iannicca, Dennis C.; Shalkhauser, Kurt A.; Kachmar, Brian A.

    2014-01-01

    NASA Glenn Research Center conducted a series of flight tests for the purpose of evaluating air-to-ground communications links for future unmanned aircraft systems (UAS). The primary objective of the test effort was to evaluate the transition of the aircraft communications from one ground station to the next, and to monitor data flow during the "hand-off" event. To facilitate the testing, ground stations were installed at locations in Cleveland, Ohio and Albany, Ohio that each provides line-of-sight radio communications with an overflying aircraft. This report describes results from the flight tests including flight parameters, received signal strength measurements, data latency times, and performance observations for the air-to-ground channel.

  5. Vapor compression heat pump system field tests at the TECH complex

    NASA Astrophysics Data System (ADS)

    Baxter, V. D.

    1985-07-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance. However, its high cost makes it unlikely that it will achieve widespread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  6. Vapor compression heat pump system field tests at the tech complex

    NASA Astrophysics Data System (ADS)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  7. Reconstructing Iraq

    DTIC Science & Technology

    2004-09-02

    ICG Middle East Report N°30, 2 September 2004 Page 16 and institutions to counter monopolistic practices harmful to both investors and consumers ...204 A senior Ministry of Trade official described large-scale corruption in the food and consumer goods rationing system at all 198 ICG...procurement of items for the ration system also provides fertile ground for current corruption. Black markets thrive on goods whose prices are kept

  8. A Study of Small Magnitude Seismic Events During 1961-1989 on and near the Semipalatinsk Test Site, Kazakhstan

    NASA Astrophysics Data System (ADS)

    Khalturin, V. I.; Rautian, T. G.; Richards, P. G.

    - Official Russian sources in 1996 and 1997 have stated that 340 underground nuclear tests (UNTs) were conducted during 1961-1989 at the Semipalatinsk Test Site (STS) in Eastern Kazakhstan. Only 271 of these nuclear tests appear to have been described with well-determined origin time, coordinates and magnitudes in the openly available technical literature. Thus, good open documentation has been lacking for 69 UNTs at STS.The main goal of our study was to provide detections, estimates of origin time and location, and magnitudes, for as many of these previously undocumented events as possible. We used data from temporary and permanent seismographic stations in the former USSR at distances from 500km to about 1500km from STS. As a result, we have been able to assign magnitude for eight previously located UNTs whose magnitude was not previously known. For 31 UNTs, we have estimated origin time an d assigned magnitude - and for 19 of these 31 we have obtained locations based on seismic signals. Of the remaining 30 poorly documented UNTs, 15 had announced yields that were less than one ton, and 13 occurred simultaneously with another test which was detected. There are only two UNTs, for which the announced yield exceeds one ton and we have been unable to find seismic signals.Most of the newly detected and located events were sub-kiloton. Their magnitudes range from 2.7 up to 5.1 (a multi-kiloton event on 1965 Feb. 4 that was often obscured at teleseismic stations by signals from an earthquake swarm in the Aleutians).For 17 small UNTs at STS, we compare the locations (with their uncertainties) that we had earlier determined in 1994 from analysis of regional seismic waves, with ground-truth information obtained in 1998. The average error of the seismically-determined locations is only about 5km. The ground-truth location is almost alw ays within the predicted small uncertainty of the seismically-determined location.Seismically-determined yield estimates are in good agreement with the announced total annual yield of nuclear tests, for each year from 1964 to 1989 at Semipalatinsk.We also report the origin time, location, and seismic magnitude of 29 chemical explosions and a few earthquakes on or near STS during the years 1961-1989.Our new documentation of STS explosions is important for evaluating the detection, location, and identification capabilities of teleseismic and regional arrays and stations; and how these capabilities have changed with time.

  9. Enhanced Assimilation of InSAR Displacement and Well Data for Groundwater Monitoring

    NASA Astrophysics Data System (ADS)

    Abdullin, A.; Jonsson, S.

    2016-12-01

    Ground deformation related to aquifer exploitation can cause damage to buildings and infrastructure leading to major economic losses and sometimes even loss of human lives. Understanding reservoir behavior helps in assessing possible future ground movement and water depletion hazard of a region under study. We have developed an InSAR-based data assimilation framework for groundwater reservoirs that efficiently incorporates InSAR data for improved reservoir management and forecasts. InSAR displacement data are integrated with the groundwater modeling software MODFLOW using ensemble-based assimilation approaches. We have examined several Ensemble Methods for updating model parameters such as hydraulic conductivity and model variables like pressure head while simultaneously providing an estimate of the uncertainty. A realistic three-dimensional aquifer model was built to demonstrate the capability of the Ensemble Methods incorporating InSAR-derived displacement measurements. We find from these numerical tests that including both ground deformation and well water level data as observations improves the RMSE of the hydraulic conductivity estimate by up to 20% comparing to using only one type of observations. The RMSE estimation of this property after the final time step is similar for Ensemble Kalman Filter (EnKF), Ensemble Smoother (ES) and ES with multiple data assimilation (ES-MDA) methods. The results suggest that the high spatial and temporal resolution subsidence observations from InSAR are very helpful for accurately quantifying hydraulic parameters. We have tested the framework on several different examples and have found good performance in improving aquifer properties estimation, which should prove useful for groundwater management. Our ongoing work focuses on assimilating real InSAR-derived time series and hydraulic head data for calibrating and predicting aquifer properties of basin-wide groundwater systems.

  10. Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time.

    PubMed

    Yang, Qianru; Domesle, Kelly J; Wang, Fei; Ge, Beilei

    2016-06-17

    Salmonella is among the most significant pathogens causing food and feed safety concerns. This study examined the rapid detection of Salmonella in various types of food and feed samples by coupling loop-mediated isothermal amplification (LAMP) with a novel reporter, bioluminescent assay in real-time (BART). Performance of the LAMP-BART assay was compared to a conventional LAMP and the commercially available 3M Molecular Detection Assay (MDA) Salmonella. The LAMP-BART assay was 100 % specific among 178 strains (151 Salmonella and 27 non-Salmonella) tested. The detection limits were 36 cells per reaction in pure culture and 10(4) to 10(6) CFU per 25 g in spiked food and feed samples without enrichment, which were comparable to those of the conventional LAMP and 3M MDA Salmonella but 5-10 min faster. Ground turkey showed a strong inhibition on 3M MDA Salmonella, requiring at least 10(8) CFU per 25 g for detection. The correlation between Salmonella cell numbers and LAMP-BART signals was high (R (2) = 0.941-0.962), suggesting good quantification capability. After 24 h enrichment, all three assays accurately detected 1 to 3 CFU per 25 g of Salmonella among five types of food (cantaloupe, ground beef, ground turkey, shell eggs, and tomato) and three types of feed (cattle feed, chicken feed, and dry dog food) examined. However, 10(1) CFU per 25 g was required for cattle feed when tested by 3M MDA Salmonella. The Salmonella LAMP-BART assay was rapid, specific, sensitive, quantitative, and robust. Upon further validation, it may become a valuable tool for routine screening of Salmonella in various types of food and feed samples.

  11. Adjoint-tomography for a Local Surface Structure: Methodology and a Blind Test

    NASA Astrophysics Data System (ADS)

    Kubina, Filip; Michlik, Filip; Moczo, Peter; Kristek, Jozef; Stripajova, Svetlana

    2017-04-01

    We have developed a multiscale full-waveform adjoint-tomography method for local surface sedimentary structures with complicated interference wavefields. The local surface sedimentary basins and valleys are often responsible for anomalous earthquake ground motions and corresponding damage in earthquakes. In many cases only relatively small number of records of a few local earthquakes is available for a site of interest. Consequently, prediction of earthquake ground motion at the site has to include numerical modeling for a realistic model of the local structure. Though limited, the information about the local structure encoded in the records is important and irreplaceable. It is therefore reasonable to have a method capable of using the limited information in records for improving a model of the local structure. A local surface structure and its interference wavefield require a specific multiscale approach. In order to verify our inversion method, we performed a blind test. We obtained synthetic seismograms at 8 receivers for 2 local sources, complete description of the sources, positions of the receivers and material parameters of the bedrock. We considered the simplest possible starting model - a homogeneous halfspace made of the bedrock. Using our inversion method we obtained an inverted model. Given the starting model, synthetic seismograms simulated for the inverted model are surprisingly close to the synthetic seismograms simulated for the true structure in the target frequency range up to 4.5 Hz. We quantify the level of agreement between the true and inverted seismograms using the L2 and time-frequency misfits, and, more importantly for earthquake-engineering applications, also using the goodness-of-fit criteria based on the earthquake-engineering characteristics of earthquake ground motion. We also verified the inverted model for other source-receiver configurations not used in the inversion.

  12. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  13. Reconciling the good patient persona with problematic and non-problematic humour: a grounded theory.

    PubMed

    McCreaddie, May; Wiggins, Sally

    2009-08-01

    Humour is a complex phenomenon, incorporating cognitive, emotional, behavioural, physiological and social aspects. Research to date has concentrated on reviewing (rehearsed) humour and 'healthy' individuals via correlation studies using personality-trait based measurements, principally on psychology students in laboratory conditions. Nurses are key participants in modern healthcare interactions however, little is known about their (spontaneous) humour use. A middle-range theory that accounted for humour use in CNS-patient interactions was the aim of the study. The study reviewed the antecedents of humour exploring the use of humour in relation to (motivational) humour theories. Twenty Clinical Nurse Specialist-patient interactions and their respective peer groups in a country of the United Kingdom. An evolved constructivist grounded theory approach investigated a complex and dynamic phenomenon in situated contexts. Naturally occurring interactions provided the basis of the data corpus with follow-up interviews, focus groups, observation and field notes. A constant comparative approach to data collection and analysis was applied until theoretical sufficiency incorporating an innovative interpretative and illustrative framework. This paper reports the grounded theory and is principally based upon 20 CNS-patient interactions and follow-up data. The negative case analysis and peer group interactions will be reported in separate publications. The theory purports that patients' use humour to reconcile a good patient persona. The core category of the good patient persona, two of its constituent elements (compliance, sycophancy), conditions under which it emerges and how this relates to the use of humour are outlined and discussed. In seeking to establish and maintain a meaningful and therapeutic interaction with the CNS, patients enact a good patient persona to varying degrees depending upon the situated context. The good patient persona needs to be maintained within the interaction and is therefore reconciled with potentially problematic or non-problematic humour use. Humour is therefore used to deferentially package concerns (potentially problematic humour) or affiliate (potentially non-problematic humour). This paper reviews the good patient persona (compliance, sycophancy), potentially problematic humour (self-disparaging, gallows) and briefly, non-problematic humour (incongruity). The middle-range theory differentiates potentially problematic humour from non-problematic humour and notes that how humour is identified and addressed is central to whether patients concerns are resolved or not. The study provides a robust review of humour in healthcare interactions with important implications for practice. Further, this study develops and extends humour research and contributes to an evolved application of constructivist grounded theory.

  14. Ground-Water Reconnaissance at Pinnacles National Monument, California

    USGS Publications Warehouse

    Evenson, R.E.

    1962-01-01

    Ground-water supplies at Pinnacles National Monument have been obtained from springs that occur in fractures and along bedding planes of volcanic flows and deposits, and from springs discharged from perched water in a sedimentary fanglomerate formation. The spring-water yield is barely adequate to supply existing camp facilities, and therefore a supplemental water supply is necessary before existing campgrounds can be expanded. This supplemental water can be supplied by good-quality ground water obtained from shallow wells drilled in the alluvium of Chalone Creek. The yield of properly constructed wells in this area should exceed 10 gallons per minute.

  15. A Dual Mode BPF with Improved Spurious Response Using DGS Cells Embedded on the Ground Plane of CPW

    NASA Astrophysics Data System (ADS)

    Weng, Min-Hang; Ye, Chang-Sin; Hung, Cheng-Yuan; Huang, Chun-Yueh

    A novel dual mode bandpass filter (BPF) with improved spurious response is presented in this letter. To obtain low insertion loss, the coupling structure using the dual mode resonator and the feeding scheme using coplanar-waveguide (CPW) are constructed on the two sides of a dielectric substrate. A defected ground structure (DGS) is designed on the ground plane of the CPW to achieve the goal of spurious suppression of the filter. The filter has been investigated numerically and experimentally. Measured results show a good agreement with the simulated analysis.

  16. Physical and mathematical modeling of process of frozen ground thawing under hot tank

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Y.; Shastunova, U.; Shabarov, A.; Kislitsyn, A.; Shuvaev, A.

    2018-05-01

    A description of a new non-stationary thermophysical model in the “hot tank-frozen ground” system is given, taking into account mass transfer of pore moisture. The results of calculated and experimental data are presented, and the position of the thawing front is shown to be in good agreement with the convective heat transfer due to moisture migration in the thawed ground.

  17. Ground Measurements of Airplane Shock-Wave Noise at Mach Numbers to 2.0 and at Altitudes to 60,000 Feet

    NASA Technical Reports Server (NTRS)

    Lina, Lindsay J.; Maglieri, Domenic J.

    1960-01-01

    The intensity of shock-wave noise at the ground resulting from flights at Mach numbers to 2.0 and altitudes to 60,000 feet was measured. Meagurements near the ground track for flights of a supersonic fighter and one flight of a supersonic bomber are presented. Level cruising flight at an altitude of 60,000 feet and a Mach number of 2.0 produced sonic booms which were considered to be tolerable, and it is reasonable t o expect that cruising flight at higher altitudes will produce booms of tolerable intensity for airplanes of the size and weight of the test airplanes. The measured variation of sonic-boom intensity with altitude was in good agreement with the variation calculated by an equation given in NASA Technical Note D-48. The effect of Mach number on the ground overpressure is small between Mach numbers of 1.4 and 2.0, a result in agreement with the theory. No amplification of the shock-wave overpressures due to refraction effects was apparent near the cutoff Mach number. A method for estimating the effect of fligh-path angle on cutoff Mach number is shown. Experimental results indicate agreement with the method, since a climb maneuver produced booms of a much decreased intensity as compared with the intensity of those measured in level flight at about the same altitude and Mach number. Comparison of sound pressure levels for the fighter and bomber airp lanes indicated little effect of either airplane size or weight at an altitude of 40,000 feet.

  18. A Spherical Aerial Terrestrial Robot

    NASA Astrophysics Data System (ADS)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  19. Characterization of Material Response During Arc-Jet Testing with Optical Methods Status and Perspectives

    NASA Technical Reports Server (NTRS)

    Winter, Michael

    2012-01-01

    The characterization of ablation and recession of heat shield materials during arc jet testing is an important step towards understanding the governing processes during these tests and therefore for a successful extrapolation of ground test data to flight. The behavior of ablative heat shield materials in a ground-based arc jet facility is usually monitored through measurement of temperature distributions (across the surface and in-depth), and through measurement of the final surface recession. These measurements are then used to calibrate/validate materials thermal response codes, which have mathematical models with reasonably good fidelity to the physics and chemistry of ablation, and codes thus calibrated are used for predicting material behavior in flight environments. However, these thermal measurements only indirectly characterize the pyrolysis processes within an ablative material pyrolysis is the main effect during ablation. Quantification of pyrolysis chemistry would therefore provide more definitive and useful data for validation of the material response codes. Information of the chemical products of ablation, to various levels of detail, can be obtained using optical methods. Suitable optical methods to measure the shape and composition of these layers (with emphasis on the blowing layer) during arc jet testing are: 1) optical emission spectroscopy (OES) 2) filtered imaging 3) laser induced fluorescence (LIF) and 4) absorption spectroscopy. Several attempts have been made to optically measure the material response of ablative materials during arc-jet testing. Most recently, NH and OH have been identified in the boundary layer of a PICA ablator. These species are suitable candidates for a detection through PLIF which would enable a spatially-resolved characterization of the blowing layer in terms of both its shape and composition. The recent emission spectroscopy data will be presented and future experiments for a qualitative and quantitative characterization of the material response of ablative materials during arc-jet testing will be discussed.

  20. Safer Aviation Materials Tested

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2001-01-01

    A series of thermally stable polymer samples were tested. These materials are called low heat release materials and are designed for aircraft interior decorative materials. The materials are designed to give off a minimum amount of noxious gases when heated, which increases the possibility that people can escape from a burning aircraft. New cabin materials have suitably low heat release so that fire does not spread, toxic chemicals are not given off, and the fire-emergency escape time for crew and passengers is lengthened. These low heat-release materials have a variety of advantages and applications: interiors for ground-based facilities, interiors of space vehicles, and many commercial fire-protection environments. A microscale combustion calorimeter at the Federal Aviation Administration's (FAA) Technical Center tested NASA Langley Research Center materials samples. The calorimeter is shown. A sharp, quantitative, and reproducible heat-release-rate peak is obtained in the microscale heat-release-rate test. The newly tested NASA materials significantly reduced the heat release capacity and total heat release. The thermal stability and flammability behavior of the samples was very good. The new materials demonstrated a factor of 4 reduction in total heat release over ULTEM (a currently used material). This information is provided in the following barchart. In other tests, the materials showed greater than a factor 9 reduction in heat-release capacity over ULTEM. The newly tested materials were developed for low dielectric constant, low color, and good solubility. A scale up of the material samples is needed to determine the repeatability of the performance in larger samples. Larger panels composed of the best candidate materials will be tested in a larger scale FAA Technical Center fire facility. The NASA Glenn Research Center, Langley (Jeff Hinkley), and the FAA Technical Center (Richard Lyon) cooperatively tested these materials for the Accident Mitigation aspects of Fire Prevention under NASA's Aviation Safety Program.

  1. Surf zone characterization from Unmanned Aerial Vehicle imagery

    NASA Astrophysics Data System (ADS)

    Holman, Rob A.; Holland, K. Todd; Lalejini, Dave M.; Spansel, Steven D.

    2011-11-01

    We investigate the issues and methods for estimating nearshore bathymetry based on wave celerity measurements obtained using time series imagery from small unmanned aircraft systems (SUAS). In contrast to time series imagery from fixed cameras or from larger aircraft, SUAS data are usually short, gappy in time, and unsteady in aim in high frequency ways that are not reflected by the filtered navigation metadata. These issues were first investigated using fixed camera proxy data that have been intentionally degraded to mimic these problems. It has been found that records as short as 50 s or less can yield good bathymetry results. Gaps in records associated with inadvertent look-away during unsteady flight would normally prevent use of the required standard Fast Fourier Transform methods. However, we found that a full Fourier Transform could be implemented on the remaining valid record segments and was effective if at least 50% of total record length remained intact. Errors in image geo-navigation were stabilized based on fixed ground fiducials within a required land portion of the image. The elements of a future method that could remove this requirement were then outlined. Two test SUAS data runs were analyzed and compared to survey ground truth data. A 54-s data run at Eglin Air Force Base on the Gulf of Mexico yielded a good bathymetry product that compared well with survey data (standard deviation of 0.51 m in depths ranging from 0 to 4 m). A shorter (30.5 s) record from Silver Strand Beach (near Coronado) on the US west coast provided a good approximation of the surveyed bathymetry but was excessively deep offshore and had larger errors (1.19 m for true depths ranging from 0 to 6 m), consistent with the short record length. Seventy-three percent of the bathymetry estimates lay within 1 m of the truth for most of the nearshore.

  2. Results of low speed wind tunnel tests on a .0405 scale model Rockwell Space Shuttle Orbiter tested both in free air and in the presence of a ground plane (OA16)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.; Cameron, B. W.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a .0405 scale representation of the space shuttle orbiter in a 7.75 x 11 foot low speed wind tunnel during the time period March 21, to April 17, 1973. The primary test objectives were to investigate both the aerodynamic and propulsion effects of various air breathing engine systems in free air and in the presence of the ground. The free air portion of this test investigated the aerodynamic effects of engine nacelle number, nacelle grouping, and nacelle location. For this testing the model was sting mounted on a six component internal strain gage balance entering through the model base. The ground plane portion of the aerodynamic test investigated the same nacelle effects at ground plane locations of full scale W.P. = 239.9, 209.3, 158.9, 108.5, and 7.78 in. At the conclusion of the aerodynamic test period the propulsion effects of various nacelle locations and freestream orientations in the presence of the ground were investigated.

  3. Probing the 5 f electrons in Am-I by hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Atta-Fynn, Raymond; Ray, Asok K.

    2009-11-01

    The ground states of the actinides and their compounds continue to be matters of considerable controversies. Experimentally, Americium-I (Am-I) is a non-magnetic dhcp metal whereas theoretically an anti-ferromagnetic ground state is predicted. We show that hybrid density functional theory, which admixes a fraction, λ, of exact Hartree-Fock (HF) exchange with approximate DFT exchange, can correctly reproduce the ground state properties of Am. In particular, for λ=0.40, we obtain a non-magnetic ground state with equilibrium atomic volume, bulk modulus, 5 f electron population, and the density of electronic states all in good agreement with experimental data. We argue that the exact HF exchange corrects the overestimation of the approximate DFT exchange interaction.

  4. Determination of the effect of brand and product identification on consumer palatability ratings of ground beef patties.

    PubMed

    Wilfong, A K; McKillip, K V; Gonzalez, J M; Houser, T A; Unruh, J A; Boyle, E A E; O'Quinn, T G

    2016-11-01

    The objective of this study was to determine the effect of brand and product identification on consumer palatability ratings of ground beef patties. Six treatments were used in the study: 90/10 Certified Angus Beef (CAB) ground sirloin, 90/10 ground beef, 80/20 CAB ground chuck, 80/20 ground chuck, 80/20 ground beef, and 73/27 CAB ground beef. Ground beef was processed into 151.2-g patties using a patty former with 2 consecutively formed patties assigned to blind consumer testing and the following 2 assigned to informed testing. Following cooking to 74°C, patties were cut into quarters and served to consumers. Consumers ( = 112) evaluated samples in 2 rounds for tenderness, juiciness, flavor liking, texture liking, and overall liking. Each trait was also rated as either acceptable or unacceptable. In the first round of testing, samples were blind evaluated, with no information about the treatments provided to consumers, but in the second round, product type and brand were disclosed prior to sample evaluation. Additionally, texture profile and shear force analyses were performed on patties from each treatment. Few differences were observed for palatability traits during blind consumer testing; however, during informed testing, 90/10 CAB ground sirloin was rated greatest ( < 0.05) for all palatability traits other than juiciness. Also, 90/10 CAB ground sirloin had increased ( < 0.05; (consumer informed score - consumer blind score)/consumer blind score) ratings for tenderness (17.4%), juiciness (36.5%), flavor liking (23.3%), texture liking (18.2%), and overall liking (24.7%) due to brand disclosure. Increased ( < 0.05) ratings were found for CAB products for multiple traits due to treatment disclosure, whereas the only non-CAB-branded product that received increased ( < 0.05) ratings during informed testing was 90/10 ground beef for tenderness and juiciness. Texture results indicated that decreased fat level increased hardness, cohesiveness, gumminess, and chewiness. These results indicate that when sampling ground beef without brand and product information, few consumers find differences in eating quality among ground beef treatments; however, when consumers are aware of the brand, fat level, and subprimal blend prior to sampling, these factors have a large impact on consumer eating satisfaction.

  5. Pristine and Surface-Modified Polymers in LEO: MISSE Results versus Predictive Models and Ground-Based Testing

    NASA Astrophysics Data System (ADS)

    Iskanderova, Zelina; Kleiman, Jacob I.; Tennyson, Rod C.

