Sample records for gpm draft science

  1. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. In this presentation, we will present GPM data products and services with examples.

  2. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications.In this presentation, we will present GPM data products and services with examples.

  3. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications.

  4. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    NASA Astrophysics Data System (ADS)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style for the comic book reflects the international and cross-cultural aspect of the GPM as a joint mission between NASA and the Japan Aerospace Exploration Agency. A limited run print version of the initial comic book is planned for Fall 2015, with an online version and supplemental resources such as a teacher guide available on the GPM education website.

  5. Supporting Hydrometeorological Research and Applications with Global Precipitation Measurement (GPM) Products and Services

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2016-01-01

    Precipitation is an important dataset in hydrometeorological research and applications such as flood modeling, drought monitoring, etc. On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data. The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). GPM products currently available include the following:1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products2. Goddard Profiling Algorithm (GPROF) GMI and partner products (Level-2 and Level-3)3. GPM dual-frequency precipitation radar and their combined products (Level-2 and Level-3)4. Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final run)GPM data can be accessed through a number of data services (e.g., Simple Subset Wizard, OPeNDAP, WMS, WCS, ftp, etc.). A newly released Unified User Interface or UUI is a single interface to provide users seamless access to data, information and services. For example, a search for precipitation products will not only return TRMM and GPM products, but also other global precipitation products such as MERRA (Modern Era Retrospective-Analysis for Research and Applications), GLDAS (Global Land Data Assimilation Systems), etc.New features and capabilities have been recently added in GIOVANNI to allow exploring and inter-comparing GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) half-hourly and monthly precipitation products as well as other precipitation products such as TRMM, MERRA, NLDAS, GLDAS, etc. GIOVANNI is a web-based tool developed by the GES DISC, to visualize and analyze Earth science data without having to download data and software. During the GPM era, the GES DISC will continue to develop and provide data services for supporting applications. We will update and enhance existing TRMM applications (Current Conditions, the USDA Crop Explorer, etc.) with higher spatial resolution IMERG products. In this presentation, we will present GPM data products and services with examples.

  6. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences.

    PubMed

    Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A

    2016-10-15

    Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool-Genome Puzzle Master (GPM)-that enables the integration of additional genomic signposts to edit and build 'new-gen-assemblies' that result in high-quality 'annotation-ready' pseudomolecules. With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to 'group,' 'merge,' 'order and orient' sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user's total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS CONTACTS: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  7. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access, subset, Giovanni, documents).

  8. Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers

    NASA Technical Reports Server (NTRS)

    Folta, David; Mendelsohn, Chad; Mailhe, Laurie

    2003-01-01

    The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission must meet the challenge of measuring worldwide precipitation every three hours. The GPM core spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment at a near-critical inclination. Analysis shows that a mean orbit altitude of 407 km is necessary to prevent ground track repeating. Combined with goals to minimize maneuver operation impacts to science data collection and to enable reasonable long-term orbit predictions, the GPM project has decided to fly the GSFC autonomous maneuver system, AutoCon(TM). This system is a follow-up version of the highly successful New Millennium Program technology flown onboard the Earth Observing-1 formation flying mission. This paper presents the driving science requirements and goals of the GPM mission and shows how they will be met. Selection of the mean semi-major axis, eccentricity, and the AV budget for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using GPM parameters. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2017-12-08

    Gail Skofronick-Jackson, NASA GPM Project Scientist, talks during a science briefing for the launch of the Global Precipitation Measurement (GPM) Core Observatory aboard an H-IIA rocket, Wednesday, Feb. 26, 2014, Tanegashima Space Center, Japan. Launch is scheduled for early in the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Orbit Design and Autonomous Maneuvers

    NASA Technical Reports Server (NTRS)

    Folta, David; Mendelsohn, Chad

    2003-01-01

    The NASA Goddard Space Flight Center's Global Precipitation Measurement (GPM) mission will meet a challenge of measuring worldwide precipitation every three hours. The GPM spacecraft, part of a constellation, will be required to maintain a circular orbit in a high drag environment to accomplish this challenge. Analysis by the Flight Dynamics Analysis Branch has shown that the prime orbit altitude of 40% is necessary to prevent ground track repeating. Combined with goals to minimize maneuver impacts to science data collection and enabling reasonable long-term orbit predictions, the GPM project has decided to fly an autonomous maneuver system. This system is a derivative of the successful New Millennium Program technology flown onboard the Earth Observing-1 mission. This paper presents the driving science requirements and goals of the mission and shows how they will be met. Analysis of the orbit optimization and the AV requirements for several ballistic properties are presented. The architecture of the autonomous maneuvering system to meet the goals and requirements is presented along with simulations using a GPM prototype. Additionally, the use of the GPM autonomous system to mitigate possible collision avoidance and to aid other spacecraft systems during navigation outages is explored.

  11. Genome puzzle master (GPM): an integrated pipeline for building and editing pseudomolecules from fragmented sequences

    PubMed Central

    Zhang, Jianwei; Kudrna, Dave; Mu, Ting; Li, Weiming; Copetti, Dario; Yu, Yeisoo; Goicoechea, Jose Luis; Lei, Yang; Wing, Rod A.

    2016-01-01

    Abstract Motivation: Next generation sequencing technologies have revolutionized our ability to rapidly and affordably generate vast quantities of sequence data. Once generated, raw sequences are assembled into contigs or scaffolds. However, these assemblies are mostly fragmented and inaccurate at the whole genome scale, largely due to the inability to integrate additional informative datasets (e.g. physical, optical and genetic maps). To address this problem, we developed a semi-automated software tool—Genome Puzzle Master (GPM)—that enables the integration of additional genomic signposts to edit and build ‘new-gen-assemblies’ that result in high-quality ‘annotation-ready’ pseudomolecules. Results: With GPM, loaded datasets can be connected to each other via their logical relationships which accomplishes tasks to ‘group,’ ‘merge,’ ‘order and orient’ sequences in a draft assembly. Manual editing can also be performed with a user-friendly graphical interface. Final pseudomolecules reflect a user’s total data package and are available for long-term project management. GPM is a web-based pipeline and an important part of a Laboratory Information Management System (LIMS) which can be easily deployed on local servers for any genome research laboratory. Availability and Implementation: The GPM (with LIMS) package is available at https://github.com/Jianwei-Zhang/LIMS Contacts: jzhang@mail.hzau.edu.cn or rwing@mail.arizona.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318200

  12. Consistent Measurement and Physical Character of the DSD: Disdrometer to Satellite

    NASA Technical Reports Server (NTRS)

    Petersen, Walt; Thurai, Merhala; Gatlin, Patrick; Tokay, Ali; Morris, Bob; Wolff, David; Pippitt, Jason; Marks, David; Berendes, Todd

    2017-01-01

    Objective: Validate GPM (Global Precipitation Measurement) Drop Size Distribution Retrievals: Drop size distributions (DSD) are critical to GPM DPR (Dual-frequency Precipitation Radar)-based rainfall retrievals; NASA GPM Science Requirements stipulate that the GPM Core observatory radar estimation of D (sub m) (mean diameter) shall be within plus or minus 0.5 millimeters of GV (Ground Validation); GV translates disdrometer measurements to polarimetric radar-based DSD and precipitation type retrievals (e.g., convective vs. stratiform (C/S)) for coincident match-up to GPM core overpasses; How well do we meet the requirement across product versions, rain types (e.g., C/S partitioning), and rain rates (heavy, light) and is behavior physically and internally consistent?

  13. 78 FR 3458 - Florida Power Corporation, Crystal River Unit 3, Draft Environmental Assessment Related to the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... design intake volume of 680,000 gpm [gallons per minute] (42,840 L/s), with a combined condenser flow... licensee in 2007 and the cooling tower design was subsequently modified to meet PM emission thresholds by reducing the flow rate through the tower. The predicted emissions from the modified design are 91.2 tons PM...

  14. New Global Precipitation Products and Data Service Updates at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Savtchenko, A.; DeShong, B.; Greene, M.; Vollmer, B.; Kempler, S.

    2016-01-01

    This poster describes recent updates of the ongoing GPM data service activities at the NASA Goddard Earth Sciences (GES) Data and Information Services Center(DISC) to facilitate access and exploration of GPM, TRMM and other NASA precipitation datasets for the global community. The poster contains -Updates on GPM products and data services -New features in Giovanni for precipitation data visualization -Precipitation data and service outreach activities.

  15. Incorporating the TRMM Dataset into the GPM Mission Data Suite

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Ji, Yimin; Chou, Joyce; Kelley, Owen; Kwiatkowski, John; Stout, John

    2016-01-01

    In June 2015 the TRMM satellite came to its end. The 17 plus year of mission data that it provided has proven a valuable asset to a variety of science communities. This 17plus year data set does not, however, stagnate with the end of the mission itself. NASA/JAXA intend to integrate the TRMM data set into the data suite of the GPM mission. This will ensure the creation of a consistent, intercalibrated, accurate dataset within GPM that extends back to November of 1998. This paper describes the plans for incorporating the TRMM 17plus year data into the GPM data suite. These plans call for using GPM algorithms for both radiometer and radar to reprocess TRMM data as well as intercalibrating partner radiometers using GPM intercalibration techniques. This reprocessing will mean changes in content, logical format and physical format as well as improved geolocation, sensor corrections and retrieval techniques.

  16. Gpm Level 1 Science Requirements: Science and Performance Viewed from the Ground

    NASA Technical Reports Server (NTRS)

    Petersen, W.; Kirstetter, P.; Wolff, D.; Kidd, C.; Tokay, A.; Chandrasekar, V.; Grecu, M.; Huffman, G.; Jackson, G. S.

    2016-01-01

    GPM meets Level 1 science requirements for rain estimation based on the strong performance of its radar algorithms. Changes in the V5 GPROF algorithm should correct errors in V4 and will likely resolve GPROF performance issues relative to L1 requirements. L1 FOV Snow detection largely verified but at unknown SWE rate threshold (likely < 0.5 –1 mm/hr/liquid equivalent). Ongoing work to improve SWE rate estimation for both satellite and GV remote sensing.

  17. Global Precipitation Measurement Mission Products and Services at the NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Deshong, B.; MacRitchie, K.; Greene, M.; Kempler, S.

    2017-01-01

    This article describes NASA/JAXA Global Precipitation Measurement (GPM) mission products and services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Built on the success of the Tropical Rainfall Measuring Mission (TRMM), the next-generation GPM mission consists of new precipitation measurement instruments and a constellation of international research and operational satellites to provide improved measurements of precipitation globally. To facilitate data access, research, applications, and scientific discovery, the GES DISC has developed a variety of data services for GPM. This article is intended to guide users in choosing GPM datasets and services at the GES DISC.

  18. Ground Validation Assessments of GPM Core Observatory Science Requirements

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Huffman, George; Kidd, Chris; Skofronick-Jackson, Gail

    2017-04-01

    NASA Global Precipitation Measurement (GPM) Mission science requirements define specific measurement error standards for retrieved precipitation parameters such as rain rate, raindrop size distribution, and falling snow detection on instantaneous temporal scales and spatial resolutions ranging from effective instrument fields of view [FOV], to grid scales of 50 km x 50 km. Quantitative evaluation of these requirements intrinsically relies on GPM precipitation retrieval algorithm performance in myriad precipitation regimes (and hence, assumptions related to physics) and on the quality of ground-validation (GV) data being used to assess the satellite products. We will review GPM GV products, their quality, and their application to assessing GPM science requirements, interleaving measurement and precipitation physical considerations applicable to the approaches used. Core GV data products used to assess GPM satellite products include 1) two minute and 30-minute rain gauge bias-adjusted radar rain rate products and precipitation types (rain/snow) adapted/modified from the NOAA/OU multi-radar multi-sensor (MRMS) product over the continental U.S.; 2) Polarimetric radar estimates of rain rate over the ocean collected using the K-Pol radar at Kwajalein Atoll in the Marshall Islands and the Middleton Island WSR-88D radar located in the Gulf of Alaska; and 3) Multi-regime, field campaign and site-specific disdrometer-measured rain/snow size distribution (DSD), phase and fallspeed information used to derive polarimetric radar-based DSD retrievals and snow water equivalent rates (SWER) for comparison to coincident GPM-estimated DSD and precipitation rates/types, respectively. Within the limits of GV-product uncertainty we demonstrate that the GPM Core satellite meets its basic mission science requirements for a variety of precipitation regimes. For the liquid phase, we find that GPM radar-based products are particularly successful in meeting bias and random error requirements associated with retrievals of rain rate and required +/- 0.5 millimeter error bounds for mass-weighted mean drop diameter. Version-04 (V4) GMI GPROF radiometer-based rain rate products exhibit reasonable agreement with GV, but do not completely meet mission science requirements over the continental U.S. for lighter rain rates (e.g., 1 mm/hr) due to excessive random error ( 75%). Importantly, substantial corrections were made to the V4 GPROF algorithm and preliminary analysis of Version 5 (V5) rain products indicates more robust performance relative to GV. For the frozen phase and a modest GPM requirement to "demonstrate detection of snowfall", DPR products do successfully identify snowfall within the sensitivity and beam sampling limits of the DPR instrument ( 12 dBZ lower limit; lowest clutter-free bins). Similarly, the GPROF algorithm successfully "detects" falling snow and delineates it from liquid precipitation. However, the GV approach to computing falling-snow "detection" statistics is intrinsically tied to GPROF Bayesian algorithm-based thresholds of precipitation "detection" and model analysis temperature, and is not sufficiently tied to SWER. Hence we will also discuss ongoing work to establish the lower threshold SWER for "detection" using combined GV radar, gauge and disdrometer-based case studies.

  19. GPM High Gain Antenna System

    NASA Image and Video Library

    2013-11-14

    The GPM High Gain Antenna System (HGAS) in integration and testing at Goddard Space Flight Center. Credit: Craig E. Huber, Chief Engineer SGT Inc, NASA Goddard Space Flight Center The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. GPM Data Products, Their Availability, and Production Status

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, Owen; Kwiatkowski, John; Ji, Yimin

    2014-01-01

    On February 28, 2014, Japan Standard Time, the Global Precipitation Measurement (GPM) mission was launched in a picture-perfect launch activity. On March 4, 2014, the GPM Microwave Imager (GMI) was put into science observation mode. The Dual-Frequency Radar (DPR) was put in science observation mode on March 8, 2014. The Precipitation Processing System (PPS) produced products immediately upon receiving the data. Both regular science products and Near-realtime (NRT) products were produced. These were made immediately available to a group of early adopters. In mid-June 2014, GMI level-1 brightness temperature products were made publicly available. In mid-July 2014, GMI and partner-radiometer precipitation retrievals were made public. GMI public availability was several months ahead of the planned release. The DPR products became publicly available on the planned release date of September 2, 2014. Data continues to be available to any user desiring it.

  1. GPM Vibration Testing

    NASA Image and Video Library

    2013-11-14

    Vibration testing of the horizontal axis of the spacecraft. Credit: NASA/Goddard The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  3. Three Years of the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Petersen, Walter

    2017-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented.

  4. The Status of NASA's Global Precipitation Measurement (GPM) Mission 26 Months After Launch

    NASA Astrophysics Data System (ADS)

    Jackson, Gail; Huffman, George

    2016-04-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). The unique 65o non-Sun-synchronous orbit at an altitude of 407 km for the GPM Core Observatory allows for highly sophisticated observations of precipitation in the mid-latitudes where a majority of the population lives. Indeed, the GOM Core Observatory serves as the cornerstone, as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. GPM's requirements are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. GPM has several retrieval product levels ranging from raw instrument data to Core and partner swath precipitation estimates to gridded and accumulated products and finally to multi-satellite merged products. The latter merged product, called IMERG, is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1o x 0.1o (~10km x 10km) grid box. Some products have a 1-hour latency for societal applications such as floods, landslides, hurricanes, blizzards, and typhoons and all have late-latency high-quality science products. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales via providing precipitation particle size distributions internal to the cloud, 5-15 km estimates of regional precipitation and merged global precipitation. Once TRMM data is recalibrated to the high quality standards of GPM (and as GPM continues to operate), TRMM and GPM together, with partner data) can provide a 25-30+ year record of global precipitation. Scientists and hazard decision makers all over the world value GPM's data. Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented.

  5. Science Formulation of Global Precipitation Mission (gpm)

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally-sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  6. Science Formulation of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  7. Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Hou, Arthur Y.

    2008-01-01

    For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.

  8. Japanese H-IIA rocket

    NASA Image and Video Library

    2013-11-14

    The Japanese H-IIA rocket will be launching the GPM Core Observatory into orbit in 2014. Credit: JAXA The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA) that will provide next-generation global observations of precipitation from space. GPM will study global rain, snow and ice to better understand our climate, weather, and hydrometeorological processes. As of Novermber 2013 the GPM Core Observatory is in the final stages of testing at NASA Goddard Space Flight Center. The satellite will be flown to Japan in the fall of 2013 and launched into orbit on an HII-A rocket in early 2014. For more on the GPM mission, visit gpm.gsfc.nasa.gov/. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. The Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2008-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance global precipitation measurements from a constellation of dedicated and operational microwave sensors. The GPM concept centers on the deployment of a Core Spacecraft in a non-Sun-synchronous orbit at 65 degrees inclination carrying a dual-frequency precipitation radar (DPR) and a multi-frequency passive microwave radiometer (GMI) with high-frequency capabilities to serve as a precipitation physics observatory and calibration standard for the constellation radiometers. The baseline GPM constellation is envisioned to comprise conical-scanning microwave imagers (e.g., GMI, SSMIS, AMSR, MIS, MADRAS, GPM-Brazil) augmented with cross-track microwave temperature/humidity sounders (e.g., MHS, ATMS) over land. In addition to the Core Satellite, the GPM Mission will contribute a second GMI to be flown in a low-inclination (approximately 40 deg.) non-Sun-synchronous orbit to improve near real-time monitoring of hurricanes. GPM is a science mission with integrated applications goals aimed at (1) advancing the knowledge of the global water/energy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional partners in satellite constellation and ground validation activities. Within the framework of the inter-governmental Group ob Earth Observations (GEO) and Global Earth Observation System of Systems (GEOSS), GPM has been identified as a cornerstone for the Precipitation Constellation (PC) being developed under the auspices of Committee of Earth Observation Satellites (CEOS). The GPM Core Observatory is scheduled for launch in 2013, followed by the launch of the GPM Low-Inclination Observatory in 2014. An overview of the GPM mission status, instrument capabilities, ground validation plans, and anticipated scientific and societal benefits will be presented.

  10. USA Science and Engineering Festival 2014

    NASA Image and Video Library

    2014-04-25

    A NASA staff member describes the Global Precipitation Measurement Mission. The GPM Core Observatory satellite was launched into space on February 27, 2014 and will measure rain and snow worldwide every three hours. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information. The USA Science and Engineering Festival took place at the Washington Convention Center in Washington, DC on April 26 and 27, 2014. Photo Credit: (NASA/Aubrey Gemignani)

  11. Global Precipitation Measurement. Report 2; Benefits of Partnering with GPM Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Smith, Eric A. (Editor); Adams, W. James (Editor); Starr, David OC. (Technical Monitor)

    2002-01-01

    An important goal of the Global Precipitation Measurement (GPM) mission is to maximize participation by non-NASA partners both domestic and international. A consequence of this objective is the provision for NASA to provide sufficient incentives to achieve partner buy-in and commitment to the program. NASA has identified seven specific areas in which substantive incentives will be offered: (1) partners will be offered participation in governance of GPM mission science affairs including definition of data products; (2) partners will be offered use of NASA's TDRSS capability for uplink and downlink of commands and data in regards to partner provided spacecraft; (3) partners will be offered launch support for placing partner provided spacecraft in orbit conditional upon mutually agreeable co-manifest arrangements; (4) partners will be offered direct data access at the NASA-GPM server level rather than through standard data distribution channels; (5) partners will be offered the opportunity to serve as regional data archive and distribution centers for standard GPM data products; and (6) partners will be offered the option to insert their own specialized filtering and extraction software into the GPM data processing stream or to obtain specialized subsets and products over specific areas of interest (7) partners will be offered GPM developed software tools that can be run on their platforms. Each of these incentives, either individually or in combination, represents a significant advantage to partners who may wish to participate in the GPM mission.

  12. Global Precipitation Measurement (GPM) Core Observatory Falling Snow Estimates

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, G.; Kulie, M.; Milani, L.; Munchak, S. J.; Wood, N.; Levizzani, V.

    2017-12-01

    Retrievals of falling snow from space represent an important data set for understanding and linking the Earth's atmospheric, hydrological, and energy cycles. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. This work focuses on comparing the first stable falling snow retrieval products (released May 2017) for the Global Precipitation Measurement (GPM) Core Observatory (GPM-CO), which was launched February 2014, and carries both an active dual frequency (Ku- and Ka-band) precipitation radar (DPR) and a passive microwave radiometer (GPM Microwave Imager-GMI). Five separate GPM-CO falling snow retrieval algorithm products are analyzed including those from DPR Matched (Ka+Ku) Scan, DPR Normal Scan (Ku), DPR High Sensitivity Scan (Ka), combined DPR+GMI, and GMI. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new, the different on-orbit instruments don't capture all snow rates equally, and retrieval algorithms differ. Thus a detailed comparison among the GPM-CO products elucidates advantages and disadvantages of the retrievals. GPM and CloudSat global snowfall evaluation exercises are natural investigative pathways to explore, but caution must be undertaken when analyzing these datasets for comparative purposes. This work includes outlining the challenges associated with comparing GPM-CO to CloudSat satellite snow estimates due to the different sampling, algorithms, and instrument capabilities. We will highlight some factors and assumptions that can be altered or statistically normalized and applied in an effort to make comparisons between GPM and CloudSat global satellite falling snow products as equitable as possible.

