Science.gov

Sample records for gp64 protein analysis

  1. The Autographa californica Multicapsid Nucleopolyhedrovirus GP64 Protein: Analysis of Transmembrane Domain Length and Sequence Requirements▿

    PubMed Central

    Li, Zhaofei; Blissard, Gary W.

    2009-01-01

    GP64, the major envelope glycoprotein of the Autographa californica multicapsid nucleopolyhedrovirus budded virion, is important for host cell receptor binding and mediates low-pH-triggered membrane fusion during entry by endocytosis. Previous transmembrane (TM) domain replacement studies showed that the TM domain serves a critical role in GP64 function. To extend the prior studies and examine specific sequence requirements of the TM domain, we generated a variety of GP64 TM domain mutations. The mutations included 4- to 8-amino-acid deletions, as well as single and multiple point mutations. While most TM domain deletion constructs remained fusion competent, those containing deletions of eight amino acids from the C terminus did not mediate detectable fusion. The addition of a hydrophobic amino acid (A, L, or V) to the C terminus of construct C8 (a construct that contains a TM domain deletion of eight amino acids from the C terminus) restored fusion activity. These data suggest that the membrane fusion function of GP64 is dependent on a critical length of the hydrophobic TM domain. All GP64 proteins with a truncated TM domain mediated detectable virion budding with dramatically lower levels of efficiency than wild-type GP64. The effects of deletions of various lengths and positions in the TM domain were also examined for their effects on viral infectivity. Further analysis of the TM domain by single amino acid substitutions and 3-alanine scanning mutations identified important but not essential amino acid positions. These studies showed that amino acids at positions 485 to 487 and 503 to 505 are important for cell surface expression of GP64, while amino acids at positions 483 to 484 and 494 to 496 are important for virus budding. Overall, our results show that specific features and amino acid sequences, particularly the length of the hydrophobic TM domain, play critical roles in membrane anchoring, membrane fusion, virus budding, and infectivity. PMID:19244324

  2. Promoter analysis of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum.

    PubMed

    Takaoka, N; Fukuzawa, M; Saito, T; Sakaitani, T; Ochiai, H

    1999-10-28

    We cloned a genomic fragment of the membrane protein gp64 gene of the cellular slime mold Polysphondylium pallidum by inverse PCR. Primer extension analysis identified a major transcription start site 65 bp upstream of the translation start codon. The promoter region of the gp64 gene contains sequences homologous to a TATA box at position -47 to -37 and to an initiator (Inr, PyPyCAPyPyPyPy) at position -3 to +5 from the transcription start site. Successively truncated segments of the promoter were tested for their ability to drive expression of the beta-galactosidase reporter gene in transformed cells; also the difference in activity between growth conditions was compared. The results indicated that there are two positive vegetative regulatory elements extending between -187 and -62 bp from the transcription start site of the gp64 promoter; also their activity was two to three times higher in the cells grown with bacteria in shaken suspension than in the cells grown in an axenic medium. PMID:10542319

  3. A Betabaculovirus-Encoded gp64 Homolog Codes for a Functional Envelope Fusion Protein

    PubMed Central

    Ardisson-Araújo, Daniel M. P.; Melo, Fernando L.; Clem, Rollie J.; Wolff, José L. C.

    2015-01-01

    The GP64 envelope fusion protein is a hallmark of group I alphabaculoviruses. However, the Diatraea saccharalis granulovirus genome sequence revealed the first betabaculovirus species harboring a gp64 homolog (disa118). In this work, we have shown that this homolog encodes a functional envelope fusion protein and could enable the infection and fusogenic abilities of a gp64-null prototype baculovirus. Therefore, GP64 may complement or may be in the process of replacing F protein activity in this virus lineage. PMID:26537678

  4. Assignment of disulfide bonds in gp64, a putative cell-cell adhesion protein of Polysphondylium pallidum. Presence of Sushi domains in the cellular slime mold protein.

    PubMed

    Saito, T; Kumazaki, T; Ochiai, H

    1994-11-18

    The 64-kDa membrane-bound glycoprotein of the cellular slime mold Polysphondylium pallidum (referred to as gp64), seems to be implicated in cell-cell adhesion. Previously we have isolated a full-length gp64 cDNA, determined its nucleotide sequence, and found that all cysteine residues in the protein are involved in the formation of disulfide bonds. The disulfide arrangement of the 36 cysteines in gp64 was established by analysis of proteolytically cleaved protein and sequence analysis of cystine-containing fragments. Since gp64 has 36 Cys residues, 18 disulfide bonds must exist and the positions of 15 of them were determined. The 15 disulfide bonds in gp64 constitute five characteristic, so-called Sushi domains. In a Sushi domain, the first Cys in a sequence is connected to the third one and the second Cys to the fourth one. This is the first report describing the presence of Sushi domains in a cellular slime mold protein. From these data, gp64 appears to be distinct from all other previously described cell-adhesion proteins.

  5. A single amino acid substitution modulates low-pH-triggered membrane fusion of GP64 protein in Autographa californica and Bombyx mori nucleopolyhedroviruses

    SciTech Connect

    Katou, Yasuhiro; Yamada, Hayato; Ikeda, Motoko; Kobayashi, Michihiro

    2010-09-01

    We have previously shown that budded viruses of Bombyx mori nucleopolyhedrovirus (BmNPV) enter the cell cytoplasm but do not migrate into the nuclei of non-permissive Sf9 cells that support a high titer of Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) multiplication. Here we show, using the syncytium formation assay, that low-pH-triggered membrane fusion of BmNPV GP64 protein (Bm-GP64) is significantly lower than that of AcMNPV GP64 protein (Ac-GP64). Mutational analyses of GP64 proteins revealed that a single amino acid substitution between Ac-GP64 H155 and Bm-GP64 Y153 can have significant positive or negative effects on membrane fusion activity. Studies using bacmid-based GP64 recombinant AcMNPV harboring point-mutated ac-gp64 and bm-gp64 genes showed that Ac-GP64 H155Y and Bm-GP64 Y153H substitutions decreased and increased, respectively, the multiplication and cell-to-cell spread of progeny viruses. These results indicate that Ac-GP64 H155 facilitates the low-pH-triggered membrane fusion reaction between virus envelopes and endosomal membranes.

  6. Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein

    SciTech Connect

    Zhou Jian; Blissard, Gary W. . E-mail: gwb1@cornell.edu

    2006-09-01

    The envelope glycoprotein GP64 of Autographa californica nucleopolyhedrovirus (AcMNPV) is necessary and sufficient for the acid-induced membrane fusion activity that is required for fusion of the budded virus (BV) envelope and the endosome membrane during virus entry. Infectivity of the budded virus (BV) is neutralized by AcV1, a monoclonal antibody (MAb) directed against GP64. Prior studies indicated that AcV1 recognizes a conformational epitope and does not inhibit virus attachment to the cell, but instead inhibits entry at a step following virus attachment. We found that AcV1 recognition of GP64 was lost upon exposure of GP64 to low pH (pH 4.5) and restored by returning GP64 to pH 6.2. In addition, the AcV1 epitope was lost upon denaturation of GP64 in SDS, but the AcV1 epitope was restored by refolding the protein in the absence of SDS. Using truncated GP64 proteins expressed in insect cells, we mapped the AcV1 epitope to a 24 amino acid region in the central variable domain of GP64. When sequences within the mapped AcV1 epitope were substituted with a c-Myc epitope and the resulting construct was used to replace wt GP64 in recombinant AcMNPV viruses, the modified GP64 protein appeared to function normally. However, an anti-c-Myc monoclonal antibody did not neutralize infectivity of those viruses. Because binding of the c-Myc MAb to the same site in the GP64 sequence did not result in neutralization, these studies suggest that AcV1 neutralization may result from a specific structural constraint caused by AcV1 binding and not simply by steric hindrance caused by antibody binding at this position in GP64.

  7. Antisense RNA inactivation of gene expression of a cell-cell adhesion protein (gp64) in the cellular slime mold Polysphondylium pallidum.

    PubMed

    Funamoto, S; Ochiai, H

    1996-05-01

    The gp64 protein of Polysphondylium pallidum has been shown to mediate EDTA-stable cell-cell adhesion. To explore the functional role of gp64, we made an antisense RNA expression construct designed to prevent the gene expression of gp64; the construct was introduced into P. pallidum cells and the transformants were characterised. The antisense RNA-expressing clone L3mc2 which had just been harvested at the growth phase tended to re-form in aggregates smaller in size than did the parental cells in either the presence or absence of 10 mM EDTA. In contrast, 6.5-hour starved L3mc2 cells remained considerably dissociated from each other after 5 minutes gyrating, although aggregation gradually increased by 50% during a further 55 minutes gyrating in the presence of 10 mM EDTA. Correspondingly, L3mc2 lacked specifically the cell-cell adhesion protein, gp64. We therefore conclude that the gp64 protein is involved in forming the EDTA-resistant cell-cell contact. In spite of the absence of gp64, L3mc2 exhibited normal developmental processes, a fact which demonstrates that another cell-cell adhesion system exists in the development of Polysphondylium. This is the first report in which an antisense RNA technique was successfully applied to Polysphondylium. PMID:8743948

  8. Autographa californica Multiple Nucleopolyhedrovirus GP64 Protein: Roles of Histidine Residues in Triggering Membrane Fusion and Fusion Pore Expansion▿†

    PubMed Central

    Li, Zhaofei; Blissard, Gary W.

    2011-01-01

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) GP64 protein mediates membrane fusion during entry. Fusion results from a low-pH-triggered conformational change in GP64 and subsequent interactions with the membrane bilayers. The low-pH sensor and trigger of the conformational change are not known, but histidine residues are implicated because the pKa of histidine is near the threshold for triggering fusion by GP64. We used alanine substitutions to examine the roles of all individual and selected clusters of GP64 histidine residues in triggering and mediating fusion by GP64. Three histidine residues (H152, H155, and H156), located in fusion loop 2, were identified as important for membrane fusion. These three histidine residues were important for efficient pore expansion but were not required for the pH-triggered conformational change. In contrast, a cluster of three histidine residues (H245, H304, and H430) located near the base of the central coiled coil was identified as a putative sensor for low pH. Three alanine substitutions in cluster H245/H304/H430 resulted in dramatically reduced membrane fusion and the apparent loss of the prefusion conformation at neutral pH. Thus, the H245/H304/H430 cluster of histidines may function or participate as a pH sensor by stabilizing the prefusion structure of GP64. PMID:21937651

  9. A cholesterol recognition amino acid consensus domain in GP64 fusion protein facilitates anchoring of baculovirus to mammalian cells.

    PubMed

    Luz-Madrigal, Agustin; Asanov, Alexander; Camacho-Zarco, Aldo R; Sampieri, Alicia; Vaca, Luis

    2013-11-01

    Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV.

  10. A Cholesterol Recognition Amino Acid Consensus Domain in GP64 Fusion Protein Facilitates Anchoring of Baculovirus to Mammalian Cells

    PubMed Central

    Luz-Madrigal, Agustin; Asanov, Alexander; Camacho-Zarco, Aldo R.; Sampieri, Alicia

    2013-01-01

    Baculoviridae is a large family of double-stranded DNA viruses that selectively infect insects. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the best-studied baculovirus from the family. Many studies over the last several years have shown that AcMNPV can enter a wide variety of mammalian cells and deliver genetic material for foreign gene expression. While most animal viruses studied so far have developed sophisticated mechanisms to selectively infect specific cells and tissues in an organism, AcMNPV can penetrate and deliver foreign genes into most cells studied to this date. The details about the mechanisms of internalization have been partially described. In the present study, we have identified a cholesterol recognition amino acid consensus (CRAC) domain present in the AcMNPV envelope fusion protein GP64. We demonstrated the association of a CRAC domain with cholesterol, which is important to facilitate the anchoring of the virus at the mammalian cell membrane. Furthermore, this initial anchoring favors AcMNPV endocytosis via a dynamin- and clathrin-dependent mechanism. Under these conditions, efficient baculovirus-driven gene expression is obtained. In contrast, when cholesterol is reduced from the plasma membrane, AcMNPV enters the cell via a dynamin- and clathrin-independent mechanism. The result of using this alternative internalization pathway is a reduced level of baculovirus-driven gene expression. This study is the first to document the importance of a novel CRAC domain in GP64 and its role in modulating gene delivery in AcMNPV. PMID:23986592

  11. The Pre-Transmembrane Domain of the Autographa californica Multicapsid Nucleopolyhedrovirus GP64 Protein Is Critical for Membrane Fusion and Virus Infectivity▿ †

    PubMed Central

    Li, Zhaofei; Blissard, Gary W.

    2009-01-01

    The envelope glycoprotein, GP64, of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) is a class III viral fusion protein that mediates pH-triggered membrane fusion during virus entry. Viral fusion glycoproteins from many viruses contain a short region in the ectodomain and near the transmembrane domain, referred to as the pre-transmembrane (PTM) domain. In some cases, the PTM domain is rich in aromatic amino acids and plays an important role in membrane fusion. Although the 23-amino-acid (aa) PTM domain of AcMNPV GP64 lacks aromatic amino acids, we asked whether this region might also play a significant role in membrane fusion. We generated alanine scanning and single and multiple amino acid substitutions in the GP64 PTM domain. We specifically focused on amino acid positions conserved between baculovirus GP64 and thogotovirus GP75 proteins, as well as hydrophobic and charged amino acids. For each PTM-modified construct, we examined trimerization, cell surface localization, and membrane fusion activity. Membrane merger and pore formation were also examined. We identified eight aa positions that are important for membrane fusion activity. Critical positions were not clustered in the linear sequence but were distributed throughout the PTM domain. While charged residues were not critical or essential, three hydrophobic amino acids (L465, L476, and L480) played an important role in membrane fusion activity and appear to be involved in formation of the fusion pore. We also asked whether selected GP64 constructs were capable of rescuing a gp64null AcMNPV virus. These studies suggested that several conserved residues (T463, G460, G462, and G474) were not required for membrane fusion but were important for budding and viral infectivity. PMID:19692475

  12. Identification of AcMNPV GP64-binding proteins through a combinational use of a self-biotinylated virus and the cross-linking method.

    PubMed

    Ke, Xianliang; Zhang, Yuan; Liu, Yan; Wang, Hanzhong

    2015-11-27

    Baculoviruses are potential vectors of gene therapy for the ability to transfer gene high efficiently into mammalian cells. However, cell membrane proteins which interact with baculoviral glycoproteins have not been identified. In this study, we developed a self-biotinylated AcMNPV bearing biotinylated GP64 glycoproteins. This recombinant virus demonstrated the capability to infect insect cells and to transduct mammalian cells. Using this biotinylated virus, a protein >170Kda which could specifically interact with GP64 proteins was identified from virus transducted BHK-21 cells through cross-linking and streptavidin purification. Our study provides a useful approach for identifying cell membrane proteins that interact with baculovirus surface proteins or proteins involved in virus attachment.

  13. Reduction of liver macrophage transduction by pseudotyping lentiviral vectors with a fusion envelope from Autographa californica GP64 and Sendai virus F2 domain

    PubMed Central

    Markusic, David M; van Til, Niek P; Hiralall, Johan K; Elferink, Ronald PJ Oude; Seppen, Jurgen

    2009-01-01

    Background Lentiviral vectors are well suited for gene therapy because they can mediate long-term expression in both dividing and nondividing cells. However, lentiviral vectors seem less suitable for liver gene therapy because systemically administered lentiviral vectors are preferentially sequestered by liver macrophages. This results in a reduction of available virus and might also increase the immune response to the vector and vector products. Reduction of macrophage sequestration is therefore essential for efficient lentiviral liver gene therapy. Results Fusions were made of Autographa californica GP64 and the hepatocyte specific Sendai Virus envelope proteins. Lentiviral vectors were produced with either wild type GP64, Sendai-GP64, or both wild type GP64 and Sendai-GP64 and tested in vitro and in vivo for hepatocyte and macrophage gene transfer. Sendai-GP64 pseudotyped vectors showed specific gene transfer to HepG2 hepatoma cells, with no detectable transduction of HeLa cervical carcinoma cells, and a decreased affinity for RAW mouse macrophages. Co-expression of wild type GP64 and Sendai-GP64 resulted in improved viral titers while retaining increased affinity for HepG2 cells. In vivo, the Sendai-GP64 vectors also showed decreased transduction of murine liver macrophages. Conclusion We demonstrate reduced macrophage transduction in vitro and in vivo with GP64/Sendai chimeric envelope proteins. PMID:19811629

  14. Baculovirus-mediated gene transfer in butterfly wings in vivo: an efficient expression system with an anti-gp64 antibody

    PubMed Central

    2013-01-01

    Background Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. Results A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Conclusions Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer

  15. Codon Usage in Signal Sequences Affects Protein Expression and Secretion Using Baculovirus/Insect Cell Expression System

    PubMed Central

    Tao, Shiheng; Chen, Hongying

    2015-01-01

    By introducing synonymous mutations into the coding sequences of GP64sp and FibHsp signal peptides, the influences of mRNA secondary structure and codon usage of signal sequences on protein expression and secretion were investigated using baculovirus/insect cell expression system. The results showed that mRNA structural stability of the signal sequences was not correlated with the protein production and secretion levels, and FibHsp was more tolerable to codon changes than GP64sp. Codon bias analyses revealed that codons for GP64sp were well de-optimized and contained more non-optimal codons than FibHsp. Synonymous mutations in GP64sp sufficiently increased its average codon usage frequency and resulted in dramatic reduction of the activity and secretion of luciferase. Protein degradation inhibition assay with MG-132 showed that higher codon usage frequency in the signal sequence increased the production as well as the degradation of luciferase protein, indicating that the synonymous codon substitutions in the signal sequence caused misfolding of luciferase instead of slowing down the protein production. Meanwhile, we found that introduction of more non-optimal codons into FibHsp could increase the production and secretion levels of luciferase, which suggested a new strategy to improve the production of secretory proteins in insect cells. PMID:26697848

  16. Phylogenetic analysis of otospiralin protein

    PubMed Central

    Torktaz, Ibrahim; Behjati, Mohaddeseh; Rostami, Amin

    2016-01-01

    Background: Fibrocyte-specific protein, otospiralin, is a small protein, widely expressed in the central nervous system as neuronal cell bodies and glia. The increased expression of otospiralin in reactive astrocytes implicates its role in signaling pathways and reparative mechanisms subsequent to injury. Indeed, otospiralin is considered to be essential for the survival of fibrocytes of the mesenchymal nonsensory regions of the cochlea. It seems that other functions of this protein are not yet completely understood. Materials and Methods: Amino acid sequences of otospiralin from 12 vertebrates were derived from National Center for Biotechnology Information database. Phylogenetic analysis and phylogeny estimation were performed using MEGA 5.0.5 program, and neighbor-joining tree was constructed by this software. Results: In this computational study, the phylogenetic tree of otospiralin has been investigated. Therefore, dendrograms of otospiralin were depicted. Alignment performed in MUSCLE method by UPGMB algorithm. Also, entropy plot determined for a better illustration of amino acid variations in this protein. Conclusion: In the present study, we used otospiralin sequence of 12 different species and by constructing phylogenetic tree, we suggested out group for some related species. PMID:27099854

  17. Protein-protein interactions: methods for detection and analysis.

    PubMed Central

    Phizicky, E M; Fields, S

    1995-01-01

    The function and activity of a protein are often modulated by other proteins with which it interacts. This review is intended as a practical guide to the analysis of such protein-protein interactions. We discuss biochemical methods such as protein affinity chromatography, affinity blotting, coimmunoprecipitation, and cross-linking; molecular biological methods such as protein probing, the two-hybrid system, and phage display: and genetic methods such as the isolation of extragenic suppressors, synthetic mutants, and unlinked noncomplementing mutants. We next describe how binding affinities can be evaluated by techniques including protein affinity chromatography, sedimentation, gel filtration, fluorescence methods, solid-phase sampling of equilibrium solutions, and surface plasmon resonance. Finally, three examples of well-characterized domains involved in multiple protein-protein interactions are examined. The emphasis of the discussion is on variations in the approaches, concerns in evaluating the results, and advantages and disadvantages of the techniques. PMID:7708014

  18. Protein sulfation analysis--A primer.

    PubMed

    Monigatti, Flavio; Hekking, Brian; Steen, Hanno

    2006-12-01

    The aim of this review is to present an overview of protein sulfation in the context of 'modificomics', i.e. post-translational modification-specific proteome research. In addition to a short introduction to the biology of protein sulfation (part 1), we will provide detailed discussion regarding (i) methods and tools for prediction of protein tyrosine sulfation sites (part 2), (ii) biochemical techniques used for protein sulfation analysis (part 3.1), and (iii) mass spectrometric strategies and methods applied to protein sulfation analysis (part 3.2). We will highlight strengths and limitations of different strategies and approaches (including references), providing a primer for newcomers to protein sulfation analysis.

  19. Protein-protein interaction network analysis of cirrhosis liver disease

    PubMed Central

    Safaei, Akram; Rezaei Tavirani, Mostafa; Arefi Oskouei, Afsaneh; Zamanian Azodi, Mona; Mohebbi, Seyed Reza; Nikzamir, Abdol Rahim

    2016-01-01

    Aim: Evaluation of biological characteristics of 13 identified proteins of patients with cirrhotic liver disease is the main aim of this research. Background: In clinical usage, liver biopsy remains the gold standard for diagnosis of hepatic fibrosis. Evaluation and confirmation of liver fibrosis stages and severity of chronic diseases require a precise and noninvasive biomarkers. Since the early detection of cirrhosis is a clinical problem, achieving a sensitive, specific and predictive novel method based on biomarkers is an important task. Methods: Essential analysis, such as gene ontology (GO) enrichment and protein-protein interactions (PPI) was undergone EXPASy, STRING Database and DAVID Bioinformatics Resources query. Results: Based on GO analysis, most of proteins are located in the endoplasmic reticulum lumen, intracellular organelle lumen, membrane-enclosed lumen, and extracellular region. The relevant molecular functions are actin binding, metal ion binding, cation binding and ion binding. Cell adhesion, biological adhesion, cellular amino acid derivative, metabolic process and homeostatic process are the related processes. Protein-protein interaction network analysis introduced five proteins (fibroblast growth factor receptor 4, tropomyosin 4, tropomyosin 2 (beta), lectin, Lectin galactoside-binding soluble 3 binding protein and apolipoprotein A-I) as hub and bottleneck proteins. Conclusion: Our result indicates that regulation of lipid metabolism and cell survival are important biological processes involved in cirrhosis disease. More investigation of above mentioned proteins will provide a better understanding of cirrhosis disease. PMID:27099671

  20. NAPS: Network Analysis of Protein Structures.

    PubMed

    Chakrabarty, Broto; Parekh, Nita

    2016-07-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  1. NAPS: Network Analysis of Protein Structures

    PubMed Central

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  2. Stochastic model for protein flexibility analysis

    NASA Astrophysics Data System (ADS)

    Xia, Kelin; Wei, Guo-Wei

    2013-12-01

    Protein flexibility is an intrinsic property and plays a fundamental role in protein functions. Computational analysis of protein flexibility is crucial to protein function prediction, macromolecular flexible docking, and rational drug design. Most current approaches for protein flexibility analysis are based on Hamiltonian mechanics. We introduce a stochastic model to study protein flexibility. The essential idea is to analyze the free induction decay of a perturbed protein structural probability, which satisfies the master equation. The transition probability matrix is constructed by using probability density estimators including monotonically decreasing radial basis functions. We show that the proposed stochastic model gives rise to some of the best predictions of Debye-Waller factors or B factors for three sets of protein data introduced in the literature.

  3. Biochemical Analysis of Protein SUMOylation

    PubMed Central

    Alontaga, Aileen Y.; Bobkova, Ekaterina; Chen, Yuan

    2012-01-01

    SUMOylation, the covalent attachment of Small Ubiquitin-like MOdifier (SUMO) polypeptides to other proteins, is among the most important post-translational modifications that regulate the functional properties of a large number of proteins. SUMOylation is broadly involved in cellular processes such as gene transcription, hormone response, signal transduction, DNA repair and nuclear transport. SUMO modification has also been implicated in the pathogenesis of human diseases, such as cancer, neurodegenerative disorders and viral infection. Attachment of a SUMO protein to another protein is carried out in multiple steps catalyzed by three enzymes. This unit describes and discusses the in vitro biochemical methods used for investigating each step of the SUMOylation process. In addition, a high throughput screening protocol is included for the identification of inhibitors of SUMOylation. PMID:22870855

  4. Analysis of Stable and Transient Protein-Protein Interactions

    PubMed Central

    Byrum, Stephanie; Smart, Sherri K.; Larson, Signe; Tackett, Alan J.

    2012-01-01

    The assembly of proteins into defined complexes drives a plethora of cellular activities. These protein complexes often have a set of more stably interacting proteins as well as more unstable or transient interactions. Studying the in vivo components of these protein complexes is challenging as many of the techniques used for isolation result in the purification of only the most stable components and the transient interactions are lost. A technology called transient isotopic differentiation of interactions as random or targeted (transient I-DIRT) has been developed to identify these transiently interacting proteins as well as the stable interactions. Described here are the detailed methodological approaches used for a transient I-DIRT analysis of a multi-subunit complex, NuA3, that acetylates histone H3 and functions to activate gene transcription. Transcription is known to involve a concert of protein assemblies performing different activities on the chromatin/gene template, thus understanding the less stable or transient protein interactions with NuA3 will shed light onto the protein complexes that function synergistically, or antagonistically, to regulate gene transcription and chromatin remodeling. PMID:22183593

  5. Proteomic analysis of SETD6 interacting proteins

    PubMed Central

    Cohn, Ofir; Chen, Ayelet; Feldman, Michal; Levy, Dan

    2016-01-01

    SETD6 (SET-domain-containing protein 6) is a mono-methyltransferase that has been shown to methylate RelA and H2AZ. Using a proteomic approach we recently identified several new SETD6 substrates. To identify novel SETD6 interacting proteins, SETD6 was immunoprecipitated (IP) from Human erythromyeloblastoid leukemia K562 cells. SETD6 binding proteins were subjected to mass-spectrometry analysis resulting in 115 new SETD6 binding candidates. STRING database was used to map the SETD6 interactome network. Network enrichment analysis of biological processes with Gene Ontology (GO) database, identified three major groups; metabolic processes, muscle contraction and protein folding. PMID:26937450

  6. Analysis of Electroblotted Proteins by Mass Spectrometry

    PubMed Central

    Luque-Garcia, Jose L.; Neubert, Thomas A.

    2015-01-01

    Summary Identification of proteins by mass spectrometry is crucial for better understanding of many biological, biochemical, and biomedical processes. Here we describe two methods for the identification of electroblotted proteins by on-membrane digestion prior to analysis by mass spectrometry. These on-membrane methods take approximately half the time of in-gel digestion and provide better digestion efficiency, due to the better accessibility of the protease to the proteins adsorbed onto the nitrocellulose, and better protein sequence coverage, especially for membrane proteins where large and hydrophobic peptides are commonly present. PMID:26139272

  7. Proteomic Analysis of Cytoskeleton Proteins in Fish.

    PubMed

    Gotesman, Michael; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2016-01-01

    In this chapter, we describe laboratory protocols for rearing fish and a simple and efficient method of extracting and identifying pathogen and host proteins that may be involved in entry and replication of commercially important fish viruses. We have used the common carp (Cyprinus carpio L.) and goldfish (Cyprinus auratus) as a model system for studies of proteins involved in viral entry and replication. The chapter describes detailed protocols for maintenance of carp, cell culture, antibody purification of proteins, and use of electrospray-ionization mass spectrometry analysis to screen and identify cytoskeleton and other proteins that may be involved in viral infection and propagation in fish. PMID:26498797

  8. Emerging techniques for ultrasensitive protein analysis.

    PubMed

    Yang, Xiaolong; Tang, Yanan; Alt, Ryan R; Xie, Xiaoyu; Li, Feng

    2016-06-21

    Many important biomarkers for devastating diseases and biochemical processes are proteins present at ultralow levels. Traditional techniques, such as enzyme-linked immunosorbent assays (ELISA), mass spectrometry, and protein microarrays, are often not sensitive enough to detect proteins with concentrations below the picomolar level, thus requiring the development of analytical techniques with ultrahigh sensitivities. In this review, we highlight the recent advances in developing novel techniques, sensors, and assays for ultrasensitive protein analysis. Particular attention will be focused on three classes of signal generation and/or amplification mechanisms, including the uses of nanomaterials, nucleic acids, and digital platforms. PMID:26898911

  9. Quantitative analysis of protein turnover in plants.

    PubMed

    Nelson, Clark J; Li, Lei; Millar, A Harvey

    2014-03-01

    Proteins are constantly being synthesised and degraded as plant cells age and as plants grow, develop and adapt the proteome. Given that plants develop through a series of events from germination to fruiting and even undertake whole organ senescence, an understanding of protein turnover as a fundamental part of this process in plants is essential. Both synthesis and degradation processes are spatially separated in a cell across its compartmented structure. The majority of protein synthesis occurs in the cytosol, while synthesis of specific components occurs inside plastids and mitochondria. Degradation of proteins occurs in both the cytosol, through the action of the plant proteasome, and in organelles and lytic structures through different protease classes. Tracking the specific synthesis and degradation rate of individual proteins can be undertaken using stable isotope feeding and the ability of peptide MS to track labelled peptide fractions over time. Mathematical modelling can be used to follow the isotope signature of newly synthesised protein as it accumulates and natural abundance proteins as they are lost through degradation. Different technical and biological constraints govern the potential for the use of (13)C, (15)N, (2)H and (18)O for these experiments in complete labelling and partial labelling strategies. Future development of quantitative protein turnover analysis will involve analysis of protein populations in complexes and subcellular compartments, assessing the effect of PTMs and integrating turnover studies into wider system biology study of plants.

  10. Protein Sectors: Statistical Coupling Analysis versus Conservation

    PubMed Central

    Teşileanu, Tiberiu; Colwell, Lucy J.; Leibler, Stanislas

    2015-01-01

    Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation. PMID:25723535

  11. Analysis of flagellar protein ubiquitination.

    PubMed

    Long, Huan; Huang, Kaiyao

    2013-01-01

    Flagella/cilia are conserved organelles existing in unicellular protists and multicellular animals, where they perform essential motile and sensory functions. Their assembly and disassembly are coordinated with the cell cycle, and recent evidence shows that posttranslational modifications such as phosphorylation, methylation, and ubiquitination are involved in these two processes, perhaps through interacting with intraflagellar transport (IFT), a specialized intracellular transport that is required for the assembly and maintenance of flagella/cilia. In this chapter, we summarize the components of the ubiquitination system published in proteomic databases of flagella/cilia. Furthermore, we describe procedures to analyze the ubiquitin-conjugating system in Chlamydomonas flagella and to analyze flagellar protein ubiquitination during flagellar shortening and the mating process. These results and tools will be valuable for the characterization of substrates of ubiquitination and their roles in flagellar disassembly and in regulating signal transduction pathways in flagella/cilia.

  12. [Update on protein analysis of fixed tissues].

    PubMed

    Becker, K-F; Berg, D; Malinowsky, K; Wolff, C; Ergin, B; Meding, S; Walch, A; Höfler, H

    2010-10-01

    Tissue samples have been routinely used for decades to distinguish healthy from diseased tissue in histopathological characterization. While nucleic acid-based methodologies have been successfully in use for many years, protein-based techniques, in contrast, are at a very early stage (with the exception of immunohistochemistry). One reason for this delay may be that the scientific community has long thought that formalin-fixed and paraffin embedded (FFPE) tissues are unfit for protein analysis. However, recent reports demonstrate that many protein methods that are routinely used for frozen tissues can also be applied for FFPE tissues, including Western blot, protein microarray, matrix-assisted laser desorption/ionization (MALDI) imaging and 2D gel electrophoresis. The present article provides an overview of recent developments in this field, focussing particular attention on quantitative analysis and high throughput technologies that have the potential to be integrated into the routine workflow of clinical pathology laboratories.

  13. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  14. Atomic-level analysis of membrane-protein structure.

    PubMed

    Hendrickson, Wayne A

    2016-06-01

    Membrane proteins are substantially more challenging than natively soluble proteins as subjects for structural analysis. Thus, membrane proteins are greatly underrepresented in structural databases. Recently, focused consortium efforts and advances in methodology for protein production, crystallographic analysis and cryo-EM analysis have accelerated the pace of atomic-level structure determination of membrane proteins.

  15. Analysis of Protein Oligomerization by Electrophoresis.

    PubMed

    Cubillos-Rojas, Monica; Schneider, Taiane; Sánchez-Tena, Susana; Bartrons, Ramon; Ventura, Francesc; Rosa, Jose Luis

    2016-01-01

    A polypeptide chain can interact with other polypeptide chains and form stable and functional complexes called "oligomers." Frequently, biochemical analysis of these complexes is made difficult by their great size. Traditionally, size exclusion chromatography, immunoaffinity chromatography, or immunoprecipitation techniques have been used to isolate oligomers. Components of these oligomers are then further separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and identified by immunoblotting with specific antibodies. Although they are sensitive, these techniques are not easy to perform and reproduce. The use of Tris-acetate polyacrylamide gradient gel electrophoresis allows the simultaneous analysis of proteins in the mass range of 10-500 kDa. We have used this characteristic together with cross-linking reagents to analyze the oligomerization of endogenous proteins with a single electrophoretic gel. We demonstrate how the oligomerization of p53, the pyruvate kinase isoform M2, or the heat shock protein 27 can be studied with this system. We also show how this system is useful for studying the oligomerization of large proteins such as clathrin heavy chain or the tuberous sclerosis complex. Oligomerization analysis is dependent on the cross-linker used and its concentration. All of these features make this system a very helpful tool for the analysis of protein oligomerization. PMID:27613048

  16. Integrative visual analysis of protein sequence mutations

    PubMed Central

    2014-01-01

    Background An important aspect of studying the relationship between protein sequence, structure and function is the molecular characterization of the effect of protein mutations. To understand the functional impact of amino acid changes, the multiple biological properties of protein residues have to be considered together. Results Here, we present a novel visual approach for analyzing residue mutations. It combines different biological visualizations and integrates them with molecular data derived from external resources. To show various aspects of the biological information on different scales, our approach includes one-dimensional sequence views, three-dimensional protein structure views and two-dimensional views of residue interaction networks as well as aggregated views. The views are linked tightly and synchronized to reduce the cognitive load of the user when switching between them. In particular, the protein mutations are mapped onto the views together with further functional and structural information. We also assess the impact of individual amino acid changes by the detailed analysis and visualization of the involved residue interactions. We demonstrate the effectiveness of our approach and the developed software on the data provided for the BioVis 2013 data contest. Conclusions Our visual approach and software greatly facilitate the integrative and interactive analysis of protein mutations based on complementary visualizations. The different data views offered to the user are enriched with information about molecular properties of amino acid residues and further biological knowledge. PMID:25237389

  17. Unraveling the Entry Mechanism of Baculoviruses and Its Evolutionary Implications

    PubMed Central

    Wang, Manli; Wang, Jue; Yin, Feifei; Tan, Ying; Deng, Fei; Chen, Xinwen; Jehle, Johannes A.; Vlak, Just M.; Hu, Zhihong

    2014-01-01

    The entry of baculovirus budded virus into host cells is mediated by two distinct types of envelope fusion proteins (EFPs), GP64 and F protein. Phylogenetic analysis suggested that F proteins were ancestral baculovirus EFPs, whereas GP64 was acquired by progenitor group I alphabaculovirus more recently and may have stimulated the formation of the group I lineage. This study was designed to experimentally recapitulate a possible major step in the evolution of baculoviruses. We demonstrated that the infectivity of an F-null group II alphabaculovirus (Helicoverpa armigera nucleopolyhedrovirus [HearNPV]) can be functionally rescued by coinsertion of GP64 along with the nonfusogenic Fdef (furin site mutated HaF) from HearNPV. Interestingly, HearNPV enters cells by endocytosis and, less efficiently, by direct membrane fusion at low pH. However, this recombinant HearNPV coexpressing Fdef and GP64 mimicked group I virus not only in its EFP composition but also in its abilities to enter host cells via low-pH-triggered direct fusion pathway. Neutralization assays indicated that the nonfusogenic F proteins contribute mainly to binding to susceptible cells, while GP64 contributes to fusion. Coinsertion of GP64 with an F-like protein (Ac23) from group I virus led to efficient rescue of an F-null group II virus. In summary, these recombinant viruses and their entry modes are considered to resemble an evolutionary event of the acquisition of GP64 by an ancestral group I virus and subsequent adaptive inactivation of the original F protein. The study described here provides the first experimental evidence to support the hypothesis of the evolution of baculovirus EFPs. PMID:24335309

  18. Nanobiocatalysis for protein digestion in proteomic analysis

    SciTech Connect

    Kim, Jungbae; Kim, Byoung Chan; Lopez-Ferrer, Daniel; Petritis, Konstantinos; Smith, Richard D.

    2010-02-01

    The process of protein digestion is a critical step for successful protein identification in the bottom-up proteomic analysis. To substitute the present practice of in-solution protein digestion, which is long, tedious, and difficult to automate, a lot of efforts have been dedicated for the development of a rapid, recyclable and automated digestion system. Recent advances of nanobiocatalytic approaches have improved the performance of protein digestion by using various nanomaterials such as nanoporous materials, magnetic nanoparticles, and polymer nanofibers. Especially, the unprecedented success of trypsin stabilization in the form of trypsin-coated nanofibers, showing no activity decrease under repeated uses for one year and retaining good resistance to proteolysis, has demonstrated its great potential to be employed in the development of automated, high-throughput, and on-line digestion systems. This review discusses recent developments of nanobiocatalytic approaches for the improved performance of protein digestion in speed, detection sensitivity, recyclability, and trypsin stability. In addition, we also introduce the protein digestions under unconventional energy inputs for protein denaturation and the development of microfluidic enzyme reactors that can benefit from recent successes of these nanobiocatalytic approaches.

  19. Spectral Analysis of a Protein Conformational Switch

    NASA Astrophysics Data System (ADS)

    Rackovsky, S.

    2011-06-01

    The existence of conformational switching in proteins, induced by single amino acid mutations, presents an important challenge to our understanding of the physics of protein folding. Sequence-local methods, commonly used to detect structural homology, are incapable of accounting for this phenomenon. We examine a set of proteins, derived from the GA and GB domains of Streptococcus protein G, which are known to show a dramatic conformational change as a result of single-residue replacement. It is shown that these sequences, which are almost identical locally, can have very different global patterns of physical properties. These differences are consistent with the observed complete change in conformation. These results suggest that sequence-local methods for identifying structural homology can be misleading. They point to the importance of global sequence analysis in understanding sequence-structure relationships.

  20. Complementary Proteomic Analysis of Protein Complexes

    PubMed Central

    Greco, Todd M.; Miteva, Yana; Conlon, Frank L.; Cristea, Ileana M.

    2013-01-01

    Proteomic characterization of protein complexes leverages the versatile platform of liquid chromatography-tandem mass spectrometry to elucidate molecular and cellular signaling processes underlying the dynamic regulation of macromolecular assemblies. Here, we describe a complementary proteomic approach optimized for immunoisolated protein complexes. As the relative complexity, abundance, and physiochemical properties of proteins can vary significantly between samples, we have provided (1) complementary sample preparation workflows, (2) detailed steps for HPLC and mass spectrometric method development, and (3) a bioinformatic workflow that provides confident peptide/protein identification paired with unbiased functional gene ontology analysis. This protocol can also be extended for characterization of larger complexity samples from whole cell or tissue Xenopus proteomes. PMID:22956100

  1. Unraveling Protein Networks with Power Graph Analysis

    PubMed Central

    Royer, Loïc; Reimann, Matthias; Andreopoulos, Bill; Schroeder, Michael

    2008-01-01

    Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks. We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution, indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein interactions, regulatory networks, or homology networks. PMID:18617988

  2. Sequence analysis of the complete genome of Trichoplusia ni single nucleopolyhedrovirus and the identification of a baculoviral photolyase gene

    SciTech Connect

    Willis, Leslie G.; Siepp, Robyn; Stewart, Taryn M.; Erlandson, Martin A.; Theilmann, David A. . E-mail: TheilmannD@agr.gc.ca

    2005-08-01

    The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (T. ni), has been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence matches with the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no obvious homologous repeat (hr) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique opportunity to examine two baculoviruses that are highly virulent for a common insect host (T. ni) yet belong to diverse baculovirus taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.

  3. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    PubMed

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  4. Data Analysis Strategies for Protein Microarrays

    PubMed Central

    Díez, Paula; Dasilva, Noelia; González-González, María; Matarraz, Sergio; Casado-Vela, Juan; Orfao, Alberto; Fuentes, Manuel

    2012-01-01

    Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation.

  5. Data Analysis Strategies for Protein Microarrays

    PubMed Central

    Díez, Paula; Dasilva, Noelia; González-González, María; Matarraz, Sergio; Casado-Vela, Juan; Orfao, Alberto; Fuentes, Manuel

    2012-01-01

    Microarrays constitute a new platform which allows the discovery and characterization of proteins. According to different features, such as content, surface or detection system, there are many types of protein microarrays which can be applied for the identification of disease biomarkers and the characterization of protein expression patterns. However, the analysis and interpretation of the amount of information generated by microarrays remain a challenge. Further data analysis strategies are essential to obtain representative and reproducible results. Therefore, the experimental design is key, since the number of samples and dyes, among others aspects, would define the appropriate analysis method to be used. In this sense, several algorithms have been proposed so far to overcome analytical difficulties derived from fluorescence overlapping and/or background noise. Each kind of microarray is developed to fulfill a specific purpose. Therefore, the selection of appropriate analytical and data analysis strategies is crucial to achieve successful biological conclusions. In the present review, we focus on current algorithms and main strategies for data interpretation. PMID:27605336

  6. FT-IR analysis of phosphorylated protein

    NASA Astrophysics Data System (ADS)

    Ishii, Katsunori; Yoshihashi, Sachiko S.; Chihara, Kunihiro; Awazu, Kunio

    2004-09-01

    Phosphorylation and dephosphorylation, which are the most remarkable posttranslational modifications, are considered to be important chemical reactions that control the activation of proteins. We examine the phosphorylation analysis method by measuring the infrared absorption peak of phosphate group that observed at about 1070cm-1 (9.4μm) with Fourier Transform Infrared Spectrometer (FT-IR). This study indicates that it is possible to identify a phosphorylation by measuring the infrared absorption peak of phosphate group observed at about 1070 cm-1 with FT-IR method. As long as target peptides have the same amino acid sequence, it is possible to identify the phosphorylated sites (threonine, serine and tyrosine).

  7. Baculovirus display of functional antibody Fab fragments.

    PubMed

    Takada, Shinya; Ogawa, Takafumi; Matsui, Kazusa; Suzuki, Tasuku; Katsuda, Tomohisa; Yamaji, Hideki

    2015-08-01

    The generation of a recombinant baculovirus that displays antibody Fab fragments on the surface was investigated. A recombinant baculovirus was engineered so that the heavy chain (Hc; Fd fragment) of a mouse Fab fragment was expressed as a fusion to the N-terminus of baculovirus gp64, while the light chain of the Fab fragment was simultaneously expressed as a secretory protein. Following infection of Sf9 insect cells with the recombinant baculovirus, the culture supernatant was analyzed by enzyme-linked immunosorbent assay using antigen-coated microplates and either an anti-mouse IgG or an anti-gp64 antibody. A relatively strong signal was obtained in each case, showing antigen-binding activity in the culture supernatant. In western blot analysis of the culture supernatant using the anti-gp64 antibody, specific protein bands were detected at an electrophoretic mobility that coincided with the molecular weight of the Hc-gp64 fusion protein as well as that of gp64. Flow cytometry using a fluorescein isothiocyanate-conjugated antibody specific to mouse IgG successfully detected the Fab fragments on the surface of the Sf9 cells. These results suggest that immunologically functional antibody Fab fragments can be displayed on the surface of baculovirus particles, and that a fluorescence-activated cell sorter with a fluorescence-labeled antigen can isolate baculoviruses displaying specific Fab fragments. This successful baculovirus display of antibody Fab fragments may offer a novel approach for the efficient selection of specific antibodies.

  8. Toward Modular Analysis of Supramolecular Protein Assemblies.

    PubMed

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-01

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome. PMID:26575921

  9. Epock: rapid analysis of protein pocket dynamics

    PubMed Central

    Laurent, Benoist; Chavent, Matthieu; Cragnolini, Tristan; Dahl, Anna Caroline E.; Pasquali, Samuela; Derreumaux, Philippe; Sansom, Mark S.P.; Baaden, Marc

    2015-01-01

    Summary: The volume of an internal protein pocket is fundamental to ligand accessibility. Few programs that compute such volumes manage dynamic data from molecular dynamics (MD) simulations. Limited performance often prohibits analysis of large datasets. We present Epock, an efficient command-line tool that calculates pocket volumes from MD trajectories. A plugin for the VMD program provides a graphical user interface to facilitate input creation, run Epock and analyse the results. Availability and implementation: Epock C++ source code, Python analysis scripts, VMD Tcl plugin, documentation and installation instructions are freely available at http://epock.bitbucket.org. Contact: benoist.laurent@gmail.com or baaden@smplinux.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25505095

  10. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  11. Stability analysis of an autocatalytic protein model

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.

  12. Kinetic Analysis of Protein Folding Lattice Models

    NASA Astrophysics Data System (ADS)

    Chen, Hu; Zhou, Xin; Liaw, Chih Young; Koh, Chan Ghee

    Based on two-dimensional square lattice models of proteins, the relation between folding time and temperature is studied by Monte Carlo simulation. The results can be represented by a kinetic model with three states — random coil, molten globule, and native state. The folding process is composed of nonspecific collapse and final searching for the native state. At high temperature, it is easy to escape from local traps in the folding process. With decreasing temperature, because of the trapping in local traps, the final searching speed decreases. Then the folding shows chevron rollover. Through the analysis of the fitted parameters of the kinetic model, it is found that the main difference between the energy landscapes of the HP model and the Go model is that the number of local minima of the Go model is less than that of the HP model.

  13. Sequence analysis of the AAA protein family.

    PubMed Central

    Beyer, A.

    1997-01-01

    The AAA protein family, a recently recognized group of Walker-type ATPases, has been subjected to an extensive sequence analysis. Multiple sequence alignments revealed the existence of a region of sequence similarity, the so-called AAA cassette. The borders of this cassette were localized and within it, three boxes of a high degree of conservation were identified. Two of these boxes could be assigned to substantial parts of the ATP binding site (namely, to Walker motifs A and B); the third may be a portion of the catalytic center. Phylogenetic trees were calculated to obtain insights into the evolutionary history of the family. Subfamilies with varying degrees of intra-relatedness could be discriminated; these relationships are also supported by analysis of sequences outside the canonical AAA boxes: within the cassette are regions that are strongly conserved within each subfamily, whereas little or even no similarity between different subfamilies can be observed. These regions are well suited to define fingerprints for subfamilies. A secondary structure prediction utilizing all available sequence information was performed and the result was fitted to the general 3D structure of a Walker A/GTPase. The agreement was unexpectedly high and strongly supports the conclusion that the AAA family belongs to the Walker superfamily of A/GTPases. PMID:9336829

  14. ProteinHistorian: tools for the comparative analysis of eukaryote protein origin.

    PubMed

    Capra, John A; Williams, Alexander G; Pollard, Katherine S

    2012-01-01

    The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies, find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to integrate these approaches into their analysis pipelines. ProteinHistorian's modular, extensible design facilitates the integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32 eukaryotic genomes are freely available under

  15. ProteinHistorian: tools for the comparative analysis of eukaryote protein origin.

    PubMed

    Capra, John A; Williams, Alexander G; Pollard, Katherine S

    2012-01-01

    The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies, find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to integrate these approaches into their analysis pipelines. ProteinHistorian's modular, extensible design facilitates the integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32 eukaryotic genomes are freely available under

  16. Large-scale proteomic analysis of membrane proteins.

    PubMed

    Ahram, Mamoun; Springer, David L

    2004-10-01

    Proteomic analysis of membrane proteins is a promising approach for the identification of novel drug targets and/or disease biomarkers. Despite notable technological developments, obstacles related to extraction and solublization of membrane proteins are encountered. A critical discussion of the different preparative methods of membrane proteins is offered in relation to downstream proteomic applications, mainly gel-based analyses and mass spectrometry. Frequently, unknown proteins are identified by high-throughput profiling of membrane proteins. In search for novel membrane proteins, analysis of protein sequences using computational tools is performed to predict the presence of transmembrane domains. This review also presents these bioinformatic tools with the human proteome as a case study. Along with technological innovations, advancements in the areas of sample preparation and computational prediction of membrane proteins will lead to exciting discoveries.

  17. APols-aided protein precipitation: a rapid method for concentrating proteins for proteomic analysis.

    PubMed

    Ning, Zhibin; Hawley, Brett; Seebun, Deeptee; Figeys, Daniel

    2014-10-01

    Amphipols (APols) are a newly designed and milder class of detergent. They have been used primarily in protein structure analysis for membrane protein trapping and stabilization. We have recently demonstrated that APols can be used as an alternative detergent for proteome extraction and digestion, to achieve a "One-stop" single-tube workflow for proteomics. In this workflow, APols are removed by precipitation after protein digestion without depleting the digested peptides. Here, we took further advantage of this precipitation characteristic of APols to concentrate proteins from diluted samples. In contrast with tryptic peptides, a decrease in pH leads to the unbiased co-precipitation of APols with proteins, including globular hydrophilic proteins. We demonstrated that this precipitation is a combined effect of acid precipitation and the APols' protein interactions. Also, we have been able to demonstrate that APols-aided protein precipitation works well on diluted samples, such as secretome sample, and provides a rapid method for protein concentration.

  18. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    PubMed

    Li, Wan; Chen, Lina; He, Weiming; Li, Weiguo; Qu, Xiaoli; Liang, Binhua; Gao, Qianping; Feng, Chenchen; Jia, Xu; Lv, Yana; Zhang, Siya; Li, Xia

    2013-01-01

    The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial). Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  19. Component analysis of the protein hydration entropy

    NASA Astrophysics Data System (ADS)

    Chong, Song-Ho; Ham, Sihyun

    2012-05-01

    We report the development of an atomic decomposition method of the protein solvation entropy in water, which allows us to understand global change in the solvation entropy in terms of local changes in protein conformation as well as in hydration structure. This method can be implemented via a combined approach based on molecular dynamics simulation and integral-equation theory of liquids. An illustrative application is made to 42-residue amyloid-beta protein in water. We demonstrate how this method enables one to elucidate the molecular origin for the hydration entropy change upon conformational transitions of protein.

  20. Rapid visco analysis of food protein pastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein isolate (WPI) powders are used in many formulations to boost nutrients. To predict the pasting behavior of proteins, WPI was tested under varying temperatures, using the Rapid-Visco-Analyzer (RVA), under pasting temperatures from 65 to 75 degrees'C, RVA speeds from 100 to 500 rpm, and ...

  1. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments

    PubMed Central

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N. P.; Riedmayr, Lisa M.; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S.; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  2. AAV Vectors for FRET-Based Analysis of Protein-Protein Interactions in Photoreceptor Outer Segments.

    PubMed

    Becirovic, Elvir; Böhm, Sybille; Nguyen, Ong N P; Riedmayr, Lisa M; Hammelmann, Verena; Schön, Christian; Butz, Elisabeth S; Wahl-Schott, Christian; Biel, Martin; Michalakis, Stylianos

    2016-01-01

    Fluorescence resonance energy transfer (FRET) is a powerful method for the detection and quantification of stationary and dynamic protein-protein interactions. Technical limitations have hampered systematic in vivo FRET experiments to study protein-protein interactions in their native environment. Here, we describe a rapid and robust protocol that combines adeno-associated virus (AAV) vector-mediated in vivo delivery of genetically encoded FRET partners with ex vivo FRET measurements. The method was established on acutely isolated outer segments of murine rod and cone photoreceptors and relies on the high co-transduction efficiency of retinal photoreceptors by co-delivered AAV vectors. The procedure can be used for the systematic analysis of protein-protein interactions of wild type or mutant outer segment proteins in their native environment. Conclusively, our protocol can help to characterize the physiological and pathophysiological relevance of photoreceptor specific proteins and, in principle, should also be transferable to other cell types. PMID:27516733

  3. Crystallization and Structure Analysis of Membrane Proteins

    NASA Astrophysics Data System (ADS)

    Newman, Richard

    In recent years, there has been great progress in the determination of high-resolution three-dimensional (3D) structures of membrane proteins. The first major breakthrough came with the crystallization (1) and X-ray crystallography (2,3) of the bacterial photosynthetic reaction center (see refs. 4 and 5 for reviews). The structure of another, entirely different membrane protein, the bacterial outer membrane porin from Rhodobacter capsulatus, has now been determined by X-ray crystallography (6). Recent results by electron crystallography of two-dimensional (2D) crystals have been most encouraging. The high-resolution 3D structure of bacteriorhodopsin (7) plant light-harvesting complex (8) and projection maps of several other membrane proteins at similar resolutions (9-11) have been obtained by this technique. Electron crystallography seems particularly appropriate for membrane proteins that are prone to form 2D crystals, and it is hoped that many more structures will be determined in this way.

  4. Analysis of soybean seed proteins using proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different proteomics technologies and their application to biological sciences. In addition, different classes of soybean seed proteins are discussed. This information will be useful to scientists in obtaining a greater understanding of the...

  5. Maleimide photolithography for single-molecule protein-protein interaction analysis in micropatterns.

    PubMed

    Waichman, Sharon; You, Changjiang; Beutel, Oliver; Bhagawati, Maniraj; Piehler, Jacob

    2011-01-15

    Spatial organization of proteins into microscopic structures has important applications in fundamental and applied research. Preserving the function of proteins in such microstructures requires generic methods for site-specific capturing through affinity handles. Here, we present a versatile bottom-up surface micropatterning approach based on surface functionalization with maleimides, which selectively react with organic thiols. Upon UV irradiation through a photomask, the functionality of illuminated maleimide groups was efficiently destroyed. Remaining maleimides in nonilluminated regions were further reacted with different thiol-functionalized groups for site-specific protein immobilization under physiological conditions. Highly selective immobilization of His-tagged proteins into tris(nitrilotriacetic acid) functionalized microstructures with very high contrast was possible even by direct capturing of proteins from crude cell lysates. Moreover, we employed phosphopantetheinyl transfer from surface-immobilized coenzyme A to ybbR-tagged proteins in order to implement site-specific, covalent protein immobilization into microstructures. The functional integrity of the immobilized protein was confirmed by monitoring protein-protein interactions in real time. Moreover, we demonstrate quantitative single-molecule analysis of protein-protein interactions with proteins selectively captured into these high-contrast micropatterns.

  6. Serum proteins are extracted along with monolayer cells in plasticware and interfere with protein analysis

    PubMed Central

    Hong, Xin; Meng, Yuling; Kalkanis, Steven N.