    2009-01-01

    Space flight data, collected and published by NASA Glenn Research Center (GRC) team for a set of pristine polymeric materials selected, compiled, and tested in two LEO flight experiments at the International Space Station, as part of the "Materials International Space Station Experiment" (MISSE), has been used for comparison with previously developed atomic oxygen erosion predictive models. The same set of materials was used for a ground-based fast atomic beam (FAO) experimental erosion study at ITL/UTIAS, where the FAO exposure was performed mostly at a standard fluence of 2×1020 cm-2, with the results collected in a database for the development of a prototype of predictive software. A comparison of MISSE-1 flight data with two predictive correlations has shown good agreement, confirming the developed approach to polymers erosion resistance forecast that might be used also for newly developed or untested in space polymeric materials. A number of surface-modified thin film space polymers, treated by two ITL-developed and patented surface modification technologies, Implantox™ [5] and Photosil™ [6], have been also included in MISSE flight experiment. The results from those MISSE samples have shown full protection of AO-sensitive main space-related hydrocarbon polymers, such as Kapton HN, back-metalized Kapton H and Kapton E, and Mylar, when treated by Implantox™ surface modification technology and significant erosion resistance enhancement up to full protection by Photosil™ treatment.

  6. USGS approach to real-time estimation of earthquake-triggered ground failure - Results of 2015 workshop

    USGS Publications Warehouse

    Allstadt, Kate E.; Thompson, Eric M.; Wald, David J.; Hamburger, Michael W.; Godt, Jonathan W.; Knudsen, Keith L.; Jibson, Randall W.; Jessee, M. Anna; Zhu, Jing; Hearne, Michael; Baise, Laurie G.; Tanyas, Hakan; Marano, Kristin D.

    2016-03-30

    The U.S. Geological Survey (USGS) Earthquake Hazards and Landslide Hazards Programs are developing plans to add quantitative hazard assessments of earthquake-triggered landsliding and liquefaction to existing real-time earthquake products (ShakeMap, ShakeCast, PAGER) using open and readily available methodologies and products. To date, prototype global statistical models have been developed and are being refined, improved, and tested. These models are a good foundation, but much work remains to achieve robust and defensible models that meet the needs of end users. In order to establish an implementation plan and identify research priorities, the USGS convened a workshop in Golden, Colorado, in October 2015. This document summarizes current (as of early 2016) capabilities, research and operational priorities, and plans for further studies that were established at this workshop. Specific priorities established during the meeting include (1) developing a suite of alternative models; (2) making use of higher resolution and higher quality data where possible; (3) incorporating newer global and regional datasets and inventories; (4) reducing barriers to accessing inventory datasets; (5) developing methods for using inconsistent or incomplete datasets in aggregate; (6) developing standardized model testing and evaluation methods; (7) improving ShakeMap shaking estimates, particularly as relevant to ground failure, such as including topographic amplification and accounting for spatial variability; and (8) developing vulnerability functions for loss estimates.

  7. Weights of Evidence Method for Landslide Susceptibility Mapping in Takengon, Central Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Pamela; Sadisun, Imam A.; Arifianti, Yukni

    2018-02-01

    Takengon is an area prone to earthquake disaster and landslide. On July 2, 2013, Central Aceh earthquake induced large numbers of landslides in Takengon area, which resulted in casualties of 39 people. This location was chosen to assess the landslide susceptibility of Takengon, using a statistical method, referred to as the weight of evidence (WoE). This WoE model was applied to indicate the main factors influencing the landslide susceptible area and to derive landslide susceptibility map of Takengon. The 251 landslides randomly divided into two groups of modeling/training data (70%) and validation/test data sets (30%). Twelve thematic maps of evidence are slope degree, slope aspect, lithology, land cover, elevation, rainfall, lineament, peak ground acceleration, curvature, flow direction, distance to river and roads used as landslide causative factors. According to the AUC, the significant factor controlling the landslide is the slope, the slope aspect, peak ground acceleration, elevation, lithology, flow direction, lineament, and rainfall respectively. Analytical result verified by using test data of landslide shows AUC prediction rate is 0.819 and AUC success rate with all landslide data included is 0.879. This result showed the selective factors and WoE method as good models for assessing landslide susceptibility. The landslide susceptibility map of Takengon shows the probabilities, which represent relative degrees of susceptibility for landslide proneness in Takengon area.

  8. Observational study: microgravity testing of a phase-change reference on the International Space Station

    PubMed Central

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Background: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Aims: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. Methods: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. Results: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. Conclusions: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. PMID:28725713

  9. Observational study: microgravity testing of a phase-change reference on the International Space Station.

    PubMed

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Improvement of orbital temperature measurements for long duration earth observing and remote sensing. To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.

  10. Intact figure-ground segmentation in schizophrenia.

    PubMed

    Herzog, Michael H; Kopmann, Sabine; Brand, Andreas

    2004-11-30

    As revealed by backward masking studies, schizophrenic patients show strong impairments of early visual processing. However, the underlying temporal mechanisms are not yet well understood. To shed light on the exact timing of these deficits, we employed a paradigm in which two masks follow each other. We investigated 16 medicated schizophrenic patients and a matched group of 14 controls with a new backward masking technique, shine-through. In accordance with other masking studies, schizophrenic patients require a dramatically longer processing time to reach a predefined performance level compared with healthy subjects. However, patients are surprisingly sensitive to subtle differences in the timing of the two masks, revealing good temporal resolution. This good temporal resolution indicates intact and fast perceptual grouping and figure-ground segmentation in spite of high susceptibility to masking procedures in schizophrenia.

  11. High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Richter, J.; Zinke, R.; Bishop, R. F.

    2009-04-01

    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. Néel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J 1- J 2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J 2/ J 1=0.5. The dimerized phase is stable over a range of values for J 2/ J 1 around 0.5, and results for the ground-state energies are in good agreement with the results of exact diagonalizations of finite-length chains in this regime. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J 2/ J 1. A radical change is also observed in the behavior of the CCM sublattice magnetization as we enter the dimerized phase. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the Néel and the dimerized phases. Once again, very good results for the ground-state energies are obtained. We find CCM critical points of the bra-state equations that are in agreement with the known phase transition point for this model. The results for the sublattice magnetization remain near to the "true" value of zero over much of the dimerized regime, although they diverge exactly at the critical point. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4O9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, Néel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits. Furthermore, we estimate the range over which the Néel order is stable, and we find the CCM result is in reasonable agreement with the results obtained by other methods. Our new approach has the dual advantages that it is simple to implement and that existing CCM codes for independent-spin product model states may be used from the outset. Furthermore, it also greatly extends the range of applicability to which the CCM may be applied. We believe that the CCM now provides an excellent choice of method for the study of systems with valence-bond quantum ground states.

  12. SlugIn 1.0: A Free Tool for Automated Slug Test Analysis.

    PubMed

    Martos-Rosillo, Sergio; Guardiola-Albert, Carolina; Padilla Benítez, Alberto; Delgado Pastor, Joaquín; Azcón González, Antonio; Durán Valsero, Juan José

    2018-05-01

    The correct characterization of aquifer parameters is essential for water-supply and water-quality investigations. Slug tests are widely used for these purposes. While free software is available to interpret slug tests, some codes are not user-friendly, or do not include a wide range of methods to interpret the results, or do not include automatic, inverse solutions to the test data. The private sector has also generated several good programs to interpret slug test data, but they are not free of charge. The computer program SlugIn 1.0 is available online for free download, and is demonstrated to aid in the analysis of slug tests to estimate hydraulic parameters. The program provides an easy-to-use Graphical User Interface. SlugIn 1.0 incorporates automated parameter estimation and facilitates the visualization of several interpretations of the same test. It incorporates solutions for confined and unconfined aquifers, partially penetrating wells, skin effects, shape factor, anisotropy, high hydraulic conductivity formations and the Mace test for large-diameter wells. It is available in English and Spanish and can be downloaded from the web site of the Geological Survey of Spain. Two field examples are presented to illustrate how the software operates. © 2018, National Ground Water Association.

  13. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006

    USGS Publications Warehouse

    Reiner, Steven R.

    2007-01-01

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000-2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  14. Ground-Water Temperature Data, Nevada Test Site and Vicinity, Nye, Clark, and Lincoln Counties, Nevada, 2000-2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Reiner

    2007-08-07

    Ground-water temperature data were collected by the U.S. Geological Survey in wells at and in the vicinity of the Nevada Test Site during the years 2000–2006. Periodic ground-water temperatures were collected in 166 wells. In general, periodic ground-water temperatures were measured annually in each well at 5 and 55 feet below the water surface. Ground-water temperature profiles were collected in 73 wells. Temperatures were measured at multiple depths below the water surface to produce these profiles. Databases were constructed to present the ground-water temperature data.

  15. Assessment of the psychometric properties of the Spanish language version of questionnaire ICIQ-Male Lower Urinary Tract Symptoms (ICIQ-MLUTS).

    PubMed

    Castro-Díaz, D M; Esteban-Fuertes, M; Salinas-Casado, J; Bustamante-Alarma, S; Gago-Ramos, J L; Galacho-Bech, A; García-Matres, M J; Rodríguez-Toves, L A; Zubiaur-Líbano, C; Collado-Serra, A; Batista-Miranda, J E; Ortiz-Gámiz, A

    2014-03-01

    To evaluate the psychometric properties of the Spanish version of the ICIQ-Male Lower Urinary Tract Symptoms Questionnaire (ICIQ-MLUTS): Feasibility (% of completion and ceiling/ground effects), reliability (Test-retest), convergent validity (vs Bladder Control Self-Assessment Questionnaire [BSAQ] and vs International Prostate Symptom Score [I-PSS]) and criterion validity (according to presence or absence of symptoms). This was an observational, non-interventionist and multicenter study. 223 male patients with lower urinary tract symptoms (LUTS), predominantly storage symptoms and aged 18-65, took part in the study. Patients completed the ICIQ-MLUTS (test), I-PSS and BSAQ questionnaires and referred their urinary symptoms in a single visit, with the exception of a subgroup composed by 49 patients that completed the questionnaire again 15 days after initial visit to evaluate test-retest reliability. The questionnaire includes 13 items divided in 2 sub-scales: Voiding symptoms (V) from 0-20 and Incontinence symptoms (I) from 0-24. Percentage of patients that completed all items: 98.84%. Ground effect is 0 and ceiling effect was under 6% in both sub-scales. Test-retest reliability: Intraclass correlation coefficient (ICC) ranged from 0.68 to 0.88, except on Delay. Kappa shows a good agreement, between 0.60 and 0.81, except for Nocturia. Convergent validity: Correlation (Spearman) between the questionnaire sub-scales scores and the rest of measures is statistically significant (P < .01 and P < .05). Criterion validity: Statistically significant differences (P < .05) between scores on ICIQ-MLUTS, from patients that refer experiencing symptoms and those who do not. The Spanish version of the ICIQ-MLUTS questionnaire shows adequate feasibility, reliability and validity. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  16. Monte Carlo calculation of dose rate conversion factors for external exposure to photon emitters in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clovas, A.; Zanthos, S.; Antonopoulos-Domis, M.

    2000-03-01

    The dose rate conversion factors {dot D}{sub CF} (absorbed dose rate in air per unit activity per unit of soil mass, nGy h{sup {minus}1} per Bq kg{sup {minus}1}) are calculated 1 m above ground for photon emitters of natural radionuclides uniformly distributed in the soil. Three Monte Carlo codes are used: (1) The MCNP code of Los Alamos; (2) The GEANT code of CERN; and (3) a Monte Carlo code developed in the Nuclear Technology Laboratory of the Aristotle University of Thessaloniki. The accuracy of the Monte Carlo results is tested by the comparison of the unscattered flux obtained bymore » the three Monte Carlo codes with an independent straightforward calculation. All codes and particularly the MCNP calculate accurately the absorbed dose rate in air due to the unscattered radiation. For the total radiation (unscattered plus scattered) the {dot D}{sub CF} values calculated from the three codes are in very good agreement between them. The comparison between these results and the results deduced previously by other authors indicates a good agreement (less than 15% of difference) for photon energies above 1,500 keV. Antithetically, the agreement is not as good (difference of 20--30%) for the low energy photons.« less

  17. Structure of the low-lying positive parity states in the proton-neutron symplectic model

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2018-05-01

    The proton-neutron symplectic model with Sp(12, R) dynamical symmetry is applied for the simultaneous description of the microscopic structure of the low-lying states of the ground state, γ and β bands in 166 Er. For this purpose, the model Hamiltonian is diagonalized in the space of stretched states by exploiting the SUp (3) ⊗ SUn (3) symmetry-adapted basis. The theoretical predictions are compared with experiment and some other microscopic collective models, like the one-component Sp(6, R) symplectic and pseudo-SU(3) models. A good description of the energy levels of the three bands under consideration, as well as the enhanced intraband B(E2) transition strengths between the states of the ground and γ bands is obtained without the use of effective charges. The results show the presence of a good SU(3) dynamical symmetry. It is also shown that, in contrast to the Sp(6, R) case, the lowest excited bands, e.g., the β and γ bands, naturally appear together with the ground state band within a single Sp(12, R) irreducible representation.

  18. On the Theory of Ground Anchors

    DTIC Science & Technology

    1975-01-01

    Reinart 46 American Electric Power Service anchor tests 47 Expandable land anchor 51 Anchorages in frozen ground 52 Foundation anchoring in thawed ground...Idealized configuration of Malone anchor 48 54. Standard grillage anchor and pyramid grillage anchor tested by the American Electric Power Service...Corporation 49 55. Configuration of bell anchors tested by the American Electric Power Service Corporation 50 56. Configuration of steel grillage - screw

  19. Application and Evaluation of ALOS PALSAR Data for Monitoring of Mining Induced Surface Deformations Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Walter, Diana; Wegmuller, Urs; Spreckels, Volker; Busch, Wolfgang

    2008-11-01

    The main objective of the projects "Determination of ground motions in mining areas by interferometric analyses of ALOS data" (ALOS ADEN 3576, ESA) and "Monitoring of mining induced surface deformation" (ALOS-RA-094, JAXA) is to evaluate PALSAR data for surface deformation monitoring, using interferometric techniques. We present monitoring results of surface movements for an active hard coal colliery of the German hard coal mining company RAG Deutsche Steinkohle (RAG). Underground mining activities lead to ground movements at the surface with maximum subsidence rates of about 10cm per month for the test site. In these projects the L-band sensor clearly demonstrates the good potential for deformation monitoring in active mining areas, especially in rural areas. In comparison to C-band sensors we clearly observe advantages in resolving the high deformation gradients that are present in this area and we achieve a more complete spatial coverage than with C-band. Extensive validation data based on levelling data and GPS measurements are available within RAǴs GIS based database "GeoMon" and thus enable an adequate analysis of the quality of the interferometric results. Previous analyses confirm the good accuracy of PALSAR data for deformation monitoring in mining areas. Furthermore, we present results of special investigations like precision geocoding of PALSAR data and corner reflector analysis. At present only DInSAR results are obtained due to the currently available number of PALSAR scenes. For the future we plan to also apply Persistent Scatterer Interferometry (PSI) using longer series of PALSAR data.

  20. 3-D velocity structure model for long-period ground motion simulation of the hypothetical Nankai Earthquake

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Petukhin, A.; Koketsu, K.; Miyake, H.; Murotani, S.; Tsurugi, M.

    2010-12-01

    Three dimensional velocity structure model of southwest Japan is provided to simulate long-period ground motions due to the hypothetical subduction earthquakes. The model is constructed from numerous physical explorations conducted in land and offshore areas and observational study of natural earthquakes. Any available information is involved to explain crustal structure and sedimentary structure. Figure 1 shows an example of cross section with P wave velocities. The model has been revised through numbers of simulations of small to middle earthquakes as to have good agreement with observed arrival times, amplitudes, and also waveforms including surface waves. Figure 2 shows a comparison between Observed (dash line) and simulated (solid line) waveforms. Low velocity layers have added on seismological basement to reproduce observed records. The thickness of the layer has been adjusted through iterative analysis. The final result is found to have good agreement with the results from other physical explorations; e.g. gravity anomaly. We are planning to make long-period (about 2 to 10 sec or longer) simulations of ground motion due to the hypothetical Nankai Earthquake with the 3-D velocity structure model. As the first step, we will simulate the observed ground motions of the latest event occurred in 1946 to check the source model and newly developed velocity structure model. This project is partly supported by Integrated Research Project for Long-Period Ground Motion Hazard Maps by Ministry of Education, Culture, Sports, Science and Technology (MEXT). The ground motion data used in this study were provided by National Research Institute for Earth Science and Disaster Prevention Disaster (NIED). Figure 1 An example of cross section with P wave velocities Figure 2 Observed (dash line) and simulated (solid line) waveforms due to a small earthquake

  1. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2015-03-01

    We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.

  2. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheryl Morton; Carl Baily; Tom Hill

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  3. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. Itmore » provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.« less

  4. Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II

    NASA Astrophysics Data System (ADS)

    Morton, Sheryl L.; Baily, Carl E.; Hill, Thomas J.; Werner, James E.

    2006-01-01

    Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a low-temperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL.

  5. Ground Handling of Batteries at Test and Launch-site Facilities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Hohl, Alan R.

    2008-01-01

    Ground handling of flight as well as engineering batteries at test facilities and launch-site facilities is a safety critical process. Test equipment interfacing with the batteries should have the required controls to prevent a hazardous failure of the batteries. Test equipment failures should not induce catastrophic failures on the batteries. Transportation requirements for batteries should also be taken into consideration for safe transportation. This viewgraph presentation includes information on the safe handling of batteries for ground processing at test facilities as well as launch-site facilities.

  6. Ground test experiment for large space structures

    NASA Technical Reports Server (NTRS)

    Tollison, D. K.; Waites, H. B.

    1985-01-01

    In recent years a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual in orbit tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report.

  7. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    NASA Technical Reports Server (NTRS)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  8. SAS molecular tests Salmonella detection kit. Performance tested method 021202.

    PubMed

    Bapanpally, Chandra; Montier, Laura; Khan, Shah; Kasra, Akif; Brunelle, Sharon L

    2014-01-01

    The SAS Molecular tests Salmonella Detection method, a Loop-mediated Isothermal Amplification method, performed as well as or better than the U.S. Department of Agriculture-Food Safety Inspection Service Microbiology Laboratory Guidebook and the U.S. Food and Drug Administration Bacteriological Analytical Manual reference methods for ground beef, beef trim, ground turkey, chicken carcass rinses, bagged mixed lettuce, and fresh spinach. The ground beef (30% fat, 25 g test portion), poultry matrixes and leafy greens were validated in a 6-7 h enrichment, and ground beef (30% fat, 375 g composite test portion) and beef trim (375 g composite test portion) were validated in a 16-20 h enrichment. The method performance for meat and leafy green matrixes was shown to be acceptable under conditions of co-enrichment with Escherichia coli 0157. Thus, after a short 6-7 h co-enrichment step, ground beef, beef trim, lettuce, and spinach can be tested for both Salmonella and E. coli O157. Inclusivity and exclusivity testing revealed no false negatives and no false positives among the 100 Salmonella serovars and 30 non-Salmonella species examined. The method was shown to be robust when enrichment time, DNA extract hold time, and DNA volume were varied.

  9. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  10. Developing Uncertainty Models for Robust Flutter Analysis Using Ground Vibration Test Data

    NASA Technical Reports Server (NTRS)

    Potter, Starr; Lind, Rick; Kehoe, Michael W. (Technical Monitor)

    2001-01-01

    A ground vibration test can be used to obtain information about structural dynamics that is important for flutter analysis. Traditionally, this information#such as natural frequencies of modes#is used to update analytical models used to predict flutter speeds. The ground vibration test can also be used to obtain uncertainty models, such as natural frequencies and their associated variations, that can update analytical models for the purpose of predicting robust flutter speeds. Analyzing test data using the -norm, rather than the traditional 2-norm, is shown to lead to a minimum-size uncertainty description and, consequently, a least-conservative robust flutter speed. This approach is demonstrated using ground vibration test data for the Aerostructures Test Wing. Different norms are used to formulate uncertainty models and their associated robust flutter speeds to evaluate which norm is least conservative.

  11. Tank testing of a 2500-cm2 solar panel

    NASA Technical Reports Server (NTRS)

    Bever, R. S.; Staskus, J.

    1981-01-01

    A 50 cm by 50 cm solar array panel test patch was investigated for spacecraft charging and arcing effects. Bombardment with monochromatic electron was carried out. Some objectives of the test were: (1) to estimate at what voltage of electron bombardment arcing would be probable; (2) to find whether the arc's energy would be tolerable or damagingly large; (3) to try and separate thermal and photoeffects; and, (4) to see whether materials used were such as to minimize arcing. Some conclusions were: In sunlight the tracking data relay satellite's solar panel which has ceria glass on the front and conductive paint on the backside is probably a good design for reducing charge-up. In a geomagnetic substorm simulated in testing there will be arcing at the interconnects during eclipse and transitions into and out of eclipse in testing especially in view of the very cold temperatures that will be reached by this lightweight array. Ceria-doped glass is preferred to fused silica glass for reducing charge build up. The Kapton bare patch should still be conductively painted. The differential voltages on the panel determine when arcing first begins, and the electron beam voltages vary depending upon whether the metallic structure is directly grounded or semifloating.

  12. SCIAMACHY and FTS CO2 Retrievals Using the OCO Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Boesch, Hartmut; Buchwitz, M.; Sen, Bhaswar; Toon, Geoffrey C.; Washenfelder, Rebecca A.; Wennberg, Paul O.

    2005-01-01

    The Orbiting Carbon Observatory (OCO) mission will make the first global, space-based measurements of atmospheric C02 with the precision and coverage needed to characterize C02 sources and sinks on regional scales. OCO will make spectrally and spatially highly resolved measurements of reflected sunlight in the 02A -band and two near-infrared C02 bands. To test the OCO retrieval algorithm, SCIAMACHY and ground-based Fourier Transform Spectrometer (FTS) measurements at Park Falls, Wisconsin have been analyzed. Good agreement between SCIAMACHY and FTS C02 columns has been found with SCIAMACHY showing a much larger scatter than FTS measurements. Both SCIAMACHY and FTS overestimate the surface pressure by a few percent which significantly impacts retrieved C02 columns.

  13. Development of an observer rating scale for caregiver communication in persons with Alzheimer's disease.

    PubMed

    Williams, Christine L; Parker, Carlo

    2012-04-01

    There have been few reported studies of communication between spouses with Alzheimer's disease (AD) and related dementia. An observer rating scale for verbal and nonverbal behavior, Verbal-Nonverbal Interaction Scale for Caregivers (VNVIS-CG), was developed to study caregiver communication in couples affected by AD. Preliminary psychometric testing showed that the VNVIS-CG evidenced good reliability and validity. Researchers observed both common caregiver communication strategies and novel strategies that have not been reported in the literature. In future studies, researchers can examine the relationship between caregiver communication and indicators of mental health. Everyday conversations provide fertile ground for nurses to influence family relationships. Nurses can teach caregivers to use strategies that promote engagement and avoid those that discourage participation.

  14. Food safety and inspection service regulatory testing program for Escherichia coli O157:H7 in raw ground beef.

    PubMed

    Naugle, Alecia Larew; Holt, Kristin G; Levine, Priscilla; Eckel, Ron

    2005-03-01

    We analyzed raw ground beef testing data to determine whether a decrease in the rate of Escherichia coli O157:H7-positive raw ground beef samples has occurred since the inception of Food Safety and Inspection Service (U.S. Department of Agriculture) regulatory actions and microbiological testing concerning this commodity and pathogen. A main effects log-linear Poisson regression model was constructed to evaluate the association between fiscal year and the rate of E. coli O157:H7-positive raw ground beef samples while controlling for the effect of season for the subset of test results obtained from fiscal year (FY)2000 through FY2003. Rate ratios were used to compare the rate of E. coli O157:H7-positive raw ground beef samples between sequential years to identify year-to-year differences. Of the 26,521 raw ground beef samples tested from FY2000 through FY2003, 189 (0.71%) tested positive for E. coli O157:H7. Year-to-year comparisons identified a 50% reduction in the rate of positive ground beef samples from FY2002 to FY2003 when controlling for season (95% CI, 10 to 72% decrease; P = 0.02). This decrease was the only significant year-to-year change in the rate of E. coli O157:H7-positive raw ground beef samples but was consistent in samples obtained from both federally inspected establishments and retail outlets. We believe this decrease is attributed to specific regulatory actions by Food Safety and Inspection Service and subsequent actions implemented by the industry, with the goal of reducing E. coli O157:H7 adulteration of raw ground beef. Continued monitoring is necessary to confirm that the decrease in the rate of E. coli O157:H7 in raw ground beef samples we observed here represents the beginning of a sustained trend.