  13. Global Precipitation Measurement (GPM) launch, commissioning, and early operations

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2014-10-01

    The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). The mission centers on the GPM Core Observatory and consists of an international network, or constellation, of additional satellites that together will provide next-generation global observations of precipitation from space. The GPM constellation will provide measurements of the intensity and variability of precipitation, three-dimensional structure of cloud and storm systems, the microphysics of ice and liquid particles within clouds, and the amount of water falling to Earth's surface. Observations from the GPM constellation, combined with land surface data, will improve weather forecast models; climate models; integrated hydrologic models of watersheds; and forecasts of hurricanes/typhoons/cylcones, landslides, floods and droughts. The GPM Core Observatory carries an advanced radar/radiometer system and serves as a reference standard to unify precipitation measurements from all satellites that fly within the constellation. The GPM Core Observatory improves upon the capabilities of its predecessor, the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM), with advanced science instruments and expanded coverage of Earth's surface. The GPM Core Observatory carries two instruments, the NASA-supplied GPM Microwave Imager (GMI) and the JAXA-supplied Dual-frequency Precipitation Radar (DPR). The GMI measures the amount, size, intensity and type of precipitation, from heavy-tomoderate rain to light rain and snowfall. The DPR provides three-dimensional profiles and intensities of liquid and solid precipitation. The French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Department of Defense are partners with NASA and JAXA. The GPM Core Observatory was launched from JAXA's Tanegashima Space Center on an H-IIA launch vehicle on February 28, 2014 Japan Standard Time (JST). The mission has completed its checkout and commissioning phase and is in Operations Phase. The current status and early results will be discussed.

  14. A Rapid Protoyping Approach for the Evaluation of Potential GPM-Era Precipitation Products for Water Resources Management Applications

    NASA Astrophysics Data System (ADS)

    Anantharaj, V. G.; Houser, P. R.; Turk, F. J.; Peterson, C. A.; Hossain, F.; Moorhead, R. J.; Toll, D. L.; Mostovoy, G.

    2009-04-01

    In order to facilitate the operational transition of satellite data, research products and advances in numerical modeling, the NASA Applied Sciences Program (ASP) had adopted a systems engineering approach to help identify and advanced and basic research capabilities that may be further developed for operational applications. This novel approach was envisioned to accelerate the harvesting of NASA's investment in research for societal benefits. International programs such as the Global Earth Observing System of Systems (GEOSS) could benefit from such systematic and integrated approaches to identify and extend the results of earth and environmental sciences for the benefits of global society. This new approach by the ASP was based on three phases of implementation, namely: (a) "Solutions Networks" for systematically examining data products, capabilities, and results from NASA Earth science research in order to find identify and prioritize candidate research activities that have the potential for societal benefits; (b) "Rapid Prototyping Capability (RPC)" experiments to further develop and tailor basic research and further evaluate and quantify their potential impacts for applications and decision support; and (c) "Integrated System Solutions (ISS)" to fully execute the transition the research to operational implementation and benchmark the performance resulting from integrating NASA Earth observations and science results. The RPC science experiments can be rapidly prototyped in order to evaluate the suitability of data, algorithms and models. They are designed to characterize uncertainties involved in the data, models, and decision making process while maintaining scientific rigor through the entire process. This approach helps identify scientific and logistical risks earlier in the process so that they can be appropriately addressed in a timely manner to minimize risk. GPM is promoted as "a science mission with broad societal applications," that will address societal benefits related to human health (soil moisture, climate and disease outbreak), homeland security (removal of chemical/biological/nuclear agents), flooding potential and warning, water availability, water quality, and agriculture and food security. In 2006, the NASA ASP sponsored two RPC experiments to evaluate potential GPM-era high resolution satellite precipitation products for water management applications. One of the current uncertainties involved in the GPM missions is the nature of the exact configuration of the constellations of satellites and hence the potential for the dynamic error characteristics over time of the precipitation estimates. For the RPC evaluations, we needed a satellite precipitation product that would be analogous to the GPM-era products. Our solution was to develop a suite of high resolution precipitation products, based on the NRL-Blend algorithm. We created a set of 10 different satellite precipitation estimates (hereafter referred to as the "GPM-proxy data"), using the currently available IR and microwave sensors. However, in each product we systematically left out sets of observations and/or sensors, such as AM orbits. The geographical focus of our study was the operational domain of the Arkansas Basin River Forecast Center (ABRFC) of the U.S. National Weather Service. We have evaluated the GPM-proxy data against the operational product (radar and gauge based) used by ABRFC. Further, we also performed a set of soil water content (SWC) sensitivity experiments using the Noah and Mosaic Land Surface Models (LSM) to quantify the impacts on water management applications involving land surface hydrology. Both the LSMs were forced with the same set of GPM-proxy data. Though the overall spatial patterns for both the models were similar, there were subtle differences in the respective model sensitivities to the different precipitation forcings. These experimental results illustrate the need for comprehensive pre-evaluations of applications, in order quantify and minimize the risks involved in applications with the introduction of new precipitation products, before making extensive investments in operational transitions. Besides the SWC sensitivity experiments, we have also evaluated precipitation merging and downscaling techniques using various other precipitation products, including IR-based estimates, NRL-Blend and CMORPH. During the presentation, we will outline systems engineering approach used by ASP, summarize the results of the GPM RPC experiments, and discuss the lessons learned in prototyping applications for GPM-era high resolution precipitation products.

  15. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    One of the control rooms at NASA’s Goddard Space Flight Center in Greenbelt, Md., prepares for the GPM mission’s Core Observatory on Feb. 27, 2014. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  16. Improving Global Precipitation Product Access at the GES DISC

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Vollmer, B.; Savtchenko, A.; Ostrenga, D.; DeShong, B.; Fang, F.; Albayrak, R,; Sherman, E.; Greene, M.; Li, A.; hide

    2018-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been actively and continually engaged in improving the access to and use of Global Precipitation Measurement (GPM), Tropical Precipitation Measuring Mission (TRMM), and other precipitation data, including the following new services and Ongoing development activities: Updates on GPM products and data services, New features in Giovanni, Ongoing development activities; and Precipitation product and service outreach activities.

  17. Transition to Operations Plans for GPM Datasets

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Jedlovec, Gary; Case, Jonathan; Leroy, Anita; Molthan, Andrew; Bell, Jordan; Fuell, Kevin; Stano, Geoffrey

    2013-01-01

    Founded in 2002 at the National Space Science Technology Center at Marshall Space Flight Center in Huntsville, AL. Focused on transitioning unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale. NASA directed funding; NOAA funding from Proving Grounds (PG). Demonstrate capabilities experimental products to weather applications and societal benefit to prepare forecasters for the use of data from next generation of operational satellites. Objective of this poster is to highlight SPoRT's research to operations (R2O) paradigm and provide examples of work done by the team with legacy instruments relevant to GPM in order to promote collaborations with groups developing GPM products.

  18. Current Status of Japanese Global Precipitation Measurement (GPM) Research Project

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Oki, Riko; Kubota, Takuji; Masaki, Takeshi; Kida, Satoshi; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2013-04-01

    The Global Precipitation Measurement (GPM) mission is a mission led by the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) under collaboration with many international partners, who will provide constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory, which carries the Dual-frequency Precipitation Radar (DPR) developed by JAXA and the National Institute of Information and Communications Technology (NICT), and the GPM Microwave Imager (GMI) developed by NASA. The GPM Core Observatory is scheduled to be launched in early 2014. JAXA also provides the Global Change Observation Mission (GCOM) 1st - Water (GCOM-W1) named "SHIZUKU," as one of constellation satellites. The SHIZUKU satellite was launched in 18 May, 2012 from JAXA's Tanegashima Space Center, and public data release of the Advanced Microwave Scanning Radiometer 2 (AMSR2) on board the SHIZUKU satellite was planned that Level 1 products in January 2013, and Level 2 products including precipitation in May 2013. The Japanese GPM research project conducts scientific activities on algorithm development, ground validation, application research including production of research products. In addition, we promote collaboration studies in Japan and Asian countries, and public relations activities to extend potential users of satellite precipitation products. In pre-launch phase, most of our activities are focused on the algorithm development and the ground validation related to the algorithm development. As the GPM standard products, JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and the DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map product as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. All standard algorithms including Japan-US joint algorithm will be reviewed by the Japan-US Joint Precipitation Measuring Mission (PMM) Science Team (JPST) before the release. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. At-launch code was developed in December 2012. In addition, JAXA and NASA have provided synthetic DPR L1 data and tests have been performed using them. Japanese Global Rainfall Map algorithm for the GPM mission has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007. The GSMaP near-real-time version and reanalysis version have been in operation at JAXA, and browse images and binary data available at the GSMaP web site (http://sharaku.eorc.jaxa.jp/GSMaP/). The GSMaP algorithm for GPM is developed in collaboration with AMSR2 standard algorithm for precipitation product, and their validation studies are closely related. As JAXA GPM product, we will provide 0.1-degree grid and hourly product for standard and near-realtime processing. Outputs will include hourly rainfall, gauge-calibrated hourly rainfall, and several quality information (satellite information flag, time information flag, and gauge quality information) over global areas from 60°S to 60°N. At-launch code of GSMaP for GPM is under development, and will be delivered to JAXA GPM Mission Operation System by April 2013. At-launch code will include several updates of microwave imager and sounder algorithms and databases, and introduction of rain-gauge correction.

  19. Definition of International GPM GV Research Program

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2003-01-01

    The Global Precipitation Measurement (GPM) Mission will consist of a constellation of rain-measuring satellites, the main member of which (the core satellite) will serve as the measurement reference to the other members of the constellation. The core satellite is being developed jointly by the National Aeronautics and Space Administration (NASA) and the newly-named Japan Aerospace Exploration Agency (JAXA -- previously NASDA) along with its government partner, the Communications Research Laboratory (CRL). The GPM mission was proposed as a follow-up mission to the Tropical Rainfall Measuring Mission (TRMM) by both NASA and NASDA based on the unparalleled scientific success of TRMM, and has recently been joined by the European Space Agency (ESA) via its formulation of the European GPM mission (i.e., EGPM). GPM is an ambitious mission designed to produce accurate and frequent global observations of precipitation (both rain and snow) made possible by replacing the TRMM satellite with the new core satellite carrying an advanced radar-radiometer system, and serving as the centerpiece for the constellation of some eight (8) additional satellites being provided through international cooperation. The core satellite is to be flown up to high latitudes (inclined some 65-70 degrees), and will carry a Ku/Ka-band, nadir-scanning, dual-frequency precipitation radar (DPR) that is being developed by JAXA and CRL, along with a large aperture, extended frequency-range, conically-scanning passive microwave radiometer being developed by NASA and its industrial partners. Each constellation satellite will also carry some type of multi-channel passive microwave radiometer (as well as a multi-beam Ka-band radar in the case of EGPM) whose rain estimates will be calibrated and referenced to those made by the core satellite, producing for the first time fully-global, continuous, and bias-free precipitation datasets. GPM data will be delivered in near-realtime, taking a major step toward the operational use of precipitation information for model initialization and data assimilation in a number of application areas such as hazardous weather forecasting, flood warning, fresh water resource assessment, and crop growth prediction. In addition, GPM data will complement the now-existing global temperature record, allowing for improved assessments of climate change, particularly those processes in which the global water cycle both forces and responds to climatic drifts in global temperature conditions. A foremost element of this international constellation mission is a parallel international ground validation (GV) network. This GV network is needed to determine uncertainties in the rain retrievals, critical for application of the retrieval information in weather and hydrometeorological modeling and climate diagnostics, as well as assurances that the satellite retrievals of surface rainfall are consistent with those actually measured at the surface. The key aspects of this network is that it must be worldwide and created through the GPM partnership process. Therefore the network will consist of a confederation of government agencies, academic organizations, private institutions, and individual scientists from a collection of nations who have initiated the process by gathering in Abingdon to develop the fundamentals of the international GPM GV research programme. Therefore in keeping with our responsibilities as the front-runners of the programme, the main objectives of this workshop are: (1) to present and share opinions on interests, perspectives, and concerns about GPM GV research; (2) to examine the conceptual and/or planned GPM GV site templates from NASA, NASDA, ESA, and other partners; (3) to define the main scientific objectives of the international GPM GV research programme; (4) to formulate a preliminary set of international GPM GV science and measurement requirements; and (5) to convene a Steering Committee to aid the organization of the GPM GV program, to document its science implementation plans, and to aid planning for follow-up GPM GV meetings.

  20. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite. Collaboration with GCOM-W is not only limited to its participation to GPM constellation but also coordination in areas of algorithm development and validation in Japan. Generation of high-temporal and high-accurate global rainfall map is one of targets of the GPM mission. As a proto-type for GPM era, JAXA has developed and operates the Global Precipitation Map algorithm in near-real-time since October 2008, and hourly and 0.1-degree resolution binary data and images available at http://sharaku.eorc.jaxa.jp/GSMaP/ four hours after observation. The algorithms are based on outcomes from the Global Satellite Mapping for Precipitation (GSMaP) project, which was sponsored by the Japan Science and Technology Agency (JST) under the Core Research for Evolutional Science and Technology (CREST) framework between 2002 and 2007 (Okamoto et al., 2005; Aonashi et al., 2009; Ushio et al., 2009). Target of GSMaP project is to produce global rainfall maps that are highly accurate and in high temporal and spatial resolution through the development of rain rate retrieval algorithms based on reliable precipitation physical models by using several microwave radiometer data, and comprehensive use of precipitation radar and geostationary infrared imager data. Near-real-time GSMaP data is distributed via internet and utilized by end users. Purpose of data utilization by each user covers broad areas and in world wide; Science researches (model validation, data assimilation, typhoon study, etc.), weather forecast/service, flood warning and rain analysis over river basin, oceanographic condition forecast, agriculture, and education. Toward the GPM era, operational application should be further emphasized as well as science application. JAXA continues collaboration with hydrological communities to utilize satellite-based precipitation data as inputs to future flood prediction and warning system, as well as with meteorological agencies to proceed further data utilization in numerical weather prediction system and forecasts.

  1. Environmental Impact Analysis Process. Volume 1. Preliminary Draft Environmental Impact Statement Construction and Operation of Space Launch Complex 7, Vandenberg Air Force Base, California

    DTIC Science & Technology

    1989-04-06

    Cfiada Agua Viva is a south-flowing, perennial drainage located east of the project area and fed by two springs near Wild Horse Flats. Perennial yields...from this drainage are expected to be less than five gallons per minute (gpm), or 60 acre-feet per year. Caflada Agua Viva has a watershed area of... Agua Viva drainages are shown in Table 3.2.1 (Surface Water Quality, Point Arguello Area). Notably high values of total hardness, specific

  2. GPM's H-IIA Launch Vehicle No.23, First stage VOS

    NASA Image and Video Library

    2017-12-08

    GPM's launch vehicle, the H-IIA No.23, first stage VOS (Vehicle On Stand). GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Mitsubishi Heavy Industries NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Mitsubishi Heavy Industries (HMI) H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is during roll out at the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Credit: Mitsubishi Heavy Industries, Ltd. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Evaluation of GPM candidate algorithms on hurricane observations

    NASA Astrophysics Data System (ADS)

    Le, M.; Chandrasekar, C. V.

    2012-12-01

    The observation of precipitation on a global scale by the Tropical Rain Measuring Mission (TRMM) precipitation radar (PR) and has enabled a large scale study of precipitation over ocean, especially tropical storms. The three-dimensional downward-looking observation characteristic of the TRMM-PR makes it possible to study the vertical structure of tropical storms. The global precipitation measuring mission (GPM) will be the second mission following the success of TRMM. The GPM Mission extends tropical storm tracking and forecasting capabilities into the middle and high latitudes, covering the area from 65° S to 65°N. This orbit will provide new insight into how and why some tropical storm intensify and others weaken as they move from tropical to mid-latitude systems. The GPM core satellite will be equipped with a dual-frequency precipitation radar (DPR) operating at K_u (13.6 GHz) and K_a (35.5 GHz) band. DPR on aboard the GPM core satellite is expected to improve our knowledge of precipitation processes relative to the single-frequency (K_u band) radar used in TRMM by providing greater dynamic range, more detailed information on microphysics, and better accuracies in rainfall retrievals. New K_a band channel observation of DPR will help to improve the detection thresholds for light rain and snow relative to TRMM PR [1]. The dual-frequency signals will allow us to better distinguish regions of liquid, frozen, and mixed-phase precipitation. In the GPM era, storms could be better tracked and characterized. In support the NASA GPM mission, NASA JPL (Jet Propulsion Lab) developed the 2nd generation Airborne Precipitation Radar (APR-2) as a prototype of advanced dual-frequency space radar which emulates DPR on board the GPM core satellite before it is launched. GRIP (Genesis and Rapid Intensification Processes) is the most recent campaign of APR-2 conducted in the year 2010 located in Golf of Mexico and Caribbean sea with the major goal to better understand tropical storms and hurricanes. In this paper, the performance of GPM candidate algorithms [2][3] to perform profile classification, melting region detection as well as drop size distribution retrieval for hurricane Earl will be presented. This analysis will be compared with other storm observations that are not tropical storms. The philosophy of the algorithm is based on the vertical characteristic of measured dual-frequency ratio (DFRm), defined as the difference in measured radar reflectivities at the two frequencies. It helps our understanding of how hurricanes such as Earl form and intensify rapidly. Reference [1] T. Iguchi, R. Oki, A. Eric and Y. Furuhama, "Global precipitation measurement program and the development of dual-frequency precipitation radar," J. Commun. Res. Lab. (Japan), 49, 37-45.2002. [2] M. Le and V. Chandrasekar, Recent updates on precipitation classification and hydrometeor identification algorithm for GPM-DPR, Geoscience science and remote sensing symposium, IGARSS'2012, IEEE International, Munich, Germany. [3] M. Le ,V. Chandrasekar and S. Lim, Microphysical retrieval from dual-frequency precipitation radar board GPM, Geoscience science and remote sensing symposium, IGARSS'2010, IEEE International, Honolulu, USA.

  5. Use of GPM Data Products in SERVIR Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Limaye, A. S.; Mithieu, F.; Gurung, D. R.; Blankenship, C. B.; Crosson, W. L.; Anderson, E. R.; Flores, A.; Delgado, F.; Stanton, K.; Irwin, D.

    2015-12-01

    Availability of reliable precipitation data is a major challenge for SERVIR, a joint USAID-NASA project aimed at improving the environmental decision-making capacity of developing countries. GPM data products are fulfilling that challenge through frequent, high spatial resolution precipitation products over regional scales. SERVIR is using the products in different ways. First, SERVIR is using those in hydrologic modeling over Eastern Africa and in Hindu Kush Himalaya. SERVIR's distributed hydrologic modeling capability is helping the hydrological and meteorological departments in SERVIR regions, or Hubs, identify local watershed deserving immediate attention - such as recurring floods. Additionally, SERVIR technical implementers in the Hubs are building capacities of the departments and ministries in their member countries to effectively use the GPM products. SERVIR also provides an easy access for efficient integration of GPM products in web map services. This presentation will highlight ongoing collaborations and results generated through collaborative partnership among the water resources and hydrometeorology departments in Kenya, Uganda, Rwanda, Namibia, and Bhutan, SERVIR Hubs, and SERVIR Applied Sciences Team projects

  6. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  7. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    Children at the visitor center at NASA's Goddard Space Flight Center in Greenbelt, Md., receive a rainfall demonstration as part of activities tied to the launch of the Global Precipitation Measurement mission's Core Observatory on Feb. 27, 2014. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. GPM Captures Hurricane Joaquin

    NASA Image and Video Library

    2017-12-08

    Joaquin became a tropical storm Monday evening (EDT) midway between the Bahamas and Bermuda and has now formed into Hurricane Joaquin, the 3rd of the season--the difference is Joaquin could impact the US East Coast. NASA's GPM satellite captured Joaquin Tuesday, September 29th at 21:39 UTC (5:39 pm EDT). Credit: NASA's Scientific Visualization Studio Data provided by the joint NASA/JAXA GPM mission. Download/read more: svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=4367 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  9. Global precipitation measurement (GPM) preliminary design

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2008-10-01

    The overarching Earth science mission objective of the Global Precipitation Measurement (GPM) mission is to develop a scientific understanding of the Earth system and its response to natural and human-induced changes. This will enable improved prediction of climate, weather, and natural hazards for present and future generations. The specific scientific objectives of GPM are advancing: Precipitation Measurement through combined use of active and passive remote-sensing techniques, Water/Energy Cycle Variability through improved knowledge of the global water/energy cycle and fresh water availability, Climate Prediction through better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release, Weather Prediction through improved numerical weather prediction (NWP) skills from more accurate and frequent measurements of instantaneous rain rates with better error characterizations and improved assimilation methods, Hydrometeorological Prediction through better temporal sampling and spatial coverage of highresolution precipitation measurements and innovative hydro-meteorological modeling. GPM is a joint initiative with the Japan Aerospace Exploration Agency (JAXA) and other international partners and is the backbone of the Committee on Earth Observation Satellites (CEOS) Precipitation Constellation. It will unify and improve global precipitation measurements from a constellation of dedicated and operational active/passive microwave sensors. GPM is completing the Preliminary Design Phase and is advancing towards launch in 2013 and 2014.

  10. GPM's Launch Vehicle Arrives at Tanegashima Space Center

    NASA Image and Video Library

    2014-02-20

    The launch vehicle for the Global Precipitation Measurement, or GPM, mission's Core Observatory arrived at Tanegashima Space Center, Japan, in the pre-dawn hours of Tuesday, Jan. 21, local time. Credits: NASA/Goddard/Warren Schultzaburger GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Mitsubishi Heavy Industries NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. GPM High Gain Antenna System Testing

    NASA Image and Video Library

    2014-02-20

    File: 03/26/2012 The GPM High Gain Antenna System (HGAS) in integration and testing at Goddard Space Flight Center. GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Craig E. Huber, Chief Engineer SGT Inc, NASA Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian MeghaTropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory. GPM is a science mission with integrated applications goals. GPM will provide a key measurement to improve understanding of global water cycle variability and freshwater availability in a changing climate. The DPR and GMI measurements will offer insights into 3-dimensional structures of hurricanes and midlatitude storms, microphysical properties of precipitating particles, and latent heat associated with precipitation processes. The GPM mission will also make data available in near realtime (within 3 hours of observations) forocietal applications ranging from position fixes of storm centers, numerical weather prediction, flood forecasting, freshwater management, landslide warning, crop prediction, to tracking of water-borne diseases. An overview of the GPM mission design, retrieval strategy, ground validation activities, and international science collaboration will be presented.

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    The Global Precipitation Measurement (GPM) Mission is a satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors provided by a consortium of international partners. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite for precipitation measurements by the constellation sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR, the first dual-frequency radar in space, will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will serve as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. In addition to the Core Observatory, the GPM constellation consists of (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. Currently global rainfall products combine observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM is designed to provide the next-generation of precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database consistent with combined radar/radiometer measurements by the GPM Core Observatory. As a science mission with integrated applications goals, GPM will advance the understanding of global water cycle variability in a changing climate by offering insights into 3-dimensional structures of hurricanes and midlatitude storms, microphysical properties of precipitating particles, and latent heat associated with precipitation processes. The GPM Mission will also make data available in near realtime (within 3 hours of observations) for societal applications ranging from position fixes of storm centers, numerical weather prediction, flood forecasting, freshwater management, landslide warning, crop prediction, to tracking of water-borne diseases. This presentation will give an overview of the GPM mission and its development status approximately one-year prior to launch.