    2016-01-01

    Washing and lysing monolayer cells directly from cell culture plasticware is a commonly used method for protein extraction. We found that multiple protein bands were enriched in samples with low cell numbers from the 6-well plate cultures. These proteins contributed to the overestimation of cell proteins and led to the uneven protein loading in Western blotting analysis. In Coomassie blue stained SDS-PAGE gels, the main enriched protein band is about 69 kDa and it makes up 13.6% of total protein from 104 U251n cells. Analyzed by mass spectrometry, we identified two of the enriched proteins: bovine serum albumin and bovine serum transferrin. We further observed that serum proteins could be extracted from other cell culture plates, dishes and flasks even after washing the cells 3 times with PBS. A total of 2.3 mg of protein was collected from a single well of the 6-well plate. A trace amount of the protein band was still visible after washing the cells 5 times with PBS. Thus, serum proteins should be considered if extracting proteins from plasticware, especially for samples with low cell numbers. PMID:27631018

  7. Serum proteins are extracted along with monolayer cells in plasticware and interfere with protein analysis

    PubMed Central

    Hong, Xin; Meng, Yuling; Kalkanis, Steven N.

    2016-01-01

    Washing and lysing monolayer cells directly from cell culture plasticware is a commonly used method for protein extraction. We found that multiple protein bands were enriched in samples with low cell numbers from the 6-well plate cultures. These proteins contributed to the overestimation of cell proteins and led to the uneven protein loading in Western blotting analysis. In Coomassie blue stained SDS-PAGE gels, the main enriched protein band is about 69 kDa and it makes up 13.6% of total protein from 104 U251n cells. Analyzed by mass spectrometry, we identified two of the enriched proteins: bovine serum albumin and bovine serum transferrin. We further observed that serum proteins could be extracted from other cell culture plates, dishes and flasks even after washing the cells 3 times with PBS. A total of 2.3 mg of protein was collected from a single well of the 6-well plate. A trace amount of the protein band was still visible after washing the cells 5 times with PBS. Thus, serum proteins should be considered if extracting proteins from plasticware, especially for samples with low cell numbers.

  8. Affinity purification of protein complexes for analysis by multidimensional protein identification technology.

    PubMed

    Banks, Charles A S; Kong, Stephanie E; Washburn, Michael P

    2012-12-01

    Characterizing protein complexes and identifying their subunits promote our understanding of the machinery involved in many in vivo processes. Proteomic studies can identify a protein's binding partners, and this can provide insight into how protein complexes function and how they are regulated. In addition, the composition of a protein complex within an organism can be investigated as a function of time, as a function of location, or during the response of an organism to a change in environment. There are many ways to isolate a complex and identify its constituents. This review will focus on complex isolation using affinity purification and will address issues that biochemists should bear in mind as they isolate protein complexes for mass spectrometric analysis by multidimensional protein identification technology (MudPIT)(1). Protein complex analysis by mass spectrometry frequently involves the collaborative efforts of biochemists or biologists who purify protein complexes and proteomic specialists who analyze the samples - for fruitful collaborations it can be helpful for these specialized groups to be acquainted with basic principles of their collaborator's discipline. With this in mind, we first review the variety of affinity purification methods which might be considered for preparing complexes for analysis, and then provide brief primers on the principles of MudPIT mass spectrometry and data analysis. From this foundation, we then discuss how these techniques are integrated and optimized and suggest salient points to consider when preparing purified samples for protein identification, performing mass spectrometry runs, and analyzing the resulting data.

  9. Methods for the analysis of protein-chromatin interactions.

    PubMed

    Brickwood, Sarah J; Myers, Fiona A; Chandler, Simon P

    2002-01-01

    The analysis of protein interactions with chromatin is vital for the understanding of DNA sequence recognition in vivo. Chromatin binding requires the interaction of proteins with DNA lying on the macromolecular protein surface of nucleosomes, a situation that can alter factor binding characteristics substantially when compared with naked DNA. It is therefore important to study these protein-DNA interactions in the context of a chromatin substrate, the more physiologically relevant binding situation. In this article we review techniques used in the investigation of protein interactions with defined nucleosomal templates. PMID:11876294

  10. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  11. Structural analysis of membrane-bound retrovirus capsid proteins.

    PubMed Central

    Barklis, E; McDermott, J; Wilkens, S; Schabtach, E; Schmid, M F; Fuller, S; Karanjia, S; Love, Z; Jones, R; Rui, Y; Zhao, X; Thompson, D

    1997-01-01

    We have developed a system for analysis of histidine-tagged (His-tagged) retrovirus core (Gag) proteins, assembled in vitro on lipid monolayers consisting of egg phosphatidylcholine (PC) plus the novel lipid DHGN. DHGN was shown to chelate nickel by atomic absorption spectrometry, and DHGN-containing monolayers specifically bound gold conjugates of His-tagged proteins. Using PC + DHGN monolayers, we examined membrane-bound arrays of an N-terminal His-tagged Moloney murine leukemia virus (M-MuLV) capsid (CA) protein, His-MoCA, and in vivo studies suggest that in vitro-derived His-MoCA arrays reflect some of the Gag protein interactions which occur in assembling virus particles. The His-MoCA proteins formed extensive two-dimensional (2D) protein crystals, with reflections out to 9.5 A resolution. The image-analyzed 2D projection of His-MoCA arrays revealed a distinct cage-like network. The asymmetry of the individual building blocks of the network led to the formation of two types of hexamer rings, surrounding protein-free cage holes. These results predict that Gag hexamers constitute a retrovirus core substructure, and that cage hole sizes define an exclusion limit for entry of retrovirus envelope proteins, or other plasma membrane proteins, into virus particles. We believe that the 2D crystallization method will permit the detailed analysis of retroviral Gag proteins and other His-tagged proteins. PMID:9135137

  12. Screening and analysis on the protein interaction of the protein VP7 in grass carp reovirus.

    PubMed

    Yan, Xiuying; Xie, Jiguo; Li, Jie; Shuanghu, Cai; Wu, Zaohe; Jian, Jichang

    2015-06-01

    Grass carp reovirus (GCRV) has caused serious economic losses for several decades in China. The protein VP7 is one of the important structural proteins in GCRV. Recent studies indicated that the protein VP7 had the commendable antigenicity and immunogenicity. The protein VP7 cooperated with VP5 could change the conformation of the cell membrane and facilitate entry of GCRV into host cells. We speculated that the protein VP7 should play an important role in the pathogenesis of GCRV. In order to explore the function of the protein VP7, the bait protein expression plasmid pGBKT7-vp7 and the cDNA library of CIK cells were constructed. By yeast two-hybrid system, after multiple screening with the high screening rate medium, rotary verification, sequencing and bioinformatics analysis, the interactions of the protein VP7 with ribosomal protein S20 (RPS20) and eukaryotic translation initiation factor 3 subunit b (eIF3b) in CIK cells were identified. RPS20 played the important roles in the generation of influenza B virus and a variety of diseases. eIF3b was relative to the infection of some viruses. This study suggested that the protein VP7 played the role in viral replication and most likely interacted with host proteins by RPS20 and eIF3b. The interaction mechanisms of the protein VP7 with RPS20 and eIF3b, and the subsequent effector mechanisms needed to be further studied. The corresponding protein interaction of the protein VP7 was not acquired in bioinformatics. The protein VP7 and its untranslated region may have the unknown special function. This study laid the foundation for deeply exploring the function of the protein VP7 in GCRV and had the important scientific significance for exploring the pathogenic mechanism of GCRV.

  13. An analysis pipeline for the inference of protein-protein interaction networks

    SciTech Connect

    Taylor, Ronald C.; Singhal, Mudita; Daly, Don S.; Gilmore, Jason M.; Cannon, William R.; Domico, Kelly O.; White, Amanda M.; Auberry, Deanna L.; Auberry, Kenneth J.; Hooker, Brian S.; Hurst, G. B.; McDermott, Jason E.; McDonald, W. H.; Pelletier, Dale A.; Schmoyer, Denise A.; Wiley, H. S.

    2009-12-01

    An analysis pipeline has been created for deployment of a novel algorithm, the Bayesian Estimator of Protein-Protein Association Probabilities (BEPro), for use in the reconstruction of protein-protein interaction networks. We have combined the Software Environment for BIological Network Inference (SEBINI), an interactive environment for the deployment and testing of network inference algorithms that use high-throughput data, and the Collective Analysis of Biological Interaction Networks (CABIN), software that allows integration and analysis of protein-protein interaction and gene-to-gene regulatory evidence obtained from multiple sources, to allow interactions computed by BEPro to be stored, visualized, and further analyzed. Incorporating BEPro into SEBINI and automatically feeding the resulting inferred network into CABIN, we have created a structured workflow for protein-protein network inference and supplemental analysis from sets of mass spectrometry bait-prey experiment data. SEBINI demo site: https://www.emsl.pnl.gov /SEBINI/ Contact: ronald.taylor@pnl.gov. BEPro is available at http://www.pnl.gov/statistics/BEPro3/index.htm. Contact: ds.daly@pnl.gov. CABIN is available at http://www.sysbio.org/dataresources/cabin.stm. Contact: mudita.singhal@pnl.gov.

  14. Phylogenetic Analysis of Brassica rapa MATH-Domain Proteins.

    PubMed

    Zhao, Liming; Huang, Yong; Hu, Yan; He, Xiaoli; Shen, Wenhui; Liu, Chunlin; Ruan, Ying

    2013-05-01

    The MATH (meprin and TRAF-C homology) domain is a fold of seven anti-parallel β-helices involved in protein-protein interaction. Here, we report the identification and characterization of 90 MATH-domain proteins from the Brassica rapa genome. By sequence analysis together with MATH-domain proteins from other species, the B. rapa MATH-domain proteins can be grouped into 6 classes. Class-I protein has one or several MATH domains without any other recognizable domain; Class-II protein contains a MATH domain together with a conserved BTB (Broad Complex, Tramtrack, and Bric-a-Brac ) domain; Class-III protein belongs to the MATH/Filament domain family; Class-IV protein contains a MATH domain frequently combined with some other domains; Class-V protein has a relative long sequence but contains only one MATH domain; Class-VI protein is characterized by the presence of Peptidase and UBQ (Ubiquitinylation) domains together with one MATH domain. As part of our study regarding seed development of B. rapa, six genes are screened by SSH (Suppression Subtractive Hybridization) and their expression levels are analyzed in combination with seed developmental stages, and expression patterns suggested that Bra001786, Bra03578 and Bra036572 may be seed development specific genes, while Bra001787, Bra020541 and Bra040904 may be involved in seed and flower organ development. This study provides the first characterization of the MATH domain proteins in B. rapa.

  15. Global Topology Analysis of Pancreatic Zymogen Granule Membrane Proteins *S⃞

    PubMed Central

    Chen, Xuequn; Ulintz, Peter J.; Simon, Eric S.; Williams, John A.; Andrews, Philip C.

    2008-01-01

    The zymogen granule is the specialized organelle in pancreatic acinar cells for digestive enzyme storage and regulated secretion and is a classic model for studying secretory granule function. Our long term goal is to develop a comprehensive architectural model for zymogen granule membrane (ZGM) proteins that would direct new hypotheses for subsequent functional studies. Our initial proteomics analysis focused on identification of proteins from purified ZGM (Chen, X., Walker, A. K., Strahler, J. R., Simon, E. S., Tomanicek-Volk, S. L., Nelson, B. B., Hurley, M. C., Ernst, S. A., Williams, J. A., and Andrews, P. C. (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol. Cell. Proteomics 5, 306–312). In the current study, a new global topology analysis of ZGM proteins is described that applies isotope enrichment methods to a protease protection protocol. Our results showed that tryptic peptides of ZGM proteins were separated into two distinct clusters according to their isobaric tag for relative and absolute quantification (iTRAQ) ratios for proteinase K-treated versus control zymogen granules. The low iTRAQ ratio cluster included cytoplasm-orientated membrane and membrane-associated proteins including myosin V, vesicle-associated membrane proteins, syntaxins, and all the Rab proteins. The second cluster having unchanged ratios included predominantly luminal proteins. Because quantification is at the peptide level, this technique is also capable of mapping both cytoplasm- and lumen-orientated domains from the same transmembrane protein. To more accurately assign the topology, we developed a statistical mixture model to provide probabilities for identified peptides to be cytoplasmic or luminal based on their iTRAQ ratios. By implementing this approach to global topology analysis of ZGM proteins, we report here an experimentally constrained, comprehensive topology model of identified zymogen granule membrane proteins. This model

  16. Transgenic soybeans and soybean protein analysis: an overview.

    PubMed

    Natarajan, Savithiry; Luthria, Devanand; Bae, Hanhong; Lakshman, Dilip; Mitra, Amitava

    2013-12-01

    To meet the increasing global demand for soybeans for food and feed consumption, new high-yield varieties with improved quality traits are needed. To ensure the safety of the crop, it is important to determine the variation in seed proteins along with unintended changes that may occur in the crop as a result various stress stimuli, breeding, and genetic modification. Understanding the variation of seed proteins in the wild and cultivated soybean cultivars is useful for determining unintended protein expression in new varieties of soybeans. Proteomic technology is useful to analyze protein variation due to various stimuli. This short review discusses transgenic soybeans, different soybean proteins, and the approaches used for protein analysis. The characterization of soybean protein will be useful for researchers, nutrition professionals, and regulatory agencies dealing with soy-derived food products.

  17. Analysis of Lipolytic Protein Trafficking and Interactions in Adipocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work examined the colocalization, trafficking, and interactions of key proteins involved in lipolysis during brief cAMP-dependent protein kinase A (PKA) activation. Double label immunofluorescence analysis of 3T3-L1 adipocytes indicated that PKA activation increases the translocation of hormon...

  18. Surface energetics and protein-protein interactions: analysis and mechanistic implications

    PubMed Central

    Peri, Claudio; Morra, Giulia; Colombo, Giorgio

    2016-01-01

    Understanding protein-protein interactions (PPI) at the molecular level is a fundamental task in the design of new drugs, the prediction of protein function and the clarification of the mechanisms of (dis)regulation of biochemical pathways. In this study, we use a novel computational approach to investigate the energetics of aminoacid networks located on the surface of proteins, isolated and in complex with their respective partners. Interestingly, the analysis of individual proteins identifies patches of surface residues that, when mapped on the structure of their respective complexes, reveal regions of residue-pair couplings that extend across the binding interfaces, forming continuous motifs. An enhanced effect is visible across the proteins of the dataset forming larger quaternary assemblies. The method indicates the presence of energetic signatures in the isolated proteins that are retained in the bound form, which we hypothesize to determine binding orientation upon complex formation. We propose our method, BLUEPRINT, as a complement to different approaches ranging from the ab-initio characterization of PPIs, to protein-protein docking algorithms, for the physico-chemical and functional investigation of protein-protein interactions. PMID:27050828

  19. Molecular Analysis of Protein Assembly in Muscle Development.

    ERIC Educational Resources Information Center

    Epstein, Henry F.; Fischman, Donald A.

    1991-01-01

    Advances in the genetics and cell biology of muscle development are discussed. In-vitro analysis of the renaturation, polymerization, and three-dimensional structure of the purified proteins involved is described. (CW)

  20. MESSA: MEta-Server for protein Sequence Analysis

    PubMed Central

    2012-01-01

    Background Computational sequence analysis, that is, prediction of local sequence properties, homologs, spatial structure and function from the sequence of a protein, offers an efficient way to obtain needed information about proteins under study. Since reliable prediction is usually based on the consensus of many computer programs, meta-severs have been developed to fit such needs. Most meta-servers focus on one aspect of sequence analysis, while others incorporate more information, such as PredictProtein for local sequence feature predictions, SMART for domain architecture and sequence motif annotation, and GeneSilico for secondary and spatial structure prediction. However, as predictions of local sequence properties, three-dimensional structure and function are usually intertwined, it is beneficial to address them together. Results We developed a MEta-Server for protein Sequence Analysis (MESSA) to facilitate comprehensive protein sequence analysis and gather structural and functional predictions for a protein of interest. For an input sequence, the server exploits a number of select tools to predict local sequence properties, such as secondary structure, structurally disordered regions, coiled coils, signal peptides and transmembrane helices; detect homologous proteins and assign the query to a protein family; identify three-dimensional structure templates and generate structure models; and provide predictive statements about the protein's function, including functional annotations, Gene Ontology terms, enzyme classification and possible functionally associated proteins. We tested MESSA on the proteome of Candidatus Liberibacter asiaticus. Manual curation shows that three-dimensional structure models generated by MESSA covered around 75% of all the residues in this proteome and the function of 80% of all proteins could be predicted. Availability MESSA is free for non-commercial use at http://prodata.swmed.edu/MESSA/ PMID:23031578

  1. Crux: rapid open source protein tandem mass spectrometry analysis.

    PubMed

    McIlwain, Sean; Tamura, Kaipo; Kertesz-Farkas, Attila; Grant, Charles E; Diament, Benjamin; Frewen, Barbara; Howbert, J Jeffry; Hoopmann, Michael R; Käll, Lukas; Eng, Jimmy K; MacCoss, Michael J; Noble, William Stafford

    2014-10-01

    Efficiently and accurately analyzing big protein tandem mass spectrometry data sets requires robust software that incorporates state-of-the-art computational, machine learning, and statistical methods. The Crux mass spectrometry analysis software toolkit ( http://cruxtoolkit.sourceforge.net ) is an open source project that aims to provide users with a cross-platform suite of analysis tools for interpreting protein mass spectrometry data. PMID:25182276

  2. Analysis of EF-hand-containing proteins in Arabidopsis

    PubMed Central

    Day, Irene S; Reddy, Vaka S; Shad Ali, Gul; Reddy, ASN

    2002-01-01

    Background In plants, calcium (Ca2+) has emerged as an important messenger mediating the action of many hormonal and environmental signals, including biotic and abiotic stresses. Many different signals raise cytosolic calcium concentration ([Ca2+]cyt), which in turn is thought to regulate cellular and developmental processes via Ca2+-binding proteins. Three out of the four classes of Ca2+-binding proteins in plants contain Ca2+-binding EF-hand motif(s). This motif is a conserved helix-loop-helix structure that can bind a single Ca2+ ion. To identify all EF-hand-containing proteins in Arabidopsis, we analyzed its completed genome sequence for genes encoding EF-hand-containing proteins. Results A maximum of 250 proteins possibly having EF-hands were identified. Diverse proteins, including enzymes, proteins involved in transcription and translation, protein- and nucleic-acid-binding proteins and a large number of unknown proteins, have one or more putative EF-hands. Phylogenetic analysis identified six major groups that contain some families of proteins. Conclusions The presence of EF-hand motif(s) in a diversity of proteins is consistent with the involvement of Ca2+ in regulating many cellular and developmental processes. Thus far, only 47 of the possible 250 EF-hand proteins have been reported in the literature. Various domains that we identified in many of the uncharacterized EF-hand-containing proteins should help in elucidating their cellular role(s). Our analyses suggest that the Ca2+ messenger system is widely used in plants and that EF-hand-containing proteins are likely to be the key transducers mediating Ca2+ action. PMID:12372144

  3. Persistent homology analysis of protein structure, flexibility and folding

    PubMed Central

    Xia, Kelin; Wei, Guo-Wei

    2014-01-01

    Proteins are the most important biomolecules for living organisms. The understanding of protein structure, function, dynamics and transport is one of most challenging tasks in biological science. In the present work, persistent homology is, for the first time, introduced for extracting molecular topological fingerprints (MTFs) based on the persistence of molecular topological invariants. MTFs are utilized for protein characterization, identification and classification. The method of slicing is proposed to track the geometric origin of protein topological invariants. Both all-atom and coarse-grained representations of MTFs are constructed. A new cutoff-like filtration is proposed to shed light on the optimal cutoff distance in elastic network models. Based on the correlation between protein compactness, rigidity and connectivity, we propose an accumulated bar length generated from persistent topological invariants for the quantitative modeling of protein flexibility. To this end, a correlation matrix based filtration is developed. This approach gives rise to an accurate prediction of the optimal characteristic distance used in protein B-factor analysis. Finally, MTFs are employed to characterize protein topological evolution during protein folding and quantitatively predict the protein folding stability. An excellent consistence between our persistent homology prediction and molecular dynamics simulation is found. This work reveals the topology-function relationship of proteins. PMID:24902720

  4. Skeleton-based shape analysis of protein models.

    PubMed

    Li, Zhong; Qin, Shengwei; Yu, Zeyun; Jin, Yao

    2014-09-01

    In order to compare the similarity between two protein models, a shape analysis algorithm based on skeleton extraction is presented in this paper. It firstly extracts the skeleton of a given protein surface by an improved Multi-resolution Reeb Graph (MRG) method. A number of points on the model surface are then collected to compute the local diameter (LD) according to the skeleton. Finally the LD frequency is calculated to build up the line chart, which is employed to analyze the shape similarity between protein models. Experimental results show that the similarity comparison using the proposed shape descriptor is more accurate especially for protein models with large deformations.

  5. Muscle protein analysis by two-dimensional gel electrophoresis

    SciTech Connect

    Giometti, C.S.

    1982-01-01

    Two-dimensional electrophoresis of muscle proteins has provided valuable new information concerning the heterogeneity of some of the major contractile proteins, alterations in the protein population of developing muscle fibers during various stages of myogenesis, and protein aberrations that correlate with muscle diseases. As with all electrophoretic techniques, careful attention must be paid to the preparation of samples and the selection of reagents to be used for the protein separations. Two-dimensional electrophoresis is the obvious method of choice when analysis of protein mixtures is required. The routine clinical application of two-dimensional electrophoresis to analysis of muscle tissue remains to be demonstrated. However, methods of sample preparation for two-dimensional electrophoresis compatible with existing clinical procedures have been described, and the equipment for multiple analyses is available. As protein abnormalities related to human myopathy are detected through the use of two-dimensional electrophoresis as a research tool, useful clinical markers of specific myopathic processes will be found. The preliminary work on muscle protein analysis by two-dimensional electrophoresis described in this review has begun a new approach to the enigma of human muscle disease.

  6. PANADA: Protein Association Network Annotation, Determination and Analysis

    PubMed Central

    Martin, Alberto J. M.; Walsh, Ian; Domenico, Tomás Di; Mičetić, Ivan; Tosatto, Silvio C. E.

    2013-01-01

    Increasingly large numbers of proteins require methods for functional annotation. This is typically based on pairwise inference from the homology of either protein sequence or structure. Recently, similarity networks have been presented to leverage both the ability to visualize relationships between proteins and assess the transferability of functional inference. Here we present PANADA, a novel toolkit for the visualization and analysis of protein similarity networks in Cytoscape. Networks can be constructed based on pairwise sequence or structural alignments either on a set of proteins or, alternatively, by database search from a single sequence. The Panada web server, executable for download and examples and extensive help files are available at URL: http://protein.bio.unipd.it/panada/. PMID:24265686

  7. Global Analysis of Palmitoylated Proteins in Toxoplasma gondii.

    PubMed

    Foe, Ian T; Child, Matthew A; Majmudar, Jaimeen D; Krishnamurthy, Shruthi; van der Linden, Wouter A; Ward, Gary E; Martin, Brent R; Bogyo, Matthew

    2015-10-14

    Post-translational modifications (PTMs) such as palmitoylation are critical for the lytic cycle of the protozoan parasite Toxoplasma gondii. While palmitoylation is involved in invasion, motility, and cell morphology, the proteins that utilize this PTM remain largely unknown. Using a chemical proteomic approach, we report a comprehensive analysis of palmitoylated proteins in T. gondii, identifying a total of 282 proteins, including cytosolic, membrane-associated, and transmembrane proteins. From this large set of palmitoylated targets, we validate palmitoylation of proteins involved in motility (myosin light chain 1, myosin A), cell morphology (PhIL1), and host cell invasion (apical membrane antigen 1, AMA1). Further studies reveal that blocking AMA1 palmitoylation enhances the release of AMA1 and other invasion-related proteins from apical secretory organelles, suggesting a previously unrecognized role for AMA1. These findings suggest that palmitoylation is ubiquitous throughout the T. gondii proteome and reveal insights into the biology of this important human pathogen.

  8. Proteomics enhances evolutionary and functional analysis of reproductive proteins.

    PubMed

    Findlay, Geoffrey D; Swanson, Willie J

    2010-01-01

    Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.

  9. Analysis of protein therapeutics by capillary electrophoresis: applications and challenges.

    PubMed

    Ma, S

    2005-01-01

    Capillary electrophoresis (CE) has been increasingly used for the analysis of recombinant protein therapeutics in the biotechnology industry over the past several years. In this paper, an overview of the major applications implemented at Genentech Inc. is presented. The applications highlighted in this article are divided into the following three general areas: (i) CE as a replacement for slab gel electrophoresis, particularly capillary electrophoresis-sodium dodecylsulphate and capillary isoelectric focusing; (ii) CE to monitor protein charge heterogeneity as an orthogonal technique to the traditional on-exchange chromatographic methods; and (iii) CE for carbohydrate analysis, including both oligosaccharide and monosaccharide analysis. Overall, the advantages of these CE-based methodologies include automation, ease of quantification, rapid analysis time, enhanced resolution, and robustness when compared to the traditional methods. There are, however, still some challenges in applying CE for protein analysis, particularly in the area of characterization due to the miniaturization nature of CE.

  10. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE PAGES

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  11. ProMAT: protein microarray analysis tool

    SciTech Connect

    White, Amanda M.; Daly, Don S.; Varnum, Susan M.; Anderson, Kevin K.; Bollinger, Nikki; Zangar, Richard C.

    2006-04-04

    Summary: ProMAT is a software tool for statistically analyzing data from ELISA microarray experiments. The software estimates standard curves, sample protein concentrations and their uncertainties for multiple assays. ProMAT generates a set of comprehensive figures for assessing results and diagnosing process quality. The tool is available for Windows or Mac, and is distributed as open-source Java and R code. Availability: ProMAT is available at http://www.pnl.gov/statistics/ProMAT. ProMAT requires Java version 1.5.0 and R version 1.9.1 (or more recent versions) which are distributed with the tool.

  12. Genomewide analysis of phytochrome proteins in the phylum Basidiomycota.

    PubMed

    Lavín, José L; Ramírez, Lucía; Pisabarro, Antonio G; Oguiza, José A

    2015-09-01

    Phytochromes are photoreceptor proteins involved in the detection of the red and far-red regions of the visible light spectrum. Fungal phytochromes are hybrid histidine kinases with a conserved domain architecture composed of an N-terminal photosensory module and a C-terminal regulatory output module that includes the histidine kinase and response regulator receiver domains. In this study, we have analyzed the distribution, domain architecture, and phylogenetic analysis of phytochrome proteins in 47 published genome sequences among the phylum Basidiomycota. Genome analysis revealed that almost every genome of basidiomycetes contained at least one gene encoding a phytochrome protein. Domain architecture of fungal phytochromes was completely conserved in the identified phytochromes of basidiomycetes, and phylogenetic analysis clustered these proteins into clades related with the phylogenetic classification of this fungal phylum. PMID:25847700

  13. Genomewide analysis of phytochrome proteins in the phylum Basidiomycota.

    PubMed

    Lavín, José L; Ramírez, Lucía; Pisabarro, Antonio G; Oguiza, José A

    2015-09-01

    Phytochromes are photoreceptor proteins involved in the detection of the red and far-red regions of the visible light spectrum. Fungal phytochromes are hybrid histidine kinases with a conserved domain architecture composed of an N-terminal photosensory module and a C-terminal regulatory output module that includes the histidine kinase and response regulator receiver domains. In this study, we have analyzed the distribution, domain architecture, and phylogenetic analysis of phytochrome proteins in 47 published genome sequences among the phylum Basidiomycota. Genome analysis revealed that almost every genome of basidiomycetes contained at least one gene encoding a phytochrome protein. Domain architecture of fungal phytochromes was completely conserved in the identified phytochromes of basidiomycetes, and phylogenetic analysis clustered these proteins into clades related with the phylogenetic classification of this fungal phylum.

  14. Proteomic analysis of S-nitrosylated proteins in potato plant.

    PubMed

    Kato, Hiroaki; Takemoto, Daigo; Kawakita, Kazuhito

    2013-07-01

    Nitric oxide (NO) has various functions in physiological responses in plants, such as development, hormone signaling and defense. The mechanism of how NO regulates physiological responses has not been well understood. Protein S-nitrosylation, a redox-related modification of cysteine thiol by NO, is known to be one of the important post-translational modifications to regulate activity and interactions of proteins. To elucidate NO function in plants, proteomic analysis of S-nitrosylated proteins in potato (Solanum tuberosum) was performed. Detection and functional analysis of internal S-nitrosylated proteins is technically demanding because of the instability and reversibility of the protein S-nitrosylation. By using a modified biotin switch assay optimized for potato tissues, and nano liquid chromatography combined with mass spectrometry, approximately 80 S-nitrosylated candidate proteins were identified in S-nitrosoglutathione-treated potato leaves and tuber extracts. Identified proteins included redox-related enzymes, defense-related proteins and metabolic enzymes. Some of identified proteins were synthesized in Escherichia coli, and S-nitrosylation of recombinant proteins was confirmed in vitro. Dehydroascorbate reductase 1 (DHAR1, EC 1.8.5.1), one of the identified S-nitrosylated target proteins, showed glutathione-dependent dehydroascorbate-reducing activity. Either point mutation in a target cysteine of S-nitrosylation or treatment with an NO donor, S-nitroso-L-cysteine, significantly reduced the activity of DHAR1, indicating that DHAR1 is negatively regulated by S-nitrosylation of the cysteine residue essential for the enzymatic activity. These results show that the modified method developed in this study can be used to identify proteins regulated by S-nitrosylation in potato tissues.

  15. Proteomic analysis of the herpes simplex virus 1 virion protein 16 transactivator protein in infected cells.

    PubMed

    Suk, Hyung; Knipe, David M

    2015-06-01

    The herpes simplex virus 1 virion protein 16 (VP16) tegument protein forms a transactivation complex with the cellular proteins host cell factor 1 (HCF-1) and octamer-binding transcription factor 1 (Oct-1) upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times postinfection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 h postinfection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the infected cell protein 4 (ICP4) immediate-early (IE) transactivator protein. These results raise the potential for a new function for VP16 in associating with the IE ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of IE gene expression.

  16. Protein Co-Expression Network Analysis (ProCoNA)

    SciTech Connect

    Gibbs, David L.; Baratt, Arie; Baric, Ralph; Kawaoka, Yoshihiro; Smith, Richard D.; Orwoll, Eric S.; Katze, Michael G.; Mcweeney, Shannon K.

    2013-06-01

    Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.

  17. Analysis of single nucleic acid molecules with protein nanopores

    PubMed Central

    Maglia, Giovanni; Heron, Andrew J.; Stoddart, David; Japrung, Deanpen; Bayley, Hagan

    2011-01-01

    We describe the methods used in our laboratory for the analysis of single nucleic acid molecules with protein nanopores. The technical section is preceded by a review of the variety of experiments that can be done with protein nanopores. The end goal of much of this work is single-molecule DNA sequencing, although sequencing is not discussed explicitly here. The technical section covers the equipment required for nucleic acid analysis, the preparation and storage of the necessary materials, and aspects of signal processing and data analysis. PMID:20627172

  18. High-bandwidth protein analysis using solid-state nanopores.

    PubMed

    Larkin, Joseph; Henley, Robert Y; Muthukumar, Murugappan; Rosenstein, Jacob K; Wanunu, Meni

    2014-02-01

    High-bandwidth measurements of the ion current through hafnium oxide and silicon nitride nanopores allow the analysis of sub-30 kD protein molecules with unprecedented time resolution and detection efficiency. Measured capture rates suggest that at moderate transmembrane bias values, a substantial fraction of protein translocation events are detected. Our dwell-time resolution of 2.5 μs enables translocation time distributions to be fit to a first-passage time distribution derived from a 1D diffusion-drift model. The fits yield drift velocities that scale linearly with voltage, consistent with an electrophoretic process. Further, protein diffusion constants (D) are lower than the bulk diffusion constants (D0) by a factor of ~50, and are voltage-independent in the regime tested. We reason that deviations of D from D0 are a result of confinement-driven pore/protein interactions, previously observed in porous systems. A straightforward Kramers model for this inhibited diffusion points to 9- to 12-kJ/mol interactions of the proteins with the nanopore. Reduction of μ and D are found to be material-dependent. Comparison of current-blockage levels of each protein yields volumetric information for the two proteins that is in good agreement with dynamic light scattering measurements. Finally, detection of a protein-protein complex is achieved.

  19. NetworkAnalyst--integrative approaches for protein-protein interaction network analysis and visual exploration.

    PubMed

    Xia, Jianguo; Benner, Maia J; Hancock, Robert E W

    2014-07-01

    Biological network analysis is a powerful approach to gain systems-level understanding of patterns of gene expression in different cell types, disease states and other biological/experimental conditions. Three consecutive steps are required--identification of genes or proteins of interest, network construction and network analysis and visualization. To date, researchers have to learn to use a combination of several tools to accomplish this task. In addition, interactive visualization of large networks has been primarily restricted to locally installed programs. To address these challenges, we have developed NetworkAnalyst, taking advantage of state-of-the-art web technologies, to enable high performance network analysis with rich user experience. NetworkAnalyst integrates all three steps and presents the results via a powerful online network visualization framework. Users can upload gene or protein lists, single or multiple gene expression datasets to perform comprehensive gene annotation and differential expression analysis. Significant genes are mapped to our manually curated protein-protein interaction database to construct relevant networks. The results are presented through standard web browsers for network analysis and interactive exploration. NetworkAnalyst supports common functions for network topology and module analyses. Users can easily search, zoom and highlight nodes or modules, as well as perform functional enrichment analysis on these selections. The networks can be customized with different layouts, colors or node sizes, and exported as PNG, PDF or GraphML files. Comprehensive FAQs, tutorials and context-based tips and instructions are provided. NetworkAnalyst currently supports protein-protein interaction network analysis for human and mouse and is freely available at http://www.networkanalyst.ca. PMID:24861621

  20. Analysis of membrane proteins in metagenomics: networks of correlated environmental features and protein families.

    PubMed

    Patel, Prianka V; Gianoulis, Tara A; Bjornson, Robert D; Yip, Kevin Y; Engelman, Donald M; Gerstein, Mark B

    2010-07-01

    Recent metagenomics studies have begun to sample the genomic diversity among disparate habitats and relate this variation to features of the environment. Membrane proteins are an intuitive, but thus far overlooked, choice in this type of analysis as they directly interact with the environment, receiving signals from the outside and transporting nutrients. Using global ocean sampling (GOS) data, we found nearly approximately 900,000 membrane proteins in large-scale metagenomic sequence, approximately a fifth of which are completely novel, suggesting a large space of hitherto unexplored protein diversity. Using GPS coordinates for the GOS sites, we extracted additional environmental features via interpolation from the World Ocean Database, the National Center for Ecological Analysis and Synthesis, and empirical models of dust occurrence. This allowed us to study membrane protein variation in terms of natural features, such as phosphate and nitrate concentrations, and also in terms of human impacts, such as pollution and climate change. We show that there is widespread variation in membrane protein content across marine sites, which is correlated with changes in both oceanographic variables and human factors. Furthermore, using these data, we developed an approach, protein families and environment features network (PEN), to quantify and visualize the correlations. PEN identifies small groups of covarying environmental features and membrane protein families, which we call "bimodules." Using this approach, we find that the affinity of phosphate transporters is related to the concentration of phosphate and that the occurrence of iron transporters is connected to the amount of shipping, pollution, and iron-containing dust.

  1. Pulse-chase analysis for studying protein synthesis and maturation.

    PubMed

    Fritzsche, Susanne; Springer, Sebastian

    2014-11-03

    Pulse-chase analysis is a well-established and highly adaptable tool for studying the life cycle of endogenous proteins, including their synthesis, folding, subunit assembly, intracellular transport, post-translational processing, and degradation. This unit describes the performance and analysis of a radiolabel pulse-chase experiment for following the folding and cell surface trafficking of a trimeric murine MHC class I glycoprotein. In particular, the unit focuses on the precise timing of pulse-chase experiments to evaluate early/short-time events in protein maturation in both suspended and strictly adherent cell lines. The advantages and limitations of radiolabel pulse-chase experiments are discussed, and a comprehensive section for troubleshooting is provided. Further, ways to quantitatively represent pulse-chase results are described, and feasible interpretations on protein maturation are suggested. The protocols can be adapted to investigate a variety of proteins that may mature in very different ways.

  2. Biomimetic Coacervate Environments for Protein Analysis

    NASA Astrophysics Data System (ADS)

    Perry, Sarah; McCall, Patrick; Srivastava, Samavayan; Kovar, David; Gardel, Margaret; Tirrell, Matthew

    2015-03-01

    Living cells have evolved sophisticated intracellular organization strategies that are challenging to reproduce synthetically. Biomolecular function depends on both the structure of the molecule itself and the properties of the surrounding medium. The ability to simulate the in vivo environment and isolate biological networks for study in an artificial milieu without sacrificing the crowding, structure, and compartmentalization of a cellular environment, represent engineering challenges with tremendous potential to impact both biological studies and biomedical applications. Emerging experience has shown that polypeptide-based complex coacervation (electrostatically-driven liquid-liquid phase separation) produces a biomimetic microenvironment capable of tuning protein biochemical activity. We have investigated the effect of polypeptide-based coacervates on the dynamic self-assembly of cytoskeletal actin filaments. Coacervate materials are able to directly affect the nucleation and assembly dynamics. We observe effects that can be attributed to the length and chemical specificity of the encapsulating polypeptides, as well as the overall crowded nature of a polymer-rich coacervate phase. Coacervate-based systems are particularly attractive for use in biochemical assays because the compartmentalization afforded by liquid-liquid phase separation does not necessarily inhibit the transport of molecules across the compartmental barrier.

  3. Coupling protein complex analysis to peptide based proteomics.

    PubMed

    Gao, Qiang; Madian, Ashraf G; Liu, Xiuping; Adamec, Jiri; Regnier, Fred E

    2010-12-01

    Proteolysis is a central component of most proteomics methods. Unfortunately much of the information relating to the structural diversity of proteins is lost during digestion. This paper describes a method in which the native proteome of yeast was subjected to preliminary fractionation by size exclusion chromatography (SEC) prior to trypsin digestion of SEC fractions and reversed phase chromatography-mass spectral analysis to identify tryptic peptides thus generated. Through this approach proteins associated with other proteins in high molecular mass complexes were recognized and identified. A focus of this work was on the identification of Hub proteins that associate with multiple interaction partners. A critical component of this strategy is to choose methods and conditions that maximize retention of native structure during the various stages of analysis prior to proteolysis, especially during cell lysis. Maximum survival of protein complexes during lysis was obtained with the French press and bead-beater methods of cell disruption at approximately pH 8 with 200 mM NaCl in the lysis buffer. Structure retention was favored by higher ionic strength, suggesting that hydrophobic effects are important in maintaining the structure of protein complexes. Recovery of protein complexes declined substantially with storage at any temperature, but storage at -20°C was best when low temperature storage was necessary. Slightly lower recovery was obtained with storage at -80°C while lowest recovery was achieved at 4°C. It was concluded that initial fractionation of native proteins in cell lysates by SEC prior to RPC-MS/MS of tryptic digests can be used to recognize and identify proteins in complexes along with their interaction partners in known protein complexes.

  4. MIPS: analysis and annotation of proteins from whole genomes.

    PubMed

    Mewes, H W; Amid, C; Arnold, R; Frishman, D; Güldener, U; Mannhaupt, G; Münsterkötter, M; Pagel, P; Strack, N; Stümpflen, V; Warfsmann, J; Ruepp, A

    2004-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF), Neuherberg, Germany, provides protein sequence-related information based on whole-genome analysis. The main focus of the work is directed toward the systematic organization of sequence-related attributes as gathered by a variety of algorithms, primary information from experimental data together with information compiled from the scientific literature. MIPS maintains automatically generated and manually annotated genome-specific databases, develops systematic classification schemes for the functional annotation of protein sequences and provides tools for the comprehensive analysis of protein sequences. This report updates the information on the yeast genome (CYGD), the Neurospora crassa genome (MNCDB), the database of complete cDNAs (German Human Genome Project, NGFN), the database of mammalian protein-protein interactions (MPPI), the database of FASTA homologies (SIMAP), and the interface for the fast retrieval of protein-associated information (QUIPOS). The Arabidopsis thaliana database, the rice database, the plant EST databases (MATDB, MOsDB, SPUTNIK), as well as the databases for the comprehensive set of genomes (PEDANT genomes) are described elsewhere in the 2003 and 2004 NAR database issues, respectively. All databases described, and the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:14681354

  5. PIRSF family classification system for protein functional and evolutionary analysis.

    PubMed

    Nikolskaya, Anastasia N; Arighi, Cecilia N; Huang, Hongzhan; Barker, Winona C; Wu, Cathy H

    2006-01-01

    The PIRSF protein classification system (http://pir.georgetown.edu/pirsf/) reflects evolutionary relationships of full-length proteins and domains. The primary PIRSF classification unit is the homeomorphic family, whose members are both homologous (evolved from a common ancestor) and homeomorphic (sharing full-length sequence similarity and a common domain architecture). PIRSF families are curated systematically based on literature review and integrative sequence and functional analysis, including sequence and structure similarity, domain architecture, functional association, genome context, and phyletic pattern. The results of classification and expert annotation are summarized in PIRSF family reports with graphical viewers for taxonomic distribution, domain architecture, family hierarchy, and multiple alignment and phylogenetic tree. The PIRSF system provides a comprehensive resource for bioinformatics analysis and comparative studies of protein function and evolution. Domain or fold-based searches allow identification of evolutionarily related protein families sharing domains or structural folds. Functional convergence and functional divergence are revealed by the relationships between protein classification and curated family functions. The taxonomic distribution allows the identification of lineage-specific or broadly conserved protein families and can reveal horizontal gene transfer. Here we demonstrate, with illustrative examples, how to use the web-based PIRSF system as a tool for functional and evolutionary studies of protein families.

  6. A novel approach for oxidation analysis of therapeutic proteins.

    PubMed

    Turyan, Iva; Khatwani, Nikhil; Sosic, Zoran; Jayawickreme, Shiranthi; Mandler, Daniel

    2016-02-01

    Measuring and monitoring of protein oxidation modifications is important for biopharmaceutical process development and stability assessment during long-term storage. Currently available methods for biomolecules oxidation analysis use time-consuming peptide mapping analysis. Therefore, it is desirable to develop high-throughput methods for advanced process control of protein oxidation. Here, we present a novel approach by which oxidative protein modifications are monitored by an indirect potentiometric method. The method is based on adding an electron mediator, which enhances electron transfer (ET) between all redox species and the electrode surface. Specifically, the procedure involves measuring the sharp change in the open circuit potential (OCP) for the mediator system (redox couple) as a result of its interaction with the oxidized protein species in the solution. Application of Pt and Ag/AgCl microelectrodes allowed for a high-sensitivity protein oxidation analysis. We found that the Ru(NH3)6(2+/3+) redox couple is suitable for measuring the total oxidation of a wide range of therapeutic proteins between 1.1 and 13.6%. Accuracy determined by comparing with the known percentage oxidation of the reference standard showed that percentage oxidation determined for each sample was within ± 20% of the expected percentage oxidation determined by mass spectrometry.

  7. Principal component analysis based methodology to distinguish protein SERS spectra

    NASA Astrophysics Data System (ADS)

    Das, G.; Gentile, F.; Coluccio, M. L.; Perri, A. M.; Nicastri, A.; Mecarini, F.; Cojoc, G.; Candeloro, P.; Liberale, C.; De Angelis, F.; Di Fabrizio, E.

    2011-05-01

    Surface-enhanced Raman scattering (SERS) substrates were fabricated using electro-plating and e-beam lithography techniques. Nano-structures were obtained comprising regular arrays of gold nanoaggregates with a diameter of 80 nm and a mutual distance between the aggregates (gap) ranging from 10 to 30 nm. The nanopatterned SERS substrate enabled to have better control and reproducibility on the generation of plasmon polaritons (PPs). SERS measurements were performed for various proteins, namely bovine serum albumin (BSA), myoglobin, ferritin, lysozyme, RNase-B, α-casein, α-lactalbumin and trypsin. Principal component analysis (PCA) was used to organize and classify the proteins on the basis of their secondary structure. Cluster analysis proved that the error committed in the classification was of about 14%. In the paper, it was clearly shown that the combined use of SERS measurements and PCA analysis is effective in categorizing the proteins on the basis of secondary structure.

  8. Quantitative Proteomic Approaches for Analysis of Protein S-Nitrosylation.

    PubMed

    Qu, Zhe; Greenlief, C Michael; Gu, Zezong

    2016-01-01

    S-Nitrosylation is a redox-based post-translational modification of a protein in response to nitric oxide (NO) signaling, and it participates in a variety of processes in diverse biological systems. The significance of this type of protein modification in health and diseases is increasingly recognized. In the central nervous system, aberrant S-nitrosylation, due to excessive NO production, is known to cause protein misfolding, mitochondrial dysfunction, transcriptional dysregulation, and neuronal death. This leads to an altered physiological state and consequently contributes to pathogenesis of neurodegenerative disorders. To date, much effort has been made to understand the mechanisms underlying protein S-nitrosylation, and several approaches have been developed to unveil S-nitrosylated proteins from different organisms. Interest in determining the dynamic changes of protein S-nitrosylation under different physiological and pathophysiological conditions has underscored the need for the development of quantitative proteomic approaches. Currently, both gel-based and gel-free mass spectrometry-based quantitative methods are widely used, and they each have advantages and disadvantages but may also be used together to produce complementary data. This review evaluates current available quantitative proteomic techniques for the analysis of protein S-nitrosylation and highlights recent advances, with emphasis on applications in neurodegenerative diseases. An important goal is to provide a comprehensive guide of feasible quantitative proteomic methodologies for examining protein S-nitrosylation in research to yield insights into disease mechanisms, diagnostic biomarkers, and drug discovery.

  9. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer

    PubMed Central

    CHEN, CHEN; SHEN, HONG; ZHANG, LI-GUO; LIU, JIAN; CAO, XIAO-GE; YAO, AN-LIANG; KANG, SHAO-SAN; GAO, WEI-XING; HAN, HUI; CAO, FENG-HONG; LI, ZHI-GUO

    2016-01-01

    Currently, using human prostate cancer (PCa) tissue samples to conduct proteomics research has generated a large amount of data; however, only a very small amount has been thoroughly investigated. In this study, we manually carried out the mining of the full text of proteomics literature that involved comparisons between PCa and normal or benign tissue and identified 41 differentially expressed proteins verified or reported more than 2 times from different research studies. We regarded these proteins as seed proteins to construct a protein-protein interaction (PPI) network. The extended network included one giant network, which consisted of 1,264 nodes connected via 1,744 edges, and 3 small separate components. The backbone network was then constructed, which was derived from key nodes and the subnetwork consisting of the shortest path between seed proteins. Topological analyses of these networks were conducted to identify proteins essential for the genesis of PCa. Solute carrier family 2 (facilitated glucose transporter), member 4 (SLC2A4) had the highest closeness centrality located in the center of each network, and the highest betweenness centrality and largest degree in the backbone network. Tubulin, beta 2C (TUBB2C) had the largest degree in the giant network and subnetwork. In addition, using module analysis of the whole PPI network, we obtained a densely connected region. Functional annotation indicated that the Ras protein signal transduction biological process, mitogen-activated protein kinase (MAPK), neurotrophin and the gonadotropin-releasing hormone (GnRH) signaling pathway may play an important role in the genesis and development of PCa. Further investigation of the SLC2A4, TUBB2C proteins, and these biological processes and pathways may therefore provide a potential target for the diagnosis and treatment of PCa. PMID:27121963

  10. Kinetic analysis of drug-protein interactions by affinity chromatography.

    PubMed

    Bi, Cong; Beeram, Sandya; Li, Zhao; Zheng, Xiwei; Hage, David S

    2015-10-01

    Information on the kinetics of drug-protein interactions is of crucial importance in drug discovery and development. Several methods based on affinity chromatography have been developed in recent years to examine the association and dissociation rates of these processes. These techniques include band-broadening measurements, the peak decay method, peak fitting methods, the split-peak method, and free fraction analysis. This review will examine the general principles and applications of these approaches and discuss their use in the characterization, screening and analysis of drug-protein interactions in the body. PMID:26724332

  11. Optimized protein extraction methods for proteomic analysis of Rhizoctonia solani.

    PubMed

    Lakshman, Dilip K; Natarajan, Savithiry S; Lakshman, Sukla; Garrett, Wesley M; Dhar, Arun K

    2008-01-01

    Rhizoctonia solani (Teleomorph: Thanatephorus cucumeris, T. praticola) is a basidiomycetous fungus and a major cause of root diseases of economically important plants. Various isolates of this fungus are also beneficially associated with orchids, may serve as biocontrol agents or remain as saprophytes with roles in decaying and recycling of soil organic matter. R. solani displays several hyphal anastomosis groups (AG) with distinct host and pathogenic specializations. Even though there are reports on the physiological and histological basis of Rhizoctonia-host interactions, very little is known about the molecular biology and control of gene expression early during infection by this pathogen. Proteamic technologies are powerful tools for examining alterations in protein profiles. To aid studies on its biology and host pathogen interactions, a two-dimensional (2-D) gel-based global proteomic study has been initiated. To develop an optimized protein extraction protocol for R. solani, we compared two previously reported protein extraction protocols for 2-D gel analysis of R. solani (AG-4) isolate Rs23. Both TCA-acetone precipitation and phosphate solubilization before TCA-acetone precipitation worked well for R. solani protein extraction, although selective enrichment of some proteins was noted with either method. About 450 spots could be detected with the densitiometric tracing of Coomassie blue-stained 2-D PAGE gels covering pH 4-7 and 6.5-205 kDa. Selected protein spots were subjected to mass spectrometric analysis with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Eleven protein spots were positively identified based on peptide mass fingerprinting match with fungal proteins in public databases with the Mascot search engine. These results testify to the suitability of the two optimized protein extraction protocols for 2-D proteomic studies of R. solani.

  12. Protein identification by spectral networks analysis.

    PubMed

    Bandeira, Nuno; Tsur, Dekel; Frank, Ari; Pevzner, Pavel A

    2007-04-10

    Advances in tandem mass spectrometry (MS/MS) steadily increase the rate of generation of MS/MS spectra. As a result, the existing approaches that compare spectra against databases are already facing a bottleneck, particularly when interpreting spectra of modified peptides. Here we explore a concept that allows one to perform an MS/MS database search without ever comparing a spectrum against a database. We propose to take advantage of spectral pairs, which are pairs of spectra obtained from overlapping (often nontryptic) peptides or from unmodified and modified versions of the same peptide. Having a spectrum of a modified peptide paired with a spectrum of an unmodified peptide allows one to separate the prefix and suffix ladders, to greatly reduce the number of noise peaks, and to generate a small number of peptide reconstructions that are likely to contain the correct one. The MS/MS database search is thus reduced to extremely fast pattern-matching (rather than time-consuming matching of spectra against databases). In addition to speed, our approach provides a unique paradigm for identifying posttranslational modifications by means of spectral networks analysis. PMID:17404225

  13. Proteomic Analysis of the Herpes Simplex Virus 1 Virion Protein 16 Transactivator Protein in Infected Cells

    PubMed Central

    Oh, Hyung Suk; Knipe, David M.

    2015-01-01

    The herpes simplex virus 1 VP16 tegument protein forms a transactivation complex with the cellular proteins HCF-1 and Oct-1 upon entry into the host cell. VP16 has also been shown to interact with a number of virion tegument proteins and viral glycoprotein H to promote viral assembly, but no comprehensive study of the VP16 proteome has been performed at early times post-infection. We therefore performed a proteomic analysis of VP16-interacting proteins at 3 hours post-infection. We confirmed the interaction of VP16 with HCF-1 and a large number of cellular Mediator complex proteins, but most surprisingly, we found that the major viral protein associating with VP16 is the ICP4 immediate-early transactivator protein. These results raise the potential for a new function for VP16 in associating with the immediate-early ICP4 and playing a role in transactivation of early and late gene expression, in addition to its well-documented function in transactivation of immediate-early gene expression. PMID:25809282

  14. Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions

    DOE PAGES

    Venkatraman, S.; Doktycz, M. J.; Qi, H.; Morrell-Falvey, J. L.

    2006-01-01

    The identification of protein interactions is important for elucidating biological networks. One obstacle in comprehensive interaction studies is the analyses of large datasets, particularly those containing images. Development of an automated system to analyze an image-based protein interaction dataset is needed. Such an analysis system is described here, to automatically extract features from fluorescence microscopy images obtained from a bacterial protein interaction assay. These features are used to relay quantitative values that aid in the automated scoring of positive interactions. Experimental observations indicate that identifying at least 50% positive cells in an image is sufficient to detect a protein interaction.more » Based on this criterion, the automated system presents 100% accuracy in detecting positive interactions for a dataset of 16 images. Algorithms were implemented using MATLAB and the software developed is available on request from the authors.« less

  15. Quantitative proteomic analysis of cold-responsive proteins in rice.

    PubMed

    Neilson, Karlie A; Mariani, Michael; Haynes, Paul A

    2011-05-01

    Rice is susceptible to cold stress and with a future of climatic instability we will be unable to produce enough rice to satisfy increasing demand. A thorough understanding of the molecular responses to thermal stress is imperative for engineering cultivars, which have greater resistance to low temperature stress. In this study we investigated the proteomic response of rice seedlings to 48, 72 and 96 h of cold stress at 12-14°C. The use of both label-free and iTRAQ approaches in the analysis of global protein expression enabled us to assess the complementarity of the two techniques for use in plant proteomics. The approaches yielded a similar biological response to cold stress despite a disparity in proteins identified. The label-free approach identified 236 cold-responsive proteins compared to 85 in iTRAQ results, with only 24 proteins in common. Functional analysis revealed differential expression of proteins involved in transport, photosynthesis, generation of precursor metabolites and energy; and, more specifically, histones and vitamin B biosynthetic proteins were observed to be affected by cold stress. PMID:21433000

  16. Analysis of proteins and proteomes by mass spectrometry.

    PubMed

    Mann, M; Hendrickson, R C; Pandey, A

    2001-01-01

    A decade after the discovery of electrospray and matrix-assisted laser desorption ionization (MALDI), methods that finally allowed gentle ionization of large biomolecules, mass spectrometry has become a powerful tool in protein analysis and the key technology in the emerging field of proteomics. The success of mass spectrometry is driven both by innovative instrumentation designs, especially those operating on the time-of-flight or ion-trapping principles, and by large-scale biochemical strategies, which use mass spectrometry to detect the isolated proteins. Any human protein can now be identified directly from genome databases on the basis of minimal data derived by mass spectrometry. As has already happened in genomics, increased automation of sample handling, analysis, and the interpretation of results will generate an avalanche of qualitative and quantitative proteomic data. Protein-protein interactions can be analyzed directly by precipitation of a tagged bait followed by mass spectrometric identification of its binding partners. By these and similar strategies, entire protein complexes, signaling pathways, and whole organelles are being characterized. Posttranslational modifications remain difficult to analyze but are starting to yield to generic strategies.

  17. Quantifying Aptamer-Protein Binding via Thermofluorimetric Analysis

    PubMed Central

    Hu, Juan; Kim, Joonyul; Easley, Christopher J.