  15. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  16. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  17. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  18. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  19. 30 CFR 75.824 - Electrical protection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transformer and over-current relay in the neutral grounding resistor circuit. (vi) A single window-type current transformer that encircles all three-phase conductors must be used to activate the ground-fault... current transformer. (vii) A test circuit for the ground-fault device must be provided. The test circuit...

  20. National Program for Inspection of Non-Federal Dams. Westminster Reservoir Dam (MA 00639) MA 00639, Merrimack River Basin, Westminster, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1980-06-01

    lot Spooil 2 -.. * -*/ .. . *. . . . . . . , ,_- * j.... . . .\\ %" -* e DEPARTMENT OF THE ARMY 424 TRAPELO ROAD WALTHAM. MASSACHUSETTS 02254 REPLY TO...Feet .El Top .............El. Natural Ground ............. Width Top ........................................ Width of Botton ...nilllwa 4 t mg with M aw =bte wiatg All in good condition.- t -.L E*L. Top EI.Natural Ground Vidth Top________ Width of Borrom Upstream Slope Downstream

  1. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 4. Noise Tests.

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  2. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 3. Ride Quality Tests.

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  3. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 2. Performance Tests.

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  4. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 1. Program Description and Test Summary

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  5. Simple system for locating ground loops.

    PubMed

    Bellan, P M

    2007-06-01

    A simple low-cost system for rapid identification of the cables causing ground loops in complex instrumentation configurations is described. The system consists of an exciter module that generates a 100 kHz ground loop current and a detector module that determines which cable conducts this test current. Both the exciter and detector are magnetically coupled to the ground circuit so there is no physical contact to the instrumentation system under test.

  6. Testing a ground-based canopy model using the wind river canopy crane

    Treesearch

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  7. Simulation Analysis of Helicopter Ground Resonance Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Lu, Yu-hui; Ling, Ai-min

    2017-07-01

    In order to accurately predict the dynamic instability of helicopter ground resonance, a modeling and simulation method of helicopter ground resonance considering nonlinear dynamic characteristics of components (rotor lead-lag damper, landing gear wheel and absorber) is presented. The numerical integral method is used to calculate the transient responses of the body and rotor, simulating some disturbance. To obtain quantitative instabilities, Fast Fourier Transform (FFT) is conducted to estimate the modal frequencies, and the mobile rectangular window method is employed in the predictions of the modal damping in terms of the response time history. Simulation results show that ground resonance simulation test can exactly lead up the blade lead-lag regressing mode frequency, and the modal damping obtained according to attenuation curves are close to the test results. The simulation test results are in accordance with the actual accident situation, and prove the correctness of the simulation method. This analysis method used for ground resonance simulation test can give out the results according with real helicopter engineering tests.

  8. Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst

    USGS Publications Warehouse

    Katz, B.G.; Coplen, T.B.; Bullen, T.D.; Hal, Davis J.

    1997-01-01

    In the mantled karst terrane of northern Florida, the water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface. Chemical and isotopic analyses [18O/16O (??18O), 2H/1H (??D), 13C/12C (??13C), tritium(3H), and strontium-87/strontium-86(87Sr/86Sr)]along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of ground water as it evolves downgradient in two systems. In one system, surface water enters the Upper Floridan aquifer through a sinkhole located in the Northern Highlands physiographic unit. In the other system, surface water enters the aquifer through a sinkhole lake (Lake Bradford) in the Woodville Karst Plain. Differences in the composition of water isotopes (??18O and ??D) in rainfall, ground water, and surface water were used to develop mixing models of surface water (leakage of water to the Upper Floridan aquifer from a sinkhole lake and a sinkhole) and ground water. Using mass-balance calculations, based on differences in ??18O and ??D, the proportion of lake water that mixed with meteoric water ranged from 7 to 86% in water from wells located in close proximity to Lake Bradford. In deeper parts of the Upper Floridan aquifer, water enriched in 18O and D from five of 12 sampled municipal wells indicated that recharge from a sinkhole (1 to 24%) and surface water with an evaporated isotopic signature (2 to 32%) was mixing with ground water. The solute isotopes, ??13C and 87Sr/86Sr, were used to test the sensitivity of binary and ternary mixing models, and to estimate the amount of mass transfer of carbon and other dissolved species in geochemical reactions. In ground water downgradient from Lake Bradford, the dominant processes controlling carbon cycling in ground water were dissolution of carbonate minerals, aerobic degradation of organic matter, and hydrolysis of silicate minerals. In the deeper parts of the Upper Floridan aquifer, the major processes controlling the concentrations of major dissolved species included dissolution of calcite and dolomite, and degradation of organic matter under oxic conditions. The Upper Floridan aquifer is highly susceptible to contamination from activities at the land surface in the Tallahassee area. The presence of post-1950s concentrations of 3H in ground water from depths greater than 100 m below land surface indicates that water throughout much of the Upper Floridan aquifer has been recharged during the last 40 years. Even though mixing is likely between ground water and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, which due to dilution effects shows little if any impact from trace elements or nutrients that are present in surface waters.The water quality of the Upper Floridan aquifer is influenced by the degree of connectivity between the aquifer and the surface water. Chemical and isotopic analyses, tritium, and strontium-87/strontium-86 along with geochemical mass-balance modeling were used to identify the dominant hydrochemical processes that control the composition of groundwater. Differences in the composition of water isotopes in rainfall, groundwater and surface water were used to develop mixing models of surface water and groundwater. Even though mixing is likely between groundwater and surface water in many parts of the study area, the Upper Floridan aquifer produces good quality water, showing little impact from trace elements present in surface waters.

  9. Geophysical investigations at the Paleolitic site Grotta delle Veneri near Parabita (Lecce, Italy)

    NASA Astrophysics Data System (ADS)

    Carrozzo, M. T.; Leucci, G.; Negri, S.; Nuzzo, L.

    2003-04-01

    The human presence in Apulia (southern Italy) is documented since 80.000 years before present. In 1966 near Parabita (Lecce, Italy) in a cave subsequently named "Grotta delle Veneri" human remains belonging to Homo Sapiens Neanderthalensis (Neanderthal) and Homo Sapiens-Sapiens (Cro-Magnon) were recovered together with two small statues of pregnant women ("Veneri") referable to 12.000--10.000 b.C. The local Archaeological Superintendence was interested in assessing the possibility to reconstruct by means of geophysical methods the planimetric position of the cave and further development of its burrows beyond those accessible to speleologists and reported in the underground topographic survey. Both electromagnetic (EM) and electric methods were tested using Ground Penetrating Radar (GPR) with 200 and 500 MHz antennas, GEM300 multi-frequency EM induction device and 2D Electrical Resistivity Tomography (ERT). Despite the rough surface and the presence of numerous obstacles (trees, stone walls and stone piles) limiting the accessible survey area and often preventing a good ground-coupling, the GPR survey successfully located the top of the karstic cave and identified zones of high density of diffraction hyperbolas, interpreted as highly fractured and karstified limestone, in a layer ranging from about 2 m to 6 m below ground. Zones characterised by high density of diffractions due to presence of voids were found also outside the known development of the cave. By means of the GEM 300, both in-phase and quadrature components of the induced EM signal were simultaneously collected at 8 frequencies, from 2025 to 19975 Hz, respectively related to the magnetic susceptibility and apparent conductivity of the soil down to a depth decreasing as the frequency increase. A presumable low contrast in the sought parameter between the highly fractured rock and karstic voids or refilled cavities as well as the presence of metallic debris on the ground allowed a difficult identification of only few anomalies in the EM map probably linked, by surface evidences, to underground interesting features. More interesting were the ETR results, revealing the presence of a high-resistive body (>2000 Ωm) in the same depth layer evidenced by GPR, with very high-resistive localised anomalies in good correspondence of known burrows and, more importantly, also in external zones, especially to the east of the cave.

  10. Prediction of forces and moments for flight vehicle control effectors. Part 2: An analysis of delta wing aerodynamic control effectiveness in ground effect

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. Here, an investigation of the aerodynamic control effectiveness of highly swept delta planforms operating in ground effect is presented. A vortex-lattice computer program incorporating a free wake is developed as a tool to calculate aerodynamic stability and control derivatives. Data generated using this program are compared to experimental data and to data from other vortex-lattice programs. Results show that an elevon deflection produces greater increments in C sub L and C sub M in ground effect than the same deflection produces out of ground effect and that the free wake is indeed necessary for good predictions near the ground.

  11. Using a fast Fourier method to model sound propagation in a stratified atmosphere over a stratified porous-elastic ground

    NASA Technical Reports Server (NTRS)

    Tooms, S.; Attenborough, K.

    1990-01-01

    Using a Fast Fourier integration method and a global matrix method for solution of the boundary condition equations at all interfaces simultaneously, a useful tool for predicting acoustic propagation in a stratified fluid over a stratified porous-elastic solid was developed. The model for the solid is a modified Biot-Stoll model incorporating four parameters describing the pore structure corresponding to the Rayleigh-Attenborough rigid-porous structure model. The method is also compared to another Fast Fourier code (CERL-FFP) which models the ground as an impedance surface under a horizontally stratified air. Agreement with the CERL FFP is good. The effects on sound propagation of a combination of ground elasticity, complex ground structure, and atmospheric conditions are demonstrated by theoretical results over a snow layer, and experimental results over a model ground surface.

  12. Evaluation of multiple tracer methods to estimate low groundwater flow velocities

    DOE PAGES

    Reimus, Paul W.; Arnold, Bill W.

    2017-02-20

    Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less

  13. Evaluation of multiple tracer methods to estimate low groundwater flow velocities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul W.; Arnold, Bill W.

    Here, four different tracer methods were used to estimate groundwater flow velocity at a multiple-well site in the saturated alluvium south of Yucca Mountain, Nevada: (1) two single-well tracer tests with different rest or “shut-in” periods, (2) a cross-hole tracer test with an extended flow interruption, (3) a comparison of two tracer decay curves in an injection borehole with and without pumping of a downgradient well, and (4) a natural-gradient tracer test. Such tracer methods are potentially very useful for estimating groundwater velocities when hydraulic gradients are flat (and hence uncertain) and also when water level and hydraulic conductivity datamore » are sparse, both of which were the case at this test location. The purpose of the study was to evaluate the first three methods for their ability to provide reasonable estimates of relatively low groundwater flow velocities in such low-hydraulic-gradient environments. The natural-gradient method is generally considered to be the most robust and direct method, so it was used to provide a “ground truth” velocity estimate. However, this method usually requires several wells, so it is often not practical in systems with large depths to groundwater and correspondingly high well installation costs. The fact that a successful natural gradient test was conducted at the test location offered a unique opportunity to compare the flow velocity estimates obtained by the more easily deployed and lower risk methods with the ground-truth natural-gradient method. The groundwater flow velocity estimates from the four methods agreed very well with each other, suggesting that the first three methods all provided reasonably good estimates of groundwater flow velocity at the site. We discuss the advantages and disadvantages of the different methods, as well as some of the uncertainties associated with them.« less

  14. Aerodynamic braking of high speed ground transportation vehicles.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.; Marko, W. J.

    1973-01-01

    The drag effectiveness of aerodynamic brakes arranged in series on a train-like vehicle was investigated. Fixed- and moving-model testing techniques were used in order to determine the importance of proper vehicle-ground interference simulation. Fixed-model tests were carried out on a sting-mounted model: alone; with a fixed ground plane; and in proximity to an image model. Moving-model tests were conducted in a vertical slide-wire facility with and without a ground plane. Results from investigations of one brake configuration are presented which show the effect of the number of brakes in the set and of spacing between brakes.

  15. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  16. Semi-physical simulation test for micro CMOS star sensor

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun

    2008-03-01

    A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.

  17. CIAM/NASA Mach 6.5 Scramjet Flight and Ground Test

    NASA Technical Reports Server (NTRS)

    Voland, R. T.; Auslender, A. H.; Smart, M. K.; Roudakov, A. S.; Semenov, V. L.; Kopchenov, V.

    1999-01-01

    The Russian Central Institute of Aviation Motors (CIAM) performed a flight test of a CIAM-designed, hydrogen-cooled/fueled dual-mode scramjet engine over a Mach number range of approximately 3.5 to 6.4 on February 12, 1998, at the Sary Shagan test range in Kazakhstan. This rocket-boosted, captive-carry test of the axisymmetric engine reached the highest Mach number of any scramjet engine flight test to date. The flight test and the accompanying ground test program, conducted in a CIAM test facility near Moscow, were performed under a NASA contract administered by the Dryden Flight Research Center with technical assistance from the Langley Research Center. Analysis of the flight and ground data by both CIAM and NASA resulted in the following preliminary conclusions. An unexpected control sensor reading caused non-optimal fueling of the engine, and flowpath modifications added to the engine inlet during manufacture caused markedly reduced inlet performance. Both of these factors appear to have contributed to the dual-mode scramjet engine operating primarily in a subsonic combustion mode. At the maximum Mach number test point, combustion caused transition from supersonic flow at the fuel injector station to primarily subsonic flow in the combustor. Ground test data were obtained at similar conditions to the flight test, allowing for a meaningful comparison between the ground and flight data. The results of this comparison indicate that the differences in engine performance are small.

  18. Identification of Naegleria fowleri in warm ground water aquifers.

    PubMed

    Laseke, Ian; Korte, Jill; Lamendella, Regina; Kaneshiro, Edna S; Marciano-Cabral, Francine; Oerther, Daniel B

    2010-01-01

    The free-living amoeba Naegleria fowleri was identified as the etiological agent of primary amoebic meningoencephalitis that caused the deaths of two children in Peoria, Arizona, in autumn of 2002. It was suspected that the source of N. fowleri was the domestic water supply, which originates from ground water sources. In this study, ground water from the greater Phoenix Metropolitan area was tested for the presence of N. fowleri using a nested polymerase chain reaction approach. Phylogenetic analyses of 16S rRNA sequences of bacterial populations in the ground water were performed to examine the potential link between the presence of N. fowleri and bacterial groups inhabiting water wells. The results showed the presence of N. fowleri in five out of six wells sampled and in 26.6% of all ground water samples tested. Phylogenetic analyses showed that beta- and gamma-proteobacteria were the dominant bacterial populations present in the ground water. Bacterial community analyses revealed a very diverse community structure in ground water samples testing positive for N. fowleri.

  19. 32 CFR 256.8 - Land use compatibility guidelines for accident potential.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... industries ......do ......do Do. Rubber and miscellaneous plastic goods ......do ......do Do. Stone, clay..., explosive characteristics, air pollution. 4 No passenger terminals and no major above ground transmission...

  20. 32 CFR 256.8 - Land use compatibility guidelines for accident potential.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... industries ......do ......do Do. Rubber and miscellaneous plastic goods ......do ......do Do. Stone, clay..., explosive characteristics, air pollution. 4 No passenger terminals and no major above ground transmission...

  1. The g Factors of Ground State of Ruby and Their Pressure-Induced Shifts

    NASA Astrophysics Data System (ADS)

    Ma, Dongping; Zhang, Hongmei; Chen, Jurong; Liu, Yanyun

    1998-12-01

    By using the theory of pressure-induced shifts and the eigenfunctions at normal and various pressures obtained from the diagonalization of the complete d3 energy matrix adopting C3v symmetry, g factors of the ground state of ruby and their pressure-induced shifts have been calculated. The results are in very good agreement with the experimental data. For the precise calculation of properties of the ground skate, it is necessary to take into account the effects of all the excited states by the diagonalization of the complete energy matrix. The project (Grant No. 19744001) supported by National Natural Science Foundation of China

  2. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 7. Post-Repair Tests.

    DOT National Transportation Integrated Search

    1976-11-01

    This document presents the test results from the State-of-the-Art Post-Repair Engineering Test Program conducted at the DOT High-Speed Ground Test Center, Pueblo, Colorado, from March 18th to 29th, 1974. The SOAC has been developed under UMTA's Urban...

  3. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 6. SOAC Instrumentation System.

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  4. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  5. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 5. Structural, Voltage, and Radio Frequency Interference Tests

    DOT National Transportation Integrated Search

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  6. Ground-water quality protection; why it's important to you

    USGS Publications Warehouse

    Webbers, Ank

    1995-01-01

    Ground water is a valuable resource often used for industry, commerce, agriculture, and drinking water. In the 19080's, ground water provided 35 percent of the municipal water supplies in the United States and 95 percent of the rural, domestic drinking water. Scientists participating in ground-water studies may determine the potential pathways that contaminants could be transported in aquifers. In karst terrain especially, a contanimant can enter a fracture network in a carbonate aquifer and quickly spread to become a widespread health problem. Although Federal and local funding for ground-water cleanups and treatment may be available, the costs can exceed many millions of dollars each year. Such costly remedial actions could be avoided or minimized by becoming aware that ground water anywhere is vulnerable to contamination, but particularly so in carbonate terrain. Practicing good "out-of-doors" house- keeping is necessary. From the standpoint of economic and environmental responsibility, it is critical that we all work together to protect the quality of ground-water resources so that future generations can continue to have clean water.

  7. A Generalised Fault Protection Structure Proposed for Uni-grounded Low-Voltage AC Microgrids

    NASA Astrophysics Data System (ADS)

    Bui, Duong Minh; Chen, Shi-Lin; Lien, Keng-Yu; Jiang, Jheng-Lun

    2016-04-01

    This paper presents three main configurations of uni-grounded low-voltage AC microgrids. Transient situations of a uni-grounded low-voltage (LV) AC microgrid (MG) are simulated through various fault tests and operation transition tests between grid-connected and islanded modes. Based on transient simulation results, available fault protection methods are proposed for main and back-up protection of a uni-grounded AC microgrid. In addition, concept of a generalised fault protection structure of uni-grounded LVAC MGs is mentioned in the paper. As a result, main contributions of the paper are: (i) definition of different uni-grounded LVAC MG configurations; (ii) analysing transient responses of a uni-grounded LVAC microgrid through line-to-line faults, line-to-ground faults, three-phase faults and a microgrid operation transition test, (iii) proposing available fault protection methods for uni-grounded microgrids, such as: non-directional or directional overcurrent protection, under/over voltage protection, differential current protection, voltage-restrained overcurrent protection, and other fault protection principles not based on phase currents and voltages (e.g. total harmonic distortion detection of currents and voltages, using sequence components of current and voltage, 3I0 or 3V0 components), and (iv) developing a generalised fault protection structure with six individual protection zones to be suitable for different uni-grounded AC MG configurations.

  8. Acute Oral Toxicity (LD50) of 4-Nitrophenyl Monochloromethyl (Phenyl) Phosphinate (TA009) in Female Rats

    DTIC Science & Technology

    1984-10-01

    Research Institute Aberden Proving Ground MD 21070 of Chemical Defense Aberdeen Proving Ground Edgcwood Arsenal MD 21010 US Army Research Office Commander...Aberdeen Proving Ground , MD 21010-5012 PROJECT: 35162772A875 Medical Defense Against Chemical Agents WU 304 Toxicity Testing of Phosphinate Compounds APC...Institute of Chemical Defense, Aberdeen Proving Ground , MD 21010 on 23 June 1982. The test chemical was stored at refrigeration temperature (as

  9. Ground-Handling Forces on a 1/40-scale Model of the U. S. Airship "Akron."

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Gulick, B G

    1937-01-01

    This report presents the results of full-scale wind tunnel tests conducted to determine the ground-handling forces on a 1/40-scale model of the U. S. Airship "Akron." Ground-handling conditions were simulated by establishing a velocity gradient above a special ground board in the tunnel comparable with that encountered over a landing field. The tests were conducted at Reynolds numbers ranging from 5,000,000 to 19,000,000 at each of six angles of yaw between 0 degree and 180 degrees and at four heights of the model above the ground board. The ground-handling forces vary greatly with the angle of yaw and reach large values at appreciable angles of yaw. Small changes in height, pitch, or roll did not critically affect the forces on the model. In the range of Reynolds numbers tested, no significant variation of the forces with the scale was disclosed.

  10. A New Approach for Spectroradiometric Calibration Consistency on the Ground and in Space

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Geprgoev. Geprgo

    2013-01-01

    A Space-based Calibration Transfer Spectroradiometer (SCATS) is combined with a ground calibration spectral albedo radiometric standard which consists of an opaque quartz glass Mie scattering diffuser (MSD) which has very good Lambertian scattering properties in both reflectance and transmittance modes. This system provides the capability for determining long term changes in the spectral albedo calibrations which operate in the solar reflective wavelength region. The spectral albedo calibration would be traceable to the SIRCUS and STARR NIST calibration facilities. The on-orbit radiometric standard is the Sun. The NIST traceable ground spectral albedo calibration is invariant between the ground and on-orbit over the instrument lifetime due to the use of a field of view defining mechanical baffle to differentiate between radiance and irradiance.

  11. Due Process Rights in Public Education: The Constitutional Dimensions of an Employee's 14th Amendment Liberty Interest in Good Name and Reputation.

    ERIC Educational Resources Information Center

    Uerling, Donald F.; Strope, John L., Jr.

    The purpose of this paper is to explore the due-process rights of public employees. These particular rights are grounded in the constitutionally protected liberty interest in one's good name and reputation. Both employers and employees should be aware of what parameters case law provides with regard to the dimensions of this due-process right and…

  12. Recent "Ground Testing" Experiences in the National Full-Scale Aerodynamics Complex

    NASA Technical Reports Server (NTRS)

    Zell, Peter; Stich, Phil; Sverdrup, Jacobs; George, M. W. (Technical Monitor)

    2002-01-01

    The large test sections of the National Full-scale Aerodynamics Complex (NFAC) wind tunnels provide ideal controlled wind environments to test ground-based objects and vehicles. Though this facility was designed and provisioned primarily for aeronautical testing requirements, several experiments have been designed to utilize existing model mount structures to support "non-flying" systems. This presentation will discuss some of the ground-based testing capabilities of the facility and provide examples of groundbased tests conducted in the facility to date. It will also address some future work envisioned and solicit input from the SATA membership on ways to improve the service that NASA makes available to customers.