  14. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The cornerstone of the GPM mission is the deployment of a Core Observatory in a 65 deg non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The first space-borne dual-frequency radar will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from passive microwave sensors. The combined use of DPR and GMI measurements will place greater constraints on radiometer retrievals to improve the accuracy and consistency of precipitation estimates from all constellation radiometers. The GPM constellation is envisioned to comprise five or more conical-scanning microwave radiometers and four or more cross-track microwave sounders on operational satellites. NASA and the Japan Aerospace Exploration Agency (JAXA) plan to launch the GPM Core in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory (L10) to improve near real-time monitoring of hurricanes and mid-latitude storms. NASA and the Brazilian Space Program (AEB/IPNE) are currently engaged in a one-year study on potential L10 partnership. JAXA will contribute to GPM data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, the NASA/NOAA Joint Polar Satellite System (JPSS), and EUMETSAT MetOp satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. Relative to current data products, GPM's "nextgeneration" precipitation products will be characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory. An overview of the GPM mission concept, the U.S. GPM program status and updates on international science collaborations on GPM will be presented.

  15. Early Examples from the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    NASA Astrophysics Data System (ADS)

    Huffman, George; Bolvin, David; Braithwaite, Daniel; Hsu, Kuolin; Joyce, Robert; Kidd, Christopher; Sorooshian, Soroosh; Xie, Pingping

    2014-05-01

    The U.S. GPM Science Team's Day-1 algorithm for computing combined precipitation estimates as part of GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). The goal is to compute the best time series of (nearly) global precipitation from "all" precipitation-relevant satellites and global surface precipitation gauge analyses. IMERG is being developed as a unified U.S. algorithm drawing on strengths in the three contributing groups, whose previous work includes: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA); 2) the CPC Morphing algorithm with Kalman Filtering (K-CMORPH); and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS). We review the IMERG design and development, plans for testing, and current status. Some of the lessons learned in running and reprocessing the previous data sets include the importance of quality-controlling input data sets, strategies for coping with transitions in the various input data sets, and practical approaches to retrospective analysis of multiple output products (namely the real- and post-real-time data streams). IMERG output will be illustrated using early test data, including the variety of supporting fields, such as the merged-microwave and infrared estimates, and the precipitation type. We end by considering recent changes in input data specifications, the transition from TRMM-based calibration to GPM-based, and further "Day 2" development.

  16. Explore GPM IMERG and Other Global Precipitation Products with GES DISC GIOVANNI

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana M.; Vollmer, Bruce; MacRitchie, Kyle; Kempler, Steven

    2015-01-01

    New features and capabilities in the newly released GIOVANNI allow exploring GPM IMERG (Integrated Multi-satelliE Retrievals for GPM) Early, Late and Final Run global half-hourly and monthly precipitation products as well as other precipitation products distributed by the GES DISC such as TRMM Multi-Satellite Precipitation Analysis (TMPA), MERRA (Modern Era Retrospective-Analysis for Research and Applications), NLDAS (North American Land Data Assimilation Systems), GLDAS (Global Land Data Assimilation Systems), etc. GIOVANNI is a web-based tool developed by the GES DISC (Goddard Earth Sciences and Data Information Services Center) to visualize and analyze Earth science data without having to download data and software. The new interface in GIOVANNI allows searching and filtering precipitation products from different NASA missions and projects and expands the capabilities to inter-compare different precipitation products in one interface. Knowing differences in precipitation products is important to identify issues in retrieval algorithms, biases, uncertainties, etc. Due to different formats, data structures, units and so on, it is not easy to inter-compare precipitation products. Newly added features and capabilities (unit conversion, regridding, etc.) in GIOVANNI make inter-comparisons possible. In this presentation, we will describe these new features and capabilities along with examples.

  17. 76 FR 65722 - Notification of Two Public Teleconferences; Clean Air Scientific Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-24

    ... EPA's Integrated Science Assessment for Lead (First External Review Draft, May 2011) and EPA's draft... Science Assessment for Lead (First External Review Draft, May 2011) should be directed to Dr. Ellen... Integrated Science Assessment for Lead (First External Review Draft, May 2011) and EPA's draft Near-Road NO 2...

  18. Advances in Global Water Cycle Science Made Possible by Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    Within this decade the internationally sponsored Global Precipitation Mission (GPM) will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams from very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and on to blends of the former datastreams with other less-high caliber PMW-based and IR-based rain retrievals. Within the context of NASA's role in global water cycle science and its own Global Water & Energy Cycle (GWEC) program, GPM is the centerpiece mission for improving our understanding of the global water cycle from a space-based measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in global temperature. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination, This paper presents an overview of the Global Precipitation Mission and how its datasets can be used in a set of quantitative tests within the framework of the oceanic and continental water budget equations to determine comprehensively whether substantive rate changes do accompany perturbations in global temperatures and how such rate changes manifest themselves in both water storage and water flux transport processes.

  19. GPM Launch Day at NASA Goddard (Feb. 27, 2014)

    NASA Image and Video Library

    2014-02-27

    The Daruma doll is a symbol of good luck and in Japan is often given as a gift for encouragement to reach a goal. When the goal is set, one eye is colored in. When the goal is achieved, the other eye is colored. An identical doll sits in the control room at the Japan Aerospace Agency’s (JAXA) Tanegashima Space Center, leading up to the launch of the joint NASA-JAXA Global Precipitation Measurement mission’s Core Observatory. Credit: NASA's Goddard Space Flight Center/Debbie McCallum GPM's Core Observatory is poised for launch from the Japan Aerospace Exploration Agency's Tanegashima Space Center, scheduled for the afternoon of Feb. 27, 2014 (EST). GPM is a joint venture between NASA and the Japan Aerospace Exploration Agency. The GPM Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. 77 FR 61573 - Science Advisory Board Satellite Task Force; Availability of Draft Report and Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ...-2506-01] RIN 0648-XC276 Science Advisory Board Satellite Task Force; Availability of Draft Report and... notice on behalf of the NOAA Science Advisory Board (SAB) to announce the availability of the draft..., 2012. ADDRESSES: The Draft Report of the SATTF will be available on the NOAA Science Advisory Board Web...

  1. NASA GPM GV Science Implementation

    NASA Technical Reports Server (NTRS)

    Petersen, W. A.

    2009-01-01

    Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.

  2. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally- sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  3. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA Goddard Space Flight Center. It was shipped to Japan in November 2012 for launch on a Japanese H-IIA rocket from Tanegashima Island, Japan. The launch has been officially scheduled for 1:07 p.m. to 3:07 p.m. EST Thursday, February 27, 2014 (3:07 a.m. to 5:07 a.m. JST Friday, February 28). The day that the GPM Core was shipped to Japan was the day that GPM's Project Scientist, Dr. Arthur Hou passed away after a year-long battle with cancer. Dr. Hou truly made GPM a global effort with a global team. He excelled in providing scientific oversight for achieving GPM's many science objectives and application goals, including delivering high-resolution precipitation data in near real time for better understanding, monitoring and prediction of global precipitation systems and high-impact weather events such as hurricanes. Dr. Hou successfully forged international partnerships to collect and validate space-borne measurements of precipitation around the globe. He served as a professional mentor to numerous junior and mid-level scientists. His presence, leadership, generous personality, and the example he set for all of us as a true "team-player" will be greatly missed. The GPM mission will be described, Arthur's role as Project Scientist for GPM, and early imagery of GPM's retrievals of precipitation will be presented if available at the end of April 2014 (2 months after launch).

  4. Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Kummerow, Christian D.; Shepherd, James Marshall

    2008-01-01

    This chapter begins with a brief history and background of microwave precipitation sensors, with a discussion of the sensitivity of both passive and active instruments, to trace the evolution of satellite-based rainfall techniques from an era of inference to an era of physical measurement. Next, the highly successful Tropical Rainfall Measuring Mission will be described, followed by the goals and plans for the Global Precipitation Measurement (GPM) Mission and the status of precipitation retrieval algorithm development. The chapter concludes with a summary of the need for space-based precipitation measurement, current technological capabilities, near-term algorithm advancements and anticipated new sciences and societal benefits in the GPM era.

  5. IRIS Toxicological Review for Carbon Tetrachloride (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA released the draft report,Toxicological Review for Carbon Tetrachloride(Interagency Science Discussion Draft), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Co...

  6. 76 FR 26284 - Draft Integrated Science Assessment for Lead (Pb)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9302-5; Docket ID No. EPA-HQ-ORD-2011-0051] Draft Integrated... the availability of a document titled, ``First External Review Draft Integrated Science Assessment for Lead'' (EPA/600/R-10/075A). This draft document was prepared by the National Center for Environmental...

  7. IRIS Toxicological Review of Libby Amphibole Asbestos (Interagency Science Discussion Draft)

    EPA Science Inventory

    On August 25, 2011, the draft assessment of Libby Amphibole asbestos was released for external peer review and public comment. The draft assessment was revised based on peer review comments from EPA’s Science Advisory Board (SAB) and public comments. The revised draft was review...

  8. 76 FR 60820 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... Science Assessment for Ozone and Related Photochemical Oxidants AGENCY: Environmental Protection Agency... Review Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants'' (EPA/600/R-10... standards (NAAQS) for ozone. EPA is releasing this draft document to seek review by the Clean Air Scientific...

  9. Integrated Science Assessment (ISA) for Lead (First External Review Draft, May 2011)

    EPA Science Inventory

    EPA announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) was made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science and will ...

  10. Integrated Science Assessment (ISA) for Lead (Second External Review Draft, Mar 2012)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) has been made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science...

  11. Integrated Science Assessment (ISA) for Lead (Third External Review Draft, Nov 2012)

    EPA Science Inventory

    EPA announced that the Third External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) was made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science and will ...

  12. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Second External Review Draft, Sep 2011)

    EPA Science Inventory

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant scienc...

  13. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Third External Review Draft, Jun 2012)

    EPA Science Inventory

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Third External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant science...

  14. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  15. Overview of GPM Missions's Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mugnai, Alberto; Nakamura, Kenji

    2004-01-01

    An important element of the internationally structured Global Precipitation Measurement (GPM) mission will be its ground validation research program. Within the last year, the initial architecture of this program has taken shape. This talk will describe that architecture, both in terms of the international program and in terms of the separate regional programs of the principle participating space agencies, i.e., ESA, JAXA, and NASA. There are three overriding goals being addressed in the planning of this program; (1) establishing various new, challenging and important scientific research goals vis-a-vis current ground validation programs supporting satellite retrieval of precipitation; (2) designing the program as an international partnership which operates, out of necessity, heterogeneous sites in terms of their respective observational foci and science thrusts, but anneals itself in terms of achieving a few overarching scientific objectives; and (3) developing a well-designed protocol that allows specific sites or site networks, at their choosing, to operate in a 'supersite' mode - defined as the capability to routinely transmit GV information at low latency to GPM's Precipitation Processing System (PPS). (The PPS is being designed as GPM's data information system, a distributed data system with main centers at the Goddard Space Flight Center (GSFC) within NASA, the Earth Observation Research Center (EORC) within JAXA, and a TBD facility to be identified by the ESA s ESTEC facility in Noordwijk.)

  16. 76 FR 51365 - Notification of a Public Teleconference of the Clean Air Scientific Advisory Committee (CASAC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... Assessment for Lead (First External Review Draft--May 2011). DATES: The CASAC Lead Review Panel... Integrated Science Assessment for Lead (First External Review Draft--May 2011) and to provide consultative... draft letter reviewing EPA's Integrated Science Assessment for Lead (First External Review Draft--May...

  17. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide (2011 Interagency Science Discussion Draft)

    EPA Science Inventory

    On September 22, 2006, the draft Evaluation of the Carinogenicity of Ethylene Oxide (EPA/635/R-06/003) and the draft charge to external peer reviewers were released for external peer review and public comment. This draft was reviewed by EPA’s Science Advisory Board (SAB)...

  18. Preparing Precipitation Data Access, Value-added Services and Scientific Exploration Tools for the Integrated Multi-satellitE Retrievals for GPM (IMERG)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Kempler, S. J.; Vollmer, B.; Teng, W. L.

    2013-12-01

    The Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google: NASA PDISC), located at the NASA Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC), is home of the Tropical Rainfall Measuring Mission (TRMM) data archive. For over 15 years, the GES DISC has served not only TRMM, but also other space-based, airborne-based, field campaign and ground-based precipitation data products to the precipitation community and other disciplinary communities as well. The TRMM Multi-Satellite Precipitation Analysis (TMPA) products are the most popular products in the TRMM product family in terms of data download and access through Mirador, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) and other services. The next generation of TMPA, the Integrated Multi-satellitE Retrievals for GPM (IMERG) to be released in 2014 after the launch of GPM, will be significantly improved in terms of spatial and temporal resolutions. To better serve the user community, we are preparing data services and samples are listed below. To enable scientific exploration of Earth science data products without going through complicated and often time consuming processes, such as data downloading, data processing, etc., the GES DISC has developed Giovanni in consultation with members of the user community, requesting quick search, subset, analysis and display capabilities for their specific data of interest. For example, the TRMM Online Visualization and Analysis System (TOVAS, http://disc2.nascom.nasa.gov/Giovanni/tovas/) has proven extremely popular, especially as additional datasets have been added upon request. Giovanni will continue to evolve to accommodate GPM data and the multi-sensor data inter-comparisons that will be sure to follow. Additional PDISC tool and service capabilities being adapted for GPM data include: An on-line PDISC Portal (includes user guide, etc.); Data ingest, processing, distribution from on-line archive; Google-like Mirador data search and access engine; electronic distribution, Subscriptions; Uses semantic technology to help manage large amounts of multi-sensor data and their relationships; Data drill down and search capabilities; Data access through various web services, i.e., OPeNDAP, GDS, WMS, WCS; Conversion into various formats, e.g., netCDF, HDF, KML (for Google Earth), ascii; Exploration, visualization and statistical online analysis through Giovanni; Visualization and analysis of L2 data profiles and maps; Generation of derived products, such as, daily products; Parameter and spatial subsetting; Time and temporal aggregation; Regridding; Data version control and provenance; Data Stewardship - Continuous archive verification; Documentation; Science support for proper data usage, help desk; Monitoring services for applications; Expertise in data related standards and interoperability. This presentation will further describe the data services at the PDISC that are currently being utilized by precipitation science and application researchers, and the preparation plan for IMERG. Comments and feedback are welcome.

  19. MX Siting Investigation. Water Resources Program. Volume II. Review Draft, Water Appropriations Hearing Presentation and Support Documentation, Dry Lake Valley, Nevada.

    DTIC Science & Technology

    1981-09-30

    will be required to de - liver the 651 gpm (41 l/s) needed for peak water use at the LSC. The existing Air Force test well at 3S-64E-12ca has been pumped...Valley is probably over 10,000 feet (3048 m) thick in the central part of the valley and is composed of alluvial fan, fluvial, playa , srl lacustrine...VALLEY T3.NSmIP STATION T E𔃾P SP. or SS. SILICA C AL C IU4 ACG. E5SILJ4 SCDIU I QANSA-SECT 5 6 C1 Ŕ VQ %;,. DES C CONE PH SOLIDS (5102) CA V$ A% 1 IN/6

  20. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight architecture. Following this introduction, we focus specifically on the last topic, that being an analysis which leads to an optimal flight architecture dictated in part by science requirements but constrained by allowable orbital mechanics, instrument scan patterns, and antenna aperture properties. Because the optimal architecture involves an interplay between orbit mechanics and instrument specifications, it is important to recognize that in attempting to serve various scientific themes, the final optimal architecture will represent a compromise concerning dynamic range, spatial resolution, sampling interval, pointing, beam coincidence, and measurement uncertainty. Moreover, cost becomes a major factor in seeking the optimal architecture through the pathways of antenna and instrument scan designs, as well as propulsion requirements associated with the orbit heights of various "constellation" members. Although the results presented at the IGARSS-2001 meeting will likely not be the fully refined flight architecture specifications, they are expected to be nearly complete.

  1. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model

    NASA Astrophysics Data System (ADS)

    Zhou, Ya-Tong; Fan, Yu; Chen, Zi-Yi; Sun, Jian-Cheng

    2017-05-01

    The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expectation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHC-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval. SHC-EM outperforms the traditional variational learning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. Supported by the National Natural Science Foundation of China under Grant No 60972106, the China Postdoctoral Science Foundation under Grant No 2014M561053, the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108, and the Hebei Province Natural Science Foundation under Grant No E2016202341.

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    NASA GPM Safety Quality and Assurance, Shirley Dion, and, NASA GPM Quality and Assurance, Larry Morgan, monitor the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Redmedial Action, Decision Document, Leaseback Area, Alabama Army Ammunition Plant

    DTIC Science & Technology

    1988-02-01

    Draft Report, Environmental Science and Engineering, Inc. (ESE), 1980. o Final Report for the Alabama Army Ammunition Plant, Leaseback Area...Requirements for the GSA and Leaseback Areas at the AAAP, Draft Report. Environmental Science and Engineering, Inc.(ESE), 1980. o Alabama Army...Ammunition Plant, Feasibility Study, Draft Report, Environmental Science and Engineering, Inc. (ESE), 1986. o Environmental Survey of Alabama Army Ammunition

  4. Global Precipitation Measurement Poster

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  5. Impact of GPM Rainrate Data Assimilation on Simulation of Hurricane Harvey (2017)

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Srikishen, Jayanthi; Zavodsky, Bradley; Mecikalski, John

    2018-01-01

    Built upon Tropical Rainfall Measuring Mission (TRMM) legacy for next-generation global observation of rain and snow. The GPM was launched in February 2014 with Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI) onboard. The GPM has a broad global coverage approximately 70deg S -70deg N with a swath of 245/125-km for the Ka (35.5 GHz)/Ku (13.6 GHz) band radar, and 850-km for the 13-channel GMI. GPM also features better retrievals for heavy, moderate, and light rain and snowfall To develop methodology to assimilate GPM surface precipitation data with Grid-point Statistical Interpolation (GSI) data assimilation system and WRF ARW model To investigate the potential and the value of utilizing GPM observation into NWP for operational environment The GPM rain rate data has been successfully assimilated using the GSI rain data assimilation package. Impacts of rain rate data have been found in temperature and moisture fields of initial conditions. 2.Assimilation of either GPM IMERG or GPROF rain product produces significant improvement in precipitation amount and structure for Hurricane Harvey (2017) forecast. Since IMERG data is available half-hourly, further forecast improvement is expected with continuous assimilation of IMERG data

  6. Integrated Science Assessment (ISA) for Carbon Monoxide (Second External Review Draft, Sep 2009)

    EPA Science Inventory

    EPA announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of t...

  7. Integrated Science Assessment (ISA) for Carbon Monoxide (First External Review Draft, Mar 2009)

    EPA Science Inventory

    EPA announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of th...

  8. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Second External Review Draft, 2008)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation...

  9. Integrated Science Assessment (ISA) for Particulate Matter (First External Review Draft, Dec 2008)

    EPA Science Inventory

    EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Particulate Matter and related Annexes have been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and e...

  10. 76 FR 76725 - Notification of a Public Meeting of the Clean Air Scientific Advisory Committee (CASAC); Ozone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-08

    ... and Related Photochemical Oxidants (Second External Review Draft--September 2011). DATES: The CASAC... second external review draft of the Integrated Science Assessment for Ozone and Related Photochemical... reviewed EPA's first external review draft of the Integrated Science Assessment for Ozone and Related...

  11. 76 FR 35216 - Science Advisory Board Staff Office Notification of a Public Teleconference of the Chartered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ...The EPA Science Advisory Board (SAB) Staff Office announces a public teleconference of the chartered SAB on July 5, 2011 to conduct a quality review of a draft SAB report, Review of EPA's Draft Hydraulic Fracturing Study Plan (Quality Review Draft).

  12. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (First External Review Draft, Feb 2011)

    EPA Science Inventory

    EPA announced that the First External Review Draft of the Integrated Science Assessment for Ozone and Related Photochemical Oxidants has been made available for independent peer review and public review. This draft document represents a concise synthesis and evaluation of ...

  13. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (External Review Draft, Nov 2015)

    EPA Science Inventory

    EPA announced the availability of the external review draft of the Integrated Science Assessment for Sulfur Oxides– Health Criteria for public comment and independent peer review in a November 24, 2015 Federal Register Notice. This draft document provides EPA’s evaluati...

  14. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional. Then we will present some early examples of IMERG data products and compare them with existing products to illustrate how the design of IMERG affects the overall performance of the algorithm.

  15. Mining Twitter Data to Augment NASA GPM Validation

    NASA Technical Reports Server (NTRS)

    Teng, Bill; Albayrak, Arif; Huffman, George; Vollmer, Bruce; Loeser, Carlee; Acker, Jim

    2017-01-01

    The Twitter data stream is an important new source of real-time and historical global information for potentially augmenting the validation program of NASA's Global Precipitation Measurement (GPM) mission. There have been other similar uses of Twitter, though mostly related to natural hazards monitoring and management. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. Twitter provides a large source of crowd for crowdsourcing. During a 24-hour period in the middle of the snow storm this past March in the U.S. Northeast, we collected more than 13,000 relevant precipitation tweets with exact geolocation. The overall objective of our project is to determine the extent to which processed tweets can provide additional information that improves the validation of GPM data. Though our current effort focuses on tweets and precipitation, our approach is general and applicable to other social media and other geophysical measurements. Specifically, we have developed an operational infrastructure for processing tweets, in a format suitable for analysis with GPM data; engaged with potential participants, both passive and active, to "enrich" the Twitter stream; and inter-compared "precipitation" tweet data, ground station data, and GPM retrievals. In this presentation, we detail the technical capabilities of our tweet processing infrastructure, including data abstraction, feature extraction, search engine, context-awareness, real-time processing, and high volume (big) data processing; various means for "enriching" the Twitter stream; and results of inter-comparisons. Our project should bring a new kind of visibility to Twitter and engender a new kind of appreciation of the value of Twitter by the science research communities.

  16. Mining Twitter Data Stream to Augment NASA GPM Validation

    NASA Astrophysics Data System (ADS)

    Teng, W. L.; Albayrak, A.; Huffman, G. J.; Vollmer, B.