    2015-01-01

    Effective aptamer-based protein assays require coupling to a quantitative reporter of aptamer-protein binding. Typically, this involves a direct optical or electrochemical readout of DNA hybridization or an amplification step coupled to the readout. However, method development is often hampered by the multiplicity of aptamer-target binding mechanisms, which can interfere with the hybridization step. As a simpler and more generalizable readout of aptamer-protein binding, we report that thermofluorimetric analysis (TFA) can be used to quantitatively assay protein levels. Sub-nanomolar detection (0.74 nM) of platelet-derived growth factor (PDGF) with its corresponding aptamer is shown as a test case. In the presence of various DNA intercalating dyes, protein-bound aptamers exhibit a change in fluorescence intensity compared to the intercalated, unbound aptamer. This allows thermal resolution of bound and unbound aptamers using fluorescence melting analysis (−dF/dT curves). Remarkably, the homogeneous optical method allows subtraction of autofluorescence in human serum, giving PDGF detection limits of 1.8 and 10.7 nM in serum diluted 1:7 and 1:3, respectively. We have thus demonstrated that bound and unbound aptamers can be thermally resolved in a homogeneous format using a simple qPCR instrument—even in human serum. The simplicity of this approach provides an important step toward a robust, generalizable readout of aptamer-protein binding. PMID:26366207

  18. Systematic deletion analysis of fission yeast protein kinases.

    PubMed

    Bimbó, Andrea; Jia, Yonghui; Poh, Siew Lay; Karuturi, R Krishna Murthy; den Elzen, Nicole; Peng, Xu; Zheng, Liling; O'Connell, Matthew; Liu, Edison T; Balasubramanian, Mohan K; Liu, Jianhua

    2005-04-01

    Eukaryotic protein kinases are key molecules mediating signal transduction that play a pivotal role in the regulation of various biological processes, including cell cycle progression, cellular morphogenesis, development, and cellular response to environmental changes. A total of 106 eukaryotic protein kinase catalytic-domain-containing proteins have been found in the entire fission yeast genome, 44% (or 64%) of which possess orthologues (or nearest homologues) in humans, based on sequence similarity within catalytic domains. Systematic deletion analysis of all putative protein kinase-encoding genes have revealed that 17 out of 106 were essential for viability, including three previously uncharacterized putative protein kinases. Although the remaining 89 protein kinase mutants were able to form colonies under optimal growth conditions, 46% of the mutants exhibited hypersensitivity to at least 1 of the 17 different stress factors tested. Phenotypic assessment of these mutants allowed us to arrange kinases into functional groups. Based on the results of this assay, we propose also the existence of four major signaling pathways that are involved in the response to 17 stresses tested. Microarray analysis demonstrated a significant correlation between the expression signature and growth phenotype of kinase mutants tested. Our complete microarray data sets are available at http://giscompute.gis.a-star.edu.sg/~gisljh/kinome. PMID:15821139

  19. Analysis of Protein Oligomeric Species by Sucrose Gradients.

    PubMed

    Tenreiro, Sandra; Macedo, Diana; Marijanovic, Zrinka; Outeiro, Tiago Fleming

    2016-01-01

    Protein misfolding, aggregation, and accumulation are a common hallmark in various neurodegenerative diseases. Invariably, the process of protein aggregation is associated with both a loss of the normal biological function of the protein and a gain of toxic function that ultimately leads to cell death. The precise origin of protein cytotoxicity is presently unclear but the predominant theory posits that smaller oligomeric species are more toxic than larger aggregated forms. While there is still no consensus on this subject, this is a central question that needs to be addressed in order to enable the design of novel and more effective therapeutic strategies. Accordingly, the development and utilization of approaches that allow the biochemical characterization of the formed oligomeric species in a given cellular or animal model will enable the correlation with cytotoxicity and other parameters of interest.Here, we provide a detailed description of a low-cost protocol for the analysis of protein oligomeric species from both yeast and mammalian cell lines models, based on their separation according to sedimentation velocity using high-speed centrifugation in sucrose gradients. This approach is an adaptation of existing protocols that enabled us to overcome existing technical issues and obtain reliable results that are instrumental for the characterization of the types of protein aggregates formed by different proteins of interest in the context of neurodegenerative disorders. PMID:27613047

  20. Genomic and expression analysis of transition proteins in Drosophila.

    PubMed

    Alvi, Zain A; Chu, Tin-Chun; Schawaroch, Valerie; Klaus, Angela V

    2015-01-01

    The current study was aimed at analyzing putative protein sequences of the transition protein-like proteins in 12 Drosophila species based on the reference sequences of transition protein-like protein (Tpl (94D) ) expressed in Drosophila melanogaster sperm nuclei. Transition proteins aid in transforming chromatin from a histone-based nucleosome structure to a protamine-based structure during spermiogenesis - the post-meiotic stage of spermatogenesis. Sequences were obtained from NCBI Ref-Seq database using NCBI ORF-Finder (PSI-BLAST). Sequence alignments and analysis of the amino acid content indicate that orthologs for Tpl (94D) are present in the melanogaster species subgroup (D. simulans, D. sechellia, D. erecta, and D. yakuba), D. ananassae, and D. pseudoobscura, but absent in D. persmilis, D. willistoni, D. mojavensis, D. virilis, and D. grimshawi. Transcriptome next generation sequence (RNA-Seq) data for testes and ovaries was used to conduct differential gene expression analysis for Tpl (94D) in D. melanogaster, D. simulans, D. yakuba, D. ananassae, and D. pseudoobscura. The identified Tpl (94D) orthologs show high expression in the testes as compared to the ovaries. Additionally, 2 isoforms of Tpl (94D) were detected in D. melanogaster with isoform A being much more highly expressed than isoform B. Functional analyses of the conserved region revealed that the same high mobility group (HMG) box/DNA binding region is conserved for both Drosophila Tpl (94D) and Drosophila protamine-like proteins (MST35Ba and MST35Bb). Based on the rigorous bioinformatic approach and the conservation of the HMG box reported in this work, we suggest that the Drosophila Tpl (94D) orthologs should be classified as their own transition protein group.

  1. Modern Analysis of Protein Folding by Differential Scanning Calorimetry.

    PubMed

    Ibarra-Molero, Beatriz; Naganathan, Athi N; Sanchez-Ruiz, Jose M; Muñoz, Victor

    2016-01-01

    Differential scanning calorimetry (DSC) is a very powerful tool for investigating protein folding and stability because its experimental output reflects the energetics of all conformations that become minimally populated during thermal unfolding. Accordingly, analysis of DSC experiments with simple thermodynamic models has been key for developing our understanding of protein stability during the past five decades. The discovery of ultrafast folding proteins, which have naturally broad conformational ensembles and minimally cooperative unfolding, opens the possibility of probing the complete folding free energy landscape, including those conformations at the top of the barrier to folding, via DSC. Exploiting this opportunity requires high-quality experiments and the implementation of novel analytical methods based on statistical mechanics. Here, we cover the recent exciting developments in this front, describing the new analytical procedures in detail as well as providing experimental guidelines for performing such analysis.

  2. THE APPLICATION OF MASS SPECTROMETRY TO PROTEIN ANALYSIS

    EPA Science Inventory

    The purpose of this presentation is to give our NHEERL collaborators a brief introduction to the use of mass spectrometric (MS) techniques in the analysis of proteins. The basic principles of electrospray ionization and matrix-assisted laser desorption ionization will be discuss...

  3. Educational Software for the Analysis of DNA and Protein Sequences.

    ERIC Educational Resources Information Center

    Maloy, Stanley; Olson, Sue

    1989-01-01

    Describes the development of the microcomputer-based educational software, DNAzoom, which was designed to introduce undergraduates in molecular biology to computer analysis of DNA protein sequences. Highlights include graphical presentation of data, the functional use of color, a menu-oriented interface, and students' evaluations of the software.…

  4. Proteomic Analysis of the Soybean Symbiosome Identifies New Symbiotic Proteins*

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Gavrin, Aleksandr; Chen, Chi; Brear, Ella M.; Day, David A.; Smith, Penelope M.C.

    2015-01-01

    Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis. PMID

  5. Determination of protein markers in human serum: Analysis of protein expression in toxic oil syndrome studies.

    PubMed

    Quero, Carmen; Colomé, Nuria; Prieto, Maria Rosario; Carrascal, Montserrat; Posada, Manuel; Gelpí, Emilio; Abian, Joaquin

    2004-02-01

    Toxic oil syndrome (TOS) is a disease that appeared in Spain in 1981. It affected more than 20 000 people and produced over 300 deaths in the first 2 years. In this paper, a prospective study on the differences in gene expression in sera between a control versus a TOS-affected population, both originally exposed to the toxic oil, is presented. Differential protein expression was analyzed by two-dimensional electrophoresis (2-DE). Several problems related with serum analysis by 2-DE were addressed in order to improve protein detection in the gel images. Three new commercial systems for albumin depletion were tested to optimize the detection of minor proteins that can be obscured by the presence of a few families of high abundance proteins (albumin, immunoglobulins). Other factors, such as the use of nonionic reductants or the presence of thiourea in the gels, were also tested. From these optimized images, a group of 329 major gel spots was located, matched and compared in serum samples. Thirty-five of these protein spots were found to be under- or overexpressed in TOS patients (> three-fold increase or decrease). Proteins in the differential spots were identified by matrix-assisted laser desorption/ionization-time of flight peptide map fingerprinting and database search. Several haptoglobin isoforms were found to be differentially expressed, showing expression phenotypes that could be related with TOS affection. Haptoglobin phenotypes have been previously reported to have important biological and clinical consequences and have been described as risk factors for several diseases.

  6. Analysis and identification of toxin targets by topological properties in protein-protein interaction network.

    PubMed

    Yang, Lei; Wang, Jizhe; Wang, Huiping; Lv, Yingli; Zuo, Yongchun; Jiang, Wei

    2014-05-21

    Proteins do not exert their function in isolation of one another, but interact together in protein-protein interaction (PPI) networks. Analysis of topological properties of proteins in the PPI network is very helpful to understand the function of proteins. However, until recently, no one has ever undertaken to investigate toxin targets by topological properties. In this study, for the first time, 12 topological properties are used to investigate the characteristics of toxin targets in the PPI network. Most of the topological properties are found to be statistically discriminative between toxin targets and other proteins, and toxin targets tend to play more important roles in the PPI network. In addition, based on the topological properties and the sequence information, support vector machine (SVM) is used to predict toxin targets. The results obtained by the jackknife test and 10-fold cross validation are encouraging, indicating that SVM is a useful tool for predicting toxin targets, or at least can play complementary roles in relevant areas.

  7. Protein-protein interaction and SNP analysis in intraductal papillary mucinous neoplasm.

    PubMed

    Jiang, Pu; Zang, Weidong; Wang, Lishan; Xu, Ying; Liu, Yang; Deng, Shi-Xiong

    2013-01-15

    Intraductal papillary mucinous neoplasm (IPMN) is a type of tumor that grows within the pancreatic ducts. It is a progress from hyperplasia to intraductal adenoma (IPMA), to noninvasive carcinoma, and ultimately to invasive carcinoma (IPMC). The objective of this study was to explore the molecular mechanism of the progression from IPMA to IPMC. By using the GSE19650 affymetrix microarray data accessible from Gene Expression Omnibus (GEO) database, we first identified the differentially expressed genes (DEGs) between IPMA and IPMC, followed by the protein-protein interaction and single-nucleotide polymorphism (SNP) analysis of the DEGs. Our study identified thousands of DEGs which involved regulation of cell cycle and apoptosis in this progression from IPMA to IPMC. Protein-protein interaction network construction found that MYC, IL6ST, NR3C1, CREBBP, GATA1 and LRP1 might play an important role in the progression. Furthermore, the SNP analysis confirmed the association between BRAC1 and pancreas cancer. In conclusion, our data provide a comprehensive bioinformatics analysis of genes and pathways which may be involved in the progression of IPMN from IPMA to IPMC.

  8. Chromatin immunoprecipitation and microarray-based analysis of protein location

    PubMed Central

    Lee, Tong Ihn; Johnstone, Sarah E; Young, Richard A

    2010-01-01

    Genome-wide location analysis, also known as ChIP-Chip, combines chromatin immunoprecipitation and DNA microarray analysis to identify protein-DNA interactions that occur in living cells. Protein-DNA interactions are captured in vivo by chemical crosslinking. Cell lysis, DNA fragmentation and immunoaffinity purification of the desired protein will co-purify DNA fragments that are associated with that protein. The enriched DNA population is then labeled, combined with a differentially labeled reference sample and applied to DNA microarrays to detect enriched signals. Various computational and bioinformatic approaches are then applied to normalize the enriched and reference channels, to connect signals to the portions of the genome that are represented on the DNA microarrays, to provide confidence metrics and to generate maps of protein-genome occupancy. Here, we describe the experimental protocols that we use from crosslinking of cells to hybridization of labeled material, together with insights into the aspects of these protocols that influence the results. These protocols require approximately 1 week to complete once sufficient numbers of cells have been obtained, and have been used to produce robust, high-quality ChIP-chip results in many different cell and tissue types. PMID:17406303

  9. Functional and Structural Analysis of the Conserved EFhd2 Protein

    PubMed Central

    Acosta, Yancy Ferrer; Rodríguez Cruz, Eva N.; Vaquer, Ana del C.; Vega, Irving E.

    2013-01-01

    EFhd2 is a novel protein conserved from C. elegans to H. sapiens. This novel protein was originally identified in cells of the immune and central nervous systems. However, it is most abundant in the central nervous system, where it has been found associated with pathological forms of the microtubule-associated protein tau. The physiological or pathological roles of EFhd2 are poorly understood. In this study, a functional and structural analysis was carried to characterize the molecular requirements for EFhd2’s calcium binding activity. The results showed that mutations of a conserved aspartate on either EF-hand motif disrupted the calcium binding activity, indicating that these motifs work in pair as a functional calcium binding domain. Furthermore, characterization of an identified single-nucleotide polymorphisms (SNP) that introduced a missense mutation indicates the importance of a conserved phenylalanine on EFhd2 calcium binding activity. Structural analysis revealed that EFhd2 is predominantly composed of alpha helix and random coil structures and that this novel protein is thermostable. EFhd2’s thermo stability depends on its N-terminus. In the absence of the N-terminus, calcium binding restored EFhd2’s thermal stability. Overall, these studies contribute to our understanding on EFhd2 functional and structural properties, and introduce it into the family of canonical EF-hand domain containing proteins. PMID:22973849

  10. Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes.

    PubMed

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Altantzis, Thomas; Bals, Sara; Schotter, Joerg

    2016-04-13

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  11. Homogeneous Protein Analysis by Magnetic Core-Shell Nanorod Probes.

    PubMed

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Altantzis, Thomas; Bals, Sara; Schotter, Joerg

    2016-04-13

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions. PMID:27023370

  12. Proteins

    NASA Astrophysics Data System (ADS)

    Regnier, Fred E.; Gooding, Karen M.

    Because of the complexity of cellular material and body fluids, it is seldom possible to analyze a natural product directly. Qualitative and quantitative analyses must often be preceded by some purification step that separates the molecular species being examined from interfering materials. In the case of proteins, column liquid chromatography has been used extensively for these fractionations. With the advent of gel permeation, cation exchange, anion exchange, hydrophobic, and affinity chromatography, it became possible to resolve proteins through their fundamental properties of size, charge, hydrophobicity, and biological affinity. The chromatographic separations used in the early isolation and characterization of many proteins later became analytical tools in their routine analysis. Unfortunately, these inherently simple and versatile column chromatographic techniques introduced in the 50s and 60s have a severe limitation in routine analysis-separation time. It is common to encounter 1-24 h separation times with the classical gel-type supports.

  13. Suspension array technology: new tools for gene and protein analysis.

    PubMed

    Nolan, J P; Mandy, F F

    2001-11-01

    Flow cytometry has long been a key tool in the analysis of lymphocytes and other cells, owing to its ability to make quantitative, homogeneous, multiparameter measurements of particles. New developments in illumination sources, digital signal processing and microsphere chemistry are driving the development of flow cytometry in new areas of biomedical research. In particular. the maturation of approaches to perform highly parallel analyses using suspension arrays of microspheres with different morphospectral features is making flow cytometry an important tool in protein and genetic analysis. In this paper, we review the development of suspension array technology (SAT), current applications in protein and genomic analysis, and the prospects for this platform in a variety of large scale screening applications. PMID:11838973

  14. Microfluidic IEF technique for sequential phosphorylation analysis of protein kinases

    NASA Astrophysics Data System (ADS)

    Choi, Nakchul; Song, Simon; Choi, Hoseok; Lim, Bu-Taek; Kim, Young-Pil

    2015-11-01

    Sequential phosphorylation of protein kinases play the important role in signal transduction, protein regulation, and metabolism in living cells. The analysis of these phosphorylation cascades will provide new insights into their physiological functions in many biological functions. Unfortunately, the existing methods are limited to analyze the cascade activity. Therefore, we suggest a microfluidic isoelectric focusing technique (μIEF) for the analysis of the cascade activity. Using the technique, we show that the sequential phosphorylation of a peptide by two different kinases can be successfully detected on a microfluidic chip. In addition, the inhibition assay for kinase activity and the analysis on a real sample have also been conducted. The results indicate that μIEF is an excellent means for studies on phosphorylation cascade activity.

  15. Objective Diagnosis of Cervical Cancer by Tissue Protein Profile Analysis

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Bhat, Sujatha; Rai, Lavanya; Kartha, V. B.; Chidangil, Santhosh

    2011-07-01

    Protein profiles of homogenized normal cervical tissue samples from hysterectomy subjects and cancerous cervical tissues from biopsy samples collected from patients with different stages of cervical cancer were recorded using High Performance Liquid Chromatography coupled with Laser Induced Fluorescence (HPLC-LIF). The Protein profiles were subjected to Principle Component Analysis to derive statistically significant parameters. Diagnosis of sample types were carried out by matching three parameters—scores of factors, squared residuals, and Mahalanobis Distance. ROC and Youden's Index curves for calibration standards were used for objective estimation of the optimum threshold for decision making and performance.

  16. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  17. Reconstitution and Protein Composition Analysis of Endocytic Actin Patches

    PubMed Central

    Michelot, Alphée; Costanzo, Michael; Sarkeshik, Ali; Boone, Charles; Yates, John R.; Drubin, David G.

    2010-01-01

    Summary Background Clathrin-actin-mediated endocytosis in yeast involves the progressive assembly of at least 60 different proteins at cortical sites. More than half of these proteins are involved in the assembly of a branched network of actin filaments to provide the forces required for plasma membrane invagination. Results To gain insights into the regulation of endocytic actin patch dynamics, we developed an in vitro actin assembly assay using microbeads functionalized with the nucleation promoting factor (NPF) Las17 (yeast WASP). When incubated in a yeast extract, these beads assembled actin networks and a significant fraction became motile. Multi dimensional Protein Identification Technology (MudPIT) showed that the recruitment of actin binding proteins to these Las17-derived actin networks is selective. None of the proteins known to exclusively regulate the in vivo formation of actin cables or the actin contractile ring were identified. Intriguingly, our analysis also identified components of three other cortical structures, eisosomes, PIK patches and the TORC2 complex, establishing intriguing biochemical connections between four different yeast cortical complexes. Finally, we identified Aim3 as a regulator of actin dynamics at endocytic sites. Conclusions WASP is sufficient to trigger assembly of actin networks composed selectively of actin-patch proteins. These experiments establish that the protein composition of different F-actin structures is determined by the protein factor that initiates the network. The identification of binding partners revealed new biochemical connections between WASP derived networks and other cortical complexes and identified Aim3 as a novel regulator of the endocytic actin patch. PMID:21035341

  18. Protein analysis in dissolved organic matter: what free proteins from soil leachate and surface water can tell us a perspective

    NASA Astrophysics Data System (ADS)

    Schulze, W.

    2004-12-01

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the DOM protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from DOM and organism-free surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  19. Screening of Small-Molecule Inhibitors of Protein-Protein Interaction with Capillary Electrophoresis Frontal Analysis.

    PubMed

    Xu, Mei; Liu, Chao; Zhou, Mi; Li, Qing; Wang, Renxiao; Kang, Jingwu

    2016-08-16

    A simple and effective method for identifying inhibitors of protein-protein interactions (PPIs) was developed by using capillary electrophoresis frontal analysis (CE-FA). Antiapoptotic B-cell-2 (Bcl-2) family member Bcl-XL protein, a 5-carboxyfluorescein labeled peptide truncated from the BH3 domain of Bid (F-Bid) as the ligand, and a known Bcl-XL-Bid interaction inhibitor ABT-263 were employed as an experimental model for the proof of concept. In CE-FA, the free ligand is separated from the protein and protein-ligand complex to permit the measurement of the equilibrium concentration of the ligand, hence the dissociation constant of the protein-ligand complex. In the presence of inhibitors, formation of the protein-ligand complex is hindered, thereby the inhibition can be easily identified by the raised plateau height of the ligand and the decayed plateau of the complex. Further, we proposed an equation used to convert the IC50 value into the inhibition constant Ki value, which is more useful than the former for comparison. In addition, the sample pooling strategy was employed to improve the screening throughput more than 10 times. A small chemical library composed of synthetic compounds and natural extracts were screened with the method, two natural products, namely, demethylzeylasteral and celastrol, were identified as new inhibitors to block the Bcl-XL-Bid interaction. Cell-based assay was performed to validate the activity of the identified compounds. The result demonstrated that CE-FA represents a straightforward and robust technique for screening of PPI inhibitors. PMID:27425825

  20. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  1. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses.

    PubMed

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1's role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  2. Cladistic analysis of iridoviruses based on protein and DNA sequences.

    PubMed

    Wang, J W; Deng, R Q; Wang, X Z; Huang, Y S; Xing, K; Feng, J H; He, J G; Long, Q X

    2003-11-01

    Cladograms of iridoviruses were inferred from bootstrap analysis of molecular data sets comprising all published protein and DNA sequences of the major capsid protein, ATPase and DNA polymerase genes of members of the Iridoviridae family Iridovirus. All data sets yielded cladograms supporting the separation of the Iridovirus, Ranavirus and Lymphocystivirus genera, and the cladogram based on data derived from major capsid proteins further divided both the Iridovirus and Ranavirus genera into two groups. Tests of alternative hypotheses of topological constraints were also performed to further investigate relationships between infectious spleen and kidney necrosis virus (ISKNV), an unclassified fish iridovirus for which the complete genome sequence data is available, and other iridoviruses. Cladograms inferred and results of Shimodaira-Hasegawa tests indicated that ISKNV is more closely related to the Ranavirus genus than it is to the other genera of the family.

  3. A comprehensive analysis of the La-motif protein superfamily.

    PubMed

    Bousquet-Antonelli, Cécile; Deragon, Jean-Marc

    2009-05-01

    The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.

  4. Protein Significance Analysis in Selected Reaction Monitoring (SRM) Measurements*

    PubMed Central

    Chang, Ching-Yun; Picotti, Paola; Hüttenhain, Ruth; Heinzelmann-Schwarz, Viola; Jovanovic, Marko; Aebersold, Ruedi; Vitek, Olga

    2012-01-01

    Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that provides sensitive and accurate protein detection and quantification in complex biological mixtures. Statistical and computational tools are essential for the design and analysis of SRM experiments, particularly in studies with large sample throughput. Currently, most such tools focus on the selection of optimized transitions and on processing signals from SRM assays. Little attention is devoted to protein significance analysis, which combines the quantitative measurements for a protein across isotopic labels, peptides, charge states, transitions, samples, and conditions, and detects proteins that change in abundance between conditions while controlling the false discovery rate. We propose a statistical modeling framework for protein significance analysis. It is based on linear mixed-effects models and is applicable to most experimental designs for both isotope label-based and label-free SRM workflows. We illustrate the utility of the framework in two studies: one with a group comparison experimental design and the other with a time course experimental design. We further verify the accuracy of the framework in two controlled data sets, one from the NCI-CPTAC reproducibility investigation and the other from an in-house spike-in study. The proposed framework is sensitive and specific, produces accurate results in broad experimental circumstances, and helps to optimally design future SRM experiments. The statistical framework is implemented in an open-source R-based software package SRMstats, and can be used by researchers with a limited statistics background as a stand-alone tool or in integration with the existing computational pipelines. PMID:22190732

  5. Bayesian statistical analysis of protein side-chain rotamer preferences.

    PubMed Central

    Dunbrack, R. L.; Cohen, F. E.

    1997-01-01

    We present a Bayesian statistical analysis of the conformations of side chains in proteins from the Protein Data Bank. This is an extension of the backbone-dependent rotamer library, and includes rotamer populations and average chi angles for a full range of phi, psi values. The Bayesian analysis used here provides a rigorous statistical method for taking account of varying amounts of data. Bayesian statistics requires the assumption of a prior distribution for parameters over their range of possible values. This prior distribution can be derived from previous data or from pooling some of the present data. The prior distribution is combined with the data to form the posterior distribution, which is a compromise between the prior distribution and the data. For the chi 2, chi 3, and chi 4 rotamer prior distributions, we assume that the probability of each rotamer type is dependent only on the previous chi rotamer in the chain. For the backbone-dependence of the chi 1 rotamers, we derive prior distributions from the product of the phi-dependent and psi-dependent probabilities. Molecular mechanics calculations with the CHARMM22 potential show a strong similarity with the experimental distributions, indicating that proteins attain their lowest energy rotamers with respect to local backbone-side-chain interactions. The new library is suitable for use in homology modeling, protein folding simulations, and the refinement of X-ray and NMR structures. PMID:9260279

  6. The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    PubMed Central

    Dixit, Anshuman; Verkhivker, Gennady M.

    2011-01-01

    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems. PMID:21998754

  7. Sequence and comparative genomic analysis of actin-related proteins.

    PubMed

    Muller, Jean; Oma, Yukako; Vallar, Laurent; Friederich, Evelyne; Poch, Olivier; Winsor, Barbara

    2005-12-01

    Actin-related proteins (ARPs) are key players in cytoskeleton activities and nuclear functions. Two complexes, ARP2/3 and ARP1/11, also known as dynactin, are implicated in actin dynamics and in microtubule-based trafficking, respectively. ARP4 to ARP9 are components of many chromatin-modulating complexes. Conventional actins and ARPs codefine a large family of homologous proteins, the actin superfamily, with a tertiary structure known as the actin fold. Because ARPs and actin share high sequence conservation, clear family definition requires distinct features to easily and systematically identify each subfamily. In this study we performed an in depth sequence and comparative genomic analysis of ARP subfamilies. A high-quality multiple alignment of approximately 700 complete protein sequences homologous to actin, including 148 ARP sequences, allowed us to extend the ARP classification to new organisms. Sequence alignments revealed conserved residues, motifs, and inserted sequence signatures to define each ARP subfamily. These discriminative characteristics allowed us to develop ARPAnno (http://bips.u-strasbg.fr/ARPAnno), a new web server dedicated to the annotation of ARP sequences. Analyses of sequence conservation among actins and ARPs highlight part of the actin fold and suggest interactions between ARPs and actin-binding proteins. Finally, analysis of ARP distribution across eukaryotic phyla emphasizes the central importance of nuclear ARPs, particularly the multifunctional ARP4.

  8. N-terminal protein processing: A comparative proteogenomic analysis

    SciTech Connect

    Bonissone, Stefano; Gupta, Nitin; Romine, Margaret F.; Bradshaw, Ralph A.; Pevzner, Pavel A.

    2013-01-01

    N-Terminal Methionine Excision (NME) is a universally conserved mechanism with the same specificity across all life forms that removes the first Methionine in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val. In spite of its necessity for proper cell functioning, the functional role of NME remains unclear. In 1988, Arfin and Bradshaw connected NME with the N-end protein degradation rule and postulated that the role of NME is to expose the stabilizing residues with the goal to resist protein degradation. While this explanation (that treats 7 stabilizing residues in the same manner) has become the de facto dogma of NME, comparative proteogenomics analysis of NME tells a different story. We suggest that the primary role of NME is to expose only two (rather than seven) amino acids Ala and Ser for post-translational modifications (e.g., acetylation) rather than to regulate protein degradation. We argue that, contrary to the existing view, NME is not crucially important for proteins with 5 other stabilizing residue at the 2nd positions that are merely bystanders (their function is not affected by NME) that become exposed to NME because their sizes are comparable or smaller than the size of Ala and Ser.

  9. Analysis of informational redundancy in the protein-assembling machinery

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2004-03-01

    Entropy analysis of the DNA structure does not reveal a significant departure from randomness indicating lack of informational redundancy. This signifies the absence of a hidden meaning in the genome text and supports the 'barcode' interpretation of DNA given in [1]. Lack of informational redundancy is a characteristic property of an identification label rather than of a message of instructions. Yet randomness of DNA has to induce non-random structures of the proteins. Protein synthesis is a two-step process: transcription into RNA with gene splicing and formation a structure of amino acids. Entropy estimations, performed by A. Djebbari, show typical values of redundancy of the biomolecules along these pathways: DNA gene 4proteins 15-40in gene expression, the RNA copy carries the same information as the original DNA template. Randomness is essentially eliminated only at the step of the protein creation by a degenerate code. According to [1], the significance of the substitution of U for T with a subsequent gene splicing is that these transformations result in a different pattern of RNA oscillations, so the vital DNA communications are protected against extraneous noise coming from the protein making activities. 1. S. Berkovich, "On the 'barcode' functionality of DNA, or the Phenomenon of Life in the Physical Universe", Dorrance Publishing Co., Pittsburgh, 2003

  10. Analysis of proteins involved in biodegradation of crop biomass

    NASA Technical Reports Server (NTRS)

    Crawford, Kamau; Trotman, Audrey

    1998-01-01

    The biodegradation of crop biomass for re-use in crop production is part of the bioregenerative life support concept proposed by the National Aeronautics and Space Administration (NASA) for long duration, manned space exploration. The current research was conducted in the laboratory to evaluate the use of electrophoretic analysis as a means of rapidly assaying for constitutive and induced proteins associated with the bacterial degradation of crop residue. The proteins involved in crop biomass biodegradation are either constitutive or induced. As a result, effluent and cultures were examined to investigate the potential of using electrophoretic techniques as a means of monitoring the biodegradation process. Protein concentration for optimum banding patterns was determined using the Bio-Rad Protein Assay kit. Four bacterial soil isolates were obtained from the G.W. Carver research Farm at Tuskegee University and used in the decomposition of components of plant biomass. The culture, WDSt3A was inoculated into 500 mL of either Tryptic Soy Broth or Nutrient Broth. Incubation, with shaking of each flask was for 96 hours at 30 C. The cultures consistently gave unique banding patterns under denaturing protein electrophoresis conditions, The associated extracellular enzymes also yielded characteristic banding patterns over a 14-day period, when native electrophoresis techniques were used to examine effluent from batch culture bioreactors. The current study evaluated sample preparation and staining protocols to determine the ease of use, reproducibility and reliability, as well as the potential for automation.

  11. Rigidity analysis of protein biological assemblies and periodic crystal structures

    PubMed Central

    2013-01-01

    Background We initiate in silico rigidity-theoretical studies of biological assemblies and small crystals for protein structures. The goal is to determine if, and how, the interactions among neighboring cells and subchains affect the flexibility of a molecule in its crystallized state. We use experimental X-ray crystallography data from the Protein Data Bank (PDB). The analysis relies on an effcient graph-based algorithm. Computational experiments were performed using new protein rigidity analysis tools available in the new release of our KINARI-Web server http://kinari.cs.umass.edu. Results We provide two types of results: on biological assemblies and on crystals. We found that when only isolated subchains are considered, structural and functional information may be missed. Indeed, the rigidity of biological assemblies is sometimes dependent on the count and placement of hydrogen bonds and other interactions among the individual subchains of the biological unit. Similarly, the rigidity of small crystals may be affected by the interactions between atoms belonging to different unit cells. We have analyzed a dataset of approximately 300 proteins, from which we generated 982 crystals (some of which are biological assemblies). We identified two types of behaviors. (a) Some crystals and/or biological assemblies will aggregate into rigid bodies that span multiple unit cells/asymmetric units. Some of them create substantially larger rigid cluster in the crystal/biological assembly form, while in other cases, the aggregation has a smaller effect just at the interface between the units. (b) In other cases, the rigidity properties of the asymmetric units are retained, because the rigid bodies did not combine. We also identified two interesting cases where rigidity analysis may be correlated with the functional behavior of the protein. This type of information, identified here for the first time, depends critically on the ability to create crystals and biological assemblies

  12. GeLC-MS/MS Analysis of Complex Protein Mixtures

    PubMed Central

    Dzieciatkowska, Monika; Hill, Ryan; Hansen, Kirk C.

    2015-01-01

    Discovery-based proteomics has found its place in nearly every facet of biological research. A key objective of this approach is to maximize sequence coverage for proteins across a wide concentration range. Fractionating samples at the protein level is one of the most common ways to circumvent challenges due to sample complexity and improve proteome coverage. Of the available methods, one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by liquid chromatography-tandem mass spectrometry (GeLC-MS/MS) is a robust and reproducible method for qualitative and quantitative proteomic analysis. Here we describe a general GeLC-MS/MS protocol and include technical advice and outline caveats to increase the probability of a successful analysis. PMID:24791981

  13. Comprehensive analysis of sequences of a protein switch.

    PubMed

    Chen, Szu-Hua; Meller, Jaroslaw; Elber, Ron

    2016-01-01

    Switches form a special class of proteins that dramatically change their three-dimensional structures upon a small perturbation. One possible perturbation that we explore is that of a single point mutation. Building on the pioneering experimental work of Alexander et al. (Alexander et al. PNAS, 2007; 104,11963-11968) that determines switch sequences between α and α+β folds we conduct a comprehensive sequence sampling by a Markov Chain with multiple fitness criteria to identify new switches given the experimental folds. We screen for switch sequences using a combination of contact potential, secondary structure prediction, and finally molecular dynamics simulations. Statistical properties of switch sequences are discussed and illustrated to be most sensitive to mutation at the N- and C- termini of the switch protein. Based on this analysis, a particularly stable putative switch pair is identified and proposed for further experimental analysis. PMID:26073558

  14. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps.

    PubMed

    Oliva, Romina; Chermak, Edrisse; Cavallo, Luigi

    2015-07-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  15. Protein-Protein Interaction Analysis Highlights Additional Loci of Interest for Multiple Sclerosis

    PubMed Central

    Ragnedda, Giammario; Disanto, Giulio; Giovannoni, Gavin; Ebers, George C.; Sotgiu, Stefano; Ramagopalan, Sreeram V.

    2012-01-01

    Genetic factors play an important role in determining the risk of multiple sclerosis (MS). The strongest genetic association in MS is located within the major histocompatibility complex class II region (MHC), but more than 50 MS loci of modest effect located outside the MHC have now been identified. However, the relative candidate genes that underlie these associations and their functions are largely unknown. We conducted a protein-protein interaction (PPI) analysis of gene products coded in loci recently reported to be MS associated at the genome-wide significance level and in loci suggestive of MS association. Our aim was to identify which suggestive regions are more likely to be truly associated, which genes are mostly implicated in the PPI network and their expression profile. From three recent independent association studies, SNPs were considered and divided into significant and suggestive depending on the strength of the statistical association. Using the Disease Association Protein-Protein Link Evaluator tool we found that direct interactions among genetic products were significantly higher than expected by chance when considering both significant regions alone (p<0.0002) and significant plus suggestive (p<0.007). The number of genes involved in the network was 43. Of these, 23 were located within suggestive regions and many of them directly interacted with proteins coded within significant regions. These included genes such as SYK, IL-6, CSF2RB, FCLR3, EIF4EBP2 and CHST12. Using the gene portal BioGPS, we tested the expression of these genes in 24 different tissues and found the highest values among immune-related cells as compared to non-immune tissues (p<0.001). A gene ontology analysis confirmed the immune-related functions of these genes. In conclusion, loci currently suggestive of MS association interact with and have similar expression profiles and function as those significantly associated, highlighting the fact that more common variants remain to be

  16. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. PMID:27135912

  17. Scalable web services for the PSIPRED Protein Analysis Workbench.

    PubMed

    Buchan, Daniel W A; Minneci, Federico; Nugent, Tim C O; Bryson, Kevin; Jones, David T

    2013-07-01

    Here, we present the new UCL Bioinformatics Group's PSIPRED Protein Analysis Workbench. The Workbench unites all of our previously available analysis methods into a single web-based framework. The new web portal provides a greatly streamlined user interface with a number of new features to allow users to better explore their results. We offer a number of additional services to enable computationally scalable execution of our prediction methods; these include SOAP and XML-RPC web server access and new HADOOP packages. All software and services are available via the UCL Bioinformatics Group website at http://bioinf.cs.ucl.ac.uk/. PMID:23748958

  18. Complete VAX/VMS DNA/protein sequence analysis system

    SciTech Connect

    Smith, D.W.

    1987-05-01

    A complete yet flexible system of programs and database libraries for analysis of DNA, RNA and protein sequences is implemented for VAX/VMS computers. Types of analysis include 1) construction and analysis of chimeric sequences (cloning in the VAX), 2) multiple analysis of one or more single sequences, 3) search and comparison studies using sequence libraries, and 4) direct input and analysis of experimental data. Published groups of programs, including the Staden, Los Alamos, Zuker, Pearson, and PHYLIP programs, are used. GenBank and EMBL DNA libraries and PIR and Doolittle NEWAT protein libraries are available, with associated programs. The system is tutorial, with online documentation for relevent VAX software, the programs, and the databases. The complete documentation is flexibly maintained on reserve via computer printout placed in 3-ring binders. Command files are used extensively; porting of the entire system to another VAX/VMS system requires modification of a single command. Users of the system are members of a VAX group, with automatic implementation of the system upon login. The present system occupies about 140,000 blocks, and is easily expanded, or contracted, as desired. The UCSD system is used extensively for both teaching and research purposes. Use of microcomputers emulating Tektronix 4014 graphics terminals permits saving of graphics output to disk for subsequent modification to generate high quality publishable figures.

  19. Automated small‐scale protein purification and analysis for accelerated development of protein therapeutics

    PubMed Central

    LeSaout, Xavier; Costioli, Matteo; Jordan, Lynn; Lambert, Jeremy; Beighley, Ross; Provencher, Laurel; McGuire, Kevin; Verlinden, Nico; Barry, Andrew

    2015-01-01

    Small‐scale protein purification presents opportunities for accelerated process development of biotherapeutic molecules. Miniaturization of purification conditions reduces time and allows for parallel processing of samples, thus offering increased statistical significance and greater breadth of variables. The ability of the miniaturized platform to be predictive of larger scale purification schemes is of critical importance. The PerkinElmer JANUS BioTx Pro and Pro‐Plus workstations were developed as intuitive, flexible, and automated devices capable of performing parallel small‐scale analytical protein purification. Preprogrammed methods automate a variety of commercially available ion exchange and affinity chromatography solutions, including miniaturized chromatography columns, resin‐packed pipette tips, and resin‐filled microtiter vacuum filtration plates. Here, we present a comparison of microscale chromatography versus standard fast protein LC (FPLC) methods for process optimization. In this study, we evaluated the capabilities of the JANUS BioTx Pro‐Plus robotic platform for miniaturized chromatographic purification of proteins with the GE ӒKTA Express system. We were able to demonstrate predictive analysis similar to that of larger scale purification platforms, while offering advantages in speed and number of samples processed. This approach is predictive of scale‐up conditions, resulting in shorter biotherapeutic development cycles and less consumed material than traditional FPLC methods, thus reducing time‐to‐market from discovery to manufacturing.

  20. Approaches for functional analysis of flagellar proteins in African trypanosomes.

    PubMed

    Oberholzer, Michael; Lopez, Miguel A; Ralston, Katherine S; Hill, Kent L

    2009-01-01

    The eukaryotic flagellum is a highly conserved organelle serving motility, sensory, and transport functions. Although genetic, genomic, and proteomic studies have led to the identification of hundreds of flagellar and putative flagellar proteins, precisely how these proteins function individually and collectively to drive flagellum motility and other functions remains to be determined. In this chapter we provide an overview of tools and approaches available for studying flagellum protein function in the protozoan parasite Trypanosoma brucei. We begin by outlining techniques for in vitro cultivation of both T. brucei life cycle stages, as well as transfection protocols for the delivery of DNA constructs. We then describe specific assays used to assess flagellum function including flagellum preparation and quantitative motility assays. We conclude the chapter with a description of molecular genetic approaches for manipulating gene function. In summary, the availability of potent molecular tools, as well as the health and economic relevance of T. brucei as a pathogen, combine to make the parasite an attractive and integral experimental system for the functional analysis of flagellar proteins. PMID:20409810

  1. Comparative analysis of ATRX, a chromatin remodeling protein.

    PubMed

    Park, Daniel J; Pask, Andrew J; Huynh, Kim; Renfree, Marilyn B; Harley, Vincent R; Graves, Jennifer A Marshall

    2004-09-15

    The ATRX protein, associated with X-linked alpha-thalassaemia, mental retardation and developmental abnormalities including genital dysgenesis, has been proposed to function as a global transcriptional regulator within a multi-protein complex. However, an understanding of the composition and mechanics of this machinery has remained elusive. We applied inter-specific comparative analysis to identify conserved elements which may be involved in regulating the conformation of chromatin. As part of this study, we cloned and sequenced the entire translatable coding region (7.4 kb) of the ATRX gene from a model marsupial (tammar wallaby, Macropus eugenii). We identify an ATRX ancestral core, conserved between plants, fish and mammals, comprising the cysteine-rich and SWI2/SNF2 helicase-like regions and protein interaction domains. Our data are consistent with the model of the cysteine-rich region as a DNA-binding zinc finger adjacent to a protein-binding (plant homeodomain-like) domain. Alignment of vertebrate ATRX sequences highlights other conserved elements, including a negatively charged mammalian sequence which we propose to be involved in binding of positively charged histone tails.

  2. Analysis and Interpretation of Single Molecule Protein Unfolding Kinetics

    NASA Astrophysics Data System (ADS)

    Lannon, Herbert; Brujic, Jasna

    2012-02-01

    The kinetics of protein unfolding under a stretching force has been extensively studied by atomic force microscopy (AFM) over the past decade [1]. Experimental artifacts at the single molecule level introduce uncertainties in the data analysis that have led to several competing physical models for the unfolding process. For example, the unfolding dynamics of the protein ubiquitin under constant force has been described by probability distributions as diverse as exponential [2,3], a sum of exponentials, log-normal [4], and more recently a function describing static disorder in the Arrhenius model [5]. A new method for data analysis is presented that utilizes maximum likelihood estimation (MLE) combined with other traditional statistical tests to unambiguously rank the consistency of these and other models with the experimental data. These techniques applied to the ubiquitin unfolding data shows that the probability of unfolding is best fit with a stretched exponential distribution, with important implications on the complexity of the mechanism of protein unfolding. [4pt] [1] Carrion-Vazquez, et. al. Springer Series in Biophys. 2006 [0pt] [2] Fernandez et. al. Science 2004 [0pt] [3] Brujic et. al. Nat. Phys 2006 [0pt] [4] Garcia-Manyes et. al. Biophys. J. 2007 [0pt] [5] Kuo et. al. PNAS 2010

  3. PipeAlign: A new toolkit for protein family analysis.

    PubMed

    Plewniak, Frédéric; Bianchetti, Laurent; Brelivet, Yann; Carles, Annaick; Chalmel, Frédéric; Lecompte, Odile; Mochel, Thiebaut; Moulinier, Luc; Muller, Arnaud; Muller, Jean; Prigent, Veronique; Ripp, Raymond; Thierry, Jean-Claude; Thompson, Julie D; Wicker, Nicolas; Poch, Olivier

    2003-07-01

    PipeAlign is a protein family analysis tool integrating a five step process ranging from the search for sequence homologues in protein and 3D structure databases to the definition of the hierarchical relationships within and between subfamilies. The complete, automatic pipeline takes a single sequence or a set of sequences as input and constructs a high-quality, validated MACS (multiple alignment of complete sequences) in which sequences are clustered into potential functional subgroups. For the more experienced user, the PipeAlign server also provides numerous options to run only a part of the analysis, with the possibility to modify the default parameters of each software module. For example, the user can choose to enter an existing multiple sequence alignment for refinement, validation and subsequent clustering of the sequences. The aim is to provide an interactive workbench for the validation, integration and presentation of a protein family, not only at the sequence level, but also at the structural and functional levels. PipeAlign is available at http://igbmc.u-strasbg.fr/PipeAlign/.

  4. CrystPro: Spatiotemporal Analysis of Protein Crystallization Images

    PubMed Central

    2015-01-01

    Thousands of experiments corresponding to different combinations of conditions are set up to determine the relevant conditions for successful protein crystallization. In recent years, high throughput robotic set-ups have been developed to automate the protein crystallization experiments, and imaging techniques are used to monitor the crystallization progress. Images are collected multiple times during the course of an experiment. Huge number of collected images make manual review of images tedious and discouraging. In this paper, utilizing trace fluorescence labeling, we describe an automated system called CrystPro for monitoring the protein crystal growth in crystallization trial images by analyzing the time sequence images. Given the sets of image sequences, the objective is to develop an efficient and reliable system to detect crystal growth changes such as new crystal formation and increase of crystal size. CrystPro consists of three major steps- identification of crystallization trials proper for spatio-temporal analysis, spatio-temporal analysis of identified trials, and crystal growth analysis. We evaluated the performance of our system on 3 crystallization image datasets (PCP-ILopt-11, PCP-ILopt-12, and PCP-ILopt-13) and compared our results with expert scores. Our results indicate a) 98.3% accuracy and .896 sensitivity on identification of trials for spatio-temporal analysis, b) 77.4% accuracy and .986 sensitivity of identifying crystal pairs with new crystal formation, and c) 85.8% accuracy and 0.667 sensitivity on crystal size increase detection. The results show that our method is reliable and efficient for tracking growth of crystals and determining useful image sequences for further review by the crystallographers. PMID:26640418

  5. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling*

    PubMed Central

    Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.

    2016-01-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452

  6. Global Membrane Protein Interactome Analysis using In vivo Crosslinking and Mass Spectrometry-based Protein Correlation Profiling.

    PubMed

    Larance, Mark; Kirkwood, Kathryn J; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A J; Lamond, Angus I

    2016-07-01

    We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754).

  7. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins

    PubMed Central

    Bish, Rebecca; Cuevas-Polo, Nerea; Cheng, Zhe; Hambardzumyan, Dolores; Munschauer, Mathias; Landthaler, Markus; Vogel, Christine

    2015-01-01

    DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6’s multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6’s interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions—many of which are

  8. Comprehensive Protein Interactome Analysis of a Key RNA Helicase: Detection of Novel Stress Granule Proteins.

    PubMed

    Bish, Rebecca; Cuevas-Polo, Nerea; Cheng, Zhe; Hambardzumyan, Dolores; Munschauer, Mathias; Landthaler, Markus; Vogel, Christine

    2015-01-01

    DDX6 (p54/RCK) is a human RNA helicase with central roles in mRNA decay and translation repression. To help our understanding of how DDX6 performs these multiple functions, we conducted the first unbiased, large-scale study to map the DDX6-centric protein-protein interactome using immunoprecipitation and mass spectrometry. Using DDX6 as bait, we identify a high-confidence and high-quality set of protein interaction partners which are enriched for functions in RNA metabolism and ribosomal proteins. The screen is highly specific, maximizing the number of true positives, as demonstrated by the validation of 81% (47/58) of the RNA-independent interactors through known functions and interactions. Importantly, we minimize the number of indirect interaction partners through use of a nuclease-based digestion to eliminate RNA. We describe eleven new interactors, including proteins involved in splicing which is an as-yet unknown role for DDX6. We validated and characterized in more detail the interaction of DDX6 with Nuclear fragile X mental retardation-interacting protein 2 (NUFIP2) and with two previously uncharacterized proteins, FAM195A and FAM195B (here referred to as granulin-1 and granulin-2, or GRAN1 and GRAN2). We show that NUFIP2, GRAN1, and GRAN2 are not P-body components, but re-localize to stress granules upon exposure to stress, suggesting a function in translation repression in the cellular stress response. Using a complementary analysis that resolved DDX6's multiple complex memberships, we further validated these interaction partners and the presence of splicing factors. As DDX6 also interacts with the E3 SUMO ligase TIF1β, we tested for and observed a significant enrichment of sumoylation amongst DDX6's interaction partners. Our results represent the most comprehensive screen for direct interaction partners of a key regulator of RNA life cycle and localization, highlighting new stress granule components and possible DDX6 functions-many of which are likely

  9. [Molecularly imprinted polymers in electro analysis of proteins].

    PubMed

    Shumyantseva, V V; Bulko, T V; Baychorov, I Kh; Archakov, A I

    2015-01-01

    In the review the main approaches to creation of recognition materials capable of competing with biological specific receptors, (polymeric analogs of antibodies or molecularly imprinted polymers, MIP) for the electro analysis of functionally significant proteins such as a myoglobin, troponin T, albumin, human ferritin, calmodulin are considered. The main types of monomers for MIP fabrication, and methods for MIP/protein interactions, such as a surface plasmon resonance (SPR), nanogravimetry with use of the quartz crystal resonator (QCM), spectral and electrochemical methods are discussed. Experimental data on electrochemical registration of a myoglobin using MIP/electrode are presented. For a development of electrochemical sensor systems based on MIPs, o-phenylenediamine (1,2-diaminobenzene was used as a monomer. It was shown that the imprinting factor Imax(MIP)/Imax(NIP), calculated as a myoglobin signal ratio when embedding in MIP to a myoglobin signal when embedding in the polymer received without molecular template (NIP) corresponds 2-4.

  10. Towards proteomic analysis of milk proteins in historical building materials

    NASA Astrophysics Data System (ADS)

    Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M.

    2009-07-01

    The addition of proteinaceous binders to mortars and plasters has a long tradition. The protein additions were identified in many sacral and secular historical buildings. For this method of peptide mass mapping, three model mortar samples with protein additives were prepared. These samples were analysed fresh (1-2 weeks old) and after 9 months of natural ageing. The optimal duration of tryptic cleavage (2 h) and the lowest amount of material needed for relevant analysis of fresh and weathered samples were found; the sufficient amounts of weathered and fresh mortars were set to 0.05 and 0.005 g. The list of main tryptic peptides coming from milk additives (bovine milk, curd, and whey), their relative intensities and theoretical amino acid sequences assignment is presented. Several sequences have been "de novo" confirmed by mass spectrometry.

  11. Functionalized membrane supports for covalent protein microsequence analysis

    SciTech Connect

    Coull, J.M.; Pappin, D.J.; Mark, J.; Aebersold, R.; Koester, H. )

    1991-04-01

    Methods were developed for high yield covalent attachment of peptides and proteins to isothiocyanate and arylamine-derivatized poly(vinylidene difluoride) membranes for solid-phase sequence analysis. Solutions of protein or peptide were dried onto 8-mm membrane disks such that the functional groups on the surface and the polypeptide were brought into close proximity. In the case of the isothiocyanate membrane, reaction between polypeptide amino groups and the surface isothiocyanate moieties was promoted by application of aqueous N-methylmorpholine. Attachment of proteins and peptides to the arylamine surface was achieved by application of water-soluble carbodiimide in a pH 5.0 buffer. Edman degradation of covalently bound polypeptides was accomplished with initial and repetitive sequence yields ranging from 33 to 75% and 88.5 to 98.5%, respectively. The yields were independent of the sample load (20 pmol to greater than 1 nmol) for either surface. Significant loss of material was not observed when attachment residues were encountered during sequence runs. Application of bovine beta-lactoglobulin A chain, staphylococcus protein A, or the peptide melittin to the isothiocyanate membrane allowed for extended N-terminal sequence identification (35 residues from 20 pmol of beta-lactoglobulin). A number of synthetic and naturally occurring peptides were sequenced to the C-terminal residue following attachment to the arylamine surface. In one example, 10 micrograms of bovine alpha-casein was digested with staphylococcal protease V8 and the peptides were separated by reverse-phase chromatography. Peptide fractions were then directly applied to arylamine membrane disks for covalent sequence analysis. From as little as 2 pmol of initial signal it was possible to determine substantial sequence information (greater than 10 residues).

  12. Pressure-assisted protein extraction: a novel method for recovering proteins from archival tissue for proteomic analysis.

    PubMed

    Fowler, Carol B; Waybright, Timothy J; Veenstra, Timothy D; O'Leary, Timothy J; Mason, Jeffrey T

    2012-04-01

    Formaldehyde-fixed, paraffin-embedded (FFPE) tissue repositories represent a valuable resource for the retrospective study of disease progression and response to therapy. However, the proteomic analysis of FFPE tissues has been hampered by formaldehyde-induced protein modifications, which reduce protein extraction efficiency and may lead to protein misidentification. Here, we demonstrate the use of heat augmented with high hydrostatic pressure (40,000 psi) as a novel method for the recovery of intact proteins from FFPE mouse liver. When FFPE mouse liver was extracted using heat and elevated pressure, there was a 4-fold increase in protein extraction efficiency, a 3-fold increase in the extraction of intact proteins, and up to a 30-fold increase in the number of nonredundant proteins identified by mass spectrometry, compared to matched tissue extracted with heat alone. More importantly, the number of nonredundant proteins identified in the FFPE tissue was nearly identical to that of matched fresh-frozen tissue.

  13. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    PubMed Central

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to

  14. Analysis of protein phosphorylation in nerve terminal reveals extensive changes in active zone proteins upon exocytosis

    PubMed Central

    Kohansal-Nodehi, Mahdokht; Chua, John JE; Urlaub, Henning; Jahn, Reinhard; Czernik, Dominika

    2016-01-01

    Neurotransmitter release is mediated by the fast, calcium-triggered fusion of synaptic vesicles with the presynaptic plasma membrane, followed by endocytosis and recycling of the membrane of synaptic vesicles. While many of the proteins governing these processes are known, their regulation is only beginning to be understood. Here we have applied quantitative phosphoproteomics to identify changes in phosphorylation status of presynaptic proteins in resting and stimulated nerve terminals isolated from the brains of Wistar rats. Using rigorous quantification, we identified 252 phosphosites that are either up- or downregulated upon triggering calcium-dependent exocytosis. Particularly pronounced were regulated changes of phosphosites within protein constituents of the presynaptic active zone, including bassoon, piccolo, and RIM1. Additionally, we have mapped kinases and phosphatases that are activated upon stimulation. Overall, our study provides a snapshot of phosphorylation changes associated with presynaptic activity and provides a foundation for further functional analysis of key phosphosites involved in presynaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.14530.001 PMID:27115346

  15. Noise analysis of ionization kinetics in a protein ion channel

    NASA Astrophysics Data System (ADS)

    Bezrukov, Sergey M.; Kasianowicz, John J.

    1993-08-01

    We observed excess current noise generated by the reversible ionization of sites in a transmembrane protein ion channel, which is analogous to current fluctuations found recently in solid state microstructure electronic devices. Specifically the current through fully open single channels formed by Staphylococcus aureus α-toxin shows pH dependent fluctuations. We show that noise analysis of the open channel current can be used to evaluate the ionization rate constants, the number of sites participating in the ionization process, and the effect of recharging a single site on the channel conductance.