  13. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  14. Non-destructive tests for railway evaluation: Detection of fouling and joint interpretation of GPR and track geometric parameters - COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Solla, Mercedes; Fontul, Simona; Marecos, Vânia; Loizos, Andreas

    2016-04-01

    During the last years high-performance railway lines have increased both their number and capabilities. As all types of infrastructures, railways have to maintain a proper behaviour during the entire life cycle. This work is focused on the analysis of the GPR method and its capabilities to detect defects in both infra and superstructure in railways. Different GPR systems and frequency antennas (air-coupled with antennas of 1.0 and 1.8 GHz, and ground-coupled with antennas of 1.0 and 2.3 GHz) were compared to establish the best procedures. For the assessment of the ground conditions, both GPR systems were used in combination with Falling Weight Deflectometer (FWD) load tests, in order to evaluate the bearing capacity of the subgrade. Moreover, Light Falling Weight Deflectometer (LFWD) measures were performed for the validation of the interpretation of the damaged areas identified from GPR and FWD tests. Finally, to corroborate the joint interpretation of GPR and FWD-LFWD, drill cores were extracted in the damaged areas identified based on the field data. Comparing all the data, a good agreement was obtained between the methods, when identifying both anomalous deflections and reflections. It was also demonstrated that ground-coupled systems have clear advantages compared to air-coupled systems since these antennas provide both better signal penetration and vertical resolution to detect fine details like cracking. Regarding the assessment of the thickness, three different high-speed track infrastructure solutions were constructed in a physical model, using asphalt as subballast layer. Four different antennas were used, two ground- and two air-coupled systems. Two different methodologies were assumed to calibrate the velocity of wave propagation: coring and metal plate. Comparing the results obtained, it was observed that the ground-coupled system provided higher values of wave velocity than the air-coupled system. The velocity values were also obtained by the amplitude or metal plate method with the air-coupled system. These velocities values were similar to those values obtained with the ground-coupled system, when using the coring method. Some laboratory tests were also developed in this work aiming to evaluate the dielectric constants for different levels of ballast fouling (0, 7.5 and 15%). The effect of the water presence on the dielectric constant was also evaluated by simulating different water contents: 5.5, 10 and 14%. Different GPR systems and configuration were used. The results have demonstrated that dielectric values increase with the increasing of fouling conditions. The dielectric constants also increase with the increasing of water content. However, the analysis of all the results obtained has revealed that values are more sensitive to the fouling level rather than to the water content variation. The dielectric constants obtained with a frequency of 1.0 GHz were slightly lower than those obtained with higher frequencies of 1.8 and 2.3 GHz. Additionally, the dielectric constants obtained for all the measurements, increasing fouling conditions and water contents, with a frequency of 1.0 GHz, were also different. Thus, the dielectric constant values obtained with the ground-coupled antenna were slightly lower than those obtained with the air-coupled antenna.

  15. [Conflicts between healthcare professionals and families of a multi-ethnic patient population in the intensive care unit].

    PubMed

    Van Keer, R L; Deschepper, R; Francke, A L; Huyghens, L; Bilsen, J

    2016-01-01

    To investigate which factors contribute to conflicts between healthcare professionals and family members from ethnic minority groups during medically critical situations in hospital. Descriptive, ethnographic research. Ethnographic fieldwork was carried out in one intensive care unit (ICU) of a multi-ethnic urban hospital in Belgium in the period January-June 2014. Data were collected by means of negotiated interactive observation, in-depth interviews with healthcare professionals and examining the patients' medical files. Data were analysed using grounded theory procedures. Conflicts were primarily related to the participants' different views on 'good care'. Healthcare providers' (HCPs') views on good care were primarily grounded on a biomedical care model, whereas families' views on good care were mainly inspired by a holistic care approach. According to HCPs, giving good care included fighting the disease efficiently with great scientific competence, but family members considered this rather as attending to the patient and giving bedside care, amongst other things. The HCPs' biomedical vision on good care was strengthened by the strict application of ward regulations, characterizing the ICU setting. The families' holistic views on good care were strengthened by specific ethno-familial characteristics, including their ethno-cultural background. However, ethno-cultural differences only contributed to conflict if the policy context on the ICU could provoke this conflict. Conflicts cannot be exclusively linked to ethno-cultural differences. Structural, functional characteristics of the ICU contribute substantially to conflict development. Effective conflict prevention should, therefore, not only focus on ethno-cultural differences but should also focus sufficiently on the structural context and ward policy.

  16. FFTF Asbestos Location Tracking Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, J.A.

    1994-09-15

    An Asbestos Location Tracking Program was prepared to list, locate, and determine Asbestos content and to provide baseline {open_quotes}good faith{close_quotes} for yearly condition inspections for the FFTF Plant and buildings and grounds.

  17. LEAKAGE CHARACTERISTICS OF BASE OF RIVERBANK BY SELF POTENTIAL METHOD AND EXAMINATION OF EFFECTIVENESS OF SELF POTENTIAL METHOD TO HEALTH MONITORING OF BASE OF RIVERBANK

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kensaku; Okada, Takashi; Takeuchi, Atsuo; Yazawa, Masato; Uchibori, Sumio; Shimizu, Yoshihiko

    Field Measurement of Self Potential Method using Copper Sulfate Electrode was performed in base of riverbank in WATARASE River, where has leakage problem to examine leakage characteristics. Measurement results showed typical S-shape what indicates existence of flow groundwater. The results agreed with measurement results by Ministry of Land, Infrastructure and Transport with good accuracy. Results of 1m depth ground temperature detection and Chain-Array detection showed good agreement with results of the Self Potential Method. Correlation between Self Potential value and groundwater velocity was examined model experiment. The result showed apparent correlation. These results indicate that the Self Potential Method was effective method to examine the characteristics of ground water of base of riverbank in leakage problem.

  18. Evaluation of a Brayton cycle recuperator after 21,000 hours of ground testing

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1979-01-01

    A metallographic examination was conducted on a Brayton cycle recuperator and associated ducting after 21,000 hours of ground testing in air. At the hot (turbine) end, the recuperator operated at a nominal temperature of 675 C. The type 347 stainless-steel recuperator performed satisfactorily in the ground test even though the primary working fluid leaked to the atmosphere periodically. The leakage path was located at plate-bar braze joints which cracked as a result of thermal stresses. The welded type 347 stainless steel ducting a type 347/Hastelloy X bellows survived the ground test with no apparent loss of ductility or integrity. Some apparent aging embrittlement was observed in the Hastelloy X ducting but the serviceability was not affected.

  19. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per year of ground water is lost to evapotranspiration in Dry Valley. Combining subsurface-outflow estimates with ground-water evapotranspiration estimates, total natural ground-water discharge from Dry Valley ranges from a minimum of about 700 acre-feet to a maximum of about 1,000 acre-feet annually. Water quality in Dry Valley generally is good and primary drinking-water standards were not exceeded in any samples collected. The secondary standard for manganese was exceeded in three ground-water samples. One spring sample and two surface-water samples exceeded the secondary standard for pH. Dry Valley has two primary types of water chemistry that are distinguishable by cation ratios and related to the two volcanic-rock units that make up much of the surrounding mountains. In addition, two secondary types of water chemistry appear to have evolved by evaporation of the primary water types. Ground water near the State line appears to be an equal mixture of the two primary water chemistries and has as an isotopic characteristic similar to evaporated surface water.

  20. Orion EFT-1 Heat Shield move from LASF to VAB for Ground Test Article Integration

    NASA Image and Video Library

    2017-04-26

    The heat shield for Exploration Flight Test-1 is transferred from the Orion Program to the Ground Systems Development and Operations Program, Landing and Recovery Operations to be integrated with the Ground Test Article to be utilized for future Underway Recovery Testing. After transport from the Launch Abort System Facility (LASF) to the Vehicle Assembly Building (VAB), the heat shield is lifted off of the transport truck and placed onto foam pads (dunnage) for inspection in Highbay 2 of the VAB.

  1. Properties of Lightning Strike Protection Coatings

    NASA Astrophysics Data System (ADS)

    Gagne, Martin

    Composite materials are being increasingly used by many industries. In the case of aerospace companies, those materials are installed on their aircraft to save weight, and thus, fuel costs. These aircraft are lighter, but the loss of electrical conductivity makes aircraft vulnerable to lightning strikes, which hit commercial aircrafts on average once per year. This makes lightning strike protection very important, and while current metallic expanded copper foils offer good protection, they increase the weight of composites. Therefore, under the CRIAQ COMP-502 project, a team of industrial partners and academic researchers are investigating new conductive coatings with the following characteristics: High electromagnetic protection, high mechanical resistance, good environmental protection, manufacturability and moderate cost. The main objectives of this thesis, as part of this project, was to determine the main characteristics, such as electrical and tribomechanical properties, of conductive coatings on composite panels. Their properties were also to be tested after destructive tests such as current injection and environmental testing. Bombardier Aerospace provided the substrate, a composite of carbon fiber reinforced epoxy matrix, and the current commercial product, a surfacing film that includes an expanded copper foil used to compare with the other coatings. The conductive coatings fabricated by the students are: silver nanoparticles inside a binding matrix (PEDOT:PSS or a mix of Epoxy and PEDOT:PSS), silvered carbon nanofibers embedded in the surfacing film, cold sprayed tin, graphene oxide functionalized with silver nanowires, and electroless plated silver. Additionally as part of the project and thesis, magnetron sputtered aluminum coated samples were fabricated. There are three main types of tests to characterize the conductive coatings: electrical, mechanical and environmental. Electrical tests consist of finding the sheet resistance and specific resistivity of conductive coatings. Mechanical tests include adhesion, scratch, hardness and Young's modulus of the coatings. The environmental tests are temperature cycling and salt spray cycling. These basic characteristics were investigated first, but further tests also combine the categories, such as electrical tests before, during and after environmental tests, and the effects on the sample's mechanical properties after high electrical current injections. The electrical properties of the conductive coatings have improved and are very close to that of current expanded metallic foil or within an order of magnitude. The mechanical properties of most of these coatings are also good. They exhibit good adhesion, hardness, and no significant loss of flexion properties after current injections. The environmental tests are more mitigated, with some conductive coatings losing their surface conductivity, others having a small increase in specific resistivity, and some were simply unaffected. Tests such as thermogravimetric analysis, scanning electron microscope analysis of scratch tests, and optical microscope observations are included to provide additional analysis of the results of the conductive coatings. The conductive coatings were characterized and tested as part of the CRIAQ project. Lightning strike tests are required to gather further information on these conductive coatings. The main application for these coatings is for lightning strike protection of aircraft, but they can also be used for ground based lightning strike protection and general electromagnetic shielding.

  2. Experiments on a Tail-wheel Shimmy

    NASA Technical Reports Server (NTRS)

    Harling, R; Dietz, O

    1954-01-01

    Model tests on the "running belt" and tests with a full-scale tail wheel were made on a rotating drum as well as on a runway in order to investigate the causes of the undesirable shimmy phenomena frequently occurring on airplane tail wheels, and the means of avoiding them. The small model (scale 1:10) permitted simulation of the mass, moments of inertia, and fuselage stiffness of the airplane and determination of their influence on the shimmy, whereas by means of the larger model with pneumatic tires (scale 1:2) more accurate investigations were made on the tail wheel itself. The results of drum and road tests show good agreement with one another and with model values. Detailed investigations were made regarding the dependence of the shimmy tendency on trail, rolling speed, load, size of tires, ground friction,and inclination of the swivel axis; furthermore, regarding the influence of devices with restoring effect on the tail wheel, and the friction damping required for prevention of shimmy. Finally observations from slow-motion pictures are reported and conclusions drawn concerning the influence of tire deformation.

  3. Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions

    PubMed Central

    Onofri, S.; Barreca, D.; Selbmann, L.; Isola, D.; Rabbow, E.; Horneck, G.; de Vera, J.P.P.; Hatton, J.; Zucconi, L.

    2008-01-01

    Dried colonies of the Antarctic rock-inhabiting meristematic fungi Cryomyces antarcticus CCFEE 515, CCFEE 534 and C. minteri CCFEE 5187, as well as fragments of rocks colonized by the Antarctic cryptoendolithic community, were exposed to a set of ground-based experiment verification tests (EVTs) at the German Aerospace Center (DLR, Köln, Germany). These were carried out to test the tolerance of these organisms in view of their possible exposure to space conditions outside of the International Space Station (ISS). Tests included single or combined simulated space and Martian conditions. Responses were analysed both by cultural and microscopic methods. Thereby, colony formation capacities were measured and the cellular viability was assessed using live/dead dyes FUN 1 and SYTOX Green. The results clearly suggest a general good resistance of all the samples investigated. C. minteri CCFEE 5187, C. antarcticus CCFEE 515 and colonized rocks were selected as suitable candidates to withstand space flight and long-term permanence in space on the ISS in the framework of the LIchens and Fungi Experiments (LIFE programme, European Space Agency). PMID:19287532

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brownlow, D.T.; Escude, S.; Johanneson, O.H.

    The 1500 Area at Kelly Air Force Base (AFB) was the site of a subsurface release of approximately 1,000 gallons of JP-4 jet fuel. Preliminary studies found evidence of hydrocarbon contamination extending from 10 feet below ground surface (bgs) down to the shallow water table, at 20 to 25 feet bgs. In June of 1993, Kelly AFB authorized the installation and evaluation of a bioventing system at this site to aid in the cleanup of the hydrocarbon contaminated soils. The purpose of the bioventing system is to aerate subsurface soils within and immediately surrounding the release area, in order tomore » stimulate in-situ biological activity and enhance the natural bioremediation capacity of the soil. Augmenting oxygen to the indigenous soil microorganisms promotes the aerobic metabolism of fuel hydrocarbons in the soil. In vadose zone soils exhibiting relatively good permeability, bioventing has proven to be a highly cost effective remediation technology for treating fuel contaminated soils. In November, 1993, a Start-Up Test program consisting of an In-Situ Respiration Test (ISRT) and an Air Permeability Test was performed at the 1500 Area Spill Site.« less

  5. One Year Performance Results for the Prism Solar Installation at the New Mexico Regional Test Center: Field Data from February 15 2016 - February 14 2017.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua; Burnham, Laurie; Lave, Matthew Samuel

    A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced one year of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the twelve-month period ranging from 17% to 132%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism Solar. The most dramatic increase in performance was seen among the vertically mounted, west-facing modules,more » where the bifacial modules produced more than double the energy of monofacial modules in the same orientation. Because peak energy generation (mid- morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).« less

  6. Meta-Analysis of Inquiry-Based Instruction Research

    NASA Astrophysics Data System (ADS)

    Hasanah, N.; Prasetyo, A. P. B.; Rudyatmi, E.

    2017-04-01

    Inquiry-based instruction in biology has been the focus of educational research conducted by Unnes biology department students in collaboration with their university supervisors. This study aimed to describe the methodological aspects, inquiry teaching methods critically, and to analyse the results claims, of the selected four student research reports, grounded in inquiry, based on the database of Unnes biology department 2014. Four experimental quantitative research of 16 were selected as research objects by purposive sampling technique. Data collected through documentation study was qualitatively analysed regarding methods used, quality of inquiry syntax, and finding claims. Findings showed that the student research was still the lack of relevant aspects of research methodology, namely in appropriate sampling procedures, limited validity tests of all research instruments, and the limited parametric statistic (t-test) not supported previously by data normality tests. Their consistent inquiry syntax supported the four mini-thesis claims that inquiry-based teaching influenced their dependent variables significantly. In other words, the findings indicated that positive claims of the research results were not fully supported by good research methods, and well-defined inquiry procedures implementation.

  7. A Method for Calculating the Probability of Successfully Completing a Rocket Propulsion Ground Test

    NASA Technical Reports Server (NTRS)

    Messer, Bradley

    2007-01-01

    Propulsion ground test facilities face the daily challenge of scheduling multiple customers into limited facility space and successfully completing their propulsion test projects. Over the last decade NASA s propulsion test facilities have performed hundreds of tests, collected thousands of seconds of test data, and exceeded the capabilities of numerous test facility and test article components. A logistic regression mathematical modeling technique has been developed to predict the probability of successfully completing a rocket propulsion test. A logistic regression model is a mathematical modeling approach that can be used to describe the relationship of several independent predictor variables X(sub 1), X(sub 2),.., X(sub k) to a binary or dichotomous dependent variable Y, where Y can only be one of two possible outcomes, in this case Success or Failure of accomplishing a full duration test. The use of logistic regression modeling is not new; however, modeling propulsion ground test facilities using logistic regression is both a new and unique application of the statistical technique. Results from this type of model provide project managers with insight and confidence into the effectiveness of rocket propulsion ground testing.

  8. The Mutagenic Potential of: 4-Nitrophenyl Diphenyl Phosphinate Using the Drosophila melanogaster Sex-Linked Recessive Lethal Test.

    DTIC Science & Technology

    1983-03-01

    Hygiene Agency US Army Research Institute Aberden Proving Ground MD 21070 of Chemical Defense Aberdeen Proving Ground Edgewood Arsenal MD 21010 US Army...Aberdeen Proving Grounds , Aberdeen, MD 21005 PROJECT/WORK UNIT/APC: 35162772A875 Medical Defense Against Chemical Agents, WU 304 Toxicity Testing of...126.5 - 127 C Stability: Under refrigerated conditions in the absence of H2O, Dr. Lieske (Biomedical Laboratory, Aberdeen Proving Ground , Aberdeen, HD

  9. CO2 Washout Testing of NASA Space Suits

    NASA Technical Reports Server (NTRS)

    Norcross, Jason

    2012-01-01

    During the presentation "CO2 Washout Testing of NASA Spacesuits," Jason Norcross discussed the results of recent carbon dioxide CO2 washout testing of NASA spacesuits including the Rear Entry I-suit (REI), Enhanced Mobility Advanced Crew Escape Suit (EM-ACES), and possibly the ACES and Z-1 EVA prototype. When a spacesuit is used during ground testing, adequate CO2 washout must be provided for the suited subject. Symptoms of acute CO2 exposure depend on the partial pressure of CO2 (ppCO2) available to enter the lungs during respiration. The primary factors during ground-based testing that influence the ppCO2 level in the oronasal area include the metabolic rate of the subject and air flow through the suit. These tests were done to characterize inspired oronasal ppCO2 for a range of workloads and flow rates for which ground testing is nominally performed. During this presentation, Norcross provided descriptions of the spacesuits, test hardware, methodology, and results, as well as implications for future ground testing and verification of flight requirements.

  10. Ground correlation investigation of thruster spacecraft interactions to be measured on the IAPS flight test

    NASA Technical Reports Server (NTRS)

    Power, J. L.

    1984-01-01

    Preliminary ground correlation testing has been conducted with an 8 cm mercury ion thruster and diagnostic instrumentation replicating to a large extent the IAPS flight test hardware, configuration, and electrical grounding/isolation. Thruster efflux deposition retained at 25 C was measured and characterized. Thruster ion efflux was characterized with retarding potential analyzers. Thruster-generated plasma currents, the spacecraft common (SCC) potential, and ambient plasma properties were evaluated with a spacecraft potential probe (SPP). All the measured thruster/spacecraft interactions or their IAPS measurements depend critically on the SCC potential, which can be controlled by a neutralizer ground switch and by the SPP operation.

  11. Non-isothermal processes during the drying of bare soil: Model Development and Validation

    NASA Astrophysics Data System (ADS)

    Sleep, B.; Talebi, A.; O'Carrol, D. M.

    2017-12-01

    Several coupled liquid water, water vapor, and heat transfer models have been developed either to study non-isothermal processes in the subsurface immediately below the ground surface, or to predict the evaporative flux from the ground surface. Equilibrium phase change between water and gas phases is typically assumed in these models. Recently, a few studies have questioned this assumption and proposed a coupled model considering kinetic phase change. However, none of these models were validated against real field data. In this study, a non-isothermal coupled model incorporating kinetic phase change was developed and examined against the measured data from a green roof test module. The model also incorporated a new surface boundary condition for water vapor transport at the ground surface. The measured field data included soil moisture content and temperature at different depths up to the depth of 15 cm below the ground surface. Lysimeter data were collected to determine the evaporation rates. Short and long wave radiation, wind velocity, air ambient temperature and relative humidity were measured and used as model input. Field data were collected for a period of three months during the warm seasons in south eastern Canada. The model was calibrated using one drying period and then several other drying periods were simulated. In general, the model underestimated the evaporation rates in the early stage of the drying period, however, the cumulative evaporation was in good agreement with the field data. The model predicted the trends in temperature and moisture content at the different depths in the green roof module. The simulated temperature was lower than the measured temperature for most of the simulation time with the maximum difference of 5 ° C. The simulated moisture content changes had the same temporal trend as the lysimeter data for the events simulated.

  12. Characterization and validation of a split belt treadmill for measuring hindlimb ground-reaction forces in able-bodied and spinalized felines

    PubMed Central

    Dimiskovski, Marko; Scheinfield, Richard; Higgin, Dwight; Krupka, Alexander; Lemay, Michel A.

    2017-01-01

    BACKGROUND The measurement of ground reaction forces (GRFs) in animals trained to locomote on a treadmill after spinal cord injury (SCI) could prove valuable for evaluating training outcomes; however, quantitative measures of the GRFs in spinal felines are limited. NEW METHOD A split belt treadmill was designed and constructed to measure the GRFs of feline hindlimbs during stepping. The treadmill consists of two independent treadmill assemblies, each mounted on a force plate. The design allows measurements of the vertical (Fz), fore-aft (Fy) and mediolateral (Fx) ground-reaction forces for both hindlimbs while the forelimbs are resting on a platform. RESULTS Static and dynamic noise tests revealed little to no noise at frequencies below 6 Hz. Validation of the force plate measurements with a hand-held force sensor force showed good agreement between the two force readings. Peak normalized (to body mass) vertical GRFs for intact cats were 4.89±0.85N/Kg for the left hindlimb and 4.79±0.97N/Kg for the right. In comparison, trained spinalized cats peak normalized vertical GRFs were 2.20±0.94N/Kg for the left hindlimb and 2.85±0.99N/Kg for the right. COMPARISON WITH OTHER EXISTING METHODS Previous methods of measuring GRFs used stationary single force plates or treadmill mounted to single force plate. Using independent treadmills for each hindlimb allows measurement of the individual hindlimb’s GRFs in spinalized cats following body-weight supported treadmill training. CONCLUSIONS The split belt force treadmill enables the simultaneous recording of ground-reaction forces for both hindlimbs in cats prior to spinalization, and following spinalization and body-weight-supported treadmill training (BWST). PMID:28069392

  13. The line integral approach to radarclinometry

    USGS Publications Warehouse

    Wildey, R.L.

    1987-01-01

    Radarclinometry, the invention of which has been previously reported, is a technique for deriving a topographic map from a single radar image by using the dependence upon terrain-surface orientation of the integrated signal of an individual image pixel. The radiometric calibration required for precise operation and testing does not yet exist, but the imminence of important applications justifies parallel, rather than serial, development of radarclinometry and radiometrically calibrated radar. The present investigation reports three developmental advances: (1) The solid angle of integration of back-scattered specific intensity constituting a pixel signal is more accurately accounted for in its dependence on surface orientation than in previous work. (2) The local curvature hypothesis, which removes the requirement of a ground-truth profile as a boundary condition and enables the formulation of the theory in terms of a line integral, has been expanded to include the three possibilities of Local Cylindricity, Local Biaxial Ellipsoidal Hyperbolicity, and Least-Squares Local Sphericity. (3) The theory is integrated in the cross-ground-range direction, which is ill-conditioned compared to the ground-range direction, whereas the original formulation was based on enforced isotropy in the two-dimensional power spectrum of the topography. It was found necessary to prohibit the hypothesis of Local Biaxial Ellipsoidal Hyperbolicity in the cross-range stepping, for reasons not completely clear. Variation in the proportioning between curvature assumptions had produced topographic maps that are in good mutual agreement but not realistic in appearance. They are severely banded parallel to the ground-range direction, most especially at small radar zenith angles. Numerical experimentation with the falsification of topography through incorrect decalibration as performed on a Gaussian hill suggests that the banding and its exaggeration at high radar incidence angles could easily be due to our lack of radiometric calibration. ?? 1987 D. Reidel Publishing Company.