    2017-12-01

    The Twitter data stream is an important new source of real-time and historical global information for potentially augmenting the validation program of NASA's Global Precipitation Measurement (GPM) mission. There have been other similar uses of Twitter, though mostly related to natural hazards monitoring and management. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. Twitter provides a large source of crowd for crowdsourcing. During a 24-hour period in the middle of the snow storm this past March in the U.S. Northeast, we collected more than 13,000 relevant precipitation tweets with exact geolocation. The overall objective of our project is to determine the extent to which processed tweets can provide additional information that improves the validation of GPM data. Though our current effort focuses on tweets and precipitation, our approach is general and applicable to other social media and other geophysical measurements. Specifically, we have developed an operational infrastructure for processing tweets, in a format suitable for analysis with GPM data; engaged with potential participants, both passive and active, to "enrich" the Twitter stream; and inter-compared "precipitation" tweet data, ground station data, and GPM retrievals. In this presentation, we detail the technical capabilities of our tweet processing infrastructure, including data abstraction, feature extraction, search engine, context-awareness, real-time processing, and high volume (big) data processing; various means for "enriching" the Twitter stream; and results of inter-comparisons. Our project should bring a new kind of visibility to Twitter and engender a new kind of appreciation of the value of Twitter by the science research communities.

  17. Building the GPM-GV Column from the GPM Cold season Precipitation Experiment (Invited)

    NASA Astrophysics Data System (ADS)

    Nesbitt, S. W.; Duffy, G. A.; Gleicher, K.; McFarquhar, G. M.; Kulie, M.; Williams, C. R.; Petersen, W. A.; Munchak, S. J.; Tokay, A.; Skofronick Jackson, G.; Chandrasekar, C. V.; Kollias, P.; Hudak, D. R.; Tanelli, S.

    2013-12-01

    Within the context of the Drop Size Distribution Working Group (DSDWG) of the Global Precipitation Mission-Ground Validation (GPM-GV) program, a major science and satellite precipitation algorithm validation focus is on quantitatively determining the variability of microphysical properties of precipitation in the vertical column, as well as the radiative properties of those particles at GPM-relevant microwave frequencies. The GPM Cold season Precipitation Experiment, or GCPEx, was conducted to address both of these objectives in mid-latitude winter precipitation. Radar observations at C, X, Ku, Ka, and W band from ground based scanning radars, profiling radars, and aircraft, as well as an aircraft passive microwave imager from GCPEx, conducted in early 2012 near Barrie, Ontario, Canada, can be used to constrain the observed reflectivites and brightness temperatures in snow as well as construct radar dual frequency ratios (DFRs) that can be used to identify regimes of microwave radiative properties in observed hydrometeor columns. These data can be directly matched with aircraft and ground based in situ microphysical probes, such as 2-D and bulk aircraft probes and surface disdrometers, to place the microphysical and microwave scattering and emission properties of the snow in context throughout the column of hydrometeors. In this presentation, particle scattering regimes will be identified in GCPEx hydrometeor columns storm events using a clustering technique in a multi-frequency DFR-near Rayleigh radar reflectivity phase space using matched ground-based and aircraft-based radar and passive microwave data. These data will be interpreted using matched in situ disdrometer and aircraft probe microphysical data (particle size distributions, habit identification, fall speed, mass-diameter relationships) derived during the events analyzed. This database is geared towards evaluating scattering simulations and the choice of integral particle size distributions for snow precipitation retrieval algorithms for ground and spaceborne radars at relevant wavelengths. A comparison of results for different cases with varying synoptic forcing and microphysical evolution will be presented.

  18. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9224-7] Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Workshop... (NAAQS) for Lead (Pb), EPA is announcing that a workshop to evaluate initial draft materials for the Pb...

  19. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (First External Review Draft, 2007)

    EPA Science Inventory

    EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and eva...

  20. Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Environmental Criteria (Second External Review Draft, Aug 2008)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Environmental Criteria has been made available for independent peer review and public review. This draft ISA document represents a conci...

  1. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (First External Review Draft, Sep 2007)

    EPA Science Inventory

    EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluatio...

  2. Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Environmental Criteria (First External Review Draft, Dec 2007)

    EPA Science Inventory

    EPA is announcing that the First External Review Draft of the Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur – Environmental Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise ...

  3. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (First External Review Draft, 2013)

    EPA Science Inventory

    EPA is announcing the availability of the First External Review Draft of the Integrated Science Assessment for Oxides of Nitrogen – Health Criteria for public comment and independent peer review. This draft document provides EPA’s evaluation and synthesis of the most polic...

  4. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Second External Review Draft, May 2008)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluati...

  5. Addressing the unmet need for visualizing conditional random fields in biological data

    PubMed Central

    2014-01-01

    Background The biological world is replete with phenomena that appear to be ideally modeled and analyzed by one archetypal statistical framework - the Graphical Probabilistic Model (GPM). The structure of GPMs is a uniquely good match for biological problems that range from aligning sequences to modeling the genome-to-phenome relationship. The fundamental questions that GPMs address involve making decisions based on a complex web of interacting factors. Unfortunately, while GPMs ideally fit many questions in biology, they are not an easy solution to apply. Building a GPM is not a simple task for an end user. Moreover, applying GPMs is also impeded by the insidious fact that the “complex web of interacting factors” inherent to a problem might be easy to define and also intractable to compute upon. Discussion We propose that the visualization sciences can contribute to many domains of the bio-sciences, by developing tools to address archetypal representation and user interaction issues in GPMs, and in particular a variety of GPM called a Conditional Random Field(CRF). CRFs bring additional power, and additional complexity, because the CRF dependency network can be conditioned on the query data. Conclusions In this manuscript we examine the shared features of several biological problems that are amenable to modeling with CRFs, highlight the challenges that existing visualization and visual analytics paradigms induce for these data, and document an experimental solution called StickWRLD which, while leaving room for improvement, has been successfully applied in several biological research projects. Software and tutorials are available at http://www.stickwrld.org/ PMID:25000815

  6. Prime mission results of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft and the version 5 GPM standard products

    NASA Astrophysics Data System (ADS)

    Furukawa, K.; Nio, T.; Oki, R.; Kubota, T.; Iguchi, T.

    2017-09-01

    The Dual-frequency Precipitation Radar (DPR) on the Global Precipitation Measurement (GPM) core satellite was developed by Japan Aerospace Exploration Agency (JAXA) and National Institute of Information and Communications Technology (NICT). The objective of the GPM mission is to observe global precipitation more frequently and accurately. The GPM core satellite is a joint product of National Aeronautics and Space Administration (NASA), JAXA and NICT. NASA developed the satellite bus and the GPM Microwave Imager (GMI), and JAXA and NICT developed the DPR. The inclination of the GPM core satellite is 65 degrees, and the nominal flight altitude is 407 km. The non-sunsynchronous circular orbit is necessary for measuring the diurnal change of rainfall. The DPR consists of two radars, which are Ku-band precipitation radar (KuPR) and Ka-band precipitation radar (KaPR). GPM core observatory was successfully launched by H2A launch vehicle on Feb. 28, 2014. DPR orbital check out was completed in May 2014. DPR products were released to the public on Sep. 2, 2014 and Normal Observation Operation period was started. JAXA is continuing DPR trend monitoring, calibration and validation operations to confirm that DPR keeps its function and performance on orbit. The results of DPR trend monitoring, calibration and validation show that DPR kept its function and performance on orbit during the 3 years and 2 months prime mission period. The DPR Prime mission period was completed in May 2017. The version 5 GPM products were released to the public in 2017. JAXA confirmed that GPM/DPR total system performance and the GPM version 5 products achieved the success criteria and the performance indicators that were defined for the JAXA GPM/DPR mission.

  7. Treponema pallidum 3-Phosphoglycerate Mutase Is a Heat-Labile Enzyme That May Limit the Maximum Growth Temperature for the Spirochete

    PubMed Central

    Benoit, Stéphane; Posey, James E.; Chenoweth, Matthew R.; Gherardini, Frank C.

    2001-01-01

    In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn2+ while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25°C, retained only 50% activity after incubation for 20 min at 34°C or 10 min at 37°C, and was completely inactive after 10 min at 42°C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42°C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum. PMID:11466272

  8. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    NASA Astrophysics Data System (ADS)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high-temporal resolution global dataset for use in a wide variety of weather and climate research applications.

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    The NASA Global Precipitation Measurement (GPM) Core Observatory team is seen during an all-day launch simulation for GPM at the Spacecraft Test and Assembly Building 2 (STA2), Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Integration of Energy/Sustainable Practices into Standard Army MILCON Designs: Energy and Sustainability Study

    DTIC Science & Technology

    2010-11-30

    approved climate zones) ► Dual flush toilets ► 1.5 GPM flow shower heads ► 0.5 GPM flow faucets ► Rainwater harvesting ► Permeable asphalt, permeable...for system with indirect evaporative pre-cooling Sustainability Measures ► Dual flush toilets ► 1.5 GPM flow shower heads, 0.5 GPM flow faucets...daylighting controls with 500 lux setpoint ► Dual flush toilets ►Waterless urinals ► 0.5 GPM flow faucets ► Rainwater harvesting ► Enhanced Commissioning

  11. GPM Mission Overview and U.S. Science Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Art; Skofronick, Gail; Carlisle, Candace

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. Since rainfall and snowfall vary greatly from place to place and over time, satellites can provide more uniform observations of rain and snow around the globe than ground instruments, especially in areas where surface measurements are difficult. Relative to current global rainfall products, GPM data products will be characterized by: (l) more accurate instantaneous precipitation measurements (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of domestic and international microwave radiometers including operational humidity sounders, (3) intercalibrated microwave brightness temperatures from constellation radiometers within a unified framework, and (4) physical-based precipitation retrievals from constellation radiometers using a common a priori cloud/hydrometeor database derived from GPM Core sensor measurements. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 non-Sun-synchronous orbit to serve as a physics observatory and a reference standard to unify precipitation measurements by a constellation of dedicated and operational passive microwave sensors. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multichannel (l0-183 GHz) GPM Microwave Radiometer (GMI). Since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. The GMI uses 13 different microwave channels to observe energy from the different types of precipitation through clouds for estimating everything from heavy to light rain and for detecting falling snow. As the satellite passes over Earth, the GMI constantly scans a region 885 kilometers across. The Ball Aerospace and Technology Corporation built the GMI under contract with NASA Goddard Space Flight Center. The DPR provides three-dimensional information about precipitation particles derived from reflected energy by these particles at different heights within the cloud system. The two frequencies of the DPR also allow the radar to infer the sizes of precipitation particles and offer insights into a storm's physical characteristics. The Ka-band frequeny scans across a region of 125 kilometers and is nested within the wider scan of the Ku-band frequency of 245 kilometers. The Japan Aerospace and Exploration Agency (JAXA) and Japan's National Institute of Information and Communications Technology (NICT) built the DPR. The Core Observatory satellite will fly at an altitude of 253 miles (407 kilometers) in a non-Sun-synchronous orbit that covers the Earth from 65 S to 65 N - from about the Antarctic Circle to the Arctic Circle. The GPM Core Observatory is being developed and tested at NASA Goddard Space Flight Center. Once complete, a Japanese H-lIA rocket will carry thPM Core Observatory into orbit from Tanegashima Island, Japan in 2014. The GPM constellation is envisioned to comprise 8 or more microwave sensors provided by partners, including both conical imagers and cross-track sounders. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as humidity sounders or precipitation sensors on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), NOAA-NASA Joint Polar Satellite System (JPSS) satellites, European MetOp satellites, and DMSP follow-on sensors. In addition, data from Chinese and Russian microwave radiometers may be available through international cooperation under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). GPM's next-generation global precipitation data will lead to scientific advances and societal benefits in the following areas: (1) Improved knowledge of the Earth's water cycle and its link to climate change (2) New insights into precipitation microphysics, storm structures and large-scale atmospheric processes (3) Better understanding of climate sensitivity and feedback processes (4) Extended capabilities in monitoring and predicting hurricanes and other extreme weather events (5) Improved forecasting capabilities for natural hazards, including floods, droughts and landslides. (6) Enhanced numerical prediction skills for weather and climate (7) Better agricultural crop forecasting and monitoring of freshwater resources. An overview of the GPM mission concept and science activities in the United States, together with an update on international collaborations in radiometer intercalibration and ground validation, will be presented.

  12. Report of two preventive medicine job market surveys.

    PubMed

    Nitzkin, J L; Falcao, P; Janusz, N; Arraiano, J

    2001-01-01

    The American Association of Public Health Physicians (AAPHP) conducted two surveys to explore the value of general preventive medicine/public health (GPM) training and board certification to physicians seeking GPM jobs. The first survey reviewed advertisements in recent issues of four medical journals. The second surveyed physician registrants at the Prevention 99 meeting. The first survey screened about 18, 500 job advertisements. Of these, 1427 (7.7%) met the study's GPM screening criteria. Only 145 (10.6%) preferred an MPH, management, or related degree. Forty-one (2.9%) preferred a doctorate (MD/DO/PhD) and an MPH, management, or related degree. Only one (0. 07%) required or preferred GPM board certification. Results were consistent across market sectors (federal, state/local, academic, health care delivery) and across job roles (management, direct service, research, technical). The second survey gathered credential, job search, and employment data from 140 physician registrants at Prevention 99 (annual joint meeting of the American College of Preventive Medicine and the Association of Teachers of Preventive Medicine in March 1999). Seventy-eight (55.7%) reported that GPM training was of major importance in securing their current employment. Only 18.5% of physicians holding GPM jobs secured their current employment by responding to an advertisement. GPM board certification is of little or no value when competing for the vast majority of GPM-related jobs. The AAPHP recommends prompt coordinated action by national organizations representing GPM physicians to increase the number of job offerings preferring or requiring physicians with GPM board certification. A six-point action plan is proposed.

  13. IRIS Toxicological Review of Ammonia (Revised External Review Draft)

    EPA Science Inventory

    In August 2013, EPA submitted a revised draft IRIS assessment of ammonia to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the draft, and ...

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A daruma doll is seen amongst the NASA GPM Mission launch team in the Spacecraft Test and Assembly Building 2 (STA2) during the all-day launch simulation for the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Tanegashima Space Center (TNSC), Tanegashima Island, Japan. One eye of the daruma doll is colored in when a goal is set, in this case a successful launch of GPM, and the second eye is colored in at the completion of the goal. Japan Aerospace Exploration Agency (JAXA) plans to launch an H-IIA rocket carrying the GPM Core Observatory on Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A NASA Global Precipitation Measurement (GPM) mission shirt is seen drying in the mid-day sun outside the Sun Pearl Hotel where many of the NASA GPM team are staying, Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  16. 76 FR 22394 - Science Advisory Board Staff Office; Notification of a Public Teleconferences of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ...The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB) Staff Office announces two public teleconferences of the SAB Panel to discuss its draft report of the review of EPA's Draft Hydraulic Fracturing Study Plan.

  17. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development of gauge-calibrated GSMaP algorithm (Ushio et al., 2013). In addition to those improvements in the algorithms number of passive microwave imagers and/or sounders used in the GPM-GSMaP was increased compared to the previous version. After the early calibration and validation of the products and evaluation that all products achieved the release criteria, all GPM standard products and the GPM-GSMaP product has been released to the public since September 2014. The GPM products can be downloaded via the internet through the JAXA G-Portal (https://www.gportal.jaxa.jp).

  18. 76 FR 11456 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Chartered Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ...) Staff Office announces a public meeting of the Chartered SAB to consider a draft report commenting on... will hold a public meeting to consider a draft report on the President's requested FY 2012 budget for... discuss the work group's draft report and reach agreement on comments to provide the EPA Administrator and...

  19. Assimilation of GPM GMI Rainfall Product with WRF GSI

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Mecikalski, John; Zavodsky, Bradley

    2015-01-01

    The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the influence on precipitation forecast will be presented at the conference.

  20. A Space-Based Perspective of the 2017 Hurricane Season from the Global Precipitation Measurement (GPM) Mission

    NASA Astrophysics Data System (ADS)

    Skofronick Jackson, G.; Petersen, W. A.; Huffman, G. J.; Kirschbaum, D.; Wolff, D. B.; Tan, J.; Zavodsky, B.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission collected unique, near real time 3-D satellite-based views of hurricanes in 2017 together with estimated precipitation accumulation using merged satellite data for scientific studies and societal applications. Central to GPM is the NASA-JAXA GPM Core Observatory (CO). The GPM-CO carries an advanced dual-frequency precipitation radar (DPR) and a well-calibrated, multi-frequency passive microwave radiometer that together serve as an on orbit reference for precipitation measurements made by the international GPM satellite constellation. GPM-CO overpasses of major Hurricanes such as Harvey, Irma, Maria, and Ophelia revealed intense convective structures in DPR radar reflectivity together with deep ice-phase microphysics in both the eyewalls and outer rain bands. Of considerable scientific interest, and yet to be determined, will be DPR-diagnosed characteristics of the rain drop size distribution as a function of convective structure, intensity and microphysics. The GPM-CO active/passive suite also provided important decision support information. For example, the National Hurricane Center used GPM-CO observations as a tool to inform track and intensity estimates in their forecast briefings. Near-real-time rainfall accumulation from the Integrated Multi-satellitE Retrievals for GPM (IMERG) was also provided via the NASA SPoRT team to Puerto Rico following Hurricane Maria when ground-based radar systems on the island failed. Comparisons between IMERG, NOAA Multi-Radar Multi-Sensor data, and rain gauge rainfall accumulations near Houston, Texas during Hurricane Harvey revealed spatial biases between ground and IMERG satellite estimates, and a general underestimation of IMERG rain accumulations associated with infrared observations, collectively illustrating the difficulty of measuring rainfall in hurricanes.GPM data continue to advance scientific research on tropical cyclone intensification and structure, and contribute to societal and operational applications for improving storm forecasting. Precipitation accumulations from the multi-satellite product IMERG also contribute to a better understanding of rainfall accumulation, inland flooding, and landslide susceptibility during the passage of these major events.

  1. VISAGE Visualization for Integrated Satellite, Airborne and Ground-Based Data Exploration

    NASA Technical Reports Server (NTRS)

    Conover, Helen; Berendes, Todd; Naeger, Aaron; Maskey, Manil; Gatlin, Patrick; Wingo, Stephanie; Kulkarni, Ajinkya; Gupta, Shivangi; Nagaraj, Sriraksha; Wolff, David; hide

    2017-01-01

    The primary goal of the VISAGE project is to facilitate more efficient Earth Science investigations via a tool that can provide visualization and analytic capabilities for diverse coincident datasets. This proof-of-concept project will be centered around the GPM Ground Validation program, which provides a valuable source of intensive, coincident observations of atmospheric phenomena. The data are from a wide variety of ground-based, airborne and satellite instruments, with a wide diversity in spatial and temporal scales, variables, and formats, which makes these data difficult to use together. VISAGE will focus on "golden cases" where most ground instruments were in operation and multiple research aircraft sampled a significant weather event, ideally while the GPM Core Observatory passed overhead. The resulting tools will support physical process studies as well as satellite and model validation.

  2. GPM Microwave Imager Engineering Model Results

    NASA Technical Reports Server (NTRS)

    Newell, David; Krimchansky, Sergey

    2010-01-01

    The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument is being developed by Ball Aerospace and Technology Corporation (BATC) for the GPM program at NASA Goddard. The Global Precipitation Measurement (GPM) mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and more frequent precipitation measurements. The GPM Microwave Imager (GMI) will be used to make calibrated, radiometric measurements from space at multiple microwave frequencies and polarizations. GMI will be placed on the GPM Core Spacecraft together with the Dualfrequency Precipitation Radar (DPR). The DPR is two-frequency precipitation measurement radar, which will operate in the Ku-band and Ka-band of the microwave spectrum. The Core Spacecraft will make radiometric and radar measurements of clouds and precipitation and will be the central element ofGPM's space segment. The data products from GPM will provide information concerning global precipitation on a frequent, near-global basis to meteorologists and scientists making weather forecasts and performing research on the global energy and water cycle, precipitation, hydrology, and related disciplines. In addition, radiometric measurements from GMI and radar measurements from the DPR will be used together to develop a retrieval transfer standard for the purpose of calibrating precipitation retrieval algorithms. This calibration standard will establish a reference against which other retrieval algorithms using only microwave radiometers (and without the benefit of the DPR) on other satellites in the GPM constellation will be compared.

  3. GPM Microwave Imager Design, Predicted Performance and Status

    NASA Technical Reports Server (NTRS)

    Krimchansky, Sergey; Newell, David

    2010-01-01

    The Global Precipitation Measurement (GPM) Microwave Imager (GMI) Instrument is being developed by Ball Aerospace and Technology Corporation (BATC) for the GPM program at NASA Goddard. The Global Precipitation Measurement (GPM) mission is an international effort managed by the National Aeronautics and Space Administration (t.JASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and more frequent precipitation measurements. The GPM Microwave Imager (GMI) will be used to make calibrated, radiometric measurements from space at multiple microwave frequencies and polarizations. GMI will be placed on the GPM Core Spacecraft together with the Dual-frequency Precipitation Radar (DPR). The DPR is two-frequency precipitation measurement radar, which will operate in the Ku-band and Ka-band of the microwave spectrum. The Core Spacecraft will make radiometric and radar measurements of clouds and precipitation and will be the central element of GPM's space segment. The data products from GPM will provide information concerning global precipitation on a frequent, near-global basis to meteorologists and scientists making weather forecasts and performing research on the global energy and water cycle, precipitation, hydrology, and related disciplines. In addition, radiometric measurements from GMI and radar measurements from the DPR will be used together to develop a retrieval transfer standard for the purpose of calibrating precipitation retrieval algorithms. This calibration standard will establish a reference against which other retrieval algorithms using only microwave radiometers (and without the benefit of the DPR) on other satellites in the GPM constellation will be compared.

  4. Preparations for Global Precipitation Measurement(GPM)Ground Validation

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Bibyk, I. K.; Duming, J. F.; Everett, D. F.; Smith, E. A.; Wolff, D. B.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meterorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays a critical role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper describes GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial and temporal structure of the error. This paper describes the GPM program for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. GPM will ensure that information gained through Ground Validation is applied to future improvements in the spaceborne retrieval algorithms. This paper discusses the potential locations for validation measurement and research, the anticipated contributions of GPM's international partners, and the interaction of Ground Validation with other GPM program elements.

  5. 77 FR 21772 - Notification of Two Public Teleconferences of the Science Advisory Board Biogenic Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... the Panel's draft report on EPA's draft Accounting Framework for Biogenic CO2 Emissions from...'s draft report on EPA's draft Accounting Framework for Biogenic CO2 Emissions from Stationary... Radiation requested SAB review of EPA's draft accounting framework. As noticed in 76 FR 61100-61101, the SAB...