  16. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  17. [A Method for Protein Photo-cross-linking in Living Cells Facilitating Analysis of Physiological Interactions of Proteins].

    PubMed

    Hino, Nobumasa

    2015-01-01

    In living cells, most proteins form complexes with other proteins to exert their functions. Since protein functions are regulated in response to changes in the cellular environment, the components of the complexes can vary; therefore, proteins often interact in a weak and transient manner. To capture such labile protein interactions, we have developed a method for photo-cross-linking of proteins directly interacting in mammalian cells; this method involves expansion of the genetic code and site-specific incorporation of photoreactive amino acids into proteins. Upon cross-linking, protein complexes are stabilized by a covalent bond and can be readily isolated from cell extracts without the problems usually associated with simple affinity purification methods such as co-immunoprecipitation. Photo-cross-linkers have another benefit: they react exclusively with molecules within a range defined by the linker length. This property becomes useful for determining the binding interface of two proteins because the linkers can be introduced in a site-directed manner with our method. In this review, we first describe the expansion of the genetic code of mammalian cells for the incorporation of non-natural amino acids into proteins. Then, we introduce our recent applications and developments of the cross-linking method: identification of intracellular binding partners of the signaling protein growth factor receptor binding protein 2; analysis of the binding between membrane proteins on the cell surface; and a novel photoreactive amino acid that enables wide-ranging photo-cross-linking.

  18. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases

    PubMed Central

    Lin, Peng-Lin; Yu, Ya-Wen

    2016-01-01

    Pathway analysis has become popular as a secondary analysis strategy for genome-wide association studies (GWAS). Most of the current pathway analysis methods aggregate signals from the main effects of single nucleotide polymorphisms (SNPs) in genes within a pathway without considering the effects of gene-gene interactions. However, gene-gene interactions can also have critical effects on complex diseases. Protein-protein interaction (PPI) networks have been used to define gene pairs for the gene-gene interaction tests. Incorporating the PPI information to define gene pairs for interaction tests within pathways can increase the power for pathway-based association tests. We propose a pathway association test, which aggregates the interaction signals in PPI networks within a pathway, for GWAS with case-control samples. Gene size is properly considered in the test so that genes do not contribute more to the test statistic simply due to their size. Simulation studies were performed to verify that the method is a valid test and can have more power than other pathway association tests in the presence of gene-gene interactions within a pathway under different scenarios. We applied the test to the Wellcome Trust Case Control Consortium GWAS datasets for seven common diseases. The most significant pathway is the chaperones modulate interferon signaling pathway for Crohn’s disease (p-value = 0.0003). The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is involved in Crohn’s disease. Several other pathways that have functional implications for the seven diseases were also identified. The proposed test based on gene-gene interaction signals in PPI networks can be used as a complementary tool to the current existing pathway analysis methods focusing on main effects of genes. An efficient software implementing the method is freely available at http://puppi.sourceforge.net. PMID:27622767

  19. Pathway Analysis Incorporating Protein-Protein Interaction Networks Identified Candidate Pathways for the Seven Common Diseases.

    PubMed

    Lin, Peng-Lin; Yu, Ya-Wen; Chung, Ren-Hua

    2016-01-01

    Pathway analysis has become popular as a secondary analysis strategy for genome-wide association studies (GWAS). Most of the current pathway analysis methods aggregate signals from the main effects of single nucleotide polymorphisms (SNPs) in genes within a pathway without considering the effects of gene-gene interactions. However, gene-gene interactions can also have critical effects on complex diseases. Protein-protein interaction (PPI) networks have been used to define gene pairs for the gene-gene interaction tests. Incorporating the PPI information to define gene pairs for interaction tests within pathways can increase the power for pathway-based association tests. We propose a pathway association test, which aggregates the interaction signals in PPI networks within a pathway, for GWAS with case-control samples. Gene size is properly considered in the test so that genes do not contribute more to the test statistic simply due to their size. Simulation studies were performed to verify that the method is a valid test and can have more power than other pathway association tests in the presence of gene-gene interactions within a pathway under different scenarios. We applied the test to the Wellcome Trust Case Control Consortium GWAS datasets for seven common diseases. The most significant pathway is the chaperones modulate interferon signaling pathway for Crohn's disease (p-value = 0.0003). The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is involved in Crohn's disease. Several other pathways that have functional implications for the seven diseases were also identified. The proposed test based on gene-gene interaction signals in PPI networks can be used as a complementary tool to the current existing pathway analysis methods focusing on main effects of genes. An efficient software implementing the method is freely available at http://puppi.sourceforge.net. PMID:27622767

  20. Molecular analysis of the muscle protein projectin in Lepidoptera.

    PubMed

    Ayme-Southgate, A J; Turner, L; Southgate, R J

    2013-01-01

    Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed.

  1. Laminated microfluidic system for small sample protein analysis

    PubMed Central

    Saedinia, Sara; Nastiuk, Kent L.; Krolewski, John J.; Li, G. P.; Bachman, Mark

    2014-01-01

    We describe a technology based on lamination that allows for the production of highly integrated 3D devices suitable for performing a wide variety of microfluidic assays. This approach uses a suite of microfluidic coupons (“microfloupons”) that are intended to be stacked as needed to produce an assay of interest. Microfloupons may be manufactured in paper, plastic, gels, or other materials, in advance, by different manufacturers, then assembled by the assay designer as needed. To demonstrate this approach, we designed, assembled, and characterized a microfloupon device that performs sodium-dodecyl-sulfate polyacrylamide gel electrophoresis on a small sample of protein. This device allowed for the manipulation and transport of small amounts of protein sample, tight injection into a thin polyacrylamide gel, electrophoretic separation of the proteins into bands, and subsequent removal of the gel from the device for imaging and further analysis. The microfloupons are rugged enough to handle and can be easily aligned and laminated, allowing for a variety of different assays to be designed and configured by selecting appropriate microfloupons. This approach provides a convenient way to perform assays that have multiple steps, relieving the need to design highly sophisticated devices that incorporate all functions in a single unit, while still achieving the benefits of small sample size, automation, and high speed operation. PMID:24753728

  2. Analysis of antifreeze protein activity using colorimetric gold nanosensors

    NASA Astrophysics Data System (ADS)

    Jing, Xu; Choi, Ho-seok; Park, Ji-In; Kim, Young-Pil

    2015-07-01

    High activity and long stability of antifreeze proteins (AFPs), also known as ice-binding proteins (IBPs), are necessary for exerting their physiological functions in biotechnology and cryomedicine. Here we report a simple analysis of antifreeze protein activity and stability based on self-assembly of gold nanoparticles (AuNPs) via freezing and thawing cycles. While the mercaptosuccinic acid-capped AuNP (MSA-AuNP) was easily self-assembled after a freezing/thawing cycle, due to the mechanical attack of ice crystal on the MSA-AuNP surface, the presence of AFP impeded the self-assembly of MSA-AuNP via the interaction of AFP with ice crystals via freezing and thawing cycles, which led to a strong color in the MSA-AuNP solution. As a result, the aggregation parameter (E520/E650) of MSA-AuNP showed the rapid detection of both activity and stability of AFPs. We suggest that our newly developed method is very suitable for measuring antifreeze activity and stability in a simple and rapid manner with reliable quantification.

  3. Integrated visual analysis of protein structures, sequences, and feature data

    PubMed Central

    2015-01-01

    Background To understand the molecular mechanisms that give rise to a protein's function, biologists often need to (i) find and access all related atomic-resolution 3D structures, and (ii) map sequence-based features (e.g., domains, single-nucleotide polymorphisms, post-translational modifications) onto these structures. Results To streamline these processes we recently developed Aquaria, a resource offering unprecedented access to protein structure information based on an all-against-all comparison of SwissProt and PDB sequences. In this work, we provide a requirements analysis for several frequently occuring tasks in molecular biology and describe how design choices in Aquaria meet these requirements. Finally, we show how the interface can be used to explore features of a protein and gain biologically meaningful insights in two case studies conducted by domain experts. Conclusions The user interface design of Aquaria enables biologists to gain unprecedented access to molecular structures and simplifies the generation of insight. The tasks involved in mapping sequence features onto structures can be conducted easier and faster using Aquaria. PMID:26329268

  4. Molecular analysis of the muscle protein projectin in Lepidoptera.

    PubMed

    Ayme-Southgate, A J; Turner, L; Southgate, R J

    2013-01-01

    Striated muscles of both vertebrates and insects contain a third filament composed of the giant proteins, namely kettin and projectin (insects) and titin (vertebrates). All three proteins have been shown to contain several domains implicated in conferring elasticity, in particular a PEVK segment. In this study, the characterization of the projectin protein in the silkmoth, Bombyx mori L. (Lepidoptera: Bombycidae), and the monarch butterfly, Danaus plexippus L. (Lepidoptera: Nymphalidae), as well as a partial characterization in the Carolina sphinx, Manduca sexta L. (Lepidoptera: Sphingidae), are presented. This study showed that, similar to other insects, projectin's overall modular organization was conserved, but in contrast, the PEVK region had a highly divergent sequence. The analysis of alternative splicing in the PEVK region revealed a small number of possible isoforms and the lack of a flight-muscle specific variant, both characteristics being in sharp contrast with findings from other insects. The possible correlation with difference in flight muscle stiffness and physiology between Lepidoptera and other insect orders is discussed. PMID:24206568

  5. Electronic Tongue Generating Continuous Recognition Patterns for Protein Analysis

    PubMed Central

    Hou, Yanxia; Genua, Maria; Garçon, Laurie-Amandine; Buhot, Arnaud; Calemczuk, Roberto; Bonnaffé, David; Lortat-Jacob, Hugues; Livache, Thierry

    2014-01-01

    In current protocol, a combinatorial approach has been developed to simplify the design and production of sensing materials for the construction of electronic tongues (eT) for protein analysis. By mixing a small number of simple and easily accessible molecules with different physicochemical properties, used as building blocks (BBs), in varying and controlled proportions and allowing the mixtures to self-assemble on the gold surface of a prism, an array of combinatorial surfaces featuring appropriate properties for protein sensing was created. In this way, a great number of cross-reactive receptors can be rapidly and efficiently obtained. By combining such an array of combinatorial cross-reactive receptors (CoCRRs) with an optical detection system such as surface plasmon resonance imaging (SPRi), the obtained eT can monitor the binding events in real-time and generate continuous recognition patterns including 2D continuous evolution profile (CEP) and 3D continuous evolution landscape (CEL) for samples in liquid. Such an eT system is efficient for discrimination of common purified proteins. PMID:25286325

  6. Structure and biochemical analysis of a secretin pilot protein

    PubMed Central

    Lario, Paula I; Pfuetzner, Richard A; Frey, Elizabeth A; Creagh, Louise; Haynes, Charles; Maurelli, Anthony T; Strynadka, Natalie C J

    2005-01-01

    The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 Å the structure of MxiM28–142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel ‘cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525–570, hinders lipid binding to MxiM. PMID:15775974

  7. Laminated microfluidic system for small sample protein analysis.

    PubMed

    Saedinia, Sara; Nastiuk, Kent L; Krolewski, John J; Li, G P; Bachman, Mark

    2014-01-01

    We describe a technology based on lamination that allows for the production of highly integrated 3D devices suitable for performing a wide variety of microfluidic assays. This approach uses a suite of microfluidic coupons ("microfloupons") that are intended to be stacked as needed to produce an assay of interest. Microfloupons may be manufactured in paper, plastic, gels, or other materials, in advance, by different manufacturers, then assembled by the assay designer as needed. To demonstrate this approach, we designed, assembled, and characterized a microfloupon device that performs sodium-dodecyl-sulfate polyacrylamide gel electrophoresis on a small sample of protein. This device allowed for the manipulation and transport of small amounts of protein sample, tight injection into a thin polyacrylamide gel, electrophoretic separation of the proteins into bands, and subsequent removal of the gel from the device for imaging and further analysis. The microfloupons are rugged enough to handle and can be easily aligned and laminated, allowing for a variety of different assays to be designed and configured by selecting appropriate microfloupons. This approach provides a convenient way to perform assays that have multiple steps, relieving the need to design highly sophisticated devices that incorporate all functions in a single unit, while still achieving the benefits of small sample size, automation, and high speed operation.

  8. Heat capacity of solid proteins by thermal analysis

    SciTech Connect

    Zhang, Ge; Wunderlich, B.

    1997-11-01

    In a continuing effort to better understand the thermodynamic properties of proteins, solid state heat capacities of poly(amino acid)s of all 21 naturally occurring amino 4 copoly(amino acid)s and about 10 proteins have been analyzed by now using the Advanced Thermal Analysis System, ATHAS. The experimental measurements were performed with adiabatic and differential scanning calorimetry from 10 to about 450 K. The heat capacities of the samples in their pure, solid states are linked to an approximate vibrational spectrum by making use of known group vibrations and a set of parameters, {Theta}{sub 1} and {Theta}{sub 3}, of the Tarasov function for the skeletal vibrations. Good agreement is found between experiment and calculation with root mean square errors mostly within {+-}3%. The experimental data were analyzed also with an empirical addition scheme using data for the poly(amino acid)s. Based on this study, vibrational heat capacity can now be predicted for all proteins with an accuracy comparable to common experiments. Furthermore, gradual transitions, indicative of molecular motion prior to devitrification, melting, or decomposition, can be identified. The new experimental data compared here with the prior samples are: bovine {beta}-lactoglobulin, chicken lysozyme and ovalbumin.

  9. Bioinformatic tools for DNA/protein sequence analysis, functional assignment of genes and protein classification.

    PubMed

    Rehm, B H

    2001-12-01

    The development of efficient DNA sequencing methods has led to the achievement of the DNA sequence of entire genomes from (to date) 55 prokaryotes, 5 eukaryotic organisms and 10 eukaryotic chromosomes. Thus, an enormous amount of DNA sequence data is available and even more will be forthcoming in the near future. Analysis of this overwhelming amount of data requires bioinformatic tools in order to identify genes that encode functional proteins or RNA. This is an important task, considering that even in the well-studied Escherichia coli more than 30% of the identified open reading frames are hypothetical genes. Future challenges of genome sequence analysis will include the understanding of gene regulation and metabolic pathway reconstruction including DNA chip technology, which holds tremendous potential for biomedicine and the biotechnological production of valuable compounds. The overwhelming volume of information often confuses scientists. This review intends to provide a guide to choosing the most efficient way to analyze a new sequence or to collect information on a gene or protein of interest by applying current publicly available databases and Web services. Recently developed tools that allow functional assignment of genes, mainly based on sequence similarity of the deduced amino acid sequence, using the currently available and increasing biological databases will be discussed.

  10. Photonic Crystal Hydrogel Enhanced Plasmonic Staining for Multiplexed Protein Analysis.

    PubMed

    Mu, Zhongde; Zhao, Xiangwei; Huang, Yin; Lu, Meng; Gu, Zhongze

    2015-12-01

    Plasmonic nanoparticles are commonly used as optical transducers in sensing applications. The optical signals resulting from the interaction of analytes and plamsonic nanoparticles are influenced by surrounding physical structures where the nanoparticles are located. This paper proposes inverse opal photonic crystal hydrogel as 3D structure to improve Raman signals from plasmonic staining. By hybridization of the plasmonic nanoparticles and photonic crystal, surface-enhanced Raman spectroscopy (SERS) analysis of multiplexed protein is realized. It benefits the Raman analysis by providing high-density "hot spots" in 3D and extra enhancement of local electromagnetic field at the band edge of PhC with periodic refractive index distribution. The strong interaction of light and the hybrid 3D nanostructure offers new insights into plasmonic nanoparticle applications and biosensor design. PMID:26436833

  11. Protein sequence analysis using Hewlett-Packard biphasic sequencing cartridges in an applied biosystems 473A protein sequencer.

    PubMed

    Tang, S; Mozdzanowski, J; Anumula, K R

    1999-01-01

    Protein sequence analysis using an adsorptive biphasic sequencing cartridge, a set of two coupled columns introduced by Hewlett-Packard for protein sequencing by Edman degradation, in an Applied Biosystems 473A protein sequencer has been demonstrated. Samples containing salts, detergents, excipients, etc. (e.g., formulated protein drugs) can be easily analyzed using the ABI sequencer. Simple modifications to the ABI sequencer to accommodate the cartridge extend its utility in the analysis of difficult samples. The ABI sequencer solvents and reagents were compatible with the HP cartridge for sequencing. Sequence information up to ten residues can be easily generated by this nonoptimized procedure, and it is sufficient for identifying proteins by database search and for preparing a DNA probe for cloning novel proteins.

  12. Sample Preparation for Mass Spectrometry Analysis of Protein-Protein Interactions in Cancer Cell Lines and Tissues.

    PubMed

    Beigbeder, Alice; Vélot, Lauriane; James, D Andrew; Bisson, Nicolas

    2016-01-01

    A precisely controlled network of protein-protein interactions constitutes the basis for functional signaling pathways. This equilibrium is more often than not disrupted in cancer cells, by the aberrant expression or activation of oncogenic proteins. Therefore, the analysis of protein interaction networks in cancer cells has become crucial to expand our comprehension of the molecular underpinnings of tumor formation and progression. This protocol describes a sample preparation method for the analysis of signaling complexes by mass spectrometry (MS), following the affinity purification of a protein of interest from a cancer cell line or a solid tumor. In particular, we provide a spin tip-based protease digestion procedure that offers a more rapid and controlled alternative to other gel-based and gel-free methods. This sample preparation protocol represents a useful strategy to identify protein interactions and to gain insight into the molecular mechanisms that contribute to a given cancer phenotype. PMID:27581032

  13. Analysis of zinc binding sites in protein crystal structures.

    PubMed Central

    Alberts, I. L.; Nadassy, K.; Wodak, S. J.

    1998-01-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations. PMID:10082367

  14. Bioinformatics analysis of the epitope regions for norovirus capsid protein

    PubMed Central

    2013-01-01

    Background Norovirus is the major cause of nonbacterial epidemic gastroenteritis, being highly prevalent in both developing and developed countries. Despite of the available monoclonal antibodies (MAbs) for different sub-genogroups, a comprehensive epitope analysis based on various bioinformatics technology is highly desired for future potential antibody development in clinical diagonosis and treatment. Methods A total of 18 full-length human norovirus capsid protein sequences were downloaded from GenBank. Protein modeling was performed with program Modeller 9.9. The modeled 3D structures of capsid protein of norovirus were submitted to the protein antigen spatial epitope prediction webserver (SEPPA) for predicting the possible spatial epitopes with the default threshold. The results were processed using the Biosoftware. Results Compared with GI, we found that the GII genogroup had four deletions and two special insertions in the VP1 region. The predicted conformational epitope regions mainly concentrated on N-terminal (1~96), Middle Part (298~305, 355~375) and C-terminal (560~570). We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. Conclusions The predicted conformational epitope regions of norovirus VP1 mainly concentrated on N-terminal, Middle Part and C-terminal. We find two common epitope regions on sequences for GI and GII genogroup, and also found an exclusive epitope region for GII genogroup. The overlapping with experimental epitopes indicates the important role of latest computational technologies. With the fast development of computational immunology tools, the bioinformatics pipeline will be more and more critical to vaccine design. PMID:23514273

  15. Analysis of the protein-protein interaction networks of differentially expressed genes in pulmonary embolism.

    PubMed

    Wang, Hao; Wang, Chen; Zhang, Lei; Lu, Yinghua; Duan, Qianglin; Gong, Zhu; Liang, Aibin; Song, Haoming; Wang, Lemin

    2015-04-01

    The aim of the present study was to explore the function and interaction of differentially expressed genes (DEGs) in pulmonary embolism (PE). The gene expression profile GSE13535, was downloaded from the Gene Expression Omnibus database. The DEGs 2 and 18 h post‑PE initiation were identified using the affy package in R software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the DEGs were analyzed using Database for Annotation Visualization and Integrated Discovery (DAVID) online analytical tools. In addition, protein‑protein interaction (PPI) networks of the DEGs were constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins. The PPI network at 18 h was modularized using Clusterone, and a functional enrichment analysis of the DEGs in the top three modules was performed with DAVID. Overall, 80 and 346 DEGs were identified 2 and 18 h after PE initiation, respectively. The KEGG pathways, including chemokine signaling and toll‑like receptor signaling, were shown to be significantly enriched. The five highest degree nodes in the PPI networks at 2 or 18 h were screened. The module analysis of the PPI network at 18 h revealed 11 hub nodes. A Gene Ontology terms analysis demonstrated that the DEGs in the top three modules were associated with the inflammatory, defense and immune responses. The results of the present study suggest that the DEGs identified, including chemokine‑related genes TFPI2 and TNF, may be potential target genes for the treatment of PE. The chemokine signaling pathway, inflammatory response and immune response were explored, and it may be suggested that these pathways have important roles in PE.

  16. An Introductory Classroom Exercise on Protein Molecular Model Visualization and Detailed Analysis of Protein-Ligand Binding

    ERIC Educational Resources Information Center

    Poeylaut-Palena, Andres, A.; de los Angeles Laborde, Maria

    2013-01-01

    A learning module for molecular level analysis of protein structure and ligand/drug interaction through the visualization of X-ray diffraction is presented. Using DeepView as molecular model visualization software, students learn about the general concepts of protein structure. This Biochemistry classroom exercise is designed to be carried out by…

  17. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    PubMed

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein.

  18. Isotope coded protein labeling coupled immunoprecipitation (ICPL-IP): a novel approach for quantitative protein complex analysis from native tissue.

    PubMed

    Vogt, Andreas; Fuerholzner, Bettina; Kinkl, Norbert; Boldt, Karsten; Ueffing, Marius

    2013-05-01

    High confidence definition of protein interactions is an important objective toward the understanding of biological systems. Isotope labeling in combination with affinity-based isolation of protein complexes has increased in accuracy and reproducibility, yet, larger organisms--including humans--are hardly accessible to metabolic labeling and thus, a major limitation has been its restriction to small animals, cell lines, and yeast. As composition as well as the stoichiometry of protein complexes can significantly differ in primary tissues, there is a great demand for methods capable to combine the selectivity of affinity-based isolation as well as the accuracy and reproducibility of isotope-based labeling with its application toward analysis of protein interactions from intact tissue. Toward this goal, we combined isotope coded protein labeling (ICPL)(1) with immunoprecipitation (IP) and quantitative mass spectrometry (MS). ICPL-IP allows sensitive and accurate analysis of protein interactions from primary tissue. We applied ICPL-IP to immuno-isolate protein complexes from bovine retinal tissue. Protein complexes of immunoprecipitated β-tubulin, a highly abundant protein with known interactors as well as the lowly expressed small GTPase RhoA were analyzed. The results of both analyses demonstrate sensitive and selective identification of known as well as new protein interactions by our method.

  19. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    PubMed

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  20. Proteomic Analysis of Membrane Proteins of Vero Cells: Exploration of Potential Proteins Responsible for Virus Entry

    PubMed Central

    Guo, Donghua; Zhu, Qinghe; Zhang, Hong

    2014-01-01

    Vero cells are highly susceptible to many viruses in humans and animals, and its membrane proteins (MPs) are responsible for virus entry. In our study, the MP proteome of the Vero cells was investigated using a shotgun LC-MS/MS approach. Six hundred twenty-seven proteins, including a total of 1839 peptides, were identified in MP samples of the Vero cells. In 627 proteins, 307 proteins (48.96%) were annotated in terms of biological process of gene ontology (GO) categories; 356 proteins (56.78%) were annotated in terms of molecular function of GO categories; 414 proteins (66.03%) were annotated in terms of cellular components of GO categories. Of 627 identified proteins, seventeen proteins had been revealed to be virus receptor proteins. The resulting protein lists and highlighted proteins may provide valuable information to increase understanding of virus infection of Vero cells. PMID:24286161

  1. Phylogenetic analysis of modularity in protein interaction networks

    PubMed Central

    Erten, Sinan; Li, Xin; Bebek, Gurkan; Li, Jing; Koyutürk, Mehmet

    2009-01-01

    Background In systems biology, comparative analyses of molecular interactions across diverse species indicate that conservation and divergence of networks can be used to understand functional evolution from a systems perspective. A key characteristic of these networks is their modularity, which contributes significantly to their robustness, as well as adaptability. Consequently, analysis of modular network structures from a phylogenetic perspective may be useful in understanding the emergence, conservation, and diversification of functional modularity. Results In this paper, we propose a phylogenetic framework for analyzing network modules, with applications that extend well beyond network-based phylogeny reconstruction. Our approach is based on identification of modular network components from each network separately, followed by projection of these modules onto the networks of other species to compare different networks. Subsequently, we use the conservation of various modules in each network to assess the similarity between different networks. Compared to traditional methods that rely on topological comparisons, our approach has key advantages in (i) avoiding intractable graph comparison problems in comparative network analysis, (ii) accounting for noise and missing data through flexible treatment of network conservation, and (iii) providing insights on the evolution of biological systems through investigation of the evolutionary trajectories of network modules. We test our method, MOPHY, on synthetic data generated by simulation of network evolution, as well as existing protein-protein interaction data for seven diverse species. Comprehensive experimental results show that MOPHY is promising in reconstructing evolutionary histories of extant networks based on conservation of modularity, it is highly robust to noise, and outperforms existing methods that quantify network similarity in terms of conservation of network topology. Conclusion These results establish

  2. Techniques for the Analysis of Protein-Protein Interactions in Vivo.

    PubMed

    Xing, Shuping; Wallmeroth, Niklas; Berendzen, Kenneth W; Grefen, Christopher

    2016-06-01

    Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique. PMID:27208310

  3. Techniques for the Analysis of Protein-Protein Interactions in Vivo1[OPEN

    PubMed Central

    Xing, Shuping; Wallmeroth, Niklas; Berendzen, Kenneth W.

    2016-01-01

    Identifying key players and their interactions is fundamental for understanding biochemical mechanisms at the molecular level. The ever-increasing number of alternative ways to detect protein-protein interactions (PPIs) speaks volumes about the creativity of scientists in hunting for the optimal technique. PPIs derived from single experiments or high-throughput screens enable the decoding of binary interactions, the building of large-scale interaction maps of single organisms, and the establishment of cross-species networks. This review provides a historical view of the development of PPI technology over the past three decades, particularly focusing on in vivo PPI techniques that are inexpensive to perform and/or easy to implement in a state-of-the-art molecular biology laboratory. Special emphasis is given to their feasibility and application for plant biology as well as recent improvements or additions to these established techniques. The biology behind each method and its advantages and disadvantages are discussed in detail, as are the design, execution, and evaluation of PPI analysis. We also aim to raise awareness about the technological considerations and the inherent flaws of these methods, which may have an impact on the biological interpretation of PPIs. Ultimately, we hope this review serves as a useful reference when choosing the most suitable PPI technique. PMID:27208310

  4. Quantitative Analysis of Spatial Protein-protein Proximity in Fluorescence Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Liu, Yi-Kuang; Eghbali, Mansoureh; Stefani, Enrico

    2009-02-01

    To quantify spatial protein-protein proximity (colocalization) in fluorescence microscopic images, cross-correlation and autocorrelation functions were decomposed into fast and slowly decaying components. The fast component results from clusters of proteins specifically labeled and the slow one from background/image heterogeneity. We show that the calculation of the protein-protein proximity index and the correlation coefficient are more reliably determined by extracting the fast-decaying component.

  5. Efficient preparation and analysis of membrane and membrane protein systems.

    PubMed

    Javanainen, Matti; Martinez-Seara, Hector

    2016-10-01

    Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg. PMID:26947184

  6. Category Theoretic Analysis of Hierarchical Protein Materials and Social Networks

    PubMed Central

    Spivak, David I.; Giesa, Tristan; Wood, Elizabeth; Buehler, Markus J.

    2011-01-01

    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a “concept web” or “semantic network” except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine. PMID:21931622

  7. Category theoretic analysis of hierarchical protein materials and social networks.

    PubMed

    Spivak, David I; Giesa, Tristan; Wood, Elizabeth; Buehler, Markus J

    2011-01-01

    Materials in biology span all the scales from Angstroms to meters and typically consist of complex hierarchical assemblies of simple building blocks. Here we describe an application of category theory to describe structural and resulting functional properties of biological protein materials by developing so-called ologs. An olog is like a "concept web" or "semantic network" except that it follows a rigorous mathematical formulation based on category theory. This key difference ensures that an olog is unambiguous, highly adaptable to evolution and change, and suitable for sharing concepts with other olog. We consider simple cases of beta-helical and amyloid-like protein filaments subjected to axial extension and develop an olog representation of their structural and resulting mechanical properties. We also construct a representation of a social network in which people send text-messages to their nearest neighbors and act as a team to perform a task. We show that the olog for the protein and the olog for the social network feature identical category-theoretic representations, and we proceed to precisely explicate the analogy or isomorphism between them. The examples presented here demonstrate that the intrinsic nature of a complex system, which in particular includes a precise relationship between structure and function at different hierarchical levels, can be effectively represented by an olog. This, in turn, allows for comparative studies between disparate materials or fields of application, and results in novel approaches to derive functionality in the design of de novo hierarchical systems. We discuss opportunities and challenges associated with the description of complex biological materials by using ologs as a powerful tool for analysis and design in the context of materiomics, and we present the potential impact of this approach for engineering, life sciences, and medicine.

  8. A Comprehensive Analysis of Plasmodium Circumsporozoite Protein Binding to Hepatocytes.

    PubMed

    Zhao, Jinghua; Bhanot, Purnima; Hu, Junjie; Wang, Qian

    2016-01-01

    Circumsporozoite protein (CSP) is the dominant protein on the surface of Plasmodium sporozoites and plays a critical role in the invasion by sporozoites of hepatocytes. Contacts between CSP and heparin sulfate proteoglycans (HSPGs) lead to the attachment of sporozoites to hepatocytes and trigger signaling events in the parasite that promote invasion of hepatocytes. The precise sequence elements in CSP that bind HSPGs have not been identified. We performed a systematic in vitro analysis to dissect the association between Plasmodium falciparum CSP (PfCSP) and hepatocytes. We demonstrate that interactions between PfCSP and heparin or a cultured hepatoma cell line, HepG2, are mediated primarily by a lysine-rich site in the amino terminus of PfCSP. Importantly, the carboxyl terminus of PfCSP facilitates heparin-binding by the amino-terminus but does not interact directly with heparin. These findings provide insights into how CSP recognizes hepatocytes and useful information for further functional studies of CSP. PMID:27560376

  9. A Comprehensive Analysis of Plasmodium Circumsporozoite Protein Binding to Hepatocytes

    PubMed Central

    Zhao, Jinghua; Bhanot, Purnima; Hu, Junjie; Wang, Qian

    2016-01-01

    Circumsporozoite protein (CSP) is the dominant protein on the surface of Plasmodium sporozoites and plays a critical role in the invasion by sporozoites of hepatocytes. Contacts between CSP and heparin sulfate proteoglycans (HSPGs) lead to the attachment of sporozoites to hepatocytes and trigger signaling events in the parasite that promote invasion of hepatocytes. The precise sequence elements in CSP that bind HSPGs have not been identified. We performed a systematic in vitro analysis to dissect the association between Plasmodium falciparum CSP (PfCSP) and hepatocytes. We demonstrate that interactions between PfCSP and heparin or a cultured hepatoma cell line, HepG2, are mediated primarily by a lysine-rich site in the amino terminus of PfCSP. Importantly, the carboxyl terminus of PfCSP facilitates heparin-binding by the amino-terminus but does not interact directly with heparin. These findings provide insights into how CSP recognizes hepatocytes and useful information for further functional studies of CSP. PMID:27560376

  10. Quantitative analysis of flagellar proteins in Drosophila sperm tails.

    PubMed

    Mendes Maia, Teresa; Paul-Gilloteaux, Perrine; Basto, Renata

    2015-01-01

    The cilium has a well-defined structure, which can still accommodate some morphological and molecular composition diversity to suit the functional requirements of different cell types. The sperm flagellum of the fruit fly Drosophila melanogaster appears as a good model to study the genetic regulation of axoneme assembly and motility, due to the wealth of genetic tools publically available for this organism. In addition, the fruit fly's sperm flagellum displays quite a long axoneme (∼1.8mm), which may facilitate both histological and biochemical analyses. Here, we present a protocol for imaging and quantitatively analyze proteins, which associate with the fly differentiating, and mature sperm flagella. We will use as an example the quantification of tubulin polyglycylation in wild-type testes and in Bug22 mutant testes, which present defects in the deposition of this posttranslational modification. During sperm biogenesis, flagella appear tightly bundled, which makes it more challenging to get accurate measurements of protein levels from immunostained specimens. The method we present is based on the use of a novel semiautomated, macro installed in the image processing software ImageJ. It allows to measure fluorescence levels in closely associated sperm tails, through an exact distinction between positive and background signals, and provides background-corrected pixel intensity values that can directly be used for data analysis. PMID:25837396

  11. Phylogenetic analysis of the Argonaute protein family in platyhelminths.

    PubMed

    Zheng, Yadong

    2013-03-01

    Argonaute proteins (AGOs) are mediators of gene silencing via recruitment of small regulatory RNAs to induce translational regression or degradation of targeted molecules. Platyhelminths have been reported to express microRNAs but the diversity of AGOs in the phylum has not been explored. Phylogenetic relationships of members of this protein family were studied using data from six platyhelminth genomes. Phylogenetic analysis showed that all cestode and trematode AGOs, along with some triclad planarian AGOs, were grouped into the Ago subfamily and its novel sister clade, here referred to as Cluster 1. These were very distant from Piwi and Class 3 subfamilies. By contrast, a number of planarian Piwi-like AGOs formed a novel sister clade to the Piwi subfamily. Extensive sequence searching revealed the presence of an additional locus for AGO2 in the cestode Echinococcus granulosus and exon expansion in this species and E. multilocularis. The current study suggests the absence of the Piwi subfamily and Class 3 AGOs in cestodes and trematodes and the Piwi-like AGO expansion in a free-living triclad planarian and the occurrence of exon expansion prior to or during the evolution of the most-recent common ancestor of the Echinococcus species studied.

  12. Initiation sites of protein folding by NMR analysis.

    PubMed Central

    Freund, S M; Wong, K B; Fersht, A R

    1996-01-01

    Detailed characterization of denatured states of proteins is necessary to understand the interactions that funnel the large number of possible conformations along fast routes for folding. Nuclear magnetic resonance experiments based on the nuclear Overhauser effect (NOE) detect hydrogen atoms close in space and provide information about local structure. Here we present an NMR procedure that detects almost all sequential NOEs between amide hydrogen atoms (HN-HN NOE), including those in random coil regions in a protein, barnase, in urea solutions. A semi-quantitative analysis of these HN-HN NOEs identified partly structured regions that are in remarkable agreement with those found to form early on the reaction pathway. Our results strongly suggest that the folding of barnase initiates at the first helix and the beta-turn between the third and the fourth strands. This strategy of defining residual structure has also worked for cold-denatured barstar and guanidinium hydrochloride-denatured chymotrypsin inhibitor 2 and so should be generally applicable. Images Fig. 1 Fig. 3 PMID:8855224

  13. Identification of Associated Proteins by Immunoprecipitation and Mass Spectrometry Analysis.

    PubMed

    Cao, Xiumei; Yan, Jianshe

    2016-01-01

    Protein-protein interactions play central roles in intercellular and intracellular signal transduction. Impairment of protein-protein interactions causes many diseases such as cancer, cardiomyopathies, diabetes, microbial infections, and genetic and neurodegenerative disorders. Immunoprecipitation is a technique in which a target protein of interest bound by an antibody is used to pull down the protein complex out of cell lysates, which can be identified by mass spectrometry. Here, we describe the protocol to immunoprecipitate and identify the components of the protein complexes of ElmoE in Dictyostelium discoideum cells. PMID:27271899

  14. ANCHOR: a web server and database for analysis of protein-protein interaction binding pockets for drug discovery.

    PubMed

    Meireles, Lidio M C; Dömling, Alexander S; Camacho, Carlos J

    2010-07-01

    ANCHOR is a web-based tool whose aim is to facilitate the analysis of protein-protein interfaces with regard to its suitability for small molecule drug design. To this end, ANCHOR exploits the so-called anchor residues, i.e. amino acid side-chains deeply buried at protein-protein interfaces, to indicate possible druggable pockets to be targeted by small molecules. For a given protein-protein complex submitted by the user, ANCHOR calculates the change in solvent accessible surface area (DeltaSASA) upon binding for each side-chain, along with an estimate of its contribution to the binding free energy. A Jmol-based tool allows the user to interactively visualize selected anchor residues in their pockets as well as the stereochemical properties of the surrounding region such as hydrogen bonding. ANCHOR includes a Protein Data Bank (PDB) wide database of pre-computed anchor residues from more than 30,000 PDB entries with at least two protein chains. The user can query according to amino acids, buried area (SASA), energy or keywords related to indication areas, e.g. oncogene or diabetes. This database provides a resource to rapidly assess protein-protein interactions for the suitability of small molecules or fragments with bioisostere anchor analogues as possible compounds for pharmaceutical intervention. ANCHOR web server and database are freely available at http://structure.pitt.edu/anchor.

  15. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  16. Recent applications of capillary electromigration methods to separation and analysis of proteins.

    PubMed

    Štěpánová, Sille; Kašička, Václav

    2016-08-24

    This review article describes the significant recent developments in analysis of proteins by capillary electromigration (CE) methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography and electrochromatography) during the period 2011-2015. Improvements in sample preparation, preconcentration, suppression of adsorption and control of electroosmotic flow, separations by particular CE methods, and the detection schemes used in the analysis of proteins are discussed. Innovative applications of the above CE methods for quality control of protein biopharmaceuticals, protein determination in complex biomatrices, peptide mapping of proteins, and determination of physicochemical parameters of proteins are presented. PMID:27496994

  17. Characterization of Ternary Protein Systems In Vivo with Tricolor Heterospecies Partition Analysis.

    PubMed

    Hur, Kwang-Ho; Chen, Yan; Mueller, Joachim D

    2016-03-01

    Tools and assays that characterize protein-protein interactions are of fundamental importance to biology, because protein assemblies play a critical role in the control and regulation of nearly every cellular process. The availability of fluorescent proteins has facilitated the direct and real-time observation of protein-protein interactions inside living cells, but existing methods are mostly limited to binary interactions between two proteins. Because of the scarcity of techniques capable of identifying ternary interactions, we developed tricolor heterospecies partition analysis. The technique is based on brightness analysis of fluorescence fluctuations from three fluorescent proteins that serve as protein labels. We identified three fluorescent proteins suitable for tricolor brightness experiments. In addition, we developed the theory of identifying interactions in a ternary protein system using tricolor heterospecies partition analysis. The theory was verified by experiments on well-characterized protein systems. A graphical representation of the heterospecies partition data was introduced to visualize interactions in ternary protein systems. Lastly, we performed fluorescence fluctuation experiments on cells expressing a coactivator and two nuclear receptors and applied heterospecies partition analysis to explore the interactions of this ternary protein system.

  18. Network Analysis of Circular Permutations in Multidomain Proteins Reveals Functional Linkages for Uncharacterized Proteins

    PubMed Central

    Adjeroh, Donald; Jiang, Yue; Jiang, Bing-Hua; Lin, Jie

    2014-01-01

    Various studies have implicated different multidomain proteins in cancer. However, there has been little or no detailed study on the role of circular multidomain proteins in the general problem of cancer or on specific cancer types. This work represents an initial attempt at investigating the potential for predicting linkages between known cancer-associated proteins with uncharacterized or hypothetical multidomain proteins, based primarily on circular permutation (CP) relationships. First, we propose an efficient algorithm for rapid identification of both exact and approximate CPs in multidomain proteins. Using the circular relations identified, we construct networks between multidomain proteins, based on which we perform functional annotation of multidomain proteins. We then extend the method to construct subnetworks for selected cancer subtypes, and performed prediction of potential link-ages between uncharacterized multidomain proteins and the selected cancer types. We include practical results showing the performance of the proposed methods. PMID:25741177

  19. Global Analysis of Protein Activities Using Proteome Chips

    NASA Astrophysics Data System (ADS)

    Zhu, Heng; Bilgin, Metin; Bangham, Rhonda; Hall, David; Casamayor, Antonio; Bertone, Paul; Lan, Ning; Jansen, Ronald; Bidlingmaier, Scott; Houfek, Thomas; Mitchell, Tom; Miller, Perry; Dean, Ralph A.; Gerstein, Mark; Snyder, Michael

    2001-09-01

    To facilitate studies of the yeast proteome, we cloned 5800 open reading frames and overexpressed and purified their corresponding proteins. The proteins were printed onto slides at high spatial density to form a yeast proteome microarray and screened for their ability to interact with proteins and phospholipids. We identified many new calmodulin- and phospholipid-interacting proteins; a common potential binding motif was identified for many of the calmodulin-binding proteins. Thus, microarrays of an entire eukaryotic proteome can be prepared and screened for diverse biochemical activities. The microarrays can also be used to screen protein-drug interactions and to detect posttranslational modifications.

  20. PSEA-Quant: a protein set enrichment analysis on label-free and label-based protein quantification data.

    PubMed

    Lavallée-Adam, Mathieu; Rauniyar, Navin; McClatchy, Daniel B; Yates, John R

    2014-12-01

    The majority of large-scale proteomics quantification methods yield long lists of quantified proteins that are often difficult to interpret and poorly reproduced. Computational approaches are required to analyze such intricate quantitative proteomics data sets. We propose a statistical approach to computationally identify protein sets (e.g., Gene Ontology (GO) terms) that are significantly enriched with abundant proteins with reproducible quantification measurements across a set of replicates. To this end, we developed PSEA-Quant, a protein set enrichment analysis algorithm for label-free and label-based protein quantification data sets. It offers an alternative approach to classic GO analyses, models protein annotation biases, and allows the analysis of samples originating from a single condition, unlike analogous approaches such as GSEA and PSEA. We demonstrate that PSEA-Quant produces results complementary to GO analyses. We also show that PSEA-Quant provides valuable information about the biological processes involved in cystic fibrosis using label-free protein quantification of a cell line expressing a CFTR mutant. Finally, PSEA-Quant highlights the differences in the mechanisms taking place in the human, rat, and mouse brain frontal cortices based on tandem mass tag quantification. Our approach, which is available online, will thus improve the analysis of proteomics quantification data sets by providing meaningful biological insights. PMID:25177766

  1. Graph spectral analysis of protein interaction network evolution.

    PubMed

    Thorne, Thomas; Stumpf, Michael P H

    2012-10-01

    We present an analysis of protein interaction network data via the comparison of models of network evolution to the observed data. We take a bayesian approach and perform posterior density estimation using an approximate bayesian computation with sequential Monte Carlo method. Our approach allows us to perform model selection over a selection of potential network growth models. The methodology we apply uses a distance defined in terms of graph spectra which captures the network data more naturally than previously used summary statistics such as the degree distribution. Furthermore, we include the effects of sampling into the analysis, to properly correct for the incompleteness of existing datasets, and have analysed the performance of our method under various degrees of sampling. We consider a number of models focusing not only on the biologically relevant class of duplication models, but also including models of scale-free network growth that have previously been claimed to describe such data. We find a preference for a duplication-divergence with linear preferential attachment model in the majority of the interaction datasets considered. We also illustrate how our method can be used to perform multi-model inference of network parameters to estimate properties of the full network from sampled data.

  2. Site-specific immobilization of biotinylated proteins for protein microarray analysis.

    PubMed

    Lue, Rina Y P; Chen, Grace Y J; Zhu, Qing; Lesaicherre, Marie-Laure; Yao, Shao Q

    2004-01-01

    The postgenome era has led to a new frontier of proteomics that requires the development of protein microarray, which enables us to unravel the biological function of proteins in a massively parallel fashion. Several ways of immobilizing proteins onto surfaces have been reported, but many of these attachments are unspecific, resulting in the unfavorable orientation of the immobilized proteins. His6 tag has been used to site-specifically immobilize proteins onto nickel-coated slides, which presumably oriented proteins uniformly on the surface of the slide. However, the binding between Ni-NTA and His tag proteins is not strong, causing the immobilized proteins to dissociate from the slide even under simple wash conditions. The authors have developed a novel strategy of using an intein-mediated expression system to generate biotinylated proteins suitable for immobilization onto avidin-functionalized glass slides. Array-scan results not only show successful immobilization of proteins onto slides by antibody detection method but also full retention of biological activities of the immobilized proteins. The strong and specific interaction between biotin and avidin also permits the use of stringent incubation and washing conditions on the protein microchip, thus making it a highly robust method for array studies.

  3. Comparative Proteome Analysis of Cryopreserved Flagella and Head Plasma Membrane Proteins from Sea Bream Spermatozoa: Effect of Antifreeze Proteins

    PubMed Central

    Zilli, Loredana; Beirão, José; Schiavone, Roberta; Herraez, Maria Paz; Gnoni, Antonio; Vilella, Sebastiano

    2014-01-01

    Cryopreservation induces injuries to fish spermatozoa that in turn affect sperm quality in terms of fertilization ability, motility, DNA and protein integrity and larval survival. To reduce the loss of sperm quality due to freezing-thawing, it is necessary to improve these procedures. In the present study we investigated the ability of two antifreeze proteins (AFPI and AFPIII) to reduce the loss of quality of sea bream spermatozoa due to cryopreservation. To do so, we compared viability, motility, straight-line velocity and curvilinear velocity of fresh and (AFPs)-cryopreserved spermatozoa. AFPIII addition to cryopreservation medium improved viability, motility and straight-line velocity with respect to DMSO or DMSO plus AFPI. To clarify the molecular mechanism(s) underlying these findings, the protein profile of two different cryopreserved sperm domains, flagella and head plasma membranes, was analysed. The protein profiles differed between fresh and frozen-thawed semen and results of the image analysis demonstrated that, after cryopreservation, out of 270 proteins 12 were decreased and 7 were increased in isolated flagella, and out of 150 proteins 6 showed a significant decrease and 4 showed a significant increase in head membranes. Mass spectrometry analysis identified 6 proteins (4 from isolated flagella and 2 present both in flagella and head plasma membranes) within the protein spots affected by the freezing-thawing procedure. 3 out of 4 proteins from isolated flagella were involved in the sperm bioenergetic system. Our results indicate that the ability of AFPIII to protect sea bream sperm quality can be, at least in part, ascribed to reducing changes in the sperm protein profile occurring during the freezing-thawing procedure. Our results clearly demonstrated that AFPIII addition to cryopreservation medium improved the protection against freezing respect to DMSO or DMSO plus AFPI. In addition we propose specific proteins of spermatozoa as markers related to

  4. Analysis of three Xanthomonas axonopodis pv. citri effector proteins in pathogenicity and their interactions with host plant proteins.

    PubMed

    Dunger, Germán; Garofalo, Cecilia G; Gottig, Natalia; Garavaglia, Betiana S; Rosa, María C Pereda; Farah, Chuck S; Orellano, Elena G; Ottado, Jorgelina

    2012-10-01

    Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, uses effector proteins secreted by a type III protein secretion system to colonize its hosts. Among the putative effector proteins identified for this bacterium, we focused on the analysis of the roles of AvrXacE1, AvrXacE2 and Xac3090 in pathogenicity and their interactions with host plant proteins. Bacterial deletion mutants in avrXacE1, avrXacE2 and xac3090 were constructed and evaluated in pathogenicity assays. The avrXacE1 and avrXacE2 mutants presented lesions with larger necrotic areas relative to the wild-type strain when infiltrated in citrus leaves. Yeast two-hybrid studies were used to identify several plant proteins likely to interact with AvrXacE1, AvrXacE2 and Xac3090. We also assessed the localization of these effector proteins fused to green fluorescent protein in the plant cell, and observed that they co-localized to the subcellular spaces in which the plant proteins with which they interacted were predicted to be confined. Our results suggest that, although AvrXacE1 localizes to the plant cell nucleus, where it interacts with transcription factors and DNA-binding proteins, AvrXacE2 appears to be involved in lesion-stimulating disease 1-mediated cell death, and Xac3090 is directed to the chloroplast where its function remains to be clarified. PMID:22435635

  5. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  6. Construction and structural analysis of tethered lipid bilayer containing photosynthetic antenna proteins for functional analysis.

    PubMed

    Sumino, Ayumi; Dewa, Takehisa; Takeuchi, Toshikazu; Sugiura, Ryuta; Sasaki, Nobuaki; Misawa, Nobuo; Tero, Ryugo; Urisu, Tsuneo; Gardiner, Alastair T; Cogdell, Richard J; Hashimoto, Hideki; Nango, Mamoru

    2011-07-11

    The construction and structural analysis of a tethered planar lipid bilayer containing bacterial photosynthetic membrane proteins, light-harvesting complex 2 (LH2), and light-harvesting core complex (LH1-RC) is described and establishes this system as an experimental platform for their functional analysis. The planar lipid bilayer containing LH2 and/or LH1-RC complexes was successfully formed on an avidin-immobilized coverglass via an avidin-biotin linkage. Atomic force microscopy (AFM) showed that a smooth continuous membrane was formed there. Lateral diffusion of these membrane proteins, observed by a fluorescence recovery after photobleaching (FRAP), is discussed in terms of the membrane architecture. Energy transfer from LH2 to LH1-RC within the tethered membrane was observed by steady-state fluorescence spectroscopy, indicating that the tethered membrane can mimic the natural situation.

  7. Analysis of crystallization data in the Protein Data Bank

    PubMed Central

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon; Wilson, Julie

    2015-01-01

    The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored. PMID:26457511

  8. Analysis of crystallization data in the Protein Data Bank.

    PubMed

    Kirkwood, Jobie; Hargreaves, David; O'Keefe, Simon; Wilson, Julie

    2015-10-01

    The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.

  9. Analysis of crystallization data in the Protein Data Bank.

    PubMed

    Kirkwood, Jobie; Hargreaves, David; O'Keefe, Simon; Wilson, Julie

    2015-10-01

    The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored. PMID:26457511

  10. On combining protein sequences and nucleic acid sequences in phylogenetic analysis: the homeobox protein case.

    PubMed

    Agosti, D; Jacobs, D; DeSalle, R

    1996-01-01

    Amino acid encoding genes contain character state information that may be useful for phylogenetic analysis on at least two levels. The nucleotide sequence and the translated amino acid sequences have both been employed separately as character states for cladistic studies of various taxa, including studies of the genealogy of genes in multigene families. In essence, amino acid sequences and nucleic acid sequences are two different ways of character coding the information in a gene. Silent positions in the nucleotide sequence (first or third positions in codons that can accrue change without changing the identity of the amino acid that the triplet codes for) may accrue change relatively rapidly and become saturated, losing the pattern of historical divergence. On the other hand, non-silent nucleotide alterations and their accompanying amino acid changes may evolve too slowly to reveal relationships among closely related taxa. In general, the dynamics of sequence change in silent and non-silent positions in protein coding genes result in homoplasy and lack of resolution, respectively. We suggest that the combination of nucleic acid and the translated amino acid coded character states into the same data matrix for phylogenetic analysis addresses some of the problems caused by the rapid change of silent nucleotide positions and overall slow rate of change of non-silent nucleotide positions and slowly changing amino acid positions. One major theoretical problem with this approach is the apparent non-independence of the two sources of characters. However, there are at least three possible outcomes when comparing protein coding nucleic acid sequences with their translated amino acids in a phylogenetic context on a codon by codon basis. First, the two character sets for a codon may be entirely congruent with respect to the information they convey about the relationships of a certain set of taxa. Second, one character set may display no information concerning a phylogenetic

  11. Analysis of crystallization data in the Protein Data Bank

    SciTech Connect

    Kirkwood, Jobie; Hargreaves, David; O’Keefe, Simon; Wilson, Julie

    2015-09-23

    In a large-scale study using data from the Protein Data Bank, some of the many reported findings regarding the crystallization of proteins were investigated. The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.

  12. Protein structure validation and analysis with X-ray crystallography.

    PubMed

    Papageorgiou, Anastassios C; Mattsson, Jesse

    2014-01-01

    X-ray crystallography is the main technique for the determination of protein structures. About 85 % of all protein structures known to date have been elucidated using X-ray crystallography. Knowledge of the three-dimensional structure of proteins can be used in various applications in biotechnology, biomedicine, drug design, and basic research and as a validation tool for protein modifications, ligand binding, and structural authenticity. Moreover, the requirement for pure, homogeneous, and stable protein solutions in crystallizations makes X-ray crystallography beneficial in other fields of protein research as well. Here, we describe the technique of X-ray protein crystallography and the steps involved for a successful three-dimensional crystal structure determination.

  13. Proteomic analysis of Taenia solium metacestode excretion-secretion proteins.

    PubMed

    Victor, Bjorn; Kanobana, Kirezi; Gabriël, Sarah; Polman, Katja; Deckers, Nynke; Dorny, Pierre; Deelder, André M; Palmblad, Magnus

    2012-06-01

    The metacestode larval stage of Taenia solium is the causal agent of a zoonotic disease called cysticercosis. The disease has an important impact on pork trade (due to porcine cysticercosis) and public health (due to human neurocysticercosis). In order to improve the current diagnostic tools and to get a better understanding of the interaction between T. solium metacestodes and their host, there is a need for more information about the proteins that are released by the parasite. In this study, we used protein sequences from different helminths, 1DE, reversed-phase LC, and MS/MS to analyze the excretion-secretion proteins produced by T. solium metacestodes from infected pigs. This is the first report of the T. solium metacestode excretion-secretion proteome. We report 76 proteins including 27 already described T. solium proteins, 17 host proteins and 32 proteins likely to be of T. solium origin, but identified using sequences from other helminths.

  14. Applications of Polymer Brushes in Protein Analysis and Purification

    NASA Astrophysics Data System (ADS)

    Jain, Parul; Baker, Gregory L.; Bruening, Merlin L.

    2009-07-01

    This review examines the application of polymer brush-modified flat surfaces, membranes, and beads for protein immobilization and isolation. Modification of porous substrates with brushes yields membranes that selectively bind tagged proteins to give 99% pure protein at capacities as high as 100 mg of protein per cubic centimeter of membrane. Moreover, enrichment of phosphopeptides on brush-modified matrix-assisted laser desorption/ionization (MALDI) plates allows detection and characterization of femtomole levels of phosphopeptides by MALDI mass spectrometry. Because swollen hydrophilic brushes can resist nonspecific protein adsorption while immobilizing a high density of proteins, they are attractive as substrates for protein microarrays. This review highlights the advantages of polymer brush-modified surfaces over self-assembled monolayers and identifies some research needs in this area.

  15. Structural Analysis of Protein-Protein Interactions in Type I Polyketide Synthases

    PubMed Central

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo- selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system. PMID:23249187

  16. Structural analysis of protein-protein interactions in type I polyketide synthases.

    PubMed

    Xu, Wei; Qiao, Kangjian; Tang, Yi

    2013-01-01

    Polyketide synthases (PKSs) are responsible for synthesizing a myriad of natural products with agricultural, medicinal relevance. The PKSs consist of multiple functional domains of which each can catalyze a specified chemical reaction leading to the synthesis of polyketides. Biochemical studies showed that protein-substrate and protein-protein interactions play crucial roles in these complex regio-/stereo-selective biochemical processes. Recent developments on X-ray crystallography and protein NMR techniques have allowed us to understand the biosynthetic mechanism of these enzymes from their structures. These structural studies have facilitated the elucidation of the sequence-function relationship of PKSs and will ultimately contribute to the prediction of product structure. This review will focus on the current knowledge of type I PKS structures and the protein-protein interactions in this system.