  14. Automated wholeslide analysis of multiplex-brightfield IHC images for cancer cells and carcinoma-associated fibroblasts

    NASA Astrophysics Data System (ADS)

    Lorsakul, Auranuch; Andersson, Emilia; Vega Harring, Suzana; Sade, Hadassah; Grimm, Oliver; Bredno, Joerg

    2017-03-01

    Multiplex-brightfield immunohistochemistry (IHC) staining and quantitative measurement of multiple biomarkers can support therapeutic targeting of carcinoma-associated fibroblasts (CAF). This paper presents an automated digitalpathology solution to simultaneously analyze multiple biomarker expressions within a single tissue section stained with an IHC duplex assay. Our method was verified against ground truth provided by expert pathologists. In the first stage, the automated method quantified epithelial-carcinoma cells expressing cytokeratin (CK) using robust nucleus detection and supervised cell-by-cell classification algorithms with a combination of nucleus and contextual features. Using fibroblast activation protein (FAP) as biomarker for CAFs, the algorithm was trained, based on ground truth obtained from pathologists, to automatically identify tumor-associated stroma using a supervised-generation rule. The algorithm reported distance to nearest neighbor in the populations of tumor cells and activated-stromal fibroblasts as a wholeslide measure of spatial relationships. A total of 45 slides from six indications (breast, pancreatic, colorectal, lung, ovarian, and head-and-neck cancers) were included for training and verification. CK-positive cells detected by the algorithm were verified by a pathologist with good agreement (R2=0.98) to ground-truth count. For the area occupied by FAP-positive cells, the inter-observer agreement between two sets of ground-truth measurements was R2=0.93 whereas the algorithm reproduced the pathologists' areas with R2=0.96. The proposed methodology enables automated image analysis to measure spatial relationships of cells stained in an IHC-multiplex assay. Our proof-of-concept results show an automated algorithm can be trained to reproduce the expert assessment and provide quantitative readouts that potentially support a cutoff determination in hypothesis testing related to CAF-targeting-therapy decisions.

  15. The excitation of ground vibration by rail traffic: theory of vehicle track soil interaction and measurements on high-speed lines

    NASA Astrophysics Data System (ADS)

    Auersch, L.

    2005-06-01

    This article presents an integrated model for the computation of vehicle-track interaction and the ground vibrations of passing trains. A combined finite element and boundary element method is used to calculate the dynamic compliance of the track on realistic soil whereas multi-body models are used for the vehicle. The dynamic stiffness of the vehicle and that of the track are combined to calculate the dynamic axle loads due to the irregularities of the vehicle and the track as well as those due to sleeper passing excitation. These loads serve as input for the calculation of ground vibration near railway lines in the time and frequency domains. The theoretical methods and results have been proven by experiments in several respects and at several instances. First, on the occasion of the test and record runs of the Intercity Experimental, there was a very good quality of the vehicle and of the newly built track so that the deterministic parts of the excitation—the static load and the sleeper-passing component—could clearly be identified, the first being of minor importance apart from the track. Second, simultaneous measurements of the vehicle, the track and the soil at three different track situations were performed where we could verify the different parts of the stochastic excitation and their importance for the ground vibrations. The irregularities of the vehicle are dominant at high frequencies whereas the irregularities of the track are more important at lower frequencies. The comparison of the theory and the measurements also points to the phenomena of the vehicle-track resonance and the scattering of the quasi-static axle impulses by randomly varying soil.

  16. Hydrogeology and water quality in the Graces Quarters area of Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Tenbus, Frederick J.; Blomquist, Joel D.

    1995-01-01

    Graces Quarters was used for open-air testing of chemical-warfare agents from the late 1940's until 1971. Testing and disposal activities have resulted in the contamination of ground water and surface water. The hydrogeology and water quality were examined at three test areas, four disposal sites, a bunker, and a service area on Graces Quarters. Methods of investigation included surface and borehole geophysics, water-quality sampling, water- level measurement, and hydrologic testing. The hydrogeologic framework is complex and consists of a discontinuous surficial aquifer, one or more upper confining units, and a confined aquifer system. Directions of ground-water flow vary spatially and temporally, and results of site investigations show that ground-water flow is controlled by the geology of the area. The ground water and surface water at Graces Quarters generally are unmineralized; the ground water is mildly acidic (median pH is 5.38) and poorly buffered. Inorganic constituents in excess of certain Federal drinking-water regulations and ambient water-quality criteria were detected at some sites, but they probably were present naturally. Volatile and semivolatile organic com- pounds were detected in the ground water and surface water at seven of the nine sites that were investi- gated. Concentrations of organic compounds at two of the nine sites exceeded Federal drinking-water regulations. Volatile compounds in concentrations as high as 6,000 m/L (micrograms per liter) were detected in the ground water at the site known as the primary test area. Concentrations of volatile compounds detected in the other areas ranged from 0.57 to 17 m/L.

  17. Measuring patient engagement: development and psychometric properties of the Patient Health Engagement (PHE) Scale

    PubMed Central

    Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea; Lozza, Edoardo

    2015-01-01

    Beyond the rhetorical call for increasing patients' engagement, policy makers recognize the urgency to have an evidence-based measure of patients' engagement and capture its effect when planning and implementing initiatives aimed at sustaining the engagement of consumers in their health. In this paper, authors describe the Patient Health Engagement Scale (PHE-scale), a measure of patient engagement that is grounded in rigorous conceptualization and appropriate psychometric methods. The scale was developed based on our previous conceptualization of patient engagement (the PHE-model). In particular, the items of the PHE-scale were developed based on the findings from the literature review and from interviews with chronic patients. Initial psychometric analysis was performed to pilot test a preliminary version of the items. The items were then refined and administered to a national sample of chronic patients (N = 382) to assess the measure's psychometric performance. A final phase of test-retest reliability was performed. The analysis showed that the PHE Scale has good psychometric properties with good correlation with concurrent measures and solid reliability. Having a valid and reliable measure to assess patient engagement is the first step in understanding patient engagement and its role in health care quality, outcomes, and cost containment. The PHE Scale shows a promising clinical relevance, indicating that it can be used to tailor intervention and assess changes after patient engagement interventions. PMID:25870566

  18. Measuring patient engagement: development and psychometric properties of the Patient Health Engagement (PHE) Scale.

    PubMed

    Graffigna, Guendalina; Barello, Serena; Bonanomi, Andrea; Lozza, Edoardo

    2015-01-01

    Beyond the rhetorical call for increasing patients' engagement, policy makers recognize the urgency to have an evidence-based measure of patients' engagement and capture its effect when planning and implementing initiatives aimed at sustaining the engagement of consumers in their health. In this paper, authors describe the Patient Health Engagement Scale (PHE-scale), a measure of patient engagement that is grounded in rigorous conceptualization and appropriate psychometric methods. The scale was developed based on our previous conceptualization of patient engagement (the PHE-model). In particular, the items of the PHE-scale were developed based on the findings from the literature review and from interviews with chronic patients. Initial psychometric analysis was performed to pilot test a preliminary version of the items. The items were then refined and administered to a national sample of chronic patients (N = 382) to assess the measure's psychometric performance. A final phase of test-retest reliability was performed. The analysis showed that the PHE Scale has good psychometric properties with good correlation with concurrent measures and solid reliability. Having a valid and reliable measure to assess patient engagement is the first step in understanding patient engagement and its role in health care quality, outcomes, and cost containment. The PHE Scale shows a promising clinical relevance, indicating that it can be used to tailor intervention and assess changes after patient engagement interventions.

  19. Antimycobacterial, anti-inflammatory and genotoxicity evaluation of plants used for the treatment of tuberculosis and related symptoms in South Africa.

    PubMed

    Madikizela, B; Ndhlala, A R; Finnie, J F; Van Staden, J

    2014-04-28

    Emergence of drug-resistant tuberculosis strains and long duration of treatment has established an urgent need to search for new effective agents. The great floral diversity of South Africa has potential for producing new bioactive compounds, therefore pharmacological screening of plant extracts within this region offers much potential. To assess the in vitro antimycobacterial, anti-inflammatory and genotoxicity activity of selected plants that are used for the treatment of TB and related symptoms in South Africa. Ground plant materials from 10 plants were extracted sequentially with four solvents (petroleum ether, dichloromethane, 80% ethanol and water) and a total of 68 extracts were produced. A broth microdilution method was used to screen extracts against Mycobacterium tuberculosis H37Ra. The cyclooxygenase-2 (COX-2) enzyme was used to evaluate the anti-inflammatory activity of the extracts and the Salmonella microsome assay using two Salmonella typhimurium strains (TA98 and TA100) to establish genotoxicity. Six out of 68 extracts showed good antimycobacterial activity. Three extracts showed good inhibition (>70%) of COX-2 enzyme. All the extracts tested were non-genotoxic against the tested Salmonella strains. The results observed in this study indicate that some of the plants such as Abrus precatorius subsp. africanus, Ficus sur, Pentanisia prunelloides and Terminalia phanerophlebia could be investigated further against drug-resistant TB strains. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Shuttle Return-to-Flight IH-108 Aerothermal Test at CUBRC - Flow Field Calibration and CFD

    NASA Technical Reports Server (NTRS)

    Lau, Kei Y.; Holden, Michael

    2010-01-01

    This paper discusses one specific aspect of the Shuttle Retrun-To-Flight IH-108 Aerothermal Test at CUBRC, the test flow field calibration. It showed the versatility of the CUBRC LENS II wind tunnel for an aerothermal test with unique and demanding requirements. CFD analyses were used effectively to extend the test range at the low end of the Mach range. It demonstrated how ground test facility and CFD synergy can be utilitzed iteratively to enhance the confidence in the fedility of both tools. It addressed the lingering concerns of the aerothermal community on use of inpulse facility and CFD analysis. At the conclusion of the test program, members from the NASA Marshall (MSFC), CUBRC and USA (United Space Alliance) Consultants (The Grey Beards) were asked to independently verify the flight scaling data generated by Boeing for flight certification of the re-designed external tank (ET) components. The blind test comparison showed very good results. A more comprehensive discussion of the topics in this paper can be found in Chapter 6 of Reference [1]. The overall aspect of the test program has been discussed in an AIAA paper by Tim Wadhams [2]. The Shuttle Ascent Stack performance and related issues discussed in the Report [1] are not included in this paper. No ITAR data is included in this paper.

  1. Experimental and numerical investigations of higher mode effects on seismic inelastic response of reinforced concrete shear walls

    NASA Astrophysics Data System (ADS)

    Ghorbanirenani, Iman

    This thesis presents two experimental programs together with companion numerical studies that were carried out on reinforced concrete shear walls: static tests and dynamic (shake table) tests. The first series of experiments were monotonic and cyclic quasi-static testing on ductile reinforced concrete shear wall specimens designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The tests were carried out on full-scale and 1:2.37 reduced scale wall specimens to evaluate the seismic design provisions and similitude law and determine the appropriate scaling factor that could be applied for further studies such as dynamic tests. The second series of experiments were shake table tests conducted on two identical 1:2.33 scaled, 8-storey moderately ductile reinforced concrete shear wall specimens to investigate the effects of higher modes on the inelastic response of slender walls under high frequency ground motions expected in Eastern North America. The walls were designed and detailed according to the seismic provisions of NBCC 2005 and CSA-A23.3-04 standard. The objectives were to validate and understand the inelastic response and interaction of shear, flexure and axial loads in plastic hinge zones of the walls considering the higher mode effects and to investigate the formation of second hinge in upper part of the wall due to higher mode responses. Second mode response significantly affected the response of the walls. This caused inelastic flexural response to develop at the 6th level with approximately the same rotation ductility compared to that observed at the base. Dynamic amplification of the base shear forces was also observed in both walls. Numerical modeling of these two shake table tests was performed to evaluate the test results and validate current modeling approaches. Nonlinear time history analyses were carried out by the reinforced concrete fibre element (OpenSees program) and finite element (VecTor2 program) methods using the shake table feedback signals as input. Good agreement was generally obtained between numerical and experimental results. Both computer programs were able to predict the natural frequency of the walls in the undamaged and damaged conditions. Both modeling techniques could predict that the maximum bending moment at the base of the walls reached the actual wall moment capacity. The inelastic response and the dual plastic hinge behaviour of the walls could be adequately reproduced using the fibre element and finite element analysis programs. The fibre element method is a good alternative in terms of computing time. It produces reasonable results in comparison with the finite element method, although particular attention needs to be given to the selection of the damping ratios. The different parametric analyses performed in this thesis showed that, for both models, adding a small amount of global viscous damping in combination with a refined reinforced concrete hysteretic model could predict better the seismic behaviour of the tested structures. For the VecTor2 program, a viscous damping of 1% led to reasonable results for the studied RC walls. For the OpenSees program, 2% damping resulted in a good match between test and predictions for the 100% EQ test on the initially undamaged wall. When increasing the earthquake intensities, the damping had to be reduced between 1.5% and 1% to achieve good results for a damaged wall with elongated vibration periods. According to the experimental results and numerical analyses on reinforced concrete shear walls subjected to ground motions from Eastern North America earthquakes, there is a high possibility of having a second plastic hinge forming in the upper part of walls in addition to the one assumed in design at the base. This second hinge could dissipate the earthquake energy more effectively and decrease the force demand on the wall. A dual plastic hinge design approach in which the structures become plastic in the upper wall segment as well as the base could be therefore more appropriate. Preliminary design recommendations considering higher mode effects on dual hinge response and base shear forces for ductile slender shear walls are given in this thesis. (Abstract shortened by UMI.)

  2. Seasonal Response and Characterization of a Scree Slope and Active Debris Flow Catchment Using Multiple Geophysical Techniques: The case of the Meretschibach Catchment, Switzerland

    NASA Astrophysics Data System (ADS)

    Fankhauser, Kerstin; Guzman, Daisy R. Lucas; Oggier, Nicole; Maurer, Hansruedi; Springman, Sarah M.

    2015-04-01

    Various types of mass movements cause extensive natural hazards in populated mountain regions. They need to be quantified, and possibly predicted, for implementing effective mitigation and protection measures. The Meretschibach catchment in the Valais area, Switzerland, is a source region for such events. Various forms of instabilities occur on the steep slopes. They manifest themselves in form of smaller rock falls and rock slides on the open scree slopes. Moreover, large sediment volumes of channelized stream deposits can evolve into debris flows, with a substantial run-out along the Meretschibach. Geophysical methods, such as electrical resistivity tomography (ERT) and ground-penetrating-radar (GPR) have been proven to be powerful tools for characterizing mass movements and slope instabilities. They complement other remote sensing techniques and in-situ geotechnical experiments. Ground-based and helicopter-borne GPR measurements were carried out at the Meretschibach test site, to determine the depth to the bedrock. The results indicate that the bedrock is generally shallow, ranging from a few centimetres to about 5 metres vertically below the surface. A particularly interesting aspect of the GPR investigations was the observation that bedrock depth could be resolved by both, ground-based and helicopter-borne GPR data. Ground-based GPR surveying proved to be extremely challenging on the steep slopes, and some areas were even inaccessible due to safety concerns. It is therefore encouraging for future projects that helicopter-borne GPR acquisition offers a promising alternative. The spatial distribution of the soil moisture content and the temporal variations were determined with repeated ERT measurements. The resulting tomograms allowed a conductive soil layer and more resistive bedrock to be distinguished clearly. The ERT results were in good agreement with in-situ geotechnical measurements in a nearby test pit, and the depth of the soil-bedrock interface was broadly consistent with the GPR results. A comparison of tomograms obtained during the relatively dry month of June 2014, with those acquired after heavy rainfall in July 2014, showed significant changes of the shallow subsurface resistivities. These changes could be attributed in a quantitative fashion to variations of the soil water Saturation.

  3. The Use of Ground Penetrating Radar to Exploring Sedimentary Ore In North-Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Almutairi, Yasir; Almutair, Muteb

    2015-04-01

    Ground Penetrating Radar (GPR) is a non-destructive geophysical method that provides a continuous subsurface profile, without drilling. This geophysical technique has great potential in delineating the extension of bauxites ore in north-central Saudi Arabia. Bauxite is from types sedimentary ores. This study aim to evaluate the effectiveness of Ground Penetrating Radar (GPR) to illustrate the subsurface feature of the Bauxite deposits at some selected mining areas north-central Saudi Arabia. Bauxite is a heterogeneous material that consists of complex metals such as alumina and aluminum. An efficient and cost-effect exploration method for bauxite mine in Saudi Arabia is required. Ground penetrating radar (GPR) measurements have been carrying out along outcrop in order to assess the potential of GPR data for imaging and characterising different lithological facies. To do so, we have tested different antenna frequencies to acquire the electromagnetic signals along a 90 m profile using the IDS system. This system equipped with a 25 MHz antenna that allows investigating the Bauxite layer at shallow depths where the clay layers may existed. Therefore, the 25 MHz frequency antenna has been used in this study insure better resolution of the subsurface and to get more penetration to image the Bauxite layer. After the GPR data acquisition, this data must be processed in order to be more easily visualized and interpreted. Data processing was done using Reflex 6.0 software. A series of tests were carried out in frequency filtering on a sample of radar sections, which was considered to better represent the entire set of data. Our results indicated that the GPR profiling has a very good agreement for mapping the bauxite layer depth at range of 7 m to 11 m. This study has emphasized that the high-resolution GPR method is the robust and cost-effect technique to map the Bauxite layer. The exploration of Bauxite resource using the GPR technique could reduce the number of holes to be strategically placed in the most promising zones.

  4. Characterization of Earthquake-Induced Ground Motion from the L'Aquila Seismic Sequence of 2009, Italy

    NASA Astrophysics Data System (ADS)

    Malagnini, L.; Akinci, A.; Mayeda, K. M.; Munafo', I.; Herrmann, R. B.; Mercuri, A.

    2010-12-01

    Based only on weak-motion data, we carried out a combined study on region-specific source scaling and crustal attenuation in the Central Apennines (Italy). Our goal was to obtain a reappraisal of the existing predictive relationships for the ground motion, and to test them against the strong-motion data (Peak Ground Acceleration, PGA, Peak Ground Velocity, PGV, and Spectral Acceleration, SA) gathered during the Mw 6.15 L’Aquila earthquake (April 6, 2009, 01:32 UTC). The L’Aquila main-shock was not part of the predictive study, and the validation test was an extrapolation to one magnitude unit above the largest earthquake of the calibration data set. The regional attenuation was determined through a set of regressions on a data set of 12,777 high-quality, high-gain waveforms with excellent S/N ratios (4,259 vertical, and 8,518 horizontal time histories). Seismograms were selected from the recordings of 170 fore-shocks and after-shocks of the sequence (the complete set of all earthquakes with ML ≥ 3.0, from October 1, 2008, to May 10, 2010). All waveforms were downloaded from the ISIDe web page (http://iside.rm.ingv.it/iside/standard/index.jsp), a web site maintained by the Istituto Nazionale di Geofisica e Vulcanologia (INGV). Weak-motion data were used to obtain a moment tensor solution, as well as a coda-based moment-rate source spectrum, for each one of the 170 events of the L’Aquila sequence (2.8 ≤ Mw ≤ 6.15). Source spectra were used to verify the good agreement with the source scaling of the Colfiorito seismic sequence of 1997-98 recently described by Malagnini et al. (2008). Finally, results on source excitation and crustal attenuation were used to produce the absolute site terms for the 23 stations located within ~ 80 km of the epicentral area. The complete set of spectral corrections (crustal attenuation and absolute site effects) was used to implement a fast and accurate tool for the automatic computation of moment magnitudes in the Central Apennines.

  5. Rotor Aerodynamics in Ground Effect at Low Advance Ratios.

    DTIC Science & Technology

    1982-07-27

    the rotor wake flows entirely downstream. At test conditions were the recirculating flow or ground vortex is present there are marked departures...ILLUSTRATIONS Figure Page 1 Cross Section of Test Facilty 12 2 Overall View of Test Facility and Rotor Model 13 3 Flow Pattern in Ground Vortex Regime, (v...entirely flowing downstream splits and a portion of the rotor wake flows forward (upstream) and then recirculates through the rotor or forms a vortex or

  6. Investigation of a Technique for Measuring Dynamic Ground Effect in a Subsonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.

    1999-01-01

    To better understand the ground effect encountered by slender wing supersonic transport aircraft, a test was conducted at NASA Langley Research Center's 14 x 22 foot Subsonic Wind Tunnel in October, 1997. Emphasis was placed on improving the accuracy of the ground effect data by using a "dynamic" technique in which the model's vertical motion was varied automatically during wind-on testing. This report describes and evaluates different aspects of the dynamic method utilized for obtaining ground effect data in this test. The method for acquiring and processing time data from a dynamic ground effect wind tunnel test is outlined with details of the overall data acquisition system and software used for the data analysis. The removal of inertial loads due to sting motion and the support dynamics in the balance force and moment data measurements of the aerodynamic forces on the model is described. An evaluation of the results identifies problem areas providing recommendations for future experiments. Test results are validated by comparing test data for an elliptical wing planform with an Elliptical wing planform section with a NACA 0012 airfoil to results found in current literature. Major aerodynamic forces acting on the model in terms of lift curves for determining ground effect are presented. Comparisons of flight and wind tunnel data for the TU-144 are presented.

  7. Oxygen uptake during functional activities after stroke—Reliability and validity of a portable ergospirometry system

    PubMed Central

    Brurok, Berit; Tjønna, Arnt Erik; Tørhaug, Tom; Askim, Torunn

    2017-01-01

    Background People with stroke have a low peak aerobic capacity and experience increased effort during performance of daily activities. The purpose of this study was to examine test-retest reliability of a portable ergospirometry system in people with stroke during performance of functional activities in a field-test. Secondary aims were to examine the proportion of oxygen consumed during the field-test in relation to the peak-test and to analyse the correlation between the oxygen uptake during the field-test and peak-test in order to support the validity of the field-test. Methods With simultaneous measurement of oxygen consumption, participants performed a standardized field-test consisting of five activities; walking over ground, stair walking, stepping over obstacles, walking slalom between cones and from a standing position lifting objects from one height to another. All activities were performed in self-selected speed. Prior to the field-test, a peak aerobic capacity test was performed. The field-test was repeated minimum 2 and maximum 14 days between the tests. ICC2,1 and Bland Altman tests (Limits of Agreement, LoA) were used to analyse test-retest reliability. Results In total 31 participants (39% women, mean (SD) age 54.5 (12.7) years and 21.1 (14.3) months’ post-stroke) were included. The ICC2,1 was ≥ 0.80 for absolute V̇O2, relative V̇O2, minute ventilation, CO2, respiratory exchange ratio, heart rate and Borgs rating of perceived exertion. ICC2,1 for total time to complete the field-test was 0.99. Mean difference in steady state V̇O2 during Test 1 and Test 2 was -0.40 (2.12) The LoAs were -3.75 and 4.51. Participants spent 60.7% of their V̇O2peak performing functional activities. Correlation between field-test and peak-test was 0.689, p = 0.001 for absolute and 0.733, p = 0.001 for relative V̇O2. Conclusions This study presents first evidence on reliability of oxygen uptake during performance of functional activities after stroke, showing very good test-retest reliability. The secondary analysis showed that the amount of energy spent during the field-test relative to the peak-test was high and the correlation between the two test was good, supporting the validity of this method. PMID:29065164

  8. 29 CFR 1926.66 - Criteria for design and construction of spray booths.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the conveyor carrying goods through the high voltage field. (iii) Occurrence of a ground or of an... portable electrical infrared drying apparatus when conforming with the following: (i) Interior (especially...

  9. 29 CFR 1926.66 - Criteria for design and construction of spray booths.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the conveyor carrying goods through the high voltage field. (iii) Occurrence of a ground or of an... portable electrical infrared drying apparatus when conforming with the following: (i) Interior (especially...

  10. 29 CFR 1926.66 - Criteria for design and construction of spray booths.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the conveyor carrying goods through the high voltage field. (iii) Occurrence of a ground or of an... portable electrical infrared drying apparatus when conforming with the following: (i) Interior (especially...

  11. 15 CFR 904.205 - Disqualification of Judge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (b) A party may in good faith request the Judge to withdraw on the grounds of personal bias or other disqualification. The party seeking the disqualification must file with the Judge a timely affidavit or statement...

  12. A Multidisciplinary Approach to Assessing the Causal Components of Climate Change

    NASA Astrophysics Data System (ADS)

    Gosnold, W. D.; Todhunter, P. E.; Dong, X.; Rundquist, B.; Majorowicz, J.; Blackwell, D. D.