  6. Inventory of File naefs_geavg.t12z.pgrb2a_anvf06

    Science.gov Websites

    Records: 19 Number Level/Layer Parameter Forecast Valid Description 001 1000 mb HGT 6 hour fcst Geopotential Height [gpm] ens-mean 002 700 mb HGT 6 hour fcst Geopotential Height [gpm] ens-mean 003 500 mb HGT 6 hour fcst Geopotential Height [gpm] ens-mean 004 250 mb HGT 6 hour fcst Geopotential Height [gpm

  7. GPM Avionics Module Heat Pipes Design and Performance Test Results

    NASA Technical Reports Server (NTRS)

    Ottenstein, Laura; DeChristopher, Mike

    2012-01-01

    GPM is a satellite constellation to study precipitation formed from a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA). The GPM Core Observatory, being developed and tested at GSFC, serves as a reference standard to unify precipitation measurements from the GPM satellite constellation. The Core Observatory carries an advanced radar/radiometer system to measure precipitation from space. The scientific data gained from GPM will benefit both NASA and JAXA by advancing our understanding of Earth's water and energy cycle, improving forecasts of extreme weather events, and extending our current capabilities in using accurate and timely precipitation information to benefit society.

  8. 76 FR 72919 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Science Assessment for Ozone and Related Photochemical Oxidants AGENCY: Environmental Protection Agency... Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants'' (EPA/600/R-10/076B... national ambient air quality standards (NAAQS) for ozone. DATES: The public comment period began on...

  9. 76 FR 17121 - Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ... Science Assessment for Ozone and Related Photochemical Oxidants AGENCY: Environmental Protection Agency... Draft Integrated Science Assessment for Ozone and Related Photochemical Oxidants'' (EPA/600/R-10/076A... ambient air quality standards (NAAQS) for ozone. DATES: The public comment period began on February 28...

  10. EPA's 2007 Report on the Environment: Science Report (Sab Review Draft)

    EPA Science Inventory

    The EPA's 2007 Report on the Environment: Science Report (SAB Review Draft), formally known as the EPA's Report on the Environment - Technical Document, was released for public review and comment prior to the Science Advisory Board's (SAB) meeting and review held in July 2007. Co...

  11. 75 FR 62433 - Notice of Public Hearings and the Availability of a Draft Programmatic Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... NATIONAL SCIENCE FOUNDATION Notice of Public Hearings and the Availability of a Draft Programmatic Environmental Impact Statement/Overseas Environmental Impact Statement (PEIS/OEIS) AGENCY: National Science... Seismic Research Funded by the National Science Foundation (NSF) or Conducted by the U.S. Geological...

  12. IRIS Toxicological Review of Methanol (Noncancer) (Interagency Science Discussion Draft)

    EPA Science Inventory

    On May 3, 2013, the Toxicological Review of Methanol (noncancer) (Revised External Review Draft) was posted for public review and comment. Subsequently, the draft Toxicological Review, Appendices, and draft IRIS Summary were reviewed internally by EPA and by other federal agenci...

  13. A Detailed Examination of the GPM Core Satellite Gridded Text Product

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, Owen A.; Kummerow, C.; Huffman, George; Olson, William S.; Kwiatowski, John M.

    2015-01-01

    The Global Precipitation Measurement (GPM) mission quarter-degree gridded-text product has a similar file format and a similar purpose as the Tropical Rainfall Measuring Mission (TRMM) 3G68 quarter-degree product. The GPM text-grid format is an hourly summary of surface precipitation retrievals from various GPM instruments and combinations of GPM instruments. The GMI Goddard Profiling (GPROF) retrieval provides the widest swath (800 km) and does the retrieval using the GPM Microwave Imager (GMI). The Ku radar provides the widest radar swath (250 km swath) and also provides continuity with the TRMM Ku Precipitation Radar. GPM's Ku+Ka band matched swath (125 km swath) provides a dual-frequency precipitation retrieval. The "combined" retrieval (125 km swath) provides a multi-instrument precipitation retrieval based on the GMI, the DPR Ku radar, and the DPR Ka radar. While the data are reported in hourly grids, all hours for a day are packaged into a single text file that is g-zipped to reduce file size and to speed up downloading. The data are reported on a 0.25deg x 0.25 deg grid.

  14. 76 FR 50729 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Chartered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... SAB report, Peer Review of EPA's Draft National-Scale Mercury Risk Assessment (08/04/11) Draft. DATES... SAB draft report entitled Peer Review of EPA's Draft National-Scale Mercury Risk Assessment (08/04/1...)(1)(A) of the Clean Air Act (CAA). EPA developed a draft risk assessment for mercury, entitled...

  15. Recent results of the Global Precipitation Measurement (GPM) mission in Japan

    NASA Astrophysics Data System (ADS)

    Kubota, Takuji; Oki, Riko; Furukawa, Kinji; Kaneko, Yuki; Yamaji, Moeka; Iguchi, Toshio; Takayabu, Yukari

    2017-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The GPM Core Observatory, launched on February 2014, carries the Dual-frequency Precipitation Radar (DPR) by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT). JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. The Japan Meteorological Agency (JMA) started the DPR assimilation in the meso-scale Numerical Weather Prediction (NWP) system on March 24 2016. This was regarded as the world's first "operational" assimilation of spaceborne radar data in the NWP system of meteorological agencies. JAXA also develops the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. The GSMaP near-real-time version (GSMaP_NRT) product is available 4-hour after observation through the "JAXA Global Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP) since 2008. The GSMaP_NRT product gives higher priority to data latency than accuracy, and has been used by various users for various purposes, such as rainfall monitoring, flood alert and warning, drought monitoring, crop yield forecast, and agricultural insurance. There is, however, a requirement for shortening of data latency time from GSMaP users. To reduce data latency, JAXA has developed the GSMaP realtime version (GSMaP_NOW) product for observation area of the geostationary satellite Himawari-8 operated by the Japan Meteorological Agency (JMA). GSMaP_NOW product was released to public in November 2, 2015 through the "JAXA Realtime Rainfall Watch" web site (http://sharaku.eorc.jaxa.jp/GSMaP_NOW/). All GPM standard products and the GPM-GSMaP product have been released to the public since September 2014 as Version 03. The GPM products can be downloaded via the internet through the JAXA G-Portal (https://www.gportal.jaxa.jp). On Mar. 2016, the DPR, the GMI, and the DPR-GMI combined algorithms were updated and the first GPM latent heating product (in the TRMM coverage) were released. Therefore, the GPM Version 04 standard products have been provided since Mar. 2016. Furthermore, the GPM-GSMaP algorithms were updated and the GPM-GSMaP Version 04 products have been provided since Jan. 2017.

  16. 76 FR 4660 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... a Public Teleconference of the Science Advisory Board Lead Review Panel AGENCY: Environmental... a public teleconference of the SAB Lead Review Panel to discuss its draft advisory report concerning... (November 2010 Draft). DATES: The SAB Lead Review Panel will conduct a public teleconference on February 22...

  17. IRIS Toxicological Review of Dichloromethane (Methylene Chloride) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On March 31, 2010, the draft IRIS Toxicological Review of Dichloromethane (Methylene Chloride) external review draft document and the charge to external peer reviewers were released for public review and comment. The draft document and the charge to external peer reviewers were r...

  18. IRIS Toxicological Review of Trimethylbenzenes (Revised External Review Draft)

    EPA Science Inventory

    In August 2013, EPA submitted a revised draft IRIS assessment of trimethylbenzenes to the agency's Science Advisory Board (SAB) and posted this draft on the IRIS website. EPA had previously released a draft of the assessment for public comment, held a public meeting about the dr...

  19. IRIS Toxicological Review of Inorganic Arsenic (Cancer) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On February 19, 2010, the draft IRIS Toxicological Review of Inorganic Arsenic (Cancer) external review draft document and the charge to external peer reviewers were released for public review and comment. The draft document and the charge to external peer reviewers were reviewed...

  20. Validation and Error Characterization for the Global Precipitation Measurement

    NASA Technical Reports Server (NTRS)

    Bidwell, Steven W.; Adams, W. J.; Everett, D. F.; Smith, E. A.; Yuter, S. E.

    2003-01-01

    The Global Precipitation Measurement (GPM) is an international effort to increase scientific knowledge on the global water cycle with specific goals of improving the understanding and the predictions of climate, weather, and hydrology. These goals will be achieved through several satellites specifically dedicated to GPM along with the integration of numerous meteorological satellite data streams from international and domestic partners. The GPM effort is led by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan. In addition to the spaceborne assets, international and domestic partners will provide ground-based resources for validating the satellite observations and retrievals. This paper describes the validation effort of Global Precipitation Measurement to provide quantitative estimates on the errors of the GPM satellite retrievals. The GPM validation approach will build upon the research experience of the Tropical Rainfall Measuring Mission (TRMM) retrieval comparisons and its validation program. The GPM ground validation program will employ instrumentation, physical infrastructure, and research capabilities at Supersites located in important meteorological regimes of the globe. NASA will provide two Supersites, one in a tropical oceanic and the other in a mid-latitude continental regime. GPM international partners will provide Supersites for other important regimes. Those objectives or regimes not addressed by Supersites will be covered through focused field experiments. This paper describes the specific errors that GPM ground validation will address, quantify, and relate to the GPM satellite physical retrievals. GPM will attempt to identify the source of errors within retrievals including those of instrument calibration, retrieval physical assumptions, and algorithm applicability. With the identification of error sources, improvements will be made to the respective calibration, assumption, or algorithm. The instrumentation and techniques of the Supersites will be discussed. The GPM core satellite, with its dual-frequency radar and conically scanning radiometer, will provide insight into precipitation drop-size distributions and potentially increased measurement capabilities of light rain and snowfall. The ground validation program will include instrumentation and techniques commensurate with these new measurement capabilities.

  1. GPM Encapsulation Complete

    NASA Image and Video Library

    2014-02-20

    GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. On Feb. 11, the Core Observatory was moved into the spacecraft fairing assembly building and into the Encapsulation Hall. Final inspections and preparations were completed for the installation into the fairing, which began on Feb 13. The fairing is the part of the rocket that will contain the spacecraft at the top of the H-IIA rocket. The encapsulation process for the H-IIA is very different than for most U.S. rockets. For U.S. rockets, the fairing is usually in two pieces that close around the payload like a clamshell. To install the GPM Core Observatory into the fairing of the H-IIA rocket, first the Core Observatory and the Payload Attach Fitting (PAF) are set up in scaffolding in the Encapsulation Hall. Then, the fairing is lifted above and lowered onto the fitting. When only a few feet remain above the final position, stanchions support the fairing while technicians go inside to complete the electrical connections. When this is completed, they remove the stanchions and lower the fairing to its final position, where it is bolted in place. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Japan Aerospace Exploration Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. GPM Encapsulation Complete

    NASA Image and Video Library

    2017-12-08

    GPM is a joint mission between NASA and the Japan Aerospace Exploration Agency (JAXA). The Core Observatory will link data from a constellation of current and planned satellites to produce next-generation global measurements of rainfall and snowfall from space. On Feb. 11, the Core Observatory was moved into the spacecraft fairing assembly building and into the Encapsulation Hall. Final inspections and preparations were completed for the installation into the fairing, which began on Feb 13. The fairing is the part of the rocket that will contain the spacecraft at the top of the H-IIA rocket. The encapsulation process for the H-IIA is very different than for most U.S. rockets. For U.S. rockets, the fairing is usually in two pieces that close around the payload like a clamshell. To install the GPM Core Observatory into the fairing of the H-IIA rocket, first the Core Observatory and the Payload Attach Fitting (PAF) are set up in scaffolding in the Encapsulation Hall. Then, the fairing is lifted above and lowered onto the fitting. When only a few feet remain above the final position, stanchions support the fairing while technicians go inside to complete the electrical connections. When this is completed, they remove the stanchions and lower the fairing to its final position, where it is bolted in place. The GPM mission is the first coordinated international satellite network to provide near real-time observations of rain and snow every three hours anywhere on the globe. The GPM Core Observatory anchors this network by providing observations on all types of precipitation. The observatory's data acts as the measuring stick by which partner observations can be combined into a unified data set. The data will be used by scientists to study climate change, freshwater resources, floods and droughts, and hurricane formation and tracking. Credit: Japan Aerospace Exploration Agency NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2017-12-08

    Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager talks during a technical briefing for the launch of the Global Precipitation Measurement (GPM) Core Observatory aboard an H-IIA rocket, Wednesday, Feb. 26, 2014, Tanegashima Space Center, Japan. Launch is scheduled for early in the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. IRIS Toxicological Review of Hexachloroethane (Interagency Science Consultation Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Hexachloroethane, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies a...

  5. EPA Releases Draft Policy to Reduce Animal Testing for Skin Sensitization

    EPA Pesticide Factsheets

    The document, Draft Interim Science Policy: Use of Alternative Approaches for Skin Sensitization as a Replacement for Laboratory Animal Testing, describes the science behind the non-animal alternatives that can now be used to identify skin sensitization.

  6. IRIS Toxicological Review of Trichloroethylene (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Trichloroethylene, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies ...

  7. Integrated Science Assessment (ISA) for Oxides of Nitrogen, Oxides of Sulfur and Particulate Matter Ecological Criteria (Second External Review Draft)

    EPA Science Inventory

    This draft Integrated Science Assessment (ISA) represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision on retaining or revising the current secondary standards for NO2, SO

  8. 77 FR 12579 - Notification of a Public Meeting of the Chartered Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-01

    ... the Chartered SAB to conduct quality reviews of a draft report on the President's requested FY 2013 budget for EPA research and a draft report on science integration at EPA; to plan for a joint meeting of... receive a briefing on ORD and sustainability science; and to discuss the scientific and technical bases...

  9. 77 FR 76000 - Notice of Availability of Draft Report of the NOAA Research and Development Portfolio Review Task...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration (NOAA), Science Advisory... of the NOAA Science Advisory Board (SAB) to announce the availability of the draft report of the SAB... will be available on the NOAA Science Advisory Board Web site at: http://www.sab.noaa.gov/Reports/prtf...

  10. Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Park, Jongmin; Baik, Jongjin; Choi, Minha

    2017-05-01

    The acquisition of accurate precipitation data is essential for analyzing various hydrological phenomena and climate change. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing global precipitation characteristics. The main objective in this study is to assess precipitation products from GPM, especially the Integrated Multi-satellitE Retrievals (GPM-3IMERGHH) and the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), using gauge-based precipitation data from Far-East Asia during the pre-monsoon and monsoon seasons. Evaluation was performed by focusing on three different factors: geographical aspects, seasonal factors, and spatial distributions. In both mountainous and coastal regions, the GPM-3IMERGHH product showed better performance than the TRMM 3B42 V7, although both rainfall products showed uncertainties caused by orographic convection and the land-ocean classification algorithm. GPM-3IMERGHH performed about 8% better than TRMM 3B42 V7 during the pre-monsoon and monsoon seasons due to the improvement of loaded sensor and reinforcement in capturing convective rainfall, respectively. In depicting the spatial distribution of precipitation, GPM-3IMERGHH was more accurate than TRMM 3B42 V7 because of its enhanced spatial and temporal resolutions of 10 km and 30 min, respectively. Based on these results, GPM-3IMERGHH would be helpful for not only understanding the characteristics of precipitation with high spatial and temporal resolution, but also for estimating near-real-time runoff patterns.

  11. Altered GPM6A/M6 dosage impairs cognition and causes phenotypes responsive to cholesterol in human and Drosophila.

    PubMed

    Gregor, Anne; Kramer, Jamie M; van der Voet, Monique; Schanze, Ina; Uebe, Steffen; Donders, Rogier; Reis, André; Schenck, Annette; Zweier, Christiane

    2014-12-01

    Glycoprotein M6A (GPM6A) is a neuronal transmembrane protein of the PLP/DM20 (proteolipid protein) family that associates with cholesterol-rich lipid rafts and promotes filopodia formation. We identified a de novo duplication of the GPM6A gene in a patient with learning disability and behavioral anomalies. Expression analysis in blood lymphocytes showed increased GPM6A levels. An increase of patient-derived lymphoblastoid cells carrying membrane protrusions supports a functional effect of this duplication. To study the consequences of GPM6A dosage alterations in an intact nervous system, we employed Drosophila melanogaster as a model organism. We found that knockdown of Drosophila M6, the sole member of the PLP family in flies, in the wing, and whole organism causes malformation and lethality, respectively. These phenotypes as well as the protrusions of patient-derived lymphoblastoid cells with increased GPM6A levels can be alleviated by cholesterol supplementation. Notably, overexpression as well as loss of M6 in neurons specifically compromises long-term memory in the courtship conditioning paradigm. Our findings thus indicate a critical role of correct GPM6A/M6 levels for cognitive function and support a role of the GPM6A duplication for the patient's phenotype. Together with other recent findings, this study highlights compromised cholesterol homeostasis as a recurrent feature in cognitive phenotypes. © 2014 WILEY PERIODICALS, INC.

  12. IRIS TOXICOLOGICAL REVIEW OF TETRACHLOROETHYLENE (PERCHLOROETHYLENE) (INTERAGENCY SCIENCE DISCUSSION DRAFT)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Tetrachloroethylene (Perchloroethylene), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment...

  13. IRIS Toxicological Review of Biphenyl (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Biphenyl, that was distributed to other federal agencies and the Executive Office of the President for comment during Interagency Science Discussion (IASD) (Step 6b) of the IRIS assessment development process. Interagenc...

  14. Six years after the NRC review of EPA's Draft IRIS Toxicological Review of Formaldehyde: Regulatory implications of new science in evaluating formaldehyde leukemogenicity.

    PubMed

    Mundt, Kenneth A; Gentry, P Robinan; Dell, Linda D; Rodricks, Joseph V; Boffetta, Paolo

    2018-02-01

    Shortly after the International Agency for Research on Cancer (IARC) determined that formaldehyde causes leukemia, the United States Environmental Protection Agency (EPA) released its Draft IRIS Toxicological Review of Formaldehyde ("Draft IRIS Assessment"), also concluding that formaldehyde causes leukemia. Peer review of the Draft IRIS Assessment by a National Academy of Science committee noted that "causal determinations are not supported by the narrative provided in the draft" (NRC 2011). They offered recommendations for improving the Draft IRIS assessment and identified several important research gaps. Over the six years since the NRC peer review, significant new science has been published. We identify and summarize key recommendations made by NRC and map them to this new science, including extended analysis of epidemiological studies, updates of earlier occupational cohort studies, toxicological experiments using a sensitive mouse strain, mechanistic studies examining the role of exogenous versus endogenous formaldehyde in bone marrow, and several critical reviews. With few exceptions, new findings are consistently negative, and integration of all available evidence challenges the earlier conclusions that formaldehyde causes leukemia. Given formaldehyde's commercial importance, environmental ubiquity and endogenous production, accurate hazard classification and risk evaluation of whether exposure to formaldehyde from occupational, residential and consumer products causes leukemia are critical. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Jensen, Michael P.

    2011-01-01

    The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde network. As an exploratory effort to examine land-surface emissivity impacts on retrieval algorithms, and to demonstrate airborne soil moisture retrieval capabilities, the University of Tennessee Space Institute Piper aircraft carrying the MAPIR L-band radiometer was also flown during the latter half of the experiment in coordination with the ER-2. The observational strategy provided a means to sample the atmospheric column in a redundant framework that enables inter-calibration and constraint of measured and retrieved precipitation characteristics such as particle size distributions, or water contents- all within the umbrella of "proxy" satellite measurements (i.e., the ER-2). Complimenting the precipitation sampling framework, frequent and coincident launches of atmospheric soundings (e.g., 4-8/day) then provided a much larger mesoscale view of the thermodynamic and winds environment, a data set useful for initializing cloud models. The datasets collected represent a variety cloud and precipitation types including isolated cumulus clouds, severe thunderstorms, mesoscale convective systems, and widespread regions of light to moderate stratiform precipitation. We will present the MC3E experiment design, an overview of operations, and a summary of preliminary results.

  16. 78 FR 78063 - Appendix 4 to Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ...ScienceResearch/UCM334110.pdf . 2. FDA, ``Appendix 4 to Draft Qualitative Risk Assessment of Risk of....regulations.gov and at http://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafetyAssessment/UCM377408... on a Farm,'' 2013. Available at: http://www.fda.gov/downloads/Food/FoodScienceResearch/RiskSafety...

  17. IRIS Toxicological Review of Chloroprene (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Chloroprene, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Co...

  18. IRIS Toxicological Review of Hexachloroethane (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Hexachloroethane, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Pro...

  19. IRIS Toxicological Review of Pentachlorophenol (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Pentachlorophenol, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Pr...

  20. 75 FR 69475 - Notice Regarding Changed Venue for Public Hearing On a Draft Programmatic Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-12

    ... NATIONAL SCIENCE FOUNDATION Notice Regarding Changed Venue for Public Hearing On a Draft Programmatic Environmental Impact Statement/Overseas Environmental Impact Statement (PEIS) AGENCY: National Science Foundation. ACTION: Notice regarding changed venue for public hearing. SUMMARY: The National...

  1. IRIS Toxicological Review for Acrylamide (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review for Acrylamide, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process<...

  2. NOAA draft scientific integrity policy: Comment period open through 20 August

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The National Oceanic and Atmospheric Administration (NOAA) is aiming to finalize its draft scientific integrity policy possibly by the end of the year, Larry Robinson, NOAA assistant secretary for conservation and management, indicated during a 28 July teleconference. The policy “is key to fostering an environment where science is encouraged, nurtured, respected, rewarded, and protected,” Robinson said, adding that the agency's comment period for the draft policy, which was released on 16 June, ends on 20 August. “Science underpins all that NOAA does. This policy is one piece of a broader effort to strengthen NOAA science,” Robinson said, noting that the draft “represents the first ever scientific integrity policy for NOAA. Previously, our policy only addressed research misconduct and focused on external grants. What's new about this policy is that it establishes NOAA's principles for scientific integrity, a scientific code of conduct, and a code of ethics for science supervision and management.”

  3. GPM Satellite Radar Measurements of Precipitation and Freezing Level in Atmospheric Rivers: Comparison With Ground-Based Radars and Reanalyses

    NASA Astrophysics Data System (ADS)

    Cannon, Forest; Ralph, F. Martin; Wilson, Anna M.; Lettenmaier, Dennis P.