  17. Quantitative analysis of protein-protein interactions by split firefly luciferase complementation in plant protoplasts.

    PubMed

    Li, Jian-Feng; Zhang, Dandan

    2014-07-01

    This unit describes the split firefly luciferase complementation (SFLC) assay, a high-throughput quantitative method that can be used to investigate protein-protein interactions (PPIs) in plant mesophyll protoplasts. In SFLC, the two proteins to be tested for interaction are expressed as chimeric proteins, each fused to a different half of firefly luciferase. If the proteins interact, a functional luciferase can be transitorily reconstituted, and is detected using the cell-permeable substrate D-luciferin. An advantage of the SFLC assay is that dynamic changes in PPIs in a cell can be detected in a near real-time manner. Another advantage is the unusually high DNA co-transfection and protein expression efficiencies that can be achieved in plant protoplasts, thereby enhancing the throughput of the method.

  18. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages

    PubMed Central

    2014-01-01

    Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence. PMID:24433236

  19. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    PubMed

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  20. In Silico Designing and Analysis of Inhibitors against Target Protein Identified through Host-Pathogen Protein Interactions in Malaria

    PubMed Central

    Samant, Monika; Chadha, Nidhi; Tiwari, Anjani K.; Hasija, Yasha

    2016-01-01

    Malaria, a life-threatening blood disease, has been a major concern in the field of healthcare. One of the severe forms of malaria is caused by the parasite Plasmodium falciparum which is initiated through protein interactions of pathogen with the host proteins. It is essential to analyse the protein-protein interactions among the host and pathogen for better understanding of the process and characterizing specific molecular mechanisms involved in pathogen persistence and survival. In this study, a complete protein-protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental data and computationally predicting interactions using the interolog method. The interacting proteins were filtered according to their biological significance and functional roles. α-tubulin was identified as a potential protein target and inhibitors were designed against it by modification of amiprophos methyl. Docking and binding affinity analysis showed two modified inhibitors exhibiting better docking scores of −10.5 kcal/mol and −10.43 kcal/mol and an improved binding affinity of −83.80 kJ/mol and −98.16 kJ/mol with the target. These inhibitors can further be tested and validated in vivo for their properties as an antimalarial drug. PMID:27057354

  1. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools.

    PubMed

    Thomas, Paul D; Kejariwal, Anish; Guo, Nan; Mi, Huaiyu; Campbell, Michael J; Muruganujan, Anushya; Lazareva-Ulitsky, Betty

    2006-07-01

    The vast amount of protein sequence data now available, together with accumulating experimental knowledge of protein function, enables modeling of protein sequence and function evolution. The PANTHER database was designed to model evolutionary sequence-function relationships on a large scale. There are a number of applications for these data, and we have implemented web services that address three of them. The first is a protein classification service. Proteins can be classified, using only their amino acid sequences, to evolutionary groups at both the family and subfamily levels. Specific subfamilies, and often families, are further classified when possible according to their functions, including molecular function and the biological processes and pathways they participate in. The second application, then, is an expression data analysis service, where functional classification information can help find biological patterns in the data obtained from genome-wide experiments. The third application is a coding single-nucleotide polymorphism scoring service. In this case, information about evolutionarily related proteins is used to assess the likelihood of a deleterious effect on protein function arising from a single substitution at a specific amino acid position in the protein. All three web services are available at http://www.pantherdb.org/tools.

  2. Introducing Students to Protein Analysis Techniques: Separation and Comparative Analysis of Gluten Proteins in Various Wheat Strains

    ERIC Educational Resources Information Center

    Pirinelli, Alyssa L.; Trinidad, Jonathan C.; Pohl, Nicola L. B.

    2016-01-01

    Polyacrylamide gel electrophoresis (PAGE) is commonly taught in undergraduate laboratory classes as a traditional method to analyze proteins. An experiment has been developed to teach these basic protein gel skills in the context of gluten protein isolation from various types of wheat flour. A further goal is to relate this technique to current…

  3. Sequence and structural analysis of BTB domain proteins

    PubMed Central

    Stogios, Peter J; Downs, Gregory S; Jauhal, Jimmy JS; Nandra, Sukhjeen K; Privé, Gilbert G

    2005-01-01

    Background The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure. Results We surveyed the protein architecture, genomic distribution and sequence conservation of BTB domain proteins in 17 fully sequenced eukaryotes. The BTB domain is typically found as a single copy in proteins that contain only one or two other types of domain, and this defines the BTB-zinc finger (BTB-ZF), BTB-BACK-kelch (BBK), voltage-gated potassium channel T1 (T1-Kv), MATH-BTB, BTB-NPH3 and BTB-BACK-PHR (BBP) families of proteins, among others. In contrast, the Skp1 and ElonginC proteins consist almost exclusively of the core BTB fold. There are numerous lineage-specific expansions of BTB proteins, as seen by the relatively large number of BTB-ZF and BBK proteins in vertebrates, MATH-BTB proteins in Caenorhabditis elegans, and BTB-NPH3 proteins in Arabidopsis thaliana. Using the structural homology between Skp1 and the PLZF BTB homodimer, we present a model of a BTB-Cul3 SCF-like E3 ubiquitin ligase complex that shows that the BTB dimer or the T1 tetramer is compatible in this complex. Conclusion Despite widely divergent sequences, the BTB fold is structurally well conserved. The fold has adapted to several different modes of self-association and interactions with non-BTB proteins. PMID:16207353

  4. Druggability analysis and classification of protein tyrosine phosphatase active sites

    PubMed Central

    Ghattas, Mohammad A; Raslan, Noor; Sadeq, Asil; Al Sorkhy, Mohammad; Atatreh, Noor

    2016-01-01

    Protein tyrosine phosphatases (PTP) play important roles in the pathogenesis of many diseases. The fact that no PTP inhibitors have reached the market so far has raised many questions about their druggability. In this study, the active sites of 17 PTPs were characterized and assessed for its ability to bind drug-like molecules. Consequently, PTPs were classified according to their druggability scores into four main categories. Only four members showed intermediate to very druggable pocket; interestingly, the rest of them exhibited poor druggability. Particularly focusing on PTP1B, we also demonstrated the influence of several factors on the druggability of PTP active site. For instance, the open conformation showed better druggability than the closed conformation, while the tight-bound water molecules appeared to have minimal effect on the PTP1B druggability. Finally, the allosteric site of PTP1B was found to exhibit superior druggability compared to the catalytic pocket. This analysis can prove useful in the discovery of new PTP inhibitors by assisting researchers in predicting hit rates from high throughput or virtual screening and saving unnecessary cost, time, and efforts via prioritizing PTP targets according to their predicted druggability. PMID:27757011

  5. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ . PMID:25424913

  6. Analysis of protein transport in the Brassica oleracea vasculature reveals protein-specific destinations.

    PubMed

    Niu, Chenxing; Anstead, James; Verchot, Jeanmarie

    2012-03-01

    We investigated the vascular transport properties of exogenously applied proteins to Brassica oleracea plants and compared their delivery to various aerial parts of the plant with carboxy fluorescein (CF) dye. We identified unique properties for each protein. Alexafluor-tagged bovine serum albumin (Alexa-BSA) and Alexafluor-tagged Histone H1 (Alexa-Histone) moved slower than CF dye throughout the plant. Interestingly, Alexa-Histone was retained in the phloem and phloem parenchyma while Alexa-BSA moved into the apoplast. One possibility is that Alexa-Histone sufficiently resembles plant endogenous proteins and is retained in the vascular stream, while Alexa-BSA is exported from the cell as a foreign protein. Both proteins diffuse from the leaf veins into the leaf lamina. Alexa-BSA accumulated in the leaf epidermis while Alexa-Histone accumulated mainly in the mesophyll layers. Fluorescein-tagged hepatitis C virus core protein (fluorescein-HCV) was also delivered to B. oleracea plants and is larger than Alexa-BSA. This protein moves more rapidly than BSA through the plant and was restricted to the leaf veins. Fluorescein-HCV failed to unload to the leaf lamina. These combined data suggest that there is not a single default pathway for the vascular transfer of exogenous proteins in B. oleracea plants. Specific protein properties appear to determine their destination and transport properties within the phloem. PMID:22476467

  7. FunPred-1: protein function prediction from a protein interaction network using neighborhood analysis.

    PubMed

    Saha, Sovan; Chatterjee, Piyali; Basu, Subhadip; Kundu, Mahantapas; Nasipuri, Mita

    2014-12-01

    Proteins are responsible for all biological activities in living organisms. Thanks to genome sequencing projects, large amounts of DNA and protein sequence data are now available, but the biological functions of many proteins are still not annotated in most cases. The unknown function of such non-annotated proteins may be inferred or deduced from their neighbors in a protein interaction network. In this paper, we propose two new methods to predict protein functions based on network neighborhood properties. FunPred 1.1 uses a combination of three simple-yet-effective scoring techniques: the neighborhood ratio, the protein path connectivity and the relative functional similarity. FunPred 1.2 applies a heuristic approach using the edge clustering coefficient to reduce the search space by identifying densely connected neighborhood regions. The overall accuracy achieved in FunPred 1.2 over 8 functional groups involving hetero-interactions in 650 yeast proteins is around 87%, which is higher than the accuracy with FunPred 1.1. It is also higher than the accuracy of many of the state-of-the-art protein function prediction methods described in the literature. The test datasets and the complete source code of the developed software are now freely available at http://code.google.com/p/cmaterbioinfo/ .

  8. Surface-layer protein from Caulobacter crescentus: expression, purification and X-ray crystallographic analysis.

    PubMed

    Jones, Michael D; Chan, Anson C K; Nomellini, John F; Murphy, Michael E P; Smit, John

    2016-09-01

    Protein surface layers are self-assembling, paracrystalline lattices on the surface of many prokaryotes. Surface-layer proteins have not benefited from widespread structural analysis owing to their resistance to crystallization. Here, the successful expression of a truncated version of RsaA, the surface-layer protein from Caulobacter crescentus, from a Caulobacter protein-expression system is reported. The purification, crystallization and initial X-ray diffraction analysis of the truncated RsaA, the largest surface-layer protein studied to date and the first from a Gram-negative bacterium, are also reported. PMID:27599857

  9. Advances in structural and functional analysis of membrane proteins by electron crystallography.

    PubMed

    Wisedchaisri, Goragot; Reichow, Steve L; Gonen, Tamir

    2011-10-12

    Electron crystallography is a powerful technique for the study of membrane protein structure and function in the lipid environment. When well-ordered two-dimensional crystals are obtained the structure of both protein and lipid can be determined and lipid-protein interactions analyzed. Protons and ionic charges can be visualized by electron crystallography and the protein of interest can be captured for structural analysis in a variety of physiologically distinct states. This review highlights the strengths of electron crystallography and the momentum that is building up in automation and the development of high throughput tools and methods for structural and functional analysis of membrane proteins by electron crystallography.

  10. To What Extent is FAIMS Beneficial in the Analysis of Proteins?

    PubMed

    Cooper, Helen J

    2016-04-01

    High field asymmetric waveform ion mobility spectrometry (FAIMS), also known as differential ion mobility spectrometry, is emerging as a tool for biomolecular analysis. In this article, the benefits and limitations of FAIMS for protein analysis are discussed. The principles and mechanisms of FAIMS separation of ions are described, and the differences between FAIMS and conventional ion mobility spectrometry are detailed. Protein analysis is considered from both the top-down (intact proteins) and the bottom-up (proteolytic peptides) perspective. The roles of FAIMS in the analysis of complex mixtures of multiple intact proteins and in the analysis of multiple conformers of a single protein are assessed. Similarly, the application of FAIMS in proteomics and targeted analysis of peptides are considered.

  11. Extraction of intracellular protein from Glaciozyma antarctica for proteomics analysis

    NASA Astrophysics Data System (ADS)

    Faizura, S. Nor; Farahayu, K.; Faizal, A. B. Mohd; Asmahani, A. A. S.; Amir, R.; Nazalan, N.; Diba, A. B. Farah; Muhammad, M. Nor; Munir, A. M. Abdul

    2013-11-01

    Two preparation methods of crude extracts of psychrophilic yeast Glaciozyma antarctica were compared in order to obtain a good recovery of intracellular proteins. Extraction with mechanical procedures using sonication was found to be more effective for obtaining good yield compare to alkaline treatment method. The procedure is simple, rapid, and produce better yield. A total of 52 proteins were identified by combining both extraction methods. Most of the proteins identified in this study involves in the metabolic process including glycolysis pathway, pentose phosphate pathway, pyruyate decarboxylation and also urea cyle. Several chaperons were identified including probable cpr1-cyclophilin (peptidylprolyl isomerase), macrolide-binding protein fkbp12 and heat shock proteins which were postulate to accelerate proper protein folding. Characteristic of the fundamental cellular processes inferred from the expressed-proteome highlight the evolutionary and functional complexity existing in this domain of life.

  12. Analysis of Arf GTP-binding Protein Function in Cells

    PubMed Central

    Cohen, Lee Ann; Donaldson, Julie G.

    2010-01-01

    This unit describes techniques and approaches that can be used to study the functions of the ADP-ribosylation factor (Arf) GTP-binding proteins in cells. There are 6 mammalian Arfs and many more Arf-like proteins (Arls) and these proteins are conserved in eukaryotes from yeast to man. Like all GTPases, Arfs cycle between GDP-bound, inactive and GTP-bound active conformations, facilitated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that catalyze GTP binding and hydrolysis respectively. Here we describe approaches that can be taken to examine the localization and function of Arf and Arl proteins in cells (Protocol 1). We also provide a simple protocol for measuring activation (GTP-binding) of specific Arf proteins in cells using a pull-down assay (Protocol 2). We then discuss approaches that can be taken to assess function of GEFs and GAPs in cells (Protocol 3). PMID:20853342

  13. Multielement analysis of metal-binding proteins in cytosol fractions.

    PubMed

    Bray, J T; Webb, L A; Reilly, F J

    1983-06-01

    The distribution of 24 elements among the cytosol protein fractions was determined for specimens of the bivalve mollusc Macoma balthica obtained from three estuarine locations subject to varying levels of metal pollution and on specimens of Rangia cuneata from three areas subject to varying degrees of thermal pollution. Of the 24 elements examined 15 occurred at levels above detection limits and in association with one or more of four distinct protein fractions. Levels of Ag and Cu associated with high molecular weight proteins and with "metallothionein-like" proteins permitted identification of those Macoma balthica specimens exposed to the greatest degree of metal stress.

  14. Nano-LC-ESI MS/MS analysis of proteins in dried sea dragon Solenognathus hardwickii and bioinformatic analysis of its protein expression profiling.

    PubMed

    Zhang, Dong-Mei; Feng, Li-Xing; Li, Lu; Liu, Miao; Jiang, Bao-Hong; Yang, Min; Li, Guo-Qiang; Wu, Wan-Ying; Guo, De-An; Liu, Xuan

    2016-09-01

    The sea dragon Solenognathus hardwickii has long been used as a traditional Chinese medicine for the treatment of various diseases, such as male impotency. To gain a comprehensive insight into the protein components of the sea dragon, shotgun proteomic analysis of its protein expression profiling was conducted in the present study. Proteins were extracted from dried sea dragon using a trichloroacetic acid/acetone precipitation method and then separated by SDS-PAGE. The protein bands were cut from the gel and digested by trypsin to generate peptide mixture. The peptide fragments were then analyzed using nano liquid chromatography tandem mass spectrometry (nano-LC-ESI MS/MS). 810 proteins and 1 577 peptides were identified in the dried sea dragon. The identified proteins exhibited molecular weight values ranging from 1 900 to 3 516 900 Da and pI values from 3.8 to 12.18. Bioinformatic analysis was conducted using the DAVID Bioinformatics Resources 6.7 Gene Ontology (GO) analysis tool to explore possible functions of the identified proteins. Ascribed functions of the proteins mainly included intracellular non-membrane-bound organelle, non-membrane-bounded organelle, cytoskeleton, structural molecule activity, calcium ion binding and etc. Furthermore, possible signal networks of the identified proteins were predicted using STRING (Search Tool for the Retrieval of Interacting Genes) database. Ribosomal protein synthesis was found to play an important role in the signal network. The results of this study, to best of our knowledge, were the first to provide a reference proteome profile for the sea dragon, and would aid in the understanding of the expression and functions of the identified proteins.

  15. Nano-LC-ESI MS/MS analysis of proteins in dried sea dragon Solenognathus hardwickii and bioinformatic analysis of its protein expression profiling.

    PubMed

    Zhang, Dong-Mei; Feng, Li-Xing; Li, Lu; Liu, Miao; Jiang, Bao-Hong; Yang, Min; Li, Guo-Qiang; Wu, Wan-Ying; Guo, De-An; Liu, Xuan

    2016-09-01

    The sea dragon Solenognathus hardwickii has long been used as a traditional Chinese medicine for the treatment of various diseases, such as male impotency. To gain a comprehensive insight into the protein components of the sea dragon, shotgun proteomic analysis of its protein expression profiling was conducted in the present study. Proteins were extracted from dried sea dragon using a trichloroacetic acid/acetone precipitation method and then separated by SDS-PAGE. The protein bands were cut from the gel and digested by trypsin to generate peptide mixture. The peptide fragments were then analyzed using nano liquid chromatography tandem mass spectrometry (nano-LC-ESI MS/MS). 810 proteins and 1 577 peptides were identified in the dried sea dragon. The identified proteins exhibited molecular weight values ranging from 1 900 to 3 516 900 Da and pI values from 3.8 to 12.18. Bioinformatic analysis was conducted using the DAVID Bioinformatics Resources 6.7 Gene Ontology (GO) analysis tool to explore possible functions of the identified proteins. Ascribed functions of the proteins mainly included intracellular non-membrane-bound organelle, non-membrane-bounded organelle, cytoskeleton, structural molecule activity, calcium ion binding and etc. Furthermore, possible signal networks of the identified proteins were predicted using STRING (Search Tool for the Retrieval of Interacting Genes) database. Ribosomal protein synthesis was found to play an important role in the signal network. The results of this study, to best of our knowledge, were the first to provide a reference proteome profile for the sea dragon, and would aid in the understanding of the expression and functions of the identified proteins. PMID:27667517

  16. In-depth analysis of low abundant proteins in bovine colostrum using different fractionation techniques.

    PubMed

    Nissen, Asger; Bendixen, Emøke; Ingvartsen, Klaus Lønne; Røntved, Christine Maria

    2012-09-01

    Bovine colostrum is well known for its large content of bioactive components and its importance for neonatal survival. Unfortunately, the colostrum proteome is complicated by a wide dynamic range, because of a few dominating proteins that hamper sensitivity and proteome coverage achieved on low abundant proteins. Moreover, the composition of colostrum is complex and the proteins are located within different physical fractions that make up the colostrum. To gain a more exhaustive picture of the bovine colostrum proteome and gather information on protein location, we performed an extensive pre-analysis fractionation of colostrum prior to 2D-LC-MS/MS analysis. Physical and chemical properties of the proteins and colostrum were used alone or in combination for the separation of proteins. ELISA was used to quantify and verify the presence of proteins in colostrum. In total, 403 proteins were identified in the nonfractionated colostrum (NF) and seven fractions (F1-F7) using six different fractionation techniques. Fractionation contributed with 69 additional proteins in the fluid phase compared with NF. Different fractionation techniques each resulted in detection of unique subsets of proteins. Whey production by high-speed centrifugation contributed most to detection of low abundant proteins. Hence, prefractionation of colostrum prior to 2D-LC-MS/MS analysis expanded our knowledge on the presence and location of low abundant proteins in bovine colostrum. PMID:22848049

  17. Crysalis: an integrated server for computational analysis and design of protein crystallization

    PubMed Central

    Wang, Huilin; Feng, Liubin; Zhang, Ziding; Webb, Geoffrey I.; Lin, Donghai; Song, Jiangning

    2016-01-01

    The failure of multi-step experimental procedures to yield diffraction-quality crystals is a major bottleneck in protein structure determination. Accordingly, several bioinformatics methods have been successfully developed and employed to select crystallizable proteins. Unfortunately, the majority of existing in silico methods only allow the prediction of crystallization propensity, seldom enabling computational design of protein mutants that can be targeted for enhancing protein crystallizability. Here, we present Crysalis, an integrated crystallization analysis tool that builds on support-vector regression (SVR) models to facilitate computational protein crystallization prediction, analysis, and design. More specifically, the functionality of this new tool includes: (1) rapid selection of target crystallizable proteins at the proteome level, (2) identification of site non-optimality for protein crystallization and systematic analysis of all potential single-point mutations that might enhance protein crystallization propensity, and (3) annotation of target protein based on predicted structural properties. We applied the design mode of Crysalis to identify site non-optimality for protein crystallization on a proteome-scale, focusing on proteins currently classified as non-crystallizable. Our results revealed that site non-optimality is based on biases related to residues, predicted structures, physicochemical properties, and sequence loci, which provides in-depth understanding of the features influencing protein crystallization. Crysalis is freely available at http://nmrcen.xmu.edu.cn/crysalis/. PMID:26906024

  18. Generating mammalian sirtuin tools for protein-interaction analysis.

    PubMed

    Hershberger, Kathleen A; Motley, Jonathan; Hirschey, Matthew D; Anderson, Kristin A

    2013-01-01

    The sirtuins are a family of NAD(+)-dependent deacylases with important effects on aging, cancer, and metabolism. Sirtuins exert their biological effects by catalyzing deacetylation and/or deacylation reactions in which Acyl groups are removed from lysine residues of specific proteins. A current challenge is to identify specific sirtuin target proteins against the high background of acetylated proteins recently identified by proteomic surveys. New evidence indicates that bona fide sirtuin substrate proteins form stable physical associations with their sirtuin regulator. Therefore, identification of sirtuin interacting proteins could be a useful aid in focusing the search for substrates. Described here is a method for identifying sirtuin protein interactors. Employing basic techniques of molecular cloning and immunochemistry, the method describes the generation of mammalian sirtuin protein expression plasmids and their use to overexpress and immunoprecipitate sirtuins with their interacting partners. Also described is the use of the Database for Annotation, Visualization, and Integrated Discovery for interpreting the sirtuin protein-interaction data obtained. PMID:24014400

  19. ConPlex: a server for the evolutionary conservation analysis of protein complex structures.

    PubMed

    Choi, Yoon Sup; Han, Seong Kyu; Kim, Jinho; Yang, Jae-Seong; Jeon, Jouhyun; Ryu, Sung Ho; Kim, Sanguk

    2010-07-01

    Evolutionary conservation analyses are important for the identification of protein-protein interactions. For protein complex structures, sequence conservation has been applied to determine protein oligomerization states, to characterize native interfaces from non-specific crystal contacts, and to discriminate near-native structures from docking artifacts. However, a user-friendly web-based service for evolutionary conservation analysis of protein complexes has not been available. Therefore, we developed ConPlex (http://sbi.postech.ac.kr/ConPlex/) a web application that enables evolutionary conservation analyses of protein interactions within protein quaternary structures. Users provide protein complex structures; ConPlex automatically identifies protein interfaces and carries out evolutionary conservation analyses for the interface regions. Moreover, ConPlex allows the results of the residue-specific conservation analysis to be displayed on the protein complex structure and provides several options to customize the display output to fit each user's needs. We believe that ConPlex offers a convenient platform to analyze protein complex structures based on evolutionary conservation of protein-protein interface residues.

  20. Large-Scale Protein-Protein Interaction Analysis in Arabidopsis Mesophyll Protoplasts by Split Firefly Luciferase Complementation

    PubMed Central

    Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew

    2011-01-01

    Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens. PMID:22096563

  1. Statistical analysis of protein structures suggests that buried ionizable residues in proteins are hydrogen bonded or form salt bridges.

    PubMed

    Bush, Jeffrey; Makhatadze, George I

    2011-07-01

    It is well known that nonpolar residues are largely buried in the interior of proteins, whereas polar and ionizable residues tend to be more localized on the protein surface where they are solvent exposed. Such a distribution of residues between surface and interior is well understood from a thermodynamic point: nonpolar side chains are excluded from the contact with the solvent water, whereas polar and ionizable groups have favorable interactions with the water and thus are preferred at the protein surface. However, there is an increasing amount of information suggesting that polar and ionizable residues do occur in the protein core, including at positions that have no known functional importance. This is inconsistent with the observations that dehydration of polar and in particular ionizable groups is very energetically unfavorable. To resolve this, we performed a detailed analysis of the distribution of fractional burial of polar and ionizable residues using a large set of ˜2600 nonhomologous protein structures. We show that when ionizable residues are fully buried, the vast majority of them form hydrogen bonds and/or salt bridges with other polar/ionizable groups. This observation resolves an apparent contradiction: the energetic penalty of dehydration of polar/ionizable groups is paid off by favorable energy of hydrogen bonding and/or salt bridge formation in the protein interior. Our conclusion agrees well with the previous findings based on the continuum models for electrostatic interactions in proteins.

  2. Differential protein expression analysis following olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Yan, Wei-Yu; Wang, Zi-Long; Guo, Ya-Hui; Yi, Yao; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2015-11-01

    Studies of olfactory learning in honeybees have helped to elucidate the neurobiological basis of learning and memory. In this study, protein expression changes following olfactory learning in Apis cerana were investigated using isobaric tags for relative and absolute quantification (iTRAQ) technology. A total of 2406 proteins were identified from the trained and untrained groups. Among these proteins, 147 were differentially expressed, with 87 up-regulated and 60 down-regulated in the trained group compared with the untrained group. These results suggest that the differentially expressed proteins may be involved in the regulation of olfactory learning and memory in A. cerana. The iTRAQ data can provide information on the global protein expression patterns associated with olfactory learning, which will facilitate our understanding of the molecular mechanisms of learning and memory of honeybees. PMID:26427996

  3. Differential protein expression analysis following olfactory learning in Apis cerana.

    PubMed

    Zhang, Li-Zhen; Yan, Wei-Yu; Wang, Zi-Long; Guo, Ya-Hui; Yi, Yao; Zhang, Shao-Wu; Zeng, Zhi-Jiang

    2015-11-01

    Studies of olfactory learning in honeybees have helped to elucidate the neurobiological basis of learning and memory. In this study, protein expression changes following olfactory learning in Apis cerana were investigated using isobaric tags for relative and absolute quantification (iTRAQ) technology. A total of 2406 proteins were identified from the trained and untrained groups. Among these proteins, 147 were differentially expressed, with 87 up-regulated and 60 down-regulated in the trained group compared with the untrained group. These results suggest that the differentially expressed proteins may be involved in the regulation of olfactory learning and memory in A. cerana. The iTRAQ data can provide information on the global protein expression patterns associated with olfactory learning, which will facilitate our understanding of the molecular mechanisms of learning and memory of honeybees.

  4. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    PubMed Central

    Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution. PMID:22986689

  5. Aequorea green fluorescent protein analysis by flow cytometry

    SciTech Connect

    Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.; Wolfgang-Kimball, D.

    1995-12-01

    The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered at 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.

  6. Comparative analysis of protein-protein interactions in the defense response of rice and wheat

    PubMed Central

    2013-01-01

    Background Despite the importance of wheat as a major staple crop and the negative impact of diseases on its production worldwide, the genetic mechanisms and gene interactions involved in the resistance response in wheat are still poorly understood. The complete sequence of the rice genome has provided an extremely useful parallel road map for genetic and genomics studies in wheat. The recent construction of a defense response interactome in rice has the potential to further enhance the translation of advances in rice to wheat and other grasses. The objective of this study was to determine the degree of conservation in the protein-protein interactions in the rice and wheat defense response interactomes. As entry points we selected proteins that serve as key regulators of the rice defense response: the RAR1/SGT1/HSP90 protein complex, NPR1, XA21, and XB12 (XA21 interacting protein 12). Results Using available wheat sequence databases and phylogenetic analyses we identified and cloned the wheat orthologs of these four rice proteins, including recently duplicated paralogs, and their known direct interactors and tested 86 binary protein interactions using yeast-two-hybrid (Y2H) assays. All interactions between wheat proteins were further tested using in planta bimolecular fluorescence complementation (BiFC). Eighty three percent of the known rice interactions were confirmed when wheat proteins were tested with rice interactors and 76% were confirmed using wheat protein pairs. All interactions in the RAR1/SGT1/ HSP90, NPR1 and XB12 nodes were confirmed for the identified orthologous wheat proteins, whereas only forty four percent of the interactions were confirmed in the interactome node centered on XA21. We hypothesize that this reduction may be associated with a different sub-functionalization history of the multiple duplications that occurred in this gene family after the divergence of the wheat and rice lineages. Conclusions The observed high conservation of

  7. Topological Analysis of Hedgehog Acyltransferase, a Multipalmitoylated Transmembrane Protein*

    PubMed Central

    Konitsiotis, Antonio D.; Jovanović, Biljana; Ciepla, Paulina; Spitaler, Martin; Lanyon-Hogg, Thomas; Tate, Edward W.; Magee, Anthony I.

    2015-01-01

    Hedgehog proteins are secreted morphogens that play critical roles in development and disease. During maturation of the proteins through the secretory pathway, they are modified by the addition of N-terminal palmitic acid and C-terminal cholesterol moieties, both of which are critical for their correct function and localization. Hedgehog acyltransferase (HHAT) is the enzyme in the endoplasmic reticulum that palmitoylates Hedgehog proteins, is a member of a small subfamily of membrane-bound O-acyltransferase proteins that acylate secreted proteins, and is an important drug target in cancer. However, little is known about HHAT structure and mode of function. We show that HHAT is comprised of ten transmembrane domains and two reentrant loops with the critical His and Asp residues on opposite sides of the endoplasmic reticulum membrane. We further show that HHAT is palmitoylated on multiple cytosolic cysteines that maintain protein structure within the membrane. Finally, we provide evidence that mutation of the conserved His residue in the hypothesized catalytic domain results in a complete loss of HHAT palmitoylation, providing novel insights into how the protein may function in vivo. PMID:25505265

  8. Topological analysis of Hedgehog acyltransferase, a multipalmitoylated transmembrane protein.

    PubMed

    Konitsiotis, Antonio D; Jovanović, Biljana; Ciepla, Paulina; Spitaler, Martin; Lanyon-Hogg, Thomas; Tate, Edward W; Magee, Anthony I

    2015-02-01

    Hedgehog proteins are secreted morphogens that play critical roles in development and disease. During maturation of the proteins through the secretory pathway, they are modified by the addition of N-terminal palmitic acid and C-terminal cholesterol moieties, both of which are critical for their correct function and localization. Hedgehog acyltransferase (HHAT) is the enzyme in the endoplasmic reticulum that palmitoylates Hedgehog proteins, is a member of a small subfamily of membrane-bound O-acyltransferase proteins that acylate secreted proteins, and is an important drug target in cancer. However, little is known about HHAT structure and mode of function. We show that HHAT is comprised of ten transmembrane domains and two reentrant loops with the critical His and Asp residues on opposite sides of the endoplasmic reticulum membrane. We further show that HHAT is palmitoylated on multiple cytosolic cysteines that maintain protein structure within the membrane. Finally, we provide evidence that mutation of the conserved His residue in the hypothesized catalytic domain results in a complete loss of HHAT palmitoylation, providing novel insights into how the protein may function in vivo. PMID:25505265

  9. Bioinformatic analysis of the protein/DNA interface

    PubMed Central

    Schneider, Bohdan; Černý, Jiří; Svozil, Daniel; Čech, Petr; Gelly, Jean-Christophe; de Brevern, Alexandre G.

    2014-01-01

    To investigate the principles driving recognition between proteins and DNA, we analyzed more than thousand crystal structures of protein/DNA complexes. We classified protein and DNA conformations by structural alphabets, protein blocks [de Brevern, Etchebest and Hazout (2000) (Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Prots. Struct. Funct. Genet., 41:271–287)] and dinucleotide conformers [Svozil, Kalina, Omelka and Schneider (2008) (DNA conformations and their sequence preferences. Nucleic Acids Res., 36:3690–3706)], respectively. Assembling the mutually interacting protein blocks and dinucleotide conformers into ‘interaction matrices’ revealed their correlations and conformer preferences at the interface relative to their occurrence outside the interface. The analyzed data demonstrated important differences between complexes of various types of proteins such as transcription factors and nucleases, distinct interaction patterns for the DNA minor groove relative to the major groove and phosphate and importance of water-mediated contacts. Water molecules mediate proportionally the largest number of contacts in the minor groove and form the largest proportion of contacts in complexes of transcription factors. The generally known induction of A-DNA forms by complexation was more accurately attributed to A-like and intermediate A/B conformers rare in naked DNA molecules. PMID:24335080

  10. Comprehensive Analysis of Phosphorylated Proteins of E. coli Ribosomes

    PubMed Central

    Soung, George Y.; Miller, Jennifer L.; Koc, Hasan; Koc, Emine C.

    2009-01-01

    Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in twenty-four E. coli ribosomal proteins by tandem mass spectrometry. Specific detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining and antibodies for phospho-Ser, Thr, and Tyr, or by mass spectrometry equipped with a capability to detect addition and the loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given site of the phosphorylation in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins. PMID:19469554

  11. Protein analysis by time-resolved measurements with an electro-switchable DNA chip

    PubMed Central

    Langer, Andreas; Hampel, Paul A.; Kaiser, Wolfgang; Knezevic, Jelena; Welte, Thomas; Villa, Valentina; Maruyama, Makiko; Svejda, Matej; Jähner, Simone; Fischer, Frank; Strasser, Ralf; Rant, Ulrich

    2013-01-01

    Measurements in stationary or mobile phases are fundamental principles in protein analysis. Although the immobilization of molecules on solid supports allows for the parallel analysis of interactions, properties like size or shape are usually inferred from the molecular mobility under the influence of external forces. However, as these principles are mutually exclusive, a comprehensive characterization of proteins usually involves a multi-step workflow. Here we show how these measurement modalities can be reconciled by tethering proteins to a surface via dynamically actuated nanolevers. Short DNA strands, which are switched by alternating electric fields, are employed as capture probes to bind target proteins. By swaying the proteins over nanometre amplitudes and comparing their motional dynamics to a theoretical model, the protein diameter can be quantified with Angström accuracy. Alterations in the tertiary protein structure (folding) and conformational changes are readily detected, and even post-translational modifications are revealed by time-resolved molecular dynamics measurements. PMID:23839273

  12. An investigation on the analytical potential of polymerized liposomes bound to lanthanide ions for protein analysis.

    PubMed

    Santos, Marina; Roy, Bidhan C; Goicoechea, Héctor; Campiglia, Andres D; Mallik, Sanku

    2004-09-01

    We present a promising approach to protein sensing based on Eu3+ ions incorporated into polymerized liposomes. The sensitization of Eu3+ is accomplished with 5-aminosalicylic acid, which provides energy transfer for a stable reference signal and a wide wavelength excitation range free from protein interference. The lipophilic character of polymerized liposomes provides the appropriate platform for protein interaction with the lanthanide ion. Quantitative analysis is based on the linear relationship between the luminescence signal of Eu3+ and protein concentration. Because no spectral shift of the lanthanide luminescence is observed upon protein interaction, qualitative analysis is based on the luminescence lifetime of polymerized liposomes. This parameter, which changes significantly upon protein-liposome interaction, follows a well-behaved single-exponential decay that might be useful for protein identification. PMID:15327334

  13. Systems Analysis of Protein Fatty Acylation in Herpes Simplex Virus-Infected Cells Using Chemical Proteomics

    PubMed Central

    Serwa, Remigiusz A.; Abaitua, Fernando; Krause, Eberhard; Tate, Edward W.; O’Hare, Peter

    2015-01-01

    Summary Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation during infection with herpes simplex virus (HSV). Using in-gel fluorescence imaging and quantitative mass spectrometry, we demonstrate a generalized reduction in myristoylation of host proteins, whereas palmitoylation of host proteins, including regulators of interferon and tetraspanin family proteins, was selectively repressed. Furthermore, we found that a significant fraction of the viral proteome undergoes palmitoylation; we identified a number of virus membrane glycoproteins, structural proteins, and kinases. Taken together, our results provide broad oversight of protein acylation during HSV infection, a roadmap for similar analysis in other systems, and a resource with which to pursue specific analysis of systems and functions. PMID:26256475

  14. Proteomic analysis of Singapore grouper iridovirus envelope proteins and characterization of a novel envelope protein VP088.

    PubMed

    Zhou, Sheng; Wan, Qingjiao; Huang, Youhua; Huang, Xiaohong; Cao, Jianhao; Ye, Lili; Lim, Teck-Kwang; Lin, Qingsong; Qin, Qiwei

    2011-06-01

    Singapore grouper iridovirus (SGIV) is an enveloped virus causing heavy economic losses to marine fish culture. The envelope fractions of SGIV were separated from the purified virions by Triton X-100 treatment, and subjected to 1-DE-MALDI-TOF/TOF-MS/MS and LC-MALDI-TOF/TOF-MS/MS analysis. A total of 19 virus-encoded envelope proteins were identified in this study and 73.7% (13/17) of them were predicted to be membrane proteins. Three viral envelope proteins were uniquely identified by 1-DE-MALDI, whereas another ten proteins were identified only by LC-MALDI, with six proteins identified by both workflows. VP088 was chosen as a representative of proteomic identification and characterized further. VP088 was predicted to be a viral transmembrane envelope protein which contains two RGD (Arg-Gly-Asp) motifs, three transmembrane domains, and five N-glycosylation sites. VP088 gene transcript was first detected at 12 h p.i. and reached the peak at 48 h p.i. Combined with the drug inhibition assay, VP088 gene was identified as a late (L) gene. Recombinant VP088 (rVP088) was expressed in Escherichia coli, and the specific antiserum against rVP088 was raised. VP088 was proved to be a viral envelope protein by Western blot and immunoelectron microscopy (IEM). Furthermore, rVP088 can bind to a 94 kDa host cell membrane protein, suggesting that VP088 might function as an attaching protein. Neutralization assay also suggested that VP088 is involved in SGIV infection. This study will lead to a better understanding of molecular mechanisms of the iridoviral pathogenesis and virus-host interactions.

  15. Human muscle proteins: analysis by two-dimensional electrophoresis

    SciTech Connect

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  16. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    SciTech Connect

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.

  17. Conformational selection in a protein-protein interaction revealed by dynamic pathway analysis

    DOE PAGES

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-12-24

    Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsinmore » kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Lastly, protein dynamics in free recoverin limits the overall rate of binding.« less

  18. Conformational Selection in a Protein-Protein Interaction revealed by Dynamic Pathway Analysis

    PubMed Central

    Chakrabarti, Kalyan S.; Agafonov, Roman V.; Pontiggia, Francesco; Otten, Renee; Higgins, Matthew K.; Schertler, Gebhard F. X.; Oprian, Daniel D.; Kern, Dorothee

    2015-01-01

    SUMMARY Molecular recognition plays a central role in biology, and protein dynamics has been acknowledged to be important in this process. However, it is highly debated whether conformational changes happen before ligand binding to produce a binding-competent state (conformational selection) or are caused in response to ligand binding (induced fit). Proposals for both mechanisms in protein/protein recognition have been primarily based on structural arguments. However, the distinction between them is a question of the probabilities of going via these two opposing pathways. Here we present a direct demonstration of exclusive conformational selection in protein/protein recognition by measuring the flux for rhodopsin kinase binding to its regulator recoverin, an important molecular recognition in the vision system. Using NMR spectroscopy, stopped-flow kinetics and isothermal titration calorimetry we show that recoverin populates a minor conformation in solution that exposes a hydrophobic binding pocket responsible for binding rhodopsin kinase. Protein dynamics in free recoverin limits the overall rate of binding. PMID:26725117

  19. Residual on column host cell protein analysis during lifetime studies of protein A chromatography.

    PubMed

    Lintern, Katherine; Pathak, Mili; Smales, C Mark; Howland, Kevin; Rathore, Anurag; Bracewell, Daniel G

    2016-08-26

    Capacity reduction in protein A affinity chromatography with extended cycling during therapeutic antibody manufacture is well documented. Identification of which residual proteins remain from previous cycles during the lifetime of these adsorbent materials is required to understand their role in this ageing process, but represents a significant metrological challenge. Scanning electron microscopy (SEM) and liquid chromatography mass spectrometry (LC-MS/MS) are combined to detect and map this phenomenon of protein carry-over. We show that there is a morphological change at the surface of the agarose resin, revealing deposits on the polymer fibres increasing with cycle number. The amount of residual host cell proteins (HCPs) by LC-MS/MS present on the resin is shown to increase 10-fold between 50 and 100 cycles. During this same period the functional class of the predominant HCPs associated with the resin increased in diversity, with number of proteins identified increasing 5-fold. This ageing is observed in the context of the product quality of the eluate HCP and protein A leachate concentration remaining constant with cycle number. PMID:27473513

  20. Mutational Analysis of the Rift Valley Fever Virus Glycoprotein Precursor Proteins for Gn Protein Expression

    PubMed Central

    Phoenix, Inaia; Lokugamage, Nandadeva; Nishiyama, Shoko; Ikegami, Tetsuro

    2016-01-01

    The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm’-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment. PMID:27231931

  1. Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

    PubMed Central

    Naqvi, Ahmad Abu Turab; Anjum, Farah; Khan, Faez Iqbal; Islam, Asimul; Ahmad, Faizan

    2016-01-01

    Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein. PMID:27729842

  2. Microfluidics for the analysis of membrane proteins: how do we get there?

    PubMed

    Battle, Katrina N; Uba, Franklin I; Soper, Steven A

    2014-08-01

    The development of fully automated and high-throughput systems for proteomics is now in demand because of the need to generate new protein-based disease biomarkers. Unfortunately, it is difficult to identify protein biomarkers that are low abundant when in the presence of highly abundant proteins, especially in complex biological samples such as serum, cell lysates, and other biological fluids. Membrane proteins, which are in many cases of low abundance compared to the cytosolic proteins, have various functions and can provide insight into the state of a disease and serve as targets for new drugs making them attractive biomarker candidates. Traditionally, proteins are identified through the use of gel electrophoretic techniques, which are not always suitable for particular protein samples such as membrane proteins. Microfluidics offers the potential as a fully automated platform for the efficient and high-throughput analysis of complex samples, such as membrane proteins, and do so with performance metrics that exceed their bench-top counterparts. In recent years, there have been various improvements to microfluidics and their use for proteomic analysis as reported in the literature. Consequently, this review presents an overview of the traditional proteomic-processing pipelines for membrane proteins and insights into new technological developments with a focus on the applicability of microfluidics for the analysis of membrane proteins. Sample preparation techniques will be discussed in detail and novel interfacing strategies as it relates to MS will be highlighted. Lastly, some general conclusions and future perspectives are presented.

  3. “Zero-length” Cross-linking in Solid State as an Approach for Analysis of Protein -Protein Interactions

    SciTech Connect

    Elshafey, Ahmed; Tolic, Nikola; Young, Malin M.; Sale, Kenneth L.; Smith, Richard D.; Kery, Vladimir

    2006-03-01

    Analyzing the architecture of protein complexes is a difficult task. Chemical cross-linking is often used in combination with mass spectrometric analysis to elucidate the interaction interfaces between proteins. We have developed a new approach for the analysis of interacting interfaces in protein complexes based on cross-linking in the solid state. Protein complexes are freeze-dried under vacuum and cross-links are introduced in the solid phase by dehydrating the protein in a non-water solvent, thus, creating peptide bonds between amino and carboxyl groups of the interacting peptides. Cross-linked proteins are digested into peptides with trypsin in both H216O and H218O and then readily distinguished in mass spectra by characteristic 8 atomic mass unit (amu) shifts reflecting incorporation of two 18O atoms into each C-terminus of proteolytic peptides. Computer analysis of mass spectrometry (MS) and MS/MS data is used to identify the cross-linked peptides.We demonstrated our method by cross-linking homooligomeric protein complexes alone or in a mixture of many other proteins. Cross-linking in the solid state was shown to be specific and reproducible. Glutathione-S-transferase (GST) from Schistosoma japonicum was studied in more detail. Twenty-seven unique intra-molecular and two inter-molecular cross-linked peptides were identified using tryptic mapping followed by LTQ-MS analysis. Identified cross-links were predominantly of amide origin, but six esters and thioesters were also found. Identified cross-linked peptides were validated by computational (visualization of cross-links in the three-dimensional [3D] structure of GST) and experimental (MS/MS) analyses. Most of the identified cross-links matched interacting peptides in the native 3D structure of GST indicating that the structure of GST and its oligomeric complex remained primarily intact after freeze drying. The pattern of oligomeric GST obtained in solid state was the same as that obtained in solution by Ru

  4. Comparative proteomic analysis of plasma proteins in patients with age-related macular degeneration

    PubMed Central

    Xu, Xin-Rong; Zhong, Lu; Huang, Bing-Lin; Wei, Yuan-Hua; Zhou, Xin; Wang, Ling; Wang, Fu-Qiang

    2014-01-01

    AIM To find the significant altered proteins in age-related macular degeneration (AMD) patients as potential biomarkers of AMD. METHODS A comparative analysis of the protein pattern of AMD patients versus healthy controls was performed by means of proteomic analysis using two-dimensional gel electrophoresis followed by protein identification with MALDI TOF/TOF mass spectrometry. RESULTS We identified 28 proteins that were significantly altered with clinical relevance in AMD patients. These proteins were involved in a wide range of biological functions including immune responses, growth cytokines, cell fate determination, wound healing, metabolism, and anti-oxidance. CONCLUSION These results demonstrate the capacity of proteomic analysis of AMD patient plasma. In addition to the utility of this approach for biomarker discovery, identification of alterations in endogenous proteins in the plasma of AMD patient could improve our understanding of the disease pathogenesis. PMID:24790867

  5. Escherichia coli as host for membrane protein structure determination: a global analysis

    PubMed Central

    Hattab, Georges; Warschawski, Dror E.; Moncoq, Karine; Miroux, Bruno

    2015-01-01

    The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production. PMID:26160693

  6. Proteomic Analysis of Protease Resistant Proteins in the Diabetic Rat Kidney

    PubMed Central

    Bansode, Sneha B.; Chougale, Ashok D.; Joshi, Rakesh S.; Giri, Ashok P.; Bodhankar, Subhash L.; Harsulkar, Abhay M.; Kulkarni, Mahesh J.

    2013-01-01

    Glycation induced protein aggregation has been implicated in the development of diabetic complications and neurodegenerative diseases. These aggregates are known to be resistant to proteolytic digestion. Here we report the identification of protease resistant proteins from the streptozotocin induced diabetic rat kidney, which included enzymes in glucose metabolism and stress response proteins. These protease resistant proteins were characterized to be advanced glycation end products modified and ubiquitinated by immunological and mass spectrometry analysis. Further, diabetic rat kidney exhibited significantly impaired proteasomal activity. The functional analysis of identified physiologically important enzymes showed that their activity was reduced in diabetic condition. Loss of functional activity of these proteins was compensated by enhanced gene expression. Aggregation prone regions were predicted by in silico analysis and compared with advanced glycation end products modification sites. These findings suggested that the accumulation of protein aggregates is an inevitable consequence of impaired proteasomal activity and protease resistance due to advanced glycation end products modification. PMID:23118466

  7. Quantitative proteomic analysis of mice corneal tissues reveals angiogenesis-related proteins involved in corneal neovascularization.

    PubMed

    Shen, Minqian; Tao, Yimin; Feng, Yifan; Liu, Xing; Yuan, Fei; Zhou, Hu

    2016-07-01

    Corneal neovascularization (CNV) was induced in Balb/c mice by alkali burns in the central area of the cornea with a diameter of 2.5mm. After fourteen days, the cornea from one eye was collected for histological staining for CNV examination, while the cornea from the other eye of the same mouse was harvested for proteomic analysis. The label-free quantitative proteomic approach was applied to analyze five normal corneal tissues (normal group mice n=5) and five corresponding neovascularized corneal tissues (model group mice n=5). A total of 2124 proteins were identified, and 1682 proteins were quantified from these corneal tissues. Among these quantified proteins, 290 proteins were significantly changed between normal and alkali burned corneal tissues. Of these significantly changed proteins, 35 were reported or predicted as angiogenesis-related proteins. Then, these 35 proteins were analyzed using Ingenuity Pathway Analysis Software, resulting in 26 proteins enriched and connected to each other in the protein-protein interaction network, such as Lcn-2, αB-crystallin and Serpinf1 (PEDF). These three significantly changed proteins were selected for further Western blotting validation. Consistent with the quantitative proteomic results, Western blotting showed that Lcn-2 and αB-crystallin were significantly up-regulated in CNV model, while PEDF was down-regulated. This study provided increased understanding of angiogenesis-related proteins involved in corneal vascular development, which will be useful in the ophthalmic clinic of specifically target angiogenesis.

  8. Prediction of Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis. A Genomic Analysis1

    PubMed Central

    Borner, Georg H.H.; Sherrier, D. Janine; Stevens, Timothy J.; Arkin, Isaiah T.; Dupree, Paul

    2002-01-01

    Glycosylphosphatidylinositol (GPI) anchoring of proteins provides a potential mechanism for targeting to the plant plasma membrane and cell wall. However, relatively few such proteins have been identified. Here, we develop a procedure for database analysis to identify GPI-anchored proteins (GAP) based on their possession of common features. In a comprehensive search of the annotated Arabidopsis genome, we identified 167 novel putative GAP in addition to the 43 previously described candidates. Many of these 210 proteins show similarity to characterized cell surface proteins. The predicted GAP include homologs of β-1,3-glucanases (16), metallo- and aspartyl proteases (13), glycerophosphodiesterases (6), phytocyanins (25), multi-copper oxidases (2), extensins (6), plasma membrane receptors (19), and lipid-transfer-proteins (18). Classical arabinogalactan (AG) proteins (13), AG peptides (9), fasciclin-like proteins (20), COBRA and 10 homologs, and novel potential signaling peptides that we name GAPEPs (8) were also identified. A further 34 proteins of unknown function were predicted to be GPI anchored. A surprising finding was that over 40% of the proteins identified here have probable AG glycosylation modules, suggesting that AG glycosylation of cell surface proteins is widespread. This analysis shows that GPI anchoring is likely to be a major modification in plants that is used to target a specific subset of proteins to the cell surface for extracellular matrix remodeling and signaling. PMID:12068095

  9. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation.

    PubMed

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  10. Proteomic Analysis of a Fraction with Intact Eyespots of Chlamydomonas reinhardtii and Assignment of Protein Methylation

    PubMed Central

    Eitzinger, Nicole; Wagner, Volker; Weisheit, Wolfram; Geimer, Stefan; Boness, David; Kreimer, Georg; Mittag, Maria

    2015-01-01

    Flagellate green algae possess a visual system, the eyespot. In Chlamydomonas reinhardtii it is situated at the edge of the chloroplast and consists of two carotenoid rich lipid globule layers subtended by thylakoid membranes (TM) that are attached to both chloroplast envelope membranes and a specialized area of the plasma membrane (PM). A former analysis of an eyespot fraction identified 203 proteins. To increase the understanding of eyespot related processes, knowledge of the protein composition of the membranes in its close vicinity is desirable. Here, we present a purification procedure that allows isolation of intact eyespots. This gain in intactness goes, however, hand in hand with an increase of contaminants from other organelles. Proteomic analysis identified 742 proteins. Novel candidates include proteins for eyespot development, retina-related proteins, ion pumps, and membrane-associated proteins, calcium sensing proteins as well as kinases, phosphatases and 14-3-3 proteins. Methylation of proteins at Arg or Lys is known as an important posttranslational modification involved in, e.g., signal transduction. Here, we identify several proteins from eyespot fractions that are methylated at Arg and/or Lys. Among them is the eyespot specific SOUL3 protein that influences the size and position of the eyespot and EYE2, a protein important for its development. PMID:26697039

  11. d-Omix: a mixer of generic protein domain analysis tools.

    PubMed

    Wichadakul, Duangdao; Numnark, Somrak; Ingsriswang, Supawadee

    2009-07-01

    Domain combination provides important clues to the roles of protein domains in protein function, interaction and evolution. We have developed a web server d-Omix (a Mixer of Protein Domain Analysis Tools) aiming as a unified platform to analyze, compare and visualize protein data sets in various aspects of protein domain combinations. With InterProScan files for protein sets of interest provided by users, the server incorporates four services for domain analyses. First, it constructs protein phylogenetic tree based on a distance matrix calculated from protein domain architectures (DAs), allowing the comparison with a sequence-based tree. Second, it calculates and visualizes the versatility, abundance and co-presence of protein domains via a domain graph. Third, it compares the similarity of proteins based on DA alignment. Fourth, it builds a putative protein network derived from domain-domain interactions from DOMINE. Users may select a variety of input data files and flexibly choose domain search tools (e.g. hmmpfam, superfamily) for a specific analysis. Results from the d-Omix could be interactively explored and exported into various formats such as SVG, JPG, BMP and CSV. Users with only protein sequences could prepare an InterProScan file using a service provided by the server as well. The d-Omix web server is freely available at http://www.biotec.or.th/isl/Domix.

  12. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  13. A contact map matching approach to protein structure similarity analysis.

    PubMed

    de Melo, Raquel C; Lopes, Carlos Eduardo R; Fernandes, Fernando A; da Silveira, Carlos Henrique; Santoro, Marcelo M; Carceroni, Rodrigo L; Meira, Wagner; Araújo, Arnaldo de A

    2006-01-01

    We modeled the problem of identifying how close two proteins are structurally by measuring the dissimilarity of their contact maps. These contact maps are colored images, in which the chromatic information encodes the chemical nature of the contacts. We studied two conceptually distinct image-processing algorithms to measure the dissimilarity between these contact maps; one was a content-based image retrieval method, and the other was based on image registration. In experiments with contact maps constructed from the protein data bank, our approach was able to identify, with greater than 80% precision, instances of monomers of apolipoproteins, globins, plastocyanins, retinol binding proteins and thioredoxins, among the monomers of Protein Data Bank Select. The image registration approach was only slightly more accurate than the content-based image retrieval approach. PMID:16819709

  14. Proteins.

    ERIC Educational Resources Information Center

    Doolittle, Russell F.

    1985-01-01

    Examines proteins which give rise to structure and, by virtue of selective binding to other molecules, make genes. Binding sites, amino acids, protein evolution, and molecular paleontology are discussed. Work with encoding segments of deoxyribonucleic acid (exons) and noncoding stretches (introns) provides new information for hypotheses. (DH)

  15. Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins are the major structural and functional components of all cells in the body. They are macromolecules that comprise 1 or more chains of amino acids that vary in their sequence and length and are folded into specific 3-dimensional structures. The sizes and conformations of proteins, therefor...

  16. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition

    NASA Astrophysics Data System (ADS)

    Winzen, S.; Schoettler, S.; Baier, G.; Rosenauer, C.; Mailaender, V.; Landfester, K.; Mohr, K.

    2015-02-01

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A

  17. Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation.

    PubMed

    Degand, Hervé; Faber, Anne-Marie; Dauchot, Nicolas; Mingeot, Dominique; Watillon, Bernard; Cutsem, Pierre Van; Morsomme, Pierre; Boutry, Marc

    2009-05-01

    Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2-D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI-TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well-represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.

