Science.gov

Sample records for gorgonian coral colonies

  1. Microbial Regulation in Gorgonian Corals

    PubMed Central

    Hunt, Laura R.; Smith, Stephanie M.; Downum, Kelsey R.; Mydlarz, Laura D.

    2012-01-01

    Gorgonian corals possess many novel natural products that could potentially mediate coral-bacterial interactions. Since many bacteria use quorum sensing (QS) signals to facilitate colonization of host organisms, regulation of prokaryotic cell-to-cell communication may represent an important bacterial control mechanism. In the present study, we examined extracts of twelve species of Caribbean gorgonian corals, for mechanisms that regulate microbial colonization, such as antibacterial activity and QS regulatory activity. Ethanol extracts of gorgonians collected from Puerto Rico and the Florida Keys showed a range of both antibacterial and QS activities using a specific Pseudomonas aeruginosa QS reporter, sensitive to long chain AHLs and a short chain N-acylhomoserine lactones (AHL) biosensor, Chromobacterium violaceium. Overall, the gorgonian corals had higher antimicrobial activity against non-marine strains when compared to marine strains. Pseudopterogorgia americana, Pseusopterogorgia acerosa, and Pseudoplexuara flexuosa had the highest QS inhibitory effect. Interestingly, Pseudoplexuara porosa extracts stimulated QS activity with a striking 17-fold increase in signal. The stimulation of QS by P. porosa or other elements of the holobiont may encourage colonization or recruitment of specific microbial species. Overall, these results suggest the presence of novel stimulatory QS, inhibitory QS and bactericidal compounds in gorgonian corals. A better understanding of these compounds may reveal insight into coral-microbial ecology and whether a therapeutic potential exists. PMID:22822369

  2. Bloom of the cyanobacterium Moorea bouillonii on the gorgonian coral Annella reticulata in Japan

    PubMed Central

    Yamashiro, Hideyuki; Isomura, Naoko; Sakai, Kazuhiko

    2014-01-01

    Coral populations are in decline due to environmental changes and biological attacks by predators and infectious diseases. Here, we report a localized bloom of the benthic filamentous cyanobacterium Moorea bouillonii (formerly Lyngbya bouillonii) observed exclusively on the gorgonian (sea fan) coral Annella reticulata at around 20 m depth in Japan. The degree of infection has reached 26% among different sizes of Annella colonies. Thick and continuous growth of Moorea may be sustained partly by symbiotic alpheid shrimp, which affix Moorea filaments to gorgonian corals for use as food and shelter. Most filaments get entangled on the coral colony, some penetrate into the stem of the coral with a swollen end like a root hair, which appears to function as an anchor in Annella. In addition to the cyanobacterium–shrimp interaction, the new trait of anchoring by the cyanobacterium into gorgonian coral may contribute to persistence of this bloom. PMID:25112498

  3. Microbial consortia of gorgonian corals from the Aleutian islands

    USGS Publications Warehouse

    Gray, Michael A.; Stone, R.P.; McLaughlin, M.R.; Kellogg, C.A.

    2011-01-01

    Gorgonians make up the majority of corals in the Aleutian archipelago and provide critical fish habitat in areas of economically important fisheries. The microbial ecology of the deep-sea gorgonian corals Paragorgea arborea, Plumarella superba, and Cryogorgia koolsae was examined with culture-based and 16S rRNA gene-based techniques. Six coral colonies (two per species) were collected. Samples from all corals were cultured, and clone libraries were constructed from P. superba and C. koolsae. Cultured bacteria were dominated by the Gammaproteobacteria, especially Vibrionaceae, with other phyla comprising <6% of the isolates. The clone libraries showed dramatically different bacterial communities between corals of the same species collected at different sites, with no clear pattern of conserved bacterial consortia. Two of the clone libraries (one from each coral species) were dominated by Tenericutes, with Alphaproteobacteria dominating the remaining sequences. The other libraries were more diverse and had a more even distribution of bacterial phyla, showing more similarity between genera than within coral species. Here we report the first microbiological characterization of P. arborea, P. superba, and C. koolsae. FEMS Microbiology Ecology ?? 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. No claim to original US government works.

  4. Diversity and abundance of invertebrate epifaunal assemblages associated with gorgonians are driven by colony attributes

    NASA Astrophysics Data System (ADS)

    Cúrdia, João; Carvalho, Susana; Pereira, Fábio; Guerra-García, José Manuel; Santos, Miguel N.; Cunha, Marina R.

    2015-06-01

    The present study aimed to explicitly quantify the link between the attributes of shallow-water gorgonian colonies (Octocorallia: Alcyonacea) and the ecological patterns of associated non-colonial epifaunal invertebrates. Based on multiple regression analysis, we tested the contribution of several attributes (colony height, width, and area, fractal dimension as a measure of colony complexity, lacunarity as a measure of the heterogeneity, and "colonial" epibiont cover) to abundance and taxonomic richness of associated assemblages. The results highlight the variation in the response of epifaunal assemblages to the gorgonian colony characteristics. The nature and intensity of the relationships were gorgonian species-dependent and varied from one taxonomic group to another. For both gorgonian species analyzed, the strongest predictor of species richness and abundance of the epifaunal assemblages was "colonial" epibiont cover, possibly due to a trophic effect (direct or indirect enhancement of food availability) combined with the surface available for colonization (species-area effect). Although structural complexity is usually indicated as the main driver for rich and abundant coral-associated assemblages, no significant relationship was observed between fractal dimension and the community descriptors; lacunarity, which reflects the sizes of the inter-branch spaces, was only linked to taxonomic richness in the assemblages associated with Leptogorgia lusitanica. The validity of the paradigm that structural complexity enhances biodiversity may be scale-dependent. In the case of gorgonians, the effect of complexity at the "garden" level may be more relevant than at the individual colony level. This reinforces the need for the conservation of gorgonian aggregation areas as a whole in order to preserve host diversity and size structure.

  5. Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals

    NASA Astrophysics Data System (ADS)

    La Rivière, Marie; Garrabou, Joaquim; Bally, Marc

    2015-12-01

    Gorgonian corals serve as key engineering species within Mediterranean rocky-shore communities that have recently suffered from repeated mortality events during warm temperature anomalies. Among the factors that may link thermal conditions with disease outbreaks, a number of bacterial pathogens have been implicated; they may take advantage of decreases in the defenses and/or overall health of the gorgonian hosts. Considering the beneficial role of the resident bacteria in tropical coral holobionts, a detailed characterization of the gorgonian-associated microbial populations is required to better understand the relationships among native microbiota, host fitness, and pathogen susceptibility. In this study, the bacterial communities associated with three sympatric gorgonian species, Eunicella singularis, Eunicella cavolini, and Corallium rubrum, were investigated to provide insight into the stability and the specificity of host-microbe interactions. Natural variations in bacterial communities were detected using terminal restriction fragment length polymorphism (T-RFLP) of the 16S ribosomal DNA. No major differences were identified between individual colonies sampled in winter or in summer within each gorgonian species. Although hierarchical cluster analysis of the T-RFLP profiles revealed that the three species harbor distinct communities, comparison of the T-RFLP peaks indicated the presence of common bacterial ribotypes. From phylogenetic analysis of 16S rDNA clone libraries, we identified a bacterial lineage related to the Hahellaceae family within the Oceanospirillales that is shared among E. singularis, E. cavolini, and C. rubrum and that dominates the communities of both species of Eunicella. However, distinct clades of Hahellaceae are harbored by various gorgonian species from Mediterranean and tropical waters, suggesting that these bacteria have formed host-specific symbiotic relationships with gorgonian octocorals. In addition, the relatedness of symbionts

  6. Natural Product Chemistry of Gorgonian Corals of Genus Junceella—Part II

    PubMed Central

    Wu, Yang-Chang; Su, Jui-Hsin; Chou, Tai-Ting; Cheng, Yin-Pin; Weng, Ching-Feng; Lee, Chia-Hung; Fang, Lee-Shing; Wang, Wei-Hsien; Li, Jan-Jung; Lu, Mei-Chin; Kuo, Jimmy; Sheu, Jyh-Horng; Sung, Ping-Jyun

    2011-01-01

    The structures, names, bioactivities, and references of 81 new secondary metabolites obtained from gorgonian corals belonging to the genus Junceella are described in this review. All compounds mentioned in this review were obtained from sea whip gorgonian corals Junceella fragilis and Junceella juncea, collected from the tropical and subtropical Indo-Pacific Ocean. PMID:22363249

  7. Management implications of fish trap effectiveness in adjacent coral reef and gorgonian habitats

    USGS Publications Warehouse

    Wolff, Nicholas; Grober-Dunsmore, Rikki; Rogers, Caroline S.; Beets, James P.

    1999-01-01

    A combination of visual census and trap sampling in St. John, USVI indicated that traps performed better in gorgonian habitat than in adjacent coral reef habitat. Although most families were seen more commonly in coral habitat, they were caught more often in gorgonian areas. Traps probably fished more effectively in gorgonian habitats, especially for migrating species, because traps provided shelter in the relatively topographically uniform environment of gorgonian dominated habitats. Recently, trap fishermen on St. John have been moving effort away from traditionally fished nearshore coral reefs and into a variety of more homogeneous habitats such as gorgonian habitat. Consequently, exploitation rates of the already over-harvested reef fish resources may be increasing. Reef fish managers and marine reserve designers should consider limiting trap fishing in gorgonian habitats to slow the decline of reef fisheries.

  8. Early life history of deep-water gorgonian corals may limit their abundance.

    PubMed

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200-1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions.

  9. Early Life History of Deep-Water Gorgonian Corals May Limit Their Abundance

    PubMed Central

    Lacharité, Myriam; Metaxas, Anna

    2013-01-01

    Deep-water gorgonian corals are long-lived organisms found worldwide off continental margins and seamounts, usually occurring at depths of ∼200–1,000 m. Most corals undergo sexual reproduction by releasing a planktonic larval stage that disperses; however, recruitment rates and the environmental and biological factors influencing recruitment in deep-sea species are poorly known. Here, we present results from a 4-year field experiment conducted in the Gulf of Maine (northwest Atlantic) at depths >650 m that document recruitment for 2 species of deep-water gorgonian corals, Primnoa resedaeformis and Paragorgia arborea. The abundance of P. resedaeformis recruits was high, and influenced by the structural complexity of the recipient habitat, but very few recruits of P. arborea were found. We suggest that divergent reproductive modes (P. resedaeformis as a broadcast spawner and P. arborea as a brooder) may explain this pattern. Despite the high recruitment of P. resedaeformis, severe mortality early on in the benthic stage of this species may limit the abundance of adult colonies. Most recruits of this species (∼80%) were at the primary polyp stage, and less than 1% of recruits were at stage of 4 polyps or more. We propose that biological disturbance, possibly by the presence of suspension-feeding brittle stars, and limited food supply in the deep sea may cause this mortality. Our findings reinforce the vulnerability of these corals to anthropogenic disturbances, such as trawling with mobile gear, and the importance of incorporating knowledge on processes during the early life history stages in conservation decisions. PMID:23762358

  10. The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp.

    PubMed Central

    Goulet, Tamar L.; Shirur, Kartick P.; Ramsby, Blake D.; Iglesias-Prieto, Roberto

    2017-01-01

    Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host

  11. The effects of elevated seawater temperatures on Caribbean gorgonian corals and their algal symbionts, Symbiodinium spp.

    PubMed

    Goulet, Tamar L; Shirur, Kartick P; Ramsby, Blake D; Iglesias-Prieto, Roberto

    2017-01-01

    Global climate change not only leads to elevated seawater temperatures but also to episodic anomalously high or low temperatures lasting for several hours to days. Scleractinian corals are detrimentally affected by thermal fluctuations, which often lead to an uncoupling of their mutualism with Symbiodinium spp. (coral bleaching) and potentially coral death. Consequently, on many Caribbean reefs scleractinian coral cover has plummeted. Conversely, gorgonian corals persist, with their abundance even increasing. How gorgonians react to thermal anomalies has been investigated utilizing limited parameters of either the gorgonian, Symbiodinium or the combined symbiosis (holobiont). We employed a holistic approach to examine the effect of an experimental five-day elevated temperature episode on parameters of the host, symbiont, and the holobiont in Eunicea tourneforti, E. flexuosa and Pseudoplexaura porosa. These gorgonian corals reacted and coped with 32°C seawater temperatures. Neither Symbiodinium genotypes nor densities differed between the ambient 29.5°C and 32°C. Chlorophyll a and c2 per Symbiodinium cell, however, were lower at 32°C leading to a reduction in chlorophyll content in the branches and an associated reduction in estimated absorbance and increase in the chlorophyll a specific absorption coefficient. The adjustments in the photochemical parameters led to changes in photochemical efficiencies, although these too showed that the gorgonians were coping. For example, the maximum excitation pressure, Qm, was significantly lower at 32°C than at 29.5°C. In addition, although per dry weight the amount of protein and lipids were lower at 32°C, the overall energy content in the tissues did not differ between the temperatures. Antioxidant activity either remained the same or increased following exposure to 32°C further reiterating a response that dealt with the stressor. Taken together, the capability of Caribbean gorgonian corals to modify symbiont, host

  12. Stable isotopic composition of deep sea gorgonian corals (Primnoa spp.): a new archive of surface processes.

    SciTech Connect

    Sherwood, O A; Heikoop, J M; Scott, D B; Risk, M J; Guilderson, T P; McKinney, R A

    2005-02-03

    The deep-sea gorgonian coral Primnoa spp. lives in the Atlantic and Pacific Oceans at depths of 65-3200 m. This coral has an arborescent growth form with a skeletal axis composed of annual rings made from calcite and gorgonin. It has a lifespan of at least several hundred years. It has been suggested that isotopic profiles from the gorgonin fraction of the skeleton could be used to reconstruct long-term, annual-scale variations in surface productivity. We tested assumptions about the trophic level, intra-colony isotopic reproducibility, and preservation of isotopic signatures in a suite of modern and fossil specimens. Measurements of gorgonin {Delta}{sup 14}C and {delta}{sup 15}N indicate that Primnoa spp. feed mainly on zooplankton and/or sinking particulate organic matter (POM{sub SINK}), and not on suspended POM (POM{sub SUSP}) or dissolved organic carbon (DOC). Gorgonin {delta}{sup 13}C and {delta}{sup 15}N in specimens from NE Pacific shelf waters, NW Atlantic slope waters, the Sea of Japan, and a South Pacific (Southern Ocean sector) seamount were strongly correlated with Levitus 1994 surface apparent oxygen utilization (AOU; the best available measure of surface productivity), demonstrating coupling between skeletal isotopic ratios and biophysical processes in surface water. Time-series isotopic profiles from different sections along the same colony were identical for {delta}{sup 13}C, while {delta}{sup 15}N profiles became more dissimilar with increasing separation along the colony axis. Similarity in C:N, {delta}{sup 13}C and {delta}{sup 15}N between modern and fossil specimens suggest that isotopic signatures are preserved over millennial timescales. Finally, the utility of this new archive was demonstrated by reconstruction of 20th century bomb radiocarbon.

  13. Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions

    NASA Astrophysics Data System (ADS)

    Gómez, C. E.; Paul, V. J.; Ritson-Williams, R.; Muehllehner, N.; Langdon, C.; Sánchez, J. A.

    2015-06-01

    Ocean acidification can have negative repercussions from the organism to ecosystem levels. Octocorals deposit high-magnesium calcite in their skeletons, and according to different models, they could be more susceptible to the depletion of carbonate ions than either calcite or aragonite-depositing organisms. This study investigated the response of the gorgonian coral Eunicea fusca to a range of CO2 concentrations from 285 to 4,568 ppm (pH range 8.1-7.1) over a 4-week period. Gorgonian growth and calcification were measured at each level of CO2 as linear extension rate and percent change in buoyant weight and calcein incorporation in individual sclerites, respectively. There was a significant negative relationship for calcification and CO2 concentration that was well explained by a linear model regression analysis for both buoyant weight and calcein staining. In general, growth and calcification did not stop in any of the concentrations of pCO2; however, some of the octocoral fragments experienced negative calcification at undersaturated levels of calcium carbonate (>4,500 ppm) suggesting possible dissolution effects. These results highlight the susceptibility of the gorgonian coral E. fusca to elevated levels of carbon dioxide but suggest that E. fusca could still survive well in mid-term ocean acidification conditions expected by the end of this century, which provides important information on the effects of ocean acidification on the dynamics of coral reef communities. Gorgonian corals can be expected to diversify and thrive in the Atlantic-Eastern Pacific; as scleractinian corals decline, it is likely to expect a shift in these reef communities from scleractinian coral dominated to octocoral/soft coral dominated under a "business as usual" scenario of CO2 emissions.

  14. Halogenated briarane diterpenes with acetyl migration from the gorgonian coral Junceella fragilis.

    PubMed

    Cheng, Wei; Li, Xiaodan; Yin, Fuling; van Ofwegen, Leen; Lin, Wenhan

    2017-03-24

    Chemical examination of the gorgonian coral Junceella fragilis resulted in the isolation of four pairs of acetyl isomers belonging to briarane diterpenoids, including five new compounds. Their structures were determined on the basis of extensive spectroscopic (IR, MS, NMR and single-crystal X-ray diffraction) analysis in association with the chemical conversion. Each pair of isomers featured by dynamical interconversion through as acetyl migration in 1,2-diol, which was postulated to be generated under the formation of a cyclic orthoacetate intermediate. All compounds exerted the inhibitory activities against the NO production in RAW264.7 macrophage cells. This article is protected by copyright. All rights reserved.

  15. Estimating Surface Area of Sponges and Marine Gorgonians as Indicators of Habitat Availability on Caribbean Coral Reefs

    EPA Science Inventory

    Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...

  16. Genomic Insights into Aquimarina sp. Strain EL33, a Bacterial Symbiont of the Gorgonian Coral Eunicella labiata

    PubMed Central

    Keller-Costa, Tina; Silva, Rúben; Lago-Lestón, Asunción

    2016-01-01

    To address the metabolic potential of symbiotic Aquimarina spp., we report here the genome sequence of Aquimarina sp. strain EL33, a bacterium isolated from the gorgonian coral Eunicella labiata. This first-described (to our knowledge) animal-associated Aquimarina genome possesses a sophisticated repertoire of genes involved in drug/antibiotic resistance and biosynthesis. PMID:27540075

  17. Antifouling steroids from the South China Sea gorgonian coral Subergorgia suberosa.

    PubMed

    Zhang, Jun; Liang, Yan; Wang, Kai-Ling; Liao, Xiao-Jian; Deng, Zhou; Xu, Shi-Hai

    2014-01-01

    Two new unusual cholestane derivatives, pentacyclic steroid 16,22-epoxy-20β,23S-dihydroxycholest-1-ene-3-one (1) and 20β,23S-dihydroxycholest-1-ene-3,22-dione (2), along with two new pregnane derivatives, 15β,17α-dihydroxypregna-4,6-diene-3,20-dione (3) and 11α-hydroxypregna-4-ene-3,6,20-trione (4), were isolated from the South China Sea gorgonian coral Subergorgia suberosa. Their structures were established based on the extensive analyses of 2D NMR, IR, and HRMS. Antifouling tests against Balanus amphitrite larvae settlement indicated that 1 and 2 exhibited inhibitory effect with EC50 values of 5.3, and 14.5 μg/mL, respectively.

  18. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, Justine; Eagle, Robert; Dunbar, Robert

    2016-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures, and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset

  19. Carbonate “clumped” isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    DOE PAGES

    Kimball, Justine; Eagle, Robert; Dunbar, Robert

    2016-12-12

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near-constant temperature, salinity, and pH and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop “clumped” isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate-related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed inmore » CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and high-Mg calcitic gorgonian (Isididae and Coralliidae) deep-sea corals and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures, and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than high-Mg calcitic gorgonian corals and the two groups of coral produce statistically different relationships between Δ47–temperature calibrations. These data are significant in the interpretation of all carbonate clumped isotope calibration data as they show that distinct Δ47–temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different

  20. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the

  1. Suberosols A-D, four new sesquiterpenes with beta-caryophyllene skeletons from a Taiwanese gorgonian coral Subergorgia suberosa.

    PubMed

    Wang, Guey-Horng; Ahmed, Atallah F; Sheu, Jyh-Horng; Duh, Chang-Yih; Shen, Ya-Ching; Wang, Li-Tang

    2002-06-01

    Four new beta-caryophyllene-derived sesquiterpenes alcohols, suberosols A (1), B (2), C (3), and D (4), along with two known beta-caryophyllene-derived sesqueterpene ketones, buddledins C (5) and D (6), were isolated from a Taiwanese gorgonian coral Subergorgia suberosa. The structures of 1-4 were determined on the basis of extensive spectroscopic analyses. Cytotoxicity of these compounds toward various cancer cell lines is also described.

  2. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms

    USGS Publications Warehouse

    Weir-Brush, J. R.; Garrison, V.H.; Smith, G.W.; Shinn, E.A.

    2004-01-01

    The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are <5 ??m, small enough to be easily picked up by winds and dispersed over great distances. Aspergillosis is prevalent in the Caribbean, and it appears that this primarily terrestrial fungus has adapted to a marine environment. It has been proposed that dust storms originating in Africa may be one way in which potential coral pathogens are distributed and deposited into the marine environments of the Caribbean. To test the hypothesis that African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of nondust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.

  3. Estimating 3-dimensional colony surface area of field corals

    EPA Science Inventory

    Colony surface area is a critical descriptor for biological and physical attributes of reef-building (scleractinian, stony) corals. The three-dimensional (3D) size and structure of corals are directly related to many ecosystem values and functions. Most methods to estimate colony...

  4. Genotyping the clonal structure of a gorgonian coral, Junceella juncea (Anthozoa: Octocorallia), using microsatellite loci

    NASA Astrophysics Data System (ADS)

    Liu, Shang-Yin Vanson; Yu, Hon-Tsen; Fan, Tung-Yung; Dai, Chang-Feng

    2005-11-01

    The identification of different clones is fundamental to the study of population structure among organisms with mixed reproductive modes such as cnidarians. However, due to the low genetic variation of coral mtDNA and contamination by zooxanthellate DNA, very few molecular markers are available for studying the clonal structure of cnidarians. Herein we used four polymorphic loci of microsatellite DNA isolated from a zooxanthellae-free octocoral, Junceella juncea, to study its clonal structure in seven populations collected from three localities in Taiwan. In total, 40 multilocus genotypes were found among 152 colonies, and the number of genotypes (clones) identified in the seven populations ranged from 2 to 16. Each of the 40 multilocus genotypes was restricted to a single population, even where adjacent populations were only 100 m distant. The ratio of observed to expected genotypic diversity (Go:Ge) ranged from 0.217 to 0.650, and Go showed a significant departure from Ge ( p<0.05) at each site indicating that asexual fragmentation may play a major role in the maintenance of established populations. Mean relatedness ( R) values showed that genotypes within reefs were more closely related than those between regions. The results indicate that microsatellites are useful for discerning the clonal structures among and within populations at different spatial scales.

  5. Pinnisterols D–J, New 11-Acetoxy-9,11-secosterols with a 1,4-Quinone Moiety from Formosan Gorgonian Coral Pinnigorgia sp. (Gorgoniidae)

    PubMed Central

    Chang, Yu-Chia; Hwang, Tsong-Long; Kuo, Liang-Mou; Sung, Ping-Jyun

    2017-01-01

    Seven new marine 11-acetoxy-9,11-secosterols, pinnisterols D–J (1–7), with a 1,4-quinone moiety, were discovered from the gorgonian coral Pinnigorgia sp. In this study, the structures of secosterols 1–7 were revealed by spectroscopic analysis. Bioactivity study showed that secosterol 1 treatment inhibited cell viability in a hepatic stellate cell line, HSC-T6, with an IC50 value of 3.93 μM; and secosterols 2, 5, and 7 reduced elastase enzyme release, and 3, 5, and 7 decreased the production of superoxide anions from human neutrophils. PMID:28067822

  6. Variation in Symbiodinium ITS2 Sequence Assemblages among Coral Colonies

    PubMed Central

    Stat, Michael; Bird, Christopher E.; Pochon, Xavier; Chasqui, Luis; Chauka, Leonard J.; Concepcion, Gregory T.; Logan, Dan; Takabayashi, Misaki; Toonen, Robert J.; Gates, Ruth D.

    2011-01-01

    Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a species across spatial scales of meters to kilometers has received little attention, but is important to understanding the intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by describing the Symbiodinium ITS2 sequence assemblages recovered from colonies of the reef building coral Montipora capitata sampled across Kāne'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium ITS2 sequence assemblages retrieved from individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species names based on Symbiodinium ITS2 genotyping. PMID:21246044

  7. Variation in Symbiodinium ITS2 sequence assemblages among coral colonies.

    PubMed

    Stat, Michael; Bird, Christopher E; Pochon, Xavier; Chasqui, Luis; Chauka, Leonard J; Concepcion, Gregory T; Logan, Dan; Takabayashi, Misaki; Toonen, Robert J; Gates, Ruth D

    2011-01-05

    Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Surprisingly, the question of how Symbiodinium diversity partitions within a species across spatial scales of meters to kilometers has received little attention, but is important to understanding the intrinsic biological scope of a given coral population and adaptations to the local environment. Here we address this gap by describing the Symbiodinium ITS2 sequence assemblages recovered from colonies of the reef building coral Montipora capitata sampled across Kāne'ohe Bay, Hawai'i. A total of 52 corals were sampled in a nested design of Coral Colony(Site(Region)) reflecting spatial scales of meters to kilometers. A diversity of Symbiodinium ITS2 sequences was recovered with the majority of variance partitioning at the level of the Coral Colony. To confirm this result, the Symbiodinium ITS2 sequence diversity in six M. capitata colonies were analyzed in much greater depth with 35 to 55 clones per colony. The ITS2 sequences and quantitative composition recovered from these colonies varied significantly, indicating that each coral hosted a different assemblage of Symbiodinium. The diversity of Symbiodinium ITS2 sequence assemblages retrieved from individual colonies of M. capitata here highlights the problems inherent in interpreting multi-copy and intra-genomically variable molecular markers, and serves as a context for discussing the utility and biological relevance of assigning species names based on Symbiodinium ITS2 genotyping.

  8. Computational Analysis of Flow Field Inside Coral Colony

    NASA Astrophysics Data System (ADS)

    Hossain, Md Monir; Staples, Anne

    2015-11-01

    Development of the flow field inside coral colonies is a key issue for understanding coral natural uptake, photosynthesis and wave dissipation capabilities. But most of the computations and experiments conducted earlier, measured the flow outside the coral reef canopies. Experimental studies are also constrained due to the limitation of measurement techniques and limited environmental conditions. Numerical simulations can be an answer to overcome these shortcomings. In this work, a detailed, three-dimensional simulation of flow around a single coral colony was developed to examine the interaction between coral geometry and hydrodynamics. To simplify grid generation and minimize computational cost, Immersed Boundary method (IBM) was implemented. The computation of IBM involves identification of the interface between the solid body and the fluid, establishment of the grid/interface relation and identification of the forcing points on the grid and distribution of the forcing function on the corresponding points. LES was chosen as the framework to capture the turbulent flow field without requiring extensive modeling. The results presented will give insight into internal coral colony flow fields and the interaction between coral and surrounding ocean hydrodynamics.

  9. Competitive interactions between corals and turf algae depend on coral colony form.

    PubMed

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  10. Competitive interactions between corals and turf algae depend on coral colony form

    PubMed Central

    Vermeij, Mark JA

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral–turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  11. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    PubMed

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  12. Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA): finding the molecular and morphological gap in Caribbean gorgonian corals

    PubMed Central

    Grajales, Alejandro; Aguilar, Catalina; Sánchez, Juan A

    2007-01-01

    Background Most phylogenetic studies using current methods have focused on primary DNA sequence information. However, RNA secondary structures are particularly useful in systematics because they include characteristics, not found in the primary sequence, that give "morphological" information. Despite the number of recent molecular studies on octocorals, there is no consensus opinion about a region that carries enough phylogenetic resolution to solve intrageneric or close species relationships. Moreover, intrageneric morphological information by itself does not always produce accurate phylogenies; intra-species comparisons can reveal greater differences than intra-generic ones. The search for new phylogenetic approaches, such as by RNA secondary structure analysis, is therefore a priority in octocoral research. Results Initially, twelve predicted RNA secondary structures were reconstructed to provide the basic information for phylogenetic analyses; they accorded with the 6 helicoidal ring model, also present in other groups of corals and eukaryotes. We obtained three similar topologies for nine species of the Caribbean gorgonian genus Eunicea (candelabrum corals) with two sister taxa as outgroups (genera Plexaura and Pseudoplexaura) on the basis of molecular morphometrics of ITS2 RNA secondary structures only, traditional primary sequence analyses and maximum likelihood, and a Bayesian analysis of the combined data. The latter approach allowed us to include both primary sequence and RNA molecular morphometrics; each data partition was allowed to have a different evolution rate. In addition, each helix was partitioned as if it had evolved at a distinct rate. Plexaura flexuosa was found to group within Eunicea; this was best supported by both the molecular morphometrics and combined analyses. We suggest Eunicea flexuosa (Lamouroux, 1821) comb. nov., and we present a new species description including Scanning Electron Microscopy (SEM) images of morphological

  13. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover.

    PubMed

    Forsman, Zac H; Page, Christopher A; Toonen, Robert J; Vaughan, David

    2015-01-01

    Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1-3 cm(2)) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63, 48, and 23 cm(2) per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate. Porites lobata showed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration.

  14. Growing coral larger and faster: micro-colony-fusion as a strategy for accelerating coral cover

    PubMed Central

    Page, Christopher A.; Toonen, Robert J.; Vaughan, David

    2015-01-01

    Fusion is an important life history strategy for clonal organisms to increase access to shared resources, to compete for space, and to recover from disturbance. For reef building corals, fragmentation and colony fusion are key components of resilience to disturbance. Observations of small fragments spreading tissue and fusing over artificial substrates prompted experiments aimed at further characterizing Atlantic and Pacific corals under various conditions. Small (∼1–3 cm2) fragments from the same colony spaced regularly over ceramic tiles resulted in spreading at rapid rates (e.g., tens of square centimeters per month) followed by isogenic fusion. Using this strategy, we demonstrate growth, in terms of area encrusted and covered by living tissue, of Orbicella faveolata, Pseudodiploria clivosa, and Porites lobata as high as 63, 48, and 23 cm2 per month respectively. We found a relationship between starting and ending size of fragments, with larger fragments growing at a faster rate. Porites lobata showed significant tank effects on rates of tissue spreading indicating sensitivity to biotic and abiotic factors. The tendency of small coral fragments to encrust and fuse over a variety of surfaces can be exploited for a variety of applications such as coral cultivation, assays for coral growth, and reef restoration. PMID:26500822

  15. Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Etnoyer, Peter J.; Wickes, Leslie N.; Silva, Mauricio; Dubick, J. D.; Balthis, Len; Salgado, Enrique; MacDonald, Ian R.

    2016-03-01

    Hard-bottom `mesophotic' reefs along the `40-fathom' (73 m) shelf edge in the northern Gulf of Mexico were investigated for potential effects of the Deepwater Horizon (DWH) oil spill from the Macondo well in April 2010. Alabama Alps Reef, Roughtongue Reef, and Yellowtail Reef were near the well, situated 60-88 m below floating oil discharged during the DWH spill for several weeks and subject to dispersant applications. In contrast, Coral Trees Reef and Madison Swanson South Reef were far from the DWH spill site and below the slick for less than a week or not at all, respectively. The reefs were surveyed by ROV in 2010, 2011, and 2014 and compared to similar surveys conducted one and two decades earlier. Large gorgonian octocorals were present at all sites in moderate abundance including Swiftia exserta, Hypnogorgia pendula, Thesea spp., and Placogorgia spp. The gorgonians were assessed for health and condition in a before-after-control-impact (BACI) research design using still images captured from ROV video transects. Injury was modeled as a categorical response to proximity and time using logistic regression. Condition of gorgonians at sites near Macondo well declined significantly post-spill. Before the spill, injury was observed for 4-9 % of large gorgonians. After the spill, injury was observed in 38-50 % of large gorgonians. Odds of injury for sites near Macondo were 10.8 times higher post-spill, but unchanged at far sites. The majority of marked injured colonies in 2011 declined further in condition by 2014. Marked healthy colonies generally remained healthy. Background stresses to corals, including fishing activity, fishing debris, and coral predation, were noted during surveys, but do not appear to account for the decline in condition at study sites near Macondo well.

  16. Passive scalar transport to and from the surface of a Pocillopora coral colony

    NASA Astrophysics Data System (ADS)

    Hossain, Md Monir; Staples, Anne

    2016-11-01

    Three-dimensional simulations of flow through a single Pocillopora coral colony were performed to examine the interaction between the flow conditions and scalar transport near a coral colony. With corals currently undergoing a third global bleaching event, a fuller understanding of the transport of nutrients, weak temperature gradients, and other passive scalars to and from the coral polyp tissue is more important than ever. The complex geometry of a coral colony poses a significant challenge for numerical simulation. To simplify grid generation and minimize computational cost, the immersed boundary method was implemented. Large eddy simulation was chosen as the framework to capture the turbulent flow field in the range of realistic Reynolds numbers of 5,000 to 30,000 and turbulent Schmidt numbers of up to 1,000. Both uniform and oscillatory flows through the colony were investigated. Significant differences were found between the cases when the scalar originated at the edge of the flow domain and was transported into the colony, versus when the scalar originated on the surface of the colony and was transported away from the coral. The domain-to-colony transport rates were found to be orders of magnitude higher than the colony-to-domain rates.

  17. The influence of colony size and coral health on the occupation of coral-associated gobies (Pisces: Gobiidae)

    NASA Astrophysics Data System (ADS)

    Schiemer, L.; Niedermüller, S.; Herler, J.

    2009-03-01

    Fishes of the genus Gobiodon are habitat specialists by their association with Acropora corals. Little is known about the parameters that define host coral quality for these fishes, in particular their breeding pairs. Data were collected in the northern Red Sea using 10 × 1-m belt transects in different reefs and zones. Gobiid density was highly correlated with coral density over all sites and zones, and the more specialized goby species preferred coral species that are less vulnerable to environmental stress. Moreover, the occupation rate of corals by goby breeding pairs significantly increased with colony size and decreased with partial mortality of colonies. Logistic regression showed that both coral size (being most important) and partial mortality are key factors influencing the occupation by breeding pairs. This study provides the first evidence that breeding pairs of coral-associated gobiids have more advanced habitat requirements than con-specifics in other social states. As coral reefs are threatened worldwide and habitat loss and degradation increase, this information will help predict the potential effects on those reef fishes obligatorily associated with live corals.

  18. A Five-Year, In Situ Growth Study on Shallow-Water Populations of the Gorgonian Octocoral Calcigorgia spiculifera in the Gulf of Alaska

    PubMed Central

    Stone, Robert P.; Malecha, Patrick W.; Masuda, Michele M.

    2017-01-01

    Gorgonian octocorals are the most abundant corals in Alaska where they provide important structural habitat for managed species of demersal fish and invertebrates. Fifty-nine gorgonian species have been reported from Alaska waters but little is known about their life history characteristics to help us gauge their ability to recover from seafloor disturbance. Colonies of the holaxonian Calcigorgia spiculifera were tagged beginning in 1999 at three sites in Chatham Strait, Southeast Alaska, using scuba and their growth measured annually for up to 5 years. Colonies were video recorded, and computer image analysis tools provided calibration of video images for measuring the length of several branches. Growth data indicate that C. spiculifera grows much slower (6.0 mm yr-1) than other gorgonians in Alaska for which there are data and that intraspecific growth is highly variable. We fit a Bayesian linear mixed-effects model that showed that average colony growth was significantly reduced with warmer temperature and presence of necrosis. The model further indicated that growth may slow among larger (older) colonies. Based on these results and previous studies, we propose that gorgonian growth rates are taxonomically constrained at the Suborder level and that holaxonians grow the slowest followed by scleraxonians and calcaxonians (2–3 times as fast). Findings of this study indicate that it would take approximately 60 years for C. spiculifera to grow to its maximum size and depending on the location and size of the parental standing stock, at least one and possibly 10 additional years for recruitment to occur. Our results further indicate that colonies that are injured, perhaps chronically in areas of frequent disturbance, grow at slower rates and if the current trend of ocean warming continues then we can expect these corals to grow more slowly, and the habitats they form will require more time to recover from disturbance. PMID:28068374

  19. Telomere length of the colonial coral Galaxea fascicularis at different developmental stages

    NASA Astrophysics Data System (ADS)

    Tsuta, H.; Hidaka, M.

    2013-06-01

    The ability to estimate coral age using soft tissue would be useful for population biology or aging studies on corals. In this study, we investigated whether telomere length can be used to estimate coral age. We applied single telomere length analysis to a colonial coral, Galaxea fascicularis, and estimated telomere lengths of specific coral chromosomes at different developmental stages. If the telomere shortened at each cell division, the telomere length of the coral would be longest in sperm and shortest in adult colonies. However, the mean telomere length of sperm, planula larvae, and polyps was approximately 4 kb, with no significant differences among the developmental stages. The telomerase restriction fragment (TRF) analysis also showed no significant difference in the mean TRF length among the developmental stages. Our results suggested that telomere length is maintained during developmental stages and that estimating the age of colonial coral based on telomere length may not be possible. However, our findings can be used to examine avoidance of aging and rejuvenation during regeneration and asexual reproduction in colonial corals.

  20. Temporal variability in epifaunal assemblages associated with temperate gorgonian gardens.

    PubMed

    Dias, I M; Cúrdia, J; Cunha, M R; Santos, M N; Carvalho, S

    2015-12-01

    The present study is one of the few that investigate the temporal variability of epifaunal assemblages associated with coral species, particularly the octocorals Eunicella gazella and Leptogorgia lusitanica in south Portugal. The results suggest time rather than colony size as a primary driver of the ecological patterns of these assemblages, which were dominated by amphipods, molluscs and polychaetes. Temporal variability was linked to changes in environmental parameters, namely temperature, chlorophyll a and particulate organic carbon. Hence, temporal variability must be taken into account for the design of future biodiversity assessment studies, as different patterns may be observed depending on the sampling time. Associated epifaunal assemblages were consistently dominated by resident species (i.e. species present in all sampling periods) and a peak of rare species was observed in the transition from spring to summer following the increase in seawater temperature. Turnover was particularly high in the transition between the spring and summer periods. In both hosts, turnover was higher in the small sized colonies, which harboured less diverse and less abundant assemblages that also differed from those inhabiting larger size colonies. The high levels of diversity associated with gorgonian colonies highlight the need for the conservation of this priority habitat.

  1. Spawning of the colonial coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Southern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Kružić, P.; Žuljević, A.; Nikolić, V.

    2008-06-01

    Data on sexual reproduction of scleractinian coral species living in temperate zones, particularly in the Mediterranean Sea, are quite scarce. This paper describes sexual reproduction of the colonial coral Cladocora caespitosa from Veliko jezero (Mljet Island) in the Adriatic Sea. Spawned orange eggs and white sperm bundles were observed on the coral bank of C. caespitosa two nights before the full moon (20 June 2005) coinciding with increasing water temperature and correlated with the lunar cycle. Spawning was observed during five nights, involving about 30% of the colonies from the coral bank. Different colonies on the bank released only one type of gamete during the reproductive period. The diameter of the sperm bundles ranged from 100 to 200 μm (average 163 μm; SD = 47.08), while the female gametes diameter ranged from 300 to 500 μm (average 416 μm; SD = 73.12).

  2. Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient.

    PubMed

    Costantini, Federica; Gori, Andrea; Lopez-González, Pablo; Bramanti, Lorenzo; Rossi, Sergio; Gili, Josep-Maria; Abbiati, Marco

    2016-01-01

    Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30-40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations.

  3. Limited Genetic Connectivity between Gorgonian Morphotypes along a Depth Gradient

    PubMed Central

    Gori, Andrea; Lopez-González, Pablo; Bramanti, Lorenzo; Rossi, Sergio; Gili, Josep-Maria; Abbiati, Marco

    2016-01-01

    Gorgonian species show a high morphological variability in relation to the environment in which they live. In coastal areas, parameters such as temperature, light, currents, and food availability vary significantly with depth, potentially affecting morphology of the colonies and the structure of the populations, as well as their connectivity patterns. In tropical seas, the existence of connectivity between shallow and deep populations supported the hypothesis that the deep coral reefs could potentially act as (reproductive) refugia fostering re-colonization of shallow areas after mortality events. Moreover, this hypothesis is not so clear accepted in temperate seas. Eunicella singularis is one of the most common gorgonian species in Northwestern Mediterranean Sea, playing an important role as ecosystem engineer by providing biomass and complexity to the coralligenous habitats. It has a wide bathymetric distribution ranging from about 10 m to 100 m. Two depth-related morphotypes have been identified, differing in colony morphology, sclerite size and shape, and occurrence of symbiotic algae, but not in mitochondrial DNA haplotypes. In the present study the genetic structure of E. singularis populations along a horizontal and bathymetric gradient was assessed using microsatellites and ITS1 sequences. Restricted gene flow was found at 30–40 m depth between the two Eunicella morphotypes. Conversely, no genetic structuring has been found among shallow water populations within a spatial scale of ten kilometers. The break in gene flow between shallow and deep populations contributes to explain the morphological variability observed at different depths. Moreover, the limited vertical connectivity hinted that the refugia hypothesis does not apply to E. singularis. Re-colonization of shallow water populations, occasionally affected by mass mortality events, should then be mainly fueled by larvae from other shallow water populations. PMID:27490900

  4. Colony-specific investigations reveal highly variable responses among individual corals to ocean acidification and warming.

    PubMed

    Kavousi, Javid; Reimer, James Davis; Tanaka, Yasuaki; Nakamura, Takashi

    2015-08-01

    As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 μatm-28 °C, 400 μatm-31 °C, 1000 μatm-28 °C and 1000 μatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations.

  5. Diversity, distribution and population size structure of deep Mediterranean gorgonian assemblages (Menorca Channel, Western Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Grinyó, Jordi; Gori, Andrea; Ambroso, Stefano; Purroy, Ariadna; Calatayud, Clara; Dominguez-Carrió, Carlos; Coppari, Martina; Lo Iacono, Claudio; López-González, Pablo J.; Gili, Josep-Maria

    2016-06-01

    Gorgonians are a key group of organisms in benthic marine communities with a wide bathymetric and geographical distribution. Although their presence on continental shelves and slopes has been known for more than 100 years, knowledge concerning the ecology of deep gorgonian species is still in a very preliminary stage. To overcome this situation, gorgonian assemblages located at 40-360 m depth were studied over a large geographical area on the continental shelf and upper slope of the Menorca Channel (Western Mediterranean Sea). A quantitative analysis of video transects recorded by a manned submersible and a remotely operated vehicle, were used to examine the diversity, distribution and demography of gorgonian species. Results showed high gorgonian diversity within this depth range (a total of nine species were observed) compared to Mediterranean coastal areas. Gorgonian assemblages on the continental shelf and upper slope were mostly monospecific (respectively 73% and 76% of occupied sampling units contained one single species), whereas shelf edge assemblages were highly multispecific (92% of occupied sampling units contained several species). This contrasts with the monospecificity of Mediterranean coastal gorgonian assemblages. Gorgonian populations on the continental shelf were mostly dominated by small colonies (88% of measured colonies) with few intermediate and large colonies (12% of measured colonies). In deeper areas small colonies were still dominant (60% of measured colonies), but intermediate and large colonies were much more abundant (40% of measured colonies). This suggests high recruitment rates on the continental shelf, but perturbations (trammel nets, long lines and strong storms) may limit the presence of intermediate and large colonies. Conversely, on the shelf edge and upper slope a more stable environment may allow colonies to reach larger dimensions. The identification and ecological characterization of these deep assemblages further extends

  6. A connection between colony biomass and death in Caribbean reef-building corals.

    PubMed

    Thornhill, Daniel J; Rotjan, Randi D; Todd, Brian D; Chilcoat, Geoff C; Iglesias-Prieto, Roberto; Kemp, Dustin W; LaJeunesse, Todd C; Reynolds, Jennifer McCabe; Schmidt, Gregory W; Shannon, Thomas; Warner, Mark E; Fitt, William K

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994-2007), eleven years in the Exuma Cays, Bahamas (1995-2006), and four years in Puerto Morelos, Mexico (2003-2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1-4 m) compared to deeper-dwelling conspecifics (12-15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels.

  7. A Connection between Colony Biomass and Death in Caribbean Reef-Building Corals

    PubMed Central

    Thornhill, Daniel J.; Rotjan, Randi D.; Todd, Brian D.; Chilcoat, Geoff C.; Iglesias-Prieto, Roberto; Kemp, Dustin W.; LaJeunesse, Todd C.; Reynolds, Jennifer McCabe; Schmidt, Gregory W.; Shannon, Thomas; Warner, Mark E.; Fitt, William K.

    2011-01-01

    Increased sea-surface temperatures linked to warming climate threaten coral reef ecosystems globally. To better understand how corals and their endosymbiotic dinoflagellates (Symbiodinium spp.) respond to environmental change, tissue biomass and Symbiodinium density of seven coral species were measured on various reefs approximately every four months for up to thirteen years in the Upper Florida Keys, United States (1994–2007), eleven years in the Exuma Cays, Bahamas (1995–2006), and four years in Puerto Morelos, Mexico (2003–2007). For six out of seven coral species, tissue biomass correlated with Symbiodinium density. Within a particular coral species, tissue biomasses and Symbiodinium densities varied regionally according to the following trends: Mexico≥Florida Keys≥Bahamas. Average tissue biomasses and symbiont cell densities were generally higher in shallow habitats (1–4 m) compared to deeper-dwelling conspecifics (12–15 m). Most colonies that were sampled displayed seasonal fluctuations in biomass and endosymbiont density related to annual temperature variations. During the bleaching episodes of 1998 and 2005, five out of seven species that were exposed to unusually high temperatures exhibited significant decreases in symbiotic algae that, in certain cases, preceded further decreases in tissue biomass. Following bleaching, Montastraea spp. colonies with low relative biomass levels died, whereas colonies with higher biomass levels survived. Bleaching- or disease-associated mortality was also observed in Acropora cervicornis colonies; compared to A. palmata, all A. cervicornis colonies experienced low biomass values. Such patterns suggest that Montastraea spp. and possibly other coral species with relatively low biomass experience increased susceptibility to death following bleaching or other stressors than do conspecifics with higher tissue biomass levels. PMID:22216307

  8. Effects of flow and colony morphology on the thermal boundary layer of corals

    PubMed Central

    Jimenez, Isabel M.; Kühl, Michael; Larkum, Anthony W. D.; Ralph, Peter J.

    2011-01-01

    The thermal microenvironment of corals and the thermal effects of changing flow and radiation are critical to understanding heat-induced coral bleaching, a stress response resulting from the destruction of the symbiosis between corals and their photosynthetic microalgae. Temperature microsensor measurements at the surface of illuminated stony corals with uneven surface topography (Leptastrea purpurea and Platygyra sinensis) revealed millimetre-scale variations in surface temperature and thermal boundary layer (TBL) that may help understand the patchy nature of coral bleaching within single colonies. The effect of water flow on the thermal microenvironment was investigated in hemispherical and branching corals (Porites lobata and Stylophora pistillata, respectively) in a flow chamber experiment. For both coral types, the thickness of the TBL decreased exponentially from 2.5 mm at quasi-stagnant flow (0.3 cm s−1), to 1 mm at 5 cm s−1, with an exponent approximately 0.5 consistent with predictions from the heat transfer theory for simple geometrical objects and typical of laminar boundary layer processes. Measurements of mass transfer across the diffusive boundary layer using O2 microelectrodes revealed a greater exponent for mass transfer when compared with heat transfer, indicating that heat and mass transfer at the surface of corals are not exactly analogous processes. PMID:21602322

  9. Control of aragonite deposition in colonial corals by intra-skeletal macromolecules.

    PubMed

    Falini, Giuseppe; Reggi, Michela; Fermani, Simona; Sparla, Francesca; Goffredo, Stefano; Dubinsky, Zvy; Levi, Oren; Dauphin, Yannicke; Cuif, Jean-Pierre

    2013-08-01

    Scleractinian coral skeletons are composed mainly of aragonite in which a small percentage of organic matrix (OM) molecules is entrapped. It is well known that in corals the mineral deposition occurs in a biological confined nucleation site, but it is still unclear to what extent the calcification is controlled by OM molecules. Hence, the shape, size and organization of skeletal crystals from the fiber level through the colony architecture, were also attributed to factors as diverse as nucleation site mineral supersaturation and environmental factors in the habitat. In this work the OMs were extracted from the skeleton of three colonial corals, Acropora digitifera, Lophelia pertusa and Montipora caliculata. A. digitifera has a higher calcification rate than the other two species. OM molecules were characterized and their CaCO3 mineralization activity was evaluated by experiments of overgrowth on coral skeletons and of precipitation from solutions containing OM soluble and insoluble fractions and magnesium ions. The precipitates were characterized by spectroscopic and microscopic techniques. The results showed that the OM molecules of the three coral share similar features, but differ from those associated with mollusk shells. However, A. digitifera OM shows peculiarities from those from L. pertusa and M. caliculata. The CaCO3 overgrowth and precipitation experiments confirm the singularity of A. digitifera OM molecules as mineralizers. Moreover, their comparison indicates that only specific molecules are involved in the polymorphism control and suggests that when the whole extracted materials are used the OM's main effect is on the control of particles' shape and morphology.

  10. Health of the coral reefs at the US Navy Base, Guantánamo Bay, Cuba: a preliminary report based on isotopic records from gorgonians.

    PubMed

    Risk, Michael J; Burchell, Meghan; Brunton, Dalston A; McCord, Michael R

    2014-06-15

    Specimens of the gorgonian Plexaura homomalla were sampled from several areas along the fringing reefs fronting the United States Naval Base at Guantánamo Bay, Cuba. Sample coverage extended from apparently healthy reefs in oceanic waters to declining reefs located in the plume of the drainage from upper parts of Guantánamo Bay. Tentacle tips were excised, and trunk sections were cut and polished. Stable isotope ratios of nitrogen (δ(15)N) and carbon indicate a strong correlation of reef health with proximity to the plume of the river. Of all the worldwide cases in which land-based sources of pollution have impacted reefs, this one may well be the most intractable. The US Navy has jurisdiction over the reefs, with the obligation to protect them, yet the threat comes down the river from Cuba.

  11. Global warming and coral reefs: modelling the effect of temperature on Acropora palmata colony growth.

    PubMed

    Crabbe, M James C

    2007-08-01

    Data on colony growth of the branching coral Acropora palmata from fringing reefs off Discovery Bay on the north coast of Jamaica have been obtained over the period 2002-2007 using underwater photography and image analysis by both SCUBA and remotely using an ROV incorporating twin lasers. Growth modelling shows that while logarithmic growth is an approximate model for growth, a 3:3 rational polynomial function provides a significantly better fit to growth data for this coral species. Over the period 2002-2007, involving several cycles of sea surface temperature (SST) change, the rate of growth of A. palmata was largely proportional to rate of change of SST, with R(2)=0.935. These results have implications for the influence of global warming and climate change on coral reef ecosystems.

  12. Observations of spatial flow patterns at the coral colony scale on a shallow reef flat

    NASA Astrophysics Data System (ADS)

    Hench, James L.; Rosman, Johanna H.

    2013-03-01

    Although small-scale spatial flow variability can affect both larger-scale circulation patterns and biological processes on coral reefs, there are few direct measurements of spatial flow patterns across horizontal scales <100 m. Here flow patterns on a shallow reef flat were measured at scales from a single colony to several adjacent colonies using an array of acoustic Doppler velocimeters on a diver-operated traverse. We observed recirculation zones immediately behind colonies, reduced currents and elevated dissipation rates in turbulent wakes up to 2 colony diameters downstream and enhanced Reynolds stresses in shear layers around wake peripheries. Flow acceleration zones were observed above and between colonies. Coherent flow structures varied with incident flow speeds; recirculation zones were stronger and wakes were more turbulent in faster flows. Low-frequency (<0.03 Hz) flow variations, for which water excursions were large compared with the colony diameters (Keulegan-Carpenter number, KC >1), had similar spatial patterns to wakes, while higher-frequency variations (0.05-0.1 Hz, KC < 1) had no observable spatial structure. On the reef flat, both drag and inertial forces exerted by coral colonies could have significant effects on flow, but within different frequency ranges; drag dominates for low-frequency flow variations and inertial forces dominate for higher-frequency variations, including the wave band. Our scaling analyses suggest that spatial flow patterns at colony and patch scales could have important implications for both physical and biological processes at larger reef scales through their effects on forces exerted on the flow, turbulent mixing, and dispersion.

  13. Reproduction in cultured versus wild coral colonies: fertilization, larval oxygen consumption, and survival.

    PubMed

    Okubo, Nami; Yamamoto, Hiromi Hannah; Nakaya, Fumio; Okaji, Ken

    2010-06-01

    In the late 1990s, the once prolific populations of the coral Acropora intermedia surrounding Okinawa, Japan, dramatically declined because of thermal stress, bleaching caused by heat stress, and consequent mortality. Before the bleaching event, 72 fragments (about 15 cm in length) were collected and transferred to the Okinawa Churami Aquarium. Through growth and repeated fragmentation, these original fragments developed into about 100 colonies that spawned from 1999 to 2009. In this study, we compared gametogenesis, fertilization, survival, and O(2) consumption in cultured and wild colonies of A. intermedia and their offspring. Cultured A. intermedia had larger oocytes and higher fertilization and survival rates than samples from wild colonies. O(2) consumption of cultured embryos was similar to that of wild embryos. These results suggest that cultured A. intermedia and their offspring are as viable as wild colonies. Aquaria can play a role in the conservation of endangered corals, and their cultured colonies could be used to re-establish devastated species on the Okinawa reefs.

  14. Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment

    NASA Astrophysics Data System (ADS)

    Hayashi, Erika; Suzuki, Atsushi; Nakamura, Takashi; Iwase, Akihiro; Ishimura, Toyoho; Iguchi, Akira; Sakai, Kazuhiko; Okai, Takashi; Inoue, Mayuri; Araoka, Daisuke; Murayama, Shohei; Kawahata, Hodaka

    2013-01-01

    As application of coral-based climate reconstruction has become more frequent at tropical sites, increased attention is being paid to the potential ambiguities of coral thermometers that are intrinsic to the biomineralisation process, including the so-called vital effect, the growth-rate-related kinetic effect, and the [CO32-] effect. Here we studied how the growth rate influenced the skeletal oxygen and carbon isotope ratios (δ18O and δ13C) and the Sr/Ca ratio in a common-garden experiment involving the long-term culture of Porites australiensis clone colonies. Comparison of the seasonal minimum δ18O values during summer showed a negligible influence of the large intercolony variation in growth rate (2-10 mm yr-1) on δ18O variation, but δ18O was relatively sensitive to temporary intracolony growth-rate changes related to colony health. In contrast, the Sr/Ca ratio was robust against both inter- and intracolony growth-rate variation. We found a positive shift in δ13C in slower growing corals, which we attributed to the kinetic behaviour of the calcification reaction. The seasonal fluctuation in δ13C corresponded not to changes in light intensity nor to δ13C of dissolved inorganic carbon in seawater, but to photosynthetic efficiency as measured by pulse-amplitude photometry. These findings support the inference that coral skeletal Sr/Ca and δ18O in a long-lived colony can function as a palaeoclimate archive by recording signals of clonal growth. We also propose practical guidelines for the proper interpretation of coral records.

  15. Colony size-frequency distribution of pocilloporid juvenile corals along a natural environmental gradient in the Red Sea.

    PubMed

    Lozano-Cortés, Diego F; Berumen, Michael L

    2016-04-30

    Coral colony size-frequency distributions can be used to assess population responses to local environmental conditions and disturbances. In this study, we surveyed juvenile pocilloporids, herbivorous fish densities, and algal cover in the central and southern Saudi Arabian Red Sea. We sampled nine reefs with different disturbance histories along a north-south natural gradient of physicochemical conditions (higher salinity and wider temperature fluctuations in the north, and higher turbidity and productivity in the south). Since coral populations with negatively skewed size-frequency distributions have been associated with unfavorable environmental conditions, we expected to find more negative distributions in the southern Red Sea, where corals are potentially experiencing suboptimal conditions. Although juvenile coral and parrotfish densities differed significantly between the two regions, mean colony size and size-frequency distributions did not. Results suggest that pocilloporid colony size-frequency distribution may not be an accurate indicator of differences in biological or oceanographic conditions in the Red Sea.

  16. Clustered parrotfish feeding scars trigger partial coral mortality of massive Porites colonies on the inshore Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bonaldo, R. M.; Bellwood, D. R.

    2015-03-01

    Coral predation by parrotfishes can cause damage to coral colonies, but research into the dynamics of their feeding scars on Indo-Pacific corals is limited. We monitored feeding scars of the parrotfish Chlorurus microrhinos on massive Porites colonies at Orpheus Island (inshore Great Barrier Reef) over 4 months. Of the 30 marks monitored, 11 were single feeding scars, which all healed completely. The remaining 19 feeding marks consisted of clusters of scars. Eight began to recover, while 11 increased in size by 1,576 ± 252 % (mean ± SE). A logistic regression predicted that a single feeding scar on a Porites colony had a 97 % probability of healing; however, where more than three feeding scars were present, this dropped below 50 %. As excavating parrotfishes in the Indo-Pacific often take multiple focused bites, they may have a significant impact on the growth and mortality of massive Porites colonies at Orpheus Island.