    2004-05-01

    Separation of climate forcing by anthropogenic greenhouse gases from natural radiative climate forcing is difficult because the composite temperature signal in the meteorological and multi-proxy temperature records cannot be resolved directly into radiative forcing components. To address this problem, we have initiated a large-scale, multidisciplinary project to test coherence between ground surface temperatures (GST) reconstructed from borehole T-z profiles, surface air temperatures (SAT), soil temperatures, and solar radiation. Our hypothesis is that radiative heating and heat exchange between the ground and the air directly control the ground surface temperature. Consequently, borehole T-z measurements at multi-year intervals spanning time periods when solar radiation, soil and air temperatures have been recorded should enable comparison of the thermal energy stored in the ground to these quantities. If coherence between energy storage, solar radiation, GST, SAT and multi-proxy temperature data can be discerned for a one or two decade scale, synthesis of GST and multi-proxy data over the past several centuries may enable us to separately determine the anthropogenic and natural forcings of climate change. The data we are acquiring include: (1) New T-z measurements in boreholes previously used in paleoclimate and heat flow research in Canada and the United States from the 1970's to the present. (2) Meteorological data from the US Historical Climatology Network and the Automated Weather Data Network of the High Plains Regional Climate Center, and Environment Canada. (3) Direct and remotely sensed data on land use, environment, and soil properties at selected borehole and meteorological sites for the periods between borehole observations. The project addresses three related questions: What is the coherence between the GST, SAT, soil temperatures and solar radiation? Have microclimate changes at borehole sites and climate stations affected temperature trends? If good coherence is obtained, can the coherence between thermal energy stored in the ground and radiative forcing during the time between T-z measurements be extended several centuries into the past?

  13. Effect of Ground Proximity on the Aerodynamic Characteristics of Aspect-Ratio-1 Airfoils With and Without End Plates

    NASA Technical Reports Server (NTRS)

    Carter, Arthur W.

    1961-01-01

    An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.

  14. 2011 Groundwater Monitoring and Inspection Report Gnome-Coach Site, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2012-02-01

    Gnome-Coach was the site of a 3-kiloton underground nuclear test in 1961. Surface and subsurface contamination resulted from the underground nuclear testing, post-test drilling, and groundwater tracer test performed at the site. The State of New Mexico is currently proceeding with a conditional certificate of completion for the surface. As for the subsurface, monitoring activities that include hydraulic head monitoring and groundwater sampling of the wells onsite are conducted as part of the annual site inspection. These activities were conducted on January 19, 2011. The site roads, monitoring well heads, and the monument at surface ground zero were observed asmore » being in good condition at the time of the site inspection. An evaluation of the hydraulic head data obtained from the site indicates that water levels in wells USGS-4 and USGS-8 appear to respond to the on/off cycling of the dedicated pump in well USGS-1 and that water levels in wells LRL-7 and DD-1 increased during this annual monitoring period. Analytical results obtained from the sampling indicate that concentrations of tritium, strontium-90, and cesium-137 were consistent with concentrations from historical sampling events.« less

  15. Practical guides for seeding grass on skid roads, trails, and landings, following logging on east-side forests of Washington and Oregon.

    Treesearch

    J.O. Gjertson

    1949-01-01

    Seeding to perennial grasses is an effective method for stabilizing soil, preventing invasion by undesirable plants, and increasing forage production on ground denuded during logging. A survey in 1948 of 52 areas seeded between 1940 and 1946 found 80 percent of the seedings to be medium or better in success, and 45 percent good or very good in success. A careful check...

  16. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.

  17. Verification of a ground-based method for simulating high-altitude, supersonic flight conditions

    NASA Astrophysics Data System (ADS)

    Zhou, Xuewen; Xu, Jian; Lv, Shuiyan

    Ground-based methods for accurately representing high-altitude, high-speed flight conditions have been an important research topic in the aerospace field. Based on an analysis of the requirements for high-altitude supersonic flight tests, a ground-based test bed was designed combining Laval nozzle, which is often found in wind tunnels, with a rocket sled system. Sled tests were used to verify the performance of the test bed. The test results indicated that the test bed produced a uniform-flow field with a static pressure and density equivalent to atmospheric conditions at an altitude of 13-15km and at a flow velocity of approximately M 2.4. This test method has the advantages of accuracy, fewer experimental limitations, and reusability.

  18. Deployment/retraction ground testing of a large flexible solar array

    NASA Technical Reports Server (NTRS)

    Chung, D. T.

    1982-01-01

    The simulated zero-gravity ground testing of the flexible fold-up solar array consisting of eighty-four full-size panels (.368 m x .4 m each) is addressed. Automatic, hands-off extension, retraction, and lockup operations are included. Three methods of ground testing were investigated: (1) vertical testing; (2) horizontal testing, using an overhead water trough to support the panels; and (3) horizontal testing, using an overhead track in conjunction with a counterweight system to support the panels. Method 3 was selected as baseline. The wing/assembly vertical support structure, the five-tier overhead track, and the mast-element support track comprise the test structure. The flexible solar array wing assembly was successfully extended and retracted numerous times under simulated zero-gravity conditions.

  19. Vibration transfer mobility measurements using maximum length sequences

    NASA Astrophysics Data System (ADS)

    Singleton, Herbert L.

    2005-09-01

    Vibration transfer mobility measurements are required under Federal Transit Administration guidelines when developing detailed predictions of ground-borne vibration for rail transit systems. These measurements typically use a large instrumented hammer to generate impulses in the soil. These impulses are measured by an array of accelerometers to characterize the transfer mobility of the ground in a localized area. While effective, these measurements often make use of heavy, custom-engineered equipment to produce the impulse signal. To obtain satisfactory signal-to-noise ratios, it is necessary to generate multiple impulses to generate an average value, but this process involves considerable physical labor in the field. To address these shortcomings, a transfer mobility measurement system utilizing a tactile transducer and maximum length sequences (MLS) was developed. This system uses lightweight off-the-shelf components to significantly reduce the weight and cost of the system. The use of MLS allows for adequate signal-to-noise ratio from the tactile transducer, while minimizing the length of the measurement. Tests of the MLS system show good agreement with the impulse-based method. The combination of the cost savings and reduced weight of this new system facilitates transfer mobility measurements that are less physically demanding, and more economical when compared with current methods.

  20. A new approach to estimating evaporation from lakes and reservoirs based on energy balance and remote sensing data

    NASA Astrophysics Data System (ADS)

    Majidi, Maysam; Sadeghi, Morteza; Shafiei, Mojtaba; Alizadeh, Amin; Farid, Alireza; Azad, Mohammadreza; Vazifedoust, Majid

    2016-04-01

    Estimating evaporation from water bodies such as lakes and reservoirs is commonly a difficult task, especially due to the lack of reliable and available ground data. Remote sensing (RS) data has shown a great potential for filling the gap. Nonetheless, interpretation of the RS data (e.g. optical reflectance, thermal emission, etc.) for estimating water evaporation has remained as a challenge. In this paper, we present a novel approach for estimating water evaporation based on satellite RS data and some readily measurable ground data. In the proposed approach, named as "Reference and Water surface Energy Balance (RWEB)", we define a reference surface and then solve the energy balance equation simultaneously for the reference surfaces and water surface. This approach was tested over the Doosti dam reservoir (north east of Iran) using whether station and RS data as well as water temperature measured biweekly along the study. Accuracy of the RWEB algorithm was examined by comparison to the standard "Bowen Ratio Energy Balance (BREB)" RS algorithm. The RMSD value of 0.047 mm/year indicated a good agreement between RWEB and BREB algorithms, while RWEB provides an easier-to-use approach regarding its required input variables.

  1. Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    PubMed Central

    Vain, Ants; Kaasalainen, Sanna; Pyysalo, Ulla; Krooks, Anssi; Litkey, Paula

    2009-01-01

    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties. PMID:22574045

  2. Lunar stepping stones to a manned Mars exploration scenario

    NASA Technical Reports Server (NTRS)

    Davidson, W. L.; Stump, W. R.

    1992-01-01

    The initial trips to Mars by humans will be the first real severing of our dependence on Earth's environment. Common sense dictates that a human departure from Earth measured in years, to explore a distant planet, requires systems, techniques, and operations that have solid credibility proven with space experience. The space test and verification experience must occur with Mars-like conditions but under proving-ground conditions with good instrumentation, close monitoring, and fast emergency recovery capabilities. The lunar environment is the only arena that satisfies the requirements of a space recovery capabilities. The lunar environment is the only arena that satisfies the requirements of a space planetary proving-ground. The objective of this scenario is to demonstrate a program planning approach that has human presence at Mars as the goal but, prudently, capitalizes on manned lunar project facilities, operations, and experience to enable a safe journey for the first Mars crews. The emphasis in lunar application objectives is to perform productive science and resources exploitation missions. Most of the Mars mission aspects can be proven in the lunar environment providing 'stepping stones' to conducting the first human mission to travel to Mars and return safely to Earth.

  3. GROUND-WATER MODEL TESTING: SYSTEMATIC EVALUATION AND TESTING OF CODE FUNCTIONALITY AND PERFORMANCE

    EPA Science Inventory

    Effective use of ground-water simulation codes as management decision tools requires the establishment of their functionality, performance characteristics, and applicability to the problem at hand. This is accomplished through application of a systematic code-testing protocol and...

  4. International Aerospace and Ground Conference on Lightning and Static Electricity (8th): Lightning Technology Roundup, held at Fort Worth, Texas on 21-23 June 1983.

    DTIC Science & Technology

    1983-06-01

    fighter aircraft. The entire test bed is from testing of a representative digital supported above the ground plane by non - control system(s)l e.g... control and Increased systems Integration a. Raw data must be collected and Introduce new requirements for protection, experimental setups and An accurate...presented, several possible solutions to the grounding prob! - are suggested. All rely on establishing initial ground contact through a controlled non -zero

  5. The Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, undergoing ground testing prior to flight on Dryden's F-15B Research Testbed aircraft

    NASA Image and Video Library

    2001-03-28

    The Aerostructures Test Wing (ATW) experiment, which consisted of an 18-inch carbon fiber test wing with surface-mounted piezoelectric strain actuators, undergoing ground testing prior to flight on Dryden's F-15B Research Testbed aircraft

  6. Availability of ground water in parts of the Acoma and Laguna Indian Reservations, New Mexico

    USGS Publications Warehouse

    Dinwiddie, George A.; Motts, Ward Sundt

    1964-01-01

    The need for additional water has increased in recent years on the Acoma and Laguna Indian Reservations in west-central New Mexico because the population and per capita use of water have increased; the tribes also desire water for light industry, for more modern schools, and to increase their irrigation program. Many wells have been drilled in the area, but most have been disappointing because of small yields and poor chemical quality of the water. The topography in the Acoma and Laguna Indian Reservations is controlled primarily by the regional and local dip of alternating beds of sandstone and shale and by the igneous complex of Mount Taylor. The entrenched alluvial valley along the Rio San Jose, which traverses the area, ranges in width from about 0.4 mile to about 2 miles. The climate is characterized by scant rainfall, which occurs mainly in summer, low relative humidity, and large daily fluctuations of temperature. Most of the surface water enters the area through the Rio San Jose. The average annual streamflow past the gaging station Rio San Jose near Grants, N. Mex. is about 4,000 acre-feet. Tributaries to the Rio San Jose within the area probably contribute about 1,000 acre-feet per year. At the present time, most of the surface water is used for irrigation. Ground water is obtained from consolidated sedimentary rocks that range in age from Triassic to Cretaceous, and from unconsolidated alluvium of Quaternary age. The principal aquifers are the Dakota Sandstone, the Tres Hermanos Sandstone Member of the Mancos Shale, and the alluvium. The Dakota Sandstone yields 5 to 50 gpm (gallons per minute) of water to domestic and stock wells. The Tres Hermanos sandstone Member generally yields 5 to 20 gpm of water to domestic and stock wells. Locally, beds of sandstone in the Chinle and Morrison Formations, the Entrada Sandstone, and the Bluff Sandstone also yield small supplies of water to domestic and stock wells. The alluvium yields from 2 gpm to as much as 150 gpm of water to domestic and stock wells. Thirteen test wells were drilled in a search for usable supplies of ground water for pueblo and irrigation supply and to determine the geologic and hydrologic characteristics of the water-bearing material. The performance of six of the test wells suggests that the sites are favorable for pueblo or irrigation supply wells. The yield of the other seven wells was too small or the quality of the water was too poor for development of pueblo or irrigation supply to be feasible. However, the water from one of the seven wells was good in chemical quality, and the yield was large enough to supply a few homes with water. The tests suggest that the water in the alluvium of the Rio San Jose valley is closely related to the streamflow and that it might be possible to withdraw from the alluvium in summer and replenish it in winter. The surface flow in summer might be decreased by extensive pumpage of ground water, but on the other hand, more of the winter flow could be retained in the area by storage in the ground-water reservoir. Wells could be drilled along the axis of the valley, and the water could be pumped into systems for distribution to irrigated farms. The chemical quality of ground water in the area varies widely from one stratigraphic unit to another and laterally within each unit and commonly the water contains undesirably large amounts of sulfate. However, potable water has been obtained locally from all the aquifers. The water of best quality seemingly is in the Tres Hermanos Sandstone Member of the Mancos Shale and in the alluvium north of the Rio San Jose. The largest quantity of water that is suitable for irrigation is in the valley fill along the Rio San Jose. Intensive pumping of ground water from aquifers containing water of good quality may draw water of inferior chemical quality into the wells.

  7. Whirling Arm Tests on the Effect of Ground Proximity to an Airplane Wing

    NASA Technical Reports Server (NTRS)

    Long, M. E.

    1944-01-01

    This report gives the results of tests on a rectangular wing model with a 20% full spun split flap, conducted on the whirling arm at the Daniel Guggenheim Airship Institute in Akron, Ohio. The effect of a ground board on the lift and pitching moment was measured. The ground board consisted of an inclined ramp rising up in the test channel to a level floor extending for some distance parallel to the model path. The path of the wing model with respect to the ground board accordingly represented with comparative exactness an airplane coming in for a landing. The ground clearances over the level portion of the board varied from 0 6 to 1,6 chord lengths. Results are given in the standard dimensionless coefficients plotted versus angle of attack for a particular ground clearance. The effect of the ground board is to increase the lift coefficient for a given angle of attack all the way up the stall. The magnitude of the increase varies both with the ground clearance and the angle of attack. The effect on the pitching moment coefficient is not so readily apparent due to experimental difficulties but, in general, the diving moment increases over the ground board. This effect is apparent principally at the high angles of attack. An exception to this effect occurs with flaps deflected at the lowest ground clearance (0.6 chords). Here the diving moment decreases over the ground board.

  8. New methods for engineering site characterization using reflection and surface wave seismic survey

    NASA Astrophysics Data System (ADS)

    Chaiprakaikeow, Susit

    This study presents two new seismic testing methods for engineering application, a new shallow seismic reflection method and Time Filtered Analysis of Surface Waves (TFASW). Both methods are described in this dissertation. The new shallow seismic reflection was developed to measure reflection at a single point using two to four receivers, assuming homogeneous, horizontal layering. It uses one or more shakers driven by a swept sine function as a source, and the cross-correlation technique to identify wave arrivals. The phase difference between the source forcing function and the ground motion due to the dynamic response of the shaker-ground interface was corrected by using a reference geophone. Attenuated high frequency energy was also recovered using the whitening in frequency domain. The new shallow seismic reflection testing was performed at the crest of Porcupine Dam in Paradise, Utah. The testing used two horizontal Vibroseis sources and four receivers for spacings between 6 and 300 ft. Unfortunately, the results showed no clear evidence of the reflectors despite correction of the magnitude and phase of the signals. However, an improvement in the shape of the cross-correlations was noticed after the corrections. The results showed distinct primary lobes in the corrected cross-correlated signals up to 150 ft offset. More consistent maximum peaks were observed in the corrected waveforms. TFASW is a new surface (Rayleigh) wave method to determine the shear wave velocity profile at a site. It is a time domain method as opposed to the Spectral Analysis of Surface Waves (SASW) method, which is a frequency domain method. This method uses digital filtering to optimize bandwidth used to determine the dispersion curve. Results from testings at three different sites in Utah indicated good agreement with the dispersion curves measured using both TFASW and SASW methods. The advantage of TFASW method is that the dispersion curves had less scatter at long wavelengths as a result from wider bandwidth used in those tests.

  9. A Flight Test of the Strapdown Airborne Gravimeter SGA-WZ in Greenland

    PubMed Central

    Zhao, Lei; Forsberg, René; Wu, Meiping; Olesen, Arne Vestergaard; Zhang, Kaidong; Cao, Juliang

    2015-01-01

    An airborne gravimeter is one of the most important tools for gravity data collection over large areas with mGal accuracy and a spatial resolution of several kilometers. In August 2012, a flight test was carried out to determine the feasibility and to assess the accuracy of the new Chinese SGA-WZ strapdown airborne gravimeter in Greenland, in an area with good gravity coverage from earlier marine and airborne surveys. An overview of this new system SGA-WZ is given, including system design, sensor performance and data processing. The processing of the SGA-WZ includes a 160 s length finite impulse response filter, corresponding to a spatial resolution of 6 km. For the primary repeated line, a mean r.m.s. deviation of the differences was less than 1.5 mGal, with the error estimate confirmed from ground truth data. This implies that the SGA-WZ could meet standard geophysical survey requirements at the 1 mGal level. PMID:26057039

  10. Competition among cooperators: Altruism and reciprocity

    PubMed Central

    Danielson, Peter

    2002-01-01

    Levine argues that neither self-interest nor altruism explains experimental results in bargaining and public goods games. Subjects' preferences appear also to be sensitive to their opponents' perceived altruism. Sethi and Somanathan provide a general account of reciprocal preferences that survive under evolutionary pressure. Although a wide variety of reciprocal strategies pass this evolutionary test, Sethi and Somanthan conjecture that fewer are likely to survive when reciprocal strategies compete with each other. This paper develops evolutionary agent-based models to test their conjecture in cases where reciprocal preferences can differ in a variety of games. We confirm that reciprocity is necessary but not sufficient for optimal cooperation. We explore the theme of competition among reciprocal cooperators and display three interesting emergent organizations: racing to the “moral high ground,” unstable cycles of preference change, and, when we implement reciprocal mechanisms, hierarchies resulting from exploiting fellow cooperators. If reciprocity is a basic mechanism facilitating cooperation, we can expect interaction that evolves around it to be complex, non-optimal, and resistant to change. PMID:12011403

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lave, Matthew Samuel; Stein, Joshua S.; Burnham, Laurie

    A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, wheremore » the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).« less

  12. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    PubMed Central

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment. PMID:24982951

  13. Hybrid Smith predictor and phase lead based divergence compensation for hardware-in-the-loop contact simulation with measurement delay

    NASA Astrophysics Data System (ADS)

    Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye

    2018-06-01

    On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.

  14. Construction and demolition waste as a source of PVC for recycling.

    PubMed

    Prestes, Sabrina Moretto Darbello; Mancini, Sandro Donnini; Rodolfo, Antonio; Keiroglo, Raquel Carramillo

    2012-02-01

    Construction and demolition waste can contain considerable amounts of polyvinyl chloride (PVC). This paper describes a study of the recycling of PVC pipes collected from such waste materials. In a sorting facility for the specific disposal of construction and demolition waste, PVC was found to represent one-third of the plastics separated by workers. Pipes were sorted carefully to preclude any possible contamination by poly(ethylene terephthalate) (PET) found in the waste. The material was ground into two distinct particle sizes (final mesh of 12.7 and 8 mm), washed, dried and recycled. The average formulation of the pipes was determined based on ash content tests and used in the fabrication of a similar compound made mainly of virgin PVC. Samples of recycled pipes and of compound based on virgin material were subjected to tensile and impact tests and provided very similar results. These results are a good indication of the application potential of the recycled material and of the fact that longer grinding to obtain finer particles is not necessarily beneficial.

  15. Measurements of Ground-Level Muons at Two Geomagnetic Locations

    NASA Astrophysics Data System (ADS)

    Kremer, J.; Boezio, M.; Ambriola, M. L.; Barbiellini, G.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Castellano, M.; Ciacio, F.; Circella, M.; de Marzo, C.; de Pascale, M. P.; Francke, T.; Finetti, N.; Golden, R. L.; Grimani, C.; Hof, M.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Weber, N.; Zampa, N.

    1999-11-01

    We report new measurements of the muon spectra and the muon charge ratio at ground level in the momentum range from 200 MeV/c to 120 GeV/c for two different geomagnetic locations. Above 0.9 GeV/c the absolute spectra measured in the two locations are in good agreement and are about 10% to 15% lower than previous experimental results. At lower momenta the data show latitude dependent geomagnetic effects. These observations are important for the understanding of the observed neutrino anomaly.

  16. Side-welded fast response sheathed thermocouple

    DOEpatents

    Carr, K.R.

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4 to 5 times faster and the thermal shock and cycling capabilities are substantially improved.

  17. Design of a Stagnation Heater for the Rarefied Gas Wing Tunnel

    DTIC Science & Technology

    1990-12-01

    parts are ground together with zirconia powder as the medium, then fired to help make a good seal. The zirconia disk size, 6" diameter by 1" thick...pressure vessel, with zirconia powder . This is an interesting concept. With each grain of powder radiating to and from neighboring grains, it could...meets ASTM SA 106 Grade B. " zirconia powder " = Wanted powder with a 30-50 j tm grain size to help make the ground tapered joint between the zirconia tube

  18. Side-welded fast response sheathed thermocouple

    DOEpatents

    Carr, Kenneth R.

    1981-01-01

    A method of fabricating the measuring junction of a grounded-junction sheathed thermocouple to obtain fast time response and good thermal cycling performance is provided. Slots are tooled or machined into the sheath wall at the measuring junction, the thermocouple wires are laser-welded into the slots. A thin metal closure cap is then laser-welded over the end of the sheath. Compared to a conventional grounded-junction thermocouple, the response time is 4-5 times faster and the thermal shock and cycling capabilities are substantially improved.

  19. Topside and ground ionosonde observations of a mid-latitude scintillation region

    NASA Astrophysics Data System (ADS)

    Hajkowicz, L. A.

    1982-02-01

    Ionospheric amplitude scintillations of transmissions in the VHF range from orbiting satellites were compared with topside and ground (bottomside) ionograms of an inhomogeneous region in southern mid-latitudes. It is evident that, for the event considered, there is a good spatial correlation between intense topside and bottomside spread-F and scintillations. The ionospheric disturbance pattern appears to agree with a quasi-sinusoidal model of frontal disturbances (derived from the angle-of-arrival experiments) in the F-region at these geographic latitudes.

  20. New results of ground target based calibration of MOS on IRS

    NASA Astrophysics Data System (ADS)

    Schwarzer, Horst H.; Franz, Bryan A.; Neumann, Andreas; Suemnich, Karl-Heinz; Walzel, Thomas; Zimmermann, Gerhard

    2002-09-01

    The success of the Modular Optoelectronic Scanner MOS on the Indian Remote Sensing Satellite IRS-P3 during the 6 years mission time has been based on its sophisticated in-orbit calibration concept to a large extent. When the internal lamp and the sun calibration failed in September 2000 we tested the possibility of ground target based (or vicarious) calibration of the MOS instruments to continue the high data quality. This is essential for future watching of global changes of the ocean coastal zones (phytoplancton, sediments, pollution, etc.) using spectral measurements of the VIS/NIR MOS spectral channels. The investigations have shown the suitability of a part of the Great Eastern Erg in the Sahara desert for this purpose. The satellite crosses this very homogeneous area every 24 days. Because of the good cloudfree conditions we can use 6 - 8 overflys a year for calibration. The seasonal variability of the surface reflectance is very small so that we obtain relative calibration data of sufficient accuracy even without ground truth measurements for most of the channels. The trend of this "vicarious" calibration corresponds very well with the previous trend of the failed lamp and sun calibration. Dfferences between the three methods will be discussed. In the paper we will also present the results of a comparison between SeaWiFS and MOS data of comparable spectral channels from the Great Eastern Erg area. They confirm the suitability of this area for calibration purposes too.