    2017-12-01

    Atmospheric rivers (ARs) account for more than 90% of the total meridional water vapor flux in midlatitudes, and 25-50% of the annual precipitation in the coastal western United States. In this study, reflectivity profiles from the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM-DPR) are used to evaluate precipitation and temperature characteristics of ARs over the western coast of North America and the eastern North Pacific Ocean. Evaluation of GPM-DPR bright-band height using a network of ground-based vertically pointing radars along the West Coast demonstrated exceptional agreement, and comparison with freezing level height from reanalyses over the eastern North Pacific Ocean also consistently agreed, indicating that GPM-DPR can be used to independently validate freezing level in models. However, precipitation comparison with gridded observations across the western United States indicated deficiencies in GPM-DPR's ability to reproduce the spatial distribution of winter precipitation, likely related to sampling frequency. Over the geographically homogeneous oceanic portion of the domain, sampling frequency was not problematic, and significant differences in the frequency and intensity of precipitation between GPM-DPR and reanalyses highlighted biases in both satellite-observed and modeled AR precipitation. Reanalyses precipitation rates below the minimum sensitivity of GPM-DPR accounted for a 20% increase in total precipitation, and 25% of radar-derived precipitation rates were greater than the 99th percentile precipitation rate in reanalyses. Due to differences in the proportions of precipitation in convective, stratiform bright-band, and non-bright-band conditions, AR conditions contributed nearly 10% more to total precipitation in GPM-DPR than reanalyses.

  4. IRIS Toxicological Review of Dichloromethane (Methylene Chloride) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Dichloromethane, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Proc...

  5. IRIS Toxicological Review of Tetrahydrofuran (THF) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Tetrahydrofuran, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Proc...

  6. IRIS Toxicological Review of Urea (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Urea,, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. C...

  7. Producibility Engineering and Planning (PEP)

    DTIC Science & Technology

    1977-01-01

    Materiel System, May 1976. c. Cesare Raimondi, "Estimating Drafting Time - Art , Science , Guess- work", Machine Design, 7 September 1972. d. Current Wage...Comprehensive 8 16 24 32 40 86 45 70 90 80 1/ Cesare Raimondi, "Estimating Drafting Time- Art , Science , Guesswork," Machine Design, September

  8. IRIS Toxicological Review of Trichloroacetic Acid (TCA) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Trichloroacetic Acid (TCA), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development ...

  9. Review of the Draft 2014 Science Mission Directorate Science Plan

    NASA Technical Reports Server (NTRS)

    2013-01-01

    At the request of NASA's Science Mission Directorate (SMD), the National Research Council's (NRC's) Space Studies Board (SSB) initiated a study to review a draft of the SMD's 2014 Science Plan. The request for this review was made at a time when NASA is engaged in the final stages of a comprehensive, agency-wide effort to develop a new strategic plan and at a time when NASA's budget is under considerable stress. SMD's Science Plan serves to provide more detail on its four traditional science disciplines-astronomy and astrophysics, solar and space physics (also called heliophysics), planetary science, and Earth remote sensing and related activities-than is possible in the agency-wide Strategic Plan. In conducting its review of the draft Science Plan, the Committee on the Assessment of the NASA Science Mission Directorate 2014 Science Plan was charged to comment on the following specific areas: (1) Responsiveness to the NRC's guidance on key science issues and opportunities in recent NRC reports; (2) Attention to interdisciplinary aspects and overall scientific balance; (3) Identification and exposition of important opportunities for partnerships as well as education and public outreach; (4) Integration of technology development with the science program; (5) Clarity on how the plan aligns with SMD's strategic planning process; (6) General readability and clarity of presentation; and (7) Other relevant issues as determined by the committee. The main body of the report provides detailed findings and recommendations relating to the draft Science Plan. The highest-level, crosscutting issues are summarized here, and more detail is available in the main body of the report.

  10. Current Status of GPM Data Products: Near-realtime and research

    NASA Astrophysics Data System (ADS)

    Stocker, Erich Franz

    2013-04-01

    With the core satellite currently completing testing at the Goddard Space Flight Center and the planned launch of the satellite in February 2014. this paper will provide a public, final, pre-launch status report of the planned GPM data products. This information is provided in four distinct product categories: near realtime, research quality, climate quality, and user products. It provides a high-level summary of the purpose for the categories, the products contained within, the data latencies, and an estimated data volume. The information presented should be sufficient for users to determine the GPM products they desire as well as plan for the necessary storage and code the software to use the products. The paper also provides a high level presentation of the data policy that Precipitation Processing System (PPS) will use for distributing the products. As the radiometer L1C intercalibrated brightness temperature products provide the entry point for swath based GPM products, this paper provides the underlying purpose of these products and their relationship to the partner provided L1B brightness temperatures from which they are evolved. It provides the differences between L1B and L1C and provides some examples to illustrate this difference. The chosen "archive" format for GPM products is HDF5. The paper outlines the philosophy used in constructing the HDF5 formats and the impact this has on data product, storage, use, and display. In addition the paper provides an introduction to PPS access and viewing tools available to GPM products. In conclusion, the paper provides access information for retrieving GPM synthetic data products. These products are used at PPS for algorithm testing and can be used by prospective GPM data users for writing and testing their data read routines. This should greatly facilitate readiness to use GPM products when they become publicly available.

  11. The GPM Ground Validation Program: Pre to Post-Launch

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.

    2014-12-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, types and data quality are being routinely generated to facilitate statistical GV of instantaneous and merged GPM products. To assess precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of ground-satellite estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation measurements are also being conducted at the NASA Wallops Flight Facility multi-radar, gauge and disdrometer facility located in coastal Virginia. This presentation will summarize the evolution of the NASA GPM GV program from pre to post-launch eras and highlight early evaluations of GPM satellite datasets.

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, congratulated both NASA and the Japan Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) Core Observatory teams and noted it was an example of over 40 years of strong U.S. and Japan relations, Friday Feb. 28, 2014, Tanegashima Space Center (TNSC) Tanegashima, Japan. The Ambassador witnessed the launch of a Japanese H-IIA rocket carrying the NASA-JAXA, GPM Core Observatory. The GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. 76 FR 3133 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... document (TSD), Methods and Approaches for Deriving Numeric Criteria for Nitrogen/Phosphorus Pollution in Florida's Estuaries, Coastal Waters, and Southern Inland Flowing Waters. The draft TSD describes methods... discuss its draft report reviewing EPA's technical support document on development of numeric nutrient...

  14. 78 FR 27374 - Workshop To Review Initial Draft Materials for the Nitrogen Oxides (NOX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... materials that will inform the development of the NO X Integrated Science Assessment (ISA) for health... ENVIRONMENTAL PROTECTION AGENCY [FRL-9812-6] Workshop To Review Initial Draft Materials for the Nitrogen Oxides (NO X ) Integrated Science Assessment (ISA) for Health Effects AGENCY: Environmental...

  15. Draft Plan for Development of the Integrated Science Assessment for Nitrogen Oxides - Health Criteria

    EPA Science Inventory

    EPA has announced a draft development plan for the next Integrated Science Assessment (ISA) for the health effects of nitrogen oxides (NOX) which will serve as the scientific basis for review of the primary (health-based) National Ambient Air Quality Standard for nitrogen dioxide...

  16. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from ot...

  17. Integrated Science Assessment (ISA) for Particulate Matter (Second External Review Draft, Jul 2009)

    EPA Science Inventory

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Particulate Matter (PM) have been made available for independent peer review and public review. The ISA reflects the latest scientific knowledge useful in indicating the kind...

  18. 75 FR 1790 - Draft Guidance for Institutional Review Boards, Clinical Investigators, and Sponsors: IRB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ....gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/ProposedRegulationsandDraftGuidances/default...] Draft Guidance for Institutional Review Boards, Clinical Investigators, and Sponsors: IRB Continuing Review After Clinical Investigation Approval; Availability AGENCY: Food and Drug Administration, HHS...

  19. Health Assessment Document for Diesel Emissions (External Review Draft)

    EPA Science Inventory

    This revised draft assessment of the possible health hazards from human exposure to diesel engine exhaust emissions updates two earlier drafts (1998 and 1994) that were reviewed by the Agency's Science Advisory Board (SAB) Clean Air Scientific Advisory Committee (CASAC). The curr...

  20. Health Assessment Document for Diesel Exhaust (Revised External Review Draft)

    EPA Science Inventory

    This External Review Draft version of this assessment updates three earlier drafts (1999, 1998 and 1994) that were reviewed by the Clean Air Scientific Advisory Committee (CASAC) of the Agency's Science Advisory Board (SAB). The assessment characterizes the possible human healt...

  1. Strawman Philosophical Guide for Developing International Network of GPM GV Sites

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2005-01-01

    The creation of an international network of ground validation (GV) sites that will support the Global Precipitation Measurement (GPM) Mission's international science programme will require detailed planning of mechanisms for exchanging technical information, GV data products, and scientific results. An important component of the planning will be the philosophical guide under which the network will grow and emerge as a successful element of the GPM Mission. This philosophical guide should be able to serve the mission in developing scientific pathways for ground validation research which will ensure the highest possible quality measurement record of global precipitation products. The philosophical issues, in this regard, partly stem from the financial architecture under which the GV network will be developed, i.e., each participating country will provide its own financial support through committed institutions -- regardless of whether a national or international space agency is involved.At the 1st International GPM Ground Validation Workshop held in Abingdon, UK in November-2003, most of the basic tenants behind the development of the international GV network were identified and discussed. Therefore, with this progress in mind, this presentation is intended to put forth a strawman philosophical guide supporting the development of the international network of GPM GV sites, noting that the initial progress has been reported in the Proceedings of the 1st International GPM GV Workshop -- available online. The central philosophical issues themselves, all flow from the fact that each participating institution can only bring to the table, GV facilities and scientific personnel that are affordable to the sanctioning (funding) national agency (be that a research, research-support, or operational agency). This situation imposes on the network, heterogeneity in the measuring sensors, data collection periods, data collection procedures, data latencies, and data reporting capabilities. Therefore, in order for the network to be effective in supporting the central scientific goals of the GPM mission, there must be a basic agreed upon doctrine under which the network participants function vis-a-vis: (1) an overriding set of general scientific requirements, (2) a minimal set of policies governing the free flow of GV data between the scientific participants, (3) a few basic definitions concerning the prioritization of measurements and their respective value to the mission, (4) a few basic procedures concerning data formats, data reporting procedures, data access, and data archiving, and (5) a simple means to differentiate GV sites according to their level of effort and ability to perform near real-time data acquisition - data reporting tasks. Most important, in case they choose to operate as a near real-time data collection-data distribution site, they would be expected to operate under a fairly narrowly defined protocol needed to ensure smooth GV support operations. This presentation will suggest measures responsive to items (1) - (5) from which to proceed,. In addition, this presentation will seek to stimulate discussion and debate concerning how much heterogeneity is tolerable within the eventual GV site network, given that the any individual GV site can only be considered scientifically useful if it supports the achievement of the central GPM Mission goals. Only ground validation research that has a direct connection to the space mission should be considered justifiable given the overarching scientific goals of the mission. Therefore each site will have to seek some level of accommodation to what the GPM Mission requires in the way of retrieval error characterization, retrieval error detection and reporting, and generation of GV data products that support assessment and improvement of the mission's standard precipitation retrieval algorithms. These are all important scientific issues that will be best resolved in open scientific debate.

  2. Calibration Plans for the Global Precipitation Measurement (GPM)

    NASA Technical Reports Server (NTRS)

    Bidwell, S. W.; Flaming, G. M.; Adams, W. J.; Everett, D. F.; Mendelsohn, C. R.; Smith, E. A.; Turk, J.

    2002-01-01

    The Global Precipitation Measurement (GPM) is an international effort led by the National Aeronautics and Space Administration (NASA) of the U.S.A. and the National Space Development Agency of Japan (NASDA) for the purpose of improving research into the global water and energy cycle. GPM will improve climate, weather, and hydrological forecasts through more frequent and more accurate measurement of precipitation world-wide. Comprised of U.S. domestic and international partners, GPM will incorporate and assimilate data streams from many spacecraft with varied orbital characteristics and instrument capabilities. Two of the satellites will be provided directly by GPM, the core satellite and a constellation member. The core satellite, at the heart of GPM, is scheduled for launch in November 2007. The core will carry a conical scanning microwave radiometer, the GPM Microwave Imager (GMI), and a two-frequency cross-track-scanning radar, the Dual-frequency Precipitation Radar (DPR). The passive microwave channels and the two radar frequencies of the core are carefully chosen for investigating the varying character of precipitation over ocean and land, and from the tropics to the high-latitudes. The DPR will enable microphysical characterization and three-dimensional profiling of precipitation. The GPM-provided constellation spacecraft will carry a GMI radiometer identical to that on the core spacecraft. This paper presents calibration plans for the GPM, including on-board instrument calibration, external calibration methods, and the role of ground validation. Particular emphasis is on plans for inter-satellite calibration of the GPM constellation. With its Unique instrument capabilities, the core spacecraft will serve as a calibration transfer standard to the GPM constellation. In particular the Dual-frequency Precipitation Radar aboard the core will check the accuracy of retrievals from the GMI radiometer and will enable improvement of the radiometer retrievals. Observational intersections of the core with the constellation spacecraft are essential in applying this technique to the member satellites. Information from core spacecraft retrievals during intersection events will be transferred to the constellation radiometer instruments in the form of improved calibration and, with experience, improved radiometric algorithms. In preparation for the transfer standard technique, comparisons using the Tropical Rainfall Measuring Mission (TRMM) with sun-synchronous radiometers have been conducted. Ongoing research involves study of critical variables in the inter-comparison, such as correlation with spatial-temporal separation of intersection events, frequency of intersection events, variable azimuth look angles, and variable resolution cells for the various sensors.

  3. Using Observations from GPM and CloudSat to Produce a Climatology of Precipitation over the Ocean

    NASA Astrophysics Data System (ADS)

    Hayden, L.; Liu, C.

    2017-12-01

    Satellite based instruments are essential to the observation of precipitation at a global scale, especially over remote oceanic regions. Each instrument has its own strengths and limitations when it comes to accurately determining the rate of precipitation occurring at the surface. By using the complementary strengths of two satellite based instruments, we attempt to produce a more complete climatology of global oceanic precipitation. The Global Precipitation Measurement (GPM) Core Osbervatory's Dual-frequency Precipitation Radar (DPR) is capable of measuring precipitation producing radar reflectivity above 12 dBZ [Hamada and Takayabu 2016]. The CloudSat satellite's Cloud Profiling Radar (CPR) uses higher frequency C band (94 GHz) radiation, and is therefore capable of measuring precipitation occurring at low precipitation rates which are not detected by the GPM DPR. The precipitation estimates derived by the two satellites are combined and the results are examined. CloudSat data from July 2006 to December 2010 are used. GPM data from March 2014 through May 2016 are used. Since the two datasets do not temporally overlap, this study is conducted from a climatological standpoint. The average occurrence for different precipitation rates is calculated for both satellites. To produce the combined dataset, the precipitation from CloudSat are used for the low precipitation rates while CloudSat precipitation amount is greater than that from GPM DPR, until GPM DPR precipitation amount is higher than that from CloudSat, at which precipitation rate data from the GPM are used. By combining the two datasets, we discuss the seasonal and geo-graphical distribution of weak precipitation detected by CloudSat that is beyond the sensitivity of GPM DPR. We also hope to gain a more complete picture of the precipitation that occurs over oceanic regions.

  4. New Products and Perspectives from the Global Precipitation Measurement (GPM) Mission

    NASA Astrophysics Data System (ADS)

    Kummerow, C. D.; Randel, D.; Petkovic, V.

    2016-12-01

    The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The radiometer algorithm in Version 4 is the first time a fully parametric algorithm has been implemented. This talk will focus on the consistency among the constellation radiometers, and what these inconsistencies can tell us about the fundamental uncertainties within the rainfall products. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.

  5. IRIS Toxicological Review of Trimethylbenzenes (Interagency Science Consultation Draft)

    EPA Science Inventory

    On June 26, 2012, the draft Toxicological Review of Trimethylbenzenes and the draft charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and W...

  6. California Diploma Project Technical Report II: Alignment Study--Alignment Study of the Health Sciences and Medical Technology Draft Standards and California's Exit Level Common Core State Standards

    ERIC Educational Resources Information Center

    McGaughy, Charis; de Gonzalez, Alicia

    2012-01-01

    The California Department of Education is in the process of revising the Career and Technical Education (CTE) Model Curriculum Standards. The Educational Policy Improvement Center (EPIC) conducted an investigation of the draft version of the Health Sciences and Medical Technology Standards (Health Science). The purpose of the study is to…

  7. National Climate Assessment

    NASA Image and Video Library

    2014-05-06

    NASA Earth Science Division Director Michael Freilich shows meteorologists a model of the Global Precipitation Measurement (GPM) Core Observatory during a media event for the release of the Third U.S. National Climate Assessment, South Lawn of the White House in Washington, Tuesday, May 6, 2014. NASA Earth-observing satellite observations and analysis by the NASA-supported research community underlie many of the findings in the new climate change assessment. Photo Credit: (NASA/Bill Ingalls)

  8. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and land surface hydrology through simulation, downscaling, and data assimilation. An overview of the GPM mission, science status, and synergies with HyMex activities will be presented

  9. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Second External Review Draft, Dec 2016)

    EPA Science Inventory

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primar...

  10. 76 FR 55390 - Guidance on Exculpatory Language in Informed Consent, Draft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ...://www.fda.gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/default.htm , is intended to assist... , http://www.hhs.gov/ohrp/newsroom/rfc/index.html , or http://www.fda.gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/default.htm . III. Request for Comments OHRP and FDA are making their joint draft...

  11. Integrated Science Assessment (ISA) for Oxides of Nitrogen – Health Criteria (Second External Review Draft, 2015)

    EPA Science Inventory

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of oxides of nitrogen. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current ...

  12. IRIS Toxicological Review of 1,1,2,2-Tetrachloroethane (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of 1,1,2,2-Tetrachloroethane, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Develo...

  13. IRIS Toxicological Review of cis- & trans-1,2-Dichloroethylene (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of cis-1,2-Dichloroethylene and trans-1,2-Dichloroethylene, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the A Space-Based Point Design for Global Coherent Doppler Wind Lidar Profiling Matched to the Recent NASA/NOAA Draft Science Requirements

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.

    2002-01-01

    An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

  14. IRIS Toxicological Review of Hydrogen Cyanide and Cyanide Salts (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, Toxicological Review of Hydrogen Cyanide (HCN) and Cyanide Salts, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS As...

  15. 75 FR 42085 - Workshop To Review Initial Health Effects Draft Materials for the Ozone (O3

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... Materials for the Ozone (O 3 ) Integrated Science Assessment (ISA) AGENCY: Environmental Protection Agency... evaluate initial draft materials for the health effects sections of the O 3 Integrated Science Assessment... of Research and Development (ORD). The workshop will be held on August 6, 2010, in Research Triangle...

  16. Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System

    NASA Technical Reports Server (NTRS)

    Schwaller, M. R.; Morris, K. R.; Petersen, W. A.

    2007-01-01

    NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.

  17. Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar

    2010-01-01

    Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.

  18. Training in Good Psychiatric Management for Borderline Personality Disorder in Residency: An Aide to Learning Supportive Psychotherapy for Challenging-to-Treat Patients.

    PubMed

    Bernanke, Joel; McCommon, Benjamin

    2018-01-01

    Given many competing demands, psychotherapy training to competency is difficult during psychiatric residency. Good Psychiatric Management for borderline personality disorder (GPM) offers an evidence-based, simplified, psychodynamically informed framework for the outpatient management of patients with borderline personality disorder, one of the most challenging disorders psychiatric residents must learn to treat. In this article, we provide an overview of GPM, and show that training in GPM meets a requirement for training in supportive psychotherapy; builds on psychodynamic psychotherapy training; and applies to other severe personality disorders, especially narcissistic personality disorder. We describe the interpersonal hypersensitivity model used in GPM as a straightforward way for clinicians to collaborate with patients in organizing approaches to psychoeducation, treatment goals, case management, use of multiple treatment modalities, and safety. A modification of the interpersonal hypersensitivity model that includes intra-personal hypersensitivity can be used to address narcissistic problems often present in borderline personality disorder. We argue that these features make GPM ideally suited for psychiatry residents in treating their most challenging patients, provide clinical examples to illustrate these points, and report the key lessons learned by a psychiatry resident after a year of GPM supervision.

  19. 77 FR 69631 - Draft Guidance for IRBs, Clinical Investigators, and Sponsors: IRB Responsibilities for Reviewing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ...://www.fda.gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/ProposedRegulationsandDraftGuidances...] Draft Guidance for IRBs, Clinical Investigators, and Sponsors: IRB Responsibilities for Reviewing the... IRBs, Clinical Investigators, and Sponsors: IRB Responsibilities for Reviewing the Qualifications of...

  1. IRIS Toxicological Review of Ammonia (Interagency Science Consultation Draft)

    EPA Science Inventory

    On June 1, 2012, the draft Toxicological Review of Ammonia and the draft charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House ...

  2. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) (Interagency Science Consultation Draft)

    EPA Science Inventory

    In September 2016, EPA released the draft IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE) for public comment and discussion. The draft assessment was reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent ...

  3. 77 FR 52024 - Notification of a Public Teleconference of the Chartered Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Amphibole Asbestos and (2) an SAB draft report regarding EPA's Scientific and Technological Achievement... review of an SAB draft report reviewing EPA's Toxicological Review of Libby Amphibole Asbestos. The... entitled ``Toxicological Review of Libby Amphibole Asbestos.'' The EPA's draft assessment evaluates cancer...

  4. IRIS Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On April 29, 2016, the Toxicological Review of tert-Butyl Alcohol (tert-Butanol) (Public Comment Draft) was released for public comment. The draft Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and the Executive Office ...

  5. IRIS Toxicological Review of Benzo[a]pyrene (Interagency Science Consultation Draft)

    EPA Science Inventory

    On August 21, 2013, the draft Toxicological Review of Benzo[a]pyrene and the draft charge to external peer reviewers were released for public review and comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offi...

  6. 75 FR 71694 - Science Advisory Board Staff Office; Notification of Two Public Quality Review Teleconferences of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... review of EPA's ``Toxicological Review of Trichloroethylene'' on December 15, 2010 and (b) a quality... of Trichloroethylene'' (October 2009), and (2) a draft report peer reviewing EPA's draft document... draft assessment entitled ``Toxicological Review of Trichloroethylene'' (October 2009). EPA's Office of...