  17. Insights on Coral Adaptation from Polyp and Colony Morphology, Skeletal Density Banding and Carbonate Depositional Facies

    NASA Astrophysics Data System (ADS)

    Oehlert, A. M.; Hill, C. A.; Piggot, A. M.; Fouke, B. W.

    2008-12-01

    As one of the core reservoirs of primary production in the world's oceans, tropical coral reefs support a complex ecosystem that directly impacts over ninety percent of marine organisms at some point in their life cycle. Corals themselves are highly complex organisms and exhibit a range of growth forms that range from branching to massive, foliaceous, columnar, encrusting, free living and laminar coralla. Fierce competition over scarce resources available to each individual coral species creates niche specialization. Throughout the Phanerozic geological record, this has driven speciation events and created distinct skeletal growth morphologies that have differential abilities in feeding strategy. In turn, this has presumably led to the development of niche specialization that can be quantitatively measured through hierarchical morphological differences from the micrometer to the meter scale. Porter (1976) observed significant differences in skeletal morphology between Caribbean coral species that reflects an adaptive geometry based on feeding strategy. Within the Montastraea species complex there are four major morphologies; columnar, bouldering, irregular mounding, and skirted. Each morphotype can be found forming high abundance along the bathymetric gradient of coral reefs that grow along the leeward coast of Curacao, Netherlands Antilles. We have undertaken a study to determine the relative relationships amongst coral morphology, skeletal density and feeding strategy by comparing the morphometric measurements of individual polyps as well as the entire colony along spatial and bathymetric gradients. Polyp diameter, mouth size, interpolyp area, and interpolyp distance were measured from high-resolution images taken on a stereoscope, and evaluated with AxioVision image analysis software. These high-resolution optical analyses have also revealed new observations regarding folded tissue structures of the outer margin of polyps in the Montastrea complex. Skeletal

  18. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis

    PubMed Central

    Kvitt, Hagit; Kramarsky-Winter, Esti; Maor-Landaw, Keren; Zandbank, Keren; Kushmaro, Ariel; Rosenfeld, Hanna; Fine, Maoz; Tchernov, Dan

    2015-01-01

    Certain stony corals can alternate between a calcifying colonial form and noncalcifying solitary polyps, supporting the hypothesis that corals have survived through geologic timescale periods of unfavorable calcification conditions. However, the mechanisms enabling this biological plasticity are yet to be identified. Here we show that incubation of two coral species (Pocillopora damicornis and Oculina patagonica) under reduced pH conditions (pH 7.2) simulating past ocean acidification induce tissue-specific apoptosis that leads to the dissociation of polyps from coenosarcs. This in turn leads to the breakdown of the coenosarc and, as a consequence, to loss of coloniality. Our data show that apoptosis is initiated in the polyps and that once dissociation between polyp and coenosarc terminates, apoptosis subsides. After reexposure of the resulting solitary polyps to normal pH (pH 8.2), both coral species regenerated coenosarc tissues and resumed calcification. These results indicate that regulation of coloniality is under the control of the polyp, the basic modular unit of the colony. A mechanistic explanation for several key evolutionarily important phenomena that occurred throughout coral evolution is proposed, including mechanisms that permitted species to survive the third tier of mass extinctions. PMID:25646434

  19. Contrasting responses of coral reef fauna and foraminiferal assemblages to human influence in La Parguera, Puerto Rico

    EPA Science Inventory

    Coral reef biota including stony corals, sponges, gorgonians, fish, benthic macroinvertebrates and foraminifera were surveyed in coastal waters near La Parguera, in southwestern Puerto Rico. The goal was to evaluate sensitivity of coral reef biological indicators to human distur...

  20. East African Soil Erosion Recorded in a 300 Year old Coral Colony From Kenya

    NASA Astrophysics Data System (ADS)

    Dunbar, R. B.; Fleitmann, D.; McCulloch, M.; Mudelsee, M.; Vuille, M.; McClanahan, T.; Cole, J.; Eggins, S.

    2006-12-01

    Soil erosion threatens the food security of 2.6 billion people worldwide. The situation is particularly dire in East and Sub-Saharan Africa where per capita food production has declined over the past 45 years. Erosion and the resultant loss of fertile soil is a key socio-economic and ecological problem in Kenya, affecting all sectors of its economy and damaging marine and terrestrial ecosystems. The temporal pattern of soil erosion is almost unknown and currently only sparse and rather anecdotal information exists. To aid in filling this gap of knowledge, we present a 300-year long Barium record from two Kenyan coral colonies (Porites sp., 3°15'S, 40°9' E; Malindi Marine National Park) that documents a dynamic history of soil erosion in the Sabaki river drainage basin. To reconstruct Sabaki River sediment flux to the Malindi coral reef Ba/Ca ratios were measured in the skeleton of two Porites colonies (Mal 96-1 and Mal 95-3). Well-developed annual bands allow us to develop annually precise chronologies. Ba/Ca ratios were measured in core Mal 96-1 at continuous 40 μm intervals (~400 to 500 samples yr-1) using laser-ablation inductively coupled plasma mass spectrometry (LA- ICP-MS). To test for reproducibility and accuracy of the Mal 96-1 Ba/Ca profile, coral core Mal 95-3 was analyzed at lower resolution (1 to 12 samples yr-1) using discrete micro-drill sampling and isotope dilution ICP-MS. The close similarity between both coral Ba/Ca profiles, in absolute values as well as general pattern, underscores the accuracy of the LA-ICP-MS technique and adds confidence to our interpretation of the 300 year long Mal 96-1 Ba/Ca profile. The Ba/Ca coral proxy record shows that while the sediment flux from the Sabaki River is nearly constant between 1700 and 1900, a continuous rise in sediment flux is observed since 1900, reflecting steadily increasing demographic pressure on land use. The peak in suspended sediment load and hence soil erosion recorded at the Malindi reef

  1. Growth-Dependent Calibration of Coral Sr/Ca-SST From Multiple Colonies Provides Potential for Long SST Records from Fossil Corals

    NASA Astrophysics Data System (ADS)

    Goodkin, N. F.

    2005-12-01

    Extended reconstructions of sea surface temperature (SST) are critical to examining long-term climate variability not captured in instrumental records. Coral skeleton, which continuously accretes in annual density bands, preserves unique, multi-century archives of sub-annual resolution SST. Despite the promise of coral proxies, however, SSTs derived from corals are often several degrees cooler than those derived from other archives. Here we present strontium to calcium ratios (Sr/Ca) for four brain corals (Diploria labyrinthiformis) collected from the south shore of Bermuda that are strongly correlated with both instrumental SST (Hydrostation S, 30km southeast) and annual skeletal extension rate. High Sr/Ca ratios correspond with cold SSTs and slow skeletal growth rate, and vice versa. Over a ~25 year calibration period, the four corals have distinct average growth rates (2.57, 2.68, 3.55 and 4.03 mm/yr). For each colony, we provide a quantitative calibration of annual Sr/Ca to annual extension rate and annual SST along the axis of maximum growth and derive an individual growth dependent Sr/Ca-SST calibration equation: Sr/Ca = m*(SST) + n*(annual growth rate)*(SST) + b The slopes and intercepts of the four equations are found to be linearly related to the average growth-rate during the calibration periods of each colony, and a final multi-variant regression is performed to establish one final Sr/Ca-Growth Rate-SST calibration, in the form: Sr/Ca = m*(SST) + n*(annual growth rate)*(SST) + o*(average colony growth rate)*(SST) + b This growth-dependent calibration is shown to be applicable to a fossil coral of the same species in order to reconstruct SSTs at Bermuda for 223 years. A reconstruction excluding the influence of growth yields SSTs that exaggerate both cool and warm periods. SST anomalies near the end of the Little Ice Age (~1850) that are derived using a non-growth dependent calibration are exaggerated by a factor of two relative to those from a growth

  2. Temperature effects on the calcite skeletal composition of deep-water gorgonians (Isididae)

    NASA Astrophysics Data System (ADS)

    Thresher, Ronald E.; Wilson, Nicholas C.; MacRae, Colin M.; Neil, Helen

    2010-08-01

    We test for and calibrate a proxy for ocean temperature based on the skeletal composition of the widely distributed, deep-sea gorgonians in the family Isididae (bamboo corals), through use of three complementary methods: a short-term comparison of element/Ca ratios to a four-year temperature record, a long-term comparison with oceanographic records spanning forty years, and a geographic comparison of Isidids collected at sites ranging from the tropics to Antarctica. The assays consistently support a temperature-dependency for Mg/Ca ratios and suggest S/Ca is indirectly affected by temperature, but indicate little or no effect of temperature on P/Ca and Sr/Ca. The consensus relationship between Mg/Ca and temperature for Isidid calcite from the comparisons with the temperature time-series is T = -0.505 + 0.048 Mg/Ca, where T is in °C, Mg/Ca is in mmol/mol, and the applicable range is 3-6 °C. The results of the geographic assay, though imprecise, suggest the applicable range extends to temperatures below freezing. The scatter of data points around the regression of temperature and Mg/Ca is wide in all assays. This could reflect the effect of factors other than temperature on Mg/Ca ratios, but is also likely to reflect limitations of the field data, the effects of assumed constant growth rates in the corals and instrumental analytical error. The combined effects of micro-scale variability in growth rates and wide confidence intervals for each data point suggests that environmental reconstruction from Isidid internode calcite from sparse data or at time scales less than decades be done with caution. Comparisons within and among colonies do not indicate strong vital effects on ontogenetic variability in the corals, other than possibly close to the central pore of the coral. However, similar Mg/Ca ratios for Isidids from Antarctic and more temperate regions suggest adaptation to local conditions and hence a role for physiology at higher taxonomic levels, at least

  3. 75 FR 39917 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ..., and South Atlantic; Coral and Coral Reefs off the Southern Atlantic States; Exempted Fishing Permit..., limited numbers of gorgonian corals from Federal waters, off the coast of North Carolina. The specimens... for Coral, Coral Reefs, and Live/Hardbottom Habitat of the South Atlantic Region. The applicant...

  4. 76 FR 30110 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ..., and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic States; Exempted Fishing Permit... limited numbers of gorgonian corals from the exclusive economic zone (EEZ), off Port Canaveral, FL, north... implementing the Fishery Management Plan for Coral, Coral Reefs, and Live/Hardbottom Habitat of the...

  5. Development of Cryopreservation Techniques for Gorgonian (Junceella juncea) Oocytes through Vitrification.

    PubMed

    Tsai, Sujune; Yen, Wish; Chavanich, Suchana; Viyakarn, Voranop; Lin, Chiahsin

    2015-01-01

    Gorgonian corals are slowly declining due to human interaction and environmental impacts. Cryopreservation of gorgonian corals is an ex-situ method of conservation, ensuring future reproduction. The present study assessed the vitrification properties of cryoprotectant (CPT) mixtures using the cryotop, cryoloop and open pulled straw (OPS) cryopereservation methods prior to experimentation on gorgonian (Junceella juncea) oocytes. Investigations of the equilibration and vitrification solutions' (ES and VS) effect on oocytes throughout different incubation periods were conducted. The cryotop method was found to be the most successful in ensuring vitrification. The most favourable VS was composed of propylene glycol (PG), ethylene glycol (EG) and methanol with concentrations of 3.5 M, 1.5 M and 2 M respectively. Experiments were performed using the cryotop method to cryopreserve Junceella juncea oocytes using VS2, the solution had the least impact on oocytes at 5°C rather than at 26°C. The success of the vitrification procedures was determined by adenosine triphosphate (ATP) levels in cooled-thaw oocytes and the highest viability obtained from the present study was 76.6 ± 6.2%. This study provides information regarding gorgonian corals' tolerance and viability throughout vitrification to further advance the vitrification protocol on whip corals.

  6. CHARACTERIZING CORAL CONDITION USING ESTIMATES OF THREE-DIMENSIONAL COLONY SURFACE AREA

    EPA Science Inventory

    Coral reefs provide shoreline protection, biological diversity, fishery harvets, and tourism, all values that stem from the physically-complex coral infrastructure. Stony corals (scleractinianss) construct and maintain the reef through deposition of calcium carbonate. Therefore...

  7. Deep coral oases in the South Tyrrhenian Sea.

    PubMed

    Bo, Marzia; Canese, Simonepietro; Spaggiari, Costanza; Pusceddu, Antonio; Bertolino, Marco; Angiolillo, Michela; Giusti, Michela; Loreto, Maria Filomena; Salvati, Eva; Greco, Silvestro; Bavestrello, Giorgio

    2012-01-01

    A Mediterranean "roche du large" ecosystem, represented by four rocky shoals, located a few miles apart on a muddy bottom at 70-130 m depth in the gulf of St. Eufemia (Calabria, South Tyrrhenian Sea), was studied by means of Remotely Operated Vehicle (ROV) photo imaging. The shoals host highly diversified coral communities, mainly composed of arborescent colonies of gorgonians (Callogorgia verticillata, Paramuricea clavata, Paramuricea macrospina, Bebryce mollis, Villogorgia bebrycoides, Corallium rubrum, and Leptogorgia sarmentosa), and antipatharians (Antipathella subpinnata, Antipathes dichotoma and Parantipathes larix). The coral colonies reach high densities (up to ca. 17 colonies m(-2)) and large sizes, such as the over 1.5 m wide antipatharian colonies. We hypothesized that the abundance and composition of the coral assemblages differed significantly among the rocky shoals and with respect to the surrounding soft bottoms. Various environmental variables were tested as possible explanatory factors of the observed differences. Moreover, due to their off-coast localization, we report here that these unique ecosystems are potentially subjected to a strong pressure from the local fishing activities, which were tentatively characterized. The recorded coral β-diversity among the shoals supports the hypothesis that these habitats behave like small oases of hard substrata interspersed in a muddy bottom. Because of their intrinsic beauty and rarity and their biological and ecological value, we stress the need of specific actions aimed at the urgent protection of these oases of biodiversity.

  8. The effect of species and colony size on the bleaching response of reef-building corals in the Florida Keys during the 2005 mass bleaching event

    NASA Astrophysics Data System (ADS)

    Brandt, M. E.

    2009-12-01

    Understanding the variation in coral bleaching response is necessary for making accurate predictions of population changes and the future state of reefs in a climate of increasing thermal stress events. Individual coral colonies, belonging to inshore patch reef communities of the Florida Keys, were followed through the 2005 mass bleaching event. Overall, coral bleaching patterns followed an index of accumulated thermal stress more closely than in situ temperature measurements. Eight coral species ( Colpophyllia natans, Diploria strigosa, Montastraea cavernosa, M. faveolata, Porites astreoides, P. porites, Siderastrea siderea, and Stephanocoenia intersepta), representing >90% of the coral colonies studied, experienced intense levels of bleaching, but responses varied. Bleaching differed significantly among species: Colpophyllia natans and Diploria strigosa were most susceptible to thermal stress, while Stephanocoenia intersepta was the most tolerant. For colonies of C. natans, M. faveolata, and S. siderea, larger colonies experienced more extensive bleaching than smaller colonies. The inshore patch reef communities of the Florida Keys have historically been dominated by large colonies of Montastraea sp. and Colpophyllia natans. These results provide evidence that colony-level differences can affect bleaching susceptibility in this habitat and suggest that the impact of future thermal stress events may be biased toward larger colonies of dominant reef-building species. Predicted increases in the frequency of mass bleaching and subsequent mortality may therefore result in significant structural shifts of these ecologically important communities.

  9. Declining Coral Skeletal Extension for Forereef Colonies of Siderastrea siderea on the Mesoamerican Barrier Reef System, Southern Belize

    PubMed Central

    Castillo, Karl D.; Ries, Justin B.; Weiss, Jack M.

    2011-01-01

    Background Natural and anthropogenic stressors are predicted to have increasingly negative impacts on coral reefs. Understanding how these environmental stressors have impacted coral skeletal growth should improve our ability to predict how they may affect coral reefs in the future. We investigated century-scale variations in skeletal extension for the slow-growing massive scleractinian coral Siderastrea siderea inhabiting the forereef, backreef, and nearshore reefs of the Mesoamerican Barrier Reef System (MBRS) in the western Caribbean Sea. Methodology/Principal Findings Thirteen S. siderea cores were extracted, slabbed, and X-rayed. Annual skeletal extension was estimated from adjacent low- and high-density growth bands. Since the early 1900s, forereef S. siderea colonies have shifted from exhibiting the fastest to the slowest average annual skeletal extension, while values for backreef and nearshore colonies have remained relatively constant. The rates of change in annual skeletal extension were −0.020±0.005, 0.011±0.006, and −0.008±0.006 mm yr−1 per year [mean±SE] for forereef, backreef, and nearshore colonies respectively. These values for forereef and nearshore S. siderea were significantly lower by 0.031±0.008 and by 0.019±0.009 mm yr−1 per year, respectively, than for backreef colonies. However, only forereef S. siderea exhibited a statistically significant decline in annual skeletal extension over the last century. Conclusions/Significance Our results suggest that forereef S. siderea colonies are more susceptible to environmental stress than backreef and nearshore counterparts, which may have historically been exposed to higher natural baseline stressors. Alternatively, sediment plumes, nutrients, and pollution originating from watersheds of Guatemala and Honduras may disproportionately impact the forereef environment of the MBRS. We are presently reconstructing the history of environmental stressors that have impacted the MBRS to constrain

  10. Airborne lidar sensing of massive stony coral colonies on patch reefs in the northern Florida reef tract

    USGS Publications Warehouse

    Brock, J.C.; Wright, C.W.; Kuffner, I.B.; Hernandez, R.; Thompson, P.

    2006-01-01

    In this study we examined the ability of the NASA Experimental Advanced Airborne Research Lidar (EAARL) to discriminate cluster zones of massive stony coral colonies on northern Florida reef tract (NFRT) patch reefs based on their topographic complexity (rugosity). Spatially dense EAARL laser submarine topographic soundings acquired in August 2002 were used to create a 1-m resolution digital rugosity map for adjacent NFRT study areas characterized by patch reefs (Region A) and diverse substratums (Region B). In both regions, sites with lidar-sensed rugosities above 1.2 were imaged by an along-track underwater videography system that incorporated the acquisition of instantaneous GPS positions. Subsequent manual interpretation of videotape segments was performed to identify substratum types that caused elevated lidar-sensed rugosity. Our study determined that massive coral colony formation, modified by subsequent physical and biological processes that breakdown patch reef framework, was the primary source of topographic complexity sensed by the EAARL in the NFRT. Sites recognized by lidar scanning to be topographically complex preferentially occurred around the margins of patch reefs, constituted a minor fraction of the reef system, and usually reflected the presence of massive coral colonies in cluster zones, or their derivatives created by mortality, bioerosion, and physical breakdown.

  11. Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia)

    NASA Astrophysics Data System (ADS)

    Ortiz, J. C.; Gomez-Cabrera, M. Del C.; Hoegh-Guldberg, O.

    2009-12-01

    In January-May 2006, Heron Island in the Great Barrier Reef experienced a mild bleaching event. The effect of colony size, morphology and surrounding substrate on the extent of bleaching was explored. In contrast with previous studies, colony size did not influence bleaching sensitivity, suggesting that there may be a threshold of light and temperature stress beyond which size plays a role. Also contrasting with previous studies, massive corals were more affected by bleaching than branching corals. Massive corals surrounded by sand were more affected than the ones surrounded by rubble or dead coral. It is hypothesized that light reflectance from sand increases stress levels experienced by the colonies. This effect is maximized in massive corals as opposed to branching corals that form dense thickets on Heron Island. These results emphasize the importance of the ecological dynamics of coral communities experiencing low, moderate and high levels of bleaching for the understanding of how coral communities may change under the stress of climate change.

  12. Comparison of the cryo-tolerance of vitrified gorgonian oocytes

    PubMed Central

    Tsai, Sujune; Yang, Vivian; Lin, Chiahsin

    2016-01-01

    Coral reefs have been declining considerably in recent years because of changes to the environment and climate. The cryopreservation of coral gametes is an essential alternative method that yields immense success in preserving corals. This study focuses on developing vitrification techniques for Junceella fragilis and Ellisella robusta oocytes, and presents a comparison on the cryotolerance of their vitrified oocytes. The results revealed that these coral oocytes could be preserved for a longer period in equilibration solution 2 and vitrification solution (VS) 2 at 5 °C than at 26 °C. Oocyte viability decreased significantly when VS2 was used for >4 min at 26 °C compared with the control. Cryoprotectant tolerance was higher in E. robusta oocytes than in J. fragilis oocytes. However, E. robusta was determined to be more cryo-tolerant, with differences attributed to their habitats, thus making E. robusta is likely a superior candidate species for further study. The results of this study on the effects of coral cryopreservation provide a foundation for developing protocols further for the cryopreservation of the oocytes of gorgonian corals. PMID:26984101

  13. Species composition and bathymetric distribution of gorgonians (Anthozoa: Octocorallia) on the Southern Mexican Pacific coast.

    PubMed

    Abeytia, Rosalinda; Guzmán, Hector M; Breedy, Odalisca

    2013-09-01

    Gorgonians are important components of coastal ecosystems, as they provide niches, natural compounds with medical applications and are used as bioindicators. Species composition and assemblage structure of gorgonians (Anthozoa: Octocorallia) were studied along a bathymetric profile in the Southern Mexican Pacific coast. Species composition was based on specimens collected within a depth range of 0-70 m in 15 sites. The relative abundance of species was determined in six sites at four depths (5, 10, 20 and 25 m) using three 10 m2 transects at each depth level. Twenty-seven species of gorgonians belonging to six genera and three families were registered. The species composition varied with depth: 11 species were distributed between 0-25m depth, while 17 species were found between 40-70 m depth interval. The shallow zone is characterized by a relatively large abundance of gorgonians, dominated by colonies of Leptogorgia cuspidata and L. ena. In contrast, the deepest zone was characterized by relatively low abundance of gorgonians, dominated by L. alba, the only species observed in both depth intervals. The similarity analysis showed differences in the composition and abundance of species by depth and site, suggesting that the main factor in determining the assemblage structure is depth. Results of this study suggest that the highest richness of gorgonian species in the study area may be located at depths of 40-70 m, whereas the highest abundances are found between 5 and 10 m depth. This study represents a contribution to the poorly known eastern Pacific gorgonian biota.

  14. Diversity and chemical defense role of culturable non-actinobacterial bacteria isolated from the South China Sea gorgonians.

    PubMed

    Peng, Jiang; Zhang, Xiaoyong; Xu, Xinya; He, Fei; Qi, Shuhua

    2013-04-01

    The diversity of culturable non-actinobacterial (NA) bacteria associated with four species of South China Sea gorgonians was investigated using culture-dependent methods followed by analysis of the bacterial 16S rDNA sequence. A total of 76 bacterial isolates were recovered and identified, which belonged to 21 species of 7 genera, and Bacillus was the most diverse genus. Fifty-one percent of the 76 isolates displayed antibacterial activities, and most of them belonged to the Bacillus genus. From the culture broth of gorgonian-associated Bacillus methylotrophicus SCSGAB0092 isolated from gorgonian Melitodes squamata, 11 antimicrobial lipopeptides including seven surfactins and four iturins were obtained. These results imply that Bacillus strains associated with gorgonians play roles in coral defense mechanisms through producing antimicrobial substances. This study, for the first time, compares the diversity of culturable NA bacterial communities among four species of South China Sea gorgonians and investigates the secondary metabolites of gorgonian-associated B. methylotrophicus SCSGAB0092.

  15. Methods and measurement variance for field estimations of coral colony planar area using underwater photographs and semi-automated image segmentation.

    PubMed

    Neal, Benjamin P; Lin, Tsung-Han; Winter, Rivah N; Treibitz, Tali; Beijbom, Oscar; Kriegman, David; Kline, David I; Greg Mitchell, B

    2015-08-01

    Size and growth rates for individual colonies are some of the most essential descriptive parameters for understanding coral communities, which are currently experiencing worldwide declines in health and extent. Accurately measuring coral colony size and changes over multiple years can reveal demographic, growth, or mortality patterns often not apparent from short-term observations and can expose environmental stress responses that may take years to manifest. Describing community size structure can reveal population dynamics patterns, such as periods of failed recruitment or patterns of colony fission, which have implications for the future sustainability of these ecosystems. However, rapidly and non-invasively measuring coral colony sizes in situ remains a difficult task, as three-dimensional underwater digital reconstruction methods are currently not practical for large numbers of colonies. Two-dimensional (2D) planar area measurements from projection of underwater photographs are a practical size proxy, although this method presents operational difficulties in obtaining well-controlled photographs in the highly rugose environment of the coral reef, and requires extensive time for image processing. Here, we present and test the measurement variance for a method of making rapid planar area estimates of small to medium-sized coral colonies using a lightweight monopod image-framing system and a custom semi-automated image segmentation analysis program. This method demonstrated a coefficient of variation of 2.26% for repeated measurements in realistic ocean conditions, a level of error appropriate for rapid, inexpensive field studies of coral size structure, inferring change in colony size over time, or measuring bleaching or disease extent of large numbers of individual colonies.

  16. Multi-colony calibrations of coral Ba/Ca with a contemporaneous in situ seawater barium record

    NASA Astrophysics Data System (ADS)

    LaVigne, Michèle; Grottoli, Andréa G.; Palardy, James E.; Sherrell, Robert M.

    2016-04-01

    The coral skeleton barium to calcium ratio (Ba/Cacoral), a proxy for seawater barium concentrations (BaSW), has been interpreted as a tracer of upwelling based on the characteristic "nutrient like" depth profile of BaSW. However, in some tropical regions, such as the Gulf of Panamá, substantial influence of terrestrial runoff inputs and differences between the vertical distribution of BaSW and that of the major nutrients (nitrate and phosphate) in the upper water column can complicate the interpretation of Ba/Cacoral as an upwelled nutrient proxy. In the Gulf of Panamá, contemporaneous Ba/Cacoral records from multiple colonies of Porites lobata, Pavona gigantea, and Pavona clavus corals record a nearly twofold change in surface water BaSW as a 20-70% increase in skeletal Ba/Ca with excellent correlation among Ba/Ca records from co-located colonies (r = 0.86-0.99). These results provide, for the first time, an absolute calibration of the coral Ba proxy with a contemporaneous BaSW record. Compiling the Ba/Cacoral records from three co-located colonies of each species into taxon-specific composite regressions reveals strong statistically significant correlations with the BaSW time-series record (p < 0.001). Differences among taxa in regression slope, y-intercept, and average distribution coefficient, as well as a demonstration of the application of the P. clavus calibration to a previously published Ba/Cacoral record, emphasize the necessity of using taxon-specific calibrations to reconstruct changes in BaSW with accuracy. These results support the application of Ba/Cacoral to reconstruct past changes in absolute BaSW concentrations, adding an important tool to the collection of geochemical proxies for reconstructing surface ocean biogeochemical processes in the past.

  17. Gorgonian disease outbreak in the Gulf of Naples: pathology reveals cyanobacterial infection linked to elevated sea temperatures.

    PubMed

    Carella, F; Aceto, S; Saggiomo, M; Mangoni, O; De Vico, G

    2014-08-21

    In recent years, mass mortality events of benthic invertebrates in the Mediterranean Sea have been documented to coincide with the increased seawater temperatures associated with global climate change. Following a disease outbreak in gorgonians during the summer seasons of 2008 and 2009 in the Gulf of Naples (Tyrrhenian Sea), we conducted gross and microscopic analyses of healthy and diseased specimens of Eunicella cavolinii and E. singularis using both light and electron microscopy (SEM). Macroscopically, diseased colonies exhibited evident tissue thinning, and dead colonies showed a complete loss of polyps and coenenchyme, exposing their skeletons to settlement by fouling organisms. Histopathology revealed chronic inflammatory lesions at the polyp and axial level, characterized by amoebocyte infiltration of tissue accompanied by new apposition of melanin/gorgonin sheets. We interpreted this response as a defense against different kinds of pathogens-identified as mainly a heterogeneous consortium of filamentous cyanobacteria-and which gradually led to enlargement and hardening of the coral axis, which resembled a wood-like structure at the final stage of the disease. These processes elicited the formation of multiple inflammatory nodules and capsules, some of which were macroscopically visible. A parallel 16S rRNA and ITS analysis of the diseased tissue identified Synechococcus, Arthrospira and other uncultured cyanobacteria grouped within the Oscillatoriales. These results suggest that a cyanobacterial consortium is involved in the pathogenesis of the inflammatory disease leading to the mortality of Gorgoniaceae in the area. Finally, there were anomalously high temperatures (up to 25°C) between 10 and 20 m depth during the sampling period, particularly in June 2009. This supports the hypothesis that the coral skeleton may serve as a reservoir for the pathogens in cooler seasons, with warmer conditions leading to pathogen reactivation and recurring mortality

  18. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification.

    PubMed

    Crook, Elizabeth D; Cohen, Anne L; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina

    2013-07-02

    As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater.

  19. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification

    PubMed Central

    Crook, Elizabeth D.; Cohen, Anne L.; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina

    2013-01-01

    As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater. PMID:23776217

  20. New Marine Sterols from a Gorgonian Pinnigorgia sp.

    PubMed

    Chang, Yu-Chia; Hwang, Tsong-Long; Chao, Chih-Hua; Sung, Ping-Jyun

    2017-03-03

    Continuous chemical investigation of the gorgonian coral Pinnigorgia sp. resulted in the isolation of two new sterols, 5α,6α-epoxy-(22E,24R)-3β,11-dihydroxy-9,11-secoergosta-7-en-9-one (1) and (22R)-acetoxy-(24ξ)-ergosta-5-en-3β,25-diol (2). The structures of sterols 1 and 2 were elucidated using spectroscopic methods. Sterol 1 displayed inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils with IC50 values of 8.65 and 5.86 μM, respectively. The structure of a known metabolite, pubinernoid A (3), is revised as (+)-loliolide (4).

  1. Reproductive biology of the deep-water coral Acanella arbuscula (Phylum Cnidaria: Class Anthozoa: Order Alcyonacea), northwest Atlantic

    NASA Astrophysics Data System (ADS)

    Beazley, Lindsay I.; Kenchington, Ellen L.

    2012-10-01

    Knowledge of the reproductive life-history of deep-water corals is important for assessing their vulnerability to anthropogenic impacts. Yet, the reproductive biology of many deep-water corals, especially members of the subclass Octocorallia, has not been examined. We used histological techniques to describe the reproductive biology of the deep-water gorgonian coral Acanella arbuscula from the northwest Atlantic. All colonies examined were gonochoric, and no embryos or planula larvae were observed in the polyps. Mean polyp-level fecundity (females: 21.0±17.5 oocytes polyp-1, and males: 13.9±13.5 sperm sacs polyp-1) is high compared to other deep-water gorgonians, and polyps closer to the branch tips had the highest fecundities in both females and males. The presence of large oocytes (maximum diameter 717.8 μm) suggests that A. arbuscula produces lecithotrophic larvae. Despite the potentially high fecundity and small size at first reproduction, the paucity of information on dispersal and recruitment, combined with its longevity, vulnerability to bottom fishing gear, and ecological role as a structure-forming species, still warrants the classification of A. arbuscula as a vulnerable marine ecosystem indicator.

  2. New Famennian colonial coral (Rugosa) from the Holy Cross Mountains (Poland): an example of local evolution after Frasnian-Famennian extinction

    NASA Astrophysics Data System (ADS)

    Berkowski, Błażej; Zapalski, Mikołaj K.; Wrzołek, Tomasz

    2016-04-01

    Colonial rugose corals are extremely rare in the fossil record after the Late Devonian (Frasnian-Famennian) extinction event. Here, we report a new genus and species, Famastraea catenata, from the late Famennian of the western part of the Holy Cross Mountains (Kowala) in Poland. Although this taxon is colonial, it displays many morphological characters very close to the typically late Famennian solitary species Palaeosmilia aquisgranensis (Frech, 1885), described earlier from the same locality. Hence, we postulate that F. catenata is derived from P. aquisgranensis. In contrast to other Famennian colonial rugose corals, the new taxon represents an example of local evolution within the group of so-called `Strunian' corals. Consequently, we postulate that the new taxon represents a new colonial rugose fauna, which, however, did not survive the subsequent Late Devonian crisis (i.e. Hangenberg event). F. catenata most probably inhabited deeper water settings, possibly near the boundary between the euphotic and dysphotic zones, as inferred from many other benthic taxa described from this locality.

  3. Aspergillus sydowii and Other Potential Fungal Pathogens in Gorgonian Octocorals of the Ecuadorian Pacific.

    PubMed

    Soler-Hurtado, M Mar; Sandoval-Sierra, José Vladimir; Machordom, Annie; Diéguez-Uribeondo, Javier

    2016-01-01

    Emerging fungal diseases are threatening ecosystems and have increased in recent decades. In corals, the prevalence and consequences of these infections have also increased in frequency and severity. Coral reefs are affected by an emerging fungal disease named aspergillosis, caused by Aspergillus sydowii. This disease and its pathogen have been reported along the Caribbean and Pacific coasts of Colombia. Despite this, an important number of coral reefs worldwide have not been investigated for the presence of this pathogen. In this work, we carried out the surveillance of the main coral reef of the Ecuadorian Pacific with a focus on the two most abundant and cosmopolitan species of this ecosystem, Leptogorgia sp. and Leptogorgia obscura. We collected 59 isolates and obtained the corresponding sequences of the Internal Transcribed Spacers (ITS) of the ribosomal DNA. These were phylogenetically analyzed using MrBayes, which indicated the presence of two isolates of the coral reef pathogen A. sydowii, as well as 16 additional species that are potentially pathogenic to corals. Although the analyzed gorgonian specimens appeared healthy, the presence of these pathogens, especially of A. sydowii, alert us to the potential risk to the health and future survival of the Pacific Ecuadorian coral ecosystem under the current scenario of increasing threats and stressors to coral reefs, such as habitat alterations by humans and global climate change.

  4. Aspergillus sydowii and Other Potential Fungal Pathogens in Gorgonian Octocorals of the Ecuadorian Pacific

    PubMed Central

    Soler-Hurtado, M. Mar; Sandoval-Sierra, José Vladimir; Machordom, Annie; Diéguez-Uribeondo, Javier

    2016-01-01

    Emerging fungal diseases are threatening ecosystems and have increased in recent decades. In corals, the prevalence and consequences of these infections have also increased in frequency and severity. Coral reefs are affected by an emerging fungal disease named aspergillosis, caused by Aspergillus sydowii. This disease and its pathogen have been reported along the Caribbean and Pacific coasts of Colombia. Despite this, an important number of coral reefs worldwide have not been investigated for the presence of this pathogen. In this work, we carried out the surveillance of the main coral reef of the Ecuadorian Pacific with a focus on the two most abundant and cosmopolitan species of this ecosystem, Leptogorgia sp. and Leptogorgia obscura. We collected 59 isolates and obtained the corresponding sequences of the Internal Transcribed Spacers (ITS) of the ribosomal DNA. These were phylogenetically analyzed using MrBayes, which indicated the presence of two isolates of the coral reef pathogen A. sydowii, as well as 16 additional species that are potentially pathogenic to corals. Although the analyzed gorgonian specimens appeared healthy, the presence of these pathogens, especially of A. sydowii, alert us to the potential risk to the health and future survival of the Pacific Ecuadorian coral ecosystem under the current scenario of increasing threats and stressors to coral reefs, such as habitat alterations by humans and global climate change. PMID:27902710

  5. Briarane Diterpenoids from the Gorgonian Dichotella gemmacea

    PubMed Central

    La, Ming-Ping; Li, Jiao; Li, Cui; Tang, Hua; Liu, Bao-Shu; Sun, Peng; Zhuang, Chun-Lin; Li, Tie-Jun; Zhang, Wen

    2014-01-01

    Seven new briarane diterpenoids, gemmacolides AS-AY (1–7), were isolated together with ten known analogues (8–17) from the South China Sea gorgonian Dichotella gemmacea. The structures of the new compounds were elucidated by the detailed analysis of spectroscopic data and comparison with reported data. The absolute configuration of compounds was determined based on electronic circular dichroism (ECD) experiments and genetic correlations as well. Compounds 15 and 16 were reported for the first time for the gorgonian. In the preliminary in vitro bioassays, compound 5 showed potential growth inhibitory activity against MG63 cells. PMID:25528959

  6. Isolation and structures of sixteen new asbestinin diterpenes from the Caribbean gorgonian Briareum asbestinum.

    PubMed

    Rodríguez, A D; Cóbar, O M; Martínez, N

    1994-12-01

    Sixteen new diterpenoids, representative of the asbestinane skeletal class, have been isolated from shallow water colonies of the Caribbean gorgonian octocoral Briareum asbestinum. The structures of these secondary metabolites, named asbestinin-11 [1], asbestinin-12 [3], asbestinin-13 [4], asbestinin-14 [5], asbestinin-15 [7], asbestinin-16 [8], asbestinin-17 [9], asbestinin-18 [10], asbestinin-19 [11], asbestinin-20 [12], asbestinin-21 [13], asbestinin-22 [14], asbestinin-23 [15], 11-acetoxy-4-deoxyasbestinin E [16], 11-acetoxy-4-deoxyasbestinin F [17] and 4-deoxyasbestinin G [18], were defined by chemical and spectroscopic methods. These specimens of B. asbestinum, collected in Puerto Rico, yielded almost exclusively diterpenoids possessing the asbestinane carbon skeleton thus suggesting minor biosynthetic variations for this gorgonian. In this paper, we also revise the structures of the known asbestinin-6 and asbestinin-7 to asbestinanes 2 and 6, respectively.

  7. Cold-Water Corals and Anthropogenic Impacts in La Fonera Submarine Canyon Head, Northwestern Mediterranean Sea.

    PubMed

    Lastras, Galderic; Canals, Miquel; Ballesteros, Enric; Gili, Josep-Maria; Sanchez-Vidal, Anna

    2016-01-01

    We assess the occurrence and extent of cold-water coral (CWC) species Madrepora oculata and Dendrophyllia cornigera, as well as gorgonian red coral Corallium rubrum, in La Fonera canyon head (Northwestern Mediterranean Sea), as well as human impacts taking place in their habitats. Occurrence is assessed based on Remotely Operated Vehicle (ROV) video imaging. Terrain classification techniques are applied to high-resolution swath bathymetric data to obtain semi-automatic interpretative maps to identify the relationship between coral distribution patterns and canyon environments. A total of 21 ROV immersions were carried out in different canyon environments at depths ranging between 79 and 401 m. Large, healthy colonies of M. oculata occur on abrupt, protected, often overhanging, rocky sections of the canyon walls, especially in Illa Negra branch. D. cornigera is sparser and evenly distributed at depth, on relatively low sloping areas, in rocky but also partially sedimented areas. C. rubrum is most frequent between 100 and 160 m on highly sloping rocky areas. The probable extent of CWC habitats is quantified by applying a maximum entropy model to predict habitat suitability: 0.36 km2 yield M. oculata occurrence probabilities over 70%. Similar predictive models have been produced for D. cornigera and C. rubrum. All ROV transects document either the presence of litter on the seafloor or pervasive trawling marks. Nets and longlines are imaged entangled on coral colonies. Coral rubble is observed at the foot of impacted colonies. Some colonies are partially covered by sediment that could be the result of the resuspension generated by bottom trawling on neighbouring fishing grounds, which has been demonstrated to be responsible of daily increases in sediment fluxes within the canyon. The characteristics of the CWC community in La Fonera canyon are indicative that it withstands high environmental stress of both natural and human origin.

  8. Cold-Water Corals and Anthropogenic Impacts in La Fonera Submarine Canyon Head, Northwestern Mediterranean Sea

    PubMed Central

    Canals, Miquel; Ballesteros, Enric; Gili, Josep-Maria; Sanchez-Vidal, Anna

    2016-01-01

    We assess the occurrence and extent of cold-water coral (CWC) species Madrepora oculata and Dendrophyllia cornigera, as well as gorgonian red coral Corallium rubrum, in La Fonera canyon head (Northwestern Mediterranean Sea), as well as human impacts taking place in their habitats. Occurrence is assessed based on Remotely Operated Vehicle (ROV) video imaging. Terrain classification techniques are applied to high-resolution swath bathymetric data to obtain semi-automatic interpretative maps to identify the relationship between coral distribution patterns and canyon environments. A total of 21 ROV immersions were carried out in different canyon environments at depths ranging between 79 and 401 m. Large, healthy colonies of M. oculata occur on abrupt, protected, often overhanging, rocky sections of the canyon walls, especially in Illa Negra branch. D. cornigera is sparser and evenly distributed at depth, on relatively low sloping areas, in rocky but also partially sedimented areas. C. rubrum is most frequent between 100 and 160 m on highly sloping rocky areas. The probable extent of CWC habitats is quantified by applying a maximum entropy model to predict habitat suitability: 0.36 km2 yield M. oculata occurrence probabilities over 70%. Similar predictive models have been produced for D. cornigera and C. rubrum. All ROV transects document either the presence of litter on the seafloor or pervasive trawling marks. Nets and longlines are imaged entangled on coral colonies. Coral rubble is observed at the foot of impacted colonies. Some colonies are partially covered by sediment that could be the result of the resuspension generated by bottom trawling on neighbouring fishing grounds, which has been demonstrated to be responsible of daily increases in sediment fluxes within the canyon. The characteristics of the CWC community in La Fonera canyon are indicative that it withstands high environmental stress of both natural and human origin. PMID:27182776

  9. QUANTITATIVE ASSESSMENT OF CORAL DISEASES IN THE FLORIDA KEYS: STRATEGY AND METHODOLOGY

    EPA Science Inventory

    Most studies of coral disease have focused on the incidence of a single disease within a single location. Our overall objective is to use quantitative assessments to characterize annual patterns in the distribution and frequency of scleractinian and gorgonian coral diseases over ...

  10. Fate of Photosynthetic Fixed Carbon in Light- and Shade-Adapted Colonies of the Symbiotic Coral Stylophora pistillata

    NASA Astrophysics Data System (ADS)

    Muscatine, L.; Falkowski, P. G.; Porter, J. W.; Dubinsky, Z.

    1984-08-01

    The total daily flux of photosynthetically fixed carbon in light- and shade-adapted phenotypes of the symbiotic coral, Stylophora pistillata, was quantified. Light adapted corals fixed four times as much carbon and respired twice as much as shade corals. Specific growth rates of zooxanthellae in situ were estimated from average daily mitotic indices and from ammonium uptake rates (nitrate uptake or nitrate reductase activity could not be demonstrated). Specific growth rates were very low, demonstrating that of the total net carbon fixed daily, only a small fraction (less than 5%) goes into zooxanthellae cell growth. The balance of the net fixed carbon (more than 95%) is translocated to the host. New and conventional methods of measuring total daily translocation were compared. The `growth rate' method, which does not employ 14C, emerged as superior to the conventional in vitro and in vivo methods. The contribution of translocated carbon to animal maintenance respiration (CZAR) was 143% in light corals and 58% in shade corals. Thus, translocation in the former could supply not only the total daily carbon needed for respiration but also a fraction of the carbon needed for growth. Whereas light-adapted corals released only 6%, shade-adapted corals released almost half of their total fixed carbon as dissolved or particulate organic material. This much higher throughput of organic carbon may possibly benefit the heterotrophic microbial community in shade environments.

  11. The Yellow Gorgonian Eunicella cavolini: Demography and Disturbance Levels across the Mediterranean Sea

    PubMed Central

    Linares, Cristina; Koutsoubas, Drosos; Garrabou, Joaquim

    2015-01-01

    The yellow octocoral Eunicella cavolini is one of the most common gorgonians thriving in Mediterranean hard-bottom communities. However, information regarding its distribution and ecology in several parts of the Mediterranean is lacking, while population trends and conservation status remain largely unknown. We investigated 19 populations of E. cavolini over three representative geographic regions: the NW Mediterranean, CE Adriatic, and N Aegean. Focusing on the upper bathymetric range of the species (<40 m), data were collected on the populations’ upper depth limit, density, colony height, and extent of injury. A three-level hierarchical sampling design was applied to assess the existence of spatial patterns, using: a) regions (located thousands of km apart), b) localities within regions (tens to hundreds of km apart), and c) sites within localities (hundreds of m to a few km apart). In the NW Mediterranean and CE Adriatic, the upper distribution limit was at depths ≤15 m, whereas in the N Aegean most populations were found deeper than 30 m. Population density ranged between 4.46-62 colonies per m2, while mean colony height was 15.6±8.9 SD cm with a maximum of 62 cm. The NW Mediterranean sites were characterized by dense populations dominated by small colonies (<20 cm), periodic recruitment, and low proportion of large gorgonians (>30 cm). The CE Adriatic displayed intermediate densities, with well-structured populations, and continuous recruitment. In the N Aegean, most populations presented low densities, high proportion of large colonies, but low number of small colonies, signifying limited recruitment. Disturbance levels, as a function of extent and type of injury, are discussed in relation to past or present human-induced threats. This work represents geographically the most wide ranging demographic study of a Mediterranean octocoral to date. The quantitative information obtained provides a basis for future monitoring at a Mediterranean scale. PMID

  12. Deep-sea coral and hardbottom habitats on the west Florida slope, eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Ross, Steve W.; Rhode, Mike; Brooke, Sandra

    2017-02-01

    Until recently, benthic habitats dominated by deep-sea corals (DSC) appeared to be less extensive on the slope of the Gulf of Mexico (GOM) than in the northeast Atlantic Ocean or off the southeastern US. There are relatively few bioherms (i.e., coral-built mounds) in the northern GOM, and most DSCs are attached to existing hard substrata (e.g., authigenically formed carbonate). The primary structure-forming, DSC in the GOM is Lophelia pertusa, but structure is also provided by other living and dead scleractinians, antipatharians (black corals), octocorals (gorgonians, soft corals), hydrocorals and sponges, as well as abundant rocky substrata. The best development of DSCs in the GOM was previously documented within Viosca Knoll oil and gas lease blocks 826 and 862/906 (north-central GOM) and on the Campeche Bank (southern GOM in Mexican waters). This paper documents extensive deep reef ecosystems composed of DSC and rocky hard-bottom recently surveyed on the West Florida Slope (WFS, eastern GOM) during six research cruises (2008-2012). Using multibeam sonar, CTD casts, and video from underwater vehicles, we describe the physical and oceanographic characteristics of these deep reefs and provide size or area estimates of deep coral and hardground habitats. The multibeam sonar analyses revealed hundreds of mounds and ridges, some of which were subsequently surveyed using underwater vehicles. Mounds and ridges in <525 m depths were usually capped with living coral colonies, dominated by L. pertusa. An extensive rocky scarp, running roughly north-south for at least 229 km, supported lower abundances of scleractinian corals than the mounds and ridges, despite an abundance of settlement substrata. Areal comparisons suggested that the WFS may exceed other parts of the GOM slope in extent of living deep coral coverage and other deep-reef habitat (dead coral and rock). The complex WFS region warrants additional studies to better understand the influences of oceanography and

  13. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    PubMed

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change.

  14. Coral reef condition and benthic sedimentation threat in four regions of south Puerto Rico

    EPA Science Inventory

    Scleractinian corals, gorgonian octocorals, sponges and fishes were assessed near the cities of LaParguera, Guánica, Guayanilla, and Jobos along the southern coast of Puerto Rico in November – December 2010. Survey sites were targeted near areas with varying benthic...

  15. Contrasting responses of coral reef fauna and foraminiferal assemblages to human influence in La Parguera, Puerto Rico.

    PubMed

    Oliver, L M; Fisher, W S; Dittmar, J; Hallock, P; Campbell, J; Quarles, R L; Harris, P; LoBue, C

    2014-08-01

    Coral reef biota including stony corals, sponges, gorgonians, fish, benthic macroinvertebrates and foraminifera were surveyed in coastal waters near La Parguera, in southwestern Puerto Rico. The goal was to evaluate sensitivity of coral reef biological indicators to human disturbance. Proxies for human disturbance were measured as distance to town (DTT) and rankings of a low-level sediment contamination gradient analyzed from a previous study. Contaminant rank and DTT showed that percent mud, stony coral taxa richness, reef rugosity, and numbers of invertebrates and sponges were higher at sites closer to human disturbance, but a foraminiferal assemblage index was significantly lower at sites with higher proxies for human disturbance. Fish indicators showed no significant relationships with human activity, but associations between fish community measures and certain measures of stony corals, gorgonians and sponges were found. Contrasting responses between foraminifera and reef organisms may be due to greater exposure and sensitivity of foraminifera to sediment contaminants.

  16. Four new polyoxygenated gorgosterols from the gorgonian Isis hippuris.

    PubMed

    Uddin, Mohammad Helal; Hanif, Novriyandi; Trianto, Agus; Agarie, Yutaka; Higa, Tatsuo; Tanaka, Junichi

    2011-03-01

    Four new polyoxygenated steroids (1-4) together with four known ones (5-8) have been isolated from the gorgonian Isis hippuris. The structures of the new compounds have been elucidated by spectroscopic analysis and chemical conversion. All of the new steroids showed moderate cytotoxicity against cultured NBT-T2 cells.

  17. Ecological Shifts in Mediterranean Coralligenous Assemblages Related to Gorgonian Forest Loss

    PubMed Central

    Ponti, Massimo; Perlini, Rossella Angela; Ventra, Vincenzo; Grech, Daniele; Abbiati, Marco; Cerrano, Carlo

    2014-01-01

    Mediterranean gorgonian forests are threatened by several human activities and are affected by climatic anomalies that have led to mass mortality events in recent decades. The ecological role of these habitats and the possible consequence of their loss are poorly understood. Effects of gorgonians on the recruitment of epibenthic organisms were investigated by manipulating presence of gorgonians on experimental panels at 24 m depth, for Eunicella cavolinii, and at 40 m depth, for Paramuricea clavata, at two sites: Tavolara Island (Tyrrhenian Sea) and Portofino Promontory (Ligurian Sea). After 4 months, the most abundant taxa on the panels were encrusting green algae, erect red algae and crustose coralline algae at 24 m depth and encrusting brown algae and erect red algae at 40 m depth. Assemblages on the panels were significantly affected by the presence of the gorgonians, although effects varied across sites and between gorgonian species. Species diversity and evenness were lower on panels with gorgonian branches. Growth of erect algae and recruitment of serpulid polychaetes were also affected by the presence of the gorgonians, primarily at Tavolara. Crustose coralline algae and erect sponges were more abundant on E. cavolinii panels at 24 m depth, while encrusting bryozoans were more abundant on P. clavata panels at 40 m depth. Effects of gorgonians on recruited assemblages could be due to microscale modification of hydrodynamics and sediment deposition rate, or by a shading effect reducing light intensity. Gorgonians may also intercept settling propagules, compete for food with the filter-feeders and/or for space by producing allelochemicals. Presence of gorgonians mainly limits the growth of erect algae and enhances the abundance of encrusting algae and sessile invertebrates. Therefore, the gorgonian disappearances may cause a shift from assemblages characterised by crustose coralline algae to filamentous algae assemblages, decreasing complexity and resilience

  18. Mucilage impact on gorgonians in the Tyrrhenian sea.

    PubMed

    Giuliani, S; Virno Lamberti, C; Sonni, C; Pellegrini, D

    2005-12-15

    The mucilage phenomenon has affected the Tuscan Archipelago since its first appearance (1991) in the Tyrrhenian Sea (Mediterranean Sea) [Innamorati M, Raddi E, Buzzichelli A, Melley S, Demoulin M. Le mucillaggini nel Mar Tirreno. Biol Mar Suppl Notiz 1992;1:23-26; Sartoni G, Sonni C. Tribonema marinum J. Feldmann e Acinetospora crinita (Carmichael) Sauvageau nelle formazioni mucillaginose bentoniche osservate sulle coste toscane nell'estate 1991. Inf Bot Ital 1991;23:23-30; Sartoni G, Cinelli F, Boddi S. Ruolo di Tribonema marinum J. Feldmann ed Acinetospora crinita (Carmichael) Sauvageau negli aggregati mucillaginosi bentonici delle coste toscane. Biol Mar Suppl Notiz 1993;1:31-34]. Seasonally, these mucous aggregates become very common in the benthic domain. The gorgonians are the most exposed organisms because they provide the best support for mucilage growth; indeed, their long branches positioned in orthogonally with respect to the current so as to capture plankton, also trap the filamentous mucilage present in the water. A 3-year monitoring programme at Capo Calvo (Island of Elba) was carried out in order to study the appearance of the mucilage phenomenon and its impact on three species of gorgonians (Eunicella cavolinii, Eunicella singularis, and Paramuricea clavata). The composition of mucilage and the gorgonian recovery capacity, when damaged, were investigated. During the first year of study (1999), no relevant interactions between gorgonians and mucilages were recorded. Instead, massive presence of mucilages causing different types of damage to the different gorgonian species investigated was recorded during the second (2000) and third year (2001). The type and the extent of the impact of mucilages also depend on the season. Three species of algae (Nematochrysopsis marina, Chrysonephos lewisii and Acinetospora crinita) constitute the principal components of the mucilaginous aggregates. In general, the first two species occur during the spring season

  19. Evaluation of Stony Coral Indicators for Coral Reef Management.

    EPA Science Inventory

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  20. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians.

    PubMed

    Zhang, Xiao-Yong; Bao, Jie; Wang, Guang-Hua; He, Fei; Xu, Xin-Ya; Qi, Shu-Hua

    2012-10-01

    Fungi in gorgonians are now known to cause gorgonian diseases, but little attention has been paid to the nature of fungal communities associated with gorgonians. The diversity of culturable fungi associated with six species of healthy South China Sea gorgonians were investigated using a culture-dependent method followed by analysis of fungal internal transcribed spacer sequences. A total of 121 fungal isolates were recovered and identified using the Basic Local Alignment Search Tool search program. These belonged to 41 fungal species from 20 genera. Of these, 30 species and 12 genera are new reports for gorgonians, and the genera Aspergillus and Penicillium were the most diverse and common in the six gorgonian species. Comparison of the fungal communities in the six gorgonian species, together with results from previous relevant studies, indicated that different gorgonian species and the same gorgonian species living in different geographic locations had different fungal communities. The gorgonian Dichotella gemmacea harbored the most fungal species and isolates, while Echinogorgia aurantiaca had the least fungal diversity. Among the six media used for fungal isolation, potato glucose agar yielded the highest isolates (27 isolates), while glucose peptone starch agar had the best recoverability of fungal species (15 species). The antimicrobial activity of the 121 fungal isolates was tested against three marine bacteria and two marine gorgonian pathogenic fungi. A relatively high proportion (38 %) of fungal isolates displayed distinct antibacterial and antifungal activity, suggesting that the gorgonian-associated fungi may aid their hosts in protection against pathogens. This is the first report comparing the diversity of fungal communities among the South China Sea gorgonians. It contributes to our knowledge of gorgonian-associated fungi and further increases the pool of fungi available for natural bioactive product screening.

  1. Coral can have growth anomalies

    EPA Science Inventory

    Coral growth anomalies (GAs) are changes in the coral cells that deposit the calcium carbonate skeleton. They usually appear as raised areas of the skeleton and tissue that are different from the surrounding normal areas on the same colony. The features include abnormal shape a...

  2. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria.

    PubMed

    van de Water, Jeroen A J M; Melkonian, Rémy; Voolstra, Christian R; Junca, Howard; Beraud, Eric; Allemand, Denis; Ferrier-Pagès, Christine

    2017-02-01

    Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.

  3. Does thermal history influence the tolerance of temperate gorgonians to future warming?

    PubMed

    Linares, Cristina; Cebrian, Emma; Kipson, Silvija; Garrabou, Joaquim

    2013-08-01

    To date, several studies have provided evidence that thermal stress affects the growth, survival and physiology of tropical and temperate macroinvertebrate species. However, few studies have focused on subtidal temperate species and the potential differential thermal tolerances of populations dwelling under contrasting temperature conditions. To assess the role that environmental history has on the response of the temperate gorgonian Eunicella singularis to thermal stress, we compared populations dwelling in the coldest and warmest areas of the NW Mediterranean Sea. Our results show that E. singularis populations from both areas exhibited a high resistance to thermal stress; however, populations from warmer areas had an increased tolerance to thermal stress. Specifically, the upper thermal limits found for cold and warm populations were 28 and 29 °C, respectively. The higher resistance of E. singularis colonies to thermal stress found in this study compared to the field temperature conditions during recent mass mortality events highlights that performing further thermotolerance experiments under contrasting levels of feeding is necessary to fully assess the tolerance thresholds displayed by both study populations. To our knowledge, this study provides the first evidence for the role of thermal history in shaping the thermotolerance responses of Mediterranean marine invertebrates dwelling under contrasting temperature environments.