  18. Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method

    SciTech Connect

    Haibo Cao

    2003-12-12

    In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation between amino acid sequences and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, they give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part includes discussions of interactions among amino acids residues, lattice HP model, and the design ability principle. In the second part, they try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in the eigenvector study of protein contact matrix. They believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, they discuss a threading method based on the correlation between amino acid sequences and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, they list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.

  19. Identification and function analysis of the host cell protein that interacted with Orf virus Bcl-2-like protein ORFV125.

    PubMed

    Tian, Hong; Chen, Yan; Wu, Jinyan; Lin, Tong; Liu, Xiangtao

    2016-10-01

    Orf virus (ORFV) causes contagious ecthyma, a non-systemic skin disease in sheep and goat. Bioinformatics analysis showed that ORFV125 has Bcl-2-like homologous domain and 3D structurally, it is generally known that Bcl-2 protein is known to be a key protein to control cell apoptosis. Maybe ORFV125 act as a Bcl-2-like manner to control cell apoptosis, but its exact function isn't very clear. So in this study, we use yeast two-hybrid system to identity the putative host cell protein interacting partners of ORFV125, and meanwhile using the data obtained from the Gene Ontology, Uniprot, and Kyoto Encyclopedia of Genes and Genomes databases to analysis the functions and pathways associated with them. Finally, five host proteins were shown to be interacted with ORFV125, including cytochrome b (cytb) gene, GUCY2C, BIRC5, GTF3C6 and SERBP1, we also found that BIRC5 has complex biological functions, can inhibit apoptosis, promote cell transformation and are involved in mitosis, and the interaction network of BIRC5 and ORFV125 were constructed. These findings provide a foundation to better understand the biology of the interactions between ORFV125 and the host proteins with which it directly interacts with and resultant downstream events. PMID:27663376

  20. Imaging and interferometric analysis of protein crystal growth

    NASA Astrophysics Data System (ADS)

    Raghunandan, Ranjini; Gupta, Anamika Sethia; Muralidhar, K.

    2008-04-01

    Protein crystals are grown under controlled temperature, concentration and vapor pressure conditions, usually by vapor diffusion, liquid-liquid diffusion and dialysis techniques. The present study examines the effects of protein concentration, drop size and reservoir height on the crystal growth of Hen Egg White Lysozyme (HEWL). Crystals are grown by the hanging drop vapor diffusion method using Modular VDX TM Plates. Due to the vapor pressure difference created between the protein drop and the reservoir, evaporation takes place till equilibrium is attained. Crystal formation takes place after a certain level of supersaturation is attained when the protein precipitates out in crystalline form. The observations revealed that the growth is faster for higher lysozyme concentration, smaller drop sizes and larger reservoir heights. The morphology of the crystals is viewed during the growth process using stereomicroscope. The number of crystals formed is the maximum for higher concentrations, drop sizes and reservoir heights. When the number of crystals formed is less, the size of the crystals is comparatively larger. The effect of evaporation of water vapor from the protein drop into the reservoir is studied using Mach-Zehnder interferometry. The recorded interferograms and shadowgraph images indicate the diffusion of condensed water into the reservoir. The radius of the drop is determined using the shadowgraph images of the growth process. The radius decreases with evaporation and the rate of decrease of radius is highest for higher protein concentrations, smaller drop sizes and larger reservoir heights.

  1. Identification and comparative analysis of accessory gland proteins in Orthoptera.

    PubMed

    Braswell, W Evan; Andrés, José A; Maroja, Luana S; Harrison, Richard G; Howard, Daniel J; Swanson, Willie J

    2006-09-01

    Accessory reproductive gland proteins (Acps) in Drosophila evolve quickly and appear to play an important role in ensuring the fertilization success of males. Moreover, Acps are thought to be involved in establishing barriers to fertilization between closely related species. While accessory glands are known to occur in the males of many insect groups, the proteins that are passed on to females by males during mating have not been well characterized outside of Drosophila. To gain a better understanding of these proteins, we characterized ESTs from the accessory glands of two cricket species, Allonemobius fasciatus and Gryllus firmus. Using an expressed sequence tag (EST) approach, followed by bioinformatic and evolutionary analyses, we found that many proteins are secreted and, therefore, available for transfer to the female during mating. Further, we found that most ESTs are novel, showing little sequence similarity between taxa. Evolutionary analyses suggest that cricket proteins are subject to diversifying selection and indicate that Allonemobius is much less polymorphic than Gryllus. Despite rapid nucleotide sequence divergence, there appears to be functional conservation of protein classes among Drosophila and cricket taxa.

  2. Comparative Analysis of Testis Protein Evolution in Rodents

    PubMed Central

    Turner, Leslie M.; Chuong, Edward B.; Hoekstra, Hopi E.

    2008-01-01

    Genes expressed in testes are critical to male reproductive success, affecting spermatogenesis, sperm competition, and sperm–egg interaction. Comparing the evolution of testis proteins at different taxonomic levels can reveal which genes and functional classes are targets of natural and sexual selection and whether the same genes are targets among taxa. Here we examine the evolution of testis-expressed proteins at different levels of divergence among three rodents, mouse (Mus musculus), rat (Rattus norvegicus), and deer mouse (Peromyscus maniculatus), to identify rapidly evolving genes. Comparison of expressed sequence tags (ESTs) from testes suggests that proteins with testis-specific expression evolve more rapidly on average than proteins with maximal expression in other tissues. Genes with the highest rates of evolution have a variety of functional roles including signal transduction, DNA binding, and egg–sperm interaction. Most of these rapidly evolving genes have not been identified previously as targets of selection in comparisons among more divergent mammals. To determine if these genes are evolving rapidly among closely related species, we sequenced 11 of these genes in six Peromyscus species and found evidence for positive selection in five of them. Together, these results demonstrate rapid evolution of functionally diverse testis-expressed proteins in rodents, including the identification of amino acids under lineage-specific selection in Peromyscus. Evidence for positive selection among closely related species suggests that changes in these proteins may have consequences for reproductive isolation. PMID:18689890

  3. Functional analysis of glucan binding protein B from Streptococcus mutans.

    PubMed

    Mattos-Graner, Renata O; Porter, Kristen A; Smith, Daniel J; Hosogi, Yumiko; Duncan, Margaret J

    2006-06-01

    Mutans streptococci are major etiological agents of dental caries, and several of their secreted products contribute to bacterial accumulation on teeth. Of these, Streptococcus mutans glucan binding protein B (GbpB) is a novel, immunologically dominant protein. Its biological function is unclear, although GbpB shares homology with a putative peptidoglycan hydrolase from S. agalactiae and S. pneumoniae, indicative of a role in murein biosynthesis. To determine the cellular function of GbpB, we used several approaches to inactivate the gene, analyze its expression, and identify interacting proteins. None of the transformants analyzed were true gbpB mutants, since they all contained both disrupted and wild-type gene copies, and expression of functional GbpB was always conserved. Thus, the inability to obtain viable gbpB null mutants supports the notion that gbpB is an essential gene. Northern blot and real-time PCR analyses suggested that induction of gbpB expression in response to stress was a strain-dependent phenomenon. Proteins that interacted with GbpB were identified in pull-down and coimmunoprecipitation assays, and these data suggest that GbpB interacts with ribosomal protein L7/L12, possibly as part of a protein complex involved in peptidoglycan synthesis and cell division. PMID:16707674

  4. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.

    PubMed

    Kushwaha, Sandeep K; Shakya, Madhvi

    2010-01-21

    In host-parasite diseases like tuberculosis, non-homologous proteins (enzymes) as drug target are first preference. Most potent drug target can be identified among large number of non-homologous protein through protein interaction network analysis. In this study, the entire promising dimension has been explored for identification of potential drug target. A comparative metabolic pathway analysis of the host Homo sapiens and the pathogen M. tuberculosis H37Rv has been performed with three level of analysis. In first level, the unique metabolic pathways of M. tuberculosis have been identified through its comparative study with H. sapiens and identification of non-homologous proteins has been done through BLAST similarity search. In second level, choke-point analysis has been performed with identified non-homologous proteins of metabolic pathways. In third level, two type of analysis have been performed through protein interaction network. First analysis has been done to find out the most potential metabolic functional associations among all identified choke point proteins whereas second analysis has been performed to find out the functional association of high metabolic interacting proteins to pathogenesis causing proteins. Most interactive metabolic proteins which have highest number of functional association with pathogenesis causing proteins have been considered as potential drug target. A list of 18 potential drug targets has been proposed which are various stages of progress at the TBSGC and proposed drug targets are also studied for other pathogenic strains. As a case study, we have built a homology model of identified drug targets histidinol-phosphate aminotransferase (HisC1) using MODELLER software and various information have been generated through molecular dynamics which will be useful in wetlab structure determination. The generated model could be further explored for insilico docking studies with suitable inhibitors.

  5. Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates.

    PubMed

    Panda, Subhamay; Chandra, Goutam

    2012-01-01

    Snake venom contains a diverse array of proteins and polypeptides. Cytotoxins and short neurotoxins are non-enzymatic polypeptide components of snake venom. The three-dimensional structure of cytotoxin and short neurotoxin resembles a three finger appearance of three-finger protein super family. Different family members of three-finger protein super family are employed in diverse biological functions. In this work we analyzed the cytotoxin, short neurotoxin and related non-toxin proteins of other chordates in terms of functional analysis, amino acid compositional (%) profile, number of amino acids, molecular weight, theoretical isoelectric point (pI), number of positively charged and negatively charged amino acid residues, instability index and grand average of hydropathy with the help of different bioinformatical tools. Among all interesting results, profile of amino acid composition (%) depicts that all sequences contain a conserved cysteine amount but differential amount of different amino acid residues which have a family specific pattern. Involvement in different biological functions is one of the driving forces which contribute the vivid amino acid composition profile of these proteins. Different biological system dependent adaptation gives the birth of enriched bio-molecules. Understanding of physicochemical properties of these proteins will help to generate medicinally important therapeutic molecules for betterment of human lives.

  6. Integrating gene synthesis and microfluidic protein analysis for rapid protein engineering

    PubMed Central

    Blackburn, Matthew C.; Petrova, Ekaterina; Correia, Bruno E.; Maerkl, Sebastian J.

    2016-01-01

    The capability to rapidly design proteins with novel functions will have a significant impact on medicine, biotechnology and synthetic biology. Synthetic genes are becoming a commodity, but integrated approaches have yet to be developed that take full advantage of gene synthesis. We developed a solid-phase gene synthesis method based on asymmetric primer extension (APE) and coupled this process directly to high-throughput, on-chip protein expression, purification and characterization (via mechanically induced trapping of molecular interactions, MITOMI). By completely circumventing molecular cloning and cell-based steps, APE-MITOMI reduces the time between protein design and quantitative characterization to 3–4 days. With APE-MITOMI we synthesized and characterized over 400 zinc-finger (ZF) transcription factors (TF), showing that although ZF TFs can be readily engineered to recognize a particular DNA sequence, engineering the precise binding energy landscape remains challenging. We also found that it is possible to engineer ZF–DNA affinity precisely and independently of sequence specificity and that in silico modeling can explain some of the observed affinity differences. APE-MITOMI is a generic approach that should facilitate fundamental studies in protein biophysics, and protein design/engineering. PMID:26704969

  7. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  8. Protein analysis in dissolved organic matter: What proteins from organic debris, soil leachate and surface water can tell us - a perspective

    NASA Astrophysics Data System (ADS)

    Schulze, W. X.

    Mass spectrometry based analysis of proteins is widely used to study cellular processes in model organisms. However, it has not yet routinely been applied in environmental research. Based on observations that protein can readily be detected as a component of dissolved organic matter (DOM), this article gives an example about the possible use of protein analysis in ecology and environmental sciences focusing on different terrestrial ecosystems. At this stage, there are two areas of interest: (1) the identification of phylogenetic groups contributing to the environmental protein pool, and (2) identification of the organismic origin of specific enzymes that are important for ecosystem processes. In this paper, mass spectrometric protein analysis was applied to identify proteins from decomposing plant material and DOM of soil leachates and surface water samples derived from different environments. It is concluded, that mass spectrometric protein analysis is capable of distinguishing phylogenetic origin of proteins from litter protein extracts, leachates of different soil horizons, and from various sources of terrestrial surface water. Current limitation is imposed by the limited knowledge of complete genomes of soil organisms. The protein analysis allows to relate protein presence to biogeochemical processes, and to identify the source organisms for specific active enzymes. Further applications, such as in pollution research are conceivable. In summary, the analysis of proteins opens a new area of research between the fields of microbiology and biogeochemistry.

  9. Protein western array analysis in human pituitary tumours: insights and limitations.

    PubMed

    Ribeiro-Oliveira, Antônio; Franchi, Giulia; Kola, Blerina; Dalino, Paolo; Pinheiro, Sérgio Veloso Brant; Salahuddin, Nabila; Musat, Madalina; Góth, Miklós I; Czirják, Sándor; Hanzély, Zoltán; da Silva, Deivid Augusto; Paulino, Eduardo; Grossman, Ashley B; Korbonits, Márta

    2008-12-01

    The molecular analysis of pituitary tumours has received a great deal of attention, although the majority of studies have concentrated on the genome and the transcriptome. We aimed to study the proteome of human pituitary adenomas. A protein array using 1005 monoclonal antibodies was used to study GH-, corticotrophin- and prolactin-secreting as well as non-functioning pituitary adenomas (NFPAs). Individual protein expression levels in the tumours were compared with the expression profile of normal pituitary tissue. Out of 316 proteins that were detected in the pituitary tissue samples, 116 proteins had not previously been described in human pituitary tissue. Four prominent differentially expressed proteins with potential importance to tumorigenesis were chosen for validation by immunohistochemistry and western blotting. In the protein array analysis heat shock protein 110 (HSP110), a chaperone associated with protein folding, and B2 bradykinin receptor, a potential regulator of prolactin secretion, were significantly overexpressed in all adenoma subtypes, while C-terminal Src kinase (CSK), an inhibitor of proto-oncogenic enzymes, and annexin II, a calcium-dependent binding protein, were significantly underexpressed in all adenoma subtypes. The immunohistochemical analysis confirmed the overexpression of HSP110 and B2 bradykinin receptor and underexpression of CSK and annexin II in pituitary adenoma cells when compared with their corresponding normal pituitary cells. Western blotting only partially confirmed the proteomics data: HSP110 was significantly overexpressed in prolactinomas and NFPAs, the B2 bradykinin receptor was significantly overexpressed in prolactinomas, annexin II was significantly underexpressed in somatotrophinomas, while CSK did not show significant underexpression in any tumour. Protein expression analysis of pituitary samples disclosed both novel proteins and putative protein candidates for pituitary tumorigenesis, though validation using

  10. Blue copper proteins: a comparative analysis of their molecular interaction properties.

    PubMed Central

    De Rienzo, F.; Gabdoulline, R. R.; Menziani, M. C.; Wade, R. C.

    2000-01-01

    Blue copper proteins are type-I copper-containing redox proteins whose role is to shuttle electrons from an electron donor to an electron acceptor in bacteria and plants. A large amount of experimental data is available on blue copper proteins; however, their functional characterization is hindered by the complexity of redox processes in biological systems. We describe here the application of a semiquantitative method based on a comparative analysis of molecular interaction fields to gain insights into the recognition properties of blue copper proteins. Molecular electrostatic and hydrophobic potentials were computed and compared for a set of 33 experimentally-determined structures of proteins from seven blue copper subfamilies, and the results were quantified by means of similarity indices. The analysis provides a classification of the blue copper proteins and shows that (I) comparison of the molecular electrostatic potentials provides useful information complementary to that highlighted by sequence analysis; (2) similarities in recognition properties can be detected for proteins belonging to different subfamilies, such as amicyanins and pseudoazurins, that may be isofunctional proteins; (3) dissimilarities in interaction properties, consistent with experimentally different binding specificities, may be observed between proteins belonging to the same subfamily, such as cyanobacterial and eukaryotic plastocyanins; (4) proteins with low sequence identity, such as azurins and pseudoazurins, can have sufficient similarity to bind to similar electron donors and acceptors while having different binding specificity profiles. PMID:10975566

  11. Comparative proteomics analysis of oral cancer cell lines: identification of cancer associated proteins

    PubMed Central

    2014-01-01

    Background A limiting factor in performing proteomics analysis on cancerous cells is the difficulty in obtaining sufficient amounts of starting material. Cell lines can be used as a simplified model system for studying changes that accompany tumorigenesis. This study used two-dimensional gel electrophoresis (2DE) to compare the whole cell proteome of oral cancer cell lines vs normal cells in an attempt to identify cancer associated proteins. Results Three primary cell cultures of normal cells with a limited lifespan without hTERT immortalization have been successfully established. 2DE was used to compare the whole cell proteome of these cells with that of three oral cancer cell lines. Twenty four protein spots were found to have changed in abundance. MALDI TOF/TOF was then used to determine the identity of these proteins. Identified proteins were classified into seven functional categories – structural proteins, enzymes, regulatory proteins, chaperones and others. IPA core analysis predicted that 18 proteins were related to cancer with involvements in hyperplasia, metastasis, invasion, growth and tumorigenesis. The mRNA expressions of two proteins – 14-3-3 protein sigma and Stress-induced-phosphoprotein 1 – were found to correlate with the corresponding proteins’ abundance. Conclusions The outcome of this analysis demonstrated that a comparative study of whole cell proteome of cancer versus normal cell lines can be used to identify cancer associated proteins. PMID:24422745

  12. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus anthracis Spore Proteins

    SciTech Connect

    Kaiser, Brooke LD; Wunschel, David S.; Sydor, Michael A.; Warner, Marvin G.; Wahl, Karen L.; Hutchison, Janine R.

    2015-08-07

    Proteomic analysis of bacterial samples provides valuable information about cellular responses and functions under different environmental pressures. Proteomic analysis is dependent upon efficient extraction of proteins from bacterial samples without introducing bias toward extraction of particular protein classes. While no single method can recover 100% of the bacterial proteins, selected protocols can improve overall protein isolation, peptide recovery, or enrich for certain classes of proteins. The method presented here is technically simple and does not require specialized equipment such as a mechanical disrupter. Our data reveal that for particularly challenging samples, such as B. anthracis Sterne spores, trichloroacetic acid extraction improved the number of proteins identified within a sample compared to bead beating (714 vs 660, respectively). Further, TCA extraction enriched for 103 known spore specific proteins whereas bead beating resulted in 49 unique proteins. Analysis of C. botulinum samples grown to 5 days, composed of vegetative biomass and spores, showed a similar trend with improved protein yields and identification using our method compared to bead beating. Interestingly, easily lysed samples, such as B. anthracis vegetative cells, were equally as effectively processed via TCA and bead beating, but TCA extraction remains the easiest and most cost effective option. As with all assays, supplemental methods such as implementation of an alternative preparation method may provide additional insight to the protein biology of the bacteria being studied.

  13. Human, vector and parasite Hsp90 proteins: A comparative bioinformatics analysis

    PubMed Central

    Faya, Ngonidzashe; Penkler, David L.; Tastan Bishop, Özlem

    2015-01-01

    The treatment of protozoan parasitic diseases is challenging, and thus identification and analysis of new drug targets is important. Parasites survive within host organisms, and some need intermediate hosts to complete their life cycle. Changing host environment puts stress on parasites, and often adaptation is accompanied by the expression of large amounts of heat shock proteins (Hsps). Among Hsps, Hsp90 proteins play an important role in stress environments. Yet, there has been little computational research on Hsp90 proteins to analyze them comparatively as potential parasitic drug targets. Here, an attempt was made to gain detailed insights into the differences between host, vector and parasitic Hsp90 proteins by large-scale bioinformatics analysis. A total of 104 Hsp90 sequences were divided into three groups based on their cellular localizations; namely cytosolic, mitochondrial and endoplasmic reticulum (ER). Further, the parasitic proteins were divided according to the type of parasite (protozoa, helminth and ectoparasite). Primary sequence analysis, phylogenetic tree calculations, motif analysis and physicochemical properties of Hsp90 proteins suggested that despite the overall structural conservation of these proteins, parasitic Hsp90 proteins have unique features which differentiate them from human ones, thus encouraging the idea that protozoan Hsp90 proteins should be further analyzed as potential drug targets. PMID:26793431

  14. Protein-Centric N-Glycoproteomics Analysis of Membrane and Plasma Membrane Proteins

    PubMed Central

    2015-01-01

    The advent of proteomics technology has transformed our understanding of biological membranes. The challenges for studying membrane proteins have inspired the development of many analytical and bioanalytical tools, and the techniques of glycoproteomics have emerged as an effective means to enrich and characterize membrane and plasma-membrane proteomes. This Review summarizes the development of various glycoproteomics techniques to overcome the hurdles formed by the unique structures and behaviors of membrane proteins with a focus on N-glycoproteomics. Example contributions of N-glycoproteomics to the understanding of membrane biology are provided, and the areas that require future technical breakthroughs are discussed. PMID:24754784

  15. Proteomic Analysis of Protein Turnover by Metabolic Whole Rodent Pulse-Chase Isotopic Labeling and Shotgun Mass Spectrometry Analysis.

    PubMed

    Savas, Jeffrey N; Park, Sung Kyu; Yates, John R

    2016-01-01

    The analysis of protein half-life and degradation dynamics has proven critically important to our understanding of a broad and diverse set of biological conditions ranging from cancer to neurodegeneration. Historically these protein turnover measures have been performed in cells by monitoring protein levels after "pulse" labeling of newly synthesized proteins and subsequent chase periods. Comparing the level of labeled protein remaining as a function of time to the initial level reveals the protein's half-life. In this method we provide a detailed description of the workflow required for the determination of protein turnover rates on a whole proteome scale in vivo. Our approach starts with the metabolic labeling of whole rodents by restricting all the nitrogen in their diet to exclusively nitrogen-15 in the form of spirulina algae. After near complete organismal labeling with nitrogen-15, the rodents are then switched to a normal nitrogen-14 rich diet for time periods of days to years. Tissues are harvested, the extracts are fractionated, and the proteins are digested to peptides. Peptides are separated by multidimensional liquid chromatography and analyzed by high resolution orbitrap mass spectrometry (MS). The nitrogen-15 containing proteins are then identified and measured by the bioinformatic proteome analysis tools Sequest, DTASelect2, and Census. In this way, our metabolic pulse-chase approach reveals in vivo protein decay rates proteome-wide. PMID:26867752

  16. Purification and Structural Analysis of LEM-Domain Proteins.

    PubMed

    Herrada, Isaline; Bourgeois, Benjamin; Samson, Camille; Buendia, Brigitte; Worman, Howard J; Zinn-Justin, Sophie

    2016-01-01

    LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.

  17. Structural and functional analysis of fatty acid-binding proteins

    PubMed Central

    Storch, Judith; McDermott, Lindsay

    2009-01-01

    The mammalian FA-binding proteins (FABPs) bind long-chain FA with high affinity. The large number of FABP types is suggestive of distinct functions in specific tissues. Multiple experimental approaches have shown that individual FABPs possess both unique and overlapping functions, some of which are based on specific elements in the protein structure. Although FA binding affinities for all FABPs tend to correlate directly with FA hydrophobicity, structure-function studies indicate that subtle three-dimensional changes that occur upon ligand binding may promote specific protein-protein or protein-membrane interactions that ultimately determine the function of each FABP. The conformational changes are focused in the FABP helical/portal domain, a region that was identified by in vitro studies to be vital for the FA transport properties of the FABPs. Thus, the FABPs modulate intracellular lipid homeostasis by regulating FA transport in the nuclear and extra-nuclear compartments of the cell; in so doing, they also impact systemic energy homeostasis. PMID:19017610

  18. Teaching Genetics in Secondary Classrooms: a Linguistic Analysis of Teachers' Talk About Proteins

    NASA Astrophysics Data System (ADS)

    Thörne, Karin; Gericke, Niklas

    2014-02-01

    This study investigates Swedish biology teachers' inclusion of proteins when teaching genetics in grade nine (students 15-16 years old). For some years, there has been a call to give attention to proteins when teaching genetics as a means of linking the concepts `gene' and `trait'. Students are known to have problems with this relation because the concepts belong to different organizational levels. However, we know little about how the topic is taught and therefore this case study focuses on how teachers talk about proteins while teaching genetics and if they use proteins as a link between the micro and macro level. Four teachers were recorded during entire genetics teaching sequences, 45 lessons in total. The teachers' verbal communication was then analyzed using thematic pattern analysis, which is based in systemic functional linguistics. The linguistic analysis of teachers' talk in action revealed great variations in both the extent to which they used proteins in explanations of genetics and the ways they included proteins in linking genes and traits. Two of the teachers used protein as a link between gene and trait, while two did not. Three of the four teachers included instruction about protein synthesis. The common message from all teachers was that proteins are built, but none of the teachers talked about genes as exclusively encoding proteins. Our results suggest that students' common lack of understanding of proteins as an intermediate link between gene and trait could be explained by limitations in the way the subject is taught.

  19. Proteomic analysis of Lawsonia intracellularis reveals expression of outer membrane proteins during infection.

    PubMed

    Watson, Eleanor; Alberdi, M Pilar; Inglis, Neil F; Lainson, Alex; Porter, Megan E; Manson, Erin; Imrie, Lisa; Mclean, Kevin; Smith, David G E

    2014-12-01

    Lawsonia intracellularis is the aetiological agent of the commercially significant porcine disease, proliferative enteropathy. Current understanding of host-pathogen interaction is limited due to the fastidious microaerophilic obligate intracellular nature of the bacterium. In the present study, expression of bacterial proteins during infection was investigated using a mass spectrometry approach. LC-ESI-MS/MS analysis of two isolates of L. intracellularis from heavily-infected epithelial cell cultures and database mining using fully annotated L. intracellularis genome sequences identified 19 proteins. According to the Clusters of Orthologous Groups (COG) functional classification, proteins were identified with roles in cell metabolism, protein synthesis and oxidative stress protection; seven proteins with putative or unknown function were also identified. Detailed bioinformatic analyses of five uncharacterised proteins, which were expressed by both isolates, identified domains and motifs common to other outer membrane-associated proteins with important roles in pathogenesis including adherence and invasion. Analysis of recombinant proteins on Western blots using immune sera from L. intracellularis-infected pigs identified two proteins, LI0841 and LI0902 as antigenic. The detection of five outer membrane proteins expressed during infection, including two antigenic proteins, demonstrates the potential of this approach to interrogate L. intracellularis host-pathogen interactions and identify novel targets which may be exploited in disease control.

  20. Proteomic analysis of immunogenic proteins from salivary glands of Aedes aegypti.

    PubMed

    Oktarianti, Rike; Senjarini, Kartika; Hayano, Toshiya; Fatchiyah, Fatchiyah; Aulanni'am

    2015-01-01

    Humans develop anti-salivary proteins after arthropod bites or exposure to insect salivary proteins. This reaction indicates that vector bites have a positive effect on the host immune response, which can be used as epidemiological markers of exposure to the vector. Our previous study identified two immunogenic proteins with molecular weights of 31 kDa and 56 kDa from salivary gland extract (SGE) of Aedes aegypti that cross-reacted with serum samples from Dengue Hemorrhagic Fever (DHF) patients and healthy people in an endemic area (Indonesia). Serum samples from individuals living in non-endemic area (sub-tropical country) and infants did not show the immunogenic reactions. The objective of this research was to identify two immunogenic proteins, i.e., 31 and 56 kDa by using proteomic analysis. In this study, proteomic analysis resulted in identification of 13 proteins and 7 proteins from the 31 kDa- and 56 kDa-immunogenic protein bands, respectively. Among those proteins, the D7 protein (Arthropode Odorant-Binding Protein, AOBP) was the most abundant in 31-kDa band, and apyrase was the major protein of the 56-kDa band.

  1. Proteomic analysis of immunogenic proteins from salivary glands of Aedes aegypti.

    PubMed

    Oktarianti, Rike; Senjarini, Kartika; Hayano, Toshiya; Fatchiyah, Fatchiyah; Aulanni'am

    2015-01-01

    Humans develop anti-salivary proteins after arthropod bites or exposure to insect salivary proteins. This reaction indicates that vector bites have a positive effect on the host immune response, which can be used as epidemiological markers of exposure to the vector. Our previous study identified two immunogenic proteins with molecular weights of 31 kDa and 56 kDa from salivary gland extract (SGE) of Aedes aegypti that cross-reacted with serum samples from Dengue Hemorrhagic Fever (DHF) patients and healthy people in an endemic area (Indonesia). Serum samples from individuals living in non-endemic area (sub-tropical country) and infants did not show the immunogenic reactions. The objective of this research was to identify two immunogenic proteins, i.e., 31 and 56 kDa by using proteomic analysis. In this study, proteomic analysis resulted in identification of 13 proteins and 7 proteins from the 31 kDa- and 56 kDa-immunogenic protein bands, respectively. Among those proteins, the D7 protein (Arthropode Odorant-Binding Protein, AOBP) was the most abundant in 31-kDa band, and apyrase was the major protein of the 56-kDa band. PMID:26054892

  2. Atlas of protein expression: image capture, analysis, and design of terabyte image database

    NASA Astrophysics Data System (ADS)

    Wu, Jiahua; Maslen, Gareth; Warford, Anthony; Griffin, Gareth; Xie, Jane; Crowther, Sandra; McCafferty, John

    2006-03-01

    The activity of genes in health and disease are manifested through the proteins which they encode. Ultimately, proteins drive functional processes in cells and tissues and so by measuring individual protein levels, studying modifications and discovering their sites of action we will understand better their function. It is possible to visualize the location of proteins of interest in tissue sections using labeled antibodies which bind to the target protein. This procedure, known as immunohistochemistry (IHC), provides valuable information on the cellular and sub-cellular distribution of proteins in tissue. The project, atlas of protein expression, aims to create a quality, information rich database of protein expression profiles, which is accessible to the world-wide research community. For the long term archival value of the data, the accompanying validated antibody and protein clones will potentially have great research, diagnostic and possibly therapeutic potential. To achieve this we had introduced a number of novel technologies, e.g. express recombinant proteins, select antibodies, stain proteins present in tissue section, and tissue microarray (TMA) image analysis. These are currently being optimized, automated and integrated into a multi-disciplinary production process. We had also created infrastructure for multi-terabyte scale image capture, established an image analysis capability for initial screening and quantization.

  3. Identification of nolR-regulated proteins in Sinorhizobium meliloti using proteome analysis.

    PubMed

    Chen, H; Higgins, J; Kondorosi, E; Kondorosi, A; Djordjevic, M A; Weinman, J J; Rolfe, B G

    2000-11-01

    Extractable proteins from Sinorhizobium meliloti strains AK631 and EK698 (a Tn5-induced noIR-deficient mutant of AK631), grown in tryptone agar (TA) medium with or without the addition of the plant signal luteolin, were separated by two-dimensional gel electrophoresis and compared. Analysis of silver-stained gels showed that the noIR mutant had 189 proteins that were significantly altered in their levels (101 protein spots up- and 88 downregulated). Coomassie-stained preparative two-dimensional (2-D) gels or polyvinylidene difluoride (PVDF) membranes blotted from preparative gels showed that at least 52 of the altered proteins could be reproducibly detected and isolated from the noIR mutant. These 52 altered protein spots were classified into five groups based on an assessment of protein abundance by computer analysis and the effect of the presence or absence of luteolin addition to the growth medium. N-terminal microsequencing of 38 proteins revealed that the most striking feature of the consequence of the noIR mutation is the number and broad spectrum of cellular functions that are affected by the loss of the NoIR function. These include proteins involved in the tricarboxylic acid (TCA) cycle, heat shock and cold shock proteins, protein synthesis, a translation elongation factor, oxidative stress and cell growth and maintenance functions. We propose that the NoIR repressor is a global regulatory protein which responds to environmental factors to fine-tune intracellular metabolism. PMID:11271500

  4. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions.

    PubMed

    Yamniuk, Aaron P; Newitt, John A; Doyle, Michael L; Arisaka, Fumio; Giannetti, Anthony M; Hensley, Preston; Myszka, David G; Schwarz, Fred P; Thomson, James A; Eisenstein, Edward

    2015-12-01

    A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions. PMID:26543437

  5. Development of a Model Protein Interaction Pair as a Benchmarking Tool for the Quantitative Analysis of 2-Site Protein-Protein Interactions

    PubMed Central

    Newitt, John A.; Doyle, Michael L.; Arisaka, Fumio; Giannetti, Anthony M.; Hensley, Preston; Myszka, David G.; Schwarz, Fred P.; Thomson, James A.; Eisenstein, Edward

    2015-01-01

    A significant challenge in the molecular interaction field is to accurately determine the stoichiometry and stepwise binding affinity constants for macromolecules having >1 binding site. The mission of the Molecular Interactions Research Group (MIRG) of the Association of Biomolecular Resource Facilities (ABRF) is to show how biophysical technologies are used to quantitatively characterize molecular interactions, and to educate the ABRF members and scientific community on the utility and limitations of core technologies [such as biosensor, microcalorimetry, or analytic ultracentrifugation (AUC)]. In the present work, the MIRG has developed a robust model protein interaction pair consisting of a bivalent variant of the Bacillus amyloliquefaciens extracellular RNase barnase and a variant of its natural monovalent intracellular inhibitor protein barstar. It is demonstrated that this system can serve as a benchmarking tool for the quantitative analysis of 2-site protein-protein interactions. The protein interaction pair enables determination of precise binding constants for the barstar protein binding to 2 distinct sites on the bivalent barnase binding partner (termed binase), where the 2 binding sites were engineered to possess affinities that differed by 2 orders of magnitude. Multiple MIRG laboratories characterized the interaction using isothermal titration calorimetry (ITC), AUC, and surface plasmon resonance (SPR) methods to evaluate the feasibility of the system as a benchmarking model. Although general agreement was seen for the binding constants measured using solution-based ITC and AUC approaches, weaker affinity was seen for surface-based method SPR, with protein immobilization likely affecting affinity. An analysis of the results from multiple MIRG laboratories suggests that the bivalent barnase-barstar system is a suitable model for benchmarking new approaches for the quantitative characterization of complex biomolecular interactions. PMID:26543437

  6. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition.

    PubMed

    Winzen, S; Schoettler, S; Baier, G; Rosenauer, C; Mailaender, V; Landfester, K; Mohr, K

    2015-02-21

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.

  7. Comparative analysis of nanomechanics of protein filaments under lateral loading

    NASA Astrophysics Data System (ADS)

    Solar, Max; Buehler, Markus J.

    2012-02-01

    Using a combination of explicit solvent atomistic simulation and continuum theory, here we study the lateral deformation mechanics of three distinct protein structures: an amyloid fibril, a beta helix, and an alpha helix. We find that the two β-sheet rich structures - amyloid fibril and beta helix, with persistence lengths on the order of μm - are well described by continuum mechanical theory, but differ in the degree to which shear deformation affects the overall bending behavior. The alpha helical protein structure, however, with a persistence length on the order of one nanometer, does not conform to the continuum theory and its deformation is dominated by entropic elasticity due to significant fluctuations. This study provides fundamental insight into the nanomechanics of widely found protein motifs and insight into molecular-scale deformation mechanisms, as well as quantitative estimates of Young's modulus and shear modulus in agreement with experimental results.

  8. xComb: a cross-linked peptide database approach to protein-protein interaction analysis

    PubMed Central

    Panchaud, Alexandre; Singh, Pragya; Shaffer, Scott A.; Goodlett, David R.

    2010-01-01

    We developed an informatic method to identify tandem mass spectra composed of chemically cross-linked peptides from those of linear peptides and to assign sequence to each of the two unique peptide sequences. For a given set of proteins the key software tool, xComb, combs through all theoretically feasible cross-linked peptides to create a database consisting of a subset of all combinations represented as peptide FASTA files. The xComb library of select theoretical cross-linked peptides may then be used as a database that is examined by a standard proteomic search engine to match tandem mass spectral datasets to identify cross-linked peptides. The database search may be conducted against as many as 50 proteins with a number of common proteomic search engines, e.g. Phenyx, Sequest, OMSSA, Mascot and X!Tandem. By searching against a peptide library of linearized, cross-linked peptides, rather than a linearized protein library, search times are decreased and the process is decoupled from any specific search engine. A further benefit of decoupling from the search engine is that protein cross-linking studies may be conducted with readily available informatics tools for which scoring routines already exist within the proteomic community. PMID:20302351

  9. Analysis of peripheral amyloid precursor protein in Angelman Syndrome.

    PubMed

    Erickson, Craig A; Wink, Logan K; Baindu, Bayon; Ray, Balmiki; Schaefer, Tori L; Pedapati, Ernest V; Lahiri, Debomoy K

    2016-09-01

    Angelman Syndrome is a rare neurodevelopmental disorder associated with significant developmental and communication delays, high risk for epilepsy, motor dysfunction, and a characteristic behavioral profile. While Angelman Syndrome is known to be associated with the loss of maternal expression of the ubiquitin-protein ligase E3A gene, the molecular sequelae of this loss remain to be fully understood. Amyloid precursor protein (APP) is involved in neuronal development and APP dysregulation has been implicated in the pathophysiology of other developmental disorders including fragile X syndrome and idiopathic autism. APP dysregulation has been noted in preclinical model of chromosome 15q13 duplication, a disorder whose genetic abnormality results in duplication of the region that is epigenetically silenced in Angelman Syndrome. In this duplication model, APP levels have been shown to be significantly reduced leading to the hypothesis that enhanced ubiquitin-protein ligase E3A expression may be associated with this phenomena. We tested the hypothesis that ubiquitin-protein ligase E3A regulates APP protein levels by comparing peripheral APP and APP derivative levels in humans with Angelman Syndrome to those with neurotypical development. We report that APP total, APP alpha (sAPPα) and A Beta 40 and 42 are elevated in the plasma of humans with Angelman Syndrome compared to neurotypical matched human samples. Additionally, we found that elevations in APP total and sAPPα correlated positively with peripheral brain derived neurotrophic factor levels previously reported in this same patient cohort. Our pilot report on APP protein levels in Angelman Syndrome warrants additional exploration and may provide a molecular target of treatment for the disorder. © 2016 Wiley Periodicals, Inc. PMID:27327493

  10. Analysis of nuclear export using photoactivatable GFP fusion proteins and interspecies heterokaryons.

    PubMed

    Nakrieko, Kerry-Ann; Ivanova, Iordanka A; Dagnino, Lina

    2010-01-01

    In this chapter, we review protocols for the analysis of nucleocytoplasmic shuttling of transcription factors and nuclear proteins, using two different approaches. The first involves the use of photoactivatable forms of the protein of interest by fusion to photoactivatable green fluorescent protein to follow its movement out of the nucleus by live-cell confocal microscopy. This methodology allows for the kinetic characterization of protein movements as well as measurement of steady-state levels. In a second procedure to assess the ability of a nuclear protein to move into and out of the nucleus, we describe the use of interspecies heterokaryon assays, which provide a measurement of steady-state distribution. These technologies are directly applicable to the analysis of nucleocytoplasmic movements not only of transcription factors, but also other nuclear proteins.

  11. CRASP: a program for analysis of coordinated substitutions in multiple alignments of protein sequences.

    PubMed

    Afonnikov, Dmitry A; Kolchanov, Nikolay A

    2004-07-01

    Recent results suggest that during evolution certain substitutions at protein sites may occur in a coordinated manner due to interactions between amino acid residues. Information on these coordinated substitutions may be useful for analysis of protein structure and function. CRASP is an Internet-available software tool for the detection and analysis of coordinated substitutions in multiple alignments of protein sequences. The approach is based on estimation of the correlation coefficient between the values of a physicochemical parameter at a pair of positions of sequence alignment. The program enables the user to detect and analyze pairwise relationships between amino acid substitutions at protein sequence positions, estimate the contribution of the coordinated substitutions to the evolutionary invariance or variability in integral protein physicochemical characteristics such as the net charge of protein residues and hydrophobic core volume. The CRASP program is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/crasp/.

  12. CapsidMaps: Protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps

    PubMed Central

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L.; Reddy, Vijay

    2016-01-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu. PMID:25697908

  13. CapsidMaps: protein-protein interaction pattern discovery platform for the structural analysis of virus capsids using Google Maps.

    PubMed

    Carrillo-Tripp, Mauricio; Montiel-García, Daniel Jorge; Brooks, Charles L; Reddy, Vijay S

    2015-04-01

    Structural analysis and visualization of protein-protein interactions is a challenging task since it is difficult to appreciate easily the extent of all contacts made by the residues forming the interfaces. In the case of viruses, structural analysis becomes even more demanding because several interfaces coexist and, in most cases, these are formed by hundreds of contacting residues that belong to multiple interacting coat proteins. CapsidMaps is an interactive analysis and visualization tool that is designed to benefit the structural virology community. Developed as an improved extension of the φ-ψ Explorer, here we describe the details of its design and implementation. We present results of analysis of a spherical virus to showcase the features and utility of the new tool. CapsidMaps also facilitates the comparison of quaternary interactions between two spherical virus particles by computing a similarity (S)-score. The tool can also be used to identify residues that are solvent exposed and in the process of locating antigenic epitope regions as well as residues forming the inside surface of the capsid that interact with the nucleic acid genome. CapsidMaps is part of the VIPERdb Science Gateway, and is freely available as a web-based and cross-browser compliant application at http://viperdb.scripps.edu.

  14. Noncollagenous proteins in heterotopic ossification. Immunohistochemical analysis in 15 paraplegies.

    PubMed

    Bosse, A; Wuisman, P; Jones, D B; Schwarz, K

    1993-12-01

    We used immunohistochemical techniques to investigate the distribution pattern of osteonectin, osteocalcin, bone sialoprotein II and the small proteoglycans decorin and PG 100 during different stages of heterotopic ossification (HO) in pressure sores of paraplegic patients. All these noncollagenous proteins (NCPs) accumulated in fibroblasts and preosteoblasts, predominantly in the activity centers of early osteogenetic areas. Mature types of HO showed a more discrete expression pattern for this protein group, with weaker reactions in the narrow osteoblastic rims. Decorin was detected predominantly in the stroma of HO. Our results indicate that the NCPs are important components during the pathogenesis of HO and that fibroblasts may serve as osteoprogenitor cells.

  15. Vertical nanowire arrays as a versatile platform for protein detection and analysis

    NASA Astrophysics Data System (ADS)

    Rostgaard, Katrine R.; Frederiksen, Rune S.; Liu, Yi-Chi C.; Berthing, Trine; Madsen, Morten H.; Holm, Johannes; Nygård, Jesper; Martinez, Karen L.

    2013-10-01

    Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual NWs through several analytical steps, thereby allowing multiplexed detection of different proteins immobilized on different regions of the NW array. We use NW arrays for on-chip extraction, detection and functional analysis of proteins on a nano-scale platform that holds great promise for performing protein analysis on minute amounts of material. The demonstration made here on highly ordered arrays of indium arsenide (InAs) NWs is generic and can be extended to many high aspect ratio nanostructures.Protein microarrays are valuable tools for protein assays. Reducing spot sizes from micro- to nano-scale facilitates miniaturization of platforms and consequently decreased material consumption, but faces inherent challenges in the reduction of fluorescent signals and compatibility with complex solutions. Here we show that vertical arrays of nanowires (NWs) can overcome several bottlenecks of using nanoarrays for extraction and analysis of proteins. The high aspect ratio of the NWs results in a large surface area available for protein immobilization and renders passivation of the surface between the NWs unnecessary. Fluorescence detection of proteins allows quantitative measurements and spatial resolution, enabling us to track individual

  16. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content

    PubMed Central

    Guo, Baojian; Luan, Haiye; Lin, Shen; Lv, Chao; Zhang, Xinzhong; Xu, Rugen

    2016-01-01

    Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4–7 and 6–11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns. PMID:27200019

  17. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content.

    PubMed

    Guo, Baojian; Luan, Haiye; Lin, Shen; Lv, Chao; Zhang, Xinzhong; Xu, Rugen

    2016-01-01

    Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4-7 and 6-11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns.

  18. Stress-Inducible Protein 1 (STI1): Extracellular Vesicle Analysis and Quantification.

    PubMed

    Dias, Marcos Vinicios Salles; Martins, Vilma Regina; Hajj, Glaucia Noeli Maroso

    2016-01-01

    This chapter is derived from our experience in the study of stress-Inducible Protein 1 (STI1) in extracellular vesicles. We used different techniques to isolate, explore, and characterize the extracellular vesicles that contained this protein. Ultracentrifugation and gel chromatography were used to isolate extracellular vesicles of different sizes, nanotracking particle analysis (NTA) determined number and size of vesicles, while flow cytometry and ELISA were used to determine the specific protein content of vesicles. PMID:27665558

  19. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis.

    PubMed

    Irrgang, A; Weise, C; Murugaiyan, J; Roesler, U

    2015-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  20. BIMOLECULAR FLUORESCENCE COMPLEMENTATION (BiFC) ANALYSIS AS A PROBE OF PROTEIN INTERACTIONS IN LIVING CELLS

    PubMed Central

    Kerppola, Tom K.

    2009-01-01

    Protein interactions are a fundamental mechanism for the generation of biological regulatory specificity. The study of protein interactions in living cells is of particular significance because the interactions that occur in a particular cell depend on the full complement of proteins present in the cell and the external stimuli that influence the cell. Bimolecular fluorescence complementation (BiFC) analysis enables direct visualization of protein interactions in living cells. The BiFC assay is based on the association between two non-fluorescent fragments of a fluorescent protein when they are brought in proximity to each other by an interaction between proteins fused to the fragments. Numerous protein interactions have been visualized using the BiFC assay in many different cell types and organisms. The BiFC assay is technically straightforward and can be performed using standard molecular biology and cell culture reagents and a regular fluorescence microscope or flow cytometer. PMID:18573091

  1. Identification of immunodominant proteins of the microalgae Prototheca by proteomic analysis

    PubMed Central

    Irrgang, A.; Weise, C.; Murugaiyan, J.; Roesler, U.

    2014-01-01

    Prototheca zopfii associated with bovine mastitis and human protothecosis exists as two genotypes, of which genotype 1 is considered as non-infectious and genotype 2 as infectious. The mechanism of infection has not yet been described. The present study was aimed to identify genotype 2-specific immunodominant proteins. Prototheca proteins were separated using two-dimensional gel electrophoresis. Subsequent western blotting with rabbit hyperimmune serum revealed 28 protein spots. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis resulted in the identification of 15 proteins including malate dehydrogenase, elongation factor 1-alpha, heat shock protein 70, and 14-3-3 protein, which were previously described as immunogenic proteins of other eukaryotic pathogens. PMID:25755891

  2. Differential protein network analysis of the immune cell lineage.

    PubMed

    Clancy, Trevor; Hovig, Eivind

    2014-01-01

    Recently, the Immunological Genome Project (ImmGen) completed the first phase of the goal to understand the molecular circuitry underlying the immune cell lineage in mice. That milestone resulted in the creation of the most comprehensive collection of gene expression profiles in the immune cell lineage in any model organism of human disease. There is now a requisite to examine this resource using bioinformatics integration with other molecular information, with the aim of gaining deeper insights into the underlying processes that characterize this immune cell lineage. We present here a bioinformatics approach to study differential protein interaction mechanisms across the entire immune cell lineage, achieved using affinity propagation applied to a protein interaction network similarity matrix. We demonstrate that the integration of protein interaction networks with the most comprehensive database of gene expression profiles of the immune cells can be used to generate hypotheses into the underlying mechanisms governing the differentiation and the differential functional activity across the immune cell lineage. This approach may not only serve as a hypothesis engine to derive understanding of differentiation and mechanisms across the immune cell lineage, but also help identify possible immune lineage specific and common lineage mechanism in the cells protein networks. PMID:25309909

  3. Genomic analysis of the major bovine milk protein genes.

    PubMed

    Threadgill, D W; Womack, J E

    1990-12-11

    The genomic arrangement of the major bovine milk protein genes has been determined using a combination of physical mapping techniques. The major milk proteins consist of the four caseins, alpha s1 (CASAS1), alpha s2 (CASAS2), beta (CASB), and kappa (CASK), as well as the two major whey proteins, alpha-lactalbumin (LALBA) and beta-lactoglobulin (LGB). A panel of bovine X hamster hybrid somatic cells analyzed for the presence or absence of bovine specific restriction fragments revealed the genes coding for the major milk proteins to reside on three chromosomes. The four caseins were assigned to syntenic group U15 and localized to bovine chromosome 6 at q31-33 by in situ hybridization. LALBA segregated with syntenic group U3, while LGB segregated with U16. Pulsed-field gel electrophoresis confirmed genetic mapping results indicating tight linkage of the casein genes. The four genes reside on less than 200 kb of DNA in the order CASAS1-CASB-CASAS2-CASK. Multiple restriction fragment length polymorphisms were also found at the six loci in three breeds of cattle.

  4. Analysis of proteins using DIGE and MALDI mass spectrometry

    EPA Science Inventory

    In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...

  5. CONSTRUCTION AND ANALYSIS OF IPBR/XYLS HYBRID REGULATORY PROTEINS

    EPA Science Inventory

    IpbR and XylS are related regulatory proteins (having 56% identity). IpbR responds to isopropylbenzene as well as to a variety of hydrophobic chemicals to activate expression of the isopropylbenzene catabolic pathway operon of pRE4 from ipbOP. XylS responds to substituted benzoic...

  6. Identification, classification, and analysis of beta-bulges in proteins.

    PubMed Central

    Chan, A. W.; Hutchinson, E. G.; Harris, D.; Thornton, J. M.

    1993-01-01

    A beta-bulge is a region of irregularity in a beta-sheet involving two beta-strands. It usually involves two or more residues in the bulged strand opposite to a single residue on the adjacent strand. These irregularities in beta-sheets were identified and classified automatically, extending the definition of beta-bulges given by Richardson et al. (Richardson, J.S., Getzoff, E.D., & Richardson, D.C., 1978, Proc. Natl. Acad. Sci. USA 75, 2574-2578). A set of 182 protein chains (170 proteins) was used, and a total of 362 bulges were extracted. Five types of beta-bulges were found: classic, G1, wide, bent, and special. Their characteristic amino acid preferences were found for most classes of bulges. Basically, bulges occur frequently in proteins; on average there are more than two bulges per protein. In general, beta-bulges produce two main changes in the structure of a beta-sheet: (1) disrupt the normal alternation of side-chain direction; (2) accentuate the twist of the sheet, altering the direction of the surrounding strands. PMID:8251933

  7. Functional Analysis of Protein Tyrosine Phosphatases in Thrombosis and Hemostasis.

    PubMed

    Rahmouni, Souad; Hego, Alexandre; Delierneux, Céline; Wéra, Odile; Musumeci, Lucia; Tautz, Lutz; Oury, Cécile

    2016-01-01

    Platelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and hemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins.In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes (1) aggregation and secretion experiments with mouse and human platelets, (2) immunoprecipitation and immunoblot assays to study platelet signaling events, (3) detailed protocols to use selected animal models in order to investigate thrombosis and hemostasis in vivo, and (4) strategies for utilizing pharmacological inhibitors on human platelets. PMID:27514813

  8. PROTEIN & SENSORY ANALYSIS TO CHARACTERIZE MEXICAN CHIHUAHUA CHEESES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been established that native microflora in raw milk cheeses, including Queso Chihuahua, a Mexican cheese variety, contributes to the development of unique flavors through degradation of milk proteins resulting in the release of free amino acids and short peptides that influence the taste and ...

  9. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A.

    PubMed Central

    Shoseyov, O; Takagi, M; Goldstein, M A; Doi, R H

    1992-01-01

    The cbpA gene for the Clostridium cellulovorans cellulose binding protein (CbpA), which is part of the multisubunit cellulase complex, has been cloned and sequenced. When cbpA was expressed in Escherichia coli, proteins capable of binding to crystalline cellulose and of interacting with anti-CbpA were observed. The cbpA gene consists of 5544 base pairs and encodes a protein containing 1848 amino acids with a molecular mass of 189,036 Da. The open reading frame is preceded by a Gram-positive-type ribosome binding site. A signal peptide sequence of 28 amino acids is present at its N terminus. The encoded protein is highly hydrophobic with extremely high levels of threonine and valine residues. There are two types of putative cellulose binding domains of approximately 100 amino acids that are slightly hydrophilic and eight conserved, highly hydrophobic beta-sheet regions of approximately 140 amino acids. These latter hydrophobic regions may be the CbpA domains that interact with the different enzymatic subunits of the cellulase complex. Images PMID:1565642

  10. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    SciTech Connect

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries several regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this

  11. MitoInteractome: Mitochondrial protein interactome database, and its application in 'aging network' analysis

    PubMed Central

    2009-01-01

    Background Mitochondria play a vital role in the energy production and apoptotic process of eukaryotic cells. Proteins in the mitochondria are encoded by nuclear and mitochondrial genes. Owing to a large increase in the number of identified mitochondrial protein sequences and completed mitochondrial genomes, it has become necessary to provide a web-based database of mitochondrial protein information. Results We present 'MitoInteractome', a consolidated web-based portal containing a wealth of information on predicted protein-protein interactions, physico-chemical properties, polymorphism, and diseases related to the mitochondrial proteome. MitoInteractome contains 6,549 protein sequences which were extracted from the following databases: SwissProt, MitoP, MitoProteome, HPRD and Gene Ontology database. The first general mitochondrial interactome has been constructed based on the concept of 'homologous interaction' using PSIMAP (Protein Structural Interactome MAP) and PEIMAP (Protein Experimental Interactome MAP). Using the above mentioned methods, protein-protein interactions were predicted for 74 species. The mitochondrial protein interaction data of humans was used to construct a network for the aging process. Analysis of the 'aging network' gave us vital insights into the interactions among proteins that influence the aging process. Conclusion MitoInteractome is a comprehensive database that would (1) aid in increasing our understanding of the molecular functions and interaction networks of mitochondrial proteins, (2) help in identifying new target proteins for experimental research using predicted protein-protein interaction information, and (3) help in identifying biomarkers for diagnosis and new molecular targets for drug development related to mitochondria. MitoInteractome is available at http://mitointeractome.kobic.kr/. PMID:19958484

  12. A Proteomic Strategy for Global Analysis of Plant Protein Complexes[W][OPEN

    PubMed Central

    Aryal, Uma K.; Xiong, Yi; McBride, Zachary; Kihara, Daisuke; Xie, Jun; Hall, Mark C.; Szymanski, Daniel B.