  1. Geology and ground-water resources of the Douglas basin, Arizona, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Coates, Donald Robert; Cushman, R.L.; Hatchett, James Lawrence

    1955-01-01

    year period 1947-51, inclusive. Most irrigation wells in the Douglas basin are less than 200 feet in depth and usually produce less than 400 gpm (gallons per minute). The average specific capacity of the wells is about 12 gpm per foot of drawdown. Although water in some parts of the basin is artesian, all irrigation wells must be pumped. Ground water in the basin is generally of excellent to good quality for irrigation use, In small areas along the southern part of Whitewater Draw and east of Douglas the ground water is high in dissolved-solids content. Although most of the water is hard, it is generally satisfactory for domestic use. In many areas the fluoride content is more than 1.5 ppm (parts per million).

  2. 14 CFR 29.663 - Ground resonance prevention means.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ground resonance prevention means. 29.663... Ground resonance prevention means. (a) The reliability of the means for preventing ground resonance must... or tests that malfunction or failure of a single means will not cause ground resonance. (b) The...

  3. 14 CFR 29.663 - Ground resonance prevention means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ground resonance prevention means. 29.663... Ground resonance prevention means. (a) The reliability of the means for preventing ground resonance must... or tests that malfunction or failure of a single means will not cause ground resonance. (b) The...

  4. Inverter Ground Fault Overvoltage Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  5. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  6. Studies of the g factors of the ground 4A2 and the first excited 2E state of Cr 3+ ions in emerald

    NASA Astrophysics Data System (ADS)

    Wei, Qun; Guo, Li-Xin; Yang, Zi-Yuan; Wei, Bing

    2011-09-01

    By using complete diagonalization method, the zero-field splitting and g factors of the ground 4A2 and the first excited 2E states of Cr 3+ ions in emerald are calculated. The theoretical results are in good agreement with the experimental data. The dependencies of the g factors on the crystal field parameters, including Dq, v, and v', have been studied. It is shown that, the g factors of the ground state varied with the crystal field parameters approximately in a linear way, but the g factors of the first excited state varied nonlinearly with these parameters.

  7. Trust matters: a cross-cultural comparison of Northern Ghana and Oaxaca groups

    PubMed Central

    Acedo-Carmona, Cristina; Gomila, Antoni

    2015-01-01

    A cross-cultural analysis of trust and cooperation networks in Northern Ghana (NGHA) and Oaxaca (OAX) was carried out by means of ego networks and interviews. These regions were chosen because both are inhabited by several ethnic groups, thus providing a good opportunity to test the cultural group selection hypothesis. Against the predictions of this approach, we found that in both regions cooperation is grounded in personal trust groups, and that social cohesion depends on these emotional bonds. Moreover, in agreement with Fiske's notion of “evolved proclivities,” we also found two distinct kinds of trust networks, one for each region, which vary in terms of the degree of ethnic interrelation. This pattern suggests that social cohesion increases when environmental resources are scarce. PMID:26052296

  8. Finite element-integral simulation of static and flight fan noise radiation from the JT15D turbofan engine

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Horowitz, S. J.

    1982-01-01

    An iterative finite element integral technique is used to predict the sound field radiated from the JT15D turbofan inlet. The sound field is divided into two regions: the sound field within and near the inlet which is computed using the finite element method and the radiation field beyond the inlet which is calculated using an integral solution technique. The velocity potential formulation of the acoustic wave equation was employed in the program. For some single mode JT15D data, the theory and experiment are in good agreement for the far field radiation pattern as well as suppressor attenuation. Also, the computer program is used to simulate flight effects that cannot be performed on a ground static test stand.

  9. User's guide for the Solar Backscattered Ultraviolet (SBUV) instrument first year ozone-S data set

    NASA Technical Reports Server (NTRS)

    Fleig, A. J.; Klenk, K. F.; Bhartia, P. K.; Gordon, D.; Schneider, W. H.

    1982-01-01

    Total-ozone and ozone vertical profile results for Solar Backscattered Ultraviolet/Total Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus 7 operation from November 1978 to November 1979 are available. The algorithm used have been thoroughly tested, the instrument performance has been examined in details, and the ozone results have been compared with Dobson, Umkehr, balloon, and rocket observations. The accuracy and precision of the satellite ozone data are good to at least within the ability of the ground truth to check and are self-consistent to within the specifications of the instrument. The 'SBUV User's Guide' describes the SBUV experiment and algorithms used. Detailed information on the data available on computer tape is provided including how to order tapes from the National Space Science Data Center.

  10. NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; hide

    2011-01-01

    Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.

  11. Can space station software be specified through Ada?

    NASA Technical Reports Server (NTRS)

    Knoebel, Arthur

    1987-01-01

    Programming of the space station is to be done in the Ada programming language. A breadboard of selected parts of the work package for Marshall Space Flight Center is to be built, and programming this small part will be a good testing ground for Ada. One coding of the upper levels of the design brings out several problems with top-down design when it is to be carried out strictly within the language. Ada is evaluated on the basis of this experience, and the points raised are compared with other experience as related in the literature. Rapid prototyping is another approach to the initial programming; several different types of prototypes are discussed, and compared with the art of specification. Some solutions are proposed and a number of recommendations presented.

  12. An algorithm for automating the registration of USDA segment ground data to LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Graham, M. H. (Principal Investigator)

    1981-01-01

    The algorithm is referred to as the Automatic Segment Matching Algorithm (ASMA). The ASMA uses control points or the annotation record of a P-format LANDSAT compter compatible tape as the initial registration to relate latitude and longitude to LANDSAT rows and columns. It searches a given area of LANDSAT data with a 2x2 sliding window and computes gradient values for bands 5 and 7 to match the segment boundaries. The gradient values are held in memory during the shifting (or matching) process. The reconstructed segment array, containing ones (1's) for boundaries and zeros elsewhere are computer compared to the LANDSAT array and the best match computed. Initial testing of the ASMA indicates that it has good potential for replacing the manual technique.

  13. New approach to the ecotoxicological risk assessment of artificial outdoor sporting grounds.

    PubMed

    Krüger, O; Kalbe, U; Richter, E; Egeler, P; Römbke, J; Berger, W

    2013-04-01

    Artificial surfaces for outdoor sporting grounds may pose environmental and health hazards that are difficult to assess due to their complex chemical composition. Ecotoxicity tests can indicate general hazardous impacts. We conducted growth inhibition (Pseudokirchneriella subcapitata) and acute toxicity tests (Daphnia magna) with leachates obtained from batch tests of granular infill material and column tests of complete sporting ground assemblies. Ethylene propylene diene monomer rubber (EPDM) leachate showed the highest effect on Daphnia magna (EC(50) < 0.4% leachate) and the leachate of scrap tires made of styrene butadiene rubber (SBR) had the highest effect on P. subcapitata (EC(10) = 4.2% leachate; EC(50) = 15.6% leachate). We found no correlations between ecotoxicity potential of leachates and zinc and PAH concentrations. Leachates obtained from column tests revealed lower ecotoxicological potential. Leachates of column tests of complete assemblies may be used for a reliable risk assessment of artificial sporting grounds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties

    PubMed Central

    Galbusera, Fabio; Jonas, René; Schlager, Benedikt; Wilke, Hans-Joachim; Villa, Tomaso

    2017-01-01

    The Ovine spine is an accepted model to investigate the biomechanical behaviour of the human lumbar one. Indeed, the use of animal models for in vitro studies is necessary to investigate the mechanical behaviour of biological tissue, but needs to be reduced for ethical and social reasons. The aim of this study was to create a finite element model of the lumbar intervertebral disc of the sheep that may help to refine the understanding of parallel in vitro experiments and that can be used to predict when mechanical failure occurs. Anisotropic hyperelastic material properties were assigned to the annulus fibrosus and factorial optimization analyses were performed to find out the optimal parameters of the ground substance and of the collagen fibers. For the ground substance of the annulus fibrosus the investigation was based on experimental data taken from the literature, while for the collagen fibers tensile tests on annulus specimens were conducted. Flexibility analysis in flexion-extension, lateral bending and axial rotation were conducted. Different material properties for the anterior, lateral and posterior regions of the annulus were found. The posterior part resulted the stiffest region in compression whereas the anterior one the stiffest region in tension. Since the flexibility outcomes were in a good agreement with the literature data, we considered this model suitable to be used in conjunction with in vitro and in vivo tests to investigate the mechanical behaviour of the ovine lumbar disc. PMID:28472100

  15. Design and first tests of a Macroseismic Sensor System

    NASA Astrophysics Data System (ADS)

    Brueckl, Ewald; Polydor, Stefan; Ableitinger, Klaus; Rafeiner-Magor, Walter; Kristufek, Werner; Mertl, Stefan; Lenhardt, Wolfgang

    2017-04-01

    Seismic observatories are located in remote, low-noise areas for good reason and do not probe areas of dense and sensitive infrastructure. Complementary macroseismic data provide dense, qualitative information on ground motion in populated areas. Motivated by the QCN (Quake Catcher Network), a new low-cost sensor system (Macroseismic Sensor System = MSS) has been developed to support the evaluation of macroseismic data with quantitative information on ground movement in populated and industrial areas. Scholars, alumni and teachers from a technical high school contributed substantially to this development within the Sparkling Science project Schools & Quakes and the Citizen Science project QuakeWatch Austria. The MSS uses horizontal 4.5 Hz geophones and 16Bit AD conversion, and 100 Hz sampling, formatting to MiniSeed, and continuous data transmission via LAN or WLAN to a server are controlled by an integrated microcomputer (Raspberry Pi). Real-time generation of shake and source maps (based on proxies of the PGV in successive time windows) allows for differentiation between local seismic events (e.g., traffic noise, shock close to the sensor) and signals from earthquakes or quarry blasts. The inherent noise of the MSS is about 1% of the PGV corresponding to the lower boundary of intensity I = 2, which is below the ambient noise level at stations in highly populated or industrial areas. The MSS is already being tested at locations around a quarry with regular production blasts. An expansion to a local network in the Vienna Basin will be the next step.

  16. DTM Generation Through Uav Survey with a Fisheye Camera on a Vineyard

    NASA Astrophysics Data System (ADS)

    Ronchetti, G.; Pagliari, D.; Sona, G.

    2018-05-01

    Precision agriculture recommends a sustainable employment of nutrients and water, according to the site-specific crop requirements. In this context, the knowledge of soil characteristics allows to appropriately manage resources. Even the topography can influence the spatial distribution of the water on a field. This work focuses on the production of high-resolution Digital Terrain Model (DTM) in agriculture by photogrammetric processing fisheye images, acquired with very light Unmanned Aerial Vehicle (UAV). Particular attention is given to the data processing procedures and to the assessment of the quality of the results, considering the peculiarity of the acquired images. An experimental test has been carried out on a vineyard located in Monzambano, Northern Italy, through photogrammetric survey with Parrot Bebop 2 UAV. It has been realized at the end of the vegetation season, to investigate the ground without any impediment due to the presence of leaves or branches. In addition, the survey has been used for evaluating the performance of Bebop fisheye camera in viticulture. Different flight strategies have been tested, together with different Ground Control Points (GCPs) and Check Points (CPs) configurations and software packages. The computed DTMs have been compared with a reference model obtained through Kriging interpolation of GNSS-RTK measurements. Residuals on CPs are of the order of 0.06 m, for all the considered scenarios, that for agricultural applications is by far sufficient. The photogrammetric DTMs show a good agreement with the reference one.

  17. Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-Wei; Bai, Xu; Hu, Ji-Lei; Qiu, Jiang-Nan

    2018-05-01

    Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral spreading are responsible for considerable damage to engineering structures during major earthquakes. Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards in one model. This is because of the uncertainties and complexity of the factors related to seismic liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and lateral spreading into a model based on standard penetration test data. The constructed BN model can assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms an artificial neural network and Ishihara and Yoshimine's simplified method in terms of accuracy, Brier score, recall, precision, and area under the curve (AUC) of the receiver operating characteristic (ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in Japan's 2011 Tōhoku earthquake confirms its correctness and reliability compared with the liquefaction potential index approach. The proposed BN model can also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction process of liquefaction-induced hazards and perform backward reasoning. The assessment results from the proposed model provide informative guidelines for decision-makers to detect the damage state of a field following liquefaction.

  18. Development of FWIGPR, an open-source package for full-waveform inversion of common-offset GPR data

    NASA Astrophysics Data System (ADS)

    Jazayeri, S.; Kruse, S.

    2017-12-01

    We introduce a package for full-waveform inversion (FWI) of Ground Penetrating Radar (GPR) data based on a combination of open-source programs. The FWI requires a good starting model, based on direct knowledge of field conditions or on traditional ray-based inversion methods. With a good starting model, the FWI can improve resolution of selected subsurface features. The package will be made available for general use in educational and research activities. The FWIGPR package consists of four main components: 3D to 2D data conversion, source wavelet estimation, forward modeling, and inversion. (These four components additionally require the development, by the user, of a good starting model.) A major challenge with GPR data is the unknown form of the waveform emitted by the transmitter held close to the ground surface. We apply a blind deconvolution method to estimate the source wavelet, based on a sparsity assumption about the reflectivity series of the subsurface model (Gholami and Sacchi 2012). The estimated wavelet is deconvolved from the data and the sparsest reflectivity series with fewest reflectors. The gprMax code (www.gprmax.com) is used as the forward modeling tool and the PEST parameter estimation package (www.pesthomepage.com) for the inversion. To reduce computation time, the field data are converted to an effective 2D equivalent, and the gprMax code can be run in 2D mode. In the first step, the user must create a good starting model of the data, presumably using ray-based methods. This estimated model will be introduced to the FWI process as an initial model. Next, the 3D data is converted to 2D, then the user estimates the source wavelet that best fits the observed data by sparsity assumption of the earth's response. Last, PEST runs gprMax with the initial model and calculates the misfit between the synthetic and observed data, and using an iterative algorithm calling gprMax several times ineach iteration, finds successive models that better fit the data. To gauge whether the iterative process has arrived at a local or global minima, the process can be repeated with a range of starting models. Tests have shown that this package can successfully improve estimates of selected subsurface model parameters for simple synthetic and real data. Ongoing research will focus on FWI of more complex scenarios.

  19. Grounding the figure.

    PubMed

    Calis, G; Leeuwenberg, E

    1981-12-01

    Coding rules can be formulated in which the shortest description of a figure-ground pattern exhibits a hierarchical structure, with the ground playing a primary and the figure a secondary role. We hypothesized that the process of perception involves and assimilation phase followed by a test phase in which the ground is tested before the figure. Experiments are described in which pairs of consecutive, superimposed patterns are presented in rapid succession, resulting in a subjective impression of seeing one pattern only. In these presentations, the second pattern introduces some deliberate distortion of the figure or ground displayed in the first pattern. Maximal distortions of the ground occur at shorter stimulus onset asynchronies than maximal distortions of the figure, suggesting that the ground codes are processed before figure codes. Moreover, patterns presenting the ground first are more likely to be perceived as ground, regardless of the distortions, than patterns presenting the figure first. This quasi masking or microgenetic approach might be relevant to theories on :mediations of immediate, or direct" perception.

  20. 77 FR 49867 - Migratory Bird Hunting; Proposed Frameworks for Late-Season Migratory Bird Hunting Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... fixed- wing aircraft, helicopters, and ground crews and encompass principal breeding areas of North.... Conditions throughout Alaska and northwestern Canada were good. The exception was the Yukon-Kuskokwim Delta...

  1. New broadband square-law detector

    NASA Technical Reports Server (NTRS)

    Reid, M. S.; Gardner, R. A.; Stelzried, C. T.

    1975-01-01

    Compact device has wide dynamic range, accurate square-law response, good thermal stability, high-level dc output with immunity to ground-loop problems, ability to insert known time constants for radiometric applications, and fast response times compatible with computer systems.

  2. Heating and Cooling from the Ground Up.

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Explains why converting to geothermal heating and cooling is a good option when constructing or retrofitting schools. Reasons discussed include competitive installation costs, lower operating and maintenance costs, greater building-design flexibility, and greater user satisfaction. (GR)

  3. 75 FR 77650 - Buy American Exceptions Under the American Recovery and Reinvestment Act of 2009

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-13

    ... Housing Authority for the purchase and installation of microwave ovens and Ground Fault Circuit... HUD on the basis that the relevant manufactured goods (GFCI outlets and microwave ovens) are not...

  4. A diabatic circulation two-dimensional model with photochemistry - Simulations of ozone and long-lived tracers with surface sources

    NASA Technical Reports Server (NTRS)

    Stordal, F.; Isaksen, I. S. A.; Horntveth, K.

    1985-01-01

    Numerous studies have been concerned with the possibility of a reduction of the stratospheric ozone layer. Such a reduction could lead to an enhanced penetration of ultraviolet (UV) radiation to the ground, and, as a result, to damage in the case of several biological processes. It is pointed out that the distributions of many trace gases, such as ozone, are governed in part by transport processes. The present investigation presents a two-dimensional photochemistry-transport model using the residual circulation. The global distribution of both ozone and components with ground sources computed in this model is in good agreement with the observations even though slow diffusion is adopted. The agreement is particularly good in the Northern Hemisphere. The results provide additional support for the idea that tracer transport in the stratosphere is mainly of advective nature.

  5. Approximating local observables on projected entangled pair states

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.

  6. Characterization of an In-Situ Ground Terminal via a Geostationary Satellite

    NASA Technical Reports Server (NTRS)

    Piasecki, Marie T.; Welch, Bryan W.; Mueller, Carl H.

    2015-01-01

    In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus/emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.

  7. Characterization of an In-Situ Ground Terminal via a Geostationary Satellite

    NASA Technical Reports Server (NTRS)

    Piasecki, Marie; Welch, Bryan; Mueller, Carl

    2015-01-01

    In 2015, the Space Communications and Navigation (SCaN) Testbed project completed an S-Band ground station located at the NASA Glenn Research Center in Cleveland, Ohio. This S-Band ground station was developed to create a fully characterized and controllable dynamic link environment when testing novel communication techniques for Software Defined Radios and Cognitive Communication Systems. In order to provide a useful environment for potential experimenters, it was necessary to characterize various RF devices at both the component level in the laboratory and at the system level after integration. This paper will discuss some of the laboratory testing of the ground station components, with a particular focus emphasis on the near-field measurements of the antenna. It will then describe the methodology for characterizing the installed ground station at the system level via a Tracking and Data Relay Satellite (TDRS), with specific focus given to the characterization of the ground station antenna pattern, where the max TDRS transmit power limited the validity of the non-noise floor received power data to the antenna main lobe region. Finally, the paper compares the results of each test as well as provides lessons learned from this type of testing methodology.

  8. Characteristics of ground motion at permafrost sites along the Qinghai-Tibet railway

    USGS Publications Warehouse

    Wang, L.; Wu, Z.; Sun, Jielun; Liu, Xiuying; Wang, Z.

    2009-01-01

    Based on 14 typical drilling holes distributed in the permafrost areas along the Qinghai-Tibet railway, the distribution of wave velocities of soils in the permafrost regions were determined. Using results of dynamic triaxial tests, the results of dynamic triaxiality test and time histories of ground motion acceleration in this area, characteristics of ground motion response were analyzed for these permafrost sites for time histories of ground accelerations with three exceedance probabilities (63%, 10% and 2%). The influence of ground temperature on the seismic displacement, velocity, acceleration and response spectrum on the surface of permafrost were also studied. ?? 2008 Elsevier Ltd. All rights reserved.

  9. Study on Diagnosing Three Dimensional Cloud Region

    NASA Astrophysics Data System (ADS)

    Cai, M., Jr.; Zhou, Y., Sr.

    2017-12-01

    Cloud mask and relative humidity (RH) provided by Cloudsat products from 2007 to 2008 are statistical analyzed to get RH Threshold between cloud and clear sky and its variation with height. A diagnosis method is proposed based on reanalysis data and applied to three-dimensional cloud field diagnosis of a real case. Diagnostic cloud field was compared to satellite, radar and other cloud precipitation observation. Main results are as follows. 1.Cloud region where cloud mask is bigger than 20 has a good space and time corresponding to the high value relative humidity region, which is provide by ECWMF AUX product. Statistical analysis of the RH frequency distribution within and outside cloud indicated that, distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of 100%. Local atmospheric environment affects the RH distribution outside cloud, which leads to TH distribution vary in different region or different height. 2. RH threshold and its vertical distribution used for cloud diagnostic was analyzed from Threat Score method. The method is applied to a three dimension cloud diagnosis case study based on NCEP reanalysis data and th diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground. It is found that, RH gradient is very big around cloud region and diagnosed cloud area by RH threshold method is relatively stable. Diagnostic cloud area has a good corresponding to updraft region. The cloud and clear sky distribution corresponds to satellite the TBB observations overall. Diagnostic cloud depth, or sum cloud layers distribution consists with optical thickness and precipitation on ground better. The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly. Diagnostic cloud distribution correspond to cloud observations on ground very well. 3. The method is improved by changing the vertical interval from altitude to temperature. The result shows that, the five factors , including TS score for clear sky, empty forecast, missed forecast, and especially TS score for cloud region and the accurate rate increased obviously. So, the RH threshold and its vertical distribution with temperature is better than with altitude. More tests and comparision should be done to assess the diagnosis method.

  10. Ground water in the Springfield-Salem plateaus of southern Missouri and northern Arkansas

    USGS Publications Warehouse

    Harvey, Edward Joseph

    1980-01-01

    Average ground-water conditions have not changed significantly in the Springfield-Salem plateaus section of southern Missouri and northern Arkansas in the past 25 years except in the vicinity of well fields. The amount of ground water pumped is approximately 200 cubic feet per second, which is about 5 percent of the total discharge at the 80 percent point on flow-duration curves for major streams. Ground-water recharge is variable and occurs through sinkholes by infiltration in upland areas of good permeability, and through streambeds that lose flow. Main waterbearing zones lie in the Potosi Dolomite and the lower dolomite and sandstone of the Gasconade Dolomite. Cavernous connections from ground surface to depths as great as 1,500 feet occur in the West Plains area, Mo., and result in deep circulation of water. Municipal well-water in the area often becomes turbid after rainstorms, despite well depths of 1 ,500 feet and 950 to 1,000 feet of pressure-grouted casing. Ground-water movement is generaly north and south from the crest of the Springfield-Salem plateaus, which extend across southern Missouri from the St. Francois Mountains to the southwest. Interbasin diversion of surface- and ground-water flow is common. (USGS)

  11. Atomic oxygen effects on boron nitride and silicon nitride: A comparison of ground based and space flight data

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) were evaluated in a low Earth orbit (LEO) flight experiment and in a ground based simulation facility. In both the inflight and ground based experiments, these materials were coated on thin (approx. 250A) silver films, and the electrical resistance of the silver was measured in situ to detect any penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the inflight and ground based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the inflight or ground based experiments. The ground based results show good qualitative correlation with the LEO flight results, indicating that ground based facilities such as the one at Los Alamos National Lab can reproduce space flight data from LEO.

  12. A comparison of ground-based and space flight data: Atomic oxygen reactions with boron nitride and silicon nitride

    NASA Technical Reports Server (NTRS)

    Cross, J. B.; Lan, E. H.; Smith, C. A.; Whatley, W. J.; Koontz, S. L.

    1990-01-01

    The effects of atomic oxygen on boron nitride (BN) and silicon nitride (Si3N4) have been studied in low Earth orbit (LEO) flight experiments and in a ground-based simulation facility at Los Alamos National Laboratory. Both the in-flight and ground-based experiments employed the materials coated over thin (approx 250 Angstrom) silver films whose electrical resistance was measured in situ to detect penetration of atomic oxygen through the BN and Si3N4 materials. In the presence of atomic oxygen, silver oxidizes to form silver oxide, which has a much higher electrical resistance than pure silver. Permeation of atomic oxygen through BN, as indicated by an increase in the electrical resistance of the silver underneath, was observed in both the in-flight and ground-based experiments. In contrast, no permeation of atomic oxygen through Si3N4 was observed in either the in-flight or ground-based experiments. The ground-based results show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground-based facility in terms of reproducing LEO flight results.