  4. Sr/Ca sensitivity to aragonite saturation state in cultured subsamples from a single colony of coral: Mechanism of biomineralization during ocean acidification

    NASA Astrophysics Data System (ADS)

    Gagnon, Alexander C.; Adkins, Jess F.; Erez, Jonathan; Eiler, John M.; Guan, Yunbin

    2013-03-01

    Using a new and rapid NanoSIMS-based method, we quantified the sensitivity of skeletal Sr/Ca in coral to the aragonite saturation state of seawater (ΩSW). Skeletal Sr/Ca is a common proxy for temperature while ΩSW is a parameter that varied in the past ocean and is predicted to change with continued ocean acidification. Five adult branches of the surface coral Stylophora pistillata were grown at different ΩSW from 2.7 to 4.9 (pH of 7.9-8.5) but at a constant temperature of 25 °C. Despite a large range of growth parameters and a twofold range in calcification rates, the average skeletal Sr/Ca of coral exposed to each condition are within 1.2% of each other (2σ std. dev. of the 5 means). Furthermore, the average skeletal Sr/Ca measured in this study agrees with the results of two previous coral culture experiments conducted at the same temperature but where ΩSW was not controlled. These results suggest that aragonite saturation has little or no influence on Sr/Ca paleothermometry over the range of ΩSW investigated. Combined with existing data for low ΩSW conditions, our results were used to elucidate the mechanisms controlling calcifying fluid acid-base chemistry during coral biomineralization. Assuming that coral drive precipitation through alkalinity pumping, our data suggest that this pumping occurs until the calcifying fluid reaches a target pH. Below a threshold ΩSW bounded by 1 < ΩSW < 2.4, however, coral do not pump enough alkalinity to reach the target pH and instead pump a maximal but finite amount of alkalinity. In this low ΩSW regime, calcifying fluid pH is expected to decrease with ΩSW. The interplay between these two alkalinity pumping regimes and external seawater composition explain the full range of observed Sr/Ca sensitivity to ΩSW and suggest that surface coral may become increasingly sensitive to ocean acidification below a threshold ΩSW bounded by 1 < ΩSW < 2.4.

  5. Evaluation of Stony Coral Indicators for Coral Reef ...

    EPA Pesticide Factsheets

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  6. Inhibition of coral recruitment by macroalgae and cyanobacteria

    USGS Publications Warehouse

    Kuffner, I.B.; Walters, L.J.; Becerro, M.A.; Paul, V.J.; Ritson-Williams, R.; Beach, K.S.

    2006-01-01

    Coral recruitment is a key process in the maintenance and recovery of coral reef ecosystems. While intense competition between coral and algae is often assumed on reefs that have undergone phase shifts from coral to algal dominance, data examining the competitive interactions involved, particularly during the larval and immediate post-settlement stage, are scarce. Using a series of field and outdoor seawater table experiments, we tested the hypothesis that common species of macroalgae and cyanobacteria inhibit coral recruitment. We examined the effects of Lyngbya spp., Dictyota spp., Lobophora variegata (J. V. Lamouroux) Womersley, and Chondrophycus poiteaui (J. V. Lamouroux) Nam (formerly Laurencia poiteaui) on the recruitment success of Porites astreoides larvae. All species but C. poiteaui caused either recruitment inhibition or avoidance behavior in P. astreoides larvae, while L. confervoides and D. menstrualis significantly increased mortality rates of P. astreoides recruits. We also tested the effect of some of these macrophytes on larvae of the gorgonian octocoral Briareum asbestinum. Exposure to Lyngbya majuscula reduced survival and recruitment in the octocoral larvae. Our results provide evidence that algae and cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. On reefs experiencing phase shifts or temporary algal blooms, the restocking of adult coral populations may be slowed due to recruitment inhibition, thereby perpetuating reduced coral cover and limiting coral community recovery. ?? Inter-Research 2006.

  7. A new steroidal glycoside from a Caribbean gorgonian, Eunicea sp.1.

    PubMed

    Cóbar, O M; Rodríguez, A D; Padilla, O L

    1997-11-01

    A new saponin possessing a pregnene-derived aglycon (1) has been isolated from the Caribbean gorgonian octocoral Eunicea sp. The structure of the new compound was assigned on the basis of chemical and spectral studies.

  8. Effects of coral bleaching on the obligate coral-dwelling crab Trapezia cymodoce

    NASA Astrophysics Data System (ADS)

    Stella, J. S.; Munday, P. L.; Jones, G. P.

    2011-09-01

    Corals are an essential and threatened habitat for a diverse range of reef-associated animals. Episodes of coral bleaching are predicted to increase in frequency and intensity over coming decades, yet the effects of coral-host bleaching on the associated animal communities remain poorly understood. The present study investigated the effects of host-colony bleaching on the obligate coral-dwelling crab, Trapezia cymodoce, during a natural bleaching event in the lagoon of Lizard Island, Australia. Branching corals, which harbour the highest diversity of coral associates, comprised 13% of live coral cover at the study site, with 83% affected by bleaching. Crabs on healthy and bleached colonies of Pocillopora damicornis were monitored over a 5-week period to determine whether coral bleaching affected crab density and movement patterns. All coral colonies initially contained one breeding pair of crabs. There was a significant decline in crab density on bleached corals after 5 weeks, with many corals losing one or both crabs, yet all healthy colonies retained a mating pair. Fecundity of crabs collected from bleached and healthy colonies of P. damicornis was also compared. The size of egg clutches of crabs collected from bleached hosts was 40% smaller than those from healthy hosts, indicating a significant reduction in fecundity. A laboratory experiment on movement patterns found that host-colony bleaching also prompted crabs to emigrate in search of more suitable colonies. Emigrant crabs engaged in aggressive interactions with occupants of healthy hosts, with larger crabs always usurping occupants of a smaller size. Decreased densities and clutch sizes, along with increased competitive interactions, could potentially result in a population decline of these important coral associates with cascading effects on coral health.

  9. Habitat, Fauna, and Conservation of Florida's Deep-Water Coral Reefs

    NASA Astrophysics Data System (ADS)

    Reed, J. K.; Pomponi, S. A.; Messing, C. G.; Brooke, S.

    2008-05-01

    Various types of deep-water coral habitats are common off the southeastern United States from the Blake Plateau through the Straits of Florida to the eastern Gulf of Mexico. Expeditions in the past decade with the Johnson-Sea- Link manned submersibles, ROVs, and AUVs have discovered, mapped and compiled data on the status, distribution, habitat, and biodiversity for many of these relatively unknown deep-sea coral ecosystems. We have discovered over three hundred, high relief (15-152-m tall) coral mounds (depth 700-800 m) along the length of eastern Florida (700 km). The north Florida sites are rocky lithoherms, whereas the southern sites are primarily classic coral bioherms, capped with dense 1-2 m tall thickets of Lophelia pertusa and Enallopsammia profunda. Off southeastern Florida, the Miami Terrace escarpment (depth 300-600 m) extends nearly 150 km as a steep, rocky slope of Miocene-age phosphoritic limestone, which provides habitat for a rich biodiversity of fish and benthic invertebrates. Off the Florida Keys, the Pourtalès Terrace (depth 200- 460 m) has extensive high-relief bioherms and numerous deep-water sinkholes to depths of 250-610 m and diameters up to 800 m. The dominant, deep-water, colonial scleractinian corals in this region include Oculina varicosa, L. pertusa, E. profunda, Madrepora oculata, and Solenosmilia variabilis. Other coral species include hydrozoans (Stylasteridae), bamboo octocorals (Isididae), numerous other gorgonians, and black corals (Antipatharia). These structure-forming taxa provide habitat and living space for a relatively unknown but biologically rich and diverse community of crustaceans, mollusks, echinoderms, polychaete and sipunculan worms, and associated fishes. We have identified 142 taxa of benthic macro-invertebrates, including 66 Porifera and 57 Cnidaria. Nearly 100 species of fish have been identified to date in association with these deep-water coral habitats. Paull et al. (2000) estimated that over 40

  10. Allometric growth in reef-building corals.

    PubMed

    Dornelas, Maria; Madin, Joshua S; Baird, Andrew H; Connolly, Sean R

    2017-03-29

    Predicting demographic rates is a critical part of forecasting the future of ecosystems under global change. Here, we test if growth rates can be predicted from morphological traits for a highly diverse group of colonial symbiotic organisms: scleractinian corals. We ask whether growth is isometric or allometric among corals, and whether most variation in coral growth rates occurs at the level of the species or morphological group. We estimate growth as change in planar area for 11 species, across five morphological groups and over 5 years. We show that coral growth rates are best predicted from colony size and morphology rather than species. Coral size follows a power scaling law with a constant exponent of 0.91. Despite being colonial organisms, corals have consistent allometric scaling in growth. This consistency simplifies the task of projecting community responses to disturbance and climate change.

  11. The response of the Mediterranean gorgonian Eunicella singularis to thermal stress is independent of its nutritional regime.

    PubMed

    Ezzat, Leïla; Merle, Pierre-Laurent; Furla, Paola; Buttler, Alexandre; Ferrier-Pagès, Christine

    2013-01-01

    Over the last few decades, sessile benthic organisms from the Mediterranean Sea have suffered from the global warming of the world's oceans, and several mass mortality events were observed during warm summers. It has been hypothesized that mortality could have been due to a nutrient (food) shortage following the stratification of the water column. However, the symbiotic gorgonian Eunicella singularis has also presented a locally exceptional mortality, despite its autotrophic capacities through the photosynthesis of its dinoflagellate symbionts. Thus, this study has experimentally investigated the response of E. singularis to a thermal stress (temperature increase from 18 to 26°C), with colonies maintained more than 2 months under four nutritional diets: autotrophy only (AO), autotrophy and inorganic nitrogen addition (AN), autotrophy and heterotrophy (AH), heterotrophy only (HO). At 18°C, and contrary to many other anthozoans, supplementation of autotrophy with either inorganic nitrogen or food (heterotrophy) had no effect on the rates of respiration, photosynthesis, as well as in the chlorophyll, lipid and protein content. In the dark, heterotrophy maintained the gorgonian's metabolism, except a bleaching (loss of pigments), which did not affect the rates of photosynthesis. At 24°C, rates of respiration, and photosynthesis significantly decreased in all treatments. At 26°C, in addition to a decrease in the lipid content of all treatments, a bleaching was observed after 1 week in the AO treatment, while the AH and AN treatments resisted three weeks before bleaching. These last results suggest that, temperatures above 24°C impair the energetic reserves of this species and might explain the mortality events in the Mediterranean.

  12. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    PubMed

    Bonaldo, Roberta M; Hay, Mark E

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  13. Seaweed-Coral Interactions: Variance in Seaweed Allelopathy, Coral Susceptibility, and Potential Effects on Coral Resilience

    PubMed Central

    Bonaldo, Roberta M.; Hay, Mark E.

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70–80% lower, macroalgal cover 4–9 fold higher, macroalgal-coral contacts 5–15 fold more frequent and 23–67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51–68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals. PMID:24465707

  14. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling

    PubMed Central

    Boavida, Joana; Assis, Jorge; Silva, Inga; Serrão, Ester A.

    2016-01-01

    Factors shaping the distribution of mesophotic octocorals (30–200 m depth) remain poorly understood, potentially leaving overlooked coral areas, particularly near their bathymetric and geographic distributional limits. Yet, detailed knowledge about habitat requirements is crucial for conservation of sensitive gorgonians. Here we use Ecological Niche Modelling (ENM) relating thirteen environmental predictors and a highly comprehensive presence dataset, enhanced by SCUBA diving surveys, to investigate the suitable habitat of an important structuring species, Paramuricea clavata, throughout its distribution (Mediterranean and adjacent Atlantic). Models showed that temperature (11.5–25.5 °C) and slope are the most important predictors carving the niche of P. clavata. Prediction throughout the full distribution (TSS 0.9) included known locations of P. clavata alongside with previously unknown or unreported sites along the coast of Portugal and Africa, including seamounts. These predictions increase the understanding of the potential distribution for the northern Mediterranean and indicate suitable hard bottom areas down to >150 m depth. Poorly sampled habitats with predicted presence along Algeria, Alboran Sea and adjacent Atlantic coasts encourage further investigation. We propose that surveys of target areas from the predicted distribution map, together with local expert knowledge, may lead to discoveries of new P. clavata sites and identify priority conservation areas. PMID:27841263

  15. Overlooked habitat of a vulnerable gorgonian revealed in the Mediterranean and Eastern Atlantic by ecological niche modelling.

    PubMed

    Boavida, Joana; Assis, Jorge; Silva, Inga; Serrão, Ester A

    2016-11-14

    Factors shaping the distribution of mesophotic octocorals (30-200 m depth) remain poorly understood, potentially leaving overlooked coral areas, particularly near their bathymetric and geographic distributional limits. Yet, detailed knowledge about habitat requirements is crucial for conservation of sensitive gorgonians. Here we use Ecological Niche Modelling (ENM) relating thirteen environmental predictors and a highly comprehensive presence dataset, enhanced by SCUBA diving surveys, to investigate the suitable habitat of an important structuring species, Paramuricea clavata, throughout its distribution (Mediterranean and adjacent Atlantic). Models showed that temperature (11.5-25.5 °C) and slope are the most important predictors carving the niche of P. clavata. Prediction throughout the full distribution (TSS 0.9) included known locations of P. clavata alongside with previously unknown or unreported sites along the coast of Portugal and Africa, including seamounts. These predictions increase the understanding of the potential distribution for the northern Mediterranean and indicate suitable hard bottom areas down to >150 m depth. Poorly sampled habitats with predicted presence along Algeria, Alboran Sea and adjacent Atlantic coasts encourage further investigation. We propose that surveys of target areas from the predicted distribution map, together with local expert knowledge, may lead to discoveries of new P. clavata sites and identify priority conservation areas.

  16. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    PubMed

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  17. Competitive strategies of soft corals (Coelenterata: Octocorallia): Allelopathic effects on selected scleractinian corals

    NASA Astrophysics Data System (ADS)

    Sammarco, P. W.; Coll, J. C.; La Barre, S.; Willis, B.

    1983-09-01

    A striking retardation of grwoth was observed in the scleractinian coral Pavona cactus (Coelenterata: Scleractinia) growing in the vicinity of the soft coral Sinularia flexibilis (Coelenterata: Alcyonacea). More extensive field observations of naturally occurring interactions between soft corals and scleractinian corals suggested that members of the former group can be the more effective competitors for space on hard substrate. To test this hypothesis, colonies of three soft corals, Lobophytum pauciflorum, Sinularia pavida, and Xenia sp. aff. danae, were relocated next to stands of two hard corals, Pavona cactus and Porites andrewsi (=Porites cylindrica), and compared with undisturbed control areas. In areas where soft corals and scleractinian corals were in direct contact, significantly high levels of local mortality in the latter occurred in three of the six interaction pairs. One soft coral, L. pauciflorum, also caused extensive and significant mortality in Porites andrewsi in a non-contact situation. The scleractinian corals had no effect on the soft corals considered here. These results indicate that soft corals can effectively compete for space against hard corals. Furthermore, it is inferred that toxic exudates from the soft coral might be responsible for causing localized mortality in hard corals, since extensive mortality occurred in certain cases in the absence of contact. Competitive abilities of soft corals in interactions with hard corals varied in a species-specific manner. Susceptibility of hard corals to competitive mechanisms utilized by soft corals, particularly allelopathic ones, likewise varied species-specifically. It is commonly believed that the adaptive value of toxic compounds in soft corals stems from their effectiveness as a chemical defence mechanism in predator-prey interactions. This study has demonstrated their further role as allelopathic agents in interspecific competitive interactions.

  18. Coral microbiology

    USGS Publications Warehouse

    Rosenberg, Eugene; Kellogg, Christina A.; Rohwer, Forest

    2007-01-01

    In the last 30 years, there has been approximately a 30% loss of corals worldwide, largely due to emerging diseases (Harvell et al., 2002, 2007; Hughes et al., 2003). Coral microbiology is a new field, driven largely by a desire to understand the interactions between corals and their symbiotic microorganisms and to use this knowledge to eventually prevent the spread of coral diseases.

  19. Microbiota of Healthy Corals Are Active against Fungi in a Light-Dependent Manner

    PubMed Central

    2015-01-01

    Coral reefs are intricate ecosystems that harbor diverse organisms, including 25% of all marine fish. Healthy corals exhibit a complex symbiosis between coral polyps, endosymbiotic alga, and an array of microorganisms, called the coral holobiont. Secretion of specialized metabolites by coral microbiota is thought to contribute to the defense of this sessile organism against harmful biotic and abiotic factors. While few causative agents of coral diseases have been unequivocally identified, fungi have been implicated in the massive destruction of some soft corals worldwide. Because corals are nocturnal feeders, they may be more vulnerable to fungal infection at night, and we hypothesized that the coral microbiota would have the capability to enhance their defenses against fungi in the dark. A Pseudoalteromonas sp. isolated from a healthy octocoral displayed light-dependent antifungal properties when grown adjacent to Penicilliumcitrinum (P. citrinum) isolated from a diseased Gorgonian octocoral. Microbial MALDI-imaging mass spectrometry (IMS) coupled with molecular network analyses revealed that Pseudoalteromonas produced higher levels of antifungal polyketide alteramides in the dark than in the light. The alteramides were inactivated by light through a photoinduced intramolecular cyclization. Further NMR studies led to a revision of the stereochemical structure of the alteramides. Alteramide A exhibited antifungal properties and elicited changes in fungal metabolite distributions of mycotoxin citrinin and citrinadins. These data support the hypothesis that coral microbiota use abiotic factors such as light to regulate the production of metabolites with specialized functions to combat opportunistic pathogens at night. PMID:25058318

  20. Workshop on Biological Integrity of Coral Reefs August 21-22 ...

    EPA Pesticide Factsheets

    This report summarizes an EPA-sponsored workshop on coral reef biological integrity held at the Caribbean Coral Reef Institute in La Parguera, Puerto Rico on August 21-22, 2012. The goals of this workshop were to:• Identify key qualitative and quantitative ecological characteristics (reef attributes) that determine the condition of linear coral reefs inhabiting shallow waters (<12 m) in southwestern Puerto Rico.• Use those reef attributes to recommend categorical condition rankings for establishing a biological condition gradient.• Ascertain through expert consensus those reef attributes that characterize biological integrity (a natural, fully-functioning system of organisms and communities) for coral reefs. • Develop a conceptual, narrative model that describes how biological attributes of coral reefs change along a gradient of increasing anthropogenic stress.The workshop brought together scientists with expertise in coral reef taxonomic groups (e.g., stony corals, fishes, sponges, gorgonians, algae, seagrasses and macroinvertebrates), as well as community structure, organism condition, ecosystem function and ecosystem connectivity. The experts evaluated photos and videos from 12 stations collected during EPA Coral Reef surveys (2010 & 2011) from Puerto Rico on coral reefs exhibiting a wide range of conditions. The experts individually rated each station as to observed condition (“good”, “fair” or “poor”) and documented their rationale for

  1. Validation of reference genes for cryopreservation studies with the gorgonian coral endosymbiont Symbiodinium

    PubMed Central

    Chong, Gabriella; Kuo, Fu-Wen; Tsai, Sujune; Lin, Chiahsin

    2017-01-01

    Quantification by real-time RT-PCR requires a stable internal reference known as a housekeeping gene (HKG) for normalising the mRNA levels of target genes. The present study identified and validated stably expressed HKGs in post-thaw Symbiodinium clade G. Six potential HKGs, namely, pcna, gapdh, 18S rRNA, hsp90, rbcl, and ps1, were analysed using three different algorithms, namely, GeNorm, NormFinder, and BestKeeper. The GeNorm algorithm ranked the candidate genes as follows in the order of decreasing stability: pcna and gapdh > ps1 > 18S rRNA > hsp90 > rbcl. Results obtained using the NormFinder algorithm also showed that pcna was the most stable HKG and ps1 was the second most stable HKG. We found that the candidate HKGs examined in this study showed variable stability with respect to the three algorithms. These results indicated that both pcna and ps1 were suitable for normalising target gene expression determined by performing real-time RT-PCR in cryopreservation studies on Symbiodinium clade G. The results of the present study would help future studies to elucidate the effect of cryopreservation on gene expression in dinoflagellates. PMID:28067273

  2. Coral bleaching, hurricane damage, and benthic cover on coral reefs in St. John, U.S. Virgin Islands: A comparison of surveys with the chain transect method and videography

    USGS Publications Warehouse

    Rogers, C.S.; Miller, J.

    2001-01-01

    The linear chain transect method and videography were used to quantify the percent cover by corals, macroalgae, gorgonians, other living organisms, and substrate along permanent transects on two fringing reefs off St. John. Both methods were used simultaneously on Lameshur reef in November 1998, and on Newfound reef in March and October 1998. Hurricane Georges passed over St. John in September 1998, and a severe coral bleaching episode began the same month. Both methods gave remarkably similar values for coral cover, while the video method gave consistently higher values for gorgonians and macroalgae. The most dramatic difference was in the quantification of bleaching. At Newfound, the chain method indicated 13.4% (SD = 14.1) of the coral tissues were bleached and the video method, 43.4% (SD = 13.0). Corresponding values at Lameshur were 18.1% (SD = 22.3) and 46.5% (SD = 13.3). Although hurricane damage was conspicuous at Newfound reef, neither method showed significant changes in coral cover or other categories as a result of the storm.

  3. Bottlenecks to coral recovery in the Seychelles

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Graham, N. A. J.; Pratchett, M. S.

    2014-06-01

    Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: `coral-dominated'), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (`rubble-dominated'), and some reefs have high cover of macroalgae (`macroalgal-dominated'). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile-1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile-1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m-2), compared to coral-dominated reefs (16.8 ± 2.4 m-2) and rubble-dominated reefs (33.1 ± 7.3 m-2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This

  4. Toxic coral gobies reduce the feeding rate of a corallivorous butterflyfish on Acropora corals

    NASA Astrophysics Data System (ADS)

    Dirnwoeber, M.; Herler, J.

    2013-03-01

    The obligate coral-dwelling gobiid genus Gobiodon inhabits Acropora corals and has developed various physiological, morphological and ethological adaptations towards this life habit. While the advantages of this coral-fish association are well documented for Gobiodon, possible fitness-increasing factors for the host coral are unknown. This study examines the influence of coral-dwelling gobies on the feeding behaviour of obligate corallivorous butterflyfishes. In an aquarium experiment using video observation, the corallivorous butterflyfish Chaetodon austriacus fed significantly less on corals inhabited by two Gobiodon species compared to unoccupied coral colonies of similar size. The more agonistic species G. histrio, which mostly displayed directed movements towards butterflyfishes, decreased butterflyfish bite rate by 62-98 % compared to uninhabited colonies. For Gobiodon sp. 3, which mostly displayed undirected movements in response to visits by C. austriacus, bite rate reduction was 64-68 %. The scale-less skin of Gobiodon spp. is covered by mucus that is toxic and multi-functional by reducing predation as well as affecting parasite attachment. A choice flume experiment suggests that the highly diluted skin mucus of Gobiodon spp. also functions as a corallivore repellent. This study demonstrates that Gobiodon spp. exhibit resource defence against coral-feeding butterflyfishes and also that coral colonies without resident Gobiodon suffer higher predation rates. Although the genus Gobiodon is probably a facultative corallivore, this study shows that by reducing predation on inhabited colonies by other fishes, these obligate coral-dwellers either compensate for their own fitness-decreasing impact on host colonies or live in a mutualistic association with them.

  5. High prevalence of obligate coral-dwelling decapods on dead corals in the Chagos Archipelago, central Indian Ocean

    NASA Astrophysics Data System (ADS)

    Head, Catherine E. I.; Bonsall, Michael B.; Koldewey, Heather; Pratchett, Morgan S.; Speight, Martin; Rogers, Alex D.

    2015-09-01

    Small and cryptic organisms that live within the interstices of reef habitats contribute greatly to coral reef biodiversity, but are poorly studied. Many species of cryptofauna have seemingly obligate associations with live coral and are therefore considered to be very vulnerable to coral mortality. Here we report the unanticipated prevalence of obligate coral-dwelling decapod crustaceans on dead colonies of branching corals in the Chagos Archipelago (British Indian Ocean Territory) in the central Indian Ocean. A total of 205 obligate coral-dwelling decapods, including Trapezia crabs, were recorded from 43 (out of 54) dead coral colonies of Acropora and Pocillopora collected across five different atolls. Trapezia individuals found on dead corals were mainly juveniles, and the few adults were almost exclusively male. Among the shrimps (Pontoniinae), however, it was predominantly adult females found on dead corals. Obligate coral-dwelling species that typically occur only on live Pocillopora hosts (e.g., Trapezia spp.) were recorded on dead Acropora. These findings suggests that these obligate coral-dwelling decapods are not simply persisting on coral hosts that have died, but may be explicitly recruiting to or moving to dead coral hosts at certain stages in their life cycle. Variation in the abundance of live coral among sites had no affect on the presence or abundance of obligate coral-dwelling decapods on dead corals. This study shows that habitat associations of obligate coral-dwelling organisms, and their reliance on different habitat types, are complex and further work is required to establish their vulnerability to widespread habitat degradation on coral reefs.

  6. Symbiodinium associations with diseased and healthy scleractinian corals

    NASA Astrophysics Data System (ADS)

    Correa, A. M. S.; Brandt, M. E.; Smith, T. B.; Thornhill, D. J.; Baker, A. C.

    2009-06-01

    Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts ( Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.

  7. Selective Impact of Disease on Coral Communities: Outbreak of White Syndrome Causes Significant Total Mortality of Acropora Plate Corals

    PubMed Central

    Hobbs, Jean-Paul A.; Frisch, Ashley J.; Newman, Stephen J.; Wakefield, Corey B.

    2015-01-01

    Coral diseases represent a significant and increasing threat to coral reefs. Among the most destructive diseases is White Syndrome (WS), which is increasing in distribution and prevalence throughout the Indo-Pacific. The aim of this study was to determine taxonomic and spatial patterns in mortality rates of corals following the 2008 outbreak of WS at Christmas Island in the eastern Indian Ocean. WS mainly affected Acropora plate corals and caused total mortality of 36% of colonies across all surveyed sites and depths. Total mortality varied between sites but was generally much greater in the shallows (0–96% of colonies at 5 m depth) compared to deeper waters (0–30% of colonies at 20 m depth). Site-specific mortality rates were a reflection of the proportion of corals affected by WS at each site during the initial outbreak and were predicted by the initial cover of live Acropora plate cover. The WS outbreak had a selective impact on the coral community. Following the outbreak, live Acropora plate coral cover at 5 m depth decreased significantly from 7.0 to 0.8%, while the cover of other coral taxa remained unchanged. Observations five years after the initial outbreak revealed that total Acropora plate cover remained low and confirmed that corals that lost all their tissue due to WS did not recover. These results demonstrate that WS represents a significant and selective form of coral mortality and highlights the serious threat WS poses to coral reefs in the Indo-Pacific. PMID:26147291

  8. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    USGS Publications Warehouse

    Garrison, V.H.; Ward, G.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or

  9. Coral choreography

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Viewers clicking onto the Waikiki Aquarium's “Coral Research Cam” any time during daylight hours in Hawaii can catch the latest action of three species of living corals (Acropora sp., Acropora elseyi,and Montipora digitata) and the yellow tang and blue tang fish swimming amongst them in an outdoor aquarium.Waikiki Aquarium Director Bruce Carlson says the camera is part of a new exhibit, “Corals Are Alive!,” which encourages people to view living corals close-up at the aquarium or via the Internet, in order to gain a better appreciation of the corals. “Hopefully through education and awareness, people will be more interested and willing to help with conservation efforts to preserve coral reefs,” says Carlson.

  10. Lonely populations in the deep: genetic structure of red gorgonians at the heads of submarine canyons in the north-western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pérez-Portela, Rocío; Cerro-Gálvez, Elena; Taboada, Sergi; Tidu, Carlo; Campillo-Campbell, Carolina; Mora, Joan; Riesgo, Ana

    2016-09-01

    The red gorgonian Paramuricea clavata plays a central role in coralligenous ecosystems of the Mediterranean Sea, being relatively abundant in shallow habitats (5-35 m depth). Recently, deeper populations have been discovered at the heads of submarine canyons in the north-western Mediterranean Sea, between 50 and 70 m deep. Colonies from some of these deeper populations were exceptionally large (>1 m high), contrasting with the general prevalence of smaller size classes in shallower populations. Importantly, the high pressure of trawling activities on the nearby continental shelf could threaten these populations of large and old colonies. Although the genetic diversity and structure of populations in shallow habitats is relatively well known, very little is known about deeper populations. We aimed to assess the genetic structure, connectivity and potential demographic decline of six deep populations of P. clavata located at the heads of La Fonera, Blanes and Arenys de Mar submarine canyons, as well as potential gene flow between those and the two nearest shallow populations. A total of 188 individuals were genotyped using nine microsatellite loci. Results showed strong genetic differentiation among populations in different submarine canyons, among populations within one of the canyons and between shallow and deep populations. Gene flow among populations was very limited, estimates of effective population size in some populations were small, and evidence of recent population reductions (bottlenecks) was detected in several populations. The large genetic differentiation in populations of P. clavata among canyons is related to limited effective dispersal.

  11. Reproductive cycle and trophic ecology in deep versus shallow populations of the Mediterranean gorgonian Eunicella singularis (Cap de Creus, northwestern Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Gori, A.; Viladrich, N.; Gili, J.-M.; Kotta, M.; Cucio, C.; Magni, L.; Bramanti, L.; Rossi, S.

    2012-09-01

    The annual gonad development of a shallow (20 m depth) population of the Mediterranean gorgonian Eunicella singularis was found to be closely synchronized with that of a deep (60 m depth) population, but differences were observed in the gonadal output, with the shallow population producing more and larger sexual products. Lipid content in the shallow population showed a marked seasonality, peaking during summer. In contrast, lipid content remained persistently lower in the deep population. Fatty acids as well as C/N composition were also seasonal in the shallow population and more constant in the deep one. The isotopic composition (δ15N and δ13C) of the shallow colonies was similar to values observed for passive suspension feeders with symbiotic algae, whereas the deep colonies exhibited values similar to those of aposymbiotic passive suspension feeders that primarily feed on microzooplankton and particulate organic matter. These results highlight the importance of considering the depth-related variability among populations in order to achieve a better understanding of the ecology of sessile benthic suspension feeders.

  12. The 2014 summer coral bleaching event in subtropical Hong Kong.

    PubMed

    Xie, James Y; Lau, Dickey C C; Kei, Keith; Yu, Vriko P F; Chow, Wing-Kuen; Qiu, Jian-Wen

    2017-04-06

    We reported a coral bleaching event that occurred in August-September 2014 in Hong Kong waters based on video transect surveys conducted at eight sites. The bleaching affected eight species of corals with different growth forms. Bleaching at seven of the eight study sites was minor, affecting only 0.4-5.2% colonies and 0.8-10.0% coral-covered area. Sharp Island East, however, suffered from a moderate level of bleaching, with 13.1% colonies and 30.1% coral-covered area affected. Examination of the government's environmental monitoring data indicated abnormal water quality conditions preceding and during the bleaching event. Follow-up field surveys of tagged colonies showed that 76% of them had fully recovered, 12% partially recovered, and 12% suffered from mortality. These results indicate that the subtropical corals of Hong Kong are not immune to bleaching, and there is a need to study their responses under climate change scenarios.

  13. Role of evolutionary and ecological factors in the reproductive success and the spatial genetic structure of the temperate gorgonian Paramuricea clavata.

    PubMed

    Mokhtar-Jamaï, Kenza; Coma, Rafel; Wang, Jinliang; Zuberer, Frederic; Féral, Jean-Pierre; Aurelle, Didier

    2013-06-01

    Dispersal and mating features strongly influence the evolutionary dynamics and the spatial genetic structure (SGS) of marine populations. For the first time in a marine invertebrate, we examined individual reproductive success, by conducting larval paternity assignments after a natural spawning event, combined with a small-scale SGS analysis within a population of the gorgonian Paramuricea clavata. Thirty four percent of the larvae were sired by male colonies surrounding the brooding female colonies, revealing that the bulk of the mating was accomplished by males from outside the studied area. Male success increased with male height and decreased with increasing male to female distance. The parentage analyses, with a strong level of self-recruitment (25%), unveiled the occurrence of a complex family structure at a small spatial scale, consistent with the limited larval dispersal of this species. However, no evidence of small scale SGS was revealed despite this family structure. Furthermore, temporal genetic structure was not observed, which appears to be related to the rather large effective population size. The low level of inbreeding found suggests a pattern of random mating in this species, which disagrees with expectations that limited larval dispersal should lead to biparental inbreeding. Surface brooding and investment in sexual reproduction in P. clavata contribute to multiple paternity (on average 6.4 fathers were assigned per brood), which enhance genetic diversity of the brood. Several factors may have contributed to the lack of biparental inbreeding in our study such as (i) the lack of sperm limitation at a small scale, (ii) multiple paternity, and (iii) the large effective population size. Thus, our results indicate that limited larval dispersal and complex family structure do not necessarily lead to biparental inbreeding and SGS. In the framework of conservation purposes, our results suggested that colony size, proximity among colonies and the

  14. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    USGS Publications Warehouse

    Yates, Kimberly K.; Rogers, Caroline S.; Herlan, James J.; Brooks, Gregg R.; Smiley, Nathan A.; Larson, Rebekka A.

    2014-01-01

    Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic conditions, and biological influences on seawater chemistry generate chemical conditions that buffer against ocean acidification. This previously undocumented refuge for corals provides evidence for adaptation of coastal organisms and ecosystem transition due to recent climate change. Identifying and protecting other natural, non-reef coral refuges is critical for sustaining corals and other reef species into the future.

  15. Does Dark-Spot Syndrome Experimentally Transmit among Caribbean Corals?

    PubMed Central

    Randall, Carly J.; Jordán-Garza, Adán G.; Muller, Erinn M.; van Woesik, Robert

    2016-01-01

    Over the last half-century, coral diseases have contributed to the rapid decline of coral populations throughout the Caribbean region. Some coral diseases appear to be potentially infectious, yet little is known about their modes of transmission. This study experimentally tested whether dark-spot syndrome on Siderastrea siderea was directly or indirectly transmissible to neighboring coral colonies. We also tested whether open wounds were necessary to facilitate disease transmission. At the completion of the experiments, we sampled bacterial communities on diseased, exposed, and healthy coral colonies to determine whether bacterial pathogens had transmitted to the susceptible colonies. We saw no evidence of either direct or waterborne transmission of dark-spot syndrome, and corals that received lesions by direct contact with diseased tissue, healed and showed no signs of infection. There were no significant differences among bacterial communities on healthy, exposed, and diseased colonies, although nine individual ribotypes were significantly higher in diseased corals compared with healthy and exposed corals, indicating a lack of transmission. Although our experiments do not fully refute the possibility that dark-spot syndrome is infectious and transmissible, our results suggest that in situ macroscopic signs of dark-spot syndrome are not always contagious. PMID:26788918

  16. Does Dark-Spot Syndrome Experimentally Transmit among Caribbean Corals?

    PubMed

    Randall, Carly J; Jordán-Garza, Adán G; Muller, Erinn M; van Woesik, Robert

    2016-01-01

    Over the last half-century, coral diseases have contributed to the rapid decline of coral populations throughout the Caribbean region. Some coral diseases appear to be potentially infectious, yet little is known about their modes of transmission. This study experimentally tested whether dark-spot syndrome on Siderastrea siderea was directly or indirectly transmissible to neighboring coral colonies. We also tested whether open wounds were necessary to facilitate disease transmission. At the completion of the experiments, we sampled bacterial communities on diseased, exposed, and healthy coral colonies to determine whether bacterial pathogens had transmitted to the susceptible colonies. We saw no evidence of either direct or waterborne transmission of dark-spot syndrome, and corals that received lesions by direct contact with diseased tissue, healed and showed no signs of infection. There were no significant differences among bacterial communities on healthy, exposed, and diseased colonies, although nine individual ribotypes were significantly higher in diseased corals compared with healthy and exposed corals, indicating a lack of transmission. Although our experiments do not fully refute the possibility that dark-spot syndrome is infectious and transmissible, our results suggest that in situ macroscopic signs of dark-spot syndrome are not always contagious.

  17. Localized outbreak of attached diatoms on the coral Montipora due to low-temperature stress

    PubMed Central

    Yamashiro, Hideyuki; Mikame, Yurika; Suzuki, Hidekazu

    2012-01-01

    A short-term, localized outbreak of diatoms attached to live corals was observed along the coast of Sesoko Island, Okinawa, Japan in February, 2011. Diatoms are recognized as brown patches in the initial stage, becoming fluffy encrustations and resulting in complete or partial coral death. Attached diatoms, including Licmophora, Climacosphenia, Ardissonea and others, attached and overgrew exclusively Montipora corals, which are dominant corals in some parts of Sesoko reef. Heavily-covered colonies or branches died. The rate of affected corals reached 80% in the worst-affected area. Microscopic observation showed that most diatoms settled directly with polysaccharide stalks or pads onto the partly-bared skeleton of coral branches, although some settled on coral soft tissues. Although no similar phenomenon was reported from other areas of Japan, cold-water events might have important roles in coral weakening, as a consequence, enabling diatom attachment on corals, thus leading to coral death in this area. PMID:22870381

  18. The condition of coral reefs in South Florida (2000) using Coral disease and bleaching as indicators.

    PubMed

    Santavy, Deborah L; Summers, J Kevin; Engle, Virginia D; Harwell, Linda C

    2005-01-01

    The destruction of coral reef habitats has occurred at unprecedented levels during the last three decades. Coral disease and bleaching in the Caribbean and South Florida have caused extensive coral mortality with limited recovery, often coral reefs are being replaced with turf algae. Acroporids were once dominant corals and have diminished to the state where they are being considered as endangered species. Our survey assessed the condition of reef corals throughout South Florida. A probability-based design produced unbiased estimates of the spatial extent of ecological condition, measured as the absence or presence and frequency or prevalence of coral diseases and bleaching intensity over large geographic regions. This approach allowed us to calculate a quantifiable level of uncertainty. Coral condition was estimated for 4100 hectares (ha) (or 41.0 km2) of coral reefs in South Florida, including reefs in the Florida Keys National Marine Sanctuary (FKNMS), New Grounds, Dry Tortugas National Park (DTNP), and Biscayne National Park (BNP). The absence or presence of coral disease, 'causal' coral bleaching, partial bleaching and coral paling were not good indicators of overall coral condition. It was more useful to report the prevalence of anomalies that indicated a compromised condition at both the population and community levels. For example, 79% of the area in South Florida had less than 6% of the coral colonies diseased, whereas only 2.2% (97.15 ha) of the sampled area had a maximum prevalence of 13% diseased coral colonies at any single location. The usefulness of 'causal bleaching' might be more important when considering the prevalence of each of the three different states at a single location. For example, paling was observed over the entire area, whereas bleaching and partial bleaching occurred at 19 and 41% of the area, respectively. An index for coral reef condition might integrate the prevalence and species affected by each bleaching state at individual

  19. Chronic parrotfish grazing impedes coral recovery after bleaching

    NASA Astrophysics Data System (ADS)

    Rotjan, Randi D.; Dimond, James L.; Thornhill, Daniel J.; Leichter, James J.; Helmuth, Brian; Kemp, Dustin W.; Lewis, Sara M.

    2006-08-01

    Coral bleaching, in which corals become visibly pale and typically lose their endosymbiotic zooxanthellae ( Symbiodinium spp.), increasingly threatens coral reefs worldwide. While the proximal environmental triggers of bleaching are reasonably well understood, considerably less is known concerning physiological and ecological factors that might exacerbate coral bleaching or delay recovery. We report a bleaching event in Belize during September 2004 in which Montastraea spp. corals that had been previously grazed by corallivorous parrotfishes showed a persistent reduction in symbiont density compared to intact colonies. Additionally, grazed corals exhibited greater diversity in the genetic composition of their symbiont communities, changing from uniform ITS2 type C7 Symbiodinium prior to bleaching to mixed assemblages of Symbiodinium types post-bleaching. These results suggest that chronic predation may exacerbate the influence of environmental stressors and, by altering the coral-zooxanthellae symbiosis, such abiotic-biotic interactions may contribute to spatial variation in bleaching processes.

  20. Tumor formations in scleractinian corals

    NASA Astrophysics Data System (ADS)

    Loya, Y.; Bull, G.; Pichon, M.

    1984-03-01

    A highly localized incidence of skeletal malformations (tumors) in the scleractinian corals Platygyra pini and P. sinensis on an inshore fringing reef at Cockle Bay, Magnetic Island within the Great Barrier Reef province is reported. These tumors are typified by a localized area of increased growth rate resulting in roughly circular protuberances extending up to 4.5 cm above the colony's surface. In both species, similar proportions of their populations carried tumors (24.1 % in P. pini and 18.7 % in P. sinensis). Larger colonies (>80 cm in diameter) are at least 7 times more likely to possess tumors than smaller colonies (<40 cm in diameter). X-radiographs of the skeletal malformations indicate a point of origin, presumably from a single budded polyp with subsequent, localized, accelerated growth. The mean radial growth rate of the tumorous area was 29 % greater than that of the surrounding normal regions. In contrast to the normal tissue, the tumorous tissue exhibited proliferation of cells, atrophied gastrodermal cells and mesenterial filaments which were larger and disordered in structure. The environmental conditions at Cockle Bay are relatively extreme with high turbidity, periodic exposure of the reef flat, abrupt changes in salinity during the wet season and mechanical damage to corals caused by unpredictable cyclonic storms. It is suggested that a combination of environmental stresses coupled with an injury inflicted on the corals are possible stimuli that initiate the development of these abnormal growth through either bacterial attack or the development of an aberrant polyp during tissue repair.

  1. Unprecedented Disease-Related Coral Mortality in Southeastern Florida

    PubMed Central

    Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert

    2016-01-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef. PMID:27506875

  2. Persistence of coral-rudist reefs into the Late Cretaceous

    SciTech Connect

    Scott, R.W. ); Fernandez-Mendiola, P.A. ); Gili, E. ); Simo, A. )

    1990-04-01

    During the Early Cretaceous, coral-algal communities occupied deeper water habitats in the reef ecosystem, and rudist communities generally populated the shallow-water, carbonate-sand substrates. During the middle Cretaceous, however, coral-algal communities became less common, and Late Cretaceous reef communities consisted of both rudist-dominated and rudist-coral communities. In the Pyrenean basins and other basins in the Mediterranean, coral associations co-existed with rudists forming complex buildups at the shelf-edge. In some parts of these buildups corals were nearly as abundant as rudists; in some complex buildups large coral colonies encrusted the rudists. Behind the shelf margin cylindrical, elevator rudists dominated the lenticular thickets that were interspersed with carbonate sands. Global changes in oceanic conditions, such as marine productivity and oxygen content, may have stressed the deeper coral-algal reef communities leaving rudists as the major shallow reef biota in Caribbean reefs. However, the co-occurrence of corals with rudists in these Pyrenean complex buildups suggests that corals were able to compete with rudists for resources. The corals in the complex buildups generally belong to genera different from those in the coral-algal communities. Perhaps this ecological stress in the mid-Cretaceous resulted in the evolution of new coral taxa.

  3. Unprecedented Disease-Related Coral Mortality in Southeastern Florida

    NASA Astrophysics Data System (ADS)

    Precht, William F.; Gintert, Brooke E.; Robbart, Martha L.; Fura, Ryan; van Woesik, Robert

    2016-08-01

    Anomalously high water temperatures, associated with climate change, are increasing the global prevalence of coral bleaching, coral diseases, and coral-mortality events. Coral bleaching and disease outbreaks are often inter-related phenomena, since many coral diseases are a consequence of opportunistic pathogens that further compromise thermally stressed colonies. Yet, most coral diseases have low prevalence (<5%), and are not considered contagious. By contrast, we document the impact of an extremely high-prevalence outbreak (61%) of white-plague disease at 14 sites off southeastern Florida. White-plague disease was observed near Virginia Key, Florida, in September 2014, and after 12 months had spread 100 km north and 30 km south. The disease outbreak directly followed a high temperature coral-bleaching event and affected at least 13 coral species. Eusmilia fastigiata, Meandrina meandrites, and Dichocoenia stokesi were the most heavily impacted coral species, and were reduced to <3% of their initial population densities. A number of other coral species, including Colpophyllia natans, Pseudodiploria strigosa, Diploria labyrinthiformis, and Orbicella annularis were reduced to <25% of their initial densities. The high prevalence of disease, the number of susceptible species, and the high mortality of corals affected suggests this disease outbreak is arguably one of the most lethal ever recorded on a contemporary coral reef.

  4. Effects of Hydrogen Peroxide on Coral Photosynthesis and Calcification

    NASA Astrophysics Data System (ADS)

    Higuchi, T.; Fujimura, H.; Arakaki, T.; Oomori, T.

    2007-12-01

    The widely-observed decline of coral reefs is considered to be caused by changes in the environment by natural and anthropogenic activities. As one important factor, the run-off of various matters from human activities to the coastal seawater poses stresses to the corals by degrading the quality of the seawater. In Okinawa, Japan, red- soil running off from the developed land has been a major environmental issue since 1980s. Hydrogen peroxide (HOOH), a strong active oxygen species, is one of the photochemically formed chemicals in the red-soil-polluted seawater. Recent photochemical studies of seawater showed that HOOH photo-formation was faster in the red- soil-polluted seawater than clean seawater. We studied the effects of HOOH on corals by studying the changes in coral carbon metabolisms such as photosynthesis and calcification, which are indicators of the physiological state of a coral colony. The corals were exposed to various concentrations of HOOH (0, 0.3, 3 μM). Two massive coral species of Porites sp. and Goniastrea aspera and one branch coral of Galaxea facicularis were used for the exposure experiments. The control experiments showed that when no HOOH was added, metabolisms of each coral colony were relatively stable. On the other hand, when HOOH was added to the seawater, we observed obvious changes in the coral metabolisms in all the coral species. When 0.3 μM HOOH was added, photosynthesis decreased by 14% and calcification decreased by 17% within 3 days, compared with the control. When 3 μM HOOH was added, photosynthesis decreased by 21% and calcification decreased by 41% within 3 days, compared with the control. Our study showed that higher concentrations of HOOH posed more stress to the coral colonies.

  5. Hyperspectral and Physiological Analyses of Coral-Algal Interactions

    PubMed Central

    Barott, Katie; Smith, Jennifer; Dinsdale, Elizabeth; Hatay, Mark; Sandin, Stuart; Rohwer, Forest

    2009-01-01

    Space limitation leads to competition between benthic, sessile organisms on coral reefs. As a primary example, reef-building corals are in direct contact with each other and many different species and functional groups of algae. Here we characterize interactions between three coral genera and three algal functional groups using a combination of hyperspectral imaging and oxygen microprofiling. We also performed in situ interaction transects to quantify the relative occurrence of these interaction on coral reefs. These studies were conducted in the Southern Line Islands, home to some of the most remote and near-pristine reefs in the world. Our goal was to determine if different types of coral-coral and coral-algal interactions were characterized by unique fine-scale physiological signatures. This is the first report using hyperspectral imaging for characterization of marine benthic organisms at the micron scale and proved to be a valuable tool for discriminating among different photosynthetic organisms. Consistent patterns emerged in physiology across different types of competitive interactions. In cases where corals were in direct contact with turf or macroalgae, there was a zone of hypoxia and altered pigmentation on the coral. In contrast, interaction zones between corals and crustose coralline algae (CCA) were not hypoxic and the coral tissue was consistent across the colony. Our results suggest that at least two main characteristic coral interaction phenotypes exist: 1) hypoxia and coral tissue disruption, seen with interactions between corals and fleshy turf and/or some species of macroalgae, and 2) no hypoxia or tissue disruption, seen with interactions between corals and some species of CCA. Hyperspectral imaging in combination with oxygen profiling provided useful information on competitive interactions between benthic reef organisms, and demonstrated that some turf and fleshy macroalgae can be a constant source of stress for corals, while CCA are not. PMID

  6. Highly infectious symbiont dominates initial uptake in coral juveniles.

    PubMed

    Abrego, David; VAN Oppen, Madeleine J H; Willis, Bette L

    2009-08-01

    The majority of reef-building corals acquire their obligate algal symbionts (Symbiodinium) from the environment. However, factors shaping the initial establishment of coral-algal symbioses, including parental effects, local environmental conditions and local availability of symbionts, are not well understood. This study monitored the uptake and maintenance of Symbiodinium in juveniles of two common corals, Acropora tenuis and Acropora millepora, that were reciprocally explanted between sites where adult colonies host different types of Symbiodinium. We found that coral juveniles were rapidly dominated by type D Symbiodinium, even though this type is not found in adult colonies (including the parental colonies) in four out of the five study populations. Furthermore, type D Symbiodinium was found in less than one-third of a wide range of coral species (n > 50) sampled at the two main study sites, suggesting that its dominance in the acroporid juveniles is not because it is the most abundant local endosymbiotic type. Moreover, dominance by type D was observed irrespective of the light intensity to which juveniles were exposed in a field study. In summary, despite its relatively low abundance in coral assemblages at the study sites and irrespective of the surrounding light environment, type D Symbiodinium is the main symbiont type initially acquired by juveniles of A. millepora and A. tenuis. We conclude that during early ontogeny in these corals, there are few barriers to the uptake of Symbiodinium types which differ from those found in parental colonies, resulting in dominance by a highly infectious and potentially opportunistic symbiont.

  7. From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal.

    PubMed

    Mokhtar-Jamaï, K; Pascual, M; Ledoux, J-B; Coma, R; Féral, J-P; Garrabou, J; Aurelle, D

    2011-08-01

    Defining the scale of connectivity among marine populations and identifying the barriers to gene flow are tasks of fundamental importance for understanding the genetic structure of populations and for the design of marine reserves. Here, we investigated the population genetic structure at three spatial scales of the red gorgonian Paramuricea clavata (Cnidaria, Octocorallia), a key species dwelling in the coralligenous assemblages of the Mediterranean Sea. Colonies of P. clavata were collected from 39 locations across the Mediterranean Sea from Morocco to Turkey and analysed using microsatellite loci. Within three regions (Medes, Marseille and North Corsica), sampling was obtained from multiple locations and at different depths. Three different approaches (measures of genetic differentiation, Bayesian clustering and spatially explicit maximum-difference algorithm) were used to determine the pattern of genetic structure. We identified genetic breaks in the spatial distribution of genetic diversity, which were concordant with oceanographic conditions in the Mediterranean Sea. We revealed a high level of genetic differentiation among populations and a pattern of isolation by distance across the studied area and within the three regions, underlining short effective larval dispersal in this species. We observed genetic differentiation among populations in the same locality dwelling at different depths, which may be explained by local oceanographic conditions and which may allow a process of local adaptation of the populations to their environment. We discuss the implications of our results for the conservation of the species, which is exposed to various threats.

  8. Collagen in the spicule organic matrix of the gorgonian Leptogorgia virgulata

    NASA Technical Reports Server (NTRS)

    Kingsley, R. J.; Tsuzaki, M.; Watabe, N.; Mechanic, G. L.

    1990-01-01

    Decalcification of the calcareous spicules from the gorgonian Leptogorgia virgulata reveals an organic matrix that may be divided into water insoluble and soluble fractions. The insoluble fraction displays characteristics typical of collagen, which is an unusual component of an invertebrate calcium carbonate structure. This matrix fraction exhibits a collagenous amino acid profile and behavior upon SDS-PAGE. Furthermore, the reducible crosslink, dihydroxylysinonorleucine (DHLNL), is detected in this fraction. The composition of the matrix varies seasonally; i.e., the collagenous composition is most prevalent in the summer. These results indicate that the insoluble matrix is a dynamic structure. Potential roles of this matrix in spicule calcification are discussed.

  9. The effects of coral bleaching on settlement preferences and growth of juvenile butterflyfishes.

    PubMed

    Cole, A J; Lawton, R J; Pisapia, C; Pratchett, M S

    2014-07-01

    Coral bleaching and associated mortality is an increasingly prominent threat to coral reef ecosystems. Although the effects of bleaching-induced coral mortality on reef fishes have been well demonstrated, corals can remain bleached for several weeks prior to recovery or death and little is known about how bleaching affects resident fishes during this time period. This study compared growth rates of two species of juvenile butterflyfishes (Chaetodon aureofasciatus and Chaetodon lunulatus) that were restricted to feeding upon either bleached or healthy coral tissue of Acropora spathulata or Pocillopora damicornis. Coral condition (bleached vs. unbleached) had no significant effects on changes in total length or weight over a 23-day period. Likewise, in a habitat choice experiment, juvenile butterflyfishes did not discriminate between healthy and bleached corals, but actively avoided using recently dead colonies. These results indicate that juvenile coral-feeding fishes are relatively robust to short term effects of bleaching events, provided that the corals do recover.

  10. The Construction of a Coral Implantation Base and the Proof Experiment by Electrodeposition Method

    NASA Astrophysics Data System (ADS)

    Yoshitake, Masami; Nojima, Satoshi; Tokuyama, Hidekazu; Haraguchi, Satoru; Kadomoto, Yukio; Yoshida, Kazuo

    In recent years, we are facing a decline of coral reefs by bleaching and death of coral colonies, which is casued by rising of ocean temperatures presumably due to global warming and pollution due to human activity. It is our urgent issue to protect and reproduce coral reefs in a global scale. We propose an electrodeposition method using calcium and magnesium contained in natural seawater as a effective and way to revive coral reefs, because a product of electrodeposition characterized by porous texture provides suitable holes for implantation of coral larvae. We expect that the method creates a diverse coral reefs community similar to natural one comparing with other growth method. Since 2008, we have conducted coral growth experiments using electrodeposition in Yoronjima. As a result, Acropora sp., Porites sp. and Pocillopora sp. are observed, such as implantation of several types of coral larvae, and confirmed a growth of coral larvae.

  11. Coral-associated marine fungi form novel lineages and heterogeneous assemblages

    PubMed Central

    Amend, Anthony S; Barshis, Daniel J; Oliver, Thomas A

    2012-01-01

    Coral stress tolerance is intricately tied to the animal's association with microbial symbionts. The most well-known of these symbioses is that between corals and their dinoflagellate photobionts (Symbiodinium spp.), whose genotype indirectly affects whether a coral can survive cyclical and anthropogenic warming events. Fungi comprise a lesser-known coral symbiotic community whose taxonomy, stability and function is largely un-examined. To assess how fungal communities inside a coral host correlate with water temperature and the genotype of co-occurring Symbiodinium, we sampled Acropora hyacinthus coral colonies from adjacent natural pools with different water temperatures and Symbiodinium identities. Phylogenetic analysis of coral-associated fungal ribosomal DNA amplicons showed a high diversity of Basidiomycetes and Ascomycetes, including several clades separated from known fungal taxa by long and well-supported branches. Community similarity did not correlate with any measured variables, and total fungal community composition was highly variable among A. hyacinthus coral colonies. Colonies in the warmer pool contained more phylogenetically diverse fungal communities than the colder pool and contained statistically significant ‘indicator' species. Four taxa were present in all coral colonies sampled, and may represent obligate associates. Messenger RNA sequenced from a subset of these same colonies contained an abundance of transcripts involved in metabolism of complex biological molecules. Coincidence between the taxonomic diversity found in the DNA and RNA analysis indicates a metabolically active and diverse resident marine fungal community. PMID:22189500

  12. Symbiodinium Photosynthesis in Caribbean Octocorals

    PubMed Central

    Ramsby, Blake D.; Shirur, Kartick P.

    2014-01-01

    Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals). Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9) and P. wagenaari (n = 6) colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and Symbiodinium will

  13. Symbiodinium photosynthesis in Caribbean octocorals.

    PubMed

    Ramsby, Blake D; Shirur, Kartick P; Iglesias-Prieto, Roberto; Goulet, Tamar L

    2014-01-01

    Symbioses with the dinoflagellate Symbiodinium form the foundation of tropical coral reef communities. Symbiodinium photosynthesis fuels the growth of an array of marine invertebrates, including cnidarians such as scleractinian corals and octocorals (e.g., gorgonian and soft corals). Studies examining the symbioses between Caribbean gorgonian corals and Symbiodinium are sparse, even though gorgonian corals blanket the landscape of Caribbean coral reefs. The objective of this study was to compare photosynthetic characteristics of Symbiodinium in four common Caribbean gorgonian species: Pterogorgia anceps, Eunicea tourneforti, Pseudoplexaura porosa, and Pseudoplexaura wagenaari. Symbiodinium associated with these four species exhibited differences in Symbiodinium density, chlorophyll a per cell, light absorption by chlorophyll a, and rates of photosynthetic oxygen production. The two Pseudoplexaura species had higher Symbiodinium densities and chlorophyll a per Symbiodinium cell but lower chlorophyll a specific absorption compared to P. anceps and E. tourneforti. Consequently, P. porosa and P. wagenaari had the highest average photosynthetic rates per cm2 but the lowest average photosynthetic rates per Symbiodinium cell or chlorophyll a. With the exception of Symbiodinium from E. tourneforti, isolated Symbiodinium did not photosynthesize at the same rate as Symbiodinium in hospite. Differences in Symbiodinium photosynthetic performance could not be attributed to Symbiodinium type. All P. anceps (n = 9) and P. wagenaari (n = 6) colonies, in addition to one E. tourneforti and three P. porosa colonies, associated with Symbiodinium type B1. The B1 Symbiodinium from these four gorgonian species did not cluster with lineages of B1 Symbiodinium from scleractinian corals. The remaining eight E. tourneforti colonies harbored Symbiodinium type B1L, while six P. porosa colonies harbored type B1i. Understanding the symbioses between gorgonian corals and Symbiodinium will

  14. Variation in the structure of epifaunal invertebrate assemblages among coral hosts

    NASA Astrophysics Data System (ADS)

    Stella, J. S.; Jones, G. P.; Pratchett, M. S.