  7. 75 FR 44805 - Central Utah Project Completion Act; Notice of Availability, Draft Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... DEPARTMENT OF THE INTERIOR Central Utah Project Completion Act; Notice of Availability, Draft Environmental Assessment (Draft EA); Realignment of a Portion of the Utah Lake Drainage Basin Water Delivery System AGENCY: Office of the Assistant Secretary--Water and Science, Interior ACTION: Notice of...

  8. How effective is the new generation of GPM satellite precipitation in characterizing the rainfall variability over Malaysia?

    NASA Astrophysics Data System (ADS)

    Mahmud, Mohd Rizaludin; Hashim, Mazlan; Reba, Mohd Nadzri Mohd

    2017-08-01

    We investigated the potential of the new generation of satellite precipitation product from the Global Precipitation Mission (GPM) to characterize the rainfall in Malaysia. Most satellite precipitation products have limited ability to precisely characterize the high dynamic rainfall variation that occurred at both time and scale in this humid tropical region due to the coarse grid size to meet the physical condition of the smaller land size, sub-continent and islands. Prior to the status quo, an improved satellite precipitation was required to accurately measure the rainfall and its distribution. Subsequently, the newly released of GPM precipitation product at half-hourly and 0.1° resolution served an opportunity to anticipate the aforementioned conflict. Nevertheless, related evidence was not found and therefore, this study made an initiative to fill the gap. A total of 843 rain gauges over east (Borneo) and west Malaysia (Peninsular) were used to evaluate the rainfall the GPM rainfall data. The assessment covered all critical rainy seasons which associated with Asian Monsoon including northeast (Nov. - Feb.), southwest (May - Aug.) and their subsequent inter-monsoon period (Mar. - Apr. & Sep. - Oct.). The ability of GPM to provide quantitative rainfall estimates and qualitative spatial rainfall patterns were analysed. Our results showed that the GPM had good capacity to depict the spatial rainfall patterns in less heterogeneous rainfall patterns (Spearman's correlation, 0.591 to 0.891) compared to the clustered one (r = 0.368 to 0.721). Rainfall intensity and spatial heterogeneity that is largely driven by seasonal monsoon has significant influence on GPM ability to resolve local rainfall patterns. In quantitative rainfall estimation, large errors can be primarily associated with the rainfall intensity increment. 77% of the error variation can be explained through rainfall intensity particularly the high intensity (> 35 mm d-1). A strong relationship between GPM rainfall and error was found from heavy ( 35 mm d-1) to violent rain (160 mm d-1). The output of this study provides reference regarding the performance of GPM data for respective hydrology studies in this region.

  9. Results from the Water Flow Test of the Tank 37 Backflush Valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowley, M.D.

    2002-11-01

    A flow test was conducted in the Thermal Fluids Lab with the Tank 37 Backflush Valve to determine the pressure drop of water flow through the material transfer port. The flow rate was varied from 0 to 100 gpm. The pressure drop through the Backflush Valve for flow rates of 20 and 70 gpm was determined to be 0.18 and 1.77 feet of H2O, respectively. An equivalent length of the Backflush Valve was derived from the flow test data. The equivalent length was used in a head loss calculation for the Tank 37 Gravity Drain Line. The calculation estimated themore » flow rate that would fill the line up to the Separator Tank, and the additional flow rate that would fill the Separator Tank. The viscosity of the fluid used in the calculation was 12 centipoise. Two specific gravities were investigated, 1.4 and 1.8. The Gravity Drain Line was assumed to be clean, unobstructed stainless steel pipe. The flow rate that would fill the line up to the Separator Tank was 73 and 75 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. The flow rate that would fill the Separator Tank was 96 and 100 gpm for the 1.4 or 1.8 specific gravity fluids, respectively. These results indicate that concentrate will not back up into the Separator Tank during evaporator normal operation, 15-25 gpm, or pot liftout, 70 gpm. A noteworthy observation during the flow test was water pouring from the holes in the catheterization tube. Water poured from the holes at 25 gpm and above. Data from the water flow test indicates that at 25 gpm the pressure drop through the Backflush Valve is 0.26 ft of H2O. A concentrate with a specific gravity of 1.8 and a viscosity of 12 cp will produce the same pressure drop at 20 gpm. This implies that concentrate from the evaporator may spill out into the BFV riser during a transfer.« less

  10. Comparison of satellite precipitation products with Q3 over the CONUS

    NASA Astrophysics Data System (ADS)

    Wang, J.; Petersen, W. A.; Wolff, D. B.; Kirstetter, P. E.

    2016-12-01

    The Global Precipitation Measurement (GPM) is an international satellite mission that provides a new-generation of global precipitation observations. A wealth of precipitation products have been generated since the launch of the GPM Core Observatory in February of 2014. However, the accuracy of the satellite-based precipitation products is affected by discrete temporal sampling and remote spaceborne retrieval algorithms. The GPM Ground Validation (GV) program is currently underway to independently verify the satellite precipitation products, which can be carried out by comparing satellite products with ground measurements. This study compares four Day-1 GPM surface precipitation products derived from the GPM Microwave Imager (GMI), Ku-band Precipitation Radar (KU), Dual-Frequency Precipitation Radar (DPR) and DPR-GMI CoMBined (CMB) algorithms, as well as the near-real-time Integrated Multi-satellitE Retrievals for GPM (IMERG) Late Run product and precipitation retrievals from Microwave Humidity Sounders (MHS) flown on NOAA and METOPS satellites, with the NOAA Multi-Radar Multi-Sensor suite (MRMS; now called "Q3"). The comparisons are conducted over the conterminous United States (CONUS) at various spatial and temporal scales with respect to different precipitation intensities, and filtered with radar quality index (RQI) thresholds and precipitation types. Various versions of GPM products are evaluated against Q3. The latest Version-04A GPM products are in reasonably good overall agreement with Q3. Based on the mission-to-date (March 2014 - May 2016) data from all GPM overpasses, the biases relative to Q3 for GMI and DPR precipitation estimates at 0.5o resolution are negative, whereas the biases for CMB and KU precipitation estimates are positive. Based on all available data (March 2015 - April 2016 at this writing), the CONUS-averaged near-real-time IMERG Late Run hourly precipitation estimate is about 46% higher than Q3. Preliminary comparison of 1-year (2015) MHS precipitation estimates with Q3 shows the MHS is bout 30% lower than Q3. Detailed comparison results are available at http://wallops-prf.gsfc.nasa.gov/NMQ/.

  11. GPM Ground Validation: Pre to Post-Launch Era

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Skofronick-Jackson, Gail; Huffman, George

    2015-04-01

    NASA GPM Ground Validation (GV) activities have transitioned from the pre to post-launch era. Prior to launch direct validation networks and associated partner institutions were identified world-wide, covering a plethora of precipitation regimes. In the U.S. direct GV efforts focused on use of new operational products such as the NOAA Multi-Radar Multi-Sensor suite (MRMS) for TRMM validation and GPM radiometer algorithm database development. In the post-launch, MRMS products including precipitation rate, accumulation, types and data quality are being routinely generated to facilitate statistical GV of instantaneous (e.g., Level II orbit) and merged (e.g., IMERG) GPM products. Toward assessing precipitation column impacts on product uncertainties, range-gate to pixel-level validation of both Dual-Frequency Precipitation Radar (DPR) and GPM microwave imager data are performed using GPM Validation Network (VN) ground radar and satellite data processing software. VN software ingests quality-controlled volumetric radar datasets and geo-matches those data to coincident DPR and radiometer level-II data. When combined MRMS and VN datasets enable more comprehensive interpretation of both ground and satellite-based estimation uncertainties. To support physical validation efforts eight (one) field campaigns have been conducted in the pre (post) launch era. The campaigns span regimes from northern latitude cold-season snow to warm tropical rain. Most recently the Integrated Precipitation and Hydrology Experiment (IPHEx) took place in the mountains of North Carolina and involved combined airborne and ground-based measurements of orographic precipitation and hydrologic processes underneath the GPM Core satellite. One more U.S. GV field campaign (OLYMPEX) is planned for late 2015 and will address cold-season precipitation estimation, process and hydrology in the orographic and oceanic domains of western Washington State. Finally, continuous direct and physical validation measurements are also being conducted at the NASA Wallops Flight Facility multi-radar, gauge and disdrometer facility located in coastal Virginia. This presentation will summarize the evolution of the NASA GPM GV program from pre to post-launch eras and place focus on evaluation of year-1 post-launch GPM satellite datasets including Level II GPROF, DPR and Combined algorithms, and Level III IMERG products.

  12. 76 FR 11240 - Human Studies Review Board (HSRB); Notification of a Public Teleconference To Review a Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... subjects of research. The HSRB reports to the EPA Administrator through EPA's Science Advisor. 1. Topics...) Office of the Science Advisor (OSA) announces a public teleconference of the HSRB to discuss its draft... difficulties and cannot contact you for clarification, EPA may not be able to consider your comment. Electronic...

  13. Report of Programme Commission II (Natural Sciences).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.

    As the first part of the report of the Programme Commission II, a summary of discussions on plans for natural sciences and their applications is presented in this document. The two agenda items are: (1) detailed consideration of the 1973-74 draft program and budget and of the 1973-78 draft medium-term outline, and (2) desirability of adopting an…

  14. 75 FR 33325 - Notice of Availability of the Draft Environmental Assessment of a Marine Geophysical Survey by...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...., Menlo Park, CA 94025. Copies of the Draft EA are available in the USGS Menlo Park Earth Science Information Center, Building 3, Room 3128, 345 Middlefield Rd., Menlo Park, CA 94025, Telephone: (650) 329-4309; the USGS Anchorage Earth Science Information Center, Room 208, 4210 University Dr. Anchorage, AK...

  15. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (Tcdd) and Related Compounds: Science Advisory Board (External Review Draft) (2000)

    EPA Science Inventory

    Dioxin Reassessment, SAB Review Draft

    The U.S. Environmental Protection Agency's (EPA) is progressing toward completion of its comprehensive reassessment of dioxin science entitled, "Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibe...

  16. EPA's Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments (Volume 1) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA is releasing the draft report, EPA's Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments (Volume 1), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the 75 FR 7592 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Chartered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... concerning the EPA Science Advisory Board can be found on the SAB Web site at http://www.epa.gov/sab... reviews of three draft SAB Panel reports: (1) The SAB Drinking Water Committee's draft Review of EPA's... and all appropriate SAB Staff Office procedural policies. Background: (1) The SAB Drinking Water...

  17. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    On September 22, 2006, the draft Evaluation of the Carinogenicity of Ethylene Oxide (EPA/635/R-06/003) and the draft charge to external peer reviewers were released for external peer review and public comment. This draft was reviewed by EPA’s Science Advisory Board (SAB) and the expert panel’s final report was made available December 21, 2007. Since that time the Agency implemented the May 2009 IRIS assessment development process in which other federal agencies and the Executive Offices of the President are provided two opportunities to comment on IRIS human health assessments; Interagency Science Consultation (Step 3) prior to public comment/peer review and Interagency Science Discussion (Step 6b) following peer review. In July, 2011, the draft assessment incorporating the SAB recommendations (December 2007) was sent to other federal agencies and Executive Offices of the President as part of Step 6 of the IRIS process. Following the May 2009 process, all written comments submitted by other agencies will be made publicly available. Accordingly, the interagency comments for ethylene oxide and the interagency science discussion materials provided to the other agencies are posted on this site. Note: After further consideration EPA has decided to undertake an additional peer review of the revised draft assessment on how the Agency responded to the SAB panel recommendations (December 2007), the exposure-response modeling of epidemiologic data, including n

  18. EPA's Reanalysis of Key Issues Related to Dioxin Toxicity and ...

    EPA Pesticide Factsheets

    EPA is releasing for external peer review and public comment an important draft document reviewing the literature on the health effects of dioxin and related compounds (also referred to as 2,3,7,8-Tetrachlorodibenzo-p-dioxin). At the request of Administrator Jackson, EPA is in the process of re-assessing the science on the effects of dioxin, a toxic chemical that is emitted by multiple sources, on the public’s health. This draft dioxin report is EPA’s response to key comments and recommendations made by the National Academy of Sciences on the Agency’s draft dioxin reassessment. This assessment has been in progress for many years and raises health issues of broad interest to scientists and policymakers across the federal family. The Agency’s draft report includes significant new analyses on potential cancer and non-cancer human health effects that may result from exposures to dioxins and includes an oral reference dose for what is considered to be the most toxic of the dioxin-like compounds. EPA’s Science

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-28

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard, is seen on launch pad 1 of the Tanegashima Space Center, Friday, Feb. 28, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket with the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory onboard is seen on launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir; Carlisle, Candace

    2010-01-01

    The Global Precipitation Measurement (GP!v1) mission is an international cooperative effort to advance the understanding of the physics of the Earth's water and energy cycle. Accurate and timely knowledge of global precipitation is essential for understanding the weather/climate/ecological system, for improving our ability to manage freshwater resources, and for predicting high-impact natural hazard events including floods, droughts, extreme weather events, and landslides. The GPM Core Observatory will be a reference standard to uniformly calibrate data from a constellation of spacecraft with passive microwave sensors. GPM is being developed under a partnership between the United States (US) National Aeronautics and Space Administration (NASA) and the Japanese Aerospace and Exploration Agency (JAXA). NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD is developing the Core Observatory, two GPM Microwave Imager (GMI) instruments, Ground Validation System and Precipitation Processing System for the GPM mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. The second GMI instrument will be flown on a partner-provided spacecraft. Other US agencies and international partners contribute to the GPM mission by providing precipitation measurements obtained from their own spacecraft and/or providing ground-based precipitation measurements to support ground validation activities. The Precipitation Processing System will provide standard data products for the mission.

  5. Thermo- and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix.

    PubMed

    Qu, Jian-Bo; Xu, Yu-Liang; Liu, Jun-Yi; Zeng, Jing-Bin; Chen, Yan-Li; Zhou, Wei-Qing; Liu, Jian-Guo

    2016-04-08

    Dual thermo- and pH-responsive chromatography has been proposed using poly(N-isopropylacrylamide-co-butyl methacrylate-co-N,N-dimethylaminopropyl acrylamide) (P(NIPAM-co-BMA-co-DMAPAAM)) brushes grafted gigaporous polystyrene microspheres (GPM) as matrix. Atom transfer radical polymerization (ATRP) initiator was first coupled onto GPM through Friedel-Crafts acylation with 2-bromoisobutyryl bromide. The dual-responsive polymer brushes were then grafted onto GPM via surface-initiated ATRP. The surface composition, gigaporous structure, protein adsorption and dual-responsive chromatographic properties of the matrix (GPM-P(NIPAM-co-BMA-co-DMAPAAM) were characterized in detail. Results showed that GPM were successfully grafted with thermoresponsive cationic polymer brushes and that the gigaporous structure was well maintained. A column packed with GPM-P(NIPAM-co-BMA-co-DMAPAAM presented low backpressure, good permeability and appreciable thermo-responsibility. By changing pH of the mobile phase and temperature of the column in turn, the column can separate three model proteins at the mobile phase velocity up to 2528cmh(-1). A separation mechanism of this matrix was also proposed. All results indicate that the dual thermo- and pH-responsive chromatography matrix has great potentials in 'green' high-speed protein chromatography. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The Global Precipitation Measurement (GPM) Microwave Imager (GMI): Instrument Overview and Early On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Draper, David W.; Newell, David A.; Wentz, Frank J.; Krimchansky, Sergey; Jackson, Gail

    2015-01-01

    The Global Precipitation Measurement (GPM) mission is an international satellite mission that uses measurements from an advanced radar/radiometer system on a core observatory as reference standards to unify and advance precipitation estimates made by a constellation of research and operational microwave sensors. The GPM core observatory was launched on February 27, 2014 at 18:37 UT in a 65? inclination nonsun-synchronous orbit. GPM focuses on precipitation as a key component of the Earth's water and energy cycle, and has the capability to provide near-real-time observations for tracking severe weather events, monitoring freshwater resources, and other societal applications. The GPM microwave imager (GMI) on the core observatory provides the direct link to the constellation radiometer sensors, which fly mainly in polar orbits. The GMI sensitivity, accuracy, and stability play a crucial role in unifying the measurements from the GPM constellation of satellites. The instrument has exhibited highly stable operations through the duration of the calibration/validation period. This paper provides an overview of the GMI instrument and a report of early on-orbit commissioning activities. It discusses the on-orbit radiometric sensitivity, absolute calibration accuracy, and stability for each radiometric channel. Index Terms-Calibration accuracy, passive microwave remote sensing, radiometric sensitivity.

  7. Measurement of Global Precipitation

    NASA Technical Reports Server (NTRS)

    Flaming, Gilbert Mark

    2004-01-01

    The Global Precipitation Measurement (GPM) Program is an international cooperative effort whose objectives are to (a) obtain increased understanding of rainfall processes, and (b) make frequent rainfall measurements on a global basis. The National Aeronautics and Space Administration (NASA) of the United States and the Japanese Aviation and Exploration Agency (JAXA) have entered into a cooperative agreement for the formulation and development of GPM. This agreement is a continuation of the partnership that developed the highly successful Tropical Rainfall Measuring Mission (TRMM) that was launched in November 1997; this mission continues to provide valuable scientific and meteorological information on rainfall and the associated processes. International collaboration on GPM from other space agencies has been solicited, and discussions regarding their participation are currently in progress. NASA has taken lead responsibility for the planning and formulation of GPM, Key elements of the Program to be provided by NASA include a Core satellite bus instrumented with a multi-channel microwave radiometer, a Ground Validation System and a ground-based Precipitation Processing System (PPS). JAXA will provide a Dual-frequency Precipitation Radar for installation on the Core satellite and launch services. Other United States agencies and international partners may participate in a number of ways, such as providing rainfall measurements obtained from their own national space-borne platforms, providing local rainfall measurements to support the ground validation activities, or providing hardware or launch services for GPM constellation spacecraft. This paper will present an overview of the current planning for the GPM Program, and discuss in more detail the status of the lead author's primary responsibility, development and acquisition of the GPM Microwave Imager.

  8. Health Assessment Document for Diesel Exhaust (SAB Review Draft, July 2000), EPA/600/8-90/057e

    EPA Science Inventory

    This revised draft assessment of the possible health hazards from human exposure to diesel exhaust emissions updates three earlier drafts (1999, 1998 and 1994) that were reviewed by the Clean Air Scientific Advisory Committee (CASAC) of the Agency,s Science Advisory Board (SAB)....

  9. 75 FR 47595 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Air Quality Standards--Second External Review Draft (June 2010). DATES: The teleconference will be... Standards--Second External Review Draft (June 2010). Background information on previous meetings and... Quality Standards--Second External Review Draft (June 2010) should be directed to Ms. Beth Hassett-Sipple...

  10. 75 FR 9206 - Science Advisory Board Staff Office; Notification of a Clean Air Scientific Advisory Committee...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ...: Second External Review Draft and EPA's Policy Assessment for the Review of the Carbon Monoxide National Ambient Air Quality Standards: External Review Draft. The chartered CASAC will subsequently hold a public... National Ambient Air Quality Standards: Second External Review Draft and the Policy Assessment for the...

  11. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures (Interagency Science Consultation Draft)

    EPA Science Inventory

    On February 26, 2010, the draft Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures document and the charge to external peer reviewers were released for external peer review and public comment. The draft document and t...

  12. 76 FR 80368 - Notification of Teleconferences of the Science Advisory Board Biogenic Carbon Emissions Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Accounting Framework for Biogenic CO2 Emissions from Stationary Sources (September 2011). DATES: The... teleconferences to discuss draft responses to charge questions on EPA's draft Accounting Framework for Biogenic CO... (OAP) in EPA's Office of Air and Radiation requested SAB review of the draft report and accounting...

  13. Evaluation and intercomparison of GPM-IMERG and TRMM 3B42 daily precipitation products over Greece

    NASA Astrophysics Data System (ADS)

    Kazamias, A. P.; Sapountzis, M.; Lagouvardos, K.

    2017-09-01

    Accurate precipitation data at high temporal and spatial resolutions are needed for numerous applications in hydrology, water resources management and flood risk management. Satellite-based precipitation estimations/products offer a potential alternative source of rainfall data for regions with sparse rain gauge network. The recently launched Global Precipitation Measurement (GPM) mission is the successor of Tropical Rainfall Measuring Mission (TRMM) providing global precipitation estimates at spatial resolution of 0.1 degree x 0.1 degree and half-hourly temporal resolution. This study aims at evaluating the accuracy of the Integrated Multi-satellite Retrievals for GPM (IMERG) near-real-time daily product (GPM-3IMERGDL) against rain gauge observations from a network of stations distributed across Greece for the year 2016. Moreover, the GPM-IMERG product is also compared with its predecessor, the Version-7 near-real-time (3B42RT) daily product of TRMM Multisatellite Precipitation Analysis (TMPA). Several statistical metrics are used to quantitatively evaluate the performance of the satellite-based precipitation estimates against rain gauge observations. In addition, categorical statistical indices are used to assess rain detection capabilities of the two satellite products. The GPM-IMERG daily product shows reasonable agreement (CC=0.60) against rain gauge observations, with the exception of coastal areas in which low correlations are achieved. The GPM-IMERG daily precipitation product tends to overestimate rainfall, especially in complex terrain areas with high annual precipitation. In particular, rainfall estimates in western Greece have a strong positive bias. On the other hand, the TRMM 3B42 product shows low correlation (CC=0.45) against rain gauge observations and slightly underestimates rainfall. This study is a first attempt to evaluate and compare the newly introduced GPM-IMERG and the TRMM 3B42 rainfall products at daily timescale over Greece.