    2014-01-01

    Global analyses of protein complex assembly, composition, and location are needed to fully understand how cells coordinate diverse metabolic, mechanical, and developmental activities. The most common methods for proteome-wide analysis of protein complexes rely on affinity purification-mass spectrometry or yeast two-hybrid approaches. These methods are time consuming and are not suitable for many plant species that are refractory to transformation or genome-wide cloning of open reading frames. Here, we describe the proof of concept for a method allowing simultaneous global analysis of endogenous protein complexes that begins with intact leaves and combines chromatographic separation of extracts from subcellular fractions with quantitative label-free protein abundance profiling by liquid chromatography-coupled mass spectrometry. Applying this approach to the crude cytosolic fraction of Arabidopsis thaliana leaves using size exclusion chromatography, we identified hundreds of cytosolic proteins that appeared to exist as components of stable protein complexes. The reliability of the method was validated by protein immunoblot analysis and comparisons with published size exclusion chromatography data and the masses of known complexes. The method can be implemented with appropriate instrumentation, is applicable to any biological system, and has the potential to be further developed to characterize the composition of protein complexes and measure the dynamics of protein complex localization and assembly under different conditions. PMID:25293756

  13. Meta sequence analysis of human blood peptides and their parent proteins.

    PubMed

    Bowden, Peter; Pendrak, Voitek; Zhu, Peihong; Marshall, John G

    2010-04-18

    Sequence analysis of the blood peptides and their qualities will be key to understanding the mechanisms that contribute to error in LC-ESI-MS/MS. Analysis of peptides and their proteins at the level of sequences is much more direct and informative than the comparison of disparate accession numbers. A portable database of all blood peptide and protein sequences with descriptor fields and gene ontology terms might be useful for designing immunological or MRM assays from human blood. The results of twelve studies of human blood peptides and/or proteins identified by LC-MS/MS and correlated against a disparate array of genetic libraries were parsed and matched to proteins from the human ENSEMBL, SwissProt and RefSeq databases by SQL. The reported peptide and protein sequences were organized into an SQL database with full protein sequences and up to five unique peptides in order of prevalence along with the peptide count for each protein. Structured query language or BLAST was used to acquire descriptive information in current databases. Sampling error at the level of peptides is the largest source of disparity between groups. Chi Square analysis of peptide to protein distributions confirmed the significant agreement between groups on identified proteins.

  14. Sequence analysis and structural implications of rotavirus capsid proteins.

    PubMed

    Parbhoo, N; Dewar, J B; Gildenhuys, S

    2016-01-01

    Rotavirus is the major cause of severe virus-associated gastroenteritis worldwide in children aged 5 and younger. Many children lose their lives annually due to this infection and the impact is particularly pronounced in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP2, VP6 and VP7 is shown by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. Degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14-45 amino acids showing conservation of less than 60%. These changes are localised to the outer surface alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with each protein's multiple structural roles in the infection cycle. Thus, although the nucleotide sequences vary due to the error-prone nature of replication and lack of proof reading, the corresponding amino acid sequence of VP2, 6 and 7 remain relatively conserved. Benefits of this knowledge about the conservation include the ability to target proteins at sites that cannot undergo mutational changes without influencing viral fitness; as well as possibility to study systems that are highly evolved for structure and function in order to determine how to generate and manipulate such systems for use in various biotechnological applications. PMID:27640436

  15. Different techniques for urinary protein analysis of normal and lung cancer patients.

    PubMed

    Tantipaiboonwong, Payungsak; Sinchaikul, Supachok; Sriyam, Supawadee; Phutrakul, Suree; Chen, Shui-Tein

    2005-03-01

    Many components in urine are useful in clinical diagnosis and urinary proteins are known as important components to define many diseases such as proteinuria, kidney, bladder and urinary tract diseases. In this study, we focused on the comparison of different sample preparation methods for isolating urinary proteins prior to protein analysis of pooled healthy and lung cancer patient samples. Selective method was used for preliminary investigation of some putative urinary protein markers. Urine samples were passed first through a gel filtration column (PD-10 desalting column) to remove high salts and subsequently concentrated. Remaining interferences were removed by ultrafiltration or four precipitation methods. The analysis of urinary proteins by high-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed many similarities in profiles among preparation methods and a few profiles were different between normal and lung cancer patients. In contrast, the results of two-dimensional gel electrophoresis (2-DE) showed more distinctly different protein patterns. Our finding showed that the sequential preparation of urinary proteins by gel filtration and ultrafiltration could retain most urinary proteins which demonstrated the highest protein spots on 2-D gels and able to identify preliminary urinary protein markers related to cancer. Although sequential preparation of urine samples by gel filtration and protein precipitation resulted in low amounts of proteins on 2-D gels, high Mr proteins were easily detected. Therefore, there are alternative choices for urine sample preparation for studying the urinary proteome and identifying urinary protein markers important for further preclinical diagnostic and therapeutic applications. PMID:15693063

  16. Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Salivary proteins of hematophagous Culicoides spp. are thought to play an important role in pathogen transmission and skin hypersensitivity. Analysis of these proteins, however, has been problematic due to the difficulty in obtaining adequate amounts of secreted Culicoides saliva. In the current stu...

  17. Network representation of protein interactions: Theory of graph description and analysis.

    PubMed

    Kurzbach, Dennis

    2016-09-01

    A methodological framework is presented for the graph theoretical interpretation of NMR data of protein interactions. The proposed analysis generalizes the idea of network representations of protein structures by expanding it to protein interactions. This approach is based on regularization of residue-resolved NMR relaxation times and chemical shift data and subsequent construction of an adjacency matrix that represents the underlying protein interaction as a graph or network. The network nodes represent protein residues. Two nodes are connected if two residues are functionally correlated during the protein interaction event. The analysis of the resulting network enables the quantification of the importance of each amino acid of a protein for its interactions. Furthermore, the determination of the pattern of correlations between residues yields insights into the functional architecture of an interaction. This is of special interest for intrinsically disordered proteins, since the structural (three-dimensional) architecture of these proteins and their complexes is difficult to determine. The power of the proposed methodology is demonstrated at the example of the interaction between the intrinsically disordered protein osteopontin and its natural ligand heparin.

  18. Quantitative Analysis of Age Specific Variation in the Abundance of Human Female Parotid Salivary Proteins

    PubMed Central

    Ambatipudi, Kiran S.; Lu, Bingwen; Hagen, Fred K; Melvin, James E.; Yates, John R.

    2010-01-01

    Summary Human saliva is a protein-rich, easily accessible source of potential local and systemic biomarkers to monitor changes that occur under pathological conditions; however little is known about the changes in abundance associated with normal aging. In this study, we performed a comprehensive proteomic profiling of pooled saliva collected from the parotid glands of healthy female subjects, divided into two age groups 1 and 2 (20–30 and 55–65 years old, respectively). Hydrophobic charge interaction chromatography was used to separate high from low abundant proteins prior to characterization of the parotid saliva using multidimensional protein identification technology (MudPIT). Collectively, 532 proteins were identified in the two age groups. Of these proteins, 266 were identified exclusively in one age group, while 266 proteins were common to both groups. The majority of the proteins identified in the two age groups belonged to the defense and immune response category. Of note, several defense related proteins (e.g. lysozyme, lactoferrin and histatin-1) were significantly more abundant in group 2 as determined by G-test. Selected representative mass spectrometric findings were validated by western blot analysis. Our study reports the first quantitative analysis of differentially regulated proteins in ductal saliva collected from young and older female subjects. This study supports the use of high-throughput proteomics as a robust discovery tool. Such results provide a foundation for future studies to identify specific salivary proteins which may be linked to age-related diseases specific to women. PMID:19764810

  19. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.

    PubMed

    Tada, Yuichi; Kashimura, Takaaki

    2009-03-01

    To identify key proteins in the regulation of salt tolerance in the mangrove plant Bruguiera gymnorhiza, proteome analysis of samples grown under conditions of salt stress was performed. Comparative two-dimensional electrophoresis revealed that two, three and one protein were differentially expressed in the main root, lateral root and leaf, respectively, in response to salt stress. Among these, three proteins were identified by internal peptide sequence analysis: fructose-1,6-bisphosphate (FBP) aldolase and a novel protein in the main root, and osmotin in the lateral root. These results suggest that FBP aldolase and osmotin play roles in salt tolerance mechanisms common to both glycophytes and mangrove plants. Osmotin was abundant at early time points following salt treatment and seems to play a role in initial osmotic adaptation in lateral roots of B. gymnorhiza under salt stress, but does not contribute towards adaptation to prolonged or continuous exposure to salt stress. The amounts of these proteins were not correlated with those of the respective mRNAs, as determined by microarray analysis. A novel salt-responsive protein, not previously detected by expressed sequence tag analysis or transcriptome analysis, was also identified in this proteomic approach, and may provide insight into the salt tolerance mechanism of the mangrove plant. This is the first report of proteome analysis with detailed analysis of main and lateral roots of mangrove plants under salt stress conditions. PMID:19131358

  20. Proteomic analysis of cellular soluble proteins from human bronchial smooth muscle cells by combining nondenaturing micro 2DE and quantitative LC-MS/MS. 2. Similarity search between protein maps for the analysis of protein complexes.

    PubMed

    Jin, Ya; Yuan, Qi; Zhang, Jun; Manabe, Takashi; Tan, Wen

    2015-09-01

    Human bronchial smooth muscle cell soluble proteins were analyzed by a combined method of nondenaturing micro 2DE, grid gel-cutting, and quantitative LC-MS/MS and a native protein map was prepared for each of the identified 4323 proteins [1]. A method to evaluate the degree of similarity between the protein maps was developed since we expected the proteins comprising a protein complex would be separated together under nondenaturing conditions. The following procedure was employed using Excel macros; (i) maps that have three or more squares with protein quantity data were selected (2328 maps), (ii) within each map, the quantity values of the squares were normalized setting the highest value to be 1.0, (iii) in comparing a map with another map, the smaller normalized quantity in two corresponding squares was taken and summed throughout the map to give an "overlap score," (iv) each map was compared against all the 2328 maps and the largest overlap score, obtained when a map was compared with itself, was set to be 1.0 thus providing 2328 "overlap factors," (v) step (iv) was repeated for all maps providing 2328 × 2328 matrix of overlap factors. From the matrix, protein pairs that showed overlap factors above 0.65 from both protein sides were selected (431 protein pairs). Each protein pair was searched in a database (UniProtKB) on complex formation and 301 protein pairs, which comprise 35 protein complexes, were found to be documented. These results demonstrated that native protein maps and their similarity search would enable simultaneous analysis of multiple protein complexes in cells.

  1. Analysis of protein kinase C requirement for exocytosis in permeabilized rat basophilic leukaemia RBL-2H3 cells: a GTP-binding protein(s) as a potential target for protein kinase C.

    PubMed Central

    Buccione, R; Di Tullio, G; Caretta, M; Marinetti, M R; Bizzarri, C; Francavilla, S; Luini, A; De Matteis, M A

    1994-01-01

    The role of protein kinase C in calcium-dependent exocytosis was investigated in permeabilized rat basophilic leukaemia cells. When protein kinase C was down-regulated by phorbol myristate acetate (1 microM for 3-6 h) or inhibited by pharmacological agents such as calphostin C (1 microM) or a protein kinase C-specific pseudo-substrate peptide inhibitor (100-200 microM), cells lost the ability to secrete in response to 10 microM free Ca2+. In contrast, a short treatment (15 min) with phorbol myristate acetate, which maximally activates protein kinase C, potentiated the effects of calcium. Biochemical analysis of protein kinase C-deprived cells indicated that loss of the Ca(2+)-induced secretory response correlated with disappearance of protein kinase C-alpha. In addition, at the concentrations effective for exocytosis, calcium caused translocation of protein kinase C-alpha to the membrane fraction and stimulated phospholipase C, suggesting that, in permeabilized cells, protein kinase C can be activated by calcium through generation of the phospholipase C metabolite diacylglycerol. The delta, epsilon and zeta Ca(2+)-independent protein kinase C isoenzymes were insensitive to phorbol myristate acetate-induced down-regulation and did not, as expected, translocate to the particulate fraction in response to calcium. Interestingly, secretory competence was restored in cells depleted of protein kinase C or in which protein kinase C itself was inhibited by non-hydrolysable GTP analogues, but not by GTP, suggesting that protein kinase C might regulate the ability of a G protein(s) directly controlling the exocytotic machinery to be activated by endogenous GTP. Images Figure 1 Figure 4 Figure 5 PMID:8129713

  2. Network analysis and cross species comparison of protein-protein interaction networks of human, mouse and rat cytochrome P450 proteins that degrade xenobiotics.

    PubMed

    Karthikeyan, Bagavathy Shanmugam; Akbarsha, Mohammad Abdulkader; Parthasarathy, Subbiah

    2016-06-21

    Cytochrome P450 (CYP) enzymes that degrade xenobiotics play a critical role in the metabolism and biotransformation of drugs and xenobiotics in humans as well as experimental animal models such as mouse and rat. These proteins function as a network collectively as well as independently. Though there are several reports on the organization, regulation and functionality of various CYP enzymes at the molecular level, the understanding of organization and functionality of these proteins at the holistic level remain unclear. The objective of this study is to understand the organization and functionality of xenobiotic degrading CYP enzymes of human, mouse and rat using network theory approaches and to study species differences that exist among them at the holistic level. For our analysis, a protein-protein interaction (PPI) network for CYP enzymes of human, mouse and rat was constructed using the STRING database. Topology, centrality, modularity and robustness analyses were performed for our predicted CYP PPI networks that were then validated by comparison with randomly generated network models. Network centrality analyses of CYP PPI networks reveal the central/hub proteins in the network. Modular analysis of the CYP PPI networks of human, mouse and rat resulted in functional clusters. These clusters were subjected to ontology and pathway enrichment analysis. The analyses show that the cluster of the human CYP PPI network is enriched with pathways principally related to xenobiotic/drug metabolism. Endo-xenobiotic crosstalk dominated in mouse and rat CYP PPI networks, and they were highly enriched with endogenous metabolic and signaling pathways. Thus, cross-species comparisons and analyses of human, mouse and rat CYP PPI networks gave insights about species differences that existed at the holistic level. More investigations from both reductionist and holistic perspectives can help understand CYP metabolism and species extrapolation in a much better way. PMID:27194593

  3. Analysis of mitogen-activated protein kinase activity in yeast.

    PubMed

    Elion, Elaine A; Sahoo, Rupam

    2010-01-01

    Mitogen-activated protein (MAP) kinases play central roles in transmitting extracellular and intracellular information in a wide variety of situations in eukaryotic cells. Their activities are perturbed in a large number of diseases, and their activating kinases are currently therapeutic targets in cancer. MAPKs are highly conserved among all eukaryotes. MAPKs were first cloned from the yeast Saccharomyces cerevisiae. Yeast has five MAPKs and one MAPK-like kinase. The mating MAPK Fus3 is the best characterized yeast MAPK. Members of all subfamilies of human MAPKs can functionally substitute S. cerevisiae MAPKs, providing systems to use genetic approaches to study the functions of either yeast or human MAPKs and to identify functionally relevant amino acid residues that enhance or reduce the effects of therapeutically relevant inhibitors and regulatory proteins. Here, we describe an assay to measure Fus3 activity in immune complexes prepared from S. cerevisiae extracts. The assay conditions are applicable to other MAPKs, as well. PMID:20811996

  4. Micropurification techniques in the analysis of amyloid proteins

    PubMed Central

    Kaplan, B; Shtrasburg, S; Pras, M

    2003-01-01

    This review describes the different microtechniques developed for the extraction and purification of amyloid proteins from small specimens of fresh and formalin fixed tissues. These procedures differ with respect to solvent type, extraction conditions, and protein purification strategy. The advantages and disadvantages of the different microtechniques are discussed by taking into consideration tissue type (fresh of fixed) and size, amyloid type, and its content in the tissue. The review demonstrates the applicability of these techniques for the immunochemical and chemical characterisation of amyloid in different clinical forms of amyloidosis and in experimental small animal models. The clinical value of the applied microtechniques and their importance in the study of the pathogenesis of amyloid related diseases are outlined. PMID:12560384

  5. Structural and biophysical analysis of nuclease protein antibiotics.

    PubMed

    Klein, Alexander; Wojdyla, Justyna Aleksandra; Joshi, Amar; Josts, Inokentijs; McCaughey, Laura C; Housden, Nicholas G; Kaminska, Renata; Byron, Olwyn; Walker, Daniel; Kleanthous, Colin

    2016-09-15

    Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Å structure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria. PMID:27402794

  6. Analysis of flooding-responsive proteins localized in the nucleus of soybean root tips.

    PubMed

    Komatsu, Setsuko; Hiraga, Susumu; Nouri, Mohammad Zaman

    2014-02-01

    Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.

  7. Comparative proteomic analysis of thiol proteins in the liver after oxidative stress induced by diethylnitrosamine.

    PubMed

    Aparicio-Bautista, Diana I; Pérez-Carreón, Julio I; Gutiérrez-Nájera, Nora; Reyes-Grajeda, Juan P; Arellanes-Robledo, Jaime; Vásquez-Garzón, Verónica R; Jiménez-García, Mónica N; Villa-Treviño, Saúl

    2013-12-01

    Conversion of protein -SH groups to disulfides is an early event during protein oxidation, which has prompted great interest in the study of thiol proteins. Chemical carcinogenesis is strongly associated with the formation of reactive oxygen species (ROS). The goal of this study was to detect thiol proteins that are sensitive to ROS generated during diethylnitrosamine (DEN) metabolism in the rat liver. DEN has been widely used to induce experimental hepatocellular carcinoma. We used modified redox-differential gel electrophoresis (redox-DIGE method) and mass spectrometry MALDI-TOF/TOF to identify differential oxidation protein profiles associated with carcinogen exposure. Our analysis revealed a time-dependent increase in the number of oxidized thiol proteins after carcinogen treatment; some of these proteins have antioxidant activity, including thioredoxin, peroxirredoxin 2, peroxiredoxin 6 and glutathione S-transferase alpha-3. According to functional classifications, the identified proteins in our study included chaperones, oxidoreductases, activity isomerases, hydrolases and other protein-binding partners. This study demonstrates that oxidative stress generated by DEN tends to increase gradually through DEN metabolism, causes time-dependent necrosis in the liver and has an oxidative effect on thiol proteins, thereby increasing the number of oxidized thiol proteins. Furthermore, these events occurred during the hepatocarcinogenesis initiation period.

  8. Characterization of Nora Virus Structural Proteins via Western Blot Analysis

    PubMed Central

    Ericson, Brad L.; Carlson, Darby J.

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  9. Functional Analysis of West Nile Virus Proteins in Human Cells.

    PubMed

    Kaufusi, Pakieli H; Tseng, Alanna; Nerurkar, Vivek R

    2016-01-01

    West Nile Virus (WNV) lineage 2 strains have been responsible for large outbreaks of neuroinvasive disease in the United States and Europe between 1999 and 2012. Different strains in this lineage have previously been shown to produce either severe or mild neuroinvasive disease in mice. Phylogenetic and amino acid comparisons between highly or less virulent lineage 2 strains have demonstrated that the nonstructural (NS) gene(s) were most variable. However, the roles of some of the NS proteins in virus life cycle are unknown. The aim of this chapter is to describe simple computational and experimental approaches that can be used to: (1) explore the possible roles of the NS proteins in virus life cycle and (2) test whether the subtle amino acid changes in WNV NS gene products contributed to the evolution of more virulent strains. The computational approaches include methods based on: (1) sequence similarity, (2) sequence motifs, and (3) protein membrane topology predictions. Highlighted experimental procedures include: (1) isolation of viral RNA from WNV-infected cells, (2) cDNA synthesis and PCR amplification of WNV genes, (3) cloning into GFP expression vector, (4) bacterial transformation, (5) plasmid isolation and purification, (6) transfection using activated dendrimers (Polyfect), and (7) immunofluorescence staining of transfected mammalian cells. PMID:27188549

  10. 14C Analysis of protein extracts from Bacillus spores.

    PubMed

    Cappuccio, Jenny A; Falso, Miranda J Sarachine; Kashgarian, Michaele; Buchholz, Bruce A

    2014-07-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F(14)C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F(14)C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F(14)C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F(14)C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their (14)C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate (14)C bomb-pulse dating. Since media is contemporary, (14)C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media.

  11. Analysis of the PS II proteins MSP and CP43

    SciTech Connect

    Sherman, L.A.

    1995-07-01

    The goals of this proposal were two-fold: (1) to analyze the impact of mutations in the psbO gene (coding for the Mn-stabilizing protein, MSP) on O{sub 2}-evolution; and (2) to analyze membrane assembly in cyanobacteria, especially the effect of iron deficiency on this process. The mutations in the psbO gene were performed in the transformable and photoheterotrophic cyanobacterium Synechocystis sp. PCC6803, whereas the research with membrane assembly and iron deficiency was performed in the transformable strain Synechococcus sp. PCC7942. Our work with the Synechocystis psbO gene demonstrated that the MSP protein is not an essential protein but serves a regulatory function. We produced a deletion mutant, which we call {triangle}psbO. The {triangle}psbO strain was still capable of photosynthetic growth and evolved O{sub 2} at rates of 1/3 to 1/2 that of the wild type. We have characterized this strain in some detail and have reported the results in two publications in Biochemistry. The second of the these two papers was published during this grant period and is enclosed.

  12. Increased precision for analysis of protein-ligand dissociation constants determined from chemical shift titrations.

    PubMed

    Markin, Craig J; Spyracopoulos, Leo

    2012-06-01

    NMR is ideally suited for the analysis of protein-protein and protein ligand interactions with dissociation constants ranging from ~2 μM to ~1 mM, and with kinetics in the fast exchange regime on the NMR timescale. For the determination of dissociation constants (K ( D )) of 1:1 protein-protein or protein-ligand interactions using NMR, the protein and ligand concentrations must necessarily be similar in magnitude to the K ( D ), and nonlinear least squares analysis of chemical shift changes as a function of ligand concentration is employed to determine estimates for the parameters K ( D ) and the maximum chemical shift change (Δδ(max)). During a typical NMR titration, the initial protein concentration, [P (0)], is held nearly constant. For this condition, to determine the most accurate parameters for K ( D ) and Δδ(max) from nonlinear least squares analyses requires initial protein concentrations that are ~0.5 × K ( D ), and a maximum concentration for the ligand, or titrant, of ~10 × [P (0)]. From a practical standpoint, these requirements are often difficult to achieve. Using Monte Carlo simulations, we demonstrate that co-variation of the ligand and protein concentrations during a titration leads to an increase in the precision of the fitted K ( D ) and Δδ(max) values when [P (0)] > K ( D ). Importantly, judicious choice of protein and ligand concentrations for a given NMR titration, combined with nonlinear least squares analyses using two independent variables (ligand and protein concentrations) and two parameters (K ( D ) and Δδ(max)) is a straightforward approach to increasing the accuracy of measured dissociation constants for 1:1 protein-ligand interactions.

  13. ProteomeScout: a repository and analysis resource for post-translational modifications and proteins

    PubMed Central

    Matlock, Matthew K.; Holehouse, Alex S.; Naegle, Kristen M.

    2015-01-01

    ProteomeScout (https://proteomescout.wustl.edu) is a resource for the study of proteins and their post-translational modifications (PTMs) consisting of a database of PTMs, a repository for experimental data, an analysis suite for PTM experiments, and a tool for visualizing the relationships between complex protein annotations. The PTM database is a compendium of public PTM data, coupled with user-uploaded experimental data. ProteomeScout provides analysis tools for experimental datasets, including summary views and subset selection, which can identify relationships within subsets of data by testing for statistically significant enrichment of protein annotations. Protein annotations are incorporated in the ProteomeScout database from external resources and include terms such as Gene Ontology annotations, domains, secondary structure and non-synonymous polymorphisms. These annotations are available in the database download, in the analysis tools and in the protein viewer. The protein viewer allows for the simultaneous visualization of annotations in an interactive web graphic, which can be exported in Scalable Vector Graphics (SVG) format. Finally, quantitative data measurements associated with public experiments are also easily viewable within protein records, allowing researchers to see how PTMs change across different contexts. ProteomeScout should prove useful for protein researchers and should benefit the proteomics community by providing a stable repository for PTM experiments. PMID:25414335

  14. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis.

    PubMed

    Ding, Hui; Feng, Peng-Mian; Chen, Wei; Lin, Hao

    2014-08-01

    The bacteriophage virion proteins play extremely important roles in the fate of host bacterial cells. Accurate identification of bacteriophage virion proteins is very important for understanding their functions and clarifying the lysis mechanism of bacterial cells. In this study, a new sequence-based method was developed to identify phage virion proteins. In the new method, the protein sequences were initially formulated by the g-gap dipeptide compositions. Subsequently, the analysis of variance (ANOVA) with incremental feature selection (IFS) was used to search for the optimal feature set. It was observed that, in jackknife cross-validation, the optimal feature set including 160 optimized features can produce the maximum accuracy of 85.02%. By performing feature analysis, we found that the correlation between two amino acids with one gap was more important than other correlations for phage virion protein prediction and that some of the 1-gap dipeptides were important and mainly contributed to the virion protein prediction. This analysis will provide novel insights into the function of phage virion proteins. On the basis of the proposed method, an online web-server, PVPred, was established and can be freely accessed from the website (http://lin.uestc.edu.cn/server/PVPred). We believe that the PVPred will become a powerful tool to study phage virion proteins and to guide the related experimental validations.

  15. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  16. Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus

    PubMed Central

    Kato, Tatsuya; Sugioka, Saki; Itagaki, Kohei; Park, Enoch Y.

    2016-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has not been reported. In this study, we constructed a recombinant BmNPV (BmNPVΔbgp/AcGP64/EGFP) whose surface 64 kDa glycoprotein (BmGP64) was substituted with that from AcMNPV (AcGP64). BmNPVΔbgp/AcGP64/EGFP also carried an EGFP gene under the control of the CMV promoter. BmNPVΔbgp/AcGP64/EGFP successfully transduced HEK293T cells. In comparison, a control construct (BmNPVΔbgp/BmGP64/EGFP) which possessed BmGP64 instead of AcGP64 did not express EGFP in HEK293T cells. The transduction efficiency of BmNPVΔbgp/AcGP64/EGFP was lower than that of an AcMNPV based-BacMam GFP transduction control. This result indicates that AcGP64 facilitates BmNPV transduction into HEK293T cells. BmNPV can be prepared easily on a large scale because BmNPV can infect silkworm larvae without any special equipment, even though specific diet is needed for silkworm rearing. BmNPV gene transduction into mammalian cells can potentially be applied easily for gene delivery into mammalian cells. PMID:27562533

  17. Gene transduction in mammalian cells using Bombyx mori nucleopolyhedrovirus assisted by glycoprotein 64 of Autographa californica multiple nucleopolyhedrovirus.

    PubMed

    Kato, Tatsuya; Sugioka, Saki; Itagaki, Kohei; Park, Enoch Y

    2016-01-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV), an alphabaculovirus, has been widely utilized for protein expression in not only insect cells but also mammalian cells. AcMNPV is closely related to Bombyx mori nucleopolyhedrovirus (BmNPV), and nucleotide sequences of AcMNPV genes have high similarity with those of BmNPV. However, the transduction of BmNPV into mammalian cells has not been reported. In this study, we constructed a recombinant BmNPV (BmNPVΔbgp/AcGP64/EGFP) whose surface 64 kDa glycoprotein (BmGP64) was substituted with that from AcMNPV (AcGP64). BmNPVΔbgp/AcGP64/EGFP also carried an EGFP gene under the control of the CMV promoter. BmNPVΔbgp/AcGP64/EGFP successfully transduced HEK293T cells. In comparison, a control construct (BmNPVΔbgp/BmGP64/EGFP) which possessed BmGP64 instead of AcGP64 did not express EGFP in HEK293T cells. The transduction efficiency of BmNPVΔbgp/AcGP64/EGFP was lower than that of an AcMNPV based-BacMam GFP transduction control. This result indicates that AcGP64 facilitates BmNPV transduction into HEK293T cells. BmNPV can be prepared easily on a large scale because BmNPV can infect silkworm larvae without any special equipment, even though specific diet is needed for silkworm rearing. BmNPV gene transduction into mammalian cells can potentially be applied easily for gene delivery into mammalian cells. PMID:27562533

  18. Multiplexed LC-MS/MS analysis of horse plasma proteins to study doping in sport.

    PubMed

    Barton, Chris; Beck, Paul; Kay, Richard; Teale, Phil; Roberts, Jane

    2009-06-01

    The development of protein biomarkers for the indirect detection of doping in horse is a potential solution to doping threats such as gene and protein doping. A method for biomarker candidate discovery in horse plasma is presented using targeted analysis of proteotypic peptides from horse proteins. These peptides were first identified in a novel list of the abundant proteins in horse plasma. To monitor these peptides, an LC-MS/MS method using multiple reaction monitoring was developed to study the quantity of 49 proteins in horse plasma in a single run. The method was optimised and validated, and then applied to a population of race-horses to study protein variance within a population. The method was finally applied to longitudinal time courses of horse plasma collected after administration of an anabolic steroid to demonstrate utility for hypothesis-driven discovery of doping biomarker candidates.

  19. 14C Analysis of Protein Extracts from Bacillus Spores

    PubMed Central

    Cappucio, Jenny A.; Sarachine Falso, Miranda J.; Kashgarian, Michaele; Buchholz, Bruce A.

    2014-01-01

    Investigators of bioagent incidents or interdicted materials need validated, independent analytical methods that will allow them to distinguish between recently made bioagent samples versus material drawn from the archives of a historical program. Heterotrophic bacteria convert the carbon in their food sources, growth substrate or culture media, into the biomolecules they need. The F14C (fraction modern radiocarbon) of a variety of media, Bacillus spores, and separated proteins from Bacillus spores was measured by accelerator mass spectrometry (AMS). AMS precisely measures F14C values of biological materials and has been used to date the synthesis of biomaterials over the bomb pulse era (1955 to present). The F14C of Bacillus spores reflects the radiocarbon content of the media in which they were grown. In a survey of commercial media we found that the F14C value indicated that carbon sources for the media were alive within about a year of the date of manufacture and generally of terrestrial origin. Hence, bacteria and their products can be dated using their 14C signature. Bacillus spore samples were generated onsite with defined media and carbon free purification and also obtained from archived material. Using mechanical lysis and a variety of washes with carbon free acids and bases, contaminant carbon was removed from soluble proteins to enable accurate 14C bomb-pulse dating. Since media is contemporary, 14C bomb-pulse dating of isolated soluble proteins can be used to distinguish between historical archives of bioagents and those produced from recent media. PMID:24814329

  20. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster

    PubMed Central

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer’s Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  1. Analysis of Amyloid Precursor Protein Function in Drosophila melanogaster.

    PubMed

    Cassar, Marlène; Kretzschmar, Doris

    2016-01-01

    The Amyloid precursor protein (APP) has mainly been investigated in connection with its role in Alzheimer's Disease (AD) due to its cleavage resulting in the production of the Aβ peptides that accumulate in the plaques characteristic for this disease. However, APP is an evolutionary conserved protein that is not only found in humans but also in many other species, including Drosophila, suggesting an important physiological function. Besides Aβ, several other fragments are produced by the cleavage of APP; large secreted fragments derived from the N-terminus and a small intracellular C-terminal fragment. Although these fragments have received much less attention than Aβ, a picture about their function is finally emerging. In contrast to mammals, which express three APP family members, Drosophila expresses only one APP protein called APP-like or APPL. Therefore APPL functions can be studied in flies without the complication that other APP family members may have redundant functions. Flies lacking APPL are viable but show defects in neuronal outgrowth in the central and peripheral nervous system (PNS) in addition to synaptic changes. Furthermore, APPL has been connected with axonal transport functions. In the adult nervous system, APPL, and more specifically its secreted fragments, can protect neurons from degeneration. APPL cleavage also prevents glial death. Lastly, APPL was found to be involved in behavioral deficits and in regulating sleep/activity patterns. This review, will describe the role of APPL in neuronal development and maintenance and briefly touch on its emerging function in circadian rhythms while an accompanying review will focus on its role in learning and memory formation. PMID:27507933

  2. Saliva analysis combining membrane protein purification with surface-enhanced Raman spectroscopy for nasopharyngeal cancer detection

    NASA Astrophysics Data System (ADS)

    Feng, Shangyuan; Lin, Duo; Lin, Juqiang; Huang, Zufang; Chen, Guannan; Li, Yongzeng; Huang, Shaohua; Zhao, Jianhua; Chen, Rong; Zeng, Haishan

    2014-02-01

    A method for saliva analysis combining membrane protein purification with silver nanoparticle-based surface-enhanced Raman spectroscopy (SERS) for non-invasive nasopharyngeal cancer detection was present in this paper. In this method, cellulose acetate membrane was used to obtain purified whole proteins from human saliva while removing other native saliva constituents and exogenous substances. The purified proteins were mixed with silver nanoparticle for SERS analysis. A diagnostic accuracy of 90.2% can be achieved by principal components analysis combined with linear discriminate analysis, for saliva samples obtained from patients with nasopharyngeal cancer (n = 62) and healthy volunteers (n = 30). This exploratory study demonstrated the potential for developing non-invasive, rapid saliva SERS analysis for nasopharyngeal cancer detection.

  3. Analysis of 953 Human Proteins from a Mitochondrial HEK293 Fraction by Complexome Profiling

    PubMed Central

    Wessels, Hans J. C. T.; Vogel, Rutger O.; Lightowlers, Robert N.; Spelbrink, Johannes N.; Rodenburg, Richard J.; van den Heuvel, Lambert P.; van Gool, Alain J.; Gloerich, Jolein; Smeitink, Jan A. M.; Nijtmans, Leo G.

    2013-01-01

    Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification – mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP. PMID:23935861

  4. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei

    2014-06-01

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N^2). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal

  5. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis.

    PubMed

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei

    2014-06-21

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N(2)). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely, normal

  6. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis

    SciTech Connect

    Opron, Kristopher; Xia, Kelin; Wei, Guo-Wei

    2014-06-21

    Protein structural fluctuation, typically measured by Debye-Waller factors, or B-factors, is a manifestation of protein flexibility, which strongly correlates to protein function. The flexibility-rigidity index (FRI) is a newly proposed method for the construction of atomic rigidity functions required in the theory of continuum elasticity with atomic rigidity, which is a new multiscale formalism for describing excessively large biomolecular systems. The FRI method analyzes protein rigidity and flexibility and is capable of predicting protein B-factors without resorting to matrix diagonalization. A fundamental assumption used in the FRI is that protein structures are uniquely determined by various internal and external interactions, while the protein functions, such as stability and flexibility, are solely determined by the structure. As such, one can predict protein flexibility without resorting to the protein interaction Hamiltonian. Consequently, bypassing the matrix diagonalization, the original FRI has a computational complexity of O(N{sup 2}). This work introduces a fast FRI (fFRI) algorithm for the flexibility analysis of large macromolecules. The proposed fFRI further reduces the computational complexity to O(N). Additionally, we propose anisotropic FRI (aFRI) algorithms for the analysis of protein collective dynamics. The aFRI algorithms permit adaptive Hessian matrices, from a completely global 3N × 3N matrix to completely local 3 × 3 matrices. These 3 × 3 matrices, despite being calculated locally, also contain non-local correlation information. Eigenvectors obtained from the proposed aFRI algorithms are able to demonstrate collective motions. Moreover, we investigate the performance of FRI by employing four families of radial basis correlation functions. Both parameter optimized and parameter-free FRI methods are explored. Furthermore, we compare the accuracy and efficiency of FRI with some established approaches to flexibility analysis, namely

  7. A new method for carbon isotopic analysis of protein

    SciTech Connect

    Nelson, D.E. )

    1991-02-01

    The reaction of ninhydrin with amino acids can be used in carbon isotopic studies of protein. The reaction can be applied to extract as carbon dioxide only peptide-bonded carbon in proteinaceous material, thus avoiding most, if not all, contaminants. Test radiocarbon dates on ancient bone indicate that the method provides reliable ages, and stable carbon isotopic data suggest that our understanding of isotopic dietary reconstruction needs detailed examination. The technique should also be useful in biochemical tracing experiments and in global carbon budget studies, and the underlying principle may be applicable to other isotopes and molecules. 28 refs., 1 fig., 1 tab.

  8. (Analysis of proteins essential for Agrobacterium mediated DNA transfer to plant cells). [Single-stranded DNA binding proteins

    SciTech Connect

    Not Available

    1989-12-14

    The tumor inducing (Ti) plasmid of Agrobacterium contains two regions important for infection and transformation of plant cells. One region, the T-DNA, is transferred as a single strand into the plant cell, while the virulence (vir) region is responsible for recognition of susceptible cells, synthesis of the T-DNA single strand (T-strand), formation of a T-strand protein complex and transfer of this complex into susceptible cells. A DNA binding protein, VirE2, was identified as a product of the vir region. Sequencing of the 9000 kilobase pair virB region has been completed. Expression of 10 of the predicted 11 open reading frames (ORFs) was demonstrated in Escherichia coli. Translational coupling was demonstrated for 5 ORFs. Hydropathy analysis indicates that 9 of 11 ORFs have hydrophobic regions that could permit membrane channel formation. In related work, analysis of protons that potentiate movement of plant viruses was discussed, with indications that the tobacco mosaic virus (TMV) protein P30 may mediate transfer of TMV RNA through plasmadesmata. Also, using the T-DNA element as a marker, genes responsible for abnormal flower development are being cloned and isolated. 3 refs. (MHB)

  9. Systematic Analysis of Endometrial Cancer-Associated Hub Proteins Based on Text Mining

    PubMed Central

    Gao, Huiqiao; Zhang, Zhenyu

    2015-01-01

    Objective. The aim of this study was to systematically characterize the expression of endometrial cancer- (EC-) associated genes and to analysis the functions, pathways, and networks of EC-associated hub proteins. Methods. Gene data for EC were extracted from the PubMed (MEDLINE) database using text mining based on NLP. PPI networks and pathways were integrated and obtained from the KEGG and other databases. Proteins that interacted with at least 10 other proteins were identified as the hub proteins of the EC-related genes network. Results. A total of 489 genes were identified as EC-related with P < 0.05, and 32 pathways were identified as significant (P < 0.05, FDR < 0.05). A network of EC-related proteins that included 271 interactions was constructed. The 17 proteins that interact with 10 or more other proteins (P < 0.05, FDR < 0.05) were identified as the hub proteins of this PPI network of EC-related genes. These 17 proteins are EGFR, MET, PDGFRB, CCND1, JUN, FGFR2, MYC, PIK3CA, PIK3R1, PIK3R2, KRAS, MAPK3, CTNNB1, RELA, JAK2, AKT1, and AKT2. Conclusion. Our data may help to reveal the molecular mechanisms of EC development and provide implications for targeted therapy for EC. However, corrections between certain proteins and EC continue to require additional exploration. PMID:26366417

  10. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  11. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  12. Analysis of Shewanella oneidensis Membrane Protein Expression in Response to Electron Acceptor Availability

    SciTech Connect

    Giometti, Carol S.; Khare, Tripti; Verberkmoes, Nathan; O'Loughlin, Ed; Lindberg, Carl; Thompson, Melissa; Hettich, Robert

    2006-04-05

    Shewanella oneidensis MR-1, a gram negative metal-reducing bacterium, can utilize a large number of electron acceptors. In the natural environment, S. oneidensis utilizes insoluble metal oxides as well as soluble terminal electron acceptors. The purpose of this ERSP project is to identify differentially expressed proteins associated with the membranes of S. oneidensis MR-1 cells grown with different electron acceptors, including insoluble metal oxides. We hypothesize that through the use of surface labeling, subcellular fractionation, and a combination of proteome analysis tools, proteins involved in the reduction of different terminal electron acceptors will be elucidated. We are comparing the protein profiles from cells grown with the soluble electron acceptors oxygen and fumarate and with those from cells grown with the insoluble iron oxides goethite, ferrihydrite and lepidocrocite. Comparison of the cell surface proteins isolated from cells grown with oxygen or anaerobically with fumarate revealed an increase in the abundance of over 25 proteins in anaerobic cells, including agglutination protein and flagellin proteins along with the several hypothetical proteins. In addition, the surface protein composition of cells grown with the insoluble iron oxides varies considerably from the protein composition observed with either soluble electron acceptor as well as between the different insoluble acceptors.

  13. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

  14. Analysis of intact proteins on a chromatographic time scale by electron transfer dissociation tandem mass spectrometry

    NASA Astrophysics Data System (ADS)

    Chi, An; Bai, Dina L.; Geer, Lewis Y.; Shabanowitz, Jeffrey; Hunt, Donald F.

    2007-01-01

    Direct analysis of intact proteins on a chromatographic time scale is demonstrated on a modified linear ion trap mass spectrometer using sequential ion/ion reactions, electron transfer and proton transfer, to dissociate the sample and to convert the resulting peptide fragments to a mixture of singly and doubly charged species. Proteins are converted to gas-phase, multiply charged, positive ions by electrospray ionization and then allowed to react with fluoranthene radical anions. Electron transfer to the multiply charged protein promotes random fragmentation of amide bonds along the protein backbone. Multiply charged fragment ions are then deprotonated in a second ion/ion reaction with even-electron benzoate anions. m/z values for the resulting singly and doubly charged ions are used to read a sequence of 15-40 amino acids at both the N-terminus and the C-terminus of the protein. This information, along with the measured mass of the intact protein, are employed to identify known proteins and to detect the presence of post-translational modifications. In this study, we analyze intact proteins from the Escherchia coli 70S ribosomal protein complex and identify 46 of the 55 known unique components in a single, 90 min, on-line, chromatography experiment. Truncated versions of the above proteins along with several post-translational modifications are also detected.

  15. Usefulness of protein analysis for detecting pathologies in bone remains.

    PubMed

    Pérez-Martínez, Cristina; Prieto-Bonete, Gemma; Pérez-Cárceles, María D; Luna, Aurelio

    2016-01-01

    Forensic pathology often uses osteobiography, which involves biological profiles based on a determination of the age, sex, constitution, pathological states and other anomalies (paleopathology) of subjects for identification purposes. In this paper, proteins were analysed in bone remains. A total of 45 long bones from 45 different cadavers (29 males, 16 females) with a mean age of 66.31 years (S.D.=19.48, range 20-97) were used to search for pathological biomarkers which are closely related to several diseases. The bones were removed from the cement niches of a cemetery in Murcia (south-eastern Spain), where they had lain for between 18 and 45 years (mean time 25.84 years, S.D.=8.91). After a specific extraction using Tris-Urea buffer, were measured using HPLC/MS/MS. Our results show that proteins resulting from tumoral diseases and bacterial and viral pathogens can be detected and identified in the skeletal remains, making them useful pathological biomarkers for constructing biological profiles.

  16. Functional analysis of bipartite begomovirus coat protein promoter sequences

    SciTech Connect

    Lacatus, Gabriela; Sunter, Garry

    2008-06-20

    We demonstrate that the AL2 gene of Cabbage leaf curl virus (CaLCuV) activates the CP promoter in mesophyll and acts to derepress the promoter in vascular tissue, similar to that observed for Tomato golden mosaic virus (TGMV). Binding studies indicate that sequences mediating repression and activation of the TGMV and CaLCuV CP promoter specifically bind different nuclear factors common to Nicotiana benthamiana, spinach and tomato. However, chromatin immunoprecipitation demonstrates that TGMV AL2 can interact with both sequences independently. Binding of nuclear protein(s) from different crop species to viral sequences conserved in both bipartite and monopartite begomoviruses, including TGMV, CaLCuV, Pepper golden mosaic virus and Tomato yellow leaf curl virus suggests that bipartite begomoviruses bind common host factors to regulate the CP promoter. This is consistent with a model in which AL2 interacts with different components of the cellular transcription machinery that bind viral sequences important for repression and activation of begomovirus CP promoters.

  17. Atomic torsional modal analysis for high-resolution proteins

    NASA Astrophysics Data System (ADS)

    Tirion, Monique M.; ben-Avraham, Daniel

    2015-03-01

    We introduce a formulation for normal mode analyses of globular proteins that significantly improves on an earlier one-parameter formulation [M. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996), 10.1103/PhysRevLett.77.1905] that characterized the slow modes associated with protein data bank structures. Here we develop that empirical potential function that is minimized at the outset to include two features essential to reproduce the eigenspectra and associated density of states in the 0 to 300 cm-1 frequency range, not merely the slow modes. First, introduction of preferred dihedral-angle configurations via use of torsional stiffness constants eliminates anomalous dispersion characteristics due to insufficiently bound surface side chains and helps fix the spectrum thin tail frequencies (100-300 cm-1 ). Second, we take into account the atomic identities and the distance of separation of all pairwise interactions, improving the spectrum distribution in the 20 to 300 cm-1 range. With these modifications, not only does the spectrum reproduce that of full atomic potentials, but we obtain stable reliable eigenmodes for the slow modes and over a wide range of frequencies.

  18. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    PubMed Central

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-01-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks. PMID:27198619

  19. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    NASA Astrophysics Data System (ADS)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  20. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    PubMed

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-01-01

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery. PMID:27142790

  1. Proteomic analysis of membrane proteins from a radioresistant and moderate thermophilic bacterium Deinococcus geothermalis.

    PubMed

    Tian, Bing; Wang, Hu; Ma, Xiaoqiong; Hu, Yaping; Sun, Zongtao; Shen, Shaochuan; Wang, Fei; Hua, Yuejin

    2010-10-01

    Deinococcus geothermalis is a radioresistant and moderate thermophilic bacterium. Little was known about the membrane or membrane associated proteins of this bacterium. This study established the membrane subproteome profile of D. geothermalis, using 1-D PAGE and LC-MS/MS analysis following Triton X-114 detergent extraction. A total of 552 proteins from the membrane preparations were identified from two independent trials. In the total identified proteins, 117 were membrane subproteomic proteins, and 89 of them were described for the first time in D. geothermalis including fimbrial pilin (Dgeo_2038), cytochrome bd ubiquinol oxidase (Dgeo_2705) and multi-sensor (Dgeo_2096). The major membrane subproteomic proteins were distributed into 18 functional groups including nutrient transport and metabolism, energy production and conversion, cell wall/membrane biogenesis and a poorly characterized subclass. The identifications of Deinococcus-specific proteins, such as cell surface receptor IPT/TIG (Dgeo_1119) and four hypothetical proteins, demonstrated the special protein composition and functions in the cell membrane of Deinococcus. The results provide a basis for quantitative proteomic analysis, which will facilitate the understanding of the adaptation of this organism to different environmental stresses and the development of strategies for bioremediation of environmental waste.

  2. Method developments to extract proteins from oil palm chromoplast for proteomic analysis.

    PubMed

    Lau, Benjamin Yii Chung; Deb-Choudhury, Santanu; Morton, James D; Clerens, Stefan; Dyer, Jolon M; Ramli, Umi Salamah

    2015-01-01

    Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC-MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function. PMID:26702380

  3. Method developments to extract proteins from oil palm chromoplast for proteomic analysis.

    PubMed

    Lau, Benjamin Yii Chung; Deb-Choudhury, Santanu; Morton, James D; Clerens, Stefan; Dyer, Jolon M; Ramli, Umi Salamah

    2015-01-01

    Proteins from the plant chromoplast are essential for many physiological processes such as fatty acid biosynthesis. Different protein extraction methods were tested to find the most robust method to obtain oil palm chromoplast proteins for mass spectrometry analysis. Initially, two different solvents were employed to reduce the fruit lipids. Then, two plant cell wall digestive enzymes were used to acquire the protoplasts to increase the protein extraction effectiveness. A two-stage centrifugation-based fractionation approach enhanced the number of identified proteins, particularly the fatty acid biosynthetic enzymes. The effectiveness of each extraction method was assessed using protein yields and 2DE gel profiles. The ideal method was successfully used to establish the 2DE chromoplast proteome maps of low and high oleic acid mesocarps of oil palm. Further nanoLC-MS/MS analysis of the extracted chromoplast proteins led to the identification of 162 proteins, including some of the main enzymes involved in the fatty acid biosynthesis. The established procedures would provide a solid foundation for further functional studies, including fatty acid biosynthetic expression profiling and evaluation of regulatory function.

  4. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues.

    PubMed

    Kosti, Idit; Jain, Nishant; Aran, Dvir; Butte, Atul J; Sirota, Marina

    2016-05-04

    The central dogma of molecular biology describes the translation of genetic information from mRNA to protein, but does not specify the quantitation or timing of this process across the genome. We have analyzed protein and gene expression in a diverse set of human tissues. To study concordance and discordance of gene and protein expression, we integrated mass spectrometry data from the Human Proteome Map project and RNA-Seq measurements from the Genotype-Tissue Expression project. We analyzed 16,561 genes and the corresponding proteins in 14 tissue types across nearly 200 samples. A comprehensive tissue- and gene-specific analysis revealed that across the 14 tissues, correlation between mRNA and protein expression was positive and ranged from 0.36 to 0.5. We also identified 1,012 genes whose RNA and protein expression was correlated across all the tissues and examined genes and proteins that were concordantly and discordantly expressed for each tissue of interest. We extended our analysis to look for genes and proteins that were differentially correlated in cancer compared to normal tissues, showing higher levels of correlation in normal tissues. Finally, we explored the implications of these findings in the context of biomarker and drug target discovery.

  5. In situ structural analysis of Golgi intracisternal protein arrays

    PubMed Central

    Engel, Benjamin D.; Schaffer, Miroslava; Albert, Sahradha; Asano, Shoh; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2015-01-01

    We acquired molecular-resolution structures of the Golgi within its native cellular environment. Vitreous Chlamydomonas cells were thinned by cryo-focused ion beam milling and then visualized by cryo-electron tomography. These tomograms revealed structures within the Golgi cisternae that have not been seen before. Narrow trans-Golgi lumina were spanned by asymmetric membrane-associated protein arrays that had ∼6-nm lateral periodicity. Subtomogram averaging showed that the arrays may determine the narrow central spacing of the trans-Golgi cisternae through zipper-like interactions, thereby forcing cargo to the trans-Golgi periphery. Additionally, we observed dense granular aggregates within cisternae and intracisternal filament bundles associated with trans-Golgi buds. These native in situ structures provide new molecular insights into Golgi architecture and function. PMID:26311849

  6. Biacore analysis with stabilized G-protein-coupled receptors.

    PubMed

    Rich, Rebecca L; Errey, James; Marshall, Fiona; Myszka, David G

    2011-02-15

    Using stabilized forms of β₁ adrenergic and A₂(A) adenosine G-protein-coupled receptors, we applied Biacore to monitor receptor activity and characterize binding constants of small-molecule antagonists spanning more than 20,000-fold in affinity. We also illustrate an improved method for tethering His-tagged receptors on NTA (carboxymethylated dextran preimmobilized with nitrilotriacetic acid) chips to yield stable, high-capacity, high-activity surfaces as well as a novel approach to regenerate receptor binding sites. Based on our success with this approach, we expect that the combination of stabilized receptors with biosensor technology will become a common method for characterizing members of this receptor family.

  7. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    SciTech Connect

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  8. HPLC-DAD protein kinase inhibitor analysis in human serum.

    PubMed

    Dziadosz, Marek; Lessig, Rüdiger; Bartels, Heidemarie

    2012-04-15

    We here describe an HPLC-DAD method to analyse different protein kinase inhibitors. Potential applications of this method are pharmacokinetic studies and therapeutic drug monitoring. Optimised chromatography conditions resulted in a very good separation of seven inhibitors (vatalanib, bosutinib, canertinib, tandutinib, pazopanib, dasatinib - internal standard and erlotinib). The good sensitivity makes this method competitive with LC/MS/MS. The separation was performed with a Lichrospher 100-5 RP8, 250 mm × 4 mm column maintained at 30 ± 1 °C, and with a mobile phase of 0.05 M H(3)PO(4)/KH(2)PO(4) (pH=2.3)-acetonitrile (7:3, v/v) at a flow rate of 0.7 mL/min. A simple and fast sample preparation sequence with liquid-liquid extraction led to good recoveries (73-90%) of all analytes. The recovery hardly reached 50% only for pazopanib. This method can also be used for targeted protein kinase inhibitor quantification. A perfect linearity in the validated range (20-10,000 ng/mL) and an LOQ of 20 ng/mL were achieved. The relative standard deviations and accuracies of all examined drug concentrations gave values much lower than 15% both for between- and within-batch calculations. All analysed PKIs were stable for 6 months in a 1mg/mL dimethyl sulfoxide stock solution. Vatalanib, bosutinib and erlotinib were also stable in human serum in the whole examined concentration range. PMID:22425385

  9. Fully automated two-dimensional electrophoresis system for high-throughput protein analysis.

    PubMed

    Hiratsuka, Atsunori; Yokoyama, Kenji

    2009-01-01

    A fully automated two-dimensional electrophoresis (2DE) system for rapid and reproducible protein analysis is described. 2DE that is a combination of isoelectric focusing (IEF) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is widely used for protein expression analysis. Here, all the operations are achieved in a shorter time and all the transferring procedures are performed automatically. The system completed the entire process within 1.5 h. A device configuration, operational procedure, and data analysis are described using this system.

  10. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products.

    PubMed

    Lynch, J M; Barbano, D M

    1999-01-01

    Measurement of total nitrogen by Kjeldahl analysis is the historical reference method for determination of the protein content of dairy products and is used for both calibration and validation of alternative methods for protein determination. Accurate evaluation of alternative methods is not possible if there is large uncertainty regarding the reference values. When Kjeldahl analysis is used to establish reference values, the performance of the Kjeldahl testing must be verified and within established expectations. Advice is given for Kjeldahl system optimization, evaluation of test results, and trouble-shooting. Techniques for successful Kjeldahl nitrogen analysis of dairy products other than milk are discussed.

  11. Analysis of food proteins and peptides by mass spectrometry-based techniques.

    PubMed

    Mamone, Gianfranco; Picariello, Gianluca; Caira, Simonetta; Addeo, Francesco; Ferranti, Pasquale

    2009-10-23

    Mass spectrometry has arguably become the core technology for the characterization of food proteins and peptides. The application of mass spectrometry-based techniques for the qualitative and quantitative analysis of the complex protein mixtures contained in most food preparations is playing a decisive role in the understanding of their nature, structure, functional properties and impact on human health. The application of mass spectrometry to protein analysis has been revolutionized in the recent years by the development of soft ionization techniques such as electrospray ionization and matrix assisted laser desorption/ionization, and by the introduction of multi-stage and 'hybrid' analyzers able to generate de novo amino acid sequence information. The interfacing of mass spectrometry with protein databases has resulted in entirely new possibilities of protein characterization, including the high sensitivity mapping (femtomole to attomole levels) of post-translational and other chemical modifications, protein conformations and protein-protein and protein-ligand interactions, and in general for proteomic studies, building up the core platform of modern proteomic science. MS-based strategies to food and nutrition proteomics are now capable to address a wide range of analytical questions which include issues related to food quality and safety, certification and traceability of (typical) products, and to the definition of the structure/function relationship of food proteins and peptides. These different aspects are necessarily interconnected and can be effectively understood and elucidated only by use of integrated, up-to-date analytical approaches. In this review, the main aspects of current and perspective applications of mass spectrometry and proteomic technologies to the structural characterization of food proteins are presented, with focus on issues related to their detection, identification, and quantification, relevant for their biochemical, technological and

  12. Data analysis methods for detection of differential protein expression in two-dimensional gel electrophoresis.

    PubMed

    Meunier, Bruno; Bouley, Julien; Piec, Isabelle; Bernard, Carine; Picard, Brigitte; Hocquette, Jean-François

    2005-05-15

    The recent development of microarray technology has led statisticians and bioinformaticians to develop new statistical methodologies for comparing different biological samples. The objective is to identify a small number of differentially expressed genes from among thousands. In quantitative proteomics, analysis of protein expression using two-dimensional gel electrophoresis shows some similarities with transcriptomic studies. Thus, the goal of this study was to evaluate different data analysis methodologies widely used in array analysis using different proteomic data sets of hundreds of proteins. Even with few replications, the significance analysis of microarrays method appeared to be more powerful than the Student's t test in truly declaring differentially expressed proteins. This procedure will avoid wasting time due to false positives and losing information with false negatives.