    2010-12-01

    The high biodiversity of coral reefs is attributable to the many invertebrate groups which live in symbiotic relationships with other reef organisms, particularly those which associate with the living coral habitat. However, few studies have examined the diversity and community structure of coral-dwelling invertebrates and how they vary among coral species. This study quantified the species richness and composition of animals associated with four common species of branching corals ( Acropora nasuta, A. millepora, Pocillopora damicornis, and Seriatopora hystrix) at Lizard Island in the northern Great Barrier Reef. One hundred and seventy-eight nominal species from 12 different phyla were extracted across 50 replicate colonies of each coral host. A single coral colony, approximately 20 cm in diameter, harbored as many as 73 individuals and 24 species. There were substantial differences in invertebrate species composition among coral hosts of different families as well as genera. Twenty-seven species (15% of all taxa collected) were found on only one of the four different coral species, which may potentially indicate some level of specialization among coral hosts. The distinct assemblages on different coral species, and the presence of potential specialists, suggests invertebrate communities will be sensitive to the differential loss of branching coral species resulting from coral reef degradation.

  15. Coral calcification and ocean acidification

    USGS Publications Warehouse

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  16. Coral-associated bacterial communities on Ningaloo Reef, Western Australia.

    PubMed

    Ceh, Janja; Van Keulen, Mike; Bourne, David G

    2011-01-01

    Coral-associated microbial communities from three coral species (Pocillopora damicornis, Acropora tenuis and Favites abdita) were examined every 3 months (January, March, June, October) over a period of 1 year on Ningaloo Reef, Western Australia. Tissue from corals was collected throughout the year and additional sampling of coral mucus and seawater samples was performed in January. Tissue samples were also obtained in October from P. damicornis coral colonies on Rottnest Island off Perth, 1200 km south of Ningaloo Reef, to provide comparisons between coral-microbial associates in different locations. The community structures of the coral-associated microorganisms were analysed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse microbial profiles among all the coral species sampled. Principal component analysis revealed that samples grouped according to time and not species, indicating that coral-microbial associations may be a result of environmental drivers such as oceanographic characteristics, benthic community structure and temperature. Tissue samples from P. damicornis at Rottnest Island revealed similarities in bacteria to the samples at Ningaloo Reef. This study highlights that coral-associated microbial communities are highly diverse; however, the complex interactions that determine the stability of these associations are not necessarily dependent on coral host specificity.

  17. Bacterial Acquisition in Juveniles of Several Broadcast Spawning Coral Species

    PubMed Central

    Sharp, Koty H.; Ritchie, Kim B.; Schupp, Peter J.; Ritson-Williams, Raphael; Paul, Valerie J.

    2010-01-01

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals. PMID:20526374

  18. Spatial patterns of parrotfish corallivory in the Caribbean: the importance of coral taxa, density and size.

    PubMed

    Roff, George; Ledlie, Mary H; Ortiz, Juan C; Mumby, Peter J

    2011-01-01

    The past few decades have seen an increase in the frequency and intensity of disturbance on coral reefs, resulting in shifts in size and composition of coral populations. These changes have lead to a renewed focus on processes that influence demographic rates in corals, such as corallivory. While previous research indicates selective corallivory among coral taxa, the importance of coral size and the density of coral colonies in influencing corallivory are unknown. We surveyed the size, taxonomy and number of bites by parrotfish per colony of corals and the abundance of three main corallivorous parrotfish (Sparisoma viride, Sparisoma aurofrenatum, Scarus vetula) at multiple spatial scales (reefs within islands: 1-100 km, and between islands: >100 km) within the Bahamas Archipelago. We used a linear mixed model to determine the influence of coral taxa, colony size, colony density, and parrotfish abundance on the intensity of corallivory (bites per m(2) of coral tissue). While the effect of colony density was significant in determining the intensity of corallivory, we found no significant influence of colony size or parrotfish abundance (density, biomass or community structure). Parrotfish bites were most frequently observed on the dominant species of reef building corals (Montastraea annularis, Montastraea faveolata and Porites astreoides), yet our results indicate that when the confounding effects of colony density and size were removed, selective corallivory existed only for the less dominant Porites porites. As changes in disturbance regimes result in the decline of dominant frame-work building corals such as Montastraea spp., the projected success of P. porites on Caribbean reefs through high reproductive output, resistance to disease and rapid growth rates may be attenuated through selective corallivory by parrotfish.

  19. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    PubMed

    Roder, Cornelia; Arif, Chatchanit; Bayer, Till; Aranda, Manuel; Daniels, Camille; Shibl, Ahmed; Chavanich, Suchana; Voolstra, Christian R

    2014-01-01

    Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.

  20. A novel reef coral symbiosis

    NASA Astrophysics Data System (ADS)

    Pantos, O.; Bythell, J. C.

    2010-09-01

    Reef building corals form close associations with unicellular microalgae, fungi, bacteria and archaea, some of which are symbiotic and which together form the coral holobiont. Associations with multicellular eukaryotes such as polychaete worms, bivalves and sponges are not generally considered to be symbiotic as the host responds to their presence by forming physical barriers with an active growth edge in the exoskeleton isolating the invader and, at a subcellular level, activating innate immune responses such as melanin deposition. This study describes a novel symbiosis between a newly described hydrozoan ( Zanclea margaritae sp. nov.) and the reef building coral Acropora muricata (= A. formosa), with the hydrozoan hydrorhiza ramifying throughout the coral tissues with no evidence of isolation or activation of the immune systems of the host. The hydrorhiza lacks a perisarc, which is typical of symbiotic species of this and related genera, including species that associate with other cnidarians such as octocorals. The symbiosis was observed at all sites investigated from two distant locations on the Great Barrier Reef, Australia, and appears to be host species specific, being found only in A. muricata and in none of 30 other species investigated at these sites. Not all colonies of A. muricata host the hydrozoans and both the prevalence within the coral population (mean = 66%) and density of emergent hydrozoan hydranths on the surface of the coral (mean = 4.3 cm-2, but up to 52 cm-2) vary between sites. The form of the symbiosis in terms of the mutualism-parasitism continuum is not known, although the hydrozoan possesses large stenotele nematocysts, which may be important for defence from predators and protozoan pathogens. This finding expands the known A. muricata holobiont and the association must be taken into account in future when determining the corals’ abilities to defend against predators and withstand stress.

  1. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef.

    PubMed

    Ceh, Janja; Raina, Jean-Baptiste; Soo, Rochelle M; van Keulen, Mike; Bourne, David G

    2012-01-01

    Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.

  2. Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change.

    PubMed

    Silverstein, Rachel N; Correa, Adrienne M S; Baker, Andrew C

    2012-07-07

    Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive capacity may not be widespread because few (∼25%) coral species have been found to associate with multiple Symbiodinium clades. However, these methods can fail to detect low abundance symbionts (typically less than 10-20% of the total algal symbiont community). To determine whether additional Symbiodinium clades are present, but are not detected using conventional techniques, we applied a high-resolution, real-time PCR assay to survey Symbiodinium (in clades A-D) from 39 species of phylogenetically and geographically diverse scleractinian corals. This survey included 26 coral species thought to be restricted to hosting a single Symbiodinium clade ('symbiotic specialists'). We detected at least two Symbiodinium clades (C and D) in at least one sample of all 39 coral species tested; all four Symbiodinium clades were detected in over half (54%) of the 26 symbiotic specialist coral species. Furthermore, on average, 68 per cent of all sampled colonies within a given coral species hosted two or more symbiont clades. We conclude that the ability to associate with multiple symbiont clades is common in scleractinian (stony) corals, and that, in coral-algal symbiosis, 'specificity' and 'flexibility' are relative terms: specificity is rarely absolute. The potential for reef corals to adapt or acclimatize to environmental change via symbiont community shifts may therefore be more phylogenetically widespread than has previously been assumed.

  3. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    PubMed

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  4. Structure-Forming Corals and Sponges and Their Use as Fish Habitat in Bering Sea Submarine Canyons

    PubMed Central

    Miller, Robert J.; Hocevar, John; Stone, Robert P.; Fedorov, Dmitry V.

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide. PMID:22470486

  5. Bacteria associated with the bleached and cave coral Oculina patagonica.

    PubMed

    Koren, Omry; Rosenberg, Eugene

    2008-04-01

    The relative abundance of bacteria in the mucus and tissues of Oculina patagonica taken from bleached and cave (azooxanthellae) corals was determined by analyses of the 16S rRNA genes from cloned libraries of extracted DNA and from isolated colonies. The results were compared to previously published data on healthy O. patagonica. The bacterial community of bleached, cave, and healthy corals were completely different from each other. A tight cluster (>99.5% identity) of bacteria, showing 100% identity to Acinetobacter species, dominated bleached corals, comprising 25% of the 316 clones sequenced. The dominant bacterial cluster found in cave corals, representing 29% of the 97 clones sequenced, showed 98% identity to an uncultured bacterium from the Great Barrier Reef. Vibrio splendidus was the most dominant species in healthy O. patagonica. The culturable bacteria represented 0.1-1.0% of the total bacteria (SYBR Gold staining) of the corals. The most abundant culturable bacteria in bleached, cave, and healthy corals were clusters that most closely matched Microbulbifer sp., an alpha-proteobacterium previously isolated from healthy corals and an alpha-protobacterium (AB026194), respectively. Three generalizations emerge from this study on O. patagonica: (1) More bacteria are associated with coral tissue than mucus; (2) tissue and mucus populations are different; (3) bacterial populations associated with corals change dramatically when corals lack their symbiotic zooxanthellae, either as a result of the bleaching disease or when growing in the absence of light.

  6. Health status of corals surrounding Kish Island, Persian Gulf.

    PubMed

    Alidoost Salimi, Mahsa; Mostafavi, Pargol Ghavam; Fatemi, Seyyed Mohammad; Aeby, Greta S

    2017-03-30

    Corals in the Persian Gulf exist in a harsh environment with extreme temperature and salinity fluctuations. Understanding the health of these hardy corals may prove useful for predicting the survival of other marine organisms facing the impacts of global climate change. In this study, the health state of corals was surveyed along belt transects at 4 sites on the east side of Kish Island, Iran. Corals had a patchy distribution, low colony densities and species diversity, and were dominated by Acropora, Porites, and Dipsastrea. We found chronic sedimentation on corals, a high prevalence of old partial mortality, abundant bioeroders, and overgrowth of corals by sponges and bryozoans. These are all signs indicating suboptimal environmental conditions for coral reefs. Four types of tissue loss lesions consistent with disease were found: Porites multi-focal chronic tissue loss, Porites peeling tissue loss, Porites focal chronic tissue loss, and Dipsastrea focal sub-acute tissue loss. Overall disease prevalence was 3.6% and there were significant differences in prevalence among the 3 most abundant coral genera. Acropora was numerically dominant within transects yet showed no signs of disease, whereas Porites had a 14% disease prevalence, indicating differential susceptibility to disease among genera. Other coral lesions included pigmentation response in Porites associated with algae invasion or boring organisms, sponge overgrowth, and mucus sheathing in Dipsastrea. The Persian Gulf region is understudied, and this represents one of the first quantitative surveys of coral health and disease on these reefs.

  7. Transfer of intracolonial genetic variability through gametes in Acropora hyacinthus corals

    NASA Astrophysics Data System (ADS)

    Schweinsberg, M.; González Pech, R. A.; Tollrian, R.; Lampert, K. P.

    2014-03-01

    In recent years, the new phenomenon of intracolonial genetic variability within a single coral colony has been described. This connotes that coral colonies do not necessarily consist of only a single genotype, but may contain several distinct genotypes. Harboring more than one genotype could improve survival under stressful environmental conditions, e.g., climate change. However, so far it remained unclear whether the intracolonial genetic variability of the adult coral is also present in the gametes. We investigated the occurrence of intracolonial genetic variability in 14 mature colonies of the coral Acropora hyacinthus using eight microsatellite loci. A grid was placed over each colony before spawning, and the emerging egg/sperm bundles were collected separately in each grid. The underlying tissues as well as the egg/sperm bundles were genotyped to determine whether different genotypes were present. Within the 14 mature colonies, we detected 10 colonies with more than one genotype (intracolonial genetic variability). Four out of these 10 mature colonies showed a transfer of different genotypes via the eggs to the next generation. In two out of these four cases, we found additional alleles, and in the two other cases, we found only a subset of alleles in the unfertilized eggs. Our results suggest that during reproduction of A. hyacinthus, more than one genotype per colony is able to reproduce. We discuss the occurrence of different genotypes within a single coral colony and the ability for those to release eggs which are genetically distinct.

  8. Reconnaissance 14C Dating and the Evaluation of Mg/Li as a Temperature Proxy in Bamboo Corals from the California Margin

    NASA Astrophysics Data System (ADS)

    Freiberger, M. M.; LaVigne, M.; Miller, H.; Hill, T. M.; McNichol, A. P.; Lardie Gaylord, M.

    2015-12-01

    In the face of anthropogenically induced climate changes, it is becoming increasingly important to develop high-resolution paleoceanographic records that may elucidate how ocean conditions may shift in coming decades. Recently, bamboo corals (gorgonian octocorals) have been proposed as archives of intermediate ocean conditions. This study used 'reconnaissance' radiocarbon analysis to identify the nuclear bomb 14C spike in the proteinaceous nodes of bamboo corals and to quantify radial growth rates and ages of corals spanning the eastern Pacific oxygen minimum zone (OMZ) (790-2055 m). Preliminary data suggest that these corals exhibit a wide range of growth rates (9.4-350 μm/yr) that are non-linear over time and decrease with coral age and depth. Records of Mg/Li were investigated in these corals, given that previous studies have demonstrated positive correlations between Mg/Li and temperature in benthic foraminifera and surface and deep-sea aragonitic corals, with a reduced influence of vital effects over Mg/Ca. Intracoral reproducibility observed for replicate Mg/Li timeseries within each sample (p=0.6±0.2, n=6) and strong correlations between Mg/Ca and Li/Ca (0.9±0.1, n=6) indicate similar environmental or biological drivers of Mg and Li incorporation in bamboo corals. Given the strong positive correlations between Mg/Li and water temperature across a depth transect (r2=0.87, n=6), increasing Mg/Li observed over the growth history of each of the corals more likely reflects declining growth rates resulting in decreased Li incorporation over time rather than cooling of California Margin intermediate waters. Reductions in growth rate over the lifespan of each coral (~100+ years) may be a function of natural coral growth patterns or changes in carbonate chemistry, oxygen, or food supply in a sensitive OMZ coral ecosystem.

  9. Trace Metal Record of a 200-Year-Old Deep-Sea Bamboo Coral (Isidella sp.)

    NASA Astrophysics Data System (ADS)

    Hornung, J. P.; Mix, A. C.; Tepley, F. J.; Kent, A. J.; Wakefield, W. W.

    2009-12-01

    High resolution records of past oceanic conditions can be constructed from the annually secreted calcite laminations of deep-sea gorgonian corals. Previous research has shown that deep-sea gorgonians incorporate both surface organic matter and nutrients from the surrounding water into their coral skeleton, making them ideal recorders of long-term ocean variability of surface and intermediate water. In this study we examined a 200-year-old bamboo coral (Isidella sp.) that was live collected by bottom trawl in the summer of 2000 on the Oregon continental margin at a water depth of 1148m. We explored how annual changes in upwelling strength, circulation and surface productivity are reflected in the trace metal concentrations recorded in the carbonate skeleton of the bamboo coral. To determine trace metal concentrations, laser ablation inductively coupled plasma mass spectrometry was employed at a resolution of 10microns on multiple radial transects of the coral cross section. Minor element abundances were determined on the same transects by electron microprobe (EMP) analysis. We constructed an age model by counting peaks in the ratio of magnesium to calcium abundances obtained from the EMP. Uranium series dating methods were then used to verify the age model. The concentrations of phosphorus (P), barium (Ba) and cadmium (Cd) showed considerable variation through time. Initial time series data of phosphorus to calcium (P/Ca) ratios indicates strong variability at the decadal scale, potentially reflecting varying nutrient availability. Cadmium to calcium (Cd/Ca) ratios also showed strong variability at the decadal scale. However, periods of increased P/Ca did not always correspond to elevated Cd/Ca, suggesting that P and Cd concentrations were not controlled by the same processes. The record of barium to calcium (Ba/Ca) ratios was poorly correlated to both P/Ca and Cd/Ca and showed irregular episodes of increased Ba/Ca. These irregular episodes may indicate disturbance

  10. The preparation of the rice coral Montipora capitata nubbins for application in coral-reef ecotoxicology.

    PubMed

    Vijayavel, K; Richmond, R H

    2012-04-01

    Securing adequate and appropriate source material for coral-reef ecotoxicology studies is a significant impediment to conducting various experiments supporting the goal of conserving coral-reef ecosystems. Collecting colonies from wild stocks may be counter to protecting coral reef populations. To address this issue the rice coral Montipora capitata was used to generate sufficient genetically identical nubbins for research purposes. Growth and survival rates of these laboratory-prepared M. capitata nubbins were studied over a period of 90 days. The resulting data support the conclusion that the laboratory-prepared M. capitata nubbins showed successful growth and survival rates and are the best solution to solve the source material issue for lab experimentation. This paper describes the laboratory method used for the preparation and maintenance of these M. capitata nubbins and discusses the benefits and difficulties of using these nubbins in ecotoxicity studies.

  11. Chemistry and Bioactivity of Briaranes from the South China Sea Gorgonian Dichotella gemmacea

    PubMed Central

    Li, Cui; La, Ming-Ping; Tang, Hua; Sun, Peng; Liu, Bao-Shu; Zhuang, Chun-Lin; Yi, Yang-Hua; Zhang, Wen

    2016-01-01

    Seven new briarane diterpenoids, gemmacolides AZ–BF (1–7), were isolated together with eight known analogues (8–15) from the South China gorgonian Dichotella gemmacea. Their structures were elucidated based on detailed spectroscopic analysis and a comparison with reported data. In an in vitro bioassay, these compounds exhibited different levels of growth inhibition activity against A549 and MG63 cells, giving continuous evidences about the biological contribution of functional groups at C-2, C-12, C-13, and C-16. These compounds were also evaluated for their antibacterial and antifungal activities. Compound 8 exhibited a potential antibacterial activity against both Gram-positive bacterium Bacillus megaterium and Gram-negative bacterium Escherichia coli. PMID:27801821

  12. Cytotoxic tetraprenylated alkaloids from the South China Sea gorgonian Euplexaura robusta.

    PubMed

    Zhang, Jin-Rong; Li, Ping-Lin; Tang, Xu-Li; Qi, Xin; Li, Guo-Qiang

    2012-10-01

    Nine achiral tetraprenylated alkaloids, including three new compounds, named malonganenones I-K (1-3, resp.), together with six known analogs, 4-9, were isolated from the gorgonian Euplexaura robusta collected from Weizhou Island of Guangxi Province, China. The structures of compounds 1-3 were elucidated by extensive spectral analyses, especially of their 1D- and 2D-NMR data. Compounds 1, 4, 6, and 7 showed moderate cytotoxicities against K562 and HeLa tumor cell lines with IC(50) values ranging from 0.35 to 10.82 μM. Compound 6 also showed moderate inhibitory activity against c-Met kinase at a concentration of 10 μM.

  13. Bioactive steroid derivatives and butyrolactone derivatives from a gorgonian-derived Aspergillus sp. fungus.

    PubMed

    Chen, Min; Wang, Kai-Ling; Liu, Min; She, Zhi-Gang; Wang, Chang-Yun

    2015-09-01

    Six steroid derivatives, 1-6, and five butyrolactone derivatives, 7-11, were isolated from the fermentation broth of a gorgonian-derived Aspergillus sp. fungus. Their structures were elucidated on the basis of NMR and MS spectral data. Compound 1 is a new, highly conjugated steroid. The NMR and MS data of 7 and 8 are reported for the first time, as their structures were listed in SciFinder Scholar with no associated reference. Compounds 1, 4, 5, and 8-11 inhibited the larval settlement of barnacle Balanus amphitrite with EC50 values ranging from 0.63 to 18.4 μg ml(-1) . Butyrolactone derivatives 7 and 8 showed pronounced antibacterial activities against Staphylococcus aureus with the same MIC values as the positive control ciprofloxacin (MIC 1.56 μM for all three compounds).

  14. Distribution, food preference, and trophic position of the corallivorous fireworm Hermodice carunculata in a Caribbean coral reef

    NASA Astrophysics Data System (ADS)

    Wolf, Alexander T.; Nugues, Maggy M.; Wild, Christian

    2014-12-01

    The fireworm Hermodice carunculata is a facultative corallivore on coral reefs. It can interact with algal overgrowth to cause coral mortality. However, because of its cryptic nature, little is known about its ecology. We used micropredator attracting devices (MADs) and stable isotope analyses to provide insights into the distribution and diet of H. carunculata in a coral reef on Curaçao, southern Caribbean. MADs consisted of algal clumps inside accessible mesh nets which H. carunculata could use as refuge. To obtain indications on its distribution pattern, MADs filled with Halimeda opuntia were deployed in different reef habitats ranging from 0 to 16 m water depth. Fireworms were found inside MADs in all reef habitats, indicating that they have a widespread horizontal and vertical distribution, ranging from the shoreline to the deeper reef slope. On the reef crest, MADs were filled using different algal species and deployed on dead or live scleractinian corals. MADs hosted more fireworms when placed on live corals, regardless of algal species used, suggesting that algal-induced corallivory may be widespread. To test for food preferences, different food sources were added inside the MADs. Fireworms detected potential prey within 6 h and were significantly more attracted by decaying corals and raw fish than by live corals, hydrozoans, or gorgonians. Stable isotope analyses indicated detritus, macroalgae, and scleractinian corals as potential food sources and revealed an ontogenetic dietary shift toward enriched δ 13C and δ 15N values with increasing fireworm size, suggesting that large-sized individuals feed on food sources of higher trophic levels. Our findings highlight H. carunculata as a widespread, and omnivorous scavenger that has the potential to switch feeding toward weakened or stressed corals, thereby likely acting as a harmful corallivore on degraded reefs.

  15. Boron isotopes in deep-sea bamboo corals: pH, vital effects and environmental factors

    NASA Astrophysics Data System (ADS)

    Farmer, J. R.; Hoenisch, B.; Hill, T. M.; LaVigne, M.; Robinson, L. F.

    2011-12-01

    Deep-sea corals are an intriguing archive for reconstructing deep-ocean environmental conditions, in particular with regard to anthropogenic climate change and ocean acidification. However, previous research in deep-sea aragonitic scleractinian corals observed heterogeneity in their geochemical composition that greatly exceeded the magnitude of variability expected from environmental conditions. Here we investigate the boron isotopic composition (δ11B) and B/Ca ratios of the calcitic gorgonian bamboo coral Keratoisis sp. (family Isididae) as potential indicators of seawater-pH at depth. Initial results from a specimen collected alive on Little Joe Seamount, CA (2136m depth) show that the δ11B of surface calcite is within the expected range of aqueous borate-δ11B, based on seawater pH, temperature, pressure and salinity. A radial cross section through an ~5 cm thick internode reveals largely homogeneous δ11B. However, in the centermost 0.5 cm of calcite growth adjacent to the axial core of the coral, a ~2% increase in δ11B corresponds with disequilibrium depletions in δ13C and δ18O, consistent with hypotheses for different growth modes of central calcite perhaps as a result of active calcite deposition along the axial core. Aside from this central region, the geochemical homogeneity and good agreement between coral surface δ11B and seawater borate δ11B suggests that bamboo corals may record deep-ocean carbon chemistry and thus pH. The cosmopolitan distribution of Keratoisis sp. in both living and fossil deep-sea coral communities thus potentially presents the opportunity to reconstruct recent and Holocene deep-water pH at high resolution.

  16. Patterns of morphological integration in marine modular organisms: supra-module organization in branching octocoral colonies.

    PubMed Central

    Sánchez, Juan Armando; Lasker, Howard R

    2003-01-01

    Despite the relative simplicity of their modular growth, marine invertebrates such as arborescent gorgonian octocorals (Octocorallia: Cnidaria) generate complex colonial forms. Colony form in these taxa is a consequence of modular (polyp) replication, and if there is a tight integration among modular and supramodular traits (e.g. polyp aperture, inter-polyp spacing, branch thickness, internode and branch length), then changes at the module level may lead to changes in colony architecture. Alternatively, different groups of traits may evolve semi-independently (or conditionally independent). To examine the patterns of integration among morphological traits in Caribbean octocorals, we compared five morphological traits across 21 species, correcting for the effects of phylogenetic relationships among the taxa. Graphical modelling and phylogenetic independence contrasts among the five morphological characters indicate two groups of integrated traits based on whether they were polyp- or colony-level traits. Although all characters exhibited bivariate associations, multivariate analyses (partial correlation coefficients) showed the strongest integration among the colony-level characters (internode distance and branch length). It is a quantitative demonstration that branching characters within the octocorals studied are independent of characters of the polyps. Despite the universally recognized modularity of octocorals at the level of polyps, branching during colony development may represent an emergent level of integration and modularity. PMID:14561292

  17. Thermal threshold and sensitivity of the only symbiotic Mediterranean gorgonian Eunicella singularis by morphometric and genotypic analyses.

    PubMed

    Pey, Alexis; Catanéo, Jérôme; Forcioli, Didier; Merle, Pierre-Laurent; Furla, Paola

    2013-07-01

    The only symbiotic Mediterranean gorgonian, Eunicella singularis, has faced several mortality events connected to abnormal high temperatures. Since thermotolerance data remain scarce, heat-induced necrosis was monitored in aquarium by morphometric analysis. Gorgonian tips were sampled at two sites: Medes (Spain) and Riou (France) Islands, and at two depths: -15 m and-35 m. Although coming from contrasting thermal regimes, seawater above 28 °C led to rapid and complete tissue necrosis for all four populations. However, at 27 °C, the time length leading to 50% tissue necrosis allowed us to classify samples within three classes of thermal sensitivity. Irrespectively of the depth, Medes specimens were either very sensitive or resistant, while Riou fragments presented a medium sensitivity. Microsatellite analysis revealed that host and symbiont were genetically differentiated between sites, but not between depths. Finally, these genetic differentiations were not directly correlated to a specific thermal sensitivity whose molecular bases remain to be discovered.

  18. Ancient DNA from Coral-Hosted Symbiodinium Reveal a Static Mutualism over the Last 172 Years

    PubMed Central

    Baker, David M.; Weigt, Lee; Fogel, Marilyn; Knowlton, Nancy

    2013-01-01

    Ancient DNA (aDNA) provides powerful evidence for detecting the genetic basis for adaptation to environmental change in many taxa. Among the greatest of changes in our biosphere within the last century is rapid anthropogenic ocean warming. This phenomenon threatens corals with extinction, evidenced by the increasing observation of widespread mortality following mass bleaching events. There is some evidence and conjecture that coral-dinoflagellate symbioses change partnerships in response to changing external conditions over ecological and evolutionary timescales. Until now, we have been unable to ascertain the genetic identity of Symbiodinium hosted by corals prior to the rapid global change of the last century. Here, we show that Symbiodinium cells recovered from dry, century old specimens of 6 host species of octocorals contain sufficient DNA for amplification of the ITS2 subregion of the nuclear ribosomal DNA, commonly used for genotyping within this genus. Through comparisons with modern specimens sampled from similar locales we show that symbiotic associations among several species have been static over the last century, thereby suggesting that adaptive shifts to novel symbiont types is not common among these gorgonians, and perhaps, symbiotic corals in general. PMID:23405111

  19. Historical thermal regimes define limits to coral acclimatization.

    PubMed

    Howells, Emily J; Berkelmans, Ray; van Oppen, Madeleine J H; Willis, Bette L; Bay, Line K

    2013-05-01

    Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n=20 colonies) or partial (50%) mortality at temperatures 1.1 degrees C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n=10 colonies) or partial (42%) mortality at temperatures 2.5 degrees C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern

  20. [Effect of herbivorous and corallivorous fishes on the survival of transplanted corals in the Colombian Caribbean].

    PubMed

    Chasqui-Velasco, Luis; Alvarado Ch, Elvira; Acero, Arturo; Zapata, Fernando A

    2007-01-01

    To examine the effects of herbivorous and corallivorous fishes on the survival of transplanted colonies of Montastraea annularis, Diploria labyrinthiformis and Porites astreoides, both transplanted and native colonies were full-cage enclosed and compared to open (uncaged) colonies, while caging effects were assessed with a partial-cage (roof treatment). To evaluate if transplant stress increased the corals availability to fish predation, comparisons of fish foraging intensity among transplanted versus native colonies were made. To determine the density of herbivorous and corallivorous fishes on the transplants area visual censuses were made. The transient herbivorous fishes (Scaridae and Acanthuridae) were the most abundant fishes, and the corallivorous fishes (mainly Chaetodontidae) were the scarcest. A negative effect of territorial herbivorous fishes on M annularis transplants survival was observed, mainly early on the study. Fish foraging intensity was similar on transplanted and native colonies, but differed among coral species, being lowest on D. labyrinthiformis. Fast macroalgal growth inside full-cages due to reduced fish grazing was observed. This caused partial bleaching and partial mortality in some colonies, mainly of P. astreoides. No significant difference in healthy tissue percentages among full-cage and uncaged colonies on M. annularis and D. labyrinthiformis was found, while in P. astreoides there were evilent differences. The results indicate a damselfish negative effect on transplants survival early on the study, which can change depending on the fish and coral species involved. Results also indicate a fish grazing positive effect, caused by the reduction of coral-algae competition pressure, mainly on P. astreoides. Parrotfishes seem to affect corals survival both negatively through direct biting, and positively by controlling algal growth. Overall, coral transplant success was almost unaffected by fish foraging activity although several

  1. FACTORS AFFECTING SUSCEPTIBILITY OF THE CORAL MONTASTRAEA FAVEOLATE TO BLACK-BAND DISEASE

    EPA Science Inventory

    Black-band disease affects many species of tropical reef-building corals, but it is unclear what factors contribute to the disease-susceptibility of individual corals or how the disease is transmitted between colonies. Studies have suggested that the ability of black-band disease...

  2. Growth-rate influences on coral climate proxies

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Hayashi, E.; Nakamura, T.; Iwase, A.; Ishimura, T.; Iguchi, A.; Sakai, K.; Okai, T.; Inoue, M.; Araoka, D.; Kawahata, H.

    2011-12-01

    Coral-based climate reconstruction has been increasingly reported from many tropical sites. Potential ambiguity of coral thermometers intrinsic in biomineralization process attracts much attention, including so-called 'vital effects', 'growth-rate-related kinetic effect', '[CO32-] effect' and so on. Here we study growth-rate influences on skeletal oxygen and carbon isotope ratios (δ18O and δ13C), as well as Sr/Ca ratio, based on a long-term culture experiment using Porites australiensis clone colonies. Variation in δ18O showed negligible influence against a large intercolony variation in growth rate based on the comparison of the seasonal minimum δ18O values during summer, while that was relatively sensitive to temporal growth-rate change due to health condition of each colony. Contrary, Sr/Ca ratio was robust against both the inter- and intra- colony variation in growth rate. Positive sift in δ13C for slower-growing corals was found, and it can be attributed to a kinetic behavior of calcification reaction. Seasonal fluctuation pattern in δ13C did not correspond to light intensity nor that in δ13C of dissolved inorganic carbon in seawater. These lines warrant the signal recording ability of coral skeletal Sr/Ca ratio and δ18O from a long-lived colony of clonal growth as paleo-climate archives, and propose practical guideline for the proper interplication of coral records.

  3. Extreme Longevity in Proteinaceous Deep-Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  4. Through bleaching and tsunami: Coral reef recovery in the Maldives.

    PubMed

    Morri, Carla; Montefalcone, Monica; Lasagna, Roberta; Gatti, Giulia; Rovere, Alessio; Parravicini, Valeriano; Baldelli, Giuseppe; Colantoni, Paolo; Bianchi, Carlo Nike

    2015-09-15

    Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet.

  5. Coral photobiology: new light on old views.

    PubMed

    Iluz, David; Dubinsky, Zvy

    2015-04-01

    The relationship between reef-building corals and light-harvesting pigments of zooxanthellae (Symbiodinium sp.) has been acknowledged for decades. The photosynthetic activity of the algal endocellular symbionts may provide up to 90% of the energy needed for the coral holobiont. This relationship limits the bathymetric distribution of coral reefs to the upper 100 m of tropical shorelines. However, even corals growing under high light intensities have to supplement the photosynthates translocated from the algae by predation on nutrient-rich zooplankton. New information has revealed how the fate of carbon acquired through photosynthesis differs from that secured by predation, whose rates are controlled by light-induced tentacular extension. The Goreau paradigm of "light-enhanced calcification" is being reevaluated, based on evidence that blue light stimulates coral calcification independently from photosynthesis rates. Furthermore, under dim light, calcification rates were stoichiometrically uncoupled from photosynthesis. The rates of photosynthesis of the zooxanthellae exhibit a clear endogenous rhythmicity maintained by light patterns. This daily pattern is concomitant with a periodicity of all the antioxidant protective mechanisms that wax and wane to meet the concomitant fluctuation in oxygen evolution. The phases of the moon are involved in the triggering of coral reproduction and control the spectacular annual mass-spawning events taking place in several reefs. The intensity and directionality of the underwater light field affect the architecture of coral colonies, leading to an optimization of the exposure of the zooxanthellae to light. We present a summary of major gaps in our understanding of the relationship between light and corals as a roadmap for future research.

  6. Light and the bioenergetics of a symbiotic coral

    SciTech Connect

    Falkowski, P.G.; Dubinsky, Z.; Muscatine, L.; Porter, J.W.

    1984-12-01

    Colonies of coral Stylophora pistillata growing at high light can obtain all the reduced carbon needed for animal respiration from photosynthesis by symbiotic zooxanthellae. In contrast, colonies in shaded reef areas must acquired 60% of their reduced carbon heterotrophically. More than 90% of the carbon fixed by zooxanthellae is translocated to the animal host in both light regimes, but very little is assimilated, apparently because the translocated products are deficient in nitrogen. Thus, the coral's overall growth efficiency is similar to that of aquatic herbivores that forage actively. 29 references, 2 figures, 1 table.

  7. Persistent shifts in Caribbean coral microbiota are linked to the 2010 warm thermal anomaly.

    PubMed

    Tracy, Allison M; Koren, Omry; Douglas, Nancy; Weil, Ernesto; Harvell, C Drew

    2015-06-01

    The response of corals to warm temperature anomalies includes changes in coral bacterial assemblages. There are clear differences between the microbiota of bleached and healthy corals. However, few studies have tracked the microbiota of individual colonies throughout a warming event. We used 454 pyrosequencing and repeated measures to characterize bacterial assemblages in 15 Gorgonia ventalina colonies before, during, 4 months after, and 1 year after the 2010 Caribbean warm thermal anomaly. In the latter three sampling times, the G. ventalina microbiota differed significantly from the microbiota of Orbicella faveolata colonies, which were sampled only at these three times. O. faveolata microbiota did not exhibit coordinated shifts through time. Notably, the microbiota of the repeatedly sampled G. ventalina colonies shifted persistently from before to during, after, and long after the warming event. The same pattern emerges from the norm of reaction for the individual G. ventalina colonies. This is the first study to show persistent shifts in coral microbiota in association with a warm thermal anomaly. Whether shifting microbiota is adaptive or maladaptive, the lasting change in bacterial assemblages following this warming event identifies a new way that coral microbiota shape the response of coral colonies under thermal stress.

  8. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    PubMed

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart). Similarly, severity of background partial mortality was surprisingly high (between 5% and 21%) but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  9. Scleractinian coral population size structures and growth rates indicate coral resilience on the fringing reefs of North Jamaica.

    PubMed

    Crabbe, M J C

    2009-01-01

    Coral reefs throughout the world are under severe challenges from many environmental factors. This paper quantifies the size structure of populations and the growth rates of corals from 2000 to 2008 to test whether the Discovery Bay coral colonies showed resilience in the face of multiple acute stressors of hurricanes and bleaching. There was a reduction in numbers of colonies in the smallest size class for all the species at all the sites in 2006, after the mass bleaching of 2005, with subsequent increases for all species at all sites in 2007 and 2008. Radial growth rates (mm yr(-1)) of non-branching corals and linear extension rates (mm yr(-1)) of branching corals calculated on an annual basis from 2000-2008 showed few significant differences either spatially or temporally. At Dairy Bull reef, live coral cover increased from 13+/-5% in 2006 to 20+/-9% in 2007 and 31+/-7% in 2008, while live Acropora species increased from 2+/-2% in 2006 to 10+/-4% in 2007 and 22+/-7% in 2008. These studies indicate good levels of coral resilience on the fringing reefs around Discovery Bay in Jamaica.

  10. Community-level destruction of hard corals by the sea urchin Diadema setosum.

    PubMed

    Qiu, Jian-Wen; Lau, Dickey C C; Cheang, Chi-chiu; Chow, Wing-kuen

    2014-08-30

    Sea urchins are common herbivores and bioeroders of coral ecosystems, but rarely have they been reported as corallivores. We determined the spatial pattern of hard coral damage due to corallivory and bioerosion by the sea urchin Diadema setosum Leske in Hong Kong waters. Coral damage was common at the northeastern sites, with 23.7 - 90.3% colonies being either collapsed or severely damaged with >25% tissue loss. Many genera of corals were impacted by the sea urchin but the damage was most obvious for the structure forming genus Platygyra. The percentage of severely damaged and collapsed coral had significant positive correlation with the abundance of D. setosum, which ranged from 0.01 to 5.2 individuals per coral head or 0.1 - 21.1 individuals m(-2) across the study sites. Remedial management actions such as sea urchin removal are urgently needed to save these fringing coral communities.

  11. Homoplasious colony morphology and mito-nuclear phylogenetic discordance among Eastern Pacific octocorals.

    PubMed

    Ament-Velásquez, Sandra L; Breedy, Odalisca; Cortés, Jorge; Guzman, Hector M; Wörheide, Gert; Vargas, Sergio

    2016-05-01

    Octocorals are a diverse and ecologically important group of cnidarians. However, the phylogenetic relationships of many octocoral groups are not well understood and are based mostly on mitochondrial sequence data. In addition, the discovery and description of new gorgonian species displaying unusual or intermediate morphologies and uncertain phylogenetic affinities further complicates the study of octocoral systematics and raises questions about the role played by processes such as plasticity, crypsis, and convergence in the evolution of this group of organisms. Here, we use nuclear (i.e. 28S rDNA) and mitochondrial (mtMutS) markers and a sample of Eastern Pacific gorgonians thought to be remarkable from a morphological point of view to shed light on the morphological diversification among these organisms. Our study reveals the loss of the anastomosed colony morphology in two unrelated lineages of the seafan genus Pacifigorgia and offers strong evidence for the independent evolution of a whip-like morphology in two lineages of Eastern Pacific Leptogorgia. Additionally, our data revealed one instance of mito-nuclear discordance in the genera Leptogorgia and Eugorgia, which may be the results of incomplete lineage sorting or ancient hybridization-introgression events. Our study stresses the importance of comprehensive taxonomic sampling and the use of independent sources of evidence to address the phylogenetic relationships and clarifying the evolution of octocorals.

  12. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis.

    PubMed

    Domart-Coulon, I J; Elbert, D C; Scully, E P; Calimlim, P S; Ostrander, G K

    2001-10-09

    The foundation of marine coral reef ecosystems is calcium carbonate accumulated primarily by the action of hard corals (Coelenterata: Anthozoa: Scleractinia). Colonial hard coral polyps cover the surface of the reef and deposit calcium carbonate as the aragonite polymorph, stabilized into a continuous calcareous skeleton. Scleractinian coral skeleton composition and architecture are well documented; however, the cellular mechanisms of calcification are poorly understood. There is little information on the nature of the coral cell types involved or their cooperation in biocalcification. We report aragonite crystallization in primary cell cultures of a hard coral, Pocillopora damicornis. Cells of apical coral colony fragments were isolated by spontaneous in vitro dissociation. Single dissociated cell types were separated by density in a discontinuous Percoll gradient. Primary cell cultures displayed a transient increase in alkaline phosphatase (ALP) activity, to the level observed in intact corals. In adherent multicellular isolate cultures, enzyme activation was followed by precipitation of aragonite. Modification of the ionic formulation of the medium prolonged maintenance of isolates, delayed ALP activation, and delayed aragonite precipitation. These results demonstrate that in vitro crystallization of aragonite in coral cell cultures is possible, and provides an innovative approach to investigate reef-building coral calcification at the cellular level.

  13. Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis

    PubMed Central

    Domart-Coulon, Isabelle J.; Elbert, David C.; Scully, Erik P.; Calimlim, Precilia S.; Ostrander, Gary K.

    2001-01-01

    The foundation of marine coral reef ecosystems is calcium carbonate accumulated primarily by the action of hard corals (Coelenterata: Anthozoa: Scleractinia). Colonial hard coral polyps cover the surface of the reef and deposit calcium carbonate as the aragonite polymorph, stabilized into a continuous calcareous skeleton. Scleractinian coral skeleton composition and architecture are well documented; however, the cellular mechanisms of calcification are poorly understood. There is little information on the nature of the coral cell types involved or their cooperation in biocalcification. We report aragonite crystallization in primary cell cultures of a hard coral, Pocillopora damicornis. Cells of apical coral colony fragments were isolated by spontaneous in vitro dissociation. Single dissociated cell types were separated by density in a discontinuous Percoll gradient. Primary cell cultures displayed a transient increase in alkaline phosphatase (ALP) activity, to the level observed in intact corals. In adherent multicellular isolate cultures, enzyme activation was followed by precipitation of aragonite. Modification of the ionic formulation of the medium prolonged maintenance of isolates, delayed ALP activation, and delayed aragonite precipitation. These results demonstrate that in vitro crystallization of aragonite in coral cell cultures is possible, and provides an innovative approach to investigate reef-building coral calcification at the cellular level. PMID:11593000

  14. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.

    2014-01-01

    Coral reefs are highly diverse ecosystems where symbioses play a pivotal role. Corals contain cell-associated microbial aggregates (CAMA), yet little is known about how widespread they are among coral species or the nature of the symbiotic relationship. Using histology, we found CAMA within 24 species of corals from 6 genera from Hawaii, American Samoa, Palmyra, Johnston Atoll, Guam, and Australia. Prevalence (%) of infection varied among coral genera: Acropora, Porites, and Pocillopora were commonly infected whereas Montipora were not. Acropora from the Western Pacific were significantly more likely to be infected with CAMA than those from the Central Pacific, whereas the reverse was true for Porites. Compared with apparently healthy colonies, tissues from diseased colonies were significantly more likely to have both surface and basal body walls infected. The close association of CAMA with host cells in numerous species of apparently healthy corals and lack of associated cell pathology reveals an intimate agent-host association. Furthermore, CAMA are Gram negative and in some corals may be related to chlamydia or rickettsia. We propose that CAMA in adult corals are facultative secondary symbionts that could play an important ecological role in some dominant coral genera in the Indo-Pacific. CAMA are important in the life histories of other animals, and more work is needed to understand their role in the distribution, evolution, physiology, and immunology of reef corals.

  15. Caribbean massive corals not recovering from repeated thermal stress events during 2005-2013.

    PubMed

    Neal, Benjamin Paul; Khen, Adi; Treibitz, Tali; Beijbom, Oscar; O'Connor, Grace; Coffroth, Mary Alice; Knowlton, Nancy; Kriegman, David; Mitchell, B Greg; Kline, David I

    2017-03-01

    Massive coral bleaching events associated with high sea surface temperatures are forecast to become more frequent and severe in the future due to climate change. Monitoring colony recovery from bleaching disturbances over multiyear time frames is important for improving predictions of future coral community changes. However, there are currently few multiyear studies describing long-term outcomes for coral colonies following acute bleaching events. We recorded colony pigmentation and size for bleached and unbleached groups of co-located conspecifics of three major reef-building scleractinian corals (Orbicella franksi, Siderastrea siderea, and Stephanocoenia michelini; n = 198 total) in Bocas del Toro, Panama, during the major 2005 bleaching event and then monitored pigmentation status and changes live tissue colony size for 8 years (2005-2013). Corals that were bleached in 2005 demonstrated markedly different response trajectories compared to unbleached colony groups, with extensive live tissue loss for bleached corals of all species following bleaching, with mean live tissue losses per colony 9 months postbleaching of 26.2% (±5.4 SE) for O. franksi, 35.7% (±4.7 SE) for S. michelini, and 11.2% (±3.9 SE) for S. siderea. Two species, O. franksi and S. michelini, later recovered to net positive growth, which continued until a second thermal stress event in 2010. Following this event, all species again lost tissue, with previously unbleached colony species groups experiencing greater declines than conspecific sample groups, which were previously bleached, indicating a possible positive acclimative response. However, despite this beneficial effect for previously bleached corals, all groups experienced substantial net tissue loss between 2005 and 2013, indicating that many important Caribbean reef-building corals will likely suffer continued tissue loss and may be unable to maintain current benthic coverage when faced with future thermal stress forecast for the

  16. Collection methods and descriptions of coral cores extracted from massive corals in Dry Tortugas National Park, Florida, U.S.A.

    USGS Publications Warehouse

    Weinzierl, Michael S.; Reich, Christopher D.; Hickey, T. Donald; Bartlett, Lucy A.; Kuffner, Ilsa B.

    2016-11-29

    Cores from living coral colonies were collected from Dry Tortugas National Park, Florida, U.S.A., to obtain skeletal records of past coral growth and allow geochemical reconstruction of environmental variables during the corals’ centuries-long lifespans. The samples were collected as part of the U.S. Geological Survey Coral Reef Ecosystems Studies project (http:/coastal.er.usgs.gov/crest) that provides science to assist resource managers tasked with the stewardship of coral reef resources. Three colonies each of the coral species Orbicella faveolata and Siderastrea siderea were collected in May 2012 using the methods described herein and as approved under National Park Service scientific collecting permit number DRTO-2012-SCI-0001 and are cataloged under accession number DRTO-353. These coral samples can be used to retroactively construct environmental parameters, including sea-surface temperature, by measuring the elemental composition of the coral skeleton. The cores described here, and others (see http://olga.er.usgs.gov/coreviewer/), can be requested, on loan, for scientific study. Photographic images for each coral in its ocean environment, the coral cores as curated and slabbed, and the X-rays of the slabs can be found in an associated U.S. Geological Survey Data Release.

  17. Mechanisms of damage to corals exposed to sedimentation.

    PubMed

    Weber, Miriam; de Beer, Dirk; Lott, Christian; Polerecky, Lubos; Kohls, Katharina; Abed, Raeid M M; Ferdelman, Timothy G; Fabricius, Katharina E

    2012-06-12

    We investigated the mechanisms leading to rapid death of corals when exposed to runoff and resuspended sediments, postulating that the killing was microbially mediated. Microsensor measurements were conducted in mesocosm experiments and in naturally accumulated sediment on corals. In organic-rich, but not in organic-poor sediment, pH and oxygen started to decrease as soon as the sediment accumulated on the coral. Organic-rich sediments caused tissue degradation within 1 d, whereas organic-poor sediments had no effect after 6 d. In the harmful organic-rich sediment, hydrogen sulfide concentrations were low initially but increased progressively because of the degradation of coral mucus and dead tissue. Dark incubations of corals showed that separate exposures to darkness, anoxia, and low pH did not cause mortality within 4 d. However, the combination of anoxia and low pH led to colony death within 24 h. When hydrogen sulfide was added after 12 h of anoxia and low pH, colonies died after an additional 3 h. We suggest that sedimentation kills corals through microbial processes triggered by the organic matter in the sediments, namely respiration and presumably fermentation and desulfurylation of products from tissue degradation. First, increased microbial respiration results in reduced O(2) and pH, initiating tissue degradation. Subsequently, the hydrogen sulfide formed by bacterial decomposition of coral tissue and mucus diffuses to the neighboring tissues, accelerating the spread of colony mortality. Our data suggest that the organic enrichment of coastal sediments is a key process in the degradation of coral reefs exposed to terrestrial runoff.

  18. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae).

    PubMed

    Coker, Darren J; Hoey, Andrew S; Wilson, Shaun K; Depczynski, Martial; Graham, Nicholas A J; Hobbs, Jean-Paul A; Holmes, Thomas H; Pratchett, Morgan S

    2015-01-01

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  19. Cytochrome P450 diversity and induction by gorgonian allelochemicals in the marine gastropod Cyphoma gibbosum

    PubMed Central

    2010-01-01

    Background Intense consumer pressure strongly affects the structural organization and function of marine ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome P450s (CYPs), which have received little attention in marine invertebrates despite the importance of allelochemicals in their evolution. Results Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate CYP4A/4F forms share

  20. Hurricanes and coral bleaching linked to changes in coral recruitment in Tobago.

    PubMed

    Mallela, J; Crabbe, M J C

    2009-10-01

    Knowledge of coral recruitment patterns helps us understand how reefs react following major disturbances and provides us with an early warning system for predicting future reef health problems. We have reconstructed and interpreted historical and modern-day recruitment patterns, using a combination of growth modelling and in situ recruitment experiments, in order to understand how hurricanes, storms and bleaching events have influenced coral recruitment on the Caribbean coastline of Tobago. Whilst Tobago does not lie within the main hurricane belt results indicate that regional hurricane events negatively impact coral recruitment patterns in the Southern Caribbean. In years following hurricanes, tropical storms and bleaching events, coral recruitment was reduced when compared to normal years (p=0.016). Following Hurricane Ivan in 2004 and the 2005-2006 bleaching event, coral recruitment was markedly limited with only 2% (n=6) of colonies estimated to have recruited during 2006 and 2007. Our experimental results indicate that despite multiple large-scale disturbances corals are still recruiting on Tobago's marginal reef systems, albeit in low numbers.

  1. Impact of sea-level rise and coral mortality on the wave dynamics and wave forces on barrier reefs.

    PubMed

    Baldock, T E; Golshani, A; Callaghan, D P; Saunders, M I; Mumby, P J

    2014-06-15

    A one-dimensional wave model was used to investigate the reef top wave dynamics across a large suite of idealized reef-lagoon profiles, representing barrier coral reef systems under different sea-level rise (SLR) scenarios. The modeling shows that the impacts of SLR vary spatially and are strongly influenced by the bathymetry of the reef and coral type. A complex response occurs for the wave orbital velocity and forces on corals, such that the changes in the wave dynamics vary reef by reef. Different wave loading regimes on massive and branching corals also leads to contrasting impacts from SLR. For many reef bathymetries, wave orbital velocities increase with SLR and cyclonic wave forces are reduced for certain coral species. These changes may be beneficial to coral health and colony resilience and imply that predicting SLR impacts on coral reefs requires careful consideration of the reef bathymetry and the mix of coral species.

  2. Boring sponges, an increasing threat for coral reefs affected by bleaching events.

    PubMed

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-04-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold.

  3. Boring sponges, an increasing threat for coral reefs affected by bleaching events

    PubMed Central

    Carballo, José L; Bautista, Eric; Nava, Héctor; Cruz-Barraza, José A; Chávez, Jesus A

    2013-01-01

    Coral bleaching is a stress response of corals induced by a variety of factors, but these events have become more frequent and intense in response to recent climate-change-related temperature anomalies. We tested the hypothesis that coral reefs affected by bleaching events are currently heavily infested by boring sponges, which are playing a significant role in the destruction of their physical structure. Seventeen reefs that cover the entire distributional range of corals along the Mexican Pacific coast were studied between 2005/2006, and later between 2009/2010. Most of these coral reefs were previously impacted by bleaching events, which resulted in coral mortalities. Sponge abundance and species richness was used as an indicator of bioerosion, and coral cover was used to describe the present condition of coral reefs. Coral reefs are currently highly invaded (46% of the samples examined) by a very high diversity of boring sponges (20 species); being the coral reef framework the substrate most invaded (56%) followed by the rubbles (45%), and the living colonies (36%). The results also indicated that boring sponges are promoting the dislodgment of live colonies and large fragments from the framework. In summary, the eastern coral reefs affected by bleaching phenomena, mainly provoked by El Niño, present a high diversity and abundance of boring sponges, which are weakening the union of the colony with the reef framework and promoting their dislodgment. These phenomena will probably become even more intense and severe, as temperatures are projected to continue to rise under the scenarios for future climate change, which could place many eastern coral reefs beyond their survival threshold. PMID:23610632

  4. Coral community response to bleaching on a highly disturbed reef

    NASA Astrophysics Data System (ADS)

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-02-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  5. Coral community response to bleaching on a highly disturbed reef

    PubMed Central

    Guest, J. R.; Low, J.; Tun, K.; Wilson, B.; Ng, C.; Raingeard, D.; Ulstrup, K. E.; Tanzil, J. T. I.; Todd, P. A.; Toh, T. C.; McDougald, D.; Chou, L. M.; Steinberg, P. D.

    2016-01-01

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress. PMID:26876092

  6. Coral community response to bleaching on a highly disturbed reef.

    PubMed

    Guest, J R; Low, J; Tun, K; Wilson, B; Ng, C; Raingeard, D; Ulstrup, K E; Tanzil, J T I; Todd, P A; Toh, T C; McDougald, D; Chou, L M; Steinberg, P D

    2016-02-15

    While many studies of coral bleaching report on broad, regional scale responses, fewer examine variation in susceptibility among coral taxa and changes in community structure, before, during and after bleaching on individual reefs. Here we report in detail on the response to bleaching by a coral community on a highly disturbed reef site south of mainland Singapore before, during and after a major thermal anomaly in 2010. To estimate the capacity for resistance to thermal stress, we report on: a) overall bleaching severity during and after the event, b) differences in bleaching susceptibility among taxa during the event, and c) changes in coral community structure one year before and after bleaching. Approximately two thirds of colonies bleached, however, post-bleaching recovery was quite rapid and, importantly, coral taxa that are usually highly susceptible were relatively unaffected. Although total coral cover declined, there was no significant change in coral taxonomic community structure before and after bleaching. Several factors may have contributed to the overall high resistance of corals at this site including Symbiodinium affiliation, turbidity and heterotrophy. Our results suggest that, despite experiencing chronic anthropogenic disturbances, turbid shallow reef communities may be remarkably resilient to acute thermal stress.

  7. Words matter: Recommendations for clarifying coral disease nomenclature and terminology

    USGS Publications Warehouse

    Rogers, Caroline S.

    2010-01-01

    Coral diseases have caused significant losses on Caribbean reefs and are becoming a greater concern in the Pacific. Progress in coral disease research requires collaboration and communication among experts from many different disciplines. The lack of consistency in the use of terms and names in the recent scientific literature reflects the absence of an authority for naming coral diseases, a lack of consensus on the meaning of even some of the most basic terms as they apply to corals, and imprecision in the use of descriptive words. The lack of consensus partly reflects the complexity of this newly emerging field of research. Establishment of a nomenclature committee under the Coral Disease and Health Consortium (CDHC) could lead to more standardized definitions and could promote use of appropriate medical terminology for describing and communicating disease conditions in corals. This committee could also help to define disease terminology unique to corals where existing medical terminology is not applicable. These efforts will help scientists communicate with one another and with the general public more effectively. Scientists can immediately begin to reduce some of the confusion simply by explicitly defining the words they are using. In addition, digital photographs can be posted on the CDHC website and included in publications to document the macroscopic (gross) signs of the conditions observed on coral colonies along with precisely written characterizations and descriptions.

  8. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef.

    PubMed

    Bourne, David G; Munn, Colin B

    2005-08-01

    The microbial community associated with the reef building coral Pocillopora damicornis located on the Great Barrier Reef was investigated using culture-independent molecular microbial techniques. The microbial communities of three separate coral colonies were assessed using clone library construction alongside restriction fragment length polymorphism and phylogenetic analysis. Diversity was also investigated spatially across six replicate samples within each single coral colony using 16S rDNA and rpoB-DGGE analysis. Clone libraries demonstrated that the majority of retrieved sequences from coral tissue slurry libraries affiliated with gamma-Proteobacteria. This contrasted with clone libraries of seawater and coral mucus, which were dominated by alpha-Proteobacteria. A number of retrieved clone sequences were conserved between coral colonies; a result consistent with previous studies suggesting a specific microbe-coral association. rpoB-DGGE patterns of replicate tissue slurry samples underestimated microbial diversity, but demonstrated that fingerprints were identical within the same coral. These fingerprints were also conserved across coral colonies. The 16S rDNA-DGGE patterns of replicate tissue slurry samples were more complex, although non-metric multidimensional scaling (nMDS) analysis showed groupings of these banding patterns indicating that some bacterial diversity was uniform within a coral colony. Sequence data retrieved from DGGE analysis support clone library data in that the majority of affiliations were within the gamma-Proteobacteria. Many sequences retrieved also affiliated closely with sequences derived from previous studies of microbial diversity of healthy corals in the Caribbean. Clones showing high 16S rDNA sequence identity to both Vibrio shiloi and Vibrio coralliilyticus were retrieved, suggesting that these may be opportunist pathogens. Comparisons of retrieved microbial diversity between two different sampling methods, a syringe extracted

  9. Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Gleason, M. G.