  13. Evaluation of culture- and PCR-based detection methods for Escherichia coli O157:H7 in inoculated ground beeft.

    PubMed

    Arthur, Terrance M; Bosilevac, Joseph M; Nou, Xiangwu; Koohmaraie, Mohammad

    2005-08-01

    Currently, several beef processors employ test-and-hold systems for increased quality control of ground beef. In such programs, each lot of product must be tested and found negative for Escherichia coli O157:H7 prior to release of the product into commerce. Optimization of three testing attributes (detection time, specificity, and sensitivity) is critical to the success of such strategies. Because ground beef is a highly perishable product, the testing methodology used must be as rapid as possible. The test also must have a low false-positive result rate so product is not needlessly discarded. False-negative results cannot be tolerated because they would allow contaminated product to be released and potentially cause disease. In this study, two culture-based and three PCR-based methods for detecting E. coli O157:H7 in ground beef were compared for their abilities to meet the above criteria. Ground beef samples were individually spiked with five genetically distinct strains of E. coli O157: H7 at concentrations of 17 and 1.7 CFU/65 g and then subjected to the various testing methodologies. There was no difference (P > 0.05) in the abilities of the PCR-based methods to detect E. coli O157:H7 inoculated in ground beef at 1.7 CFU/65 g. The culture-based systems detected more positive samples than did the PCR-based systems, but the detection times (21 to 48 h) were at least 9 h longer than those for the PCR-based methods (7.5 to 12 h). Ground beef samples were also spiked with potentially cross-reactive strains. The PCR-based systems that employed an immunomagnetic separation step prior to detection produced fewer false-positive results.

  14. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    NASA Astrophysics Data System (ADS)

    Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi

    2003-05-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002

  15. TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    DTIC Science & Technology

    2017-12-12

    TYPE Final 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Test Operations Procedure (TOP) 01-1-011B Vehicle Test Facilities at Aberdeen... Test Center and Yuma Test Center 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d. PROJECT NUMBER 5e... Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ

  16. Growing Lots of Food Very Fast Can Hurt our Water for a Long Time, Longer Than You Might Think

    NASA Astrophysics Data System (ADS)

    Van Meter, K. J.; Basu, N. B.

    2016-12-01

    More people arrive here every day, and we keep trying to grow enough food for them to eat. We try to grow more and more by adding things that can hurt our water and our air. We try to keep track of these things that we add, but we don't understand where it all goes. We don't understand how much is in the ground. We don't understand how much is in the water under the ground. We don't understand how long the water will be bad, even after we stop adding things to help grow more food. Many people have tried to stop adding these things, or to stop these things from getting to the water, and they get sad when they have worked hard to do better but the water stays bad. In our work, we try to help people understand how to make the water better, even when they have to grow a lot of food. We have looked at the ground all around where people grow a lot of food, and have found that some of the bad things stay behind in the ground. This means that even when we work hard to make our water good, the things left in the ground might make our water stay bad for a long time. We tried to find out how long it would take to make our water good if we are working our hardest to be better. It will take longer than you might think, maybe three times as many years as you have fingers.

  17. NASA Boeing 757 HIRF test series low power on-the-ground tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poggio, A.J.; Pennock, S.T.; Zacharias, R.A.

    1996-08-01

    The data acquisition phase of a program intended to provide data for the validation of computational, analytical, and experimental techniques for the assessment of electromagnetic effects in commercial transports; for the checkout of instrumentation for following test programs; and for the support of protection engineering of airborne systems has been completed. Funded by the NASA Fly-By-Light/ Power-By-Wire Program, the initial phase involved on-the-ground electromagnetic measurements using the NASA Boeing 757 and was executed in the LESLI Facility at the USAF Phillips Laboratory. The major participants in this project were LLNL, NASA Langley Research Center, Phillips Laboratory, and UIE, Inc. Themore » tests were performed over a five week period during September through November, 1994. Measurements were made of the fields coupled into the aircraft interior and signals induced in select structures and equipment under controlled illumination by RF fields. A characterization of the ground was also performed to permit ground effects to be included in forthcoming validation exercises. This report and the associated test plan that is included as an appendix represent a definition of the overall on-the-ground test program. They include descriptions of the test rationale, test layout, and samples of the data. In this report, a detailed description of each executed test is provided, as is the data identification (data id) relating the specific test with its relevant data files. Samples of some inferences from the data that will be useful in protection engineering and EM effects mitigation are also presented. The test plan which guided the execution of the tests, a test report by UIE Inc., and the report describing the concrete pad characterization are included as appendices.« less

  18. Thermal and Fluid Modeling of the CRYogenic Orbital TEstbed (CRYOTE) Ground Test Article (GTA)

    NASA Technical Reports Server (NTRS)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to data acquired from a ground test article (GTA) for the CRYogenic Orbital TEstbed - CRYOTE. To accomplish this analysis, it was broken into four primary tasks. These included model development, pre-test predictions, testing support at Marshall Space Flight Center (MSFC} and post-test correlations. Information from MSFC facilitated the task of refining and correlating the initial models. The primary goal of the modeling/testing/correlating efforts was to characterize heat loads throughout the ground test article. Significant factors impacting the heat loads included radiative environments, multi-layer insulation (MLI) performance, tank fill levels, tank pressures, and even contact conductance coefficients. This paper demonstrates how analytical thermal/fluid networks were established, and it includes supporting rationale for specific thermal responses seen during testing.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Cappa, Frédéric; Rinaldi, Antonio P.

    In this paper, we present model simulations of ground motions caused by CO 2 -injection-induced fault reactivation and analyze the results in terms of the potential for damage to ground surface structures and nuisance to the local human population. It is an integrated analysis from cause to consequence, including the whole chain of processes starting from earthquake inception in the subsurface, wave propagation toward the ground surface, and assessment of the consequences of ground vibration. For a small magnitude (M w =3) event at a hypocenter depth of about 1000m, we first used the simulated ground-motion wave train in anmore » inverse analysis to estimate source parameters (moment magnitude, rupture dimensions and stress drop), achieving good agreement and thereby verifying the modeling of the chain of processes from earthquake inception to ground vibration. We then analyzed the ground vibration results in terms of peak ground acceleration (PGA), peak ground velocity (PGV) and frequency content, with comparison to U.S. Geological Survey's instrumental intensity scales for earthquakes and the U.S. Bureau of Mines' vibration criteria for cosmetic damage to buildings, as well as human-perception vibration limits. Our results confirm the appropriateness of using PGV (rather than PGA) and frequency for the evaluation of potential ground-vibration effects on structures and humans from shallow injection-induced seismic events. For the considered synthetic M w =3 event, our analysis showed that the short duration, high frequency ground motion may not cause any significant damage to surface structures, but would certainly be felt by the local population.« less

  20. Test Basher Benefit-Cost Analysis.

    ERIC Educational Resources Information Center

    Phelps, Richard P.

    1996-01-01

    Starting in the late 1980s, two teams of researchers, well known for their criticism of standardized tests on equity and validity grounds, began attacking standardized testing on efficiency grounds as well, using cost-benefit analysis to do it. Their analyses are reviewed, and their conclusions discussed. The first team, Lorrie A. Shepard, Amelia…

  1. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    USGS Publications Warehouse

    Wang, A.; Moore, J.C.; Cui, Xingquan; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D.M.; McGuire, A.D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-01-01

     We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135  ×  104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101  × 104 km2). However the uncertainty (1 to 128  ×  104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  2. Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area

    NASA Astrophysics Data System (ADS)

    Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.

    2016-02-01

    We perform a land-surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies among six modern stand-alone land-surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by five different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99 to 135 × 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the observation-based estimate of actual permafrost area (101 × 104 km2). However the uncertainty (1 to 128 × 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on the TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air-temperature-based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification, vegetation types and snow cover. Models are particularly poor at simulating permafrost distribution using the definition that soil temperature remains at or below 0 °C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land-surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in future permafrost distribution can be made for the Tibetan Plateau.

  3. Family physicians' experiences when collaborating with district nurses in home care-based medical treatment. A grounded theory study.

    PubMed

    Modin, Sonja; Törnkvist, Lena; Furhoff, Anna-Karin; Hylander, Ingrid

    2010-10-27

    This article concerns Swedish family physicians' (FPs) experiences collaborating with district nurses (DNs) when the DNs provide medical treatment for home care patients. The aim was to develop a model to illuminate this process from the FPs' perspective. Semi-structured interviews were conducted with 13 FPs concerning one of their patients with home care by a DN. The interview focused on one patient's treatment and care by different care providers and the collaboration among them. Grounded theory methodology (GTM) was used in the analyses. It was essential for FPs to collaborate with and rely on DNs in the medical treatment of home care patients. According to the FPs, factors such as the disease, FPs' working conditions and attitude determined how much of the initiative in this treatment FPs retained or left to DNs. Depending on the circumstances, two different roles were adopted by the individual FPs: medical conductors who retain the initiative and medical consultants who leave the initiative to DNs. Factors as the disease, DNs' attitudes towards collaboration and DNs' working conditions influenced whether or not the FPs felt that grounds for relying on DNs were satisfactory. Regardless of the role of the FP, conditions for medical treatment were judged by the FPs to be good enough when the grounds for relying on the DN were satisfactory and problematic when they were not. In the role of conductor, the FP will identify when the grounds for relying on the DN are unsatisfactory and be able to take action, but in the role of consultant the FP will not detect this, leaving home care patients without appropriate support. Only when there are satisfactory grounds for relying on the DN, will conditions for providing home care medical treatment be good enough when the FP adopts a consultative role.

  4. Rapid modeling of complex multi-fault ruptures with simplistic models from real-time GPS: Perspectives from the 2016 Mw 7.8 Kaikoura earthquake

    NASA Astrophysics Data System (ADS)

    Crowell, B.; Melgar, D.

    2017-12-01

    The 2016 Mw 7.8 Kaikoura earthquake is one of the most complex earthquakes in recent history, rupturing across at least 10 disparate faults with varying faulting styles, and exhibiting intricate surface deformation patterns. The complexity of this event has motivated the need for multidisciplinary geophysical studies to get at the underlying source physics to better inform earthquake hazards models in the future. However, events like Kaikoura beg the question of how well (or how poorly) such earthquakes can be modeled automatically in real-time and still satisfy the general public and emergency managers. To investigate this question, we perform a retrospective real-time GPS analysis of the Kaikoura earthquake with the G-FAST early warning module. We first perform simple point source models of the earthquake using peak ground displacement scaling and a coseismic offset based centroid moment tensor (CMT) inversion. We predict ground motions based on these point sources as well as simple finite faults determined from source scaling studies, and validate against true recordings of peak ground acceleration and velocity. Secondly, we perform a slip inversion based upon the CMT fault orientations and forward model near-field tsunami maximum expected wave heights to compare against available tide gauge records. We find remarkably good agreement between recorded and predicted ground motions when using a simple fault plane, with the majority of disagreement in ground motions being attributable to local site effects, not earthquake source complexity. Similarly, the near-field tsunami maximum amplitude predictions match tide gauge records well. We conclude that even though our models for the Kaikoura earthquake are devoid of rich source complexities, the CMT driven finite fault is a good enough "average" source and provides useful constraints for rapid forecasting of ground motion and near-field tsunami amplitudes.

  5. Ground-water areas and well logs, central Sevier Valley, Utah

    USGS Publications Warehouse

    Young, Richard A.

    1960-01-01

    Between September 1959 and June 1960 the United States Geological Survey and the Utah State Engineer, with financial assistance from Garfield, Millard, Piute, Sanpete, and Sevier Counties and from local water-users’ associations, cooperated in an investigation to determine the structural framework of the central Sevier Valley and to evaluate the valley’s ground-water potential. An important aspect of the study was the drilling of 22 test holes under private contract. These data and other data collected during the course of the larger ground-water investigation of which the test drilling was a part will be evaluated in a report on the geology and ground-water resources of the central Sevier Valley. The present report has been prepared to make available the logs of test holes and to describe in general terms the availability of ground water in the different areas of the valley.

  6. Flight- and ground-test correlation study of BMDO SDS materials: Phase 1 report

    NASA Technical Reports Server (NTRS)

    Chung, Shirley Y.; Brinza, David E.; Minton, Timothy K.; Stiegman, Albert E.; Kenny, James T.; Liang, Ranty H.

    1993-01-01

    The NASA Evaluation of Oxygen Interactions with Materials-3 (EOIM-3) experiment served as a test bed for a variety of materials that are candidates for Ballistic Missile Defense Organization (BMDO) space assets. The materials evaluated on this flight experiment were provided by BMDO contractors and technology laboratories. A parallel ground exposure evaluation was conducted using the FAST atomic-oxygen simulation facility at Physical Sciences, Inc. The EOIM-3 materials were exposed to an atomic oxygen fluence of approximately 2.3 x 10(exp 2) atoms/sq. cm. The ground-exposed materials' fluence of 2.0 - 2.5 x 10(exp 2) atoms/sq. cm permits direct comparison of ground-exposed materials' performance with that of the flight-exposed specimens. The results from the flight test conducted aboard STS-46 and the correlative ground exposure are presented in this publication.

  7. Strategies for Validation Testing of Ground Systems

    NASA Technical Reports Server (NTRS)

    Annis, Tammy; Sowards, Stephanie

    2009-01-01

    In order to accomplish the full Vision for Space Exploration announced by former President George W. Bush in 2004, NASA will have to develop a new space transportation system and supporting infrastructure. The main portion of this supporting infrastructure will reside at the Kennedy Space Center (KSC) in Florida and will either be newly developed or a modification of existing vehicle processing and launch facilities, including Ground Support Equipment (GSE). This type of large-scale launch site development is unprecedented since the time of the Apollo Program. In order to accomplish this successfully within the limited budget and schedule constraints a combination of traditional and innovative strategies for Verification and Validation (V&V) have been developed. The core of these strategies consists of a building-block approach to V&V, starting with component V&V and ending with a comprehensive end-to-end validation test of the complete launch site, called a Ground Element Integration Test (GEIT). This paper will outline these strategies and provide the high level planning for meeting the challenges of implementing V&V on a large-scale development program. KEY WORDS: Systems, Elements, Subsystem, Integration Test, Ground Systems, Ground Support Equipment, Component, End Item, Test and Verification Requirements (TVR), Verification Requirements (VR)

  8. Ground-water geology of Bexar County, Texas

    USGS Publications Warehouse

    Arnow, Ted

    1963-01-01

    The water from the Edwards is almost uniformly a calcium bicarbonate water of good quality, although hard. In the southern part of the San Antonio area the water is charged with hydrogen sulfide; farther downdip it becomes highly mineralized.

  9. 36 CFR § 1150.22 - Signature of documents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... document, that to the best of his/her knowledge, information, and belief there is a good ground to support... defeat the purpose of this section, it may be stricken as sham and false and the proceeding may proceed...

  10. Intermodal Ground Access to Airports: A Planning Guide - A Good Start

    DOT National Transportation Integrated Search

    1997-01-01

    This Guide is designed to provide policy guidance, rules of thumb, data, and analytical techniques related to airport access. It has been prepared to help airport operator, local governments, metropolitan planning organizations, consultants and other...

  11. Gestalt Theory and Instructional Design.

    ERIC Educational Resources Information Center

    Moore, Patrick; Fitz, Chad

    1993-01-01

    Offers a brief overview of Gestalt theory. Shows how six Gestalt principles (proximity, closure, symmetry, figure-ground segregation, good continuation, and similarity) can be applied to improve a reader's comprehension of a badly designed instruction module that uses several graphics. (SR)

  12. Antenna testing for the Inmarsat 2 ground control system

    NASA Astrophysics Data System (ADS)

    Ashton, C.

    1992-02-01

    This article describes how the antennas of the Inmarsat 2 TT&C and IOT ground stations were tested and calibrated. It explains the main test methods used, giving the theory behind the tests and indicates some of the practical difficulties encountered during testing. Techniques described include the use of radio stars, boresight antennas and satellite verification testing using Intelsat and Inmarsat satellites. Parameters tested include gain, G/T (figure of merit), sidelobe patterns, cross polar discrimination and isolation.

  13. Late Holocene Vegetation and Climate at the Mid Altitudes of the Western Himalaya

    NASA Astrophysics Data System (ADS)

    ROY, I.; Ranhotra, P. S.; Shekhar, M.; Bhattacharyya, A.; Agrawal, S.; Kumar, P.; Patil, S. K.; Pal, A. K.

    2017-12-01

    The palynological, stable carbon isotope and magnetic susceptibility studies of a 42 cm deep sedimentary core collected from palaeolacustrine deposit at the Nachiketa area ( 2,400 m amsl) near Uttarkashi of Western Himalaya provides the late Holocene vegetation and climatic scenario of the area. Between 3200 to 1650 cal yrs BP, the high susceptibility (χlf) values along with the good frequency of fern spores might indicate the prevailing moist conditions due to high summer monsoon with good influx of the sediments. However, the low pollen concentration between 3200 to 2680 cal years BP might be due to less ground vegetation cover or poor pollen preservation in the sediments. The well represented fern spores along with the other ground vegetation taxa in the period from 1650 cal yrs BP to 600 cal yrs BP also indicates the continuous prevalence of moist conditions that can be related with the globally known medieval warm period (MWP), supported by the δ13C values around -24‰ during this time and the high χLF values. Moreover, the good representation of Cyperaceae pollen suggests the in-filling of the lake followed by the invasion of ground vegetation viz. Cheno/Ams, Apiaceae, Poaceae etc. The good pollen frequency of broadleaved taxa viz. Quercus and Alnus also supports the moist conditions. Since 600 cal years BP the lowered χLF values signifies reduced input from the surrounding suggesting the filling of the lake. The marked increase in the pollen frequency of Cheno/Ams with low values of fern spores suggest less moist conditions with reduced summer monsoon that can be related to Little Ice Age (LIA) episode. Also the low negative δ13C values (around -21‰) indicates the less ground moisture supporting the C4 taxa. The Quercus and Alnus also reduced in their pollen presence. Whereas the Pinus pollen increased gradually since nearly before 410 cal years BP till recent showing the increased invasion of this taxa to near proximity of the area. The anthropogenic activities in terms of plantation of Pinus for timber cannot be ruled out. Further shift of the δ13C value to high negative (-24‰) during recent years suggests the reversal to the warm and moist conditions following the dry LIA phase.

  14. Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach

    NASA Technical Reports Server (NTRS)

    Spivey, Natalie D.; Herrera, Claudia Y.; Truax, Roger; Pak, Chan-gi; Freund, Donald

    2007-01-01

    Flight tests of the Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the National Aeronautics and Space Administration Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B (836) airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, instead of a centerline mounting, a forward-pointing boom was attached to the radar bulkhead of the airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets flying over land. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. Because of flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for-flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight-testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This report provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project.

  15. Facility Systems, Ground Support Systems, and Ground Support Equipment General Design Requirements

    NASA Technical Reports Server (NTRS)

    Thaxton, Eric A.

    2014-01-01

    KSC-DE-512-SM establishes overall requirements and best design practices to be used at the John F. Kennedy Space Center (KSC) for the development of ground systems (GS) in support of operations at launch, landing, and retrieval sites. These requirements apply to the design and development of hardware and software for ground support equipment (GSE), ground support systems (GSS), and facility ground support systems (F-GSS) used to support the KSC mission for transportation, receiving, handling, assembly, test, checkout, servicing, and launch of space vehicles and payloads and selected flight hardware items for retrieval. This standards manual supplements NASA-STD-5005 by including KSC-site-specific and local environment requirements. These requirements and practices are optional for equipment used at manufacturing, development, and test sites.

  16. SAS molecular tests Escherichia coli O157 detection kit. Performance tested method 031203.

    PubMed

    Bapanpally, Chandra; Montier, Laura; Khan, Shah; Kasra, Akif; Brunelle, Sharon L

    2014-01-01

    The SAS Molecular tests Escherichia coli O157 Detection method, a loop-mediated isothermal amplification method, performed as well as or better than the U.S. Department of Agriculture, Food Safety Inspection Service Microbiology Laboratory Guidebook and the U.S. Food and Drug Administration Bacteriological Analytical Manual reference methods for ground beef, beef trim, bagged mixed lettuce, and fresh spinach. Ground beef (30% fat, 25 g test portion) was validated for 7-8 h enrichment, leafy greens were validated in a 6-7 h enrichment, and ground beef (30% fat, 375 g composite test portion) and beef trim (375 g composite test portion) were validated in a 16-20 h enrichment. The method performance for meat and leafy green matrixes was also shown to be acceptable under conditions of co-enrichment with Salmonella. Thus, after a short co-enrichment step, ground beef, beef trim, lettuce, and spinach can be tested for both Salmonella and E. coli O157. The SAS Molecular tests Salmonella Detection Kit was validated using the same test portions as for the SAS Molecular tests E. coli O157 Detection Kit and those results are presented in a separate report. Inclusivity and exclusivity testing revealed no false negatives and no false positives among the 50 E. coli 0157 strains, including H7 and non-motile strains, and 30 non-E. coli O157 strains examined. Finally, the method was shown to be robust when variations to DNA extract hold time and DNA volume were varied. The method comparison and robustness data suggest a full 7 h enrichment time should be used for 25 g ground beef test portions.

  17. Recommendations for ground effects research for V/STOL and STOL aircraft and associated equipment for large scale testing

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1986-01-01

    The current understanding of the effects of ground proximity on V/STOL and STOL aircraft is reviewd. Areas covered include (1) single jet suckdown in hover, (2) fountain effects on multijet configurations, (3) STOL ground effects including the effect of the ground vortex flow field, (4) downwash at the tail, and (5) hot gas ingestion in both hover and STOL operation. The equipment needed for large scale testing to extend the state of the art is reviewed and developments in three areas are recommended as follows: (1) improve methods for simulating the engine exhaust and inlet flows; (2) develop a model support system that can simulate realistic rates of climb and descent as well as steady height operation; and (3) develop a blowing BLC ground board as an alternative to a moving belt ground board to properly simulate the flow on the ground.

  18. Preliminary result on the enhancement of Ufer electrodes using recycle additives materials

    NASA Astrophysics Data System (ADS)

    Zulkifli, Muhammad Haziq Aniq Bin; Ahmad, Hussein Bin

    2016-11-01

    Ground building pillars is to be used as ground rod. The pillars are design, fabricated, and formulated with new ground fillers. The additives will be used from recycle waste materials mainly from the palm oil plant process. Micro scale building pillars will be fabricated and install in the test ground at all of the location. Earth tester meter are used to measure and collect the data of the soil resistivity when the research is conducted. In collecting these data, 3-terminal methods are used to carry the measurements. This experiment will be conducted for 30 weeks and regular measurements at the test ground copper grids will be conducted to measure the ground electrode resistance. The study will mainly base on IEC 62503-3. The used of reinforcing rods and mixture of recycle additives could produce a better grounding system that are suitable and can be used in all kind of soil condition and large industries.

  19. B61 Joint Test Assembly (JTA) Weapons Systems Evaluation Program (WSEP) Eglin Air Force Base, FL Final Environmental Assessment

    DTIC Science & Technology

    2004-06-01

    with TAs C-52A, C-52E, C-52N, and C-52W. It is used for air-to- ground munitions testing, countermeasures development and testing, and ground ...feet above ground level regardless of underlying land use . • Participating in “air shows” and fly-overs by U.S. Air Force aircraft at non-Air Force...Intermittent Intermittent 46 OSS Source : U.S. Government, 2001 Airway/Air Traffic Control The Warning Areas used by Eglin AFB are surrounded by

  20. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

Top