  13. Role of Salivary and Candidal Proteins in Denture Stomatitis; an exploratory proteomic analysis

    PubMed Central

    Byrd, Warren C.; Schwartz-Baxter, Sarah; Carlson, Jim; Barros, Silvana; Offenbacher, Steven; Bencharit, Sompop

    2014-01-01

    Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture wearers. Candida organism, the presence of a denture, saliva, and host immunity are the key etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear. In this study 30 edentulous subjects wearing a maxillary complete denture were recruited. Unstimulated whole saliva from each subject was collected and pooled into two groups (n=15 each); healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass spectrometry platforms were used to determine peptide mass differences between control and stomatitis groups. Cluster analysis and principal component analysis were used to determine differential expression among the groups. The two proteomic platforms identified 97 and 176 proteins (ANOVA; p<0.01) differentially expressed among the healthy, type 2 and 3 stomatitis groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were found to be uniquely different from controls. Analysis of protein components suggests that certain salivary proteins may predispose some patients to denture stomatitis while others are believed to be involved in the reaction to fungal infection. Analysis of candidal proteins suggest that multiple species of candidal organisms play a role in denture stomatitis. PMID:24947908

  14. Role of salivary and candidal proteins in denture stomatitis: an exploratory proteomic analysis.

    PubMed

    Byrd, Warren C; Schwartz-Baxter, Sarah; Carlson, Jim; Barros, Silvana; Offenbacher, Steven; Bencharit, Sompop

    2014-07-29

    Denture stomatitis, inflammation and redness beneath a denture, affects nearly half of all denture wearers. Candidal organisms, the presence of a denture, saliva, and host immunity are the key etiological factors for the condition. The role of salivary proteins in denture stomatitis is not clear. In this study 30 edentulous subjects wearing a maxillary complete denture were recruited. Unstimulated whole saliva from each subject was collected and pooled into two groups (n = 15 each), healthy and stomatitis (Newton classification II and III). Label-free multidimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) proteomics on two mass spectrometry platforms were used to determine peptide mass differences between control and stomatitis groups. Cluster analysis and principal component analysis were used to determine the differential expression among the groups. The two proteomic platforms identified 97 and 176 proteins (ANOVA; p < 0.01) differentially expressed among the healthy, type 2 and 3 stomatitis groups. Three proteins including carbonic anhydrase 6, cystatin C, and cystatin SN were found to be the same as previous study. Salivary proteomic profiles of patients with denture stomatitis were found to be uniquely different from controls. Analysis of protein components suggests that certain salivary proteins may predispose some patients to denture stomatitis while others are believed to be involved in the reaction to fungal infection. Analysis of candidal proteins suggests that multiple species of candidal organisms play a role in denture stomatitis.

  15. Homology modelling and protein structure based functional analysis of five cucumovirus coat proteins.

    PubMed

    Gellért, Akos; Salánki, Katalin; Náray-Szabó, Gábor; Balázs, Ervin

    2006-03-01

    Coat proteins (CP) of five cucumovirus isolates, Cucumber mosaic virus (CMV) strains R, M and Trk7, Tomato aspermy virus (TAV) strain P and Peanut stunt virus (PSV) strain Er, were constructed by homology modelling. The X-ray structure of the Fny-CMV CP subunit B was used as a template. Models of cucumovirus CPs were built by the MODELLER program. Model refinements were carried out using the Kollman molecular mechanical force field. Models were analyzed by the PROCHECK programs. Electrostatic potential calculations were applied to all models and functional site search was performed with the PROSITE software, a web based tool for searching biologically significant sites. Symptom determinants published up to the present were compared with the PROSITE hits in the light of 3D models and electrostatic information. In all cases, we analyzed the effect of mutations on the structure, electrostatic potential patterns and function of CPs, respectively. We found that high flexibility of the betaE-alphaEF loop starting with the residue 129 is required, but it is not sufficient for the symptom appearance. Furthermore, phosphorylation of the CP is prospective to be important in the host response mechanism. All analyzed mutations were related to the modifications of the predicted phosphorylation sites. Based on our conclusions we predicted the infectivity of the examined viruses.

  16. A Fractal Dimension and Wavelet Transform Based Method for Protein Sequence Similarity Analysis.

    PubMed

    Yang, Lina; Tang, Yuan Yan; Lu, Yang; Luo, Huiwu

    2015-01-01

    One of the key tasks related to proteins is the similarity comparison of protein sequences in the area of bioinformatics and molecular biology, which helps the prediction and classification of protein structure and function. It is a significant and open issue to find similar proteins from a large scale of protein database efficiently. This paper presents a new distance based protein similarity analysis using a new encoding method of protein sequence which is based on fractal dimension. The protein sequences are first represented into the 1-dimensional feature vectors by their biochemical quantities. A series of Hybrid method involving discrete Wavelet transform, Fractal dimension calculation (HWF) with sliding window are then applied to form the feature vector. At last, through the similarity calculation, we can obtain the distance matrix, by which, the phylogenic tree can be constructed. We apply this approach by analyzing the ND5 (NADH dehydrogenase subunit 5) protein cluster data set. The experimental results show that the proposed model is more accurate than the existing ones such as Su's model, Zhang's model, Yao's model and MEGA software, and it is consistent with some known biological facts. PMID:26357222

  17. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules

    PubMed Central

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  18. Characterization of Nanoparticle Tracking Analysis for Quantification and Sizing of Submicron Particles of Therapeutic Proteins.

    PubMed

    Zhou, Chen; Krueger, Aaron B; Barnard, James G; Qi, Wei; Carpenter, John F

    2015-08-01

    Submicron particles may play important roles in therapeutic protein product quality, stability, and adverse effects in patients. However, quantitation of these particles has been challenging. Nanoparticle tracking analysis (NTA) is capable of both sizing and counting submicron particles. We investigated the effects of product and instrument parameters on NTA results for nanoparticle standards and therapeutic protein samples. To obtain proper particle size distributions, complete tracking numbers of at least 200 and 400 were required for latex nanobeads and protein nanoparticles, respectively. In addition, when set at suboptimal values, the minimum expected particle size parameter led to inaccurate sizing and counting for all particles types investigated. A syringe pump allowed for higher sampling volumes, and results were reproducible for nanoparticle sizing and counts at flow rates ≤7 μL/min. Finally, because therapeutic protein products are being formulated at relatively high protein concentrations, we investigated the effects of protein concentration on nanoparticle characterization. With high protein concentrations, nanoparticle sizing was not affected, whereas particle concentrations were significantly reduced. Linear relationships between particle count and dilution factor were obtained when a high protein concentration formulation was diluted into particle-free solutions at the same protein concentrations, but not when dilutions were made into buffer.

  19. Systematic review and meta-analysis of the effects of high protein oral nutritional supplements.

    PubMed

    Cawood, A L; Elia, M; Stratton, R J

    2012-04-01

    Disease-related malnutrition is common, detrimentally affecting the patient and healthcare economy. Although use of high protein oral nutritional supplements (ONS) has been recommended to counteract the catabolic effects of disease and to facilitate recovery from illness, there is a lack of systematically obtained evidence to support these recommendations. This systematic review involving 36 randomised controlled trials (RCT) (n=3790) (mean age 74 years; 83% of trials in patients >65 years) and a series of meta-analyses of high protein ONS (>20% energy from protein) demonstrated a range of effects across settings and patient groups in favour of the high protein ONS group. These included reduced complications (odds ratio (OR) 0.68 (95%CI 0.55-0.83), p<0.001, 10 RCT, n=1830); reduced readmissions to hospital (OR 0.59 (95%CI 0.41-0.84), p=0.004, 2 RCT, n=546); improved grip strength (1.76 kg (95%CI 0.36-3.17), p<0.014, 4 RCT, n=219); increased intake of protein (p<0.001) and energy (p<0.001) with little reduction in normal food intake and improvements in weight (p<0.001). There was inadequate information to compare standard ONS (<20% energy from protein) with high protein ONS (>20% energy from protein). The systematic review and meta-analysis provides evidence that high protein supplements produce clinical benefits, with economic implications.

  20. Employing directed evolution for the functional analysis of multi-specific proteins.

    PubMed

    Levin, Maxim; Amar, Dotan; Aharoni, Amir

    2013-06-15

    Multi-specific proteins located at the heart of complex protein-protein interaction (PPI) networks play essential roles in the survival and fitness of the cell. In addition, multi-specific or promiscuous enzymes exhibit activity toward a wide range of substrates so as to increase cell evolvability and robustness. However, despite their high importance, investigating the in vivo function of these proteins is difficult, due to their complex nature. Typically, deletion of these proteins leads to the abolishment of large PPI networks, highlighting the difficulty in examining the contributions of specific interactions/activities to complex biological processes and cell phenotypes. Protein engineering approaches, including directed evolution and computational protein design, allow for the generation of multi-specific proteins in which certain activities remain intact while others are abolished. The generation and examination of these mutants both in vitro and in vivo can provide high-resolution analysis of biological processes and cell phenotypes and provide new insight into the evolution and molecular function of this important protein family.

  1. A Fractal Dimension and Wavelet Transform Based Method for Protein Sequence Similarity Analysis.

    PubMed

    Yang, Lina; Tang, Yuan Yan; Lu, Yang; Luo, Huiwu

    2015-01-01

    One of the key tasks related to proteins is the similarity comparison of protein sequences in the area of bioinformatics and molecular biology, which helps the prediction and classification of protein structure and function. It is a significant and open issue to find similar proteins from a large scale of protein database efficiently. This paper presents a new distance based protein similarity analysis using a new encoding method of protein sequence which is based on fractal dimension. The protein sequences are first represented into the 1-dimensional feature vectors by their biochemical quantities. A series of Hybrid method involving discrete Wavelet transform, Fractal dimension calculation (HWF) with sliding window are then applied to form the feature vector. At last, through the similarity calculation, we can obtain the distance matrix, by which, the phylogenic tree can be constructed. We apply this approach by analyzing the ND5 (NADH dehydrogenase subunit 5) protein cluster data set. The experimental results show that the proposed model is more accurate than the existing ones such as Su's model, Zhang's model, Yao's model and MEGA software, and it is consistent with some known biological facts.

  2. Quantification of DNA repair protein kinetics after γ-irradiation using number and brightness analysis

    NASA Astrophysics Data System (ADS)

    Abdisalaam, Salim; Poudel, Milan; Chen, David J.; Alexandrakis, George

    2011-03-01

    The kinetics of most proteins involved in DNA damage sensing, signaling and repair following ionizing radiation exposure cannot be quantified by current live cell fluorescence microscopy methods. This is because most of these proteins, with only few notable exceptions, do not attach in large numbers at DNA damage sites to form easily detectable foci in microscopy images. As a result a high fluorescence background from freely moving and immobile fluorescent proteins in the nucleus masks the aggregation of proteins at sparse DNA damage sites. Currently, the kinetics of these repair proteins are studied by laser-induced damage and Fluorescence Recovery After Photobleaching that rely on the detectability of high fluorescence intensity spots of clustered DNA damage. We report on the use of Number and Brightness (N&B) analysis methods as a means to monitor kinetics of DNA repair proteins during sparse DNA damage created by γ-irradiation, which is more relevant to cancer treatment than laser-induced clustered damage. We use two key double strand break repair proteins, namely Ku 70/80 and the DNA-dependent protein kinase catalytic subunit (DNA-PKCS), as specific examples to showcase the feasibility of the proposed methods to quantify dose-dependent kinetics for DNA repair proteins after exposure to γ-rays.

  3. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    PubMed

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  4. Cell-based and in vivo spectral analysis of fluorescent proteins for multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Salomonnson, Emma; Mihalko, Laura Anne; Verkhusha, Vladislav V.; Luker, Kathryn E.; Luker, Gary D.

    2012-09-01

    Multiphoton microscopy of cells and subcellular structures labeled with fluorescent proteins is the state-of-the-art technology for longitudinal imaging studies in tissues and living animals. Successful analysis of separate cell populations or signaling events by intravital microscopy requires optimal pairing of multiphoton excitation wavelengths with spectrally distinct fluorescent proteins. While prior studies have analyzed two photon absorption properties of isolated fluorescent proteins, there is limited information about two photon excitation and fluorescence emission profiles of fluorescent proteins expressed in living cells and intact tissues. Multiphoton microscopy was used to analyze fluorescence outputs of multiple blue, green, and red fluorescent proteins in cultured cells and orthotopic tumor xenografts of human breast cancer cells. It is shown that commonly used orange and red fluorescent proteins are excited efficiently by 750 to 760 nm laser light in living cells, enabling dual color imaging studies with blue or cyan proteins without changing excitation wavelength. It is also shown that small incremental changes in excitation wavelength significantly affect emission intensities from fluorescent proteins, which can be used to optimize multi-color imaging using a single laser wavelength. These data will direct optimal selection of fluorescent proteins for multispectral two photon microscopy.

  5. Infrared Absorption Intensity Analysis as a New Tool for Investigation of Salt Effect on Proteins

    NASA Astrophysics Data System (ADS)

    Li, Heng; Xu, Yan-yan; Weng, Yu-xiang

    2009-12-01

    The native protein structures in buffer solution are maintained by the electrostatic force as well as the hydrophobic force, salt ions play an important role in maintaining the protein native structures, and their effect on the protein stability has attracted tremendous interests. Infrared spectroscopy has been generally used in molecular structure analysis due to its fingerprint resolution for different species including macromolecules as proteins. However spectral intensities have received much less attention than the vibrational frequencies. Here we report that the spectral intensities of protein amide I band, the finger prints for the protein secondary structures, are very sensitive to the local electric field known as Onsager reaction field caused by salt ions. IR absorbance thermal titrations have been conducted for a series of samples including simple water soluble amino acids, water soluble monomeric protein cytochrome c and dimeric protein DsbC and its single-site mutant G49R. We found that at lower temperature range (10-20 °C), there exists a thermal activated salting-in process, where the IR intensity increases with a rise in the temperature, corresponding to the ions binding of the hydrophobic surface of protein. This process is absent for the amino acids. When further raising the temperature, the IR intensity decreases, this is interpreted as the thermal activated breaking of the ion-protein surface binding. Applying Van't Hoff plot to the thermal titration curves, the thermodynamic parameters such as ΔH and ΔS for salting-in and ion unbinding processes can be derived for various protein secondary structural components, revealing quantitatively the extent of hydrophobic interaction as well as the strength of the ion-protein binding.

  6. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score.

  7. Isolation and Analysis of Keratins and Keratin-Associated Proteins from Hair and Wool.

    PubMed

    Deb-Choudhury, Santanu; Plowman, Jeffrey E; Harland, Duane P

    2016-01-01

    The presence of highly cross-linked protein networks in hair and wool makes them very difficult substrates for protein extraction, a prerequisite for further protein analysis and characterization. It is therefore imperative that these cross-links formed by disulfide bridges are first disrupted for the efficient extraction of proteins. Chaotropes such as urea are commonly used as efficient extractants. However, a combination of urea and thiourea not only improves recovery of proteins but also results in improved resolution of the keratins in 2DE gels. Reductants also play an important role in protein dissolution. Dithiothreitol effectively removes keratinous material from the cortex, whereas phosphines, like Tris(2-carboxyethyl)phosphine, remove material from the exocuticle. The relative extractability of the keratins and keratin-associated proteins is also dependent on the concentration of chaotropes, reductants, and pH, thus providing a means to preferentially extract these proteins. Ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIM(+)[Cl](-)) are known to solubilize wool by disrupting noncovalent interactions, specifically intermolecular hydrogen bonds. BMIM(+)[Cl](-) proved to be an effective extractant of wool proteins and complementary in nature to chaotropes such as urea and thiourea for identifying unique peptides of wool proteins using mass spectrometry (MS). Successful identification of proteins resolved by one- or two-dimensional electrophoresis and MS is highly dependent on the optimal recovery of its protease-digested peptides with an efficient removal of interfering substances. The detergent sodium deoxycholate used in conjunction with Empore™ disks improved identification of proteins by mass spectrometry leading to higher percentage sequence coverage, identification of unique peptides and higher score. PMID:26795475

  8. In Silico Prediction and Analysis of Caenorhabditis EF-hand Containing Proteins

    PubMed Central

    Ahmad, Ejaz; Saifi, Muheet Alam; Khan, Rizwan Hasan

    2012-01-01

    Calcium (Ca+2) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca+2-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca+2 binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain Ca+2 binding motifs. Here, we have performed homology modelling of CaM-like proteins using the crystal structure of Drosophila melanogaster CaM as a template. Molecular docking was applied to explore the binding mechanism of CaM-like proteins and IQ1 motif which is a ∼25 residues and conform to the consensus sequence (I, L, V)QXXXRXXXX(R,K) to serve as a binding site for different EF hand proteins. We made an attempt to identify all the EF-hand (a helix-loop-helix structure characterized by a 12 residues loop sequence involved in metal coordination) containing proteins and their Ca+2 binding affinity in Caenorhabditis by analysing the complete genome sequence. Docking studies revealed that F165, F169, L29, E33, F44, L57, M61, M96, M97, M108, G65, V115, F93, N104, E144 of CaM-like protein is involved in the interaction with IQ1 motif. A maximum of 170 EF-hand proteins and 39 non-EF-hand proteins with Ca+2/metal binding motif were identified. Diverse proteins including enzyme, transcription, translation and large number of unknown proteins have one or more putative EF-hands. Phylogenetic analysis revealed seven major classes/groups that contain some families of proteins. Various domains that we identified in the EF-hand proteins (uncharacterized) would help in elucidating their functions. It is the first report of its kind where calcium binding loop sequences of EF-hand proteins were analyzed to decipher their calcium affinities. Variation in Ca+2-binding affinity of EF-hand CaBP could be further used to study the behaviour of these proteins. Our analyses postulated that Ca+2

  9. In silico prediction and analysis of Caenorhabditis EF-hand containing proteins.

    PubMed

    Kumar, Manish; Ahmad, Shadab; Ahmad, Ejaz; Saifi, Muheet Alam; Khan, Rizwan Hasan

    2012-01-01

    Calcium (Ca⁺²) is a ubiquitous messenger in eukaryotes including Caenorhabditis. Ca⁺²-mediated signalling processes are usually carried out through well characterized proteins like calmodulin (CaM) and other Ca⁺² binding proteins (CaBP). These proteins interact with different targets and activate it by bringing conformational changes. Majority of the EF-hand proteins in Caenorhabditis contain Ca⁺² binding motifs. Here, we have performed homology modelling of CaM-like proteins using the crystal structure of Drosophila melanogaster CaM as a template. Molecular docking was applied to explore the binding mechanism of CaM-like proteins and IQ1 motif which is a ∼25 residues and conform to the consensus sequence (I, L, V)QXXXRXXXX(R,K) to serve as a binding site for different EF hand proteins. We made an attempt to identify all the EF-hand (a helix-loop-helix structure characterized by a 12 residues loop sequence involved in metal coordination) containing proteins and their Ca⁺² binding affinity in Caenorhabditis by analysing the complete genome sequence. Docking studies revealed that F165, F169, L29, E33, F44, L57, M61, M96, M97, M108, G65, V115, F93, N104, E144 of CaM-like protein is involved in the interaction with IQ1 motif. A maximum of 170 EF-hand proteins and 39 non-EF-hand proteins with Ca⁺²/metal binding motif were identified. Diverse proteins including enzyme, transcription, translation and large number of unknown proteins have one or more putative EF-hands. Phylogenetic analysis revealed seven major classes/groups that contain some families of proteins. Various domains that we identified in the EF-hand proteins (uncharacterized) would help in elucidating their functions. It is the first report of its kind where calcium binding loop sequences of EF-hand proteins were analyzed to decipher their calcium affinities. Variation in Ca⁺²-binding affinity of EF-hand CaBP could be further used to study the behaviour of these proteins. Our analyses

  10. Proteomic Analysis of Outer Membrane Proteins from Salmonella Enteritidis Strains with Different Sensitivity to Human Serum

    PubMed Central

    Dudek, Bartłomiej; Krzyżewska, Eva; Kapczyńska, Katarzyna; Rybka, Jacek; Pawlak, Aleksandra; Korzekwa, Kamila; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2016-01-01

    Differential analysis of outer membrane composition of S. Enteritidis strains, resistant to 50% normal human serum (NHS) was performed in order to find factors influencing the resistance to higher concentrations of NHS. Ten S. Enteritidis clinical strains, resistant to 50% NHS, all producing very long lipopolysaccharide, were subjected to the challenge of 75% NHS. Five extreme strains: two resistant and three sensitive to 75% NHS, were chosen for the further analysis of outer membrane proteins composition. Substantial differences were found in the levels of particular outer membrane proteins between resistant and sensitive strains, i.e. outer membrane protease E (PgtE) was present mainly in resistant strains, while sensitive strains possessed a high level of flagellar hook-associated protein 2 (FliD) and significantly higher levels of outer membrane protein A (OmpA). PMID:27695090

  11. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition

    PubMed Central

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-01-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis – based on cellular components and biological process GO terms – was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in “Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation” [1]. PMID:27104213

  12. Functional analysis of stress protein data in a flor yeast subjected to a biofilm forming condition.

    PubMed

    Moreno-García, Jaime; Mauricio, Juan Carlos; Moreno, Juan; García-Martínez, Teresa

    2016-06-01

    In this data article, an OFFGEL fractionator coupled to LTQ Orbitrap XL MS equipment and a SGD filtering were used to detect in a biofilm-forming flor yeast strain, the maximum possible number of stress proteins under the first stage of a biofilm formation conditions (BFC) and under an initial stage of fermentation used as reference, so-called non-biofilm formation condition (NBFC). Protein functional analysis - based on cellular components and biological process GO terms - was performed for these proteins through the SGD Gene Ontology Slim Mapper tool. A detailed analysis and interpretation of the data can be found in "Stress responsive proteins of a flor yeast strain during the early stages of biofilm formation" [1]. PMID:27104213

  13. Size-Exclusion Chromatography for the Analysis of Protein Biotherapeutics and their Aggregates

    PubMed Central

    Hong, Paula; Koza, Stephan; Bouvier, Edouard S. P.

    2012-01-01

    In recent years, the use and number of biotherapeutics has increased significantly. For these largely protein-based therapies, the quantitation of aggregates is of particular concern given their potential effect on efficacy and immunogenicity. This need has renewed interest in size-exclusion chromatography (SEC). In the following review we will outline the history and background of SEC for the analysis of proteins. We will also discuss the instrumentation for these analyses, including the use of different types of detectors. Method development for protein analysis by SEC will also be outlined, including the effect of mobile phase and column parameters (column length, pore size). We will also review some of the applications of this mode of separation that are of particular importance to protein biopharmaceutical development and highlight some considerations in their implementation. PMID:23378719

  14. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    SciTech Connect

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  15. Folding analysis of the most complex Stevedore's protein knot.

    PubMed

    Wang, Iren; Chen, Szu-Yu; Hsu, Shang-Te Danny

    2016-01-01

    DehI is a homodimeric haloacid dehalogenase from Pseudomonas putida that contains the most complex 61 Stevedore's protein knot within its folding topology. To examine how DehI attains such an intricate knotted topology we combined far-UV circular dichroism (CD), intrinsic fluorescence spectroscopy and small angle X-ray scattering (SAXS) to investigate its folding mechanism. Equilibrium unfolding of DehI by chemical denaturation indicated the presence of two highly populated folding intermediates, I and I'. While the two intermediates vary in secondary structure contents and tertiary packing according to CD and intrinsic fluorescence, respectively, their overall dimension and compactness are similar according to SAXS. Three single-tryptophan variants (W34, W53, and W196) were generated to probe non-cooperative unfolding events localized around the three fluorophores. Kinetic fluorescence measurements indicated that the transition from the intermediate I' to the unfolded state is rate limiting. Our multiparametric folding analyses suggest that DehI unfolds through a linear folding pathway with two distinct folding intermediates by initial hydrophobic collapse followed by nucleation condensation, and that knotting precedes the formation of secondary structures. PMID:27527519

  16. Analysis of protein-ligand interactions by fluorescence polarization

    PubMed Central

    Rossi, Ana M.; Taylor, Colin W.

    2011-01-01

    Quantification of the associations between biomolecules is required both to predict and understand the interactions that underpin all biological activity. Fluorescence polarization (FP) provides a non-disruptive means of measuring the association of a fluorescent ligand with a larger molecule. We describe an FP assay in which binding of fluorescein-labelled inositol 1,4,5-trisphosphate (IP3) to N-terminal fragments of IP3 receptors can be characterised at different temperatures and in competition with other ligands. The assay allows the standard Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) changes of ligand binding to be determined. The method is applicable to any purified ligand-binding site for which an appropriate fluorescent ligand is available. FP can be used to measure low-affinity interactions in real-time without use of radioactive materials, it is non-destructive, and with appropriate care it can resolve ΔH° and ΔS°. The first part of the protocol, protein preparation, may take several weeks, while the FP measurements, once they have been optimised, would normally take 1-6 h. PMID:21372817

  17. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation

    PubMed Central

    Song, Gyun Jee; Kim, Jaehong; Kim, Jong-Heon; Song, Seungeun; Park, Hana; Zhang, Zhong-Yin

    2016-01-01

    Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases. PMID:27790059

  18. Quantitative analysis of pheromone-binding protein specificity

    PubMed Central

    Katti, S.; Lokhande, N.; González, D.; Cassill, A.; Renthal, R.

    2012-01-01

    Many pheromones have very low water solubility, posing experimental difficulties for quantitative binding measurements. A new method is presented for determining thermodynamically valid dissociation constants for ligands binding to pheromone-binding proteins (OBPs), using β-cyclodextrin as a solubilizer and transfer agent. The method is applied to LUSH, a Drosophila OBP that binds the pheromone 11-cis vaccenyl acetate (cVA). Refolding of LUSH expressed in E. coli was assessed by measuring N-phenyl-1-naphthylamine (NPN) binding and Förster resonance energy transfer between LUSH tryptophan 123 (W123) and NPN. Binding of cVA was measured from quenching of W123 fluorescence as a function of cVA concentration. The equilibrium constant for transfer of cVA between β-cyclodextrin and LUSH was determined from a linked equilibria model. This constant, multiplied by the β-cyclodextrin-cVA dissociation constant, gives the LUSH-cVA dissociation constant: ~100 nM. It was also found that other ligands quench W123 fluorescence. The LUSH-ligand dissociation constants were determined to be ~200 nM for the silk moth pheromone bombykol and ~90 nM for methyl oleate. The results indicate that the ligand-binding cavity of LUSH can accommodate a variety ligands with strong binding interactions. Implications of this for the pheromone receptor model proposed by Laughlin et al. (Cell 133: 1255–65, 2008) are discussed. PMID:23121132

  19. Analysis of a complete DNA–protein affinity landscape

    PubMed Central

    Rowe, William; Platt, Mark; Wedge, David C.; Day, Philip J.; Kell, Douglas B.; Knowles, Joshua

    2010-01-01

    Properties of biological fitness landscapes are of interest to a wide sector of the life sciences, from ecology to genetics to synthetic biology. For biomolecular fitness landscapes, the information we currently possess comes primarily from two sources: sparse samples obtained from directed evolution experiments; and more fine-grained but less authentic information from ‘in silico’ models (such as NK-landscapes). Here we present the entire protein-binding profile of all variants of a nucleic acid oligomer 10 bases in length, which we have obtained experimentally by a series of highly parallel on-chip assays. The resulting complete landscape of sequence-binding pairs, comprising more than one million binding measurements in duplicate, has been analysed statistically using a number of metrics commonly applied to synthetic landscapes. These metrics show that the landscape is rugged, with many local optima, and that this arises from a combination of experimental variation and the natural structural properties of the oligonucleotides. PMID:19625306

  20. The triterpene cyclase protein family: a systematic analysis.

    PubMed

    Racolta, Silvia; Juhl, P Benjamin; Sirim, Demet; Pleiss, Jürgen

    2012-08-01

    Triterpene cyclases catalyze a broad range of cyclization reactions to form polycyclic triterpenes. Triterpene cyclases that convert squalene to hopene are named squalene-hopene cyclases (SHC) and triterpene cyclases that convert oxidosqualene are named oxidosqualene cyclases (OSC). Many sequences have been published, but there is only one structure available for each of SHCs and OSCs. Although they catalyze a similar reaction, the sequence similarity between SHCs and OSCs is low. A family classification based on phylogenetic analysis revealed 20 homologous families which are grouped into two superfamilies, SHCs and OSCs. Based on this family assignment, the Triterpene Cyclase Engineering Database (TTCED) was established. It integrates available information on sequence and structure of 639 triterpene cyclases as well as on structurally and functionally relevant amino acids. Family specific multiple sequence alignments were generated to identify the functionally relevant residues. Based on sequence alignments, conserved residues in SHCs and OSCs were analyzed and compared to experimentally confirmed mutational data. Functional schematic models of the central cavities of OSCs and SHCs were derived from structure comparison and sequence conservation analysis. These models demonstrate the high similarity of the substrate binding cavity of SHCs and OSCs and the equivalences of the respective residues. The TTCED is a novel source for comprehensive information on the triterpene cyclase family, including a compilation of previously described mutational data. The schematic models present the conservation analysis in a readily available fashion and facilitate the correlation of residues to a specific function or substrate interaction.

  1. Biochemical analysis of the stress protein response in human oesophageal epithelium

    PubMed Central

    Hopwood, D; Moitra, S; Vojtesek, B; Johnston, D; Dillon, J; Hupp, T

    1997-01-01

    Background—The oesophageal epithelium is exposed routinely to noxious agents in the environment, including gastric acid, thermal stress, and chemical toxins. These epithelial cells have presumably evolved effective protective mechanisms to withstand tissue damage and repair injured cells. Heat shock protein or stress protein responses play a central role in protecting distinct cell types from different types of injury. 
Aim—To determine (i) whether biochemical analysis of stress protein responses in pinch biopsy specimens from human oesophageal epithelium is feasible; (ii) whether undue stresses are imposed on cells by the act of sample collection, thus precluding analysis of stress responses; and (iii) if amenable to experimentation, the type of heat shock protein (Hsp) response that operates in the human oesophageal epithelium. 
Methods—Tissue from the human oesophagus comprised predominantly of squamous epithelium was acquired within two hours of biopsy and subjected to an in vitro heat shock. Soluble tissue cell lysates derived from untreated or heat shocked samples were examined using denaturing polyacrylamide gel electrophoresis for changes in: (i) the pattern of general protein synthesis by labelling epithelial cells with 35S-methionine and (ii) the levels of soluble Hsp70 protein and related isoforms using immunochemical protein blots. 
Results—A single pinch biopsy specimen is sufficient to extract and analyse specific sets of polypeptides in the oesophageal epithelium. After ex vivo heat shock, a classic inhibition of general protein synthesis is observed and correlates with the increased synthesis of two major proteins of molecular weight of 60 and 70 kDa. Notably, cells from unheated controls exhibit a "stressed" biochemical state 22 hours after incubation at 37°C, as shown by inhibition of general protein synthesis and increased synthesis of the 70 kDa protein. These data indicate that only freshly acquired specimens are suitable for

  2. Proteomic analysis of Schistosoma mansoni proteins released during in vitro miracidium-to-sporocyst transformation.

    PubMed

    Wu, Xiao-Jun; Sabat, Greg; Brown, James F; Zhang, Mengzi; Taft, Andrew; Peterson, Nathan; Harms, Amy; Yoshino, Timothy P

    2009-03-01

    Free-living miracidia of Schistosoma mansoni, upon penetration of the their snail intermediate host, undergo dramatic morphological and physiological changes as they transform to the parasitic sporocyst stage. During this transformation process, developing larvae release a diverse array of proteins, herein referred to as larval transformation proteins (LTPs), some of which are postulated to serve a parasite protective function. In the present study, nanoLC-tandem MS analysis was performed on all proteins represented in entire 1-dimensional SDS-PAGE-separated samples in order to gain a more comprehensive picture of the protein constituents associated with miracidium-to-sporocyst transformation and thus, their potential role in influencing establishment of intramolluscan infections. Of 127 proteins with sufficient peptide/sequence information, specific identifications were made for 99, while 28 represented unknown or hypothetical proteins. Nineteen percent of identified proteins possessed signal peptides constituting a cohort of classical secretory proteins, while 22% were identified as putative nonclassically secreted leaderless proteins based on SecretomeP analysis. Proteins comprising these groups consisted mainly of proteases/protease inhibitors, small HSPs, redox/antioxidant enzymes, ion-binding proteins including those with anti-oxidant Fe-binding activities (ferritins, heme-binding protein), and venom allergen-like (VAL) proteins. A polyclonal antibody generated against whole LTPs recognized proteins primarily associated with the cilia, ciliated epidermal plates and intercellular ridges of miracidia and the tegument of fully transformed sporocysts, identifying these structures as sources of a subset of LTPs. Thus lysis of plates and/or leakage during formation of the sporocyst syncytium likely represent significant contributors to the overall LTP makeup, especially identified nonsecretory proteins. However, as plate release/degradation and tegument formation

  3. Understanding sequence similarity and framework analysis between centromere proteins using computational biology.

    PubMed

    Doss, C George Priya; Chakrabarty, Chiranjib; Debajyoti, C; Debottam, S

    2014-11-01

    Certain mysteries pointing toward their recruitment pathways, cell cycle regulation mechanisms, spindle checkpoint assembly, and chromosome segregation process are considered the centre of attraction in cancer research. In modern times, with the established databases, ranges of computational platforms have provided a platform to examine almost all the physiological and biochemical evidences in disease-associated phenotypes. Using existing computational methods, we have utilized the amino acid residues to understand the similarity within the evolutionary variance of different associated centromere proteins. This study related to sequence similarity, protein-protein networking, co-expression analysis, and evolutionary trajectory of centromere proteins will speed up the understanding about centromere biology and will create a road map for upcoming researchers who are initiating their work of clinical sequencing using centromere proteins.

  4. Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging.

    PubMed

    Lee, Do Yup; Bowen, Benjamin P; Northen, Trent R

    2010-08-01

    Our understanding of biology has been greatly improved through recent developments in mass spectrometry, which is providing detailed information on protein and metabolite composition as well as protein-metabolite interactions. The high sensitivity and resolution of mass spectrometry achieved with liquid or gas chromatography allows for detection and quantification of hundreds to thousands of molecules in a single measurement. Where homogenization-based sample preparation and extraction methods result in a loss of spatial information, mass spectrometry imaging technologies provide the in situ distribution profiles of metabolites and proteins within tissues. Mass spectrometry-based analysis of metabolite abundance, protein-metabolite interactions, and spatial distribution of compounds facilitates the high-throughput screening of biochemical reactions, the reconstruction of metabolic networks, biomarker discovery, determination of tissue compositions, and functional annotation of both proteins and metabolites.

  5. Mass spectrometry–based metabolomics, analysis of metabolite-protein interactions, and imaging

    PubMed Central

    Lee, Do Yup; Bowen, Benjamin P.; Northen, Trent R.

    2010-01-01

    Our understanding of biology has been greatly improved through recent developments in mass spectrometry, which is providing detailed information on protein and metabolite composition as well as protein-metabolite interactions. The high sensitivity and resolution of mass spectrometry achieved with liquid or gas chromatography allows for detection and quantification of hundreds to thousands of molecules in a single measurement. Where homogenization-based sample preparation and extraction methods result in a loss of spatial information, mass spectrometry imaging technologies provide the in situ distribution profiles of metabolites and proteins within tissues. Mass spectrometry–based analysis of metabolite abundance, protein-metabolite interactions, and spatial distribution of compounds facilitates the high-throughput screening of biochemical reactions, the reconstruction of metabolic networks, biomarker discovery, determination of tissue compositions, and functional annotation of both proteins and metabolites. PMID:20701590

  6. Analysis and pharmacological targeting of phospholipase C beta interactions with G proteins.

    PubMed

    Lehmann, David M; Yuan, Chujun; Smrcka, Alan V

    2007-01-01

    Phosphatidylinositol-specific phospholipase C enzymes (PLC) catalyze hydrolysis of phosphatidylinositol 4,5-bisphosphate generating the second messengers diacylglycerol and inositol 1,4,5-triphosphate. Mammalian phosphoinositide-specific phospholipase C beta (PLCbeta) activity is regulated by the alpha(q) family of G-protein alpha subunits and by Gbetagamma subunits. Regulation of PLCbeta enzymatic activity can be assayed by reconstituting purified G-protein subunits with purified PLCbeta in the presence of phospholipid vesicles containing the substrate phosphatidylinositol 4,5-bisphosphate. This chapter describes methods for expression and purification of PLCbeta and Gbetagamma from insect cells, assay of G-protein-dependent regulation of PLC activity, and assessment of G-protein-PLC direct binding interactions. This combination of functional and direct binding analysis provides a powerful approach to characterizing PLC and G-protein interfaces, identifying inhibitors of this interaction, and potentially uncovering new modes of PLC regulation.

  7. Protein folding at atomic resolution: analysis of autonomously folding supersecondary structure motifs by nuclear magnetic resonance.

    PubMed

    Sborgi, Lorenzo; Verma, Abhinav; Sadqi, Mourad; de Alba, Eva; Muñoz, Victor

    2013-01-01

    The study of protein folding has been conventionally hampered by the assumption that all single-domain proteins fold by an all-or-none process (two-state folding) that makes it impossible to resolve folding mechanisms experimentally. Here we describe an experimental method for the thermodynamic analysis of protein folding at atomic resolution using nuclear magnetic resonance (NMR). The method is specifically developed for the study of small proteins that fold autonomously into basic supersecondary structure motifs, and that do so in the sub-millisecond timescale (folding archetypes). From the NMR experiments we obtain hundreds of atomic unfolding curves that are subsequently analyzed leading to the determination of the characteristic network of folding interactions. The application of this approach to a comprehensive catalog of elementary folding archetypes holds the promise of becoming the first experimental approach capable of unraveling the basic rules connecting protein structure and folding mechanism. PMID:22987355

  8. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae

    PubMed Central

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  9. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae.

    PubMed

    Xue, Wenxin; Fan, Jia; Zhang, Yong; Xu, Qingxuan; Han, Zongli; Sun, Jingrui; Chen, Julian

    2016-01-01

    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) of aphids are thought to be responsible for the initial molecular interactions during olfaction that mediate detection of chemical signals. Analysis of the diversity of proteins involved comprises critical basic research work that will facilitate the development of sustainable pest control strategies. To help us better understand differences in the olfactory system between winged and wingless grain aphids, we constructed an antennal transcriptome from winged and wingless Sitobion avenae (Fabricius), one of the most serious pests of cereal fields worldwide. Among the 133,331 unigenes in the antennal assembly, 13 OBP and 5 CSP putative transcripts were identified with 6 OBP and 3 CSP sequences representing new S. avenae annotations. We used qPCR to examine the expression profile of these genes sets across S. avenae development and in various tissues. We found 7 SaveOBPs and 1 SaveCSP were specifically or significantly elevated in antennae compared with other tissues, and that some transcripts (SaveOBP8, SaveCSP2 and SaveCSP5) were abundantly expressed in the legs of winged or wingless aphids. The expression levels of the SaveOBPs and SaveCSPs varied depending on the developmental stage. Possible physiological functions of these genes are discussed. Further molecular and functional studies of these olfactory related genes will explore their potential as novel targets for controlling S. avenae. PMID:27561107

  10. The effect of protein timing on muscle strength and hypertrophy: a meta-analysis

    PubMed Central

    2013-01-01

    Protein timing is a popular dietary strategy designed to optimize the adaptive response to exercise. The strategy involves consuming protein in and around a training session in an effort to facilitate muscular repair and remodeling, and thereby enhance post-exercise strength- and hypertrophy-related adaptations. Despite the apparent biological plausibility of the strategy, however, the effectiveness of protein timing in chronic training studies has been decidedly mixed. The purpose of this paper therefore was to conduct a multi-level meta-regression of randomized controlled trials to determine whether protein timing is a viable strategy for enhancing post-exercise muscular adaptations. The strength analysis comprised 478 subjects and 96 ESs, nested within 41 treatment or control groups and 20 studies. The hypertrophy analysis comprised 525 subjects and 132 ESs, nested with 47 treatment or control groups and 23 studies. A simple pooled analysis of protein timing without controlling for covariates showed a small to moderate effect on muscle hypertrophy with no significant effect found on muscle strength. In the full meta-regression model controlling for all covariates, however, no significant differences were found between treatment and control for strength or hypertrophy. The reduced model was not significantly different from the full model for either strength or hypertrophy. With respect to hypertrophy, total protein intake was the strongest predictor of ES magnitude. These results refute the commonly held belief that the timing of protein intake in and around a training session is critical to muscular adaptations and indicate that consuming adequate protein in combination with resistance exercise is the key factor for maximizing muscle protein accretion. PMID:24299050

  11. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90

    PubMed Central

    Singh, Salam Pradeep; Deb, Chitta Ranjan; Ahmed, Sharif Udin; Saratchandra, Yenisetti; Konwar, Bolin Kumar

    2016-01-01

    Abstract Hsp90 is a major protein involved in the stabilization of various proteins in cancer cells. The present investigation focused on the molecular docking simulation studies of flavanols as inhibitors of Hsp90 at the high affinity adenosine triphosphate (ATP) binding site and analyzed absorption, distribution, metabolism, excretion and toxicity (ADME-toxicity). The molecular docking analysis revealed that the flavanols showed competitive inhibition with ATP molecule at the active site and enhanced pharmacological parameters.

  12. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae

    PubMed Central

    Lavín, José L; Kiil, Kristoffer; Resano, Ohiana; Ussery, David W; Oguiza, José A

    2007-01-01

    Background Pseudomonas syringae is a widespread bacterial plant pathogen, and strains of P. syringae may be assigned to different pathovars based on host specificity among different plant species. The genomes of P. syringae pv. syringae (Psy) B728a, pv. tomato (Pto) DC3000 and pv. phaseolicola (Pph) 1448A have been recently sequenced providing a major resource for comparative genomic analysis. A mechanism commonly found in bacteria for signal transduction is the two-component system (TCS), which typically consists of a sensor histidine kinase (HK) and a response regulator (RR). P. syringae requires a complex array of TCS proteins to cope with diverse plant hosts, host responses, and environmental conditions. Results Based on the genomic data, pattern searches with Hidden Markov Model (HMM) profiles have been used to identify putative HKs and RRs. The genomes of Psy B728a, Pto DC3000 and Pph 1448A were found to contain a large number of genes encoding TCS proteins, and a core of complete TCS proteins were shared between these genomes: 30 putative TCS clusters, 11 orphan HKs, 33 orphan RRs, and 16 hybrid HKs. A close analysis of the distribution of genes encoding TCS proteins revealed important differences in TCS proteins among the three P. syringae pathovars. Conclusion In this article we present a thorough analysis of the identification and distribution of TCS proteins among the sequenced genomes of P. syringae. We have identified differences in TCS proteins among the three P. syringae pathovars that may contribute to their diverse host ranges and association with plant hosts. The identification and analysis of the repertoire of TCS proteins in the genomes of P. syringae pathovars constitute a basis for future functional genomic studies of the signal transduction pathways in this important bacterial phytopathogen. PMID:17971244

  13. Toxicity Analysis of N- and C-Terminus-Deleted Vegetative Insecticidal Protein from Bacillus thuringiensis

    PubMed Central

    Selvapandiyan, A.; Arora, N.; Rajagopal, R.; Jalali, S. K.; Venkatesan, T.; Singh, S. P.; Bhatnagar, Raj K.

    2001-01-01

    A vegetative insecticidal protein (VIP)-encoding gene from a local isolate of Bacillus thuringiensis has been cloned, sequenced, and expressed in Escherichia coli. The expressed protein shows insecticidal activity against several lepidopteran pests but is ineffective against Agrotis ipsilon. Comparison of the amino acid sequence with those of reported VIPs revealed a few differences. Analysis of insecticidal activity with N- and C-terminus deletion mutants suggests a differential mode of action of VIP against different pests. PMID:11722946

  14. Network analysis identifies protein clusters of functional importance in juvenile idiopathic arthritis

    PubMed Central

    2014-01-01

    Introduction Our objective was to utilise network analysis to identify protein clusters of greatest potential functional relevance in the pathogenesis of oligoarticular and rheumatoid factor negative (RF-ve) polyarticular juvenile idiopathic arthritis (JIA). Methods JIA genetic association data were used to build an interactome network model in BioGRID 3.2.99. The top 10% of this protein:protein JIA Interactome was used to generate a minimal essential network (MEN). Reactome FI Cytoscape 2.83 Plugin and the Disease Association Protein-Protein Link Evaluator (Dapple) algorithm were used to assess the functionality of the biological pathways within the MEN and to statistically rank the proteins. JIA gene expression data were integrated with the MEN and clusters of functionally important proteins derived using MCODE. Results A JIA interactome of 2,479 proteins was built from 348 JIA associated genes. The MEN, representing the most functionally related components of the network, comprised of seven clusters, with distinct functional characteristics. Four gene expression datasets from peripheral blood mononuclear cells (PBMC), neutrophils and synovial fluid monocytes, were mapped onto the MEN and a list of genes enriched for functional significance identified. This analysis revealed the genes of greatest potential functional importance to be PTPN2 and STAT1 for oligoarticular JIA and KSR1 for RF-ve polyarticular JIA. Clusters of 23 and 14 related proteins were derived for oligoarticular and RF-ve polyarticular JIA respectively. Conclusions This first report of the application of network biology to JIA, integrating genetic association findings and gene expression data, has prioritised protein clusters for functional validation and identified new pathways for targeted pharmacological intervention. PMID:24886659

  15. A Protein Domain and Family Based Approach to Rare Variant Association Analysis

    PubMed Central

    Richardson, Tom G.; Shihab, Hashem A.; Rivas, Manuel A.; McCarthy, Mark I.; Campbell, Colin; Timpson, Nicholas J.; Gaunt, Tom R.

    2016-01-01

    Background It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Methods Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). Results We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. Conclusion We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals. PMID:27128313

  16. Proteomic Analysis of Pure Human Airway Gland Mucus Reveals a Large Component of Protective Proteins

    PubMed Central

    Joo, Nam Soo; Evans, Idil Apak T.; Cho, Hyung-Ju; Park, Il-Ho; Engelhardt, John F.; Wine, Jeffrey J.

    2015-01-01

    Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269–319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment. PMID:25706550

  17. ComPPI: a cellular compartment-specific database for protein–protein interaction network analysis

    PubMed Central

    Veres, Daniel V.; Gyurkó, Dávid M.; Thaler, Benedek; Szalay, Kristóf Z.; Fazekas, Dávid; Korcsmáros, Tamás; Csermely, Peter

    2015-01-01

    Here we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein–protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein–protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of >1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein–protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole-proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design. PMID:25348397

  18. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  19. General Theory for Integrated Analysis of Growth, Gene, and Protein Expression in Biofilms

    PubMed Central

    Zhang, Tianyu; Pabst, Breana; Klapper, Isaac; Stewart, Philip S.

    2013-01-01

    A theory for analysis and prediction of spatial and temporal patterns of gene and protein expression within microbial biofilms is derived. The theory integrates phenomena of solute reaction and diffusion, microbial growth, mRNA or protein synthesis, biomass advection, and gene transcript or protein turnover. Case studies illustrate the capacity of the theory to simulate heterogeneous spatial patterns and predict microbial activities in biofilms that are qualitatively different from those of planktonic cells. Specific scenarios analyzed include an inducible GFP or fluorescent protein reporter, a denitrification gene repressed by oxygen, an acid stress response gene, and a quorum sensing circuit. It is shown that the patterns of activity revealed by inducible stable fluorescent proteins or reporter unstable proteins overestimate the region of activity. This is due to advective spreading and finite protein turnover rates. In the cases of a gene induced by either limitation for a metabolic substrate or accumulation of a metabolic product, maximal expression is predicted in an internal stratum of the biofilm. A quorum sensing system that includes an oxygen-responsive negative regulator exhibits behavior that is distinct from any stage of a batch planktonic culture. Though here the analyses have been limited to simultaneous interactions of up to two substrates and two genes, the framework applies to arbitrarily large networks of genes and metabolites. Extension of reaction-diffusion modeling in biofilms to the analysis of individual genes and gene networks is an important advance that dovetails with the growing toolkit of molecular and genetic experimental techniques. PMID:24376726

  20. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  1. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants.

    PubMed

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

  2. A Primary Sequence Analysis of the ARGONAUTE Protein Family in Plants

    PubMed Central

    Rodríguez-Leal, Daniel; Castillo-Cobián, Amanda; Rodríguez-Arévalo, Isaac; Vielle-Calzada, Jean-Philippe

    2016-01-01

    Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates. PMID:27635128

  3. The Langmuir isotherm: a commonly applied but misleading approach for the analysis of protein adsorption behavior.

    PubMed

    Latour, Robert A

    2015-03-01

    The Langmuir adsorption isotherm provides one of the simplest and most direct methods to quantify an adsorption process. Because isotherm data from protein adsorption studies often appear to be fit well by the Langmuir isotherm model, estimates of protein binding affinity have often been made from its use despite that fact that none of the conditions required for a Langmuir adsorption process may be satisfied for this type of application. The physical events that cause protein adsorption isotherms to often provide a Langmuir-shaped isotherm can be explained as being due to changes in adsorption-induced spreading, reorientation, clustering, and aggregation of the protein on a surface as a function of solution concentration in contrast to being due to a dynamic equilibrium adsorption process, which is required for Langmuir adsorption. Unless the requirements of the Langmuir adsorption process can be confirmed, fitting of the Langmuir model to protein adsorption isotherm data to obtain thermodynamic properties, such as the equilibrium constant for adsorption and adsorption free energy, may provide erroneous values that have little to do with the actual protein adsorption process, and should be avoided. In this article, a detailed analysis of the Langmuir isotherm model is presented along with a quantitative analysis of the level of error that can arise in derived parameters when the Langmuir isotherm is inappropriately applied to characterize a protein adsorption process.

  4. SELDI-TOF analysis of glioblastoma cyst fluid is an approach for assessing cellular protein expression

    PubMed Central

    Hoelscher, Martin; Richter, Nina; Melle, Christian; von Eggeling, Ferdinand; Schaenzer, Anne; Nestler, Ulf

    2013-01-01

    Objectives: In about 10% of glioblastoma patients, preoperative MRI discloses the presence of tumor cysts. Whereas the impact of cystic appearance on prognosis has been discussed extensively, only little is known about the tumor cyst fluid. In this study, we tested the feasibility of the surface enhanced laser desorption ionization time of flight (SELDI-TOF) technique to detect cyst fluid proteins. Methods: Cyst fluid was collected from 21 glioblastoma patients for SELDI-TOF analysis and compared to control cerebrospinal fluids from 15 patients with spinal stenosis. Resulting protein peaks with significant differences between groups were further described, using the molecular weight in an internet search of protein databases and publications. Two potential cyst fluid proteins, basigin and ferritin light chain, were selected for immunohistological detection in the histologic slides of the patients, metallothionein (MT) served as negative control. Results: As supposed from the results of the SELDI-TOF analysis, basigin and ferritin were detected immunohistochemically in the cyst wall, whereas MT was more equally distributed between the cyst wall and the surrounding tumor tissue. Median survival time of the patients was 20 months (range 2 to 102 months) and correlated with age, but not with expression of the three proteins. Discussion: The SELDI-TOF approach reveals a number of proteins, potentially present in glioblastoma cyst fluid. Identification of these proteins in tumor cells may help understand the pathogenetic pathways and the prognostic value of cystic changes. PMID:24225180

  5. Colorimetric analysis of protein sulfhydryl groups in milk: applications and processing effects.

    PubMed

    Owusu-Apenten, R

    2005-01-01

    Methods for protein sulfhydryl (SH) group analysis in food systems have been largely overlooked. Nevertheless, changes in SH group concentration affect both physical and nutritional characteristics of high protein foods and ingredients. Food scientists and technologists require improved understanding of protein SH chemistry in order to design processes that minimize loss of thiol groups. This article surveys colorimetric methods for food protein SH group analysis with applications to fluid milk and dried milk powder. Most colorimetric assays (chloromeribenzoate, pyridine disulfide, Nitrobenzo-2-oxa-1,3-diazole, papain reactivation assay, etc.) were found to be inferior to the Ellman method based on the use of 5,5'dithio (bis-2 nitro benzoic acid). Techniques for SH group analysis in fluid milk and dried milk powder are described, along with typical results, their interpretations, and current research related to processing effects and the role of milk SH content on a wider range of technological issues, such as development of cooked flavors, fouling and cleaning of plate heat exchanges, protein-protein interactions, and the storage stability. Finally, a number of areas requiring further research are presented.

  6. Purification, characterization, and structural analysis of a plant low-temperature-induced protein.

    PubMed Central

    Boothe, J G; Sönnichsen, F D; de Beus, M D; Johnson-Flanagan, A M

    1997-01-01

    We have purified to near homogeneity a recombinant form of the protein BN28 (rBN28), expressed in response to low temperature in Brassica napus plants, and we have determined its solution structure. Antibodies raised against rBN28 were used to characterize the recombinant and native proteins. Similar to many other low-temperature-induced proteins, BN28 is extremely hydrophilic, such that it remains soluble following boiling. Immunoblot analysis of subcellular fractions indicated that BN28 was not strongly associated with cellular membranes and was localized exclusively within the soluble fraction of the cell. Contrary to predicted secondary structure that suggested significant helical content, circular dichroism analysis revealed that rBN28 existed in aqueous solution largely as a random coil. However, the helical propensity of the protein could be demonstrated in the presence of trifluoroethanol. Nuclear magnetic resonance analysis further showed that rBN28 was in fact completely unstructured (100% coil) in aqueous solution. Although it had earlier been speculated that BN28-like proteins from Arabidopsis thaliana might possess antifreeze protein activity (S. Kurkela and M. Franck [1990] Plant Mol Biol 15: 137-144), no such activity could be detected in ice recrystallization assays with rBN28. PMID:9046590

  7. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  8. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  9. Quantitative proteomics analysis of adsorbed plasma proteins classifies nanoparticles with different surface properties and size

    SciTech Connect

    Zhang, Haizhen; Burnum, Kristin E.; Luna, Maria L.; Petritis, Brianne O.; Kim, Jong Seo; Qian, Weijun; Moore, Ronald J.; Heredia-Langner, Alejandro; Webb-Robertson, Bobbie-Jo M.; Thrall, Brian D.; Camp, David G.; Smith, Richard D.; Pounds, Joel G.; Liu, Tao

    2011-12-01

    In biofluids (e.g., blood plasma) nanoparticles are readily embedded in layers of proteins that can affect their biological activity and biocompatibility. Herein, we report a study on the interactions between human plasma proteins and nanoparticles with a controlled systematic variation of properties using stable isotope labeling and liquid chromatography-mass spectrometry (LC-MS) based quantitative proteomics. Novel protocol has been developed to simplify the isolation of nanoparticle bound proteins and improve the reproducibility. Plasma proteins associated with polystyrene nanoparticles with three different surface chemistries and two sizes as well as for four different exposure times (for a total o