    1993-11-01

    This study examines patterns of susceptibility and short-term recovery of corals from bleaching. A mass coral bleaching event began in March, 1991 on reefs in Moorea, French Polynesia and affected corals on the shallow barrier reef and to >20 m depth on the outer forereef slope. There were significant differences in the effect of the bleaching among common coral genera, with Acropora, Montastrea, Montipora, and Pocillopora more affected than Porites, Pavona, leptastrea or Millepora. Individual colonies of the common species of Acropora and Pocillopora were marked and their fate assessed on a subsequent survey in August, 1991 to determine rates of recovery and mortality. Ninety-six percent of Acropora spp. showed some degree of bleaching compared to 76% of Pocillopora spp. From March to August mortality of bleached colonies of Pocillopora was 17%, 38% recovered completely, and many suffered some partial mortality of the tissue. In contrast, 63% of the Acropora spp. died, and about 10% recovered completely. Generally, those colonies with less than 50% of the colony area affected by the bleaching recovered at a higher rate than did those with more severe bleaching. Changes in community composition four months after the event began included a significant decrease only in crustose algae and an increase in cover of filamentous algae, much of which occupied plate-like and branching corals that had died in the bleaching event. Total coral cover and cover of susceptible coral genera had declined, but not significantly, after the event.

  10. Effects of ocean acidification and sea-level rise on coral reefs

    USGS Publications Warehouse

    Yates, K.K.; Moyer, R.P.

    2010-01-01

    U.S. Geological Survey (USGS) scientists are developing comprehensive records of historical and modern coral reef growth and calcification rates relative to changing seawater chemistry resulting from increasing atmospheric CO2 from the pre-industrial period to the present. These records will provide the scientific foundation for predicting future impacts of ocean acidification and sea-level rise on coral reef growth. Changes in coral growth rates in response to past changes in seawater pH are being examined by using cores from coral colonies.

  11. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    NASA Astrophysics Data System (ADS)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  12. Favia Corals: a New Paleoclimate Archive

    NASA Astrophysics Data System (ADS)

    Miller, S. J.; Cobb, K. M.; Grothe, P. R.; Chen, T.; Sayani, H. R.; Lynch-Stieglitz, J.; Townsend, K. J.; Edwards, R. L.; Cheng, H.; Lu, Y.; Deocampo, D.

    2015-12-01

    Projections of future climate change contain large uncertainties stemming from our inability to confirm long-term trends in climate models with short instrumental records. Fossil corals are an important archive of past climate changes in the tropical oceans as oxygen isotopic ratios (δ18O) in their skeletons reflect ambient ocean temperature and salinity during the time they grew. In particular, El Niño/Southern Oscillation (ENSO) is a natural phenomenon with a complex array of sensitivities to climate change, rendering any future projections of its variability highly uncertain. The long-term behavior of ENSO and lower-frequency Pacific climate variability is recorded by annually banded fossil corals, providing insight into both natural and anthropogenic climate changes in this under-sampled region (Hughen et al. 1999; Tudhope et al. 2001; Cobb et al. 2003; Cobb et al. 2013). To date, most coral-based reconstructions have utilized cores from the genus Porites, owing its regular, concentric growth bands and fast growth-rates that allow for the generation of up to 20 samples per year of coral growth. However, this genus is neither evenly distributed across the tropics nor continuously available within the fossil record, so there is a pressing need to expand the types of corals available for reconstruction. Here, we test Favia species from Kiritimati Island (2°N, 157°W) as a paleoclimate recorder by comparing different δ18O timeseries from within a single coral as well as across multiple corals with instrumental sea-surface temperature (SST). We find significant and consistent differences between coral δ18O profiles sampled along thecal versus septa walls, and show that δ18O in the thecal wall is more reproducible, and more coherent with SST. Slow growth rates (8-10mm/yr), and small inter-colony δ18O offsets suggest that Favia may be an untapped climate archive that is capable of providing robust constraints on natural climate variability in the tropical

  13. The ecotoxicology of vegetable versus mineral based lubricating oils: 3. Coral fertilization and adult corals.

    PubMed

    Mercurio, Philip; Negri, Andrew P; Burns, Kathryn A; Heyward, Andrew J

    2004-05-01

    Biodegradable vegetable-derived lubricants (VDL) might be less toxic to marine organisms than mineral-derived oils (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested. In this laboratory study, adult corals and coral gametes were exposed to various concentrations of a two-stroke VDL-1A and a corresponding MDL to determine which lubricant type was more toxic to each life stage. In the fertilization experiment, gametes from the scleractinian coral Acropora microphthalma were exposed to water-accommodated fractions (WAF) of VDL-1A and MDL for four hours. The MDL and VDL-1A WAFs inhibited normal fertilization of the corals at 200 microg l(-1) total hydrocarbon content (THC) and 150 microg l(-1) THC respectively. Disturbance of a stable coral-dinoflagellate symbiosis is regarded as a valid measure of sub-lethal stress in adult corals. The state of the symbiosis in branchlets of adult colonies of Acropora formosa was monitored using indicators such as dinoflagellate expulsion and dark-adapted photosystem II yields of dinoflagellate (using pulse amplitude modulation fluorescence). An effect on symbiosis was measurable following 48 h exposure to the lubricants at concentrations of 190 microg l(-1) and 37 microg l(-1) THC for the MDL and VDL-1A respectively. GC/MS revealed that the main constituent of the VDL-1A WAF was the compound coumarin, added by the manufacturer to improve odour. The fragrance containing coumarin was removed from the lubricant formulation and the toxicity towards adult corals re-examined. The coumarin-free VDL-2 exhibited significantly less toxicity towards the adult corals than all of the other oil types tested, with the only measurable effect being a slight but significant drop in photosynthetic efficiency at 280 microg l(-1).

  14. Patterns of gene expression in a scleractinian coral undergoing natural bleaching.

    PubMed

    Seneca, Francois O; Forêt, Sylvain; Ball, Eldon E; Smith-Keune, Carolyn; Miller, David J; van Oppen, Madeleine J H

    2010-10-01

    Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P < 0.05), respectively. We present these genes as potential coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.

  15. Coral growth on three reefs: development of recovery benchmarks using a space for time approach

    NASA Astrophysics Data System (ADS)

    Done, T. J.; Devantier, L. M.; Turak, E.; Fisk, D. A.; Wakeford, M.; van Woesik, R.

    2010-12-01

    This 14-year study (1989-2003) develops recovery benchmarks based on a period of very strong coral recovery in Acropora-dominated assemblages on the Great Barrier Reef (GBR) following major setbacks from the predatory sea-star Acanthaster planci in the early 1980s. A space for time approach was used in developing the benchmarks, made possible by the choice of three study reefs (Green Island, Feather Reef and Rib Reef), spread along 3 degrees of latitude (300 km) of the GBR. The sea-star outbreaks progressed north to south, causing death of corals that reached maximum levels in the years 1980 (Green), 1982 (Feather) and 1984 (Rib). The reefs were initially surveyed in 1989, 1990, 1993 and 1994, which represent recovery years 5-14 in the space for time protocol. Benchmark trajectories for coral abundance, colony sizes, coral cover and diversity were plotted against nominal recovery time (years 5-14) and defined as non-linear functions. A single survey of the same three reefs was conducted in 2003, when the reefs were nominally 1, 3 and 5 years into a second recovery period, following further Acanthaster impacts and coincident coral bleaching events around the turn of the century. The 2003 coral cover was marginally above the benchmark trajectory, but colony density (colonies.m-2) was an order of magnitude lower than the benchmark, and size structure was biased toward larger colonies that survived the turn of the century disturbances. The under-representation of small size classes in 2003 suggests that mass recruitment of corals had been suppressed, reflecting low regional coral abundance and depression of coral fecundity by recent bleaching events. The marginally higher cover and large colonies of 2003 were thus indicative of a depleted and aging assemblage not yet rejuvenated by a strong cohort of recruits.

  16. The role of competition in the phase shift to dominance of the zoanthid Palythoa cf. variabilis on coral reefs.

    PubMed

    Cruz, Igor Cristino Silva; Meira, Verena Henschen; de Kikuchi, Ruy Kenji Papa; Creed, Joel Christopher

    2016-04-01

    Phase shift phenomena are becoming increasingly common. However, they are also opportunities to better understand how communities are structured. In Southwest Atlantic coral reefs, a shift to the zoanthid Palythoa cf. variabilis dominance has been described. To test if competition drove this process, we carried out a manipulative experiment with three coral species. To estimate the natural frequency of encounters we assess the relationship between the proportion of encounters and this zoanthids coverage. The contact causes necrosis in 78% of coral colonies (6.47 ± SD 7.92 cm(2)) in 118 days. We found a logarithmic relationship between the proportion of these encounters and the cover of P. cf. variabilis, where 5.5% coverage of this zoanthid is enough to put 50% of coral colonies in contact, increasing their partial mortality. We demonstrate that zoanthid coverage increase followed by coral mortality increase will reduce coral cover and that competition drives the phase shift process.

  17. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Carroll, A.; Harrison, P.; Adjeroud, M.

    2006-03-01

    Little information is available on reproductive processes among corals in isolated central Pacific reef regions, including French Polynesia. This study examined the timing and mode of sexual reproduction for Acropora reef corals at Moorea. Spawning was observed and/or inferred in 110 Acropora colonies, representing 12 species, following full moon periods in September through November 2002. Gamete release was observed and inferred in four species of Acropora between 9 and 13 nights after the full moon (nAFM) in September 2002. Twelve Acropora spp. spawned gametes between 5 and 10 nAFM in October 2002, with six species spawning 7 nAFM and four species spawning 9 nAFM. In November 2002, spawning of egg and sperm bundles was observed and inferred in 27 colonies of Acropora austera, 6 nAFM. These are the first detailed records of spawning by Acropora corals in French Polynesia.

  18. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.

    2009-09-01

    With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species ( Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely <<10%). No deleterious effects of predation on coral growth or fecundity have been reported, though recovery of zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices

  19. Closing the circle: is it feasible to rehabilitate reefs with sexually propagated corals?

    NASA Astrophysics Data System (ADS)

    Guest, J. R.; Baria, M. V.; Gomez, E. D.; Heyward, A. J.; Edwards, A. J.

    2014-03-01

    Sexual propagation of corals specifically for reef rehabilitation remains largely experimental. In this study, we refined low technology culture and transplantation approaches and assessed the role of colony size and age, at time of transfer from nursery to reef, on subsequent survival. Larvae from Acropora millepora were reared from gametes and settled on engineered substrates, called coral plug-ins, that were designed to simplify transplantation to areas of degraded reef. Plug-ins, with laboratory spawned and settled coral recruits attached, were maintained in nurseries until they were at least 7 months old before being transplanted to replicate coral limestone outcrops within a marine protected area until they were 31 months old. Survival rates of transplanted corals that remained at the protected in situ nursery the longest were 3.9-5.6 times higher than corals transplanted to the reef earlier, demonstrating that an intermediate ocean nursery stage is critical in the sexual propagation of corals for reef rehabilitation. 3 years post-settlement, colonies were reproductively mature, making this one of few published studies to date to rear a broadcasting scleractinian from eggs to spawning adults. While our data show that it is technically feasible to transplant sexually propagated corals and rear them until maturity, producing a single 2.5-year-old coral on the reef cost at least US60. `What if' scenarios indicate that the cost per transplantable coral could be reduced by almost 80 %, nevertheless, it is likely that the high cost per coral using sexual propagation methods would constrain delivery of new corals to relatively small scales in many countries with coral reefs.

  20. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    PubMed

    Li, Jie; Chen, Qi; Zhang, Si; Huang, Hui; Yang, Jian; Tian, Xin-Peng; Long, Li-Juan

    2013-01-01

    Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  1. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    PubMed

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  2. Conspecific aggregations mitigate the effects of ocean acidification on calcification of the coral Pocillopora verrucosa.

    PubMed

    Evensen, Nicolas R; Edmunds, Peter J

    2017-03-15

    In densely populated communities, such as coral reefs, organisms can modify the physical and chemical environment for neighbouring individuals. We tested the hypothesis that colony density (12 colonies each placed ∼0.5 cm apart versus ∼8 cm apart) can modulate the physiological response (measured through rates of calcification, photosynthesis and respiration in the light and dark) of the coral Pocillopora verrucosa to partial pressure of CO2 (PCO2 ) treatments (∼400 μatm and ∼1200 μatm) by altering the seawater flow regimes experienced by colonies placed in aggregations within a flume at a single flow speed. While light calcification decreased 20% under elevated versus ambient PCO2  for colonies in low-density aggregations, light calcification of high-density aggregations increased 23% at elevated versus ambient PCO2 As a result, densely aggregated corals maintained calcification rates over 24 h that were comparable to those maintained under ambient PCO2 , despite a 45% decrease in dark calcification at elevated versus ambient PCO2 Additionally, densely aggregated corals experienced reduced flow speeds and higher seawater retention times between colonies owing to the formation of eddies. These results support recent indications that neighbouring organisms, such as the conspecific coral colonies in the present example, can create small-scale refugia from the negative effects of ocean acidification.

  3. Among-species variation in the energy budgets of reef-building corals: scaling from coral polyps to communities.

    PubMed

    Hoogenboom, Mia; Rottier, Cécile; Sikorski, Severine; Ferrier-Pagès, Christine

    2015-12-01

    The symbiosis between corals and dinoflagellates promotes the rapid growth of corals in shallow tropical oceans, and the high overall productivity of coral reefs. The aim of this study was to quantify and understand variation in carbon acquisition and allocation among coral species. We measured multiple physiological traits (including symbiont density, calcification, photosynthesis and tissue composition) for the same coral fragments to facilitate direct comparisons between species (Stylophora pistillata, Pocillopora damicornis, Galaxea fascicularis, Turbinaria reniformis and Acropora sp.). Tissue protein content was highly sensitive to the availability of particulate food, increasing in fed colonies of all species. Despite among-species variation in physiology, and consistent effects of feeding on some traits, overall energy allocation to tissue compared with skeleton growth did not depend on food availability. Extrapolating from our results, estimated whole-assemblage carbon uptake varied >20-fold across different coral assemblages, but this variation was largely driven by differences in the tissue surface area of different colony morphologies, rather than by differences in surface-area-specific physiological rates. Our results caution against drawing conclusions about reef productivity based solely on physiological rates measured per unit tissue surface area. Understanding the causes and consequences of among-species variation in physiological energetics provides insight into the mechanisms that underlie the fluxes of organic matter within reefs, and between reefs and the open ocean.

  4. A demographic approach to monitoring the health of coral reefs.

    PubMed

    Smith, L D; Devlin, M; Haynes, D; Gilmour, J P

    2005-01-01

    Inshore coral reefs adjacent to the wet tropics in North Queensland, Australia, are regularly exposed to flood plumes from coastal river systems. Changes in the nature of these plumes have been linked to the declining health of coral reefs in the region. The effect of flood plumes on the health of inshore corals was investigated by quantifying aspects of the demography of populations of corymbose and digitate Acropora at three groups of Island reefs along a gradient of exposure and decreasing water quality (High Island >Frankland's >Fitzroy). The size-structures of colonies, the rates of sexual recruitment, and the growth and survival of juveniles, all varied among the Island reefs. Juvenile and adult sized colonies were far more abundant at the Fitzroy Island reefs, than at the High or Frankland Island reefs that were more exposed to flood plumes. Additionally, there were up to eight times as many sexual recruits at the Fitzroy Island reefs, compared with the High Island reefs. However, the rates of growth and survival of the juvenile sized corals at the Fitzroy Island reefs were lower than at the more exposed reefs. The comparatively low abundance of adult corals at the exposed reefs is most likely due to their histories of disturbance from crown-of-thorns and coral bleaching, but the lack of subsequent recovery due to their low levels of larval recruitment. If a stock-recruitment relationship is typical for these groups of reefs, then the low rates of recruitment may be linked to the low density of adult colonies. Alternately, direct or indirect effects of chronic exposure to poor water quality may have resulted in less suitable substrata for larval settlement. We discuss these results and provide examples of how information about population structure and dynamics can be used in simple matrix models to quantify the current and future health of populations of corals under various scenarios.

  5. Coscinaraea marshae corals that have survived prolonged bleaching exhibit signs of increased heterotrophic feeding

    NASA Astrophysics Data System (ADS)

    Bessell-Browne, Pia; Stat, Michael; Thomson, Damian; Clode, Peta L.

    2014-09-01

    Colonies of Coscinaraea marshae corals from Rottnest Island, Western Australia have survived for more than 11 months in various bleached states following a severe heating event in the austral summer of 2011. These colonies are situated in a high-latitude, mesophotic environment, which has made their long-term survival of particular interest as such environments typically suffer from minimal thermal pressures. We have investigated corals that remain unbleached, moderately bleached, or severely bleached to better understand potential survival mechanisms utilised in response to thermal stress. Specifically, Symbiodinium (algal symbiont) density and genotype, chlorophyll- a concentrations, and δ13C and δ15N levels were compared between colonies in the three bleaching categories. Severely bleached colonies housed significantly fewer Symbiodinium cells ( p < 0.05) and significantly reduced chlorophyll- a concentrations ( p < 0.05), compared with unbleached colonies. Novel Symbiodinium clade associations were observed for this coral in both severely and moderately bleached colonies, with clade C and a mixed clade population detected. In unbleached colonies, only clade B was observed. Levels of δ15N indicate that severely bleached colonies are utilising heterotrophic feeding mechanisms to aid survival whilst bleached. Collectively, these results suggest that these C. marshae colonies can survive with low symbiont and chlorophyll densities, in response to prolonged thermal stress and extended bleaching, and increase heterotrophic feeding levels sufficiently to meet energy demands, thus enabling some colonies to survive and recover over long time frames. This is significant as it suggests that corals in mesophotic and high-latitude environments may possess considerable plasticity and an ability to tolerate and adapt to large environmental fluctuations, thereby improving their chances of survival as climate change impacts coral ecosystems worldwide.

  6. Polyoxygenated steroids from the gorgonian Menella woodin with capabilities to modulate ROS levels in macrophages at response to LPS.

    PubMed

    Tu, Vu A; Lyakhova, Ekaterina G; Diep, Chau N; Kalinovsky, Anatoly I; Dmitrenok, Pavel S; Cuong, Nguyen X; Thanh, Nguyen V; Menchinskaya, Ekaterina S; Pislyagin, Evgeny A; Nam, Nguyen H; Kiem, Phan V; Stonik, Valentin A; Minh, Chau V

    2015-12-01

    Four new polyoxygenated sterol derivatives (1-4) along with the compounds (5-7) previously known from other biological sources were isolated from the gorgonian Menella woodin, collected from the Vietnamese waters. Structures of 1-4 were elucidated by the detailed NMR spectroscopic and mass-spectrometric analyses as well as comparison with those reported in literature data. Compounds 1, 4, and 6 decrease the production of reactive oxygen species (ROS) by the murine macrophages of RAW 264.7 line at induction by endotoxic lipopolysaccharide (LPS) from Escherichia coli.

  7. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico.

    PubMed

    White, Helen K; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M; Cordes, Erik E; Quattrini, Andrea M; Nelson, Robert K; Camilli, Richard; Demopoulos, Amanda W J; German, Christopher R; Brooks, James M; Roberts, Harry H; Shedd, William; Reddy, Christopher M; Fisher, Charles R

    2012-12-11

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals' ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  8. Assessing coral health and disease from digital photographs and in situ surveys.

    PubMed

    Page, C A; Field, S N; Pollock, F J; Lamb, J B; Shedrawi, G; Wilson, S K

    2017-01-01

    Methods for monitoring the status of marine communities are increasingly adopting the use of images captured in the field. However, it is not always clear how data collected from photographic images relate to historic data collected using traditional underwater visual census methods. Here, we compare coral health and disease data collected in situ by scuba divers with photographic images collected simultaneously at 12 coral reef sites. Five globally relevant coral diseases were detected on 194 colonies from in situ surveys and 79 colonies from photos, whilst 698 colonies from in situ surveys and 535 colonies from photos exhibited signs of compromised health other than disease. Comparisons of in situ surveys with photographic analyses indicated that the number of disease cases occurring in the examined coral populations (prevalence) was six times higher (4.5 vs. 0.8% of colonies), whilst compromised health was three times higher (14 vs. 4% of colonies) from in situ surveys. Skeletal eroding band disease, sponge overgrowth and presence of Waminoa flatworms were not detected in photographs, though they were identified in situ. Estimates of black band disease and abnormally pigmented coral tissues were similar between the two methods. Estimates of the bleached and healthy colonies were also similar between methods and photographic analyses were a strong predictor of bleached (r (2) = 0.8) and healthy (r (2) = 0.5) colony prevalence from in situ surveys. Moreover, when data on disease and compromised health states resulting in white or pale coral colony appearance were pooled, the prevalence of 'white' colonies from in situ (14%) and photographic analyses (11%) were statistically similar. Our results indicate that information on coral disease and health collected by in situ surveys and photographic analyses are not directly comparable, with in situ surveys generally providing higher estimates of prevalence and greater ability to identify some diseases and

  9. Decadal comparison of a diminishing coral community: a study using demographics to advance inferences of community status

    PubMed Central

    Williams, Dana E.; Huntington, Brittany E.; Piniak, Gregory A.; Vermeij, Mark J.A.

    2016-01-01

    The most common coral monitoring methods estimate coral abundance as percent cover, either via in situ observations or derived from images. In recent years, growing interest and effort has focused on colony-based (demographic) data to assess the status of coral populations and communities. In this study, we relied on two separate data sets (photo-derived percent cover estimates, 2002–12, and opportunistic in situ demographic sampling, 2004 and 2012) to more fully infer decadal changes in coral communities at a small, uninhabited Caribbean island. Photo-derived percent cover documented drastic declines in coral abundance including disproportionate declines in Orbicella spp. While overall in situ estimates of total coral density were not different between years, densities of several rarer taxa were. Meandrina meandrites and Stephanocoenia intersepta increased while Leptoseris cucullata decreased significantly, changes that were not discernable from the photo-derived cover estimates. Demographic data also showed significant shifts to larger colony sizes (both increased mean colony sizes and increased negative skewness of size frequency distributions, but similar maximum colony sizes) for most taxa likely indicating reduced recruitment. Orbicella spp. differed from this general pattern, significantly shifting to smaller colony sizes due to partial mortality. Both approaches detected significant decadal changes in coral community structure at Navassa, though the demographic sampling provided better resolution of more subtle, taxon-specific changes. PMID:26835185

  10. From Parent to Gamete: Vertical Transmission of Symbiodinium (Dinophyceae) ITS2 Sequence Assemblages in the Reef Building Coral Montipora capitata

    PubMed Central

    Padilla-Gamiño, Jacqueline L.; Pochon, Xavier; Bird, Christopher; Concepcion, Gregory T.; Gates, Ruth D.

    2012-01-01

    Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring. PMID:22701642

  11. From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata.

    PubMed

    Padilla-Gamiño, Jacqueline L; Pochon, Xavier; Bird, Christopher; Concepcion, Gregory T; Gates, Ruth D

    2012-01-01

    Parental effects are ubiquitous in nature and in many organisms play a particularly critical role in the transfer of symbionts across generations; however, their influence and relative importance in the marine environment has rarely been considered. Coral reefs are biologically diverse and productive marine ecosystems, whose success is framed by symbiosis between reef-building corals and unicellular dinoflagellates in the genus Symbiodinium. Many corals produce aposymbiotic larvae that are infected by Symbiodinium from the environment (horizontal transmission), which allows for the acquisition of new endosymbionts (different from their parents) each generation. In the remaining species, Symbiodinium are transmitted directly from parent to offspring via eggs (vertical transmission), a mechanism that perpetuates the relationship between some or all of the Symbiodinium diversity found in the parent through multiple generations. Here we examine vertical transmission in the Hawaiian coral Montipora capitata by comparing the Symbiodinium ITS2 sequence assemblages in parent colonies and the eggs they produce. Parental effects on sequence assemblages in eggs are explored in the context of the coral genotype, colony morphology, and the environment of parent colonies. Our results indicate that ITS2 sequence assemblages in eggs are generally similar to their parents, and patterns in parental assemblages are different, and reflect environmental conditions, but not colony morphology or coral genotype. We conclude that eggs released by parent colonies during mass spawning events are seeded with different ITS2 sequence assemblages, which encompass phylogenetic variability that may have profound implications for the development, settlement and survival of coral offspring.

  12. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    USGS Publications Warehouse

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  13. Diverse coral communities in mangrove habitats suggest a novel refuge from climate change

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-08-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business-as-usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality, and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove-shaded and exposed (unshaded) areas. Over 30 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies were living shaded by mangroves, and no shaded colonies were bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies were bleached. A combination of substrate and habitat heterogeneity, proximity of different habitat types, hydrographic

  14. Mangrove habitats provide refuge from climate change for reef-building corals

    NASA Astrophysics Data System (ADS)

    Yates, K. K.; Rogers, C. S.; Herlan, J. J.; Brooks, G. R.; Smiley, N. A.; Larson, R. A.

    2014-03-01

    Risk analyses indicate that more than 90% of the world's reefs will be threatened by climate change and local anthropogenic impacts by the year 2030 under "business as usual" climate scenarios. Increasing temperatures and solar radiation cause coral bleaching that has resulted in extensive coral mortality. Increasing carbon dioxide reduces seawater pH, slows coral growth, and may cause loss of reef structure. Management strategies include establishment of marine protected areas with environmental conditions that promote reef resiliency. However, few resilient reefs have been identified, and resiliency factors are poorly defined. Here we characterize the first natural, non-reef, coral refuge from thermal stress and ocean acidification and identify resiliency factors for mangrove-coral habitats. We measured diurnal and seasonal variations in temperature, salinity, photosynthetically active radiation (PAR), and seawater chemistry; characterized substrate parameters; and examined water circulation patterns in mangrove communities where scleractinian corals are growing attached to and under mangrove prop roots in Hurricane Hole, St. John, US Virgin Islands. Additionally, we inventoried the coral species and quantified incidences of coral bleaching, mortality and recovery for two major reef-building corals, Colpophyllia natans and Diploria labyrinthiformis, growing in mangrove shaded and exposed (unshaded) areas. At least 33 species of scleractinian corals were growing in association with mangroves. Corals were thriving in low-light (more than 70% attenuation of incident PAR) from mangrove shading and at higher temperatures than nearby reef tract corals. A higher percentage of C. natans colonies was living shaded by mangroves, and no shaded colonies bleached. Fewer D. labyrinthiformis colonies were shaded by mangroves, however more unshaded colonies bleached. A combination of substrate and habitat heterogeniety, proximity of different habitat types, hydrographic

  15. Coral Calcification Across a Natural Gradient in Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Cohen, A. L.; Brainard, R. E.; Young, C.; Shamberger, K. E.; McCorkle, D. C.; Feely, R. A.; Mcleod, E.; Cantin, N.; Rose, K.; Lohmann, G. P.

    2011-12-01

    Much of our understanding of the impact of ocean acidification on coral calcification comes from laboratory manipulation experiments in which corals are reared under a range of seawater pH and aragonite saturation states (μar) equivalent to those projected for the next hundred years. In general, experiments show a consistently negative impact of acidification on coral calcification, leading to predictions of mass coral reef extinctions by dissolution as natural rates of carbonate erosion exceed the rates at which corals and other reef calcifiers can replace it. The tropical oceans provide a natural laboratory within which to test hypotheses about the longer term impact and adaptive potential of corals to acidification of the reef environment. Here we report results of a study in which 3-D CT scan and imaging techniques were used to quantify annual rates of calcification by conspecifics at 12 reefs sites spanning a natural gradient in ocean acidification. In situ μar calculated from alkalinity and DIC measurements of reef seawater ranged from less than 2.7 on an eastern Pacific Reef to greater than 4.0 in the central Red Sea. No correlation between μar and calcification was observed across this range. Corals living on low μar reefs appear to be calcifying as fast, sometimes faster than conspecifics living on high μar reefs. We used total lipid and tissue thickness to index the energetic status of colonies collected at each of our study sites. Our results support the hypothesis that energetics plays a key role in the coral calcification response to ocean acidification. Indeed, the true impact of acidification on coral reefs will likely be felt as temperatures rise and the ocean becomes more stratified, depleting coral energetic reserves through bleaching and reduced nutrient delivery to oceanic reefs.

  16. Estimating the potential for adaptation of corals to climate warming.

    PubMed

    Császár, Nikolaus B M; Ralph, Peter J; Frankham, Richard; Berkelmans, Ray; van Oppen, Madeleine J H

    2010-03-18

    The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium) through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability) as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D) and one less tolerant symbiont type (Symbiodinium C2). In both symbiont types, pulse amplitude modulated (PAM) fluorometry and high performance liquid chromatography (HPLC) analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR) assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  17. The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems.

    PubMed

    Salcedo-Sanz, S; Del Ser, J; Landa-Torres, I; Gil-López, S; Portilla-Figueras, J A

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems.

  18. The Coral Reefs Optimization Algorithm: A Novel Metaheuristic for Efficiently Solving Optimization Problems

    PubMed Central

    Salcedo-Sanz, S.; Del Ser, J.; Landa-Torres, I.; Gil-López, S.; Portilla-Figueras, J. A.

    2014-01-01

    This paper presents a novel bioinspired algorithm to tackle complex optimization problems: the coral reefs optimization (CRO) algorithm. The CRO algorithm artificially simulates a coral reef, where different corals (namely, solutions to the optimization problem considered) grow and reproduce in coral colonies, fighting by choking out other corals for space in the reef. This fight for space, along with the specific characteristics of the corals' reproduction, produces a robust metaheuristic algorithm shown to be powerful for solving hard optimization problems. In this research the CRO algorithm is tested in several continuous and discrete benchmark problems, as well as in practical application scenarios (i.e., optimum mobile network deployment and off-shore wind farm design). The obtained results confirm the excellent performance of the proposed algorithm and open line of research for further application of the algorithm to real-world problems. PMID:25147860

  19. Age-Related Shifts in Bacterial Diversity in a Reef Coral

    PubMed Central

    Brown, Barbara E.; Putchim, Lalita

    2015-01-01

    This study investigated the relationship between microbial communities in differently sized colonies of the massive coral Coelastrea aspera at Phuket, Thailand where colony size could be used as a proxy for age. Results indicated significant differences between the bacterial diversity (ANOSIM, R = 0.76, p = 0.001) of differently sized colonies from the same intertidal reef habitat. Juvenile and small colonies (<6cm mean diam) harboured a lower bacterial richness than medium (~10cm mean diam) and large colonies (>28 cm mean diam). Bacterial diversity increased in a step-wise pattern from juvenilescolonies, which was then followed by a slight decrease in the two largest size classes. These changes appear to resemble a successional process which occurs over time, similar to that observed in the ageing human gut. Furthermore, the dominant bacterial ribotypes present in the tissues of medium and large sized colonies of C. aspera, (such as Halomicronema, an Oscillospira and an unidentified cyanobacterium) were also the dominant ribotypes found within the endolithic algal band of the coral skeleton; a result providing some support for the hypothesis that the endolithic algae of corals may directly influence the bacterial community present in coral tissues. PMID:26700869

  20. Age-Related Shifts in Bacterial Diversity in a Reef Coral.

    PubMed

    Williams, Alex D; Brown, Barbara E; Putchim, Lalita; Sweet, Michael J

    2015-01-01

    This study investigated the relationship between microbial communities in differently sized colonies of the massive coral Coelastrea aspera at Phuket, Thailand where colony size could be used as a proxy for age. Results indicated significant differences between the bacterial diversity (ANOSIM, R = 0.76, p = 0.001) of differently sized colonies from the same intertidal reef habitat. Juvenile and small colonies (< 6 cm mean diam) harboured a lower bacterial richness than medium (~ 10 cm mean diam) and large colonies (> 28 cm mean diam). Bacterial diversity increased in a step-wise pattern from juveniles < small < medium colonies, which was then followed by a slight decrease in the two largest size classes. These changes appear to resemble a successional process which occurs over time, similar to that observed in the ageing human gut. Furthermore, the dominant bacterial ribotypes present in the tissues of medium and large sized colonies of C. aspera, (such as Halomicronema, an Oscillospira and an unidentified cyanobacterium) were also the dominant ribotypes found within the endolithic algal band of the coral skeleton; a result providing some support for the hypothesis that the endolithic algae of corals may directly influence the bacterial community present in coral tissues.

  1. Status and conservation of coral reefs in Costa Rica.

    PubMed

    Cortés, Jorge; Jiménez, Carlos E; Fonseca, Ana C; Alvarado, Juan José

    2010-05-01

    Costa Rica has coral communities and reefs on the Caribbean coast and on the Pacific along the coast and off-shore islands. The Southern section of the Caribbean coast has fringing and patch reefs, carbonate banks, and an incipient algal ridge. The Pacific coast has coral communities, reefs and isolated coral colonies. Coral reefs have been seriously impacted in the last 30 years, mainly by sediments (Caribbean coast and some Pacific reefs) and by El Niño warming events (both coasts). Monitoring is being carried out at three sites on each coast. Both coasts suffered significant reductions in live coral cover in the 1980's, but coral cover is now increasing in most sites. The government of Costa Rica is aware of the importance of coral reefs and marine environments in general, and in recent years decrees have been implemented (or are in the process of approval) to protect them, but limited resources endanger their proper management and conservation, including proper outreach to reef users and the general public.

  2. Coral host transcriptomic states are correlated with Symbiodinium genotypes.

    PubMed

    DeSalvo, M K; Sunagawa, S; Fisher, P L; Voolstra, C R; Iglesias-Prieto, R; Medina, M

    2010-03-01

    A mutualistic relationship between reef-building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host-genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-Symbiodinium partnerships.

  3. The Amana Colonies.

    ERIC Educational Resources Information Center

    Lilja, Marilyn

    Designed for use in Iowa elementary schools, this unit introduces students to Iowa's Amana Colonies. Four lessons cover the history and cultural heritage of the colonies, daily life in historical times, daily life in modern times, and the colonies as a corporate museum. Throughout the lessons, emphasis is placed on the values and organization of…

  4. Monitoring the coral disease, plague type II, on coral reefs in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Miller, J.; Rogers, C.; Waara, R.

    2003-01-01

    In July 1997, conspicuous white patches of necrotic tissue and bare skeleton began to appear on scleractinian corals in several bays around St. John, US Virgin Islands. Analysis of diseased coral tissue from five different species confirmed the presence of a Sphingomonas-like bacterium, the pathogen for plague type II. To date, 14 species of hard corals have been affected by plague type II around St. John. This disease was monitored at Haulover and Tektite Reefs at depths of 7-12 meters. The study site at Tektite Reef has >50% cover by scleractinian corals with 90% of hard corals being composed of Montastraea annular is. Monthly surveys at Tektite Reef from December 1997 to May 2001 documented new incidence of disease (bare white patches of skeleton) every month with associated loss of living coral and 90.5% of all disease patches occurred on M. annularis. The frequency of disease within transects ranged from 3 to 58%, and the area of disease patches ranged from 0.25 to 9000 cm2. The average percent cover by the disease within 1 m2 ranged from 0.01% (?? 0.04 SD) to 1.74% (?? 9.08 SD). Photo-monitoring of 28 diseased corals of 9 species begun in September 1997 at Haulover Reef revealed no recovery of diseased portions with all necrotic tissue being overgrown rapidly by turf algae, usually within less than one month. Most coral colonies suffered partial mortality. Very limited recruitment (e.g., of Agaricia spp., Favia spp. and sponges) has been noted on the diseased areas. This coral disease has the potential to cause more loss of live coral on St. John reefs than any other stress to date because it targets the dominant reef building species, M. annularis.

  5. Vertical variations of coral reef drag forces

    NASA Astrophysics Data System (ADS)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri

    2016-05-01

    Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.

  6. Corals diseases are a major cause of coral death

    EPA Science Inventory

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  7. Molecular and Morphological Species Boundaries in the Gorgonian Octocoral Genus Pterogorgia (Octocorallia: Gorgoniidae).

    PubMed

    Wirshing, Herman H; Baker, Andrew C

    2015-01-01

    Most gorgonian octocoral species are described using diagnostic characteristics of their sclerites (microscopic skeletal components). Species in the genus Pterogorgia, however, are separated primarily by differences in their calyx and branch morphology. Specimens of a morphologically unusual Pterogorgia collected from Saba Bank in the NE Caribbean Sea were found with calyx morphology similar to P. citrina and branch morphology similar to P. guadalupensis. In order to test morphological species boundaries, and the validity of calyx and branch morphology as systematic characters, a phylogenetic analysis was undertaken utilizing partial gene fragments of three mitochondrial (mtMutS, cytochrome b, and igr4; 726bp total) and two nuclear (ITS2, 166bp; and SRP54 intron, 143bp) loci. The datasets for nuclear and mitochondrial loci contained few phylogenetically informative sites, and tree topologies did not resolve any of the morphological species as monophyletic groups. Instead, the mitochondrial loci and SRP54 each recovered two clades but were slightly incongruent, with a few individuals of P. guadalupensis represented in both clades with SRP54. A concatenated dataset of these loci grouped all P. anceps and P. guadalupensis in a clade, and P. citrina and the Pterogorgia sp. from Saba Bank in a sister clade, but with minimal variation/resolution within each clade. However, in common with other octocoral taxa, the limited genetic variation may not have been able to resolve whether branch variation represents intraspecific variation or separate species. Therefore, these results suggest that there are at least two phylogenetic lineages of Pterogorgia at the species level, and the atypical Pterogorgia sp. may represent an unusual morphotype of P. citrina, possibly endemic to Saba Bank. Branch morphology does not appear to be a reliable morphological character to differentiate Pterogorgia species (e.g., branches "flat" or "3-4 edges" in P. guadalupensis and P. anceps

  8. Studies on the minor constituents of the Caribbean gorgonian octocoral Briareum asbestinum Pallas. Isolation and structure determination of the eunicellin-based diterpenoids briarellins E--I.

    PubMed

    Rodríguez, A D; Cóbar, O M

    1995-11-01

    Five new eunicellin-type diterpenoids, briarellins E--I, along with several known diterpenoids of the asbestinane, briarane and eunicellane classes, were isolated from the Caribbean gorgonian octocoral Briareum asbestinum collected in Puerto Rico. The structures of these compounds were established on the basis of spectroscopic evidence.

  9. End to End Digitisation and Analysis of Three-Dimensional Coral Models, from Communities to Corallites

    PubMed Central

    Gutierrez-Heredia, Luis; Benzoni, Francesca; Murphy, Emma; Reynaud, Emmanuel G.

    2016-01-01

    Coral reefs hosts nearly 25% of all marine species and provide food sources for half a billion people worldwide while only a very small percentage have been surveyed. Advances in technology and processing along with affordable underwater cameras and Internet availability gives us the possibility to provide tools and softwares to survey entire coral reefs. Holistic ecological analyses of corals require not only the community view (10s to 100s of meters), but also the single colony analysis as well as corallite identification. As corals are three-dimensional, classical approaches to determine percent cover and structural complexity across spatial scales are inefficient, time-consuming and limited to experts. Here we propose an end-to-end approach to estimate these parameters using low-cost equipment (GoPro, Canon) and freeware (123D Catch, Meshmixer and Netfabb), allowing every community to participate in surveys and monitoring of their coral ecosystem. We demonstrate our approach on 9 species of underwater colonies in ranging size and morphology. 3D models of underwater colonies, fresh samples and bleached skeletons with high quality texture mapping and detailed topographic morphology were produced, and Surface Area and Volume measurements (parameters widely used for ecological and coral health studies) were calculated and analysed. Moreover, we integrated collected sample models with micro-photogrammetry models of individual corallites to aid identification and colony and polyp scale analysis. PMID:26901845

  10. Sedimentation on the cold-water coral Lophelia pertusa: cleaning efficiency from natural sediments and drill cuttings.

    PubMed

    Larsson, Ann I; Purser, Autun

    2011-06-01

    Anthropogenic threats to cold-water coral reefs are trawling and hydrocarbon drilling, with both activities causing increased levels of suspended particles. The efficiency of Lophelia pertusa in rejecting local sediments and drill cuttings from the coral surface was evaluated and found not to differ between sediment types. Further results showed that the coral efficiently removed deposited material even after repeated exposures, indicating an efficient cleaning mechanism. In an experiment focusing on burial, fine-fraction drill cuttings were deposited on corals over time. Drill cutting covered coral area increased with repeated depositions, with accumulation mainly occurring on and adjacent to regions of the coral skeleton lacking tissue cover. Tissue was smothered and polyp mortality occurred where polyps became wholly covered by material. Burial of coral by drill cuttings to the current threshold level used in environmental risk assessment models by the offshore industry (6.3mm) may result in damage to L. pertusa colonies.

  11. Baseline coral disease surveys within three marine parks in Sabah, Borneo

    PubMed Central

    Sweet, Michael J.; Wood, Elizabeth; Bythell, John

    2015-01-01

    Two of the most significant threats to coral reefs worldwide are bleaching and disease. However, there has been a scarcity of research on coral disease in South-East Asia, despite the high biodiversity and the strong dependence of local communities on the reefs in the region. This study provides baseline data on coral disease frequencies within three national parks in Sabah, Borneo, which exhibit different levels of human impacts and management histories. High mean coral cover (55%) and variable disease frequency (mean 0.25 diseased colonies m−2) were found across the three sites. Highest disease frequency (0.44 diseased colonies per m2) was seen at the site closest to coastal population centres. Bleaching and pigmentation responses were actually higher at Sipadan, the more remote, offshore site, whereas none of the other coral diseases detected in the other two parks were detected in Sipadan. Results of this study offer a baseline dataset of disease in these parks and indicate the need for continued monitoring, and suggest that coral colonies in parks under higher anthropogenic stressors and with lower coral cover may be more susceptible to contracting disease. PMID:26732905

  12. DMSP in Corals and Benthic Algae from the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Broadbent, A. D.; Jones, G. B.; Jones, R. J.

    2002-10-01

    In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae -1 in corals, 0·16 to 2·96 nmol DMSP cm -2 (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae -1 (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean=371 fmol DMSP zooxanthellae -1) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae -1) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 fmol zooxanthellae -1, whilst the non-bleaching colony contained DMSP at an average concentration of 171 fmol zooxanthellae -1. The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0·015 mmol m -2) and corals (mean=2·22 mmol m -2) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters.

  13. Baseline coral disease surveys within three marine parks in Sabah, Borneo.

    PubMed

    Miller, Jennifer; Sweet, Michael J; Wood, Elizabeth; Bythell, John

    2015-01-01

    Two of the most significant threats to coral reefs worldwide are bleaching and disease. However, there has been a scarcity of research on coral disease in South-East Asia, despite the high biodiversity and the strong dependence of local communities on the reefs in the region. This study provides baseline data on coral disease frequencies within three national parks in Sabah, Borneo, which exhibit different levels of human impacts and management histories. High mean coral cover (55%) and variable disease frequency (mean 0.25 diseased colonies m(-2)) were found across the three sites. Highest disease frequency (0.44 diseased colonies per m(2)) was seen at the site closest to coastal population centres. Bleaching and pigmentation responses were actually higher at Sipadan, the more remote, offshore site, whereas none of the other coral diseases detected in the other two parks were detected in Sipadan. Results of this study offer a baseline dataset of disease in these parks and indicate the need for continued monitoring, and suggest that coral colonies in parks under higher anthropogenic stressors and with lower coral cover may be more susceptible to contracting disease.

  14. Isolation And Partial Characterization Of Bacteria Activity Associated With Gorgonian Euplexaura sp. Against Methicillin-Resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Kristiana, R.; Ayuningrum, D.; Asagabaldan, M. A.; Nuryadi, H.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    Methicillin-resistant Staphylococcus aureus (MRSA) infection has emerged in around the world and has been resistance to ciprofloxacin, erythromycin, clindamycin. The aims of this study were to isolate, to investigate and to characterize bacterial symbionts gorgonian having activity against MRSA. Euplexaura sp. was collected from Panjang Island, Jepara, Indonesia by snorkling 2-5 m in depth. Bacterias were isolated by using spesific media with dilution method. Bacterias were conducted by using the streak method. Antibacterial activity was investigated by overlay method. The potent bacteria was identified by using molecular identification (DNA extraction, electrophoresis, PCR and phylogenetic analysis using 16S rDNA genes with actinobacteria-spesific primers) and bio-chemical test (among 5 isolated bacteria from gorgonian showed activity against MRSA). The strain PG-344 was the best candidat that has an inhibition zone against MRSA. The result of sequencing bacteria is 100% closely related with Virgibacillus salarius. This becomes a potential new bioactive compounds to against MRSA that can be a new drug discovery.

  15. Isotropic microscale mechanical properties of coral skeletons

    PubMed Central

    Pasquini, Luca; Molinari, Alan; Fantazzini, Paola; Dauphen, Yannicke; Cuif, Jean-Pierre; Levy, Oren; Dubinsky, Zvy; Caroselli, Erik; Prada, Fiorella; Goffredo, Stefano; Di Giosia, Matteo; Reggi, Michela; Falini, Giuseppe

    2015-01-01

    Scleractinian corals are a major source of biogenic calcium carbonate, yet the relationship between their skeletal microstructure and mechanical properties has been scarcely studied. In this work, the skeletons of two coral species: solitary Balanophyllia europaea and colonial Stylophora pistillata, were investigated by nanoindentation. The hardness HIT and Young's modulus EIT were determined from the analysis of several load–depth data on two perpendicular sections of the skeletons: longitudinal (parallel to the main growth axis) and transverse. Within the experimental and statistical uncertainty, the average values of the mechanical parameters are independent on the section's orientation. The hydration state of the skeletons did not affect the mechanical properties. The measured values, EIT in the 76–77 GPa range, and HIT in the 4.9–5.1 GPa range, are close to the ones expected for polycrystalline pure aragonite. Notably, a small difference in HIT is observed between the species. Different from corals, single-crystal aragonite and the nacreous layer of the seashell Atrina rigida exhibit clearly orientation-dependent mechanical properties. The homogeneous and isotropic mechanical behaviour of the coral skeletons at the microscale is correlated with the microstructure, observed by electron microscopy and atomic force microscopy, and with the X-ray diffraction patterns of the longitudinal and transverse sections. PMID:25977958

  16. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    NASA Astrophysics Data System (ADS)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages < 1,000 yrs) with associated temperature data. They include a total of 11 solitary corals and 1 colonial coral from the Atlantic, and 8 solitary corals from the Southern Ocean. The data indicate that coral clumped isotope systematics may be more complicated than previously thought. For example, for the genus Caryophyllia we observe significant variations in clumped isotope compositions for corals which grew at the same temperature with an apparent negative correlation between Δ47 and δ18O, different to patterns previously observed in Desmophyllum. These results indicate that existing isotope models of biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  17. Tectonic subsidence provides insight into possible coral reef futures under rapid sea-level rise

    NASA Astrophysics Data System (ADS)

    Saunders, Megan I.; Albert, Simon; Roelfsema, Chris M.; Leon, Javier X.; Woodroffe, Colin D.; Phinn, Stuart R.; Mumby, Peter J.

    2016-03-01

    Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less

  18. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage

    PubMed Central

    Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts. PMID:27069801

  19. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage.

    PubMed

    Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  20. How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations.

    PubMed

    Adam, Thomas C; Brooks, Andrew J; Holbrook, Sally J; Schmitt, Russell J; Washburn, Libe; Bernardi, Giacomo

    2014-09-01

    Global climate change is rapidly altering disturbance regimes in many ecosystems including coral reefs, yet the long-term impacts of these changes on ecosystem structure and function are difficult to predict. A major ecosystem service provided by coral reefs is the provisioning of physical habitat for other organisms, and consequently, many of the effects of climate change on coral reefs will be mediated by their impacts on habitat structure. Therefore, there is an urgent need to understand the independent and combined effects of coral mortality and loss of physical habitat on reef-associated biota. Here, we use a unique series of events affecting the coral reefs around the Pacific island of Moorea, French Polynesia to differentiate between the impacts of coral mortality and the degradation of physical habitat on the structure of reef fish communities. We found that, by removing large amounts of physical habitat, a tropical cyclone had larger impacts on reef fish communities than an outbreak of coral-eating sea stars that caused widespread coral mortality but left the physical structure intact. In addition, the impacts of declining structural complexity on reef fish assemblages accelerated as structure became increasingly rare. Structure provided by dead coral colonies can take up to decades to erode following coral mortality, and, consequently, our results suggest that predictions based on short-term studies are likely to grossly underestimate the long-term impacts of coral decline on reef fish communities.

  1. Hong Kong Corals: A Cautionary Tale

    NASA Astrophysics Data System (ADS)

    Goodkin, N.; Yang, T.; Yeung, R.; Bryan, S. P.; Hughen, K. A.

    2012-12-01

    High-resolution paleoclimate records are in demand as we increase the need for understanding and predicting sub-annual climate interactions. The geographical footprint of these records must also expand in order to improve spatially diverse reconstructions of climate systems including the Asian monsoon and el Nino among others. The south China coast within the South China Sea has been one location investigated for paleo-climate coral reconstructions, with a focus on the relatively pristine waters of Hai Nan Island. But, records are limited and are often confounded by Sr/Ca signals which differ from instrumental records of SST. In this study, we evaluate the slow-growing (~2-7mm/year on average) Porites corals of Hong Kong Island to investigate the reliability of the Sr/Ca proxy from a coastal environment. Sr/Ca-SST proxies are developed for 6 coral colonies, utilizing 10-years of monthly hydrographic data from more than 45 marine stations around Hong Kong. Seasonal resolution slopes range from -0.03 mmol/mol/°C to -0.06 mmol/mol/°C within the range of previously published slopes from the very slow-growing Diploria corals of the North Atlantic (Cardinal et al. 2000, Goodkin et al. 2005) as well as Porites corals with growth rates >1cm per year. While there is a trend for the absolute value of the slopes to increase with increasing average colony growth rate, no statistically significant growth relationship has been found. Hong Kong corals are known to grow slowly and annual extension-rates are strongly correlated to environmental conditions including spring-time chlorophyll a, temperature and turbidity as well as summer oxygen concentrations (Yang et al., in preparation). Evidence exists within the Sr/Ca record for significant growth hiatuses particularly during the coldest times of the year (late winter-early spring). Growth-hiatuses generally occur when the El Nino Southern Oscillation is inactive. Whereas an active El Nino or La Nina, tend to correspond to no

  2. Recovery of the coral Montastrea annularis in the Florida Keys after the 1987 Caribbean ``bleaching event''

    NASA Astrophysics Data System (ADS)

    Fitt, William K.; Spero, Howard J.; Halas, John; White, Michael W.; Porter, James W.

    1993-07-01

    Many reef-building corals and other cnidarians lost photosynthetic pigments and symbiotic algae (zooxanthellae) during the coral bleaching event in the Caribbean in 1987. The Florida Reef Tract included some of the first documented cases, with widespread bleaching of the massive coral Montastrea annularis beginning in late August. Phototransects at Carysfort Reef showed discoloration of >90% of colonies of this species in March 1988 compared to 0% in July 1986; however no mortality was observed between 1986 and 1988. Samples of corals collected in February and June 1988 had zooxanthellae densities ranging from 0.1 in the most lightly colored corals, to 1.6x106 cells/cm2 in the darker corals. Minimum densities increased to 0.5x106 cells/cm2 by August 1989. Chlorophyll- a content of zooxanthellae and zooxanthellar mitotic indices were significantly higher in corals with lower densities of zooxanthellae, suggesting that zooxanthellar at low densities may be more nutrientsufficient than those in unbleached corals. Ash-free dry weight of coral tissue was positively correlated with zooxanthellae density at all sample times and was significantly lower in June 1988 compared to August 1989. Proteins and lipids per cm2 were significantly higher in August 1989 than in February or June, 1988. Although recovery of zooxanthellae density and coral pigmentation to normal levels may occur in less than one year, regrowth of tissue biomass and energy stores lost during the period of low symbiont densities may take significantly longer.

  3. Biology and ecology of the hydrocoral millepora on coral reefs.

    PubMed

    Lewis, John B

    2006-01-01

    Millepores are colonial polypoidal hydrozoans secreting an internal calcareous skeleton of an encrusting or upright form, often of considerable size. Defensive polyps protruding from the skeleton are numerous and highly toxic and for this reason millepores are popularly known as "stinging corals" or "fire corals." In shallow tropical seas millepore colonies are conspicuous on coral reefs and may be locally abundant and important reef-framework builders. The history of systematic research on the Milleporidae and the sister family Stylasteridae is rich and full with the works of early naturalists beginning with Linnaeus. Seventeen living millepore species are recognised. Marked phenotypic variation in form and structure of colonies is characteristic of the genus Millepora. The first published descriptions of the anatomy and histology of millepores were by H. N. Moseley in one of the Challenger Expedition reports. These original, detailed accounts by Moseley remain valid and, except for recent descriptions of the ultrastructure of the skeleton and skeletogenic tissues, have not needed much modification. Millepores occur worldwide on coral reefs at depths of between 1 and 40 m and their distribution on reefs is generally zoned in response to physical factors. Colonies may be abundant locally on coral reefs but usually comprise <10% of the overall surface cover. Growth rates of colonies are similar to the measured rates of branching and platelike scleractinian corals. Millepores are voracious zooplankton feeders and they obtain part of their nutrition from autotrophic sources, photosynthetic production by symbiotic zooxanthellae. Reproduction in millepores is characterised by alternation of generations with a well-developed polypoid stage that buds off planktonic medusae. Sexual reproduction is seasonal for known species and the medusae have a brief planktonic life. Asexual production is achieved by sympodial growth, the production of new skeleton and soft tissue along

  4. Differential survival of coral transplants on various substrates under elevated water temperatures.

    PubMed

    Yap, Helen T

    2004-08-01

    Closely related scleractinian coral species that exhibited similar survival patterns under relatively normal field conditions responded very differently to the occurrence of an environmental disturbance. The two species studied were Porites cylindrica and Porites rus which occur in the same reef zones in shallow reef flats. Transplants of both species were evenly distributed and attached to three different types of substrate: live coral colonies of P. cylindrica, dead coral colonies (also of P. cylindrica), and epoxy coated metal grids that were raised above the sandy substrate. With the onset of above-normal water temperatures due to the El Niño episode of 1998, P. cylindrica transplants immediately showed signs of bleaching stress and tissue necrosis, followed by algal overgrowth and mortality soon afterwards. In contrast, transplants of P. rus bleached more slowly and suffered less mortality, with a few actually showing signs of recovery at the end of the experimental period which covered a total of 14 weeks. These differences in responses could be attributed to properties of the symbiotic zooxanthellae, of the host coral tissue itself, or both. Over-all, survival was good on the metal grids (average of 35%), and on the live coral (average of 22%). It was poor on the dead coral (average of 6%). The metal grids as well as live coral tissue apparently provided a favorable substrate for the attached coral fragments, even for those of a different species. Under the conditions of this particular study, attachment of live coral fragments on already dead colonies for the purpose of increasing live coral cover on the reef did not yield favorable results. This is an area that requires further investigation.

  5. Intraspecific diversity among partners drives functional variation in coral symbioses.

    PubMed

    Parkinson, John Everett; Banaszak, Anastazia T; Altman, Naomi S; LaJeunesse, Todd C; Baums, Iliana B

    2015-10-26

    The capacity of coral-dinoflagellate mutualisms to adapt to a changing climate relies in part on standing variation in host and symbiont populations, but rarely have the interactions between symbiotic partners been considered at the level of individuals. Here, we tested the importance of inter-individual variation with respect to the physiology of coral holobionts. We identified six genetically distinct Acropora palmata coral colonies that all shared the same isoclonal Symbiodinium 'fitti' dinoflagellate strain. No other Symbiodinium could be detected in host tissues. We exposed fragments of each colony to extreme cold and found that the stress-induced change in symbiont photochemical efficiency varied up to 3.6-fold depending on host genetic background. The S. 'fitti' strain was least stressed when associating with hosts that significantly altered the expression of 184 genes under cold shock; it was most stressed in hosts that only adjusted 14 genes. Key expression differences among hosts were related to redox signaling and iron availability pathways. Fine-scale interactions among unique host colonies and symbiont strains provide an underappreciated source of raw material for natural selection in coral symbioses.

  6. Intraspecific diversity among partners drives functional variation in coral symbioses

    PubMed Central

    Parkinson, John Everett; Banaszak, Anastazia T.; Altman, Naomi S.; LaJeunesse, Todd C.; Baums, Iliana B.

    2015-01-01

    The capacity of coral-dinoflagellate mutualisms to adapt to a changing climate relies in part on standing variation in host and symbiont populations, but rarely have the interactions between symbiotic partners been considered at the level of individuals. Here, we tested the importance of inter-individual variation with respect to the physiology of coral holobionts. We identified six genetically distinct Acropora palmata coral colonies that all shared the same isoclonal Symbiodinium ‘fitti’ dinoflagellate strain. No other Symbiodinium could be detected in host tissues. We exposed fragments of each colony to extreme cold and found that the stress-induced change in symbiont photochemical efficiency varied up to 3.6-fold depending on host genetic background. The S. ‘fitti’ strain was least stressed when associating with hosts that significantly altered the expression of 184 genes under cold shock; it was most stressed in hosts that only adjusted 14 genes. Key expression differences among hosts were related to redox signaling and iron availability pathways. Fine-scale interactions among unique host colonies and symbiont strains provide an underappreciated source of raw material for natural selection in coral symbioses. PMID:26497873

  7. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology

    USGS Publications Warehouse

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Zawada, David G.; Andersen, Gary L.

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease.

  8. Corals fail to recover at a Caribbean marine reserve despite ten years of reserve designation

    NASA Astrophysics Data System (ADS)

    Huntington, B. E.; Karnauskas, M.; Lirman, D.

    2011-12-01

    The ability of reserves to replenish fish stocks is relatively well documented, but the evidence of their ability to induce positive effects on benthic communities remains inconclusive. Here, we test whether 10 years of reserve designation have translated into positive effects on coral communities in Glover's Reef, Belize. Surveys of 87 patch reefs inside and outside the reserve revealed no clear indication of reserve implementation benefitting coral cover, coral colony size, or abundance of juvenile corals. Furthermore, massive broadcasting coral species exhibited greater losses over time than their smaller-sized counterparts across all sites, suggesting that local management actions have not alleviated the regional trend of high mortality for these species. We detected no difference in herbivorous fish abundances or macroalgal cover between reserve and fished sites, providing a potential explanation for the lack of cascading positive effects on the coral community. We conclude that patterns of regional coral decline are evident at Glover's Reef, including a shift in dominance from broadcasting species to brooding species and declines in mean colony size. Our findings suggest that regional stressors are overwhelming local management efforts and that additional strategies are required to improve local coral condition.

  9. Coral reproduction in the world's warmest reefs: southern Persian Gulf (Dubai, United Arab Emirates)

    NASA Astrophysics Data System (ADS)

    Bauman, A. G.; Baird, A. H.; Cavalcante, G. H.

    2011-06-01

    Despite extensive research on coral reproduction from numerous geographic locations, there remains limited knowledge within the Persian Gulf. Given that corals in the Persian Gulf exist in one of the most stressful environments for reef corals, with annual variations in sea surface temperature (SST) of 12°C and maximum summer mean SSTs of 36°C, understanding coral reproductive biology in the Gulf may provide clues as to how corals may cope with global warming. In this study, we examined six locally common coral species on two shallow reef sites in Dubai, United Arab Emirates (UAE), in 2008 and 2009 to investigate the patterns of reproduction, in particular the timing and synchrony of spawning. In total, 71% colonies in April 2008 and 63% colonies in April 2009 contained mature oocytes. However, the presence of mature gametes in May indicated that spawning was potentially split between April and May in all species. These results demonstrate that coral reproduction patterns within this region are highly seasonal and that multi-species spawning synchrony is highly probable. Acropora downingi, Cyphastrea microphthalma and Platygyra daedalea were all hermaphroditic broadcast spawners with a single annual gametogenic cycle. Furthermore, fecundity and mature oocyte sizes were comparable to those in other regions. We conclude that the reproductive biology of corals in the southern Persian Gulf is similar to other regions, indicating that these species have adapted to the extreme environmental conditions in the southern Persian Gulf.

  10. Life in the colonies: learning the alien ways of colonial organisms.

    PubMed

    Winston, Judith E

    2010-12-01

    Who needs to go to outer space to study alien beings when the oceans of our own planet abound with bizarre and unknown creatures? Many of them belong to sessile clonal and colonial groups, including sponges, hydroids, corals, octocorals, ascidians, bryozoans, and some polychaetes. Their life histories, in many ways unlike our own, are a challenge for biologists. Studying their ecology, behavior, and taxonomy means trying to “think like a colony” to understand the factors important in their lives. Until the 1980s, most marine ecologists ignored these difficult modular organisms. Plant ecologists showed them ways to deal with the two levels of asexually produced modules and genetic individuals, leading to a surge in research on the ecology of clonal and colonial marine invertebrates. Bryozoans make excellent model colonial animals. Their life histories range from ephemeral to perennial. Aspects of their lives such as growth, reproduction, partial mortality due to predation or fouling, and the behavior of both autozooids and polymorphs can be studied at the level of the colony, as well as that of the individual module, in living colonies and over time.

  11. Implications of coral harvest and transplantation on reefs in northwestern Dominica.

    PubMed

    Bruckner, Andrew W; Borneman, Eric H

    2010-10-01

    In June, 2002, the government of Dominica requested assistance in evaluating the coral culture and transplantation activities being undertaken by Oceanographic Institute of Dominica (OID), a coral farm culturing both western Atlantic and Indo-Pacific corals for restoration and commercial sales. We assessed the culture facilities of OID, the condition of reefs, potential impacts of coral collection and benefits of coral transplantation. Coral reefs (9 reefs, 3-20 m depth) were characterized by 35 species of scleractinian corals and a live coral cover of 8-35%. Early colonizing, brooders such as Porites astreoides (14.8% of all corals), P. porites (14.8%), Meandrina meandrites (14.7%) and Agaricia agaricites (9.1%) were the most abundant corals, but colonies were mostly small (mean = 25 cm diameter). Montastraea annularis (complex) was the other dominant taxa (20.8% of all corals) and colonies were larger (mean = 70 cm). Corals (pooled species) were missing an average of 20% of their tissue, with a mean of 1.4% recent mortality. Coral diseases affected 6.4% of all colonies, with the highest prevalence at Cabrits West (11.0%), Douglas Bay (12.2%) and Coconut Outer reef (20.7%). White plague and yellow band disease were causing the greatest loss of tissue, especially among M. annularis (complex), with localized impacts from corallivores, overgrowth by macroalgae, storm damage and sedimentation. While the reefs appeared to be undergoing substantial decline, restoration efforts by OlD were unlikely to promote recovery. No Pacific species were identified at OID restoration sites, yet species chosen for transplantation with highest survival included short-lived brooders (Agaricia and Porites) that were abundant in restoration sites, as well as non-reef builders (Palythoa and Erythropodium) that monopolize substrates and overgrow corals. The species of highest value for restoration (massive broadcast spawners) showed low survivorship and unrestored populations of these

  12. Corals as climate recorders

    USGS Publications Warehouse

    Flannery, Jennifer A.; Poore, Richard Z.

    2010-01-01

    The U.S. Geological Survey (USGS) Coral Reef Ecosystem Studies (CREST) Project is analyzing corals from various sites in the Caribbean region, Dry Tortugas National Park, Biscayne National Park, other areas of the Florida Keys, and the Virgin Islands. The objective of this project is to develop records of past environmental change to better our understanding of climate variability. The records are being used to document changes over the last few centuries and to determine how corals and coral reefs have responded to any changes.

  13. Changes in coral-associated microbial communities during a bleaching event.

    PubMed

    Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn

    2008-04-01

    Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were

  14. Impact of the Deepwater Horizon oil spill on a deep-water coral community in the Gulf of Mexico

    USGS Publications Warehouse

    White, Helen K.; Hsing, Pen-Yuan; Cho, Walter; Shank, Timothy M.; Cordes, Erik E.; Quattrini, Andrea M.; Nelson, Robert K.; Camilli, Richard; Demopoulos, Amanda W.J.; German, Christopher R.; Brooks, James M.; Roberts, Harry H.; Shedd, William; Reddy, Christopher M.; Fisher, Charles R.

    2012-01-01

    To assess the potential impact of the Deepwater Horizon oil spill on offshore ecosystems, 11 sites hosting deep-water coral communities were examined 3 to 4 mo after the well was capped. Healthy coral communities were observed at all sites >20 km from the Macondo well, including seven sites previously visited in September 2009, where the corals and communities appeared unchanged. However, at one site 11 km southwest of the Macondo well, coral colonies presented widespread signs of stress, including varying degrees of tissue loss, sclerite enlargement, excess mucous production, bleached commensal ophiuroids, and covering by brown flocculent material (floc). On the basis of these criteria the level of impact to individual colonies was ranked from 0 (least impact) to 4 (greatest impact). Of the 43 corals imaged at that site, 46% exhibited evidence of impact on more than half of the colony, whereas nearly a quarter of all of the corals showed impact to >90% of the colony. Additionally, 53% of these corals’ ophiuroid associates displayed abnormal color and/or attachment posture. Analysis of hopanoid petroleum biomarkers isolated from the floc provides strong evidence that this material contained oil from the Macondo well. The presence of recently damaged and deceased corals beneath the path of a previously documented plume emanating from the Macondo well provides compelling evidence that the oil impacted deep-water ecosystems. Our findings underscore the unprecedented nature of the spill in terms of its magnitude, release at depth, and impact to deep-water ecosystems.

  15. Biannual Spawning and Temporal Reproductive Isolation in Acropora Corals

    PubMed Central

    Gilmour, James P.; Underwood, Jim N.; Howells, Emily J.; Gates, Emily; Heyward, Andrew J.

    2016-01-01

    Coral spawning on the oceanic reef systems of north-western Australia was recently discovered during autumn and spring, but the degree to which species and particularly colonies participated in one or both of these spawnings was unknown. At the largest of the oceanic reef systems, the participation by colonies in the two discrete spawning events was investigated over three years in 13 species of Acropora corals (n = 1,855 colonies). Seven species spawned during both seasons; five only in autumn and one only in spring. The majority of tagged colonies (n = 218) spawned once a year in the same season, but five colonies from three species spawned during spring and autumn during a single year. Reproductive seasonality was not influenced by spatial variation in habitat conditions, or by Symbiodinium partners in the biannual spawner Acropora tenuis. Colonies of A. tenuis spawning during different seasons separated into two distinct yet cryptic groups, in a bayesian clustering analysis based on multiple microsatellite markers. These groups were associated with a major genetic divergence (G”ST = 0.469), despite evidence of mixed ancestry in a small proportion of individuals. Our results confirm that temporal reproductive isolation is a common feature of Acropora populations at Scott Reef and indicate that spawning season is a genetically determined trait in at least A. tenuis. This reproductive isolation may be punctuated occasionally by interbreeding between genetic groups following favourable environmental conditions, when autumn spawners undergo a second annual gametogenic cycle and spawn during spring. PMID:26963249

  16. U.S. coral reefs; imperiled national treasures

    USGS Publications Warehouse

    Field, M.E.; Cochran, S.A.; Evans, K.R.

    2002-01-01

    Coral reefs are home to 25% of all marine species. However, the tiny colonial animals that build these intricate limestone masses are dying at alarming rates. If this trend continues, in 20 years the living corals on many of the world's reefs will be dead and the ecosystems that depend on them severely damaged. As part of the effort to protect our Nation's extensive reefs, U.S. Geological Survey (USGS) scientists are working to better understand the processes that affect the health of these ecologically and economically important ecosystems.

  17. Long-term monitoring of reef corals at the Flower Garden Banks (northwest Gulf of Mexico): Reef coral population changes and historical incorporation of barium in Montastrea annularis

    SciTech Connect

    Deslarzes, K.J.P.

    1992-01-01

    Reef coral populations were monitored from 1988 to 1991 at the Flower Garden Banks located in the northwestern Gulf of Mexico. The status of reef coral populations, and natural or man-made factors potentially affecting their well-being were determined. Man-made chronic disturbances are degrading coral reef resources on a global scale. Yet, the Flower Garden coral reefs seem to have been sheltered from the effects of regional stresses generated by population growth and increased industrial activity. Since 1974, reef coral population levels have remained unchanged in the Montastrea-Diploria Zones at the Flower Garden Banks. Live coral cover ranges between 46 and 46.5%. Montastrea annularis and Diploria strigosa comprise 80% of the coral cover on either bank. The remainder of the cover is mostly shared by eight other taxa. Coral taxa appear to be more homogeneously distributed on the West Bank. The relatively greater number of Agaricia spp., Madracis decastis, and P. astreoides colonies on the East Bank may be the source of a decreased evenness. The health of reef corals was assessed using repetitive and non-repetitive photographic methods, and accretionary growth measurements of M. annularis. Reef corals have undergone small scale changes at the Flower Gardens probably reflecting natural disturbance, predation, disease, and inter-specific competition. White mat disease (ridge disease) is shown to generate more tissue loss than any of the three bleaching events that took place at the Flower Gardens (1989, 1990, and 1991). Advance to retreat linear ratios of encrusting growth revealed a net tissue gain on the East Bank and a net tissue loss on the West Bank. Growth rates of M. annularis were highly variable. The annual barium content from 1910 in 1989 in a M. annularis colony from the West Flower Garden did not reveal trends associated with the extensive oil and gas exploration in the northern Gulf of Mexico.

  18. The effects of prolonged ``bleaching'' on the tissue biomass and reproduction of the reef coral Montastrea annularis

    NASA Astrophysics Data System (ADS)

    Szmant, A. M.; Gassman, N. J.

    1990-04-01

    Colonies of Montastrea annularis from Carysfort Reef, Florida, that remained bleached seven months after the 1987 Caribbean bleaching event were studied to determine the long term effects of bleaching on coral physiology. Two types of bleached colonies were found: colonies with low numbers of zooxanthellae with normal pigment content, and a colony with high densities of lowpigment zooxanthellae. In both types, the zooxanthellae had an abnormal distribution within polyp tissues: highest densities were observed in basal endoderm and in mesenteries where zooxanthellae are not normally found. Bleached corals had 30% less tissue carbon and 44% less tissue nitrogen biomass per skeletal surface area, but the same tissue C:N ratio as other colonies that either did not bleach (normal) or that bleached and regained their zooxanthellae (recovered). Bleached corals were not able to complete gametogenesis during the reproductive season following the bleaching, while recovered corals were able to follow a normal gametogenic cycle. It appears that bleached corals were able to survive the prolonged period without nutritional contribution from their zooxanthellae by consuming their own structural materials for maintenance, but then, did not have the resources necessary for reproduction. The recovered corals, on the other hand, must have regained their zooxanthellae soon after the bleaching event since neither their tissue biomass nor their ability to reproduce were impaired.

  19. Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice

    PubMed Central

    Cau, Alessandro; Bramanti, Lorenzo; Cannas, Rita; Follesa, Maria Cristina; Angiolillo, Michela; Canese, Simonepietro; Bo, Marzia; Cuccu, Danila; Guizien, Katell

    2016-01-01

    The Mediterranean red coral, Corallium rubrum, is one of the most precious corals worldwide. Below 50 m depth, C. rubrum populations are generally characterised by large and sparse colonies, whereas shallow populations (above 50 m depth) show high densities of small colonies. We show here instead that populations dwelling between 80 and 170 m depth exhibited a continuous range of population density (from 2 to 75 colonies per 0.25 m2), with less than 1% of variance explained by water depth. An inverse relationship between maximum population density and mean colony height was found, suggesting that self-thinning processes may shape population structure. Moreover, demographically young populations composed of small and dense colonies dominated along rocky vertical walls, whereas mature populations characterised by large and sparsely distributed colonies were found only in horizontal beds not covered by sediment. We hypothesise that, in the long term, shallow protected populations should resemble to present deep populations, with sparsely distributed large colonies. Since the density of red coral colonies can decay as a result of self-thinning mechanisms, we advise that future protection strategies should be based also on a measure of red coral spatial coverage instead of population density. PMID:26988757

  20. Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice.

    PubMed

    Cau, Alessandro; Bramanti, Lorenzo; Cannas, Rita; Follesa, Maria Cristina; Angiolillo, Michela; Canese, Simonepietro; Bo, Marzia; Cuccu, Danila; Guizien, Katell

    2016-03-18

    The Mediterranean red coral, Corallium rubrum, is one of the most precious corals worldwide. Below 50 m depth, C. rubrum populations are generally characterised by large and sparse colonies, whereas shallow populations (above 50 m depth) show high densities of small colonies. We show here instead that populations dwelling between 80 and 170 m depth exhibited a continuous range of population density (from 2 to 75 colonies per 0.25 m(2)), with less than 1% of variance explained by water depth. An inverse relationship between maximum population density and mean colony height was found, suggesting that self-thinning processes may shape population structure. Moreover, demographically young populations composed of small and dense colonies dominated along rocky vertical walls, whereas mature populations characterised by large and sparsely distributed colonies were found only in horizontal beds not covered by sediment. We hypothesise that, in the long term, shallow protected populations should resemble to present deep populations, with sparsely distributed large colonies. Since the density of red coral colonies can decay as a result of self-thinning mechanisms, we advise that future protection strategies should be based also on a measure of red coral spatial coverage instead of population density.

  1. Habitat constraints and self-thinning shape Mediterranean red coral deep population structure: implications for conservation practice

    NASA Astrophysics Data System (ADS)

    Cau, Alessandro; Bramanti, Lorenzo; Cannas, Rita; Follesa, Maria Cristina; Angiolillo, Michela; Canese, Simonepietro; Bo, Marzia; Cuccu, Danila; Guizien, Katell

    2016-03-01

    The Mediterranean red coral, Corallium rubrum, is one of the most precious corals worldwide. Below 50 m depth, C. rubrum populations are generally characterised by large and sparse colonies, whereas shallow populations (above 50 m depth) show high densities of small colonies. We show here instead that populations dwelling between 80 and 170 m depth exhibited a continuous range of population density (from 2 to 75 colonies per 0.25 m2), with less than 1% of variance explained by water depth. An inverse relationship between maximum population density and mean colony height was found, suggesting that self-thinning processes may shape population structure. Moreover, demographically young populations composed of small and dense colonies dominated along rocky vertical walls, whereas mature populations characterised by large and sparsely distributed colonies were found only in horizontal beds not covered by sediment. We hypothesise that, in the long term, shallow protected populations should resemble to present deep populations, with sparsely distributed large colonies. Since the density of red coral colonies can decay as a result of self-thinning mechanisms, we advise that future protection strategies should be based also on a measure of red coral spatial coverage instead of population density.

  2. Prevalence of skeletal tissue growth anomalies in a scleractinian coral: Turbinaria mesenterina of Malvan Marine Sanctuary, eastern Arabian Sea.

    PubMed

    Hussain, Afreen; De, Kalyan; Thomas, Liju; Nagesh, Rahul; Mote, Sambhaji; Ingole, Baban

    2016-08-31

    Skeletal tissue growth anomalies (STAs) of corals are capable of causing considerable degradation of reef health. This study is the first report of growth anomalies in Turbinaria corals and the first descriptive study of Indian corals. T. mesenterina colonies at 2 sites were affected by small, round to irregularly shaped growth anomalies. Prevalence of STAs was observed to be higher in T. mesenterina colonies with larger diameters. Prevalence of STAs on T. mesenterina was 71% at Site 1 and 40% at Site 2. Affected colonies were seen to be undergoing tissue damage and infiltration by filamentous algae. We describe the gross morphology of growth anomalies which can act as baseline data for growth anomalies from this region, but further investigation is needed to understand the form and etiology of this coral disease.

  3. Does use of tropical beaches by tourists and island residents result in damage to fringing coral reefs? A case study in Moorea French Polynesia.

    PubMed

    Juhasz, Allison; Ho, Ellen; Bender, Erika; Fong, Peggy

    2010-12-01

    Although coral reefs worldwide are subject to increasing global threats, humans also impact coral reefs directly through localized activities such as snorkeling, kayaking and fishing. We investigated five sites on the northern shore of Moorea, French Polynesia, and quantified the number of visitors on the beach and in shallow water. In field surveys, we measured total coral cover and colony sizes of two common genera, Porites and Acropora, a massive and branching morphology, respectively. One site, which hosted over an order of magnitude more people than the other four, had significantly less total coral cover and supported very little branching Acropora. In addition, size frequency distributions of both the branching and massive genera were skewed toward smaller colony sizes at the high use site. Our results demonstrated that the use of tropical beaches may result in less coral cover, with branching colonies rare and small.

  4. The dynamics of architectural complexity on coral reefs under climate change.

    PubMed

    Bozec, Yves-Marie; Alvarez-Filip, Lorenzo; Mumby, Peter J

    2015-01-01

    One striking feature of coral reef ecosystems is the complex benthic architecture which supports diverse and abundant fauna, particularly of reef fish. Reef-building corals are in decline worldwide, with a corresponding loss of live coral cover resulting in a loss of architectural complexity. Understanding the dynamics of the reef architecture is therefore important to envision the ability of corals to maintain functional habitats in an era of climate change. Here, we develop a mechanistic model of reef topographical complexity for contemporary Caribbean reefs. The model describes the dynamics of corals and other benthic taxa under climate-driven disturbances (hurricanes and coral bleaching). Corals have a simplified shape with explicit diameter and height, allowing species-specific calculation of their colony surface and volume. Growth and the mechanical (hurricanes) and biological erosion (parrotfish) of carbonate skeletons are important in driving the pace of extension/reduction in the upper reef surface, the net outcome being quantified by a simple surface roughness index (reef rugosity). The model accurately simulated the decadal changes of coral cover observed in Cozumel (Mexico) between 1984 and 2008, and provided a realistic hindcast of coral colony-scale (1-10 m) changing rugosity over the same period. We then projected future changes of Caribbean reef rugosity in response to global warming. Under severe and frequent thermal stress, the model predicted a dramatic loss of rugosity over the next two or three decades. Critically, reefs with managed parrotfish populations were able to delay the general loss of architectural complexity, as the benefits of grazing in maintaining living coral outweighed the bioerosion of dead coral skeletons. Overall, this model provides the first explicit projections of reef rugosity in a warming climate, and highlights the need of combining local (protecting and restoring high grazing) to global (mitigation of greenhouse gas

  5. Bridging the Reef gaps: first evidence for corals surviving under low pH conditions

    NASA Astrophysics Data System (ADS)

    Tchernov, D.; Fine, M.

    2007-12-01

    Following two major extinction events, the late Permian and Triassic/Jurassic, there is a long absence of corals from the geological record followed by a recurrence coral fossils. This unusual disappearance and reappearance, referred to commonly as 'reef gaps', was explained as a failure in sampling effort, and/or the movement of these species into geographic 'refugia' that have not been found. Because the phylogeny of recent corals suggests their origin in the pre-Permian-extinction , an alternative explanation for reef gaps hypothesized that corals have a means of alternating between soft bodies and fossilizing forms. This study supports this hypothesis. Thirty coral fragments from 5 coral colonies of the scleractinian Mediterranean corals Oculina patagonica (encrusting) and Madracis pharencis (bulbous) were subjected to pH 7.4-7.6 (in accordance with the pH projected by the IPCC for the year 2300) and 30 fragments to pH 8.0-8.3 (ambient) over a period of 12 months. 100% of the colonies in the experiment and 90% of all polyps survived to the end the experiment. The corals grown in acidified conditions, where skeleton-building conditions were absent, maintained basic life functions as a solitary skeleton-less ecophenotype resembling a sea anemone. On an evolutionary scale, these results provide a possible explanation to coral survival over major extinction events such as the Permian/Triassic and Triassic/Jurassic events. It is important to note that these results only demonstrate that corals can persist as soft bodied ecophoenotypes, but the loss of reef framework has major ramifications to the entire structure and function of coral reef ecosystems, ultimately impacting the services they provide to human society.

  6. A study on the recovery of Tobago's coral reefs following the 2010 mass bleaching event.

    PubMed

    Buglass, Salome; Donner, Simon D; Alemu I, Jahson B

    2016-03-15

    In 2010, severe coral bleaching was observed across the southeastern Caribbean, including the island of Tobago, where coral reefs are subject to sedimentation and high nutrient levels from terrestrial runoff. Here we examine changes in corals' colony size distributions over time (2010-2013), juvenile abundances and sedimentation rates for sites across Tobago following the 2010 bleaching event. The results indicated that since pre-bleaching coral cover was already low due to local factors and past disturbance, the 2010 event affected only particular susceptible species' population size structure and increased the proportion of small sized colonies. The low density of juveniles (mean of 5.4±6.3 juveniles/m(-2)) suggests that Tobago's reefs already experienced limited recruitment, especially of large broadcasting species. The juvenile distribution and the response of individual species to the bleaching event support the notion that Caribbean reefs are becoming dominated by weedy non-framework building taxa which are more resilient to disturbances.

  7. Storm-generated coral fragments - A viable source of transplants for reef rehabilitation

    USGS Publications Warehouse

    Garrison, V.; Ward, G.

    2008-01-01

    Coral reefs throughout the world have been damaged by storms, diseases, coral predators, temperature anomalies, and human activities. During the past three decades, recovery has been limited and patchy. Although a damaged coral reef cannot be restored to its original condition, interest in reef restoration is increasing. In a pilot project in the Caribbean (US Virgin Islands), storm-produced fragments of Acropora palmata, A. cervicornis, and Porites porites were collected from donor reefs and transplanted to nearby degraded reefs. Sixty coral fragments were attached to dead-coral substrate (usually A. palmata skeletons), at similar depths from which they had been collected (1-3.5 m), using nylon cable ties. Seventy-five intact colonies were designated as controls. Study colonies were assessed at 6-month intervals for 2 years (1999-2001) and annually thereafter (through 2004). One-fourth of the 135 colonies and fragments monitored were alive at the conclusion of the 5-year study. Survival of control and transplanted A. cervicornis and P. porites was very low (median survival 2.4 and 1.8 years, respectively), with no significant differences between transplant and control colonies. Site and depth did not contribute significantly to A. palmata colony survival, but colony size and transplant/control status did. Probability of survival increased with colony size. Median survival for A. palmata was 1.3 years for transplant and 4.3 years for natural colonies when not controlled for size. A. palmata was the only viable candidate for reef rehabilitation. Storm swells were the primary cause of mortality.

  8. Assessment of the Impact of Super Storm Sandy on Coral Reefs of Guantanamo Bay, Cuba

    DTIC Science & Technology

    2015-01-01

    official government endorsement or approval of commercial products or services referenced herein. ArcCatalog®, ArcMap®, and ArcGIS® are registered...Complete or partial mortality of individual colonies • Mucus production • Disease • Predation • Bleaching Physical damage can be the result...surface of stony corals can be effective indicators of stress. Stony coral mucus production is another indicator of stress from pollutants

  9. Temporal consistency in background mortality of four dominant coral taxa along Australia's Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Anderson, K. D.; Pratchett, M. S.

    2016-09-01

    Studies on the population and community dynamics of scleractinian corals typically focus on catastrophic mortality associated with acute disturbances (e.g., coral bleaching and outbreaks of crown-of-thorns starfish), though corals are subject to high levels of background mortality and injuries caused by routine and chronic processes. This study quantified prevalence (proportion of colonies with injuries) and severity (areal extent of injuries on individual colonies) of background mortality and injuries for four common coral taxa (massive Porites, encrusting Montipora, Acropora hyacinthus and branching Pocillopora) on the Great Barrier Reef, Australia. Sampling was conducted over three consecutive years during which there were no major acute disturbances. A total of 2276 adult colonies were surveyed across 27 sites, within nine reefs and three distinct latitudinal sectors. The prevalence of injuries was very high (>83%) across all four taxa, but highest for Porites (91%) and Montipora (85%). For these taxa ( Montipora and Pocillopora), there was also significant temporal and spatial variation in prevalence of partial mortality. The severity of injuries ranged from 3% to more than 80% and varied among coral taxa, but was fairly constant spatially and temporally. This shows that some injuries have considerable longevity and that corals may invest relatively little in regenerating tissue over sites of previous injuries. Inter-colony variation in the severity of injury also had no apparent effect on the realized growth of individual colonies, suggesting that energy diverted to regeneration has a limited bearing on overall energetic allocation, or impacts on other life-history processes (e.g., reproduction) rather than growth. Establishing background levels of injury and regeneration is important for understanding energy investment and life-history consequences for reef-building corals as well as for predicting susceptibility to, and capacity to recover from, acute

  10. The CORALS Connection

    ERIC Educational Resources Information Center

    Plankis, Brian; Klein, Carolyn

    2010-01-01

    The Ocean, Reefs, Aquariums, Literacy, and Stewardship (CORALS) research program helps students connect global environmental issues to local concerns and personal choices. During the 18-week program, students strengthen their understanding of coral reef decline through a classroom aquarium activity, communicate with science experts, and create…

  11. Skeletal isotope records of growth perturbations in Porites corals during the 1997-1998 mass bleaching event

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Gagan, M.; Fabricius, K.; Isdale, P.; Yukino, I.; Kawahata, H.

    2003-04-01

    Severe coral bleaching occurred throughout the tropics in 1997/98. We report skeletal UV fluorescence, oxygen isotope, and carbon isotope evidence for perturbations in coral skeletal growth due to bleaching at Ishigaki Island, Japan, and Pandora Reef, Great Barrier Reef. Bleached corals showed abrupt reductions in skeletal extension rate immediately after summer temperature maxima, indicating that bleaching inhibits coral calcification. A colony growing at the low tide line in Ishigaki exhibited clear blue UV fluorescent bands associated with recurrent growth interruptions. Based on the length of time-gaps observed in the annual isotopic cycle, the typical time required for a coral to recover from bleaching is estimated to be about 5--6 months. The effect of bleaching on the oxygen isotope ratio -- temperature relationship was negligible. However, the Ishigaki corals showed lower carbon isotope ratios during bleaching indicating depressed coral metabolism associated with a reduction in calcification. In contrast, skeletal carbon isotope ratios in the Pandora Reef corals exhibited little change in response to bleaching. This is because the records for Pandora Reef were derived from the shaded sides of coral colonies, where algal photosynthesis was particularly slow prior to bleaching, thus subduing the carbon isotope response to bleaching. Taken together, the isotopic and UV fluorescence signals can be used to reconstruct past bleaching events.

  12. Ecological variables, including physiognomic-structural attributes, and classification of Indonesian coral reefs

    NASA Astrophysics Data System (ADS)

    Bak, R. P. M.; Povel, G. D. E.

    Communities are distinguished by biological and physical features, such as size and shape of organisms and dead substrata, which are characteristic expressions of the organizing forces in the community. We measured 87 of such features in 39 transects on seaward-facing reef slopes in the eastern Indonesian archipelago, but did not identify coral species. We aimed to identify the basic variables that are indispensable to classify coral reef communities. This would give ecological information on variation in reef communities and show exactly which data must be recorded in the field. Principal Component Analysis (PCA) of the data matrix showed the following variables to be important in the ordination of transects along the axes: coral colony shape, loose fragments, bare bottom, coral tissue wounds, rubble, sediment/rubble, crustose coralline algae, excavating sponge, miscellaneous organisms, coral overgrowth, interaction coral/non-coral, Acanthaster, maximum size coral colonies, tabular Acropora, massive Porites, fungiids, angle slope, and crevices. We used the transect data to define four groups of environmental conditions: 'sheltered', 'exposed' (to water movement), 'biologically disturbed' and 'physically disturbed'. Discriminant Analysis was employed to classify additional transects. It appeared that a minimum of 9 variables has to be measured in the field (rubble, thick branching corals, fungiids, sediment/rubble, two largest-colonies diameters, massive Porites, angle slope, Acanthaster) to assign transects to one of those groups (P < 0.10). With just 14 variables the classification of transects was 100% correct. Two additional groups of environmental conditions are recognizable with, respectively, prominence of competitive interactions and Acanthaster predation. There were too few transect data to characterize these groups satisfactorily for Discriminant Analysis.

  13. Long-term salinity tolerance is accompanied by major restructuring of the coral bacterial microbiome.

    PubMed

    Röthig, Till; Ochsenkühn, Michael A; Roik, Anna; van der Merwe, Riaan; Voolstra, Christian R

    2016-03-01

    Scleractinian corals are assumed to be stenohaline osmoconformers, although they are frequently subjected to variations in seawater salinity due to precipitation, freshwater run-off and other processes. Observed responses to altered salinity levels include differences in photosynthetic performance, respiration and increased bleaching and mortality of the coral host and its algal symbiont, but a study looking at bacterial community changes is lacking. Here, we exposed the coral Fungia granulosa to strongly increased salinity levels in short- and long-term experiments to disentangle temporal and compartment effects of the coral holobiont (i.e. coral host, symbiotic algae and associated bacteria). Our results show a significant reduction in calcification and photosynthesis, but a stable microbiome after short-term exposure to high-salinity levels. By comparison, long-term exposure yielded unchanged photosynthesis levels and visually healthy coral colonies indicating long-term acclimation to high-salinity levels that were accompanied by a major coral microbiome restructuring. Importantly, a bacterium in the family Rhodobacteraceae was succeeded by Pseudomonas veronii as the numerically most abundant taxon. Further, taxonomy-based functional profiling indicates a shift in the bacterial community towards increased osmolyte production, sulphur oxidation and nitrogen fixation. Our study highlights that bacterial community composition in corals can change within days to weeks under altered environmental conditions, where shifts in the microbiome may enable adjustment of the coral to a more advantageous holobiont composition.

  14. Low sediment loads affect survival of coral recruits: the first weeks are crucial

    NASA Astrophysics Data System (ADS)

    Moeller, Mareen; Nietzer, Samuel; Schils, Tom; Schupp, Peter J.

    2017-03-01

    Increased sedimentation due to anthropogenic activities is a threat to many nearshore coral reefs. The effects on adult corals have been studied extensively and are well known. Studies about the impact of sedimentation on the early life stages of scleractinian corals, however, are rare although recruitment is essential for conserving and restoring coral reefs. Laboratory and in situ experiments with recruits of different age classes focused on the broadcast-spawning species Acropora hyacinthus and the brooding coral Leptastrea purpurea. Recruits were exposed to different sediment loads over three to five weeks. Applied sediment loads were more than one order of magnitude lower than those known to affect survival of adult coral colonies. Growth and survival of newly settled recruits were negatively affected by sediment loads that had no effect on the growth and survival of one-month-old recruits. All experiments indicated that newly settled coral recruits are most sensitive to sedimentation within the first two to four weeks post settlement. The co-occurrence of moderate sedimentation events during and immediately after periods of coral spawning can therefore reduce recruitment success substantially. These findings provide new information to develop comprehensive sediment management plans for the conservation and recovery of coral reefs affected by chronic or acute sedimentation events.

  15. Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Bachok, Zainudin; Mfilinge, Prosper; Tsuchiya, Makoto

    2006-11-01

    Under bleaching conditions, corals lose their symbiotic zooxanthellae, and thus, the ability to synthesize fatty acids (FAs) from photosynthetically derived carbon. This study investigated the lipid content and FA composition in healthy and bleached corals from the Odo reef flat in Okinawa, southern Japan, following a bleaching event. It was hypothesized that the FA composition and abundance would change as algae are lost or die, and possibly microbial abundance would increase in corals as a consequence of bleaching. The lipid content and FA composition of three healthy coral species ( Pavona frondifera, Acropora pulchra, and Goniastrea aspera) and of partially bleached and completely bleached colonies of P. frondifera were examined. The FA composition did not differ among healthy corals, but differed significantly among healthy, partially bleached, and completely bleached specimens of P. frondifera. Completely bleached corals contained significantly lower lipid and total FA content, as well as lower relative amounts of polyunsaturated FAs and higher relative amounts of saturated FAs, than healthy and partially bleached corals. Furthermore, there was a significantly higher relative concentration of monounsaturated FAs and odd-numbered branched FAs in completely bleached corals, indicating an increase in bacterial colonization in the bleached corals.

  16. Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan

    NASA Astrophysics Data System (ADS)

    Prasetia, Rian; Sinniger, Frederic; Harii, Saki

    2016-03-01

    Mesophotic coral ecosystems (below 30-40 m depth) host a large diversity of zooxanthellate coral communities and may play an important role in the ecology and conservation of coral reefs. Investigating the reproductive biology of mesophotic corals is important to understand their life history traits. Despite an increase in research on mesophotic corals in the last decade, their reproductive biology is still poorly understood. Here, gametogenesis and fecundity of the Indo-Pacific mesophotic coral , Acropora tenella, were examined in an upper mesophotic reef (40 m depth) in Okinawa, Japan for the first time. Acropora tenella is a hermaphrodite with a single annual gametogenic cycle, and both oogenesis and spermatogenesis occurring for 11-12 and 5-6 months, respectively. Timing of spawning of this species was similar to other shallow Acropora spp. in the region. However, colonies had longer gametogenic cycles and less synchronous gamete maturation compared to shallow acroporids with spawning extended over consecutive months. Both the polyp fecundity (number of eggs per polyp) and gonad index (defined as the number of eggs per square centimeter) of A. tenella were lower than most acroporids. Our findings contribute to understanding of the life history of corals on mesophotic reefs and suggest that the reproductive biology of upper mesophotic corals is similar to that of shallow-water corals.

  17. Social Studies; Colonial America.

    ERIC Educational Resources Information Center

    Hanson, Paul S.

    Students in grades seven through nine will examine and analyze the political organization, social structure, economic life, and values of the American Colonial period in this quinmester arranged American Studies course. Since the thirteen English Colonies effected the United States development, many of our nations foundations in government,…

  18. Ochracenoids A and B, Guaiazulene-Based Analogues from Gorgonian Anthogorgia ochracea Collected from the South China Sea

    PubMed Central

    Zheng, Juan-Juan; Shao, Chang-Lun; Chen, Min; Gan, Li-She; Fang, Yu-Chun; Wang, Xu-Hui; Wang, Chang-Yun

    2014-01-01

    Two new guaiazulene-based analogues, ochracenoids A (1) and B (2), along with four known analogues (3–6), were isolated from the gorgonian Anthogorgia ochracea collected from the South China Sea. The planar structures of the new compounds were elucidated by comprehensive spectroscopic data. The absolute configuration of 1 was determined as 3R by the comparison of TDDFT calculated electronic circular dichroism with its experimental spectrum. Compound 1 is a rare guaiazulene-based analogue possessing a unique C16 skeleton. The possible generation process of 1 through an intermolecular one-carbon-transfer reaction was also discussed. Compound 2 was previously described as a presumed intermediate involved in the biogenesis of anthogorgienes A and I. Compound 3 exhibited antiproliferative effects on the embryo development of zebrafish Danio rerio. PMID:24637960

  19. The Calyculaglycosides: Dilophol-Type Diterpene Glycosides Exhibiting Antiinflammatory Activity from the Caribbean Gorgonian Eunicea sp.(1)(,)(2).

    PubMed

    Cóbar, Oscar M.; Rodríguez, Abimael D.; Padilla, Omayra L.; Sánchez, Juan A.

    1997-10-17

    Three new diterpenoid hexose-glycosides, calyculaglycosides A-C (1-3) were isolated from the Caribbean gorgonian Eunicea sp. Calyculaglycosides A-C are rare diterpene glycosides possessing dilophol (4) aglycones related in biosynthetic origin to the elemene-type glycoside class of potent antiinflammatory agents known as fuscosides. The structures of the new compounds, which were assigned on the basis of spectral studies, were further corroborated by molecular modeling studies. Calyculaglycoside B (2) is an effective topical antiinflammatory agent stronger in potency than the industrial standard indomethacin. Calyculaglycoside B inhibits the synthesis of both prostaglandin PGE(2) and leukotriene LTB(4), suggesting it is a nonselective inhibitor of the 5-lipoxygenase and cyclooxygenase pathways. At concentrations of 10(-4)-10(-5)M, calyculaglycoside B produced LC(50)-level differential responses against a majority of the NCI ovarian cancer lines and several of the renal, prostate, and colon tumor lines.

  20. Impact of an alien octocoral, Carijoa riisei, on black corals in Hawaii

    NASA Astrophysics Data System (ADS)

    Kahng, Samuel E.; Grigg, Richard W.

    2005-12-01

    In 2001 Carijoa riisei, an octocoral native to the tropical Western Atlantic, was discovered overgrowing black corals in the Au’au Channel in Hawaii. In this paper data from a 2001 survey are reanalyzed and combined with new data from 2003 and 2004 to assess the ecological impact in greater detail. C. riisei differentially affected reproductively mature black coral colonies with maximum impact between 80 and 105 m. The pattern of C. riisei overgrowth on black corals and C. riisei on the substrata appears to be bounded by high irradiance in shallow water and cold temperature in deep water. Evidence suggests that the C. riisei settlement on black corals is facilitated by other epifauna. Once established, C. riisei spreads vegetatively and smothers the coral. The success of the C. riisei invasion appears to be unaided by anthropogenic disturbance and is at least partially attributable to Hawaii’s depauperate shallow-water (<100 m) octocoral fauna.

  1. Coral calcifying fluid pH dictates response to ocean acidification

    PubMed Central

    Holcomb, M.; Venn, A. A.; Tambutté, E.; Tambutté, S.; Allemand, D.; Trotter, J.; McCulloch, M.

    2014-01-01

    Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification. PMID:24903088

  2. High spatial variability in coral bleaching around Moorea (French Polynesia): patterns across locations and water depths.

    PubMed

    Penin, Lucie; Adjeroud, Mehdi; Schrimm, Muriel; Lenihan, Hunter Stanton

    2007-02-01

    Mass coral bleaching events are one of the main threats to coral reefs. A severe bleaching event impacted Moorea, French Polynesia, between March and July 2002, causing 55+/-14% of colonies to suffer bleaching around the island. However, bleaching varied significantly across coral genera, locations, and as a function of water depth, with a bleaching level as high as 72% at some stations. Corals in deeper water bleached at a higher rate than those in shallow water, and the north coast was more impacted than the west coast. The relatively small scale of variability in bleaching responses probably resulted from the interaction between extrinsic factors, including hydrodynamic condition, and intrinsic factors, such as differential adaptation of the coral/algal association.

  3. Water contamination reduces the tolerance of coral larvae to thermal stress.

    PubMed

    Negri, Andrew P; Hoogenboom, Mia O

    2011-05-11

    Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST) posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination) and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

  4. Phage therapy for Florida corals?

    USGS Publications Warehouse

    Kellogg, Christina A.

    2007-01-01

    Coral disease is a major cause of reef decline in the Florida Keys. Bacterium has been defined as the most common pathogen (disease-causing organism). Although much is being done to catalog coral diseases, map their locations, determine the causes of disease, or measure the rates of coral demise, very little research has been directed toward actually preventing or eliminating the diseases affecting coral and coral reef decline.

  5. Molecular reproductive characteristics of the reef coral Pocillopora damicornis

    PubMed Central

    Rougée, Luc R. A.; Richmond, Robert H.; Collier, Abby C.

    2015-01-01

    Coral reefs are an indispensible worldwide resource, accounting for billions of dollars in cultural, economic, and ecological services. An understanding of coral reproduction is essential to determining the effects of environmental stressors on coral reef ecosystems and their persistence into the future. Here we describe the presence of and changes in steroidal hormones along with associated steroidogenic and steroid removal enzymes during the reproductive cycle of the brooding, pan-Pacific, hermaphroditic coral, Pocillopora damicornis. Detectable levels of 17β-estradiol, estrone, progesterone and testosterone were consistently detected over two consecutive lunar reproductive cycles in coral tissue. Intra-colony variation in steroid hormone levels ranged between 1.5 and 2.2 fold and were not statistically different. Activities of the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and cytochrome P450 (CYP) 17 dehydrogenase were detectable and did not fluctuate over the reproductive cycle. Aromatase-like activity was detected during the lunar reproductive cycle with no significant fluctuations. Activities of regeneration enzymes did not fluctuate over the lunar cycle; however, activity of the clearance enzyme UDP-glucuronosyl transferases increased significantly (ANOVA, post hoc p<0.01) during the two weeks before and after peak larval release (planulation), suggesting activity of this enzyme family may be linked to the reproductive state of the coral. Sulfotransferase enzymes could not be detected. Our findings provide the first data defining normal physiological and lunar/reproductive variability in steroidal enzymes in a coral species with respect to their potential role in coral reproduction. PMID:26231839

  6. Coral communities of the deep Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Cordes, Erik E.; McGinley, Michael P.; Podowski, Elizabeth L.; Becker, Erin L.; Lessard-Pilon, Stephanie; Viada, Stephen T.; Fisher, Charles R.

    2008-06-01

    Habitat formation by foundation species is a major ecological force affecting community structure in numerous systems. On the upper continental slope of the Gulf of Mexico, the cold-water scleractinian coral Lophelia pertusa creates complex habitat on cold seep-associated carbonates. In this study, the communities associated with the cold-water coral L. pertusa are described from the Gulf of Mexico for the first time. A total of 68 taxa was identified in close association with the coral framework. Three species with specific relationships to L. pertusa were identified: Eunice sp., a polychaete which may facilitate colony formation in L. pertusa; Coralliophila sp., a species of corallivorous gastropod ; and Stenopus sp., a decapod crustacean which may act in a cleaner shrimp role in these habitats. Similarity among coral-associated communities was best explained by similarity in depth of collection and the proportion of live coral in the collections. These variables were somewhat confounded with location as the sites to the east were both shallower and contained higher proportions of live coral; however, distance between collections per se was not as significant in the analyses. The coral-associated communities also showed a low degree of similarity to communities inhabiting vestimentiferan tubeworm aggregations that occur nearby at the same sites. The increased habitat heterogeneity in the coral structure, differences in the niches constructed by the two foundation species, and different direct interspecific interactions between foundation species and members of the associated community contributed to the presence of dissimilar communities in these two biogenic habitats.

  7. Molecular reproductive characteristics of the reef coral Pocillopora damicornis.

    PubMed

    Rougée, Luc R A; Richmond, Robert H; Collier, Abby C

    2015-11-01

    Coral reefs are an indispensible worldwide resource, accounting for billions of dollars in cultural, economic, and ecological services. An understanding of coral reproduction is essential to determining the effects of environmental stressors on coral reef ecosystems and their persistence into the future. Here, we describe the presence of and changes in steroidal hormones along with associated steroidogenic and steroid removal enzymes during the reproductive cycle of the brooding, pan-Pacific, hermaphroditic coral, Pocillopora damicornis. Detectable levels of 17β-estradiol, estrone, progesterone and testosterone were consistently detected over two consecutive lunar reproductive cycles in coral tissue. Intra-colony variation in steroid hormone levels ranged between 1.5- and 2.2-fold and were not statistically different. Activities of the steroidogenic enzymes 3β-hydroxysteroid dehydrogenase and cytochrome P450 (CYP) 17 dehydrogenase were detectable and did not fluctuate over the reproductive cycle. Aromatase-like activity was detected during the lunar reproductive cycle with no significant fluctuations. Activities of regeneration enzymes did not fluctuate over the lunar cycle; however, activity of the clearance enzyme UDP-glucuronosyl transferases increased significantly (ANOVA, post hoc p<0.01) during the two weeks before and after peak larval release (planulation), suggesting that the activity of this enzyme family may be linked to the reproductive state of the coral. Sulfotransferase enzymes could not be detected. Our findings provide the first data defining normal physiological and lunar/reproductive variability in steroidal enzymes in a coral species with respect to their potential role in coral reproduction.

  8. Fused embryos and pre-metamorphic conjoined larvae in a broadcast spawning reef coral

    PubMed Central

    Jiang, Lei; Lei, Xin-Ming; Liu, Sheng; Huang, Hui

    2015-01-01

    Fusion of embryos or larvae prior to metamorphosis is rarely known to date in colonial marine organisms. Here, we document for the first time that the embryos of the broadcast spawning coral Platygyra daedalea could fuse during blastulation and further develop into conjoined larvae, and the settlement of conjoined larvae immediately resulted in inborn juvenile colonies. Fusion of embryos might be an adaptive strategy to form pre-metamorphic chimeric larvae and larger recruits, thereby promoting early survival. However, future studies are needed to explore whether and to what extent fusion of coral embryos occurs in the field, and fully evaluate its implications. PMID:25901279

  9. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998

    NASA Astrophysics Data System (ADS)

    Pisapia, C.; Burn, D.; Yoosuf, R.; Najeeb, A.; Anderson, K. D.; Pratchett, M. S.

    2016-10-01

    Increasing frequency and severity of disturbances is causing global degradation of coral reef ecosystems. This study examined temporal changes in live coral cover and coral composition in the central Maldives from 1997 to 2016, encompassing two bleaching events, a tsunami, and an outbreak of Acanthaster planci. We also examined the contemporary size structure for five dominant coral taxa (tabular Acropora, Acropora muricata, Acropora humilis, Pocillopora spp, and massive Porites). Total coral cover increased throughout the study period, with marked increases following the 1998 mass-bleaching. The relative abundance of key genera has changed through time, where Acropora and Pocillopora (which are highly susceptible to bleaching) were under-represented following 1998 mass-bleaching but increased until outbreaks of A. planci in 2015. The contemporary size-structure for all coral taxa was dominated by larger colonies with peaked distributions suggesting that recent disturbances had a disproportionate impact on smaller colonies, or that recruitment is currently limited. This may suggest that coral resilience has been compromised by recent disturbances, and further bleaching (expected in 2016) could lead to highly protracted recovery times. We showed that Maldivian reefs recovered following the 1998 mass-bleaching event, but it took up to a decade, and ongoing disturbances may be eroding reef resilience.

  10. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998.

    PubMed

    Pisapia, C; Burn, D; Yoosuf, R; Najeeb, A; Anderson, K D; Pratchett, M S

    2016-10-03

    Increasing frequency and severity of disturbances is causing global degradation of coral reef ecosystems. This study examined temporal changes in live coral cover and coral composition in the central Maldives from 1997 to 2016, encompassing two bleaching events, a tsunami, and an outbreak of Acanthaster planci. We also examined the contemporary size structure for five dominant coral taxa (tabular Acropora, Acropora muricata, Acropora humilis, Pocillopora spp, and massive Porites). Total coral cover increased throughout the study period, with marked increases following the 1998 mass-bleaching. The relative abundance of key genera has changed through time, where Acropora and Pocillopora (which are highly susceptible to bleaching) were under-represented following 1998 mass-bleaching but increased until outbreaks of A. planci in 2015. The contemporary size-structure for all coral taxa was dominated by larger colonies with peaked distributions suggesting that recent disturbances had a disproportionate impact on smaller colonies, or that recruitment is currently limited. This may suggest that coral resilience has been compromised by recent disturbances, and further bleaching (expected in 2016) could lead to highly protracted recovery times. We showed that Maldivian reefs recovered following the 1998 mass-bleaching event, but it took up to a decade, and ongoing disturbances may be eroding reef resilience.

  11. The effects of ultraviolet radiation on growth and bleaching in three species of Hawaiian coral

    SciTech Connect

    Goodman, G.D. )

    1990-01-09

    Long term exposure to ultraviolet radiation is harmful to many organisms, including hermatypic corals, which obtain much of their nutrition from photosynthetic zooxanthellae. Therefore, increased UV radiation from atmospheric ozone depletion could inhibit growth of such corals. Moreover, coral bleaching, which has been attributed to loss of pigment and/or expulsion of zooxanthellae, may be a specific response to UV light. Does UV-A reduce skeletal growth or influence population density and pigment content of zooxanthellae In addition, do zooxanthellae migrate to shaded areas of the colony to avoid ultraviolet light Using alizarin red stain and suitable filters, I compared the stain and suitable filters, I compared the effects of UV-A (320-400nm) and full-spectrum UV (280-400nm) on the skeletal growth of two Hawaiian corals, Montipora verrucosa, Pocillopora damicornis, in situ. In the perforate corals, M. Verrucosa and Porites compressa, I measured concentration of zooxanthellae and their chlorophyll content to quantify bleaching in response to UV light. Reduction in skeletal growth by the two corals in response to different ranges of UV light appears to be species specific. Bleaching by UV appears to be characterized by an initial loss of pigment followed by the expulsion and migration of the zooxanthellae to shaded areas of the colony. Differences in tolerance and adaptation to decreasing ozone levels and increasing UV light should confer a competitive advantage on various species and morphologies of reef-building corals.

  12. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility.

    PubMed

    Chou, Loke Ming; Toh, Tai Chong; Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera-Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change.

  13. Differential Response of Coral Assemblages to Thermal Stress Underscores the Complexity in Predicting Bleaching Susceptibility

    PubMed Central

    Toh, Kok Ben; Ng, Chin Soon Lionel; Cabaitan, Patrick; Tun, Karenne; Goh, Eugene; Afiq-Rosli, Lutfi; Taira, Daisuke; Du, Rosa Celia Poquita; Loke, Hai Xin; Khalis, Aizat; Li, Jinghan; Song, Tiancheng

    2016-01-01

    Coral bleaching events have been predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes is dependent on many factors and an understanding of these underlying drivers is crucial for conservation management. In 2013, a mild bleaching episode ensued in response to elevated sea temperature on the sediment-burdened reefs in Singapore. Surveys of seven sites highlighted variable bleaching susceptibility among coral genera–Pachyseris and Podabacia were the most impacted (31% of colonies of both genera bleached). The most susceptible genera such as Acropora and Pocillopora, which were expected to bleach, did not. Susceptibility varied between less than 6% and more than 11% of the corals bleached, at four and three sites respectively. Analysis of four of the most bleached genera revealed that a statistical model that included a combination of the factors (genus, colony size and site) provided a better explanation of the observed bleaching patterns than any single factor alone. This underscored the complexity in predicting the coral susceptibility to future thermal stress events and the importance of monitoring coral bleaching episodes to facilitate more effective management of coral reefs under climate change. PMID:27438593

  14. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998

    PubMed Central

    Pisapia, C.; Burn, D.; Yoosuf, R.; Najeeb, A.; Anderson, K. D.; Pratchett, M. S.

    2016-01-01

    Increasing frequency and severity of disturbances is causing global degradation of coral reef ecosystems. This study examined temporal changes in live coral cover and coral composition in the central Maldives from 1997 to 2016, encompassing two bleaching events, a tsunami, and an outbreak of Acanthaster planci. We also examined the contemporary size structure for five dominant coral taxa (tabular Acropora, Acropora muricata, Acropora humilis, Pocillopora spp, and massive Porites). Total coral cover increased throughout the study period, with marked increases following the 1998 mass-bleaching. The relative abundance of key genera has changed through time, where Acropora and Pocillopora (which are highly susceptible to bleaching) were under-represented following 1998 mass-bleaching but increased until outbreaks of A. planci in 2015. The contemporary size-structure for all coral taxa was dominated by larger colonies with peaked distributions suggesting that recent disturbances had a disproportionate impact on smaller colonies, or that recruitment is currently limited. This may suggest that coral resilience has been compromised by recent disturbances, and further bleaching (expected in 2016) could lead to highly protracted recovery times. We showed that Maldivian reefs recovered following the 1998 mass-bleaching event, but it took up to a decade, and ongoing disturbances may be eroding reef resilience. PMID:27694823

  15. Coral disease dynamics at a subtropical location, Solitary Islands Marine Park, eastern Australia

    NASA Astrophysics Data System (ADS)

    Dalton, Steven J.; Smith, Stephen D. A.

    2006-03-01

    Recent observations suggest that a spreading disease is increasingly contributing to hard coral mortality in the Solitary Islands Marine Park, NSW, Australia. This study determined coral disease prevalence and rate-of-spread through individual affected colonies and investigated the effect this epizootic had on coral populations at sites adjacent to South West Solitary Island. Quantitative data were collected between 2002 and 2004 using photographic and video methods, and visual census along radial arc belt transects. Disease similar to the reported white syndrome and white plague was apparent, spreading through hard coral species from the genera Turbinaria, Acropora, Goniastrea, Pocillopora, Stylophora and Porites. Coral disease prevalence varied between survey dates with mean prevalence increasing from 8.55% during March 2003 to 13.58% in June and declining to 7.75% in September and 6.21% during March 2004. There was a significant difference in mean prevalence between the affected species (p<0.001) and an overall difference between survey dates (p=0.001). Additionally, the rate-of-spread of coral disease through coral colonies determined using repeated, seasonal, still photographs followed similar patterns, with disease progression differing between affected species (p=0.004), and between survey dates (p<0.001). Analysis of the video-transects indicated significant difference in disease prevalence over larger spatial scales (100s of m). However, disease frequency did not vary significantly between 2002 and 2003.

  16. Effects of ocean acidification on the dissolution rates of reef-coral skeletons

    PubMed Central

    van Woesik, Kelly; van Woesik, Liana; van Woesik, Sandra

    2013-01-01

    Ocean acidification threatens the foundation of tropical coral reefs. This study investigated three aspects of ocean acidification: (i) the rates at which perforate and imperforate coral-colony skeletons passively dissolve when pH is 7.8, which is predicted to occur globally by 2100, (ii) the rates of passive dissolution of corals with respect to coral-colony surface areas, and (iii) the comparative rates of a vertical reef-growth model, incorporating passive dissolution rates, and predicted sea-level rise. By 2100, when the ocean pH is expected to be 7.8, perforate Montipora coral skeletons will lose on average 15 kg CaCO3 m−2 y−1, which is approximately −10.5 mm of vertical reduction of reef framework per year. This rate of passive dissolution is higher than the average rate of reef growth over the last several millennia and suggests that reefs composed of perforate Montipora coral skeletons will have trouble keeping up with sea-level rise under ocean acidification. Reefs composed of primarily imperforate coral skeletons will not likely dissolve as rapidly, but our model shows they will also have trouble keeping up with sea-level rise by 2050. PMID:24282670

  17. How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system.

    PubMed

    Shaish, Lee; Abelson, Avigdor; Rinkevich, Baruch

    2007-07-25

    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in

  18. Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa

    NASA Astrophysics Data System (ADS)

    McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa

    2011-07-01

    The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were

  19. Skeletal records of community-level bleaching in Porites corals from Palau

    NASA Astrophysics Data System (ADS)

    Barkley, Hannah C.; Cohen, Anne L.

    2016-12-01

    Tropical Pacific sea surface temperature is projected to rise an additional 2-3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These "stress bands" are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in

  20. Ecology, biogeography and evolution of corals in Hawaii.

    PubMed

    Jokiel, P L

    1987-07-01

    Recent studies in Hawaii have contributed much to the understanding of the ecology and evolution of Hawaiian corals and are forcing a reevaluation of our basic concepts concerning the zoogeography, ecology, taxonomy and population biology of these important reef-forming organisms. Geographic isolation rather than physical adversity of the environment seems largely to have determined the number of coral species that are found in Hawaii, but the physical environment controls growth of Hawaiian species with increasing latitude along the archipelago. Annual broadcast spawning has recently been shown to be the dominant mode of sexual reproduction, rather than brooding of larvae on a lunar cycle as previously believed. Asexual reproduction through colony fragmentation or by production of asexually produced larvae is now known to result in extensive representation of a single genotype in some coral populations.

  1. Declining Coral Calcification on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    De'ath, Glenn; Lough, Janice M.; Fabricius, Katharina E.

    2009-01-01

    Reef-building corals are under increasing physiological stress from a changing climate and ocean absorption of increasing atmospheric carbon dioxide. We investigated 328 colonies of massive Porites corals from 69 reefs of the Great Barrier Reef (GBR) in Australia. Their skeletal records show that throughout the GBR, calcification has declined by 14.2% since 1990, predominantly because extension (linear growth) has declined by 13.3%. The data suggest that such a severe and sudden decline in calcification is unprecedented in at least the past 400 years. Calcification increases linearly with increasing large-scale sea surface temperature but responds nonlinearly to annual temperature anomalies. The causes of the decline remain unknown; however, this study suggests that increasing temperature stress and a declining saturation state of seawater aragonite may be diminishing the ability of GBR corals to deposit calcium carbonate.

  2. Diazotrophic diversity in the Caribbean coral, Montastraea cavernosa.

    PubMed

    Olson, Nathan D; Lesser, Michael P

    2013-12-01

    Previous research on the Caribbean coral Montastraea cavernosa reported the presence of cyanobacterial endosymbionts and nitrogen fixation in orange, but not brown, colonies. We compared the diversity of nifH gene sequences between these two color morphs at three locations in the Caribbean and found that the nifH sequences recovered from M. cavernosa were consistent with previous studies on corals where members of both the α-proteobacteria and cyanobacteria were recovered. A number of nifH operational taxonomic units (OTUs) were significantly more abundant in the orange compared to the brown morphs, and one specific OTU (OTU 17), a cyanobacterial nifH sequence similar to others from corals and sponges and related to the cyanobacterial genus Cyanothece, was found in all orange morphs of M. cavernosa at all locations. The nifH diversity reported here, from a community perspective, was not significantly different between orange and brown morphs of M. cavernosa.

  3. Predicting Coral Recruitment in Palau’s Complex Reef Archipelago

    PubMed Central

    Golbuu, Yimnang; Wolanski, Eric; Idechong, Jacques Wasai; Victor, Steven; Isechal, Adelle Lukes; Oldiais, Noelle Wenty; Idip, David; Richmond, Robert H.; van Woesik, Robert

    2012-01-01

    Reproduction and recruitment are key processes that replenish marine populations. Here we use the Palau archipelago, in the western Pacific Ocean, as a case study to examine scales of connectivity and to determine whether an oceanographic model, incorporating the complex reef architecture, is a useful predictor of coral recruitment. We tested the hypothesis that the reefs with the highest retention also had the highest densities of juvenile coral density from 80 field sites. Field comparisons showed a significant correlation between the densities of juvenile Acropora colonies and total larval recruitment derived from the model (i.e., calculated as the sum of the densities of larvae that self-seeded and recruited from the other reefs in the archipelago). Long-distance larval imports may be too infrequent to sustain coral populations, but are critical for recovery in times of extreme local stress. PMID:23209842

  4. Intracolonial genetic variation in the scleractinian coral Seriatopora hystrix

    NASA Astrophysics Data System (ADS)

    Maier, E.; Buckenmaier, A.; Tollrian, R.; Nürnberger, B.

    2012-06-01

    In recent years, increasing numbers of studies revealed intraorganismal genetic variation, primarily in modular organisms like plants or colonial marine invertebrates. Two underlying mechanisms are distinguished: Mosaicism is caused by somatic mutation, whereas chimerism originates from allogeneic fusion. We investigated the occurrence of intracolonial genetic variation at microsatellite loci in five natural populations of the scleractinian coral Seriatopora hystrix on the Great Barrier Reef. This coral is a widely distributed, brooding species that is at present a target of intensive population genetic research on reproduction and dispersal patterns. From each of 155 S. hystrix colonies, either two or three samples were genotyped at five or six loci. Twenty-seven (~17%) genetically heterogeneous colonies were found. Statistical analyses indicated the occurrence of both mosaicism and chimerism. In most cases, intracolonial variation was found only at a single allele. Our analyses suggest that somatic mutations present a major source of genetic heterogeneity within a single colony. Moreover, we observed large, apparently stable chimeric colonies that harbored clearly distinct genotypes and contrast these findings with the patterns typically observed in laboratory-based experiments. We discuss the error that mosaicism and chimerism introduce into population genetic analyses.

  5. Negative indirect effects of neighbors on imperiled scleractinian corals

    NASA Astrophysics Data System (ADS)

    Johnston, Lyza; Miller, M. W.

    2014-12-01

    Predation pressure on an individual may be influenced by spatial associations with other organisms. In the case of rare and imperiled species, such indirect interactions may affect the persistence and recovery of local populations. This study examined the effects of coral neighborhood composition on the foraging behavior and impact of the corallivorous gastropod, Coralliophila abbreviata. We conducted a manipulative field experiment in which focal colonies of the threatened scleractinian coral Acropora cervicornis had no neighbors, conspecific neighbors, alternative prey ( Orbicella faveolata) neighbors, or non-prey ( Porites asteroides) neighbors. Individually tagged C. abbreviata were then seeded into the study area and allowed to colonize the experimental plots. Initial colonization was significantly affected by the species of neighboring corals and snail abundance after colonization was negatively correlated with focal colony growth. Snails exhibited a strong prey preference for A. cervicornis over O. faveolata and responded numerically to neighborhood quality (i.e., relative preference for neighboring corals). Thus, conspecific neighbors had the greatest predator-mediated negative effect on focal colony performance followed by O. faveolata neighbors. The results suggest that C. abbreviata mediate apparent competition between O. faveolata and A. cervicornis as both species contributed to the local abundance of their shared predator. Additionally, home range estimates for tagged C. abbreviata were calculated, compared among sexes, and found to be significantly greater for males than for females. Overall, this study sheds light on the foraging behavior of an important coral predator and highlights the potential importance of consumer-mediated indirect interactions in the dynamics of severely reduced populations. The results also have direct implications for conservation and population enhancement efforts.

  6. Variability in the Effects of Macroalgae on the Survival and Growth of Corals: The Consumer Connection

    PubMed Central

    Bulleri, Fabio; Couraudon-Réale, Marine; Lison de Loma, Thierry; Claudet, Joachim

    2013-01-01

    Shifts in dominance from corals to macroalgae are occurring in many coral reefs worldwide. Macroalgal canopies, while competing for space with coral colonies, may also form a barrier to herbivorous and corallivorous fish, offering protection to corals. Thus, corals could either suffer from enhanced competition with canopy-forming and understorey macroalgae or benefit from predator exclusion. Here, we tested the hypothesis that the effects of the brown, canopy-forming macroalga, Turbinaria ornata, on the survival and growth of corals can vary according to its cover, to the presence or absence of herbivorous and corallivorous fish and to the morphological types of corals. Over a period of 66 days, two coral species differing in growth form, Acropora pulchra and Porites rus, were exposed to three different covers of T. ornata (absent versus medium versus high), in the presence or absence of fish. Irrespective of the cover of T. ornata, fish exclusion reduced mortality rates of A. pulchra. Following fish exclusion, a high cover of T. ornata depressed the growth of this branched coral, whilst it had no effect when fish species were present. P. rus suffered no damage from corallivorous fish, but its growth was decreased by high covers of T. ornata, irrespective of the presence or absence of fish. These results show that negative effects of T. ornata on some coral species are subordinate to those of fish predation and are, therefore, likely to manifest only on reefs severely depleted of predators. In contrast, space dominance by T. ornata may decrease the growth of other coral species regardless of predation intensity. In general, this study shows that susceptibility to predation may determine the severity of the effects of canopy-forming macroalgae on coral growth. PMID:24260290

  7. Using the Acropora digitifera genome to understand coral responses to environmental change.

    PubMed

    Shinzato, Chuya; Shoguchi, Eiichi; Kawashima, Takeshi; Hamada, Mayuko; Hisata, Kanako; Tanaka, Makiko; Fujie, Manabu; Fujiwara, Mayuki; Koyanagi, Ryo; Ikuta, Tetsuro; Fujiyama, Asao; Miller, David J; Satoh, Nori

    2011-07-24

    Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.

  8. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis

    PubMed Central

    Schopmeyer, Stephanie A.; Lirman, Diego

    2015-01-01

    Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and

  9. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis.

    PubMed

    Schopmeyer, Stephanie A; Lirman, Diego

    2015-01-01

    Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and

  10. New Anti-Inflammatory 9,11-Secosterols with a Rare Tricyclo[5,2,1,1]decane Ring from a Formosan Gorgonian Pinnigorgia sp.

    PubMed Central

    Chang, Yu-Chia; Hwang, Tsong-Long; Sheu, Jyh-Horng; Wu, Yang-Chang; Sung, Ping-Jyun

    2016-01-01

    Pinnigorgiols D (1) and E (2), two new 9,11-secosterols with a rearranged carbon skeleton, were isolated from a Taiwan gorgonian Pinnigorgia sp. The structures of these two compounds were elucidated on the basis of spectroscopic methods and were proven to possess a tricyclo[5,2,1,1]decane ring. The new secosterols 1 and 2 displayed significant inhibitory effects on the generation of superoxide anions and the release of elastase by human neutrophils. PMID:27898026

  11. Digital Reef Rugosity Estimates Coral Reef Habitat Complexity

    PubMed Central

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity. PMID:23437380

  12. Digital reef rugosity estimates coral reef habitat complexity.

    PubMed

    Dustan, Phillip; Doherty, Orla; Pardede, Shinta

    2013-01-01

    Ecological habitats with greater structural complexity contain more species due to increased niche diversity. This is especially apparent on coral reefs where individual coral colonies aggregate to give a reef its morphology, species zonation, and three dimensionality. Structural complexity is classically measured with a reef rugosity index, which is the ratio of a straight line transect to the distance a flexible chain of equal length travels when draped over the reef substrate; yet, other techniques from visual categories to remote sensing have been used to characterize structural complexity at scales from microhabitats to reefscapes. Reef-scale methods either lack quantitative precision or are too time consuming to be routinely practical, while remotely sensed indices are mismatched to the finer scale morphology of coral colonies and reef habitats. In this communication a new digital technique, Digital Reef Rugosity (DRR) is described which utilizes a self-contained water level gauge enabling a diver to quickly and accurately characterize rugosity with non-invasive millimeter scale measurements of coral reef surface height at decimeter intervals along meter scale transects. The precise measurements require very little post-processing and are easily imported into a spreadsheet for statistical analyses and modeling. To assess its applicability we investigated the relationship between DRR and fish community structure at four coral reef sites on Menjangan Island off the northwest corner of Bali, Indonesia and one on mainland Bali to the west of Menjangan Island; our findings show a positive relationship between DRR and fish diversity. Since structural complexity drives key ecological processes on coral reefs, we consider that DRR may become a useful quantitative community-level descriptor to characterize reef complexity.

  13. The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease.

    PubMed

    Seveso, Davide; Montano, Simone; Reggente, Melissa Amanda Ljubica; Maggioni, Davide; Orlandi, Ivan; Galli, Paolo; Vai, Marina

    2017-03-01

    Black band disease (BBD) is a widespread coral pathology caused by a microbial consortium dominated by cyanobacteria, which is significantly contributing to the loss of coral cover and diversity worldwide. Since the effects of the BBD pathogens on the physiology and cellular stress response of coral polyps appear almost unknown, the expression of some molecular biomarkers, such as Hsp70, Hsp60, HO-1, and MnSOD, was analyzed in the apparently healthy tissues of Goniopora columna located at different distances from the infection and during two disease development stages. All the biomarkers displayed different levels of expression between healthy and diseased colonies. In the healthy corals, low basal levels were found stable over time in different parts of the same colony. On the contrary, in the diseased colonies, a strong up-regulation of all the biomarkers was observed in all the tissues surrounding the infection, which suffered an oxidative stress probably generated by the alternation, at the progression front of the disease, of conditions of oxygen supersaturation and hypoxia/anoxia, and by the production of the cyanotoxin microcystin by the BBD cyanobacteria. Furthermore, in the infected colonies, the expression of all the biomarkers appeared significantly affected by the development stage of the disease. In conclusion, our approach may constitute a useful diagnostic tool, since the cellular stress response of corals is activated before the pathogens colonize the tissues, and expands the current knowledge of the mechanisms controlling the host responses to infection in corals.

  14. The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline.

    PubMed

    Kimes, Nikole E; Johnson, Wesley R; Torralba, Manolito; Nelson, Karen E; Weil, Ernesto; Morris, Pamela J

    2013-07-01

    Coral-associated microbial communities, including protists, bacteria, archaea and viruses, are important components of the coral holobiont that influence the health of corals and coral reef ecosystems. Evidence suggests that the composition of these microbial communities is affected by numerous parameters; however, little is known about the confluence of these ecological and temporal effects. In this study, we used ribosomal RNA gene sequencing to identify the zooxanthellae, bacteria and archaea associated with healthy and yellow band diseased (YBD) colonies in the Media Luna reef of La Parguera, Puerto Rico, in order to examine the influence of YBD on the Montastraea faveolata microbiome. In addition, we evaluated the influence of season on the differences between healthy and YBD M. faveolata microbiomes by sampling from the same tagged colonies in both March and September of 2007. To the best of our knowledge, this is the first coral microbiome study to examine sequences from the zooxanthellar, bacterial and archaeal communities simultaneously from individual coral samples. Our results confirm differences in the M. faveolata zooxanthellar, bacterial and archaeal communities between healthy and YBD colonies in March; however, the September communities do not exhibit the same differences. Moreover, we provide evidence that the differences in the M. faveolata microbiomes between March and September are more significant than those observed between healthy and YBD. This data suggest that the entire coral microbiome, not just the bacterial community, is a dynamic environment where both disease and season play important roles.

  15. Disease of coral and coral reef fishes

    USGS Publications Warehouse

    Panek, Frank

    2008-01-01

    The Department of the Interior protects sensitive habitats amounting to about 3,600,000 acres of coral reefs and other submerged lands. These reefs are important ecosystems in 13 National Wildlife Refuges, 10 National Parks and in certain territorial waters such as the Wake Atoll.

  16. Coral Bleaching: Coral 'refugia' amid heating seas

    NASA Astrophysics Data System (ADS)

    Caldeira, Ken

    2013-05-01

    The Earth is getting hotter as carbon dioxide, predominantly from the burning of fossil fuels, continues to accumulate in the atmosphere. It is widely recognized that increasing temperatures pose a threat to coral reefs, but just how large a risk are these reefs facing?

  17. Can corals be harvested sustainably?

    PubMed

    Harriott, Vicki J

    2003-03-01

    The international trade in corals has been identified as a potential cause of localized depletion of coral populations in the major coral-exporting countries. The international coral trade is regulated by the Convention on International Trade in Endangered Species of Wild Flora and Fauna (CITES) agreement, which requires that export of corals is not detrimental to the species. The primary coral importing regions (USA and Europe) have threatened to limit or ban coral imports unless sustainable practices can be demonstrated. The spatial and temporal scale at which sustainability is defined is important in evaluating sustainability, e.g. at geological, regional or local scales. Other major issues are: the ecology of the target species; management options including provision of no-take areas; and the potential for coral culture. Implementation of practices that enhance ecological sustainability in the coral harvest fishery is possible, but may be difficult in some developing countries because of limited natural-resource management capacity.

  18. Ten years after the crime: Lasting effects of damage from a cruise ship anchor on a coral reef in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Rogers, C.S.; Garrison, V.H.

    2001-01-01

    In October 1988, a cruise ship dropped its anchor on a coral reef in Virgin Islands National Park, St. John, creating a distinct scar roughly 128 m long and 3 m wide from a depth of 22 m to a depth of 6 m. The anchor pulverized coral colonies and smashed part of the reef framework. In April 1991, nine permanent quadrats (1 m2) were established inside the scar over a depth range of 9 m to 12.5 m. At that time, average coral cover inside the scar was less than 1%. These quadrats were surveyed again in 1992, 1993, 1994, 1995 and 1998. Recruits of 19 coral species have been observed, with Agaricia agaricites and Porites spp. the most abundant. Quadrats surveyed outside the scar in June 1994 over the same depth range had a higher percent coral cover (mean = 7.4%, SD = 4.5) and greater average size (maximum length) of coral colonies than in quadrats inside the damaged area. Although coral recruits settle into the scar in high densities, live coral cover has not increased significantly in the last 10 yrs, reflecting poor survival and growth of newly settled corals. The relatively planar aspect of the scar may increase the vulnerability of the recruits to abrasion and mortality from shifting sediments. Ten years after the anchor damage occurred, live coral cover in the still-visible scar (mean = 2.6%, SD = 2.7) remains well below the cover found in the adjacent, undamaged reef.

  19. Ten years of change to coral communities off Mona and Desecheo Islands, Puerto Rico, from disease and bleaching.

    PubMed

    Bruckner, Andrew W; Hill, Ronald L

    2009-11-16

    Remote reefs off southwest Puerto Rico have experienced recent losses in live coral cover of 30 to 80%, primarily due to the decline of Montastraea annularis and M. faveolata from disease and bleaching. These species were formerly the largest, oldest, and most abundant corals on these reefs, constituting over 65% of the living coral cover and 40 to 80% of the total number of colonies. From 1998 to 2001, outbreaks of yellow band disease (YBD) and white plague (WP) affected 30 to 60% of the M. annularis (complex) colonies. Disease prevalence declined beginning in 2002, and then increased immediately following the 2005 mass bleaching event. Colonies of M. annularis (complex) have been reduced in abundance by 24 to 32%, and remaining colonies are missing more than half their tissue. Both M. annularis and M. faveolata have failed to recruit, resheeting has been minimal, and exposed skeletal surfaces are being colonized by macroalgae, bioeroding sponges, and hydrozoans. Other scleractinian corals were smaller in size (mean = 28 cm diameter) and exhibited lower levels of partial mortality; these taxa were affected to a lesser extent by coral diseases and bleaching-associated tissue loss over the last decade. The numbers of small colonies (1 to 9 cm) of these species identified since 2005 also exceeded numbers of larger colonies that died. These reefs appear to be exhibiting shifts in species assemblages, with replacement of M. annularis (complex) by shorter-lived brooding species and other massive and plating corals (Agaricia, Porites, Meandrina, Eusmilia, Diploria, and Siderastrea spp.). To avoid a catastrophic and permanent loss of the dominant, slow-growing reef-building corals, the causes and effects of diseases need to be better understood, and possible control mechanisms must be developed. In particular, steps must be taken to mitigate environmental and anthropogenic stressors that increase the spread and severity of disease.

  20. Massive bleaching of coral reefs induced by the 2010 ENSO, Puerto Cabello, Venezuela.

    PubMed

    del Mónaco, Carlos; Haiek, Gerard; Narciso, Samuel; Galindo, Miguel

    2012-06-01

    El Niño Southern Oscillation (ENSO) has generated global coral massive bleaching. The aim of this work was to evaluate the massive bleaching of coral reefs in Puerto Cabello, Venezuela derived from ENSO 2010. We evaluated the bleaching of reefs at five localities both at three and five meter depth. The coral cover and densities of colonies were estimated. We recorded living coral cover, number and diameter of bleached and non-bleached colonies of each coral species. The colonies were classified according to the proportion of bleached area. Satellite images (Modis Scar) were analyzed for chlorophyll-a concentration and temperature in August, September, October and November from 2008-2010. Precipitation, wind speed and air temperature information was evaluated in meteorological data for 2009 and 2010. A total of 58.3% of colonies, belonging to 11 hexacoral species, were affected and the greatest responses were observed in Colpophyllia natans, Montastraea annularis and Montastraeafaveolata. The most affected localities were closer to the mainland and had a bleached proportion up to 62.73+/-36.55%, with the highest proportion of affected colonies, whereas the farthest locality showed 20.25+/-14.00% bleached and the smallest proportion. The salinity in situ varied between 30 and 33ppm and high levels of turbidity were observed. According to the satellite images, in 2010 the surface water temperature reached 31 degree C in August, September and October, and resulted higher than those registered in 2008 and 2009. Regionally, chlorophyll values were higher in 2010 than in 2008 and 2009. The meteorological data indicated that precipitation in November 2010 was three times higher than in November 2009. Massive coral bleaching occurred due to a three month period of high temperatures followed by one month of intense ENSO-associated precipitation. However, this latter factor was likely the trigger because of the bleaching gradient observed.

  1. Warm waters, bleached corals

    SciTech Connect

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water and that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.

  2. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  3. Pulsating Soft Corals

    NASA Astrophysics Data System (ADS)

    Khatri, Shilpa; Holzman, Roi; Miller, Laura; Samson, Julia; Shavit, Uri

    2016-11-01

    Soft corals of the family Xeniidae have a pulsating motion, a behavior not observed in many other sessile organisms. We are studying how this behavior may give these corals a competitive advantage. We will present experimental data and computational simulations of the pulsations of the coral. Video data and kinematic analysis will be shown from the lab and the field. We will present direct numerical simulations of the pulsations of the coral and the resulting fluid flow by solving the Navier-Stokes equations coupled with the immersed boundary method. Furthermore, parameter sweeps studying the resulting fluid flow will be discussed. This work is supported by NSF PoLS #1505061 (to S. Khatri) and #1504777 (to L. Miller).

  4. Two new species of gorgonian octocorals from the Tropical Eastern Pacific Biogeographic Region (Cnidaria, Anthozoa, Gorgoniidae)

    PubMed Central

    Breedy, Odalisca; Williams, Gary C; Guzman, Hector M

    2013-01-01

    Abstract The gorgoniid Eugorgia is exclusively an eastern Pacific genus. It has a wide geographic and bathymetric range of distribution, found from California to Perú and extends down to 65 m deep. Two new species are herein described. The morphological characters were analyzed and illustrated by light and scanning electron microscopy. Eugorgia beebei sp. n. can be distinguished by its white, ascending, sparse colony growth. Eugorgia mutabilis sp. n. can be distinguished by its white colony that changes color after collection, and the conspicuous sharp-crested disc sclerites. From a morphological point of view the new species are related to the daniana-group, the rubens-group and the siedenburgae-group of Eugorgia; their affiliations, and the proposal of a new group are discussed. These new species increases the number of species in the genus to 15, and contribute to the knowledge of the eastern Pacific octocoral biodiversity. PMID:24294084

  5. Two new species of gorgonian octocorals from the Tropical Eastern Pacific Biogeographic Region (Cnidaria, Anthozoa, Gorgoniidae).

    PubMed

    Breedy, Odalisca; Williams, Gary C; Guzman, Hector M

    2013-01-01

    The gorgoniid Eugorgia is exclusively an eastern Pacific genus. It has a wide geographic and bathymetric range of distribution, found from California to Perú and extends down to 65 m deep. Two new species are herein described. The morphological characters were analyzed and illustrated by light and scanning electron microscopy. Eugorgia beebei sp. n. can be distinguished by its white, ascending, sparse colony growth. Eugorgia mutabilis sp. n. can be distinguished by its white colony that changes color after collection, and the conspicuous sharp-crested disc sclerites. From a morphological point of view the new species are related to the daniana-group, the rubens-group and the siedenburgae-group of Eugorgia; their affiliations, and the proposal of a new group are discussed. These new species increases the number of species in the genus to 15, and contribute to the knowledge of the eastern Pacific octocoral biodiversity.

  6. New insight into Biomineralisation Mechanisms of Colonial Cold-Water Scleractinians based on Species Interaction

    NASA Astrophysics Data System (ADS)

    Oppelt, Alexandra; Rocha, Carlos

    2016-04-01

    The scleractinian cold-water coral species Lophelia pertusa has been subject of many biomineralisation reconstruction attempts in order to decipher environmental signals potentially recorded within its skeletal structures. Even though understanding the mechanisms of carbonate precipitation is a prerequisite to interpret variations in geochemical signals along coral growth axis and evaluate the effects of potential kinetic fractionation, results of research into this area are still largely inconclusive. A close look at similar calcification patterns in microstructure and in the geochemistry of Lophelia pertusa and Madrepora oculata coral branches along the contact with polychaete tubes provides in our view additional information that may be relevant to understanding the biomineralisation mechanisms of colonial corals. Our analysis suggests a common precipitation mechanism and its origin is most likely found in the aspect of the extracytoplasmic calcifying medium. Based on prior research and own results we suggest mucus as part of, or even the main medium controlling calcification mechanics

  7. Megafauna community composition associated with Lophelia pertusa colonies in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Lessard-Pilon, Stephanie A.; Podowski, Elizabeth L.; Cordes, Erik E.; Fisher, Charles R.

    2010-11-01

    The deep-water coral Lophelia pertusa provides habitat for diverse communities in the Gulf of Mexico. Photomosaics and analyses within a Geographic Information System (GIS) were used as non-destructive sampling tools to examine megafauna community composition associated with L. pertusa colonies on authigenic carbonate outcrops in two regions of the Gulf of Mexico. Megafauna communities associated with L. pertusa were more similar within a region than between regions. Within regions, the amount of dead coral, number of abiotic and biotic substrata, and percentage of live L. pertusa influenced the diversity, composition, and structure of the coral-associated communities. Elevated diversity levels in the communities associated with L. pertusa structure indicate that L. pertusa provides a distinct, localized habitat source. Outcrops with high proportions of dead L. pertusa harbored more higher order consumers than outcrops with primarily live coral framework.

  8. Synchronous reproduction of corals in the Red Sea

    NASA Astrophysics Data System (ADS)

    Hanafy, M. H.; Aamer, M. A.; Habib, M.; Rouphael, Anthony B.; Baird, Andrew H.

    2010-03-01

    Multi-species synchronous spawning was first described on reefs off the east and west coast of Australia. In contrast, locally abundant species in the northern Red Sea and the central Pacific have little overlap in the time of reproduction. Consequently, the idea developed that high levels of spawning synchrony both within and among species was largely confined to Australian reefs. Here, we show that gamete maturity in colonies of the genus Acropora was highly synchronous in the Red Sea. In early April 2008, at two locations separated by 300 km, 13 of 24 species sampled had mature colonies, and a further 9 species had immature colonies. In late April-early May 2008, all colonies sampled had no oocytes, indicating colonies had spawned a few days after the full moon of 20 April 2008. Similarly, in 2009, 99% of colonies from 17 species at Hurghada were mature in late April, and all were empty in early May. Spawn slicks suggested many of these colonies had released gametes three night prior to the full moon on 8 May 2009. This level of synchrony in gamete maturity is among the highest ever recorded and similar to that typically recorded in Acropora assemblages on Australian reefs. While further work is required to document the night of gamete release, these data strongly suggest that high levels of spawning synchrony are a regular feature of these Red Sea coral assemblages and that multi-species spawning occurs on or around the full moon in April and/or May.

  9. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves.

    PubMed

    Pacherres, Cesar O; Schmidt, Gertraud M; Richter, Claudio

    2013-12-01

    Large amplitude internal waves (LAIW) cause frequent and severe changes in the physico-chemical environment of Andaman Sea coral reefs and are a potentially important source of disturbance for corals. To explore the coral response to LAIW, prey capture disposition and photosynthesis were investigated in relation to changes in seawater temperature, pH, flow speed and food availability in LAIW simulation studies under controlled laboratory conditions, using Porites lutea as a model organism. Although food presence stimulated polyp expansion, we found an overriding effect of low temperature (19°C) causing retraction of the coral polyps into their calices, particularly when pH was altered concomitantly. Decreases in pH alone, however, caused the expansion of the polyps. The exposure history of the colonies played a crucial role in coral responses: prior field exposure to LAIW yielded lower retraction levels than in LAIW-inexperienced corals, suggesting acclimatization. Low temperature (19°C) exposure did not seem to influence the photosynthetic performance, but LAIW-experienced corals showed higher values of maximum dark-adapted quantum yield (Fv/Fm) of photosystem II than LAIW-inexperienced controls. Collectively, these data suggest that P. lutea, the dominant hermatypic coral in the Andaman Sea, can acclimatize to extreme changes in its abiotic environment by modulating its mixotrophic nutrition, through polyp expansion and potential feeding, as well as its photosynthetic efficiency.

  10. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    PubMed Central

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  11. Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences.

    PubMed

    Roder, Cornelia; Bayer, Till; Aranda, Manuel; Kruse, Maren; Voolstra, Christian R

    2015-07-01

    The significance of bacteria for eukaryotic functioning is increasingly recognized. Coral reef ecosystems critically rely on the relationship between coral hosts and their intracellular photosynthetic dinoflagellates, but the role of the associated bacteria remains largely theoretical. Here, we set out to relate coral-associated bacterial communities of the fungid host species Ctenactis echinata to environmental settings (geographic location, substrate cover, summer/winter, nutrient and suspended matter concentrations) and coral host abundance. We show that bacterial diversity of C. echinata aligns with ecological differences between sites and that coral colonies sampled at the species' preferred habitats are primarily structured by one bacterial taxon (genus Endozoicomonas) representing more than 60% of all bacteria. In contrast, host microbiomes from lower populated coral habitats are less structured and more diverse. Our study demonstrates that the content and structure of the coral microbiome aligns with environmental differences and denotes habitat adequacy. Availability of a range of coral host habitats might be important for the conservation of distinct microbiome structures and diversity.

  12. Intergenerational transfer of specific bacteria in corals and possible implications for offspring fitness.

    PubMed

    Ceh, Janja; van Keulen, Mike; Bourne, David G

    2013-01-01

    Diverse and abundant bacterial populations play important functional roles in the multi-partite association of the coral holobiont. The specificity of coral-associated assemblages remains unclear, and little is known about the inheritance of specific bacteria from the parent colony to their offspring. This study investigated if broadcast spawning and brooding corals release specific and potentially beneficial bacteria with their offspring to secure maintenance across generations. Two coral species, Acropora tenuis and Pocillopora damicornis, were maintained in 0.2 μm filtered seawater during the release of their gametes and planulae, respectively. Water samples, excluding gametes and planulae, were subsequently collected, and bacterial diversity was assessed through a pyrosequencing approach amplifying a 470-bp region of the 16S rRNA gene including the variable regions 1-3. Compared to the high bacterial diversity harboured by corals, only a few taxa of bacteria were released by adult corals. Both A. tenuis and P. damicornis released similar bacteria, and the genera Alteromonas and Roseobacter were abundant in large proportions in the seawater of both species after reproduction. This study suggests that adult corals may release bacteria with their offspring to benefit the fitness in early coral life stages.

  13. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals.

    PubMed

    Boulotte, Nadine M; Dalton, Steven J; Carroll, Andrew G; Harrison, Peter L; Putnam, Hollie M; Peplow, Lesa M; van Oppen, Madeleine Jh

    2016-11-01

    Reef-building corals possess a range of acclimatisation and adaptation mechanisms to respond to seawater temperature increases. In some corals, thermal tolerance increases through community composition changes of their dinoflagellate endosymbionts (Symbiodinium spp.), but this mechanism is believed to be limited to the Symbiodinium types already present in the coral tissue acquired during early life stages. Compelling evidence for symbiont switching, that is, the acquisition of novel Symbiodinium types from the environment, by adult coral colonies, is currently lacking. Using deep sequencing analysis of Symbiodinium rDNA internal transcribed spacer 2 (ITS2) PCR amplicons from two pocilloporid coral species, we show evidence consistent with de novo acquisition of Symbiodinium types from the environment by adult corals following two consecutive bleaching events. Most of these newly detected symbionts remained in the rare biosphere (background types occurring below 1% relative abundance), but one novel type reached a relative abundance of ~33%. Two de novo acquired Symbiodinium types belong to the thermally resistant clade D, suggesting that this switching may have been driven by consecutive thermal bleaching events. Our results are particularly important given the maternal mode of Symbiodinium transmission in the study species, which generally results in high symbiont specificity. These findings will cause a paradigm shift in our understanding of coral-Symbiodinium symbiosis flexibility and mechanisms of environmental acclimatisation in corals.

  14. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals

    PubMed Central

    Boulotte, Nadine M; Dalton, Steven J; Carroll, Andrew G; Harrison, Peter L; Putnam, Hollie M; Peplow, Lesa M; van Oppen, Madeleine JH

    2016-01-01

    Reef-building corals possess a range of acclimatisation and adaptation mechanisms to respond to seawater temperature increases. In some corals, thermal tolerance increases through community composition changes of their dinoflagellate endosymbionts (Symbiodinium spp.), but this mechanism is believed to be limited to the Symbiodinium types already present in the coral tissue acquired during early life stages. Compelling evidence for symbiont switching, that is, the acquisition of novel Symbiodinium types from the environment, by adult coral colonies, is currently lacking. Using deep sequencing analysis of Symbiodinium rDNA internal transcribed spacer 2 (ITS2) PCR amplicons from two pocilloporid coral species, we show evidence consistent with de novo acquisition of Symbiodinium types from the environment by adult corals following two consecutive bleaching events. Most of these newly detected symbionts remained in the rare biosphere (background types occurring below 1% relative abundance), but one novel type reached a relative abundance of ~33%. Two de novo acquired Symbiodinium types belong to the thermally resistant clade D, suggesting that this switching may have been driven by consecutive thermal bleaching events. Our results are particularly important given the maternal mode of Symbiodinium transmission in the study species, which generally results in high symbiont specificity. These findings will cause a paradigm shift in our understanding of coral-Symbiodinium symbiosis flexibility and mechanisms of environmental acclimatisation in corals. PMID:27093048

  15. Coral reef recovery in Florida and the Persian Gulf

    USGS Publications Warehouse

    Shinn, Eugene A.

    1976-01-01

    Long-term observations and study of coral reef destruction by hurricanes in the Florida Keys show, surprisingly, that although corals are devastated on a grand scale during storms, recovery is rapid. Recovery occurs because of the widespread scattering of live fragments, many of which become growth sites of new colonies. Reef recovery from death by chilling in the Persian Gulf was well under way when last observed, but it is not yet known if the recovery rate was as rapid as recovery from the storm destruction in Florida. Recovery from death by chilling requires settlement of transported coral larvae and a substrate suitable for larval attachment. Such resettlement is subject to the effects of currents, predators, pollution, and competition for substrate. A growth rate of 10 cm per year combined with geometrical progression of branch formation accounts for rapid recovery. Although calculated coral proliferation seems unusually high, it has been confirmed by serial underwater photographs spanning ten years. More precise measurements of growth and branching are needed, along with growth data for other common reef-building corals. Such data would be useful for predicting standing crop of a restocked or transplanted reef.

  16. Gross and Microscopic Lesions in Corals from Micronesia.

    PubMed

    Work, T M; Aeby, G S; Hughen, K A

    2016-01-01

    The authors documented gross and microscopic morphology of lesions in corals on 7 islands spanning western, southern, and eastern Micronesia, sampling 76 colonies comprising 30 species of corals among 18 genera, with Acropora, Porites, and Montipora dominating. Tissue loss comprised the majority of gross lesions sampled (41%), followed by discoloration (30%) and growth anomaly (29%). Of 31 cases of tissue loss, most lesions were subacute (48%), followed by acute and chronic (26% each). Of 23 samples with discoloration, most were dark discoloration (40%), with bleaching and other discoloration each constituting 30%. Of 22 growth anomalies, umbonate growth anomalies composed half, with exophytic, nodular, and rugose growth anomalies composing the remainder. On histopathology, for 9 cases of dark discoloration, fungal infections predominated (77%); for 7 bleached corals, depletion of zooxanthellae from the gastrodermis made up a majority of microscopic diagnoses (57%); and for growth anomalies other than umbonate, hyperplasia of the basal body wall was the most common microscopic finding (63%). For the remainder of the gross lesions, no single microscopic finding constituted >50% of the total. Host response varied with the agent present on histology. Fragmentation of tissues was most often associated with algae (60%), whereas necrosis dominated (53%) for fungi. Two newly documented potentially symbiotic tissue-associated metazoans were seen in Porites and Montipora. Findings of multiple potential etiologies for a given gross lesion highlight the importance of incorporating histopathology in coral disease surveys. This study also expands the range of corals infected with cell-associated microbial aggregates.

  17. Gross and microscopic lesions in corals from Micronesia

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.; Hughen, Konrad A.

    2015-01-01

    The authors documented gross and microscopic morphology of lesions in corals on 7 islands spanning western, southern, and eastern Micronesia, sampling 76 colonies comprising 30 species of corals among 18 genera, with Acropora, Porites, and Montipora dominating. Tissue loss comprised the majority of gross lesions sampled (41%), followed by discoloration (30%) and growth anomaly (29%). Of 31 cases of tissue loss, most lesions were subacute (48%), followed by acute and chronic (26% each). Of 23 samples with discoloration, most were dark discoloration (40%), with bleaching and other discoloration each constituting 30%. Of 22 growth anomalies, umbonate growth anomalies composed half, with exophytic, nodular, and rugose growth anomalies composing the remainder. On histopathology, for 9 cases of dark discoloration, fungal infections predominated (77%); for 7 bleached corals, depletion of zooxanthellae from the gastrodermis made up a majority of microscopic diagnoses (57%); and for growth anomalies other than umbonate, hyperplasia of the basal body wall was the most common microscopic finding (63%). For the remainder of the gross lesions, no single microscopic finding constituted >50% of the total. Host response varied with the agent present on histology. Fragmentation of tissues was most often associated with algae (60%), whereas necrosis dominated (53%) for fungi. Two newly documented potentially symbiotic tissue-associated metazoans were seen in Porites and Montipora. Findings of multiple potential etiologies for a given gross lesion highlight the importance of incorporating histopathology in coral disease surveys. This study also expands the range of corals infected with cell-associated microbial aggregates.

  18. Life on the edge: corals in mangroves and climate change

    USGS Publications Warehouse

    Rogers, Caroline S.; Herlan, James J.

    2012-01-01

    Coral diseases have played a major role in the degradation of coral reefs in the Caribbean, including those in the US Virgin Islands (USVI). In 2005, bleaching affected reefs throughout the Caribbean, and was especially severe on USVI reefs. Some corals began to regain their color as water temperatures cooled, but an outbreak of disease (primarily white plague) led to losses of over 60% of the total live coral cover. Montastraea annularis, the most abundant coral, was disproportionately affected, and decreased in relative abundance. The threatened species Acropora palmata bleached for the first time on record in the USVI but suffered less bleaching and less mortality from disease than M. annularis. Acropora palmata and M. annularis are the two most significant species in the USVI because of their structural role in the architecture of the reefs, the large size of their colonies, and their complex morphology. The future of the USVI reefs depends largely on their fate. Acropora palmata is more likely to recover than M. annularis for many reasons, including its faster growth rate, and its lower vulnerability to bleaching and disease.

  19. Effect of calcium carbonate saturation of seawater on coral calcification

    USGS Publications Warehouse

    Gattuso, J.-P.; Frankignoulle, M.; Bourge, I.; Romaine, S.; Buddemeier, R.W.

    1998-01-01

    The carbonate chemistry of seawater is usually not considered to be an important factor influencing calcium-carbonate-precipitation by corals because surface seawater is supersaturated with respect to aragonite. Recent reports, however, suggest that it could play a major role in the evolution and biogeography of recent corals. We investigated the calcification rates of five colonies of the zooxanthellate coral Stylophora pistillata in synthetic seawater using the alkalinity anomaly technique. Changes in aragonite saturation from 98% to 585% were obtained by manipulating the calcium concentration. The results show a nonlinear increase in calcification rate as a function of aragonite saturation level. Calcification increases nearly 3-fold when aragonite saturation increases from 98% to 390%, i.e., close to the typical present saturation state of tropical seawater. There is no further increase of calcification at saturation values above this threshold. Preliminary data suggest that another coral species, Acropora sp., displays a similar behaviour. These experimental results suggest: (l) that the rate of calcification does not change significantly within the range of saturation levels corresponding to the last glacial-interglacial cycle, and (2) that it may decrease significantly in the future as a result of the decrease in the saturation level due to anthropogenic release of CO2 into the atmosphere. Experimental studies that control environmental conditions and seawater composition provide unique opportunities to unravel the response of corals to global environmental changes.

  20. Heterotrophy in tropical scleractinian corals.

    PubMed

    Houlbrèque, Fanny; Ferrier-Pagès, Christine

    2009-02-01

    The dual character of corals, that they are both auto- and heterotrophs, was recognized early in the twentieth Century. It is generally accepted that the symbiotic association between corals and their endosymbiotic algae (called zooxanthellae) is fundamental to the development of coral reefs in oligotrophic tropical oceans because zooxanthellae transfer the major part of their photosynthates to the coral host (autotrophic nutrition). However, numerous studies have confirmed that many species of corals are also active heterotrophs, ingesting organisms ranging from bacteria to mesozooplankton. Heterotrophy accounts for between 0 and 66% of the fixed carbon incorporated into coral skeletons and can meet from 15 to 35% of daily metabolic requirements in healthy corals and up to 100% in bleached corals. Apart from this carbon input, feeding is likely to be important to most scleractinian corals, since nitrogen, phosphorus, and other nutrients that cannot be supplied from photosynthesis by the coral's symbiotic algae must come from zooplankton capture, particulate matter or dissolved compounds. A recent study showed that during bleaching events some coral species, by increasing their feeding rates, are able to maintain and restore energy reserves. This review assesses the importance and effects of heterotrophy in tropical scleractinian corals. We first provide background information on the different food sources (from dissolved organic matter to meso- and macrozooplankton). We then consider the nutritional inputs of feeding. Finally, we review feeding effects on the different physiological parameters of corals (tissue composition, photosynthesis and skeletal growth).

  1. detrimentally affects tissue regeneration of Red Sea corals

    NASA Astrophysics Data System (ADS)

    Horwitz, Rael; Fine, Maoz

    2014-09-01

    Ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) is threatening the future of coral reef ecosystems. Mounting experimental evidence suggests that OA negatively impacts fundamental life functions of scleractinian corals, including growth and sexual reproduction. Although regeneration is regarded as a chief life function in scleractinian corals and essential to maintain the colony's integrity, the effect of OA on regeneration processes has not yet been investigated. To evaluate the effects of OA on regeneration, the common Indo-Pacific corals Porites sp., Favia favus, Acropora eurystoma, and Stylophora pistillata were inflicted with lesions (314-350 mm2, depending on species) and incubated in different pCO2: (1) ambient seawater (400 µatm, pH 8.1), (2) intermediate (1,800 µatm, pH 7.6), and (3) high (4,000 µatm, pH 7.3) for extended periods of time (60-120 d). While all coral species after 60 d had significantly higher tissue regeneration in ambient conditions as compared to the intermediate and high treatments, reduction in regeneration rate was more pronounced in the slow-growing massive Porites sp. and F. favus than the relatively fast-growing, branching S. pistillata and A. eurystoma. This coincided with reduced tissue biomass of Porites sp., F. favus, and A. eurystoma in higher pCO2, but not in S. pistillata. Porites sp., F. favus, and S. pistillata also experienced a decrease in Symbiodinium density in higher pCO2, while in A. eurystoma there was no change. We hypothesize that a lowered regenerative capacity under elevated pCO2 may be related to resource trade-offs, energy cost of acid/base regulation, and/or decrease in total energy budget. This is the first study to demonstrate that elevated pCO2 could have a compounding influence on coral regeneration following injury, potentially affecting the capacity of reef corals to recover following physical disturbance.

  2. Coral bleaching: Thermal adaptation in reef coral symbionts

    NASA Astrophysics Data System (ADS)

    Rowan, Rob

    2004-08-01

    Many corals bleach as a result of increased seawater temperature, which causes them to lose their vital symbiotic algae (Symbiodinium spp.) - unless these symbioses are able to adapt to global warming, bleaching threatens coral reefs worldwide. Here I show that some corals have adapted to higher temperatures, at least in part, by hosting specifically adapted Symbiodinium. If other coral species can host these or similar Symbiodinium taxa, they might adapt to warmer habitats relatively easily.

  3. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gori, A.; Orejas, C.; Madurell, T.; Bramanti, L.; Martins, M.; Quintanilla, E.; Marti-Puig, P.; Lo Iacono, C.; Puig, P.; Requena, S.; Greenacre, M.; Gili, J.

    2012-12-01

    Submarine canyons are known as one of the seafloor morphological features where living cold-water coral (CWC) communities develop in the Mediterranean Sea. We investigated the CWC community of the two westernmost submarine canyons of the Gulf of Lions canyon system: the Cap de Creus Canyon (CCC) and Lacaze Duthiers Canyon (LDC). Coral associations have been studied through video material recorded by means of a manned submersible and a remotely operated vehicle. Video transects have been conducted and analyzed in order to obtain information on (1) coral bathymetric distribution and density patterns, (2) size structure of coral populations, and (3) coral colony orientation with respect to the substrate. Madrepora oculata was the most abundant CWC in both canyons, while Lophelia pertusa and Dendrophyllia cornigera mostly occurred as isolated colonies or in small patches. An important exception was detected in a vertical cliff in LDC where a large Lophelia pertusa framework was documented. This is the first record of such an extended L. pertusa framework in the Mediterranean Sea. In both canyons coral populations were dominated by medium and large colonies, but the frequent presence of small-sized colonies also indicate active recruitment. The predominant coral orientation with respect to the substrate (90° and 135°) is probably driven by the current regime as well as by the sediment load transported by the current flows. In general no clear differences were observed between the CWC populations from CCC and LDC, despite large differences in particulate matter between canyons.

  4. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Gori, A.; Orejas, C.; Madurell, T.; Bramanti, L.; Martins, M.; Quintanilla, E.; Marti-Puig, P.; Lo Iacono, C.; Puig, P.; Requena, S.; Greenacre, M.; Gili, J. M.

    2013-03-01

    Submarine canyons are known as one of the seafloor morphological features where living cold-water coral (CWC) communities develop in the Mediterranean Sea. We investigated the CWC community of the two westernmost submarine canyons of the Gulf of Lions canyon system: the Cap de Creus Canyon (CCC) and Lacaze-Duthiers Canyon (LDC). Coral associations have been studied through video material recorded by means of a manned submersible and a remotely operated vehicle. Video transects have been conducted and analyzed in order to obtain information on (1) coral bathymetric distribution and density patterns, (2) size structure of coral populations, and (3) coral colony position with respect to the substrate. Madrepora oculata was the most abundant CWC in both canyons, while Lophelia pertusa and Dendrophyllia cornigera mostly occurred as isolated colonies or in small patches. An important exception was detected in a vertical cliff in LDC where a large L. pertusa framework was documented. This is the first record of such an extended L. pertusa framework in the Mediterranean Sea. In both canyons coral populations were dominated by medium and large colonies, but the frequent presence of small-sized colonies also indicate active recruitment. The predominant coral orientation (90° and 135°) is probably driven by the current regime as well as by the sediment load transported by the current flows. In general, no clear differences were observed in the abundance and in the size structure of the CWC populations between CCC and LDC, despite large differences in particulate matter between canyons.

  5. Effect of macroalgal expansion and marine protected areas on coral recovery following a climatic disturbance.

    PubMed

    Wilson, Shaun K; Graham, Nicholas A J; Fisher, Rebecca; Robinson, Jan; Nash, Kirsty; Chong-Seng, Karen; Polunin, Nicholas V C; Aumeeruddy, Riaz; Quatre, Rodney

    2012-12-01

    Disturbance plays an important role in structuring marine ecosystems, and there is a need to understand how conservation practices, such as the designation of Marine Protected Areas (MPAs), facilitate postdisturbance recovery. We evaluated the association of MPAs, herbivorous fish biomass, substrate type, postdisturbance coral cover, and change in macroalgal cover with coral recovery on the fringing reefs of the inner Seychelle islands, where coral mortality after a 1998 bleaching event was extensive. We visually estimated benthic cover and fish biomass at 9 sites in MPAs where fishing is banned and at 12 sites where fishing is permitted in 1994, 2005, 2008, and 2011. We used analysis of variance to examine spatial and temporal variations in coral cover and generalized additive models to identify relations between coral recovery and the aforementioned factors that may promote recovery. Coral recovery occurred on all substrate types, but it was highly variable among sites and times. Between 2005 and 2011 the increase in coral cover averaged 1%/year across 21 sites, and the maximum increase was 4%/year. However, mean coral cover across the study area (14%) remained at half of 1994 levels (28%). Sites within MPAs had faster rates of coral recovery than sites in fished areas only where cover of macroalgae was low and had not increased over time. In MPAs where macroalgae cover expanded since 1998 there was no recovery. Where coral was recovering on granite reefs there was a shift in relative prevalence of colony life-form from branching to encrusting species. This simplification of reef structure may affect associated reef fauna even if predisturbance levels of coral cover are attained.

  6. The Suess Effect and Additional Impacts on the Carbon Isotope Composition of a Belizean Coral

    NASA Astrophysics Data System (ADS)

    Greer, L.; Bunn, S.; Humston, R.; Swart, P. K.; Curran, H.; Rose, L. E.

    2011-12-01

    Recent work has shown that the geochemistry of coral skeletons can reflect large-scale changes in the ocean carbon isotope budget as influenced by the anthropogenic influx of fossil fuel carbon to the atmosphere (the Suess Effect). Yet not all coral carbon records reflect just atmospheric controls on carbon. This study assesses the relative influence of the Suess Effect on carbon chemistry within a Belizean Montastrea faveolota colony and interprets deviations from the Suess Effect signal. The coral sample used for this study was collected off Wee Wee Caye, in South-Central Belize offshore of the Sittee River, Stann Creek District in 2003. Coral carbonate was sampled at an average resolution of 15 samples per coral year. Carbon isotope data from the Belizean coral were compared with mean annual carbon isotope data from Atlantic corals in a study by Swart et. al (2010) to analyze the relative contribution of the Suess Effect and competing controls on the carbon isotope composition of Belizean waters. The observed pattern in the Belize coral suggested two distinct trends in carbon isotopic composition, and segmented regression analysis indicated a significant breakpoint occurs in this record in approximately 1965. Deforestation rates in Belize after the 1960's have been almost double that for the rest of Central America (2.3% vs. 1.2% annually) corresponding with a general shift from rural farming to large scale agriculture in Belize. Consequently, increased rates of deforestation in Belize may have been an important factor in carbon isotope budgets of the area over the last several decades. Compared with data averaged from Atlantic coral samples, annual carbon isotope values in Belizean coral declined more rapidly since the 1960's. We attribute this sharper decline in the Belizean coral to enhanced influx of terrestrial 'light' organic carbon to the reef over the study period.

  7. European Cold-Water Corals: Hydrography and Geochemistry. What is the message?

    NASA Astrophysics Data System (ADS)

    Dullo, W.-C.; Rüggeberg, A.; Flögel, S.

    2009-04-01

    Cold-water corals are known to be abundant in the world's oceans forming unique reef structures mainly built up by colonial azooxanthellate scleractinians Lophelia pertusa and Madrepora oculata. Focusing on the European continental margin, these cold-water coral reefs occur on moraine ridges off Norway to small coral topped mounds and huge coral banks in the Rockall Trough, the Porcupine Seabight, the Gulf of Cadiz, but only have a patchy occurrence in the Mediterranean Sea. Living cold-water coral reefs occur over a wide bathymetric and hydrographical range. We found that cold-water coral reefs are limited to different intermediate water masses. Measurements of the physical and geological properties showed that parameters such as temperature, salinity, dissolved oxygen content, current intensities, and different substrates vary widely without specifically impacting the distribution of living cold-water coral reefs. The habitat of living reefs along the Atlantic European continental margin comprises a temperature-salinity field, with its lower boundary equivalent to the Intermediate Salinity Maximum (ISM). Therefore, cold-water corals of these reefs may report environmental changes, present and past, if the proper geochemical tools are applied. Sr-isotopes seem to be a very promising proxy, since they portray very well the temperature conditions of the ambient seawater from which the coral precipitates. The correlation of established proxies such as ^18O and ^13C with temperature is possible as well, however, it remains difficult since there is no direct temperature equation applicable as in shallow-water corals. Other temperature proxies such as Sr/Ca, Mg/Ca and U/Ca are in?uenced by the complex microstructure of the aragonite skeleton, the rate of calci?cation, and other vital effects observed for coral species. We will present a variety of established and new proxies and will discuss their application and interpretation potential.

  8. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern

    NASA Astrophysics Data System (ADS)

    Huntington, B. E.; Lirman, D.

    2012-12-01

    Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.

  9. Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral 'bleaching' event.

    PubMed

    LaJeunesse, Todd C; Smith, Robin T; Finney, Jennifer; Oxenford, Hazel

    2009-12-07

    Reef corals are sentinels for the adverse effects of rapid global warming on the planet's ecosystems. Warming sea surface temperatures have led to frequent episodes of bleaching and mortality among corals that depend on endosymbiotic micro-algae (Symbiodinium) for their survival. However, our understanding of the ecological and evolutionary response of corals to episodes of thermal stress remains inadequate. For the first time, we describe how the symbioses of major reef-building species in the Caribbean respond to severe thermal stress before, during and after a severe bleaching event. Evidence suggests that background populations of Symbiodinium trenchi (D1a) increased in prevalence and abundance, especially among corals that exhibited high sensitivity to stress. Contrary to previous hypotheses, which posit that a change in symbiont occurs subsequent to bleaching, S. trenchi increased in the weeks leading up to and during the bleaching episode and disproportionately dominated colonies that did not bleach. During the bleaching event, approximately 20 per cent of colonies surveyed harboured this symbiont at high densities (calculated at less than 1.0% only months before bleaching began). However, competitive displacement by homologous symbionts significantly reduced S. trenchi's prevalence and dominance among colonies after a 2-year period following the bleaching event. While the extended duration of thermal stress in 2005 provided an ecological opportunity for a rare host-generalist symbiont, it remains unclear to what extent the rise and fall of S. trenchi was of ecological benefit or whether its increased prevalence was an indicator of weakening coral health.

  10. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals.

    PubMed

    Piniak, Gregory A

    2007-10-01

    This study used non-invasive pulse-amplitude modulated (PAM) fluorometry to measure the maximum fluorescence yield (F(v)/F(m)) of two Hawaiian scleractinian coral species exposed to short-term sedimentation stress. Beach sand or harbor mud was applied to coral fragments in a flow-through aquarium system for 0-45 h, and changes in F(v)/F(m) were measured as a function of sediment type and length of exposure. Corals were monitored for up to 90 h to document recovery after sediment removal. Sediment deposition significantly decreased F(v)/F(m) in both species and was a function of sediment type and time. Corals that received sediment for 30 h or more had the greatest reduction in yield and exhibited little recovery over the course of the experiment. Harbor mud caused a greater reduction in Porites lobata yield than beach sand, whereas both sediment types had equally deleterious effects on Montipora capitata. Colony morphology and sediment type were important factors in determining yield reduction--P. lobata minimized damage from coarse sand grains by passive sediment rejection or accumulation in depressions in the skeleton, and fluorescence yield decreased most in corals exposed to sticky harbor mud or in colonies with flattened morphologies. Species-specific differences could not be tested due to differences in colony morphology and surface area.

  11. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals

    USGS Publications Warehouse

    Piniak, G.A.

    2007-01-01

    This study used non-invasive pulse-amplitude modulated (PAM) fluorometry to measure the maximum fluorescence yield (Fv/Fm) of two Hawaiian scleractinian coral species exposed to short-term sedimentation stress. Beach sand or harbor mud was applied to coral fragments in a flow-through aquarium system for 0-45 h, and changes in Fv/Fm were measured as a function of sediment type and length of exposure. Corals were monitored for up to 90 h to document recovery after sediment removal. Sediment deposition significantly decreased Fv/Fm in both species and was a function of sediment type and time. Corals that received sediment for 30 h or more had the greatest reduction in yield and exhibited little recovery over the course of the experiment. Harbor mud caused a greater reduction in Porites lobata yield than beach sand, whereas both sediment types had equally deleterious effects on Montipora capitata. Colony morphology and sediment type were important factors in determining yield reduction-P. lobata minimized damage from coarse sand grains by passive sediment rejection or accumulation in depressions in the skeleton, and fluorescence yield decreased most in corals exposed to sticky harbor mud or in colonies with flattened morphologies. Species-specific differences could not be tested due to differences in colony morphology and surface area. ?? 2007.

  12. Thermally tolerant corals have limited capacity to acclimatize to future warming.

    PubMed

    Rodolfo-Metalpa, Riccardo; Hoogenboom, Mia O; Rottier, Cécile; Ramos-Esplá, Alfonso; Baker, Andrew C; Fine, Maoz; Ferrier-Pagès, Christine

    2014-10-01

    Thermal stress affects organism performance differently depending on the ambient temperature to which they are acclimatized, which varies along latitudinal gradients. This study investigated whether differences in physiological responses to temperature are consistent with regional differences in temperature regimes for the stony coral Oculina patagonica. To resolve this question, we experimentally assessed how colonies originating from four different locations characterized by >3 °C variation in mean maximum annual temperature responded to warming from 20 to 32 °C. We assessed plasticity in symbiont identity, density, and photosynthetic properties, together with changes in host tissue biomass. Results show that, without changes in the type of symbiont hosted by coral colonies, O. patagonica has limited capacity to acclimatize to future warming. We found little evidence of variation in overall thermal tolerance, or in thermal optima, in response to spatial variation in ambient temperature. Given that the invader O. patagonica is a relatively new member of the Mediterranean coral fauna, our results also suggest that coral populations may need to remain isolated for a long period of time for thermal adaptation to potentially take place. Our study indicates that for O. patagonica, mortality associated with thermal stress manifests primarily through tissue breakdown under moderate but prolonged warming (which does not impair symbiont photosynthesis and, therefore, does not lead to bleaching). Consequently, projected global warming is likely to cause repeat incidents of partial and whole colony mortality and might drive a gradual range contraction of Mediterranean corals.

  13. Sub-lethal coral stress: detecting molecular responses of coral populations to environmental conditions over space and time.

    PubMed

    Edge, S E; Shearer, T L; Morgan, M B; Snell, T W

    2013-03-15

    In order for sessile organisms to survive environmental fluctuations and exposures to pollutants, molecular mechanisms (i.e. stress responses) are elicited. Previously, detrimental effects of natural and anthropogenic stressors on coral health could not be ascertained until significant physiological responses resulted in visible signs of stress (e.g. tissue necrosis, bleaching). In this study, a focused anthozoan holobiont microarray was used to detect early and sub-lethal effects of spatial and temporal environmental changes on gene expression patterns in the scleractinian coral, Montastraea cavernosa, on south Florida reefs. Although all colonies appeared healthy (i.e. no visible tissue necrosis or bleaching), corals were differentially physiologically compensating for exposure to stressors that varied over time. Corals near the Port of Miami inlet experienced significant changes in expression of stress responsive and symbiont (zooxanthella)-specific genes after periods of heavy precipitation. In contrast, coral populations did not demonstrate stress responses during periods of increased water temperature (up to 29°C). Specific acute and long-term localized responses to other stressors were also evident. A correlation between stress response genes and symbiont-specific genes was also observed, possibly indicating early processes involved in the maintenance or disruption of the coral-zooxanthella symbiosis. This is the first study to reveal spatially- and temporally-related variation in gene expression in response to different stressors of in situ coral populations, and demonstrates that microarray technology can be used to detect specific sub-lethal physiological responses to specific environmental conditions that are not visually detectable.

  14. How does the proliferation of the coral-killing sponge Terpios hoshinota affect benthic community structure on coral reefs?

    NASA Astrophysics Data System (ADS)

    Elliott, Jennifer; Patterson, Mark; Summers, Natalie; Miternique, Céline; Montocchio, Emma; Vitry, Eugene

    2016-09-01

    Terpios hoshinota is an encrusting sponge and a fierce space competitor. It kills stony corals by overgrowing them and can impact reefs on the square kilometer scale. We investigated an outbreak of T. hoshinota in 2014 at the island of Mauritius to determine its impacts on coral community structure. Surveys were conducted at the putative outbreak center, an adjacent area, and around the island to determine the extent of spread of the sponge and which organisms it impacted. In addition, quadrats were monitored for 5 months (July-December) to measure the spreading rates of T. hoshinota and Acropora austera in areas both with and without T. hoshinota. The photosynthetic capabilities of T. hoshinota and A. austera were also measured. Terpios hoshinota was well established, covering 13% of an estimated 416 m2 of available hard coral substrate at the putative outbreak center, and 10% of an estimated 588 m2 of available hard coral substrate at the adjacent area. The sponge was observed at only one other site around Mauritius. Terpios hoshinota and A. austera increased their planar areas by 26.9 and 13.9%, respectively, over five months. No new colonies of T. hoshinota were recorded in adjacent sponge-free control areas, suggesting that sponge recruitment is very low during austral winter and spring. The sponge was observed to overgrow five stony corals; however, it showed a preference for branching corals, especially A. austera. This is the first time that a statistically significant coral substrate preference by T. hoshinota has been reported. Terpios hoshinota also had a significantly higher photosynthetic capacity than A. austera at irradiance >500 μmol photons m-2 s-1, a possible explanation for its high spreading rate. We discuss the long-term implications of the proliferation of T. hoshinota on community structure and dynamics of our study site.

  15. Investigating coral hyperspectral properties across coral species and coral state using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Smith, Dustin K.; Smith, Shane W.; Strychar, Kevin B.; McLauchlan, Lifford

    2013-09-01

    Coral reefs are one of the most diverse and threatened ecosystems in the world. Corals worldwide are at risk, and in many instances, dying due to factors that affect their environment resulting in deteriorating environmental conditions. Because corals respond quickly to the quality of the environment that surrounds them, corals have been identified as bioindicators of water quality and marine environmental health. The hyperspectral imaging system is proposed as a noninvasive tool to monitor different species of corals as well as coral state over time. This in turn can be used as a quick and non-invasive method to monitor environmental health that can later be extended to climate conditions. In this project, a laboratory-based hyperspectral imaging system is used to collect spectral and spatial information of corals. In the work presented here, MATLAB and ENVI software tools are used to view and process spatial information and coral spectral signatures to identify differences among the coral data. The results support the hypothesis that hyperspectral properties of corals vary among different coral species, and coral state over time, and hyperspectral imaging can be a used as a tool to document changes in coral species and state.

  16. Effects of deep-water coral banks on the abundance and size structure of the megafauna in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    D'Onghia, G.; Maiorano, P.; Sion, L.; Giove, A.; Capezzuto, F.; Carlucci, R.; Tursi, A.

    2010-03-01

    The Santa Maria di Leuca (SML) coral banks represent a rare example of living Lophelia-Madrepora-bearing coral mounds in the Mediterranean Sea. They are located between 350 and 1100 m in depth, in the northern Ionian Sea (eastern-central Mediterranean). Using a multi-beam echo sounder, side-scan sonar, high-resolution seismics and underwater video, the zones were identified for the sampling demersal fauna without damaging the coral colonies. During September-October 2005 experimental samplings were carried out with longlines and trawl nets inside the coral habitat and outside, where fishery exploitation occurs. No significant differences were shown between the abundance of fish recorded using longlines in the coral and non-coral habitat even though some selachians and teleosts were more abundant in the former than in the latter. Large specimens of rockfish ( Helicolenus dactylopterus) and blackspot seabream ( Pagellus bogaraveo) were commonly caught using longlines in the coral habitat. Data from trawling revealed refuge effects in the coral habitat and fishing effects outside. Significant differences were detected between the recorded abundances in the two study areas. Greater densities and biomasses were obtained inside the coral area, and fish size spectra and size distributions indicate a greater abundance of large fish inside the coral habitat. The SML coral habitat is a spawning area for H. dactylopterus. The remarkable density of the young-of-the-year of the deep-water shark Etmopterus spinax as well as of Merluccius merluccius, Micromesistius poutassou, Phycis blennoides and H. dactylopterus, indicates that the coral habitat also acts as nursery area for these demersal species, which are exploited outside. Considering the evidence of the negative impact of bottom trawling and, to a lesser extent, of longlining, the coral banks can provide a refuge for the conservation of unique species and habitats as well as in providing benefit to adjacent fisheries

  17. Coral symbioses under prolonged environmental change: living near tolerance range limits

    PubMed Central

    Sampayo, Eugenia M.; Ridgway, Tyrone; Franceschinis, Lorenzo; Roff, George; Hoegh-Guldberg, Ove; Dove, Sophie

    2016-01-01

    As climate change progresses, understanding the long-term response of corals and their endosymbionts (Symbiodinium) to prolonged environmental change is of immediate importance. Here, a total of 1152 fragments from 72 colonies of three common coral species (Stylophora pistillata, Pocillopora damicornis, Seriatopora hystrix) underwent a 32-month reciprocal depth transplantation. Genetic analysis showed that while S. hystrix maintained its generalist symbiont, some S. pistillata and P. damicornis underwent temporary changes in resident symbionts immediately after stress (transplantation; natural bleaching). These temporary changes were phylogenetically constrained to ‘host-compatible’ symbionts only and reversion to original symbionts occurred within 7 to 12 months, indicating long-term fidelity and stability of adult symbioses. Measurements of symbiont photo-physiology (dark adapted yield, pressure over photosystem II) and coral health (host protein, bleaching status, mortality) indicated a broad acclimatory capacity. However, this came at an apparent energetic expense as disproportionate mortality amongst symbioses that persisted outside their distribution range was observed following a natural bleaching event. As environmental changes due to climate change become more continuous in nature, sub-lethal effects linked to the existence near tolerance range limits coupled with the inability of adult coral colonies to change resident symbionts makes corals particularly susceptible to additional environmental fluctuations or stress events and reduces the resilience of coral populations. PMID:27805069

  18. Multispecies microbial mutualisms on coral reefs: the host as a habitat.

    PubMed

    Knowlton, Nancy; Rohwer, Forest

    2003-10-01

    Reef-building corals associate with a diverse array of eukaryotic and noneukaryotic microbes. Best known are dinoflagellates in the genus Symbiodinium ("zooxanthellae"), which are photosynthetic symbionts found in all reef-building corals. Once considered a single species, they are now recognized as several large, genetically diverse groups that often co-occur within a single host species or colony. Variation among Symbiodinium in host identities, tolerance to stress, and ability to colonize hosts has been documented, but there is little information on the ecology of zooxanthellar free-living stages and how different zooxanthellae perform as partners. Other microbial associates of reef corals are much less well known, but studies indicate that individual coral colonies host diverse assemblages of bacteria, some of which seem to have species-specific associations. This diversity of microbial associates has important evolutionary and ecological implications. Most mutualisms evolve as balanced reciprocations that allow partners to detect cheaters, particularly when partners are potentially diverse and can be transmitted horizontally. Thus, environmental stresses that incapacitate the ability of partners to reciprocate can destabilize associations by eliciting rejection by their hosts. Coral bleaching (the loss of zooxanthellae) and coral diseases, both increasing over the last several decades, may be examples of stress-related mutualistic instability.

  19. Bioindication in coral reef ecosystems.

    PubMed

    Yap, H T

    1986-01-01

    The concept of bioindication in the sense of the use of organisms for detecting environmental stress has been employed in coral reef conservation and management for the past several years. Important tools are coral growth rates and various community parameters, notably hard coral cover. The present need is the optimal coordination of international efforts for the earliest possible institution of an effective monitoring system.

  20. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    PubMed

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  1. Spatial Homogeneity of Bacterial Communities Associated with the Surface Mucus Layer of the Reef-Building Coral Acropora palmata.

    PubMed

    Kemp, Dustin W; Rivers, Adam R; Kemp, Keri M; Lipp, Erin K; Porter, James W; Wares, John P

    2015-01-01

    Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions--uppermost (high irradiance), underside (low irradiance), and the colony base--representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.

  2. Growth form-dependent response to physical disturbance and thermal stress in Acropora corals

    NASA Astrophysics Data System (ADS)

    Muko, S.; Arakaki, S.; Nagao, M.; Sakai, Kazuhiko

    2013-03-01

    To predict the community structure in response to changing environmental conditions, it is necessary to know the species-specific reaction and relative impact strength of each disturbance. We investigated the coral communities in two sites, an exposed and a protected site, at Iriomote Island, Japan, from 2005 to 2008. During the study period, a cyclone and thermal stress were observed. All Acropora colonies, classified into four morphologies (arborescent, tabular, corymbose, and digitate), were identified and tracked through time to calculate the annual mortality and growth rate. The mortality of all Acropora colonies in the protected site was lower than that in the exposed site during the period without disturbances. Extremely higher mortality due to bleaching was observed in tabular and corymbose Acropora, compared to other growth forms, at the protected sites after thermal stress. In contrast, physical disturbance by a tropical cyclone induced the highest mortality in arborescent and digitate corals at the exposed site. Moreover, arborescent corals exhibited a remarkable decline 1 year after the tropical cyclone at the exposed site. The growth of colonies that survived coral bleaching did not decrease in the following year compared to previous year for all growth forms, but the growth of arborescent and tabular remnant corals at the exposed site declined severely after the tropical cyclone compared to previous year. The delayed mortality and lowered growth rate after the tropical cyclone were probably due to the damage caused by the tropical cyclone. These results indicate that the cyclone had a greater impact on fragile corals than expected. This study provides useful information for the evaluation of Acropora coral response to progressing global warming conditions, which are predicted to increase in frequency and intensity in the near future.

  3. Development and validation of computational fluid dynamics models for prediction of heat transfer and thermal microenvironments of corals.

    PubMed

    Ong, Robert H; King, Andrew J C; Mullins, Benjamin J; Cooper, Timothy F; Caley, M Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching.

  4. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas.

    PubMed

    Hadaidi, Ghaida; Röthig, Till; Yum, Lauren K; Ziegler, Maren; Arif, Chatchanit; Roder, Cornelia; Burt, John; Voolstra, Christian R

    2017-03-31

    Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata.

  5. Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67-100 m depths) coral Leptoseris

    PubMed Central

    Chan, Yvonne L; Pochon, Xavier; Fisher, Marla A; Wagner, Daniel; Concepcion, Gregory T; Kahng, Samuel E; Toonen, Robert J; Gates, Ruth D

    2009-01-01

    Background Mesophotic corals (light-dependent corals in the deepest half of the photic zone at depths of 30 - 150 m) provide a unique opportunity to study the limits of the interactions between corals and endosymbiotic dinoflagellates in the genus Symbiodinium. We sampled Leptoseris spp. in Hawaii via manned submersibles across a depth range of 67 - 100 m. Both the host and Symbiodinium communities were genotyped, using a non-coding region of the mitochondrial ND5 intron (NAD5) and the nuclear ribosomal internal transcribed spacer region 2 (ITS2), respectively. Results Coral colonies harbored endosymbiotic communities dominated by previously identified shallow water Symbiodinium ITS2 types (C1_ AF333515, C1c_ AY239364, C27_ AY239379, and C1b_ AY239363) and exhibited genetic variability at mitochondrial NAD5. Conclusion This is one of the first studies to examine genetic diversity in corals and their endosymbiotic dinoflagellates sampled at the limits of the depth and light gradients for hermatypic corals. The results reveal that these corals associate with generalist endosymbiont types commonly found in shallow water corals and implies that the composition of the Symbiodinium community (based on ITS2) alone is not responsible for the dominance and broad depth distribution of Leptoseris spp. The level of genetic diversity detected in the coral NAD5 suggests that there is undescribed taxonomic diversity in the genus Leptoseris from Hawaii. PMID:19747389

  6. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas

    PubMed Central

    Hadaidi, Ghaida; Röthig, Till; Yum, Lauren K.; Ziegler, Maren; Arif, Chatchanit; Roder, Cornelia; Burt, John; Voolstra, Christian R.

    2017-01-01

    Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata. PMID:28361923

  7. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    PubMed Central

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  8. Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data

    NASA Astrophysics Data System (ADS)

    Mortensen, P. B.; Buhl-Mortensen, L.; Gebruk, A. V.; Krylova, E. M.

    2008-01-01

    Occurrence of deep-water corals on the Mid-Atlantic Ridge between the southern part of the Reykjanes Ridge and the Azores has been examined based on video surveys using remotely operated vehicles (ROV) and bycatch from longline and bottom trawl. Eight sites were surveyed with ROVs, and the bycatch material came from 16 trawl hauls and nine longline sets. Corals were observed at all sites surveyed with ROVs at depths between 800 and 2400 m, but most commonly shallower than 1400 m. The species richness of corals was high, with a total of 40 taxa recorded. Octocorals dominated the coral fauna with 27 taxa. Lophelia pertusa was one of the most frequently observed corals, present at five of the eight surveyed sites. It occurred on basaltic outcrops on the seamounts but always as relatively small colonies (<0.5 m in diameter). Massive live reef structures were not observed. The deepest record of Lophelia was at 1340 m, south of the Charlie Gibbs Fracture Zone. Accumulations of dead debris of coral skeletons could indicate a presence of former large Lophelia reefs at several locations. The number of megafaunal taxa was 1.6 times higher in areas where corals were present compared to areas without corals. Typical taxa that co-occurred with Lophelia were crinoids, certain sponges, the bivalve Acesta excavata, and squat lobsters. Signs of destructive fishing and lost gillnets were observed at several locations. The impact of fishing on deep-sea corals is discussed.

  9. Using novel acoustic and visual mapping tools to predict the small-scale spatial distribution of live biogenic reef framework in cold-water coral habitats

    NASA Astrophysics Data System (ADS)

    De Clippele, L. H.; Gafeira, J.; Robert, K.; Hennige, S.; Lavaleye, M. S.; Duineveld, G. C. A.; Huvenne, V. A. I.; Roberts, J. M.

    2017-03-01

    Cold-water corals form substantial biogenic habitats on continental shelves and in deep-sea areas with topographic highs, such as banks and seamounts. In the Atlantic, many reef and mound complexes are engineered by Lophelia pertusa, the dominant framework-forming coral. In this study, a variety of mapping approaches were used at a range of scales to map the distribution of both cold-water coral habitats and individual coral colonies at the Mingulay Reef Complex (west Scotland). The new ArcGIS-based British Geological Survey (BGS) seabed mapping toolbox semi-automatically delineated over 500 Lophelia reef `mini-mounds' from bathymetry data with 2-m resolution. The morphometric and acoustic characteristics of the mini-mounds were also automatically quantified and captured using this toolbox. Coral presence data were derived from high-definition remotely operated vehicle (ROV) records and high-resolution microbathymetry collected by a ROV-mounted multibeam echosounder. With a resolution of 0.35 × 0.35 m, the microbathymetry covers 0.6 km2 in the centre of the study area and allowed identification of individual live coral colonies in acoustic data for the first time. Maximum water depth, maximum rugosity, mean rugosity, bathymetric positioning index and maximum current speed were identified as the environmental variables that contributed most to the prediction of live coral presence. These variables were used to create a predictive map of the likelihood of presence of live cold-water coral colonies in the area of the Mingulay Reef Complex covered by the 2-m resolution data set. Predictive maps of live corals across the reef will be especially valuable for future long-term monitoring surveys, including those needed to understand the impacts of global climate change. This is the first study using the newly developed BGS seabed mapping toolbox and an ROV-based microbathymetric grid to explore the environmental variables that control coral growth on cold-water coral

  10. Effects of habitat structure on the epifaunal community in Mussismilia corals: does coral morphology influence the richness and abundance of associated crustacean fauna?

    NASA Astrophysics Data System (ADS)

    Nogueira, Marcos M.; Neves, Elizabeth; Johnsson, Rodrigo

    2015-06-01

    Coral habitat structures increase abundance and richness of organisms by providing niches, easy access to resources and refuge from predators. Corals harbor a great variety of animals; the variation in coral species morphology contributes to the heterogeneity and complexity of habitat types. In this report, we studied the richness and abundance of crustaceans (Decapoda, Copepoda, Peracarida and Ostracoda) associated with three species of Mussismilia exhibiting different growth morphologies, in two different coral reefs of the Bahia state (Caramuanas and Boipeba-Moreré, Brazil). Mussismilia hispida is a massive coral; M. braziliensis also has a massive growth pattern, but forms a crevice in the basal area of the corallum; M. harttii has a meandroid pattern. PERMANOVA analysis suggests significant differences in associated fauna richness among Mussismilia species, with higher values for M. harttii, followed by M. braziliensis and later by M. hispida. The same trend was observed for density, except that the comparison of M. braziliensis and M. hispida did not show differences. Redundancy and canonical correspondence analysis indicated that almost all of the crustacean species were more associated with the M. harttii colonies that formed a group clearly separated from colonies of M. braziliensis and M. hispida. We also found that the internal volume of interpolyp space, only present in M. harttii, was the most important factor influencing richness and abundance of all analyzed orders of crustaceans.

  11. Seasonal Dynamical Prediction of Coral Bleaching in the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Spillman, C. M.; Alves, O.

    2009-05-01

    Sea surface temperature (SST) is now recognised as the primary cause of mass coral bleaching events. Coral bleaching occurs during times of stress, particularly when SSTs exceed the coral colony's tolerance level. Global warming is potentially a serious threat to the future of the world's reef systems with predictions by the international community that bleaching will increase in both frequency and severity. Advance warning of anomalous sea surface temperatures, and thus potential bleaching events, would allow for the implementation of management strategies to minimise reef damage. Seasonal SST forecasts from the coupled ocean-atmosphere model POAMA (Bureau of Meteorology) have skill in the Great Barrier Reef (Australia) several months into the future. We will present model forecasts and probabilistic products for use in reef management, and assess model skill in the region. These products will revolutionise the way in which coral bleaching events are monitored and assessed in the Great Barrier Reef and Australian region.

  12. A 107-year-old coral from Florida Bay: barometer of natural and man- induced catastrophes?

    USGS Publications Warehouse

    Hudson, J.H.; Powell, G.V.N.; Robblee, M.B.; Smith, T. J.

    1989-01-01

    The 107-yr growth history of a massive coral Solenastrea bournoni from Florida Bay was reconstructed with X-ray imagery from a single 4 in. diameter (10 cm) core that penetrated the exact epicenter of the 95.3 cm high colony. Growth increments totalled 952.9 mm, averaging 8.9 mm/yr over the life of the coral. Growth rate trends in the Florida Bay coral were compared to those in a Montastraea annularis of similar age from a nearby patch reef on the Atlantic Ocean side of the Florida Keys. It was concluded that growth rate, at least in these specimens, is a questionable indicator of past hurricanes and freezes. There does appear to be, however, a possible cause-and-effect relationship between major man-induced environmental perturbations and a prolonged reduction in growth rate in each coral's growth record. -from Authors

  13. Pigmentation of massive corals as a simple bioindicator for marine water quality.

    PubMed

    Cooper, Timothy F; Fabricius, Katharina E

    2012-01-01

    Photo-acclimatisation by the algal endosymbionts of scleractinian corals to changes in environmental conditions may influence their density and/or the concentration of photosynthetic pigments, and hence coral brightness, on short time-scales. To examine coral pigmentation as a bioindicator of water quality, the brightness of massive corals was quantified using colour charts, concentrations of the pigment chlorophyll a and reflectance spectrometry in the field and with manipulative experiments. Along a water quality gradient, massive Porites became progressively lighter as nutrients decreased and irradiance increased. A laboratory experiment showed that Porites nubbins darkened within 25 days following exposure to reduced water quality. The results of a transplantation experiment of Porites nubbins in a manipulation incorporating multiple depths and zones of water quality confirmed colony brightness as a simple tool to monitor changes in marine water quality, provided effects due to other influences on pigmentation, e.g. seawater temperatures, are taken into consideration.

  14. Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Stat, M.; Loh, W. K. W.; Lajeunesse, T. C.; Hoegh-Guldberg, O.; Carter, D. A.

    2009-09-01

    Shifts in the community of symbiotic dinoflagellates to those that are better suited to the prevailing environmental condition may provide reef-building corals with a rapid mechanism by which to adapt to changes in the environment. In this study, the dominant Symbiodinium in 10 coral species in the southern Great Barrier Reef was monitored over a 1-year period in 2002 that coincided with a thermal stress event. Molecular genetic profiling of Symbiodinium communities using single strand conformational polymorphism of the large subunit rDNA and denaturing gradient gel electrophoresis of the internal transcribed spacer 2 region did not detect any changes in the communities during and after this thermal-stress event. Coral colonies of seven species bleached but recovered with their original symbionts. This study suggests that the shuffling or switching of symbionts in response to thermal stress may be restricted to certain coral species and is probably not a universal feature of the coral-symbiont relationship.

  15. Colony Collapse Disorder

    EPA Pesticide Factsheets

    In CCD, the majority of worker bees in a colony disappear and leave behind a queen, plenty of food and a few nurse bees to care for remaining immature bees and the queen. EPA and USDA are working to understand and resolve this problem.

  16. [Visiting the Amana Colonies.

    ERIC Educational Resources Information Center

    Ohrn, Deborah Gore, Ed.

    1992-01-01

    This issue of "The Goldfinch: Iowa History for Young People" focuses upon the Amana Colonies, which were home to many German immigrants in the 19th century, and which retain much of their ethnic heritage today. The articles and activities included in this issue are "Amana Today"; "No Black Buggies in Amana";…

  17. Snake bite: coral snakes.

    PubMed

    Peterson, Michael E

    2006-11-01

    North American coral snakes are distinctively colored beginning with a black snout and an alternating pattern of black, yellow, and red. They have fixed front fangs and a poorly developed system for venom delivery, requiring a chewing action to inject the venom. The severity of a coral snake bite is related to the volume of venom injected and the size of the victim. The length of the snake correlates positively with the snakes venom yield. Coral snake venom is primarily neurotoxic with little local tissue reaction or pain at the bite site. The net effect of the neurotoxins is a curare like syndrome. In canine victims there have been reports of marked hemolysis with severe anemia and hemoglobinuria. The onset of clinical signs may be delayed for as much as 10 to 18 hours. The victim begins to have alterations in mental status and develops generalized weakness and muscle fasciculations. Progression to paralysis of the limbs and respiratory muscles then follows. The best flied response to coral snake envenomation is rapid transport to a veterinary medical facility capable of 24 hour critical care and assisted ventilation. First aid treatment advocated in Australia for Elapid bites is the immediate use of a compression bandage. The victim should be hospitalized for a minimum of 48 hours for continuous monitoring. The only definitive treatment for coral snake envenomation is the administration of antivenin (M. fulvius). Once clinical signs of coral snake envenomation become manifest they progress with alarming rapidity and are difficult to reverse. If antivenin is not available or if its administration is delayed, supportive care includes respiratory support. Assisted mechanical ventilation can be used but may have to be employed for up to 48 to 72 hours.

  18. Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change

    PubMed Central

    Silverstein, Rachel N.; Correa, Adrienne M. S.; Baker, Andrew C.

    2012-01-01

    Some reef-building corals have been shown to respond to environmental change by shifting the composition of their algal symbiont (genus Symbiodinium) communities. These shifts have been proposed as a potential mechanism by which corals might survive climate stressors, such as increased temperatures. Conventional molecular methods suggest this adaptive capacity may not be widespread because few (∼25%) coral species have been found to associate with multiple Symbiodinium clades. However, these methods can fail to detect low abundance symbionts (typically less than 10–20% of the total algal symbiont community). To determine whether additional Symbiodinium clades are present, but are not detected using conventional techniques, we applied a high-resolution, real-time PCR assay to survey Symbiodinium (in clades A–D) from 39 species of phylogenetically and geographically diverse scleractinian corals. This survey included 26 coral species thought to be restricted to hosting a single Symbiodinium clade (‘symbiotic specialists’). We detected at least two Symbiodinium clades (C and D) in at least one sample of all 39 coral species tested; all four Symbiodinium clades were detected in over half (54%) of the 26 symbiotic specialist coral species. Furthermore, on average, 68 per cent of all sampled colonies within a given coral species hosted two or more symbiont clades. We conclude that the ability to associate with multiple symbiont clades is common in scleractinian (stony) corals, and that, in coral–algal symbiosis, ‘specificity’ and ‘flexibility’ are relative terms: specificity is rarely absolute. The potential for reef corals to adapt or acclimatize to environmental change via symbiont community shifts may therefore be more phylogenetically widespread than has previously been assumed. PMID:22367985

  19. Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages.

    PubMed

    Baird; Hughes

    2000-08-23

    Tabular and staghorn corals of the genus Acropora often form low-diversity stands on shallow coral reefs, presumably due to their rapid growth rate and ability to outcompete understorey assemblages. Coral cover underneath the abundant Indo-Pacific tabular coral, Acropora hyacinthus, was four times lower than on the adjacent substratum on the reef crest at Lizard Island on the northern Great Barrier Reef. We investigated the effect of A. hyacinthus on patterns of recruitment and mortality by placing experimental panels and coral fragments underneath large colonies of A. hyacinthus. After 8 weeks, recruitment of corals, filamentous algae and crustose coralline algae (CCA) underneath A. hyacinthus was 96, 85 and 50% lower, respectively, compared to panels placed in the open. In contrast, recruitment by bivalves and polychaetes was uniform among treatments, while bryozoans recruited four times more abundantly under A. hyacinthus than in the open. Consequently, the low rate of recruitment by corals beneath A. hyacinthus does not appear to be due to a reduction in the delivery of larvae underneath tables. Instead, the disparity between phototrophic and heterotrophic taxa suggests that diminished light levels under A. hyacinthus are partially responsible for the divergence in recruit assemblages. To test the effect of A. hyacinthus on early mortality and growth of established organisms, recruitment panels were placed on the open for 9 weeks then transplanted underneath A. hyacinthus for a further 8 weeks. The survivorship of juvenile corals underneath tables was less than half that of those on control panels on the unshaded reef crest. Furthermore, the abundance of algal turfs and CCA was sharply lower on transplanted panels. In contrast, heterotrophic organisms increased in cover, regardless of treatment. Experimental branch fragments of Acropora intermedia and Pocillopora damicornis also survived poorly following transplantation underneath A. hyacinthus, compared to

  20. Does dopamine block the spawning of the acroporid coral Acropora tenuis?

    PubMed Central

    Isomura, N.; Yamauchi, C.; Takeuchi, Y.; Takemura, A.

    2013-01-01

    Most corals undergo spawning after a particular moon phase, but how moon-related spawning is endogenously regulated in corals remains unknown. The objective of the present study was to evaluate whether dopamine (DA) affects spawning in Acropora tenuis. When pieces of four A. tenuis colonies were reared under a natural photoperiod and water temperature, spawning was observed after the predicted moon phase. After exposure to water containing DA at 0.1 μM, pieces of the same colonies only released 5 to 10 bundles. Co-treatment with DA and pimozide (D1 and D2 receptors antagonist), but not domperidone (D2 receptor antagonist), induced mass release of bundles from the colonies. A cross-experiment revealed high fertilization rates between the control colonies (95%) and between the control and DA-treated colonies (90%), suggesting that gametes developed normally in coral tissue. Therefore, DA appears to have an inhibitory effect on the spawning of A. tenuis. PMID:24026104

  1. Life History Changes in Coral Fluorescence and the Effects of Light Intensity on Larval Physiology and Settlement in Seriatopora hystrix

    PubMed Central

    Roth, Melissa S.; Fan, Tung-Yung; Deheyn, Dimitri D.

    2013-01-01

    Fluorescence is common in both coral adult and larval stages, and is produced by fluorescent proteins that absorb higher energy light and emit lower energy light. This study investigated the changes of coral fluorescence in different life history stages and the effects of parental light environment on larval fluorescence, larval endosymbiotic dinoflagellate abundance, larval size and settlement in the brooding coral Seriatopora hystrix. Data showed that coral fluorescence changed during development from green in larvae to cyan in adult colonies. In larvae, two green fluorescent proteins (GFPs) co-occur where the peak emission of one GFP overlaps with the peak excitation of the second GFP allowing the potential for energy transfer. Coral larvae showed great variation in GFP fluorescence, dinoflagellate abundance, and size. There was no obvious relationship between green fluorescence intensity and dinoflagellate abundance, green fluorescence intensity and larval size, or dinoflagellate abundance and larval size. Larvae of parents from high and low light treatments showed similar green fluorescence intensity, yet small but significant differences in size, dinoflagellate abundance, and settlement. The large variation in larval physiology combined with subtle effects of parental environment on larval characteristics seem to indicate that even though adult corals produce larvae with a wide range of physiological capacities, these larvae can still show small preferences for settling in similar habitats as their parents. These data highlight the importance of environmental conditions at the onset of life history and parent colony effects on coral larvae. PMID:23544072

  2. Chronic coral consumption by butterflyfishes

    NASA Astrophysics Data System (ADS)

    Cole, A. J.; Lawton, R. J.; Pratchett, M. S.; Wilson, S. K.

    2011-03-01

    Interactions between predators and prey organisms are of fundamental importance to ecological communities. While the ecological impact that grazing predators can have in terrestrial and temperate marine systems are well established, the importance of coral grazers on tropical reefs has rarely been considered. In this study, we estimate the biomass of coral tissue consumed by four prominent species of corallivorous butterflyfishes. Sub-adult butterflyfishes (60-70 mm, 6-11 g) remove between 0.6 and 0.9 g of live coral tissue per day, while larger adults (>110 mm, ~40-50 g) remove between 1.5 and 3 g of coral tissue each day. These individual consumption rates correspond to the population of coral-feeding butterflyfishes at three exposed reef crest habitats at Lizard Island, Great Barrier Reef, consuming between 14.6 g (±2.0) and 19.6 g (±3.9) .200 m-2 day-1 of coral tissue. When standardised to the biomass of butterflyfishes present, a combined reefwide removal rate of 4.2 g (±1.2) of coral tissue is consumed per 200 m-2 kg-1 of coral-feeding butterflyfishes. The quantity of coral tissue removed by these predators is considerably larger than previously expected and indicates that coral grazers are likely to play an important role in the transfer of energy fixed by corals to higher consumers. Chronic coral consumption by butterflyfishes is expected to exact a large energetic cost upon prey corals and contribute to an increased rate of coral loss on reefs already threatened by anthropogenic pressure and ongoing climate change.

  3. Antioxidant responses to heat and light stress differ with habitat in a common reef coral

    NASA Astrophysics Data System (ADS)

    Hawkins, Thomas D.; Krueger, Thomas; Wilkinson, Shaun P.; Fisher, Paul L.; Davy, Simon K.

    2015-12-01

    Coral bleaching—the stress-induced collapse of the coral- Symbiodinium symbiosis—is a significant driver of worldwide coral reef degradation. Yet, not all corals are equally susceptible to bleaching, and we lack a clear understanding of the mechanisms underpinning their differential susceptibilities. Here, we focus on cellular redox regulation as a potential determinant of bleaching susceptibility in the reef coral Stylophora pistillata. Using slow heating (1 °C d-1) and altered irradiance, we induced bleaching in S. pistillata colonies sampled from two depths [5-8 m (shallow) and 15-18 m (deep)]. There was significant depth-dependent variability in the timing and extent of bleaching (loss of symbiont cells), as well as in host enzymatic antioxidant activity [specifically, superoxide dismutase and catalase (CAT)]. However, among the coral fragments that bleached, most did so without displaying any evidence of a host enzymatic antioxidant response. For example, both deep and shallow corals suffered significant symbiont loss at elevated temperature, but only deep colonies exposed to high temperature and high light displayed any up-regulation of host antioxidant enzyme activity (CAT). Surprisingly, this preceded the equivalent antioxidant responses of the symbiont, which raises questions about the source(s) of hydrogen peroxide in the symbiosis. Overall, changes in enzymatic antioxidant activity in the symbionts were driven primarily by irradiance rather than temperature, and responses were similar across depth groups. Taken together, our results suggest that in the absence of light stress, heating of 1 °C d-1 to 4 °C above ambient is not sufficient to induce a substantial oxidative challenge in S. pistillata. We provide some of the first evidence that regulation of coral enzymatic antioxidants can vary significantly depending on habitat, and, in terms of determining bleaching susceptibility, our results suggest a significant role for the host's differential

  4. Abundance and reproductive patterns of the excavating sponge Cliona vermifera: a threat to Pacific coral reefs?

    NASA Astrophysics Data System (ADS)

    Bautista-Guerrero, Eric; Carballo, José Luis; Maldonado, Manuel

    2014-03-01

    Cliona vermifera is a common excavating sponge in coral reefs from the East Pacific. Abundance and reproductive patterns of the sponge in a Mexican Pacific coral reef over a 4-year period are herein described. Sponge abundance was estimated along three transects 50 m long which were randomly placed on the reef, and along each one, a piece of coral rubble and a branch of a live coral from the Pocillopora spp. coral colony closest to the transect were collected at random, approximately every 2 m, yielding 25 pieces of each category per transect (and 75 pieces total of each category). A 2-way ANOVA revealed that invasion was significantly higher in living coral colonies (34.8 %) than in rubble (13.7 %). It also indicated that the abundance in both coralline substrates showed a temporal variation without a clear pattern of increase over the years. It was estimated that 60-85 % of sponges in the population reproduced sexually every year. The sponge proved gonochoristic, with a sex ratio strongly departing from parity (1 male: 3 females). Over the 4-year study period, at least two cohorts of oocytes with densities of up to 3.5 oocytes per mm2 tissue were observed. Spermatogenesis lasted about a month, but often producing more than a pulse from July to November, coupled with peaks of oocyte maturation. Fertilization occurred internally to produce encapsulated zygotes that were released in one or more spawning events from July to November. In the following months (December to February), which were the periods of lowest temperature (~18.5-20 °C), no gametic activity occurred in the sponges. Because anomalous temperature rises that are detrimental to corals do not appear to negatively affect the reproduction and abundance of C. vermifera, it is likely that the excavating activity of this sponge may be compromising the health of those coral reefs that are recurrently affected by episodes of thermal stress.

  5. Methods for monitoring corals and crustose coralline algae to quantify in-situ calcification rates

    USGS Publications Warehouse

    Morrison, Jennifer M.; Kuffner, Ilsa B.; Hickey, T. Don

    2013-01-01

    The potential effect of global climate change on calcifying marine organisms, such as scleractinian (reef-building) corals, is becoming increasingly evident. Understanding the process of coral calcification and establishing baseline calcification rates are necessary to detect future changes in growth resulting from climate change or other stressors. Here we describe the methods used to establish a network of calcification-monitoring stations along the outer Florida Keys Reef Tract in 2009. In addition to detailing the initial setup and periodic monitoring of calcification stations, we discuss the utility and success of our design and offer suggestions for future deployments. Stations were designed such that whole coral colonies were securely attached to fixed apparati (n = 10 at each site) on the seafloor but also could be easily removed and reattached as needed for periodic weighing. Corals were weighed every 6 months, using the buoyant weight technique, to determine calcification rates in situ. Sites were visited in May and November to obtain winter and summer rates, respectively, and identify seasonal patterns in calcification. Calcification rates of the crustose coralline algal community also were measured by affixing commercially available plastic tiles, deployed vertically, at each station. Colonization by invertebrates and fleshy algae on the tiles was low, indicating relative specificity for the crustose coralline algal community. We also describe a new, nonlethal technique for sampling the corals, used following the completion of the monitoring period, in which two slabs were obtained from the center of each colony. Sampled corals were reattached to the seafloor, and most corals had completely recovered within 6 months. The station design and sampling methods described herein provide an effective approach to assessing coral and crustose coralline algal calcification rates across time and space, offering the ability to quantify the potential effects of

  6. Stress response of two coral species in the Kavaratti atoll of the Lakshadweep Archipelago, India

    NASA Astrophysics Data System (ADS)

    Harithsa, Shashank; Raghukumar, Chandralata; Dalal, S. G.

    2005-11-01

    Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/ c, phaeopigments and MI contributed to the variance between health conditions.

  7. Corals from Space

    NASA Technical Reports Server (NTRS)

    Patzert, William C.

    1999-01-01

    The goal of this research is to monitor the health and vigor of coral reef ecosystems, and their sensitivity to natural and anthropogenic climate changes. To achieve these lofty goals, this research is investigating the feasibility of using spaceborne high-resolution spectrometers (on the US Landsat, French Systeme Probatoire pour l'Observation de la Terre [SPOT] and/or the Indian Resources Satellite [IRS 1C & 1D] spacecraft) to first map the aerial extent of coral reef systems, and second separate the amount of particular corals. If this is successful, we could potentially provide a quantum leap in our understanding of coral reef systems, as well as provide much needed baseline data to measure future changes in global coral reef ecosystems. In collaboration with Tomas Tomascik, Yann Morel, and other colleagues, a series of experiments were planned to coordinate in situ coral observations, high-resolution spaceborne imagery (from Landsat, SPOT, and, possibly, IRS IC spacecraft), and NASA Space Shuttle photographs and digital images. Our eventual goal is to develop "coral health algorithms" that can be used to assess time series of imagery collected from satellite sensors (Landsat since 1972, SPOT since 1986) in concert with in situ observations. The bad news from last year was that from 1997 to mid- 1998, the extreme cloudiness over southeast Asia due to prolonged smoke from El Nino-related fires and the economic chaos in this region frustrated both our space and reef-based data collection activities. When this volatile situation stabilizes, we will restart these activities. The good news was that in collaboration with Al Strong at the National Oceanic and Atmospheric Administration (NOAA) we had an exciting year operationally using the NOAA's Advanced Very High Resolution Radiometer sensor derived sea surface temperature products to warn of coral "bleaching" at many locations throughout the tropics. Data from NOAA's satellites showed that during the El Nino of

  8. A Possible Role for Agglutinated Foraminifers in the Growth of Deep-Water Coral Bioherms

    NASA Astrophysics Data System (ADS)

    Messing, C. G.; Reed, J. K.; Brooke, S. D.

    2008-05-01

    Exploration of deep-water bioherms dominated by the scleractinian corals Lophelia pertusa and Enallopsammia profunda along the east coast of Florida in ~400-800 m depth reveals an often dense and rich assemblage of small (~1-30 mm) epifauna on dead coral branches, which is often dominated by agglutinated astrorhizacean foraminifers accompanied by thecate and athecate hydroids, sponges, stylasterids, anemones and barnacles. The dominant agglutinated foraminifer is an arborescent form up to 15 mm tall, consisting of a basal tube that gives rise to branchlets of successively decreasing diameter and thickly coated with fine-grained material including coccoliths and diatom frustules. The large numbers of foraminifers generate an enormous adhesive, sediment-trapping surface area and may represent an important accelerated route for sediment deposition and bioherm growth relative to baffling of suspended sediment particles by the coral branches themselves. These foraminifers also occur on still living coral, suggesting that they may either contribute to coral death or invade stressed colonies. They may thus be responsible for or contribute to the small percent of living corals observed in many of these habitats. Other epifauna appear to colonize after the coral has died.

  9. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    NASA Astrophysics Data System (ADS)

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-12-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification.

  10. Cymo melanodactylus crabs slow progression of white syndrome lesions on corals

    NASA Astrophysics Data System (ADS)

    Pollock, F. J.; Katz, S. M.; Bourne, D. G.; Willis, B. L.

    2013-03-01

    Predation on coral tissue by the crab Cymo melanodactylus has been hypothesized to contribute to tissue loss caused by white syndromes (WS) in acroporid corals. Here, we demonstrate that transplanting C. melanodactylus crabs from WS-infected Acropora colonies onto healthy coral fragments in controlled aquarium experiments does not result in WS transmission over a 21-day experimental period. Furthermore, progression of WS lesions was three times more rapid on corals with all C. melanodactylus crabs removed than on those with crabs (2.28 ± 0.21 vs. 0.74 ± 0.22 cm/day, respectively); thus, crabs slow WS disease progression under experimental conditions. In choice experiments, C. melanodactylus crabs were strongly attracted to corals with WS lesions, with 87 % of crabs migrating to WS fragments versus 3 % to healthy fragments. The strong attraction of C. melanodactylus to WS-infected corals and their ability to significantly reduce lesion progression rates suggest a mechanism whereby these coral-dwelling crabs could mitigate the effects of WS diseases on reefs.

  11. Community Shifts in the Surface Microbiomes of the Coral Porites astreoides with Unusual Lesions

    PubMed Central

    Meyer, Julie L.; Paul, Valerie J.; Teplitski, Max

    2014-01-01

    Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa. PMID:24937478

  12. Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress

    PubMed Central

    Tremblay, Pascale; Gori, Andrea; Maguer, Jean François; Hoogenboom, Mia; Ferrier-Pagès, Christine

    2016-01-01

    Symbiotic scleractinian corals are particularly affected by climate change stress and respond by bleaching (losing their symbiotic dinoflagellate partners). Recently, the energetic status of corals is emerging as a particularly important factor that determines the corals’ vulnerability to heat stress. However, detailed studies of coral energetic that trace the flow of carbon from symbionts to host are still sparse. The present study thus investigates the impact of heat stress on the nutritional interactions between dinoflagellates and coral Stylophora pistillata maintained under auto- and heterotrophy. First, we demonstrated that the percentage of autotrophic carbon retained in the symbionts was significantly higher during heat stress than under non-stressful conditions, in both fed and unfed colonies. This higher photosynthate retention in symbionts translated into lower rates of carbon translocation, which required the coral host to use tissue energy reserves to sustain its respiratory needs. As calcification rates were positively correlated to carbon translocation, a significant decrease in skeletal growth was observed during heat stress. This study also provides evidence that heterotrophic nutrient supply enhances the re-establishment of normal nutritional exchanges between the two symbiotic partners in the coral S. pistillata, but it did not mitigate the effects of temperature stress on coral calcification. PMID:27917888

  13. The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea.

    PubMed

    Mass, T; Kline, D I; Roopin, M; Veal, C J; Cohen, S; Iluz, D; Levy, O

    2010-12-01

    Depth zonation on coral reefs is largely driven by the amount of downwelling, photosynthetically active radiation (PAR) that is absorbed by the symbiotic algae (zooxanthellae) of corals. The minimum light requirements of zooxanthellae are related to both the total intensity of downwelling PAR and the spectral quality of the light. Here we used Stylophora pistillata colonies collected from shallow (3 m) and deep (40 m) water; colonies were placed in a respirometer under both ambient PAR irradiance and a filter that only transmits blue light. We found that the colonies exhibited a clear difference in their photosynthetic rates when illuminated under PAR and filtered blue light, with higher photosynthetic performance when deep colonies were exposed to blue light compared with full-spectrum PAR for the same light intensity and duration. By contrast, colonies from shallow water showed the opposite trend, with higher photosynthetic performances under full-spectrum PAR than under filtered blue light. These findings are supported by the absorption spectra of corals, with deeper colonies absorbing higher energy wavelengths than the shallow colonies, with different spectral signatures. Our results indicate that S. pistillata colonies are chromatically adapted to their surrounding light environment, with photoacclimation probably occurring via an increase in photosynthetic pigments rather than algal density. The spectral properties of the downwelling light are clearly a crucial component of photoacclimation that should be considered in future transplantation and photoacclimation studies.

  14. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India.

    PubMed

    Manikandan, B; Ravindran, J; Shrinivaasu, S; Marimuthu, N; Paramasivam, K

    2014-10-01

    Coral reef fishes are exploited without the knowledge of their sustainability and their possible effect in altering the community structure of a coral reef ecosystem. Alteration of the community structure could cause a decline in the health of coral reefs and its services. We documented the coral community structure, status of live corals and reef fish assemblages in Palk Bay at the reef fishing hotspots and its nearby reef area with minimum fishing pressure and compared it with a control reef area where reef fishing was banned for more than two decades. The comparison was based on the percent cover of different forms of live corals, their diversity and the density and diversity of reef fishes. The reef fish stock in the reef fishing hotspots and its neighbouring reef was lower by 61 and 38%, respectively compared to the control reef. The herbivore fish Scarus ghobban and Siganus javus were exploited at a rate of 250 and 105 kg month(-1) fishermen(-1), respectively, relatively high comparing the small reef area. Live and dead corals colonized by turf algae were predominant in both the reef fishing hotspots and its nearby coral ecosystems. The percent cover of healthy live corals and live corals colonized by turf algae was <10 and >80%, respectively, in the intensively fished coral ecosystems. The corals were less diverse and the massive Porites and Favia colonies were abundant in the intensive reef fishing sites. Results of this study suggest that the impact of reef fish exploitation was not solely restricted to the intensively fished reefs, but also to the nearby reefs which play a critical role in the resilience of degraded reef ecosystems.

  15. Intraspecific Diversity and Ecological Zonation in Coral-Algal Symbiosis

    NASA Astrophysics Data System (ADS)

    Rowan, Rob; Knowlton, Nancy

    1995-03-01

    All reef-building corals are obligately associated with photosynthetic microalgal endosymbionts called zooxanthellae. Zooxanthella taxonomy has emphasized differences between species of hosts, but the possibility of ecologically significant zooxanthella diversity within hosts has been the subject of speculation for decades. Analysis of two dominant Caribbean corals showed that each associates with three taxa of zooxanthellae that exhibit zonation with depth-the primary environmental gradient for light-dependent marine organisms. Some colonies apparently host two taxa of symbionts in proportions that can vary across the colony. This common occurrence of polymorphic, habitat-specific symbioses challenges conventional understanding of the units of biodiversity but also illuminates many distinctive aspects of marine animal-algal associations. Habitat specificity provides ecological explanations for the previously documented poor concordance between host and symbiont phylogenies and the otherwise surprising lack of direct, maternal transmission of symbionts in many species of hosts. Polymorphic symbioses may underlie the conspicuous and enigmatic variability characteristic of responses to environmental stress (e.g., coral "bleaching") and contribute importantly to the phenomenon of photoadaptation.

  16. Caribbean Shallow-water Black Corals (Cnidaria: Anthozoa: Antipatharia)

    SciTech Connect

    Opresko, Dennis M; Sanchez, Juan Armando

    2005-01-01

    Our aim is to provide a complete key and guide to the species of black corals from the Caribbean reefs at depths shallower than about 100 m. The key to the species is mostly based on colonial features that are recognized in the field, although some closely related species can only be differentiated by microscopic skeletal features. Each species is illustrated with one or more photos showing the size and shape of the colony; many photos were taken in the natural environment to facilitate underwater identification. Additionally, a short description is provided of each species and their microscopic diagnostic characters are illustrated with the aid of the Scanning Electron Microscope (SEM). Fifteen black coral species are found in relatively shallow-water in the Caribbean, Gulf of Mexico, and other parts of the tropical western Atlantic; these belong to the families Myriopathidae [Tanacetipathes hirta (Gray), T. tanacetum (Pourtales), T. barbadensis (Brook), T. thamnea (Warner), and Plumapathes pennacea (Pallas)]; Antipathidae [Antipathes lenta Pourtales, A. rubusifonnis Warner and Opresko, A. furcata Gray, A. umbratica Opresko, A. atlantica Gray, A. gracilis Gray, A. caribbeana Opresko, Stichopathes lutkeni Brook, and S. accidentalis (Gray)]; and Aphanipathidae [Rhipidipathes colombiana (Opresko and Sinchez)]. We hope that this guide will facilitate research on black corals on Caribbean reefs, where population surveys are urgently needed to evaluate or modify conservation policies.

  17. Perturbation and change in coral reef communities

    PubMed Central

    Porter, James W.; Battey, James F.; Smith, G. Jason

    1982-01-01

    Ninety-six percent of surveyed shallow-water Dry Tortugas reef corals died during the severe winter of 1976-1977. Data from skeletal stains indicate that death occurred during the mid-January intrusion of 14°C water onto the reef. In deeper water, community parameters such as percent cover, species number, and relative abundance showed no significant change. However, an analysis of competitive interactions at the growing edges of adjacent colonies reveals a 70% reduction in space competition during this environmental disturbance. These results can explain high variability in the growth rate of Floridian reefs and demonstrate the importance of obtaining long-term spatial information to interpret successional dynamics of complex communities. Images PMID:16578761

  18. A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico

    USGS Publications Warehouse

    DeLong, Kristine L.; Flannery, Jennifer A.; Maupin, Christopher R.; Poore, Richard Z.; Quinn, Terrence M.

    2011-01-01

    This study examined the variations in the ratio of strontium-to-calcium (Sr/Ca) for two Atlantic corals (Montastraea faveolata and Siderastrea siderea) from the Dry Tortugas National Park (centered on 24.7°N, 82.8°W) in the Gulf of Mexico. Cores from coral colonies in close proximity (10s of meters) and with the same environmental conditions (i.e., depth and water chemistry) were micro-sampled with approximately monthly resolution and the resulting Sr/Ca variations were calibrated with local sea surface temperature (SST) records. Replication tests for coral Sr/Ca variations found high agreement between intra-colony variations and between individual colonies of S. siderea (a single M. faveolata colony was sampled). Regression analysis of monthly variations in coral Sr/Ca and local SST revealed significant correlation on monthly and inter-annual timescales. Verification of the calibration on different timescales found coral Sr/Ca–SST reconstructions in S. siderea were more accurate than those from M. faveolata, especially on inter-annual timescales. Sr/Ca–SST calibration equations for the two species are significantly different (cf., Sr/Ca = -0.042 SST + 10.070, S. siderea; Sr/Ca = -0.027 SST + 9.893, M. faveolata). Mean linear extension for M. faveolata is approximately twice that of S. siderea (4.63, 4.31, and 8.31 mm year−1, A1, F1, and B3, respectively); however, seasonal Sr/Ca variability in M. faveolata is less than S. siderea (0.323, 0.353, and 0.254 mmol mol−1, A1, F1, and B3, respectively). The reduced slope for M. faveolata is attributed to physical sampling issues associated with complex time-skeletal structure of M. faveolata, i.e., a sampling effect, and not a growth effect since the faster growing M. faveolata has the reduced Sr/Ca variability.

  19. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  20. Coral Reef Biological Criteria

    EPA Science Inventory

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  1. CORAL REEF BIOCRITERIA

    EPA Science Inventory

    Coral reefs worldwide are experiencing the greatest decline of their known existence and few tools are available to offset the growing impacts of human coastal and watershed activities. Biocriteria are a potentially effective means to evaluate and restore impaired waters, but are...

  2. Recurrent partial mortality events in winter shape the dynamics of the zooxanthellate coral Oculina patagonica at high latitude in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Serrano, Eduard; Ribes, Marta; Coma, Rafel

    2017-03-01

    Global warming has many biological effects on corals and plays a central role in the regression of tropical coral reefs; therefore, there is an urgent need to understand how some coral species have adapted to environmental conditions at higher latitudes. We examined the effects of temperature and light on the growth of the zooxanthellate coral Oculina patagonica (Scleractinia, Oculinidae) at the northern limit of its distribution in the eastern Iberian Peninsula (western Mediterranean) by transplanting colonies onto plates and excluding them from space competition over a 4-yr period. Each year, most of the colonies ( 70%) exhibited denuded skeletons with isolated polyps persisting on approximately half of the coral surface area. These recurrent episodes of partial coral mortality occurred in winter, and their severity appeared to be related to colony exposure to cold but not to light. Although O. patagonica exhibited high resistance to stress, coral linear extension did not resume until the coenosarc regenerated. The resumption of linear extension was related to the dissociation of the polyps from the coenosarc and the outstanding regenerative capacity of this species (10.3 mm2 d-1). These biological characteristics allow the species to survive at high latitudes. However, the recurrent and severe pattern of denuded skeletons greatly affects the dynamics of the species and may constrain population growth at high latitudes in the Mediterranean.

  3. An Improved Detection and Quantification Method for the Coral Pathogen Vibrio coralliilyticus

    PubMed Central

    Wilson, Bryan; Muirhead, Andrew; Bazanella, Monika; Huete-Stauffer, Carla; Vezzulli, Luigi; Bourne, David G.

    2013-01-01

    DNA- and RNA-based PCR and reverse-transcription real-time PCR assays were developed for diagnostic detection of the vcpA zinc-metalloprotease implicated in the virulence of the coral pathogen Vibrio coralliilyticus. Both PCR methods were highly specific for V. coralliilyticus and failed to amplify strains of closely-related Vibrio species. The assays correctly detected all globally occurring V. coralliilyticus isolates including a newly-described isolate [TAV24] infecting gorgonians in the Mediterranean Sea and highlighted those isolates that had been potentially misidentified, in particular V. tubiashii strains ATCC 19105 and RE22, historically described as important oyster pathogens. The real-time assay is sensitive, detecting 10 gene copies and the relationships between gene copy number and cycle threshold (CT) were highly linear (R2≥99.7). The real-time assay was also not affected by interference from non-target DNA. These assays are useful for rapid detection of V. coralliilyticus and monitoring of virulence levels in environmental samples, allowing for implementation of timely management steps to limit and possibly prevent losses due to V. coralliilyticus infection, as well as furthering investigations of factors affecting pathogenesis of this important marine pathogen. PMID:24339968

  4. Ecological intereactions of reef building corals

    EPA Science Inventory

    Coral reefs are very important marine ecosystems because they support tremendous biodiversity and reefs are critical economic resources many coastal nations. Tropical reef structures are largely built by stony corals. This presentation provides background on basic coral biology t...

  5. The most temperature-adapted corals have an Achilles' Heel.

    PubMed

    Purkis, S J; Renegar, D A; Riegl, B M

    2011-02-01

    The corals of the Persian/Arabian Gulf are better adapted to temperature fluctuations than elsewhere in the Indo-Pacific. The Gulf is an extreme marine environment displaying the highest known summer water temperatures for any reef area. The small and shallow sea can be considered a good analogue to future conditions for the rest of the world's oceans under global warming. The fact that corals can persist in such a demanding environment indicates that they have been able to acclimatize and selectively adapt to elevated temperature. The implication being that colonies elsewhere may be able to follow suit. This in turn provides hope that corals may, given sufficient time, similarly adapt to survive even in an impoverished form, under conditions of acidification-driven lowering of CaCO₃ saturation state, a further consequence of raised atmospheric CO₂. This paper demonstrates, however, that the uniquely adapted corals of the Gulf may, within the next three centuries, be threatened by a chronic habitat shortage brought about by the dissolution of the lithified seabed on which they rely for colonisation. This will occur due to modifications in the chemical composition of the Gulf waters due to climate change.

  6. Host pigments: potential facilitators of photosynthesis in coral symbioses.

    PubMed

    Dove, Sophie G; Lovell, Carli; Fine, Maoz; Deckenback, Jeffry; Hoegh-Guldberg, Ove; Iglesias-Prieto, Roberto; Anthony, Kenneth R N

    2008-11-01

    Reef-building corals occur as a range of colour morphs because of varying types and concentrations of pigments within the host tissues, but little is known about their physiological or ecological significance. Here, we examined whether specific host pigments act as an