  14. Global Precipitation Measurement (GPM) Safety Inhibit Timeline Tool

    NASA Technical Reports Server (NTRS)

    Dion, Shirley

    2012-01-01

    The Global Precipitation Measurement (GPM) Observatory is a joint mission under the partnership by National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA), Japan. The NASA Goddard Space Flight Center (GSFC) has the lead management responsibility for NASA on GPM. The GPM program will measure precipitation on a global basis with sufficient quality, Earth coverage, and sampling to improve prediction of the Earth's climate, weather, and specific components of the global water cycle. As part of the development process, NASA built the spacecraft (built in-house at GSFC) and provided one instrument (GPM Microwave Imager (GMI) developed by Ball Aerospace) JAXA provided the launch vehicle (H2-A by MHI) and provided one instrument (Dual-Frequency Precipitation Radar (DPR) developed by NTSpace). Each instrument developer provided a safety assessment which was incorporated into the NASA GPM Safety Hazard Assessment. Inhibit design was reviewed for hazardous subsystems which included the High Gain Antenna System (HGAS) deployment, solar array deployment, transmitter turn on, propulsion system release, GMI deployment, and DPR radar turn on. The safety inhibits for these listed hazards are controlled by software. GPM developed a "pathfinder" approach for reviewing software that controls the electrical inhibits. This is one of the first GSFC in-house programs that extensively used software controls. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As part of this process a new tool "safety inhibit time line" was created for management of inhibits and their controls during spacecraft buildup and testing during 1& Tat GSFC and at the Range in Japan. In addition to understanding inhibits and controls during 1& T the tool allows the safety analyst to better communicate with others the changes in inhibit states with each phase of hardware and software testing. The tool was very useful for communicating compliance with safety requirements especially when working with a foreign partner.

  15. 76 FR 30149 - Science Advisory Board Staff Office Notification of a Public Teleconference of the Chartered...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... of ballast water treatment systems; A Report by the EPA Science Advisory Board (May 2011 Draft... Board can be found on the EPA Web site at http://www.epa.gov/sab . SUPPLEMENTARY INFORMATION: The SAB... quality review of a draft report entitled Efficacy of ballast water treatment systems; a report by the EPA...

  16. EPA scientific integrity policy draft

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-08-01

    The U.S. Environmental Protection Agency (EPA) issued its draft scientific integrity policy on 5 August. The draft policy addresses scientific ethical standards, communications with the public, the use of advisory committees and peer review, and professional development. The draft policy was developed by an ad hoc group of EPA senior staff and scientists in response to a December 2010 memorandum on scientific integrity from the White House Office of Science and Technology Policy. The agency is accepting public comments on the draft through 6 September; comments should be sent to osa.staff@epa.gov. For more information, see http://www.epa.gov/stpc/pdfs/draft-scientific-integrity-policy-aug2011.pdf.

  17. Enhanced Preliminary Assessment

    DTIC Science & Technology

    1992-02-01

    April 1960 for use as military housing. Construction of Building 400 , later to be named the Gates-Lord Hall for Major General Horatio Gates and...over 400 buildings concentrated in the southeastern portion of the post. This subsection provides a brief overview of these facilities. More detailed...between 100 and 400 gpm. This is in contrast to yields from the deeper bedrock wells, which range from as little as 30 gpm to as much as 1,200 gpm (ESE

  18. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The sun sets just outside the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  19. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The entrance sign to the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) is seen a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  20. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The launch pads at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center are seen a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    A daruma doll is seen on the desk of Masahiro Kojima, GPM Dual-frequency Precipitation Radar project manager, Japan Aerospace Exploration Agency (JAXA), at the Tanegashima Space Cener's Range Control Center (RCC), Wednesday, Feb. 26, 2014, Tanegashima, Japan. One eye of the daruma doll is colored in when a goal is set and the second eye is colored in at the completion of the goal. JAXA plans to launch an H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Members of the weather team prepare reports for the Global Precipitation Measurement (GPM) Core Observatory Launch Readiness Review (LRR) with Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA), and NASA, on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The GPM spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Art Azarbarzin, NASA Global Precipitation Measurement (GPM) project manager, left, participates in the GPM Launch Readiness Review (LRR) along with Chief officers from Mitsubishi Heavy Industries, Ltd., and the Japan Aerospace Exploration Agency (JAXA) on Wednesday, Feb. 26, 2014 at Tanegashima Space Center, Japan. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. At the meeting in the space center's Range Control Center, all preparations to date were reviewed and approval was given to proceed with launch on schedule. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Integrated Science Assessment (ISA) for Lead (Second ...

    EPA Pesticide Factsheets

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Lead (Pb) has been made available for independent peer review and public review. This draft ISA represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding whether the current standards for Pb sufficiently protect public health and the environment. Lead (Pb) is one of six principal (or criteria) pollutants for which EPA has established NAAQS

  5. IRIS Toxicological Review of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX) (Interagency Science Consultation Draft)

    EPA Science Inventory

    On March 10, 2016, the public comment draft Toxicological Review of Hexahydro-1,3,5-trinitro-1,3,5-triazine and the draft charge to external peer reviewers were released for public review and comment. The Toxicological Review and charge were reviewed internally by EPA and by othe...

  6. Community-Based Services that Facilitate Interoperability and Intercomparison of Precipitation Datasets from Multiple Sources

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Kempler, Steven; Teng, William; Leptoukh, Gregory; Ostrenga, Dana

    2010-01-01

    Over the past 12 years, large volumes of precipitation data have been generated from space-based observatories (e.g., TRMM), merging of data products (e.g., gridded 3B42), models (e.g., GMAO), climatologies (e.g., Chang SSM/I derived rain indices), field campaigns, and ground-based measuring stations. The science research, applications, and education communities have greatly benefited from the unrestricted availability of these data from the Goddard Earth Sciences Data and Information Services Center (GES DISC) and, in particular, the services tailored toward precipitation data access and usability. In addition, tools and services that are responsive to the expressed evolving needs of the precipitation data user communities have been developed at the Precipitation Data and Information Services Center (PDISC) (http://disc.gsfc.nasa.gov/precipitation or google NASA PDISC), located at the GES DISC, to provide users with quick data exploration and access capabilities. In recent years, data management and access services have become increasingly sophisticated, such that they now afford researchers, particularly those interested in multi-data set science analysis and/or data validation, the ability to homogenize data sets, in order to apply multi-variant, comparison, and evaluation functions. Included in these services is the ability to capture data quality and data provenance. These interoperability services can be directly applied to future data sets, such as those from the Global Precipitation Measurement (GPM) mission. This presentation describes the data sets and services at the PDISC that are currently used by precipitation science and applications researchers, and which will be enhanced in preparation for GPM and associated multi-sensor data research. Specifically, the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) will be illustrated. Giovanni enables scientific exploration of Earth science data without researchers having to perform the complicated data access and match-up processes. In addition, PDISC tool and service capabilities being adapted for GPM data will be described, including the Google-like Mirador data search and access engine; semantic technology to help manage large amounts of multi-sensor data and their relationships; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion to various formats (e.g., netCDF, HDF, KML (for Google Earth)); visualization and analysis of Level 2 data profiles and maps; parameter and spatial subsetting; time and temporal aggregation; regridding; data version control and provenance; continuous archive verification; and expertise in data-related standards and interoperability. The goal of providing these services is to further the progress towards a common framework by which data analysis/validation can be more easily accomplished.

  7. Heading Toward Launch with the Integrated Multi-Satellite Retrievals for GPM (IMERG)

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Bolvin, David T.; Nelkin, Eric J.; Adler, Robert F.

    2012-01-01

    The Day-l algorithm for computing combined precipitation estimates in GPM is the Integrated Multi-satellitE Retrievals for GPM (IMERG). We plan for the period of record to encompass both the TRMM and GPM eras, and the coverage to extend to fully global as experience is gained in the difficult high-latitude environment. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in the three groups that are contributing expertise: 1) the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; 2) the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following cloud motion; and 3) the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures. In this talk we summarize the major building blocks and important design issues driven by user needs and practical data issues. One concept being pioneered by the IMERG team is that the code system should produce estimates for the same time period but at different latencies to support the requirements of different groups of users. Another user requirement is that all these runs must be reprocessed as new IMERG versions are introduced. IMERG's status at meeting time will be summarized, and the processing scenario in the transition from TRMM to GPM will be laid out. Initially, IMERG will be run with TRMM-based calibration, and then a conversion to a GPM-based calibration will be employed after the GPM sensor products are validated. A complete reprocessing will be computed, which will complete the transition from TMPA.

  8. The GPM Common Calibrated Brightness Temperature Product

    NASA Technical Reports Server (NTRS)

    Stout, John; Berg, Wesley; Huffman, George; Kummerow, Chris; Stocker, Erich

    2005-01-01

    The Global Precipitation Measurement (GPM) project will provide a core satellite carrying the GPM Microwave Imager (GMI) and will use microwave observations from a constellation of other satellites. Each partner with a satellite in the constellation will have a calibration that meets their own requirements and will decide on the format to archive their brightness temperature (Tb) record in GPM. However, GPM multi-sensor precipitation algorithms need to input intercalibrated Tb's in order to avoid differences among sensors introducing artifacts into the longer term climate record of precipitation. The GPM Common Calibrated Brightness Temperature Product is intended to address this problem by providing intercalibrated Tb data, called "Tc" data, where the "c" stands for common. The precipitation algorithms require a Tc file format that is both generic and flexible enough to accommodate the different passive microwave instruments. The format will provide detailed information on the processing history in order to allow future researchers to have a record of what was done. The format will be simple, including the main items of scan time, latitude, longitude, and Tc. It will also provide spacecraft orientation, spacecraft location, orbit, and instrument scan type (cross-track or conical). Another simplification is to store data in real numbers, avoiding the ambiguity of scaled data. Finally, units and descriptions will be provided in the product. The format is built on the concept of a swath, which is a series of scans that have common geolocation and common scan geometry. Scan geometry includes pixels per scan, sensor orientation, scan type, and incidence angles. The Tc algorithm and data format are being tested using the pre-GPM Precipitation Processing System (PPS) software to generate formats and 1/0 routines. In the test, data from SSM/I, TMI, AMSR-E, and WindSat are being processed and written as Tc products.

  9. Science and applications-driven OSSE platform for terrestrial hydrology using NASA Land Information System

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Peters-Lidard, C. D.; Harrison, K.; Santanello, J. A.; Bach Kirschbaum, D.

    2014-12-01

    Observing System Simulation Experiments (OSSEs) are often conducted to evaluate the worth of existing data and data yet to be collected from proposed new missions. As missions increasingly require a broader ``Earth systems'' focus, it is important that the OSSEs capture the potential benefits of the observations on end-use applications. Towards this end, the results from the OSSEs must also be evaluated with a suite of metrics that capture the value, uncertainty, and information content of the observations while factoring in both science and societal impacts. In this presentation, we present the development of an end-to-end and end-use application oriented OSSE platform using the capabilities of the NASA Land Information System (LIS) developed for terrestrial hydrology. Four case studies that demonstrate the capabilities of the system will be presented: (1) A soil moisture OSSE that employs simulated L-band measurements and examines their impacts towards applications such as floods and droughts. The experiment also uses a decision-theory based analysis to assess the economic utility of observations towards improving drought and flood risk estimates, (2) A GPM-relevant study quantifies the impact of improved precipitation retrievals from GPM towards improving landslide forecasts, (3) A case study that examines the utility of passive microwave soil moisture observations towards weather prediction, and (4) OSSEs used for developing science requirements for the GRACE-2 mission. These experiments also demonstrate the value of a comprehensive modeling environment such as LIS for conducting end-to-end OSSEs by linking satellite observations, physical models, data assimilation algorithms and end-use application models in a single integrated framework.

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign guides travelers to the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), Saturday, Feb. 22, 2014, Tanegashima Island, Japan. A launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014 from the space center. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    The Tanegashima Space Center (TNSC) lighthouse is seen on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    The Takesaki Observation Center is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A light house and weather station is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  14. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is seen in this 10 second exposure as it rolls out to launch pad 1 of the Tanegashima Space Center, Thursday, Feb. 27, 2014, Tanegashima, Japan. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  15. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    Topiary shaped into the logo of the Japan Aerospace Exploration Agency (JAXA) is seen at the Tanegashima Space Center (TNSC) a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  16. Measurement of Global Precipitation: Introduction to International GPM Program

    NASA Technical Reports Server (NTRS)

    Hwang, P.

    2004-01-01

    The Global Precipitation Measurement (GPM) Program is an international cooperative effort whose objectives are to (a) obtain better understanding of rainfall processes, and (b) make frequent rainfall measurements on a global basis. The National Aeronautics and Space Administration (NASA) of the United States and the Japanese Aviation and Exploration Agency (JAXA) have entered into a cooperative agreement for the formulation and development of GPM. This agreement is a continuation of the partnership that developed the highly successful Tropical Rainfall Measuring Mission (TRMM) that was launched in November 1997; this mission continues to provide valuable scientific and meteorological information on rainfall and the associated processes. International collaboration on GPM from other space agencies has been solicited, and discussions regarding their participation are currently in progress. NASA has taken lead responsibility for the planning and formulation of GPM. Key elements of the Program to be provided by NASA include a Core satellite instrumented with a multi-channel microwave radiometer, a Ground Validation System and a ground-based Precipitation Processing System (PPS). JAXA will provide a Dual-frequency Precipitation Radar for installation on the Core satellite and launch services. Other United States agencies and international partners may participate in a number of ways, such as providing rainfall measurements obtained from their own national space-borne platforms, providing local rainfall measurements to support the ground validation activities, or providing hardware or launch services for GPM constellation spacecraft.

  17. Review of TRMM/GPM Rainfall Algorithm Validation

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2004-01-01

    A review is presented concerning current progress on evaluation and validation of standard Tropical Rainfall Measuring Mission (TRMM) precipitation retrieval algorithms and the prospects for implementing an improved validation research program for the next generation Global Precipitation Measurement (GPM) Mission. All standard TRMM algorithms are physical in design, and are thus based on fundamental principles of microwave radiative transfer and its interaction with semi-detailed cloud microphysical constituents. They are evaluated for consistency and degree of equivalence with one another, as well as intercompared to radar-retrieved rainfall at TRMM's four main ground validation sites. Similarities and differences are interpreted in the context of the radiative and microphysical assumptions underpinning the algorithms. Results indicate that the current accuracies of the TRMM Version 6 algorithms are approximately 15% at zonal-averaged / monthly scales with precisions of approximately 25% for full resolution / instantaneous rain rate estimates (i.e., level 2 retrievals). Strengths and weaknesses of the TRMM validation approach are summarized. Because the dew of convergence of level 2 TRMM algorithms is being used as a guide for setting validation requirements for the GPM mission, it is important that the GPM algorithm validation program be improved to ensure concomitant improvement in the standard GPM retrieval algorithms. An overview of the GPM Mission's validation plan is provided including a description of a new type of physical validation model using an analytic 3-dimensional radiative transfer model.

  18. Supporting the Use of GPM-GV Field Campaign Data Beyond Project Scientists

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Smith, D. K.; Sinclair, L.; Bugbee, K.

    2017-12-01

    The Global Precipitation Measurement (GPM) Mission Ground Validation (GV) consisted of a collection of field campaigns at various locations focusing on particular aspects of precipitation. Data collected during the GPM-GV are necessary for better understanding the instruments and algorithms used to monitor water resources, study the global hydrologic cycle, understand climate variability, and improve weather prediction. The GPM-GV field campaign data have been archived at the NASA Global Hydrology Resource Center (GHRC) Distributed Achive Archive Center (DAAC). These data consist of a heterogeneous collection of observations that require careful handling, full descriptive user guides, and helpful instructions for data use. These actions are part of the data archival process. In addition, the GHRC focuses on expanding the use of GPM-GV data beyond the validation and instrument researchers that participated in the field campaigns. To accomplish this, GHRC ties together the similarities and differences between the various field campaigns with the goal of improving user documents to be more easily read by those outside the field of research. In this poster, the authors will describe the GPM-GV datasets, discuss data use among the broader community, outline the types of problems/issues with these datasets, demonstrate what tools support data visualization and use, and highlight the outreach materials developed to educate both younger and general audiences about the data.

  19. Integrated Science Assessment (ISA) for Oxides of Nitrogen, Oxides of Sulfur and Particulate Matter - Ecological Criteria (First External Review Draft, Mar 2017)

    EPA Science Inventory

    This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision on retaining or revising the current secondary standards for NO2, SO2, PM 2.5 and PM 10 since the prior re...

  20. Comparison of Imerg Half Hourly Final GPM data with Rain Gauge for Riyadh City, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Tekeli, E.; Dönmez, S.

    2016-12-01

    Being launched in 1997 with the main goal of measuring moderate to heavy rainfall, TRMM enabled invaluable service to remote sensing and hydrology community with data more than 17 years. Based on TRMM experience, GPM was launched in 2014. GPM with increased radar sensitivity and higher spatial resolutions, is expected to enable better light rain and snowfall detection. In here, light rainfall detection capacity of IMERG Half hourly final GPM (IFHH) product is investigated for Riyadh City in Kingdom of Saudi Arabia. A tipping bucket rain gauge located on the roof of King Saud University Civil Engineering Department provided rainfall measurements in 10 minute intervals from 22 November 2014 till 11 Jun 2015. Obtained rain gauge data indicated 72 light rain (rain rate [rr] ≤2.5mm/h) 5 medium rain (2.5mm/hPreliminary results indicate that IFHH overestimate most of the light rain. For the medium and heavy rain rates, IFHH showed under estimations. As one of the major goals of GPM is accurate light rain detection, similar studies should be continued and databases should be formed.

  1. National Climate Assessment

    NASA Image and Video Library

    2014-05-06

    NASA Earth Science Division Director Michael Freilich shows meteorologists an AERONET sun photometer, right, and a model of the Global Precipitation Measurement (GPM) Core Observatory during a media event for the release of the Third U.S. National Climate Assessment, South Lawn of the White House in Washington, Tuesday, May 6, 2014. NASA Earth-observing satellite observations and analysis by the NASA-supported research community underlie many of the findings in the new climate change assessment. Photo Credit: (NASA/Bill Ingalls)

  2. NASA GPM GV Science Requirements

    NASA Technical Reports Server (NTRS)

    Smith, E.

    2003-01-01

    An important scientific objective of the NASA portion of the GPM Mission is to generate quantitatively-based error characterization information along with the rainrate retrievals emanating from the GPM constellation of satellites. These data must serve four main purposes: (1) they must be of sufficient quality, uniformity, and timeliness to govern the observation weighting schemes used in the data assimilation modules of numerical weather prediction models; (2) they must extend over that portion of the globe accessible by the GPM core satellite to which the NASA GV program is focused - (approx.65 degree inclination); (3) they must have sufficient specificity to enable detection of physically-formulated microphysical and meteorological weaknesses in the standard physical level 2 rainrate algorithms to be used in the GPM Precipitation Processing System (PPS), i.e., algorithms which will have evolved from the TRMM standard physical level 2 algorithms; and (4) they must support the use of physical error modeling as a primary validation tool and as the eventual replacement of the conventional GV approach of statistically intercomparing surface rainrates fiom ground and satellite measurements. This approach to ground validation research represents a paradigm shift vis-&-vis the program developed for the TRMM mission, which conducted ground validation largely as a statistical intercomparison process between raingauge-derived or radar-derived rainrates and the TRMM satellite rainrate retrievals -- long after the original satellite retrievals were archived. This approach has been able to quantify averaged rainrate differences between the satellite algorithms and the ground instruments, but has not been able to explain causes of algorithm failures or produce error information directly compatible with the cost functions of data assimilation schemes. These schemes require periodic and near-realtime bias uncertainty (i.e., global space-time distributed conditional accuracy of the retrieved rainrates) and local error covariance structure (i.e., global space-time distributed error correlation information for the local 4-dimensional space-time domain -- or in simpler terms, the matrix form of precision error). This can only be accomplished by establishing a network of high quality-heavily instrumented supersites selectively distributed at a few oceanic, continental, and coastal sites. Economics and pragmatics dictate that the network must be made up of a relatively small number of sites (6-8) created through international cooperation. This presentation will address some of the details of the methodology behind the error characterization approach, some proposed solutions for expanding site-developed error properties to regional scales, a data processing and communications concept that would enable rapid implementation of algorithm improvement by the algorithm developers, and the likely available options for developing the supersite network.

  3. Current Development of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects, particularly those based on use of passive microwave radiometer measurements, have paved the way for a more advanced global precipitation mission. The new mission is motivated by a number of scientific questions that TRMM research has posed over a range of space-time scales and within a variety of scientific disciplines that are becoming more integrated into earth system science modeling. Added to this success is the realization that satellite rainfall datasets are now a foremost tool in understanding global climate variability out to decadal scales and beyond. This progress has motivated a comprehensive global measuring strategy -- leading to the "Global Precipitation Mission" (GPM). GPM is planning to expand the scope of rainfall measurement through use of a satellite constellation. The intent is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction & prediction of fresh water resources, the global carbon budget, and biogeochemical cycles. This talk overviews the status and scientific agenda of this mission currently planned for launch in the 2007-2008 time frame. The GPM notional design involves a 10-member satellite constellation, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band radar (DFPR) and a TMI-like radiometer. The other nine members of the constellation will be considered daughters of the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range -- likely to include a combination of lightweight satellites and co-existing operational/experimental satellites carrying passive microwave radiometers (i.e., 2 DMSP/SSMISs, GCOM-B1/AMSR-J, & Megha Tropiques/MADRAS). The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non- sun-synchronous daughter satellites, with the core satellite providing relevant measurements on internal cloud-precipitation microphysical processes plus "training-calibrating" information to be used with the retrieval algorithms for the daughter satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community nations). The mission is expected to involve additional international participants, sister agencies to the mainstream space agencies, and a diverse collection scientists from academia, government, and the private sector.

  4. Error and Uncertainty Quantification in Precipitation Retrievals from GPM/DPR Using Ground-based Dual-Polarization Radar Observations

    NASA Astrophysics Data System (ADS)

    Chandra, Chandrasekar V.; Chen*, Haonan; Petersen, Walter

    2017-04-01

    The active Dual-frequency Precipitation Radar (DPR) and passive radiometer onboard Global Precipitation Measurement (GPM) mission's Core Observatory extend the observation range attained by Tropical Rainfall Measuring Mission (TRMM) from tropical to most of the globe [1]. Through improved measurements of precipitation, the GPM mission is helping to advance our understanding of Earth's water and energy cycle, as well as climate changes. Ground Validation (GV) is an indispensable part of the GPM satellite mission. In the pre-launch era, several international validation experiments had already generated a substantial dataset that could be used to develop and test the pre-launch GPM algorithms. After launch, more ground validation field campaigns were conducted to further evaluate GPM precipitation data products as well as the sensitivities of retrieval algorithms. Among various validation equipment, ground based dual-polarization radar has shown great advantages to conduct precipitation estimation over a wide area in a relatively short time span. Therefore, radar is always a key component in all the validation field experiments. In addition, the radar polarization diversity has great potential to characterize precipitation microphysics through the identification of raindrop size distribution and different hydrometeor types [2]. Currently, all the radar sites comprising the U.S. National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88DP) network are operating in dual-polarization mode. However, most of the operational radar based precipitation products are produced at coarse resolution typically on 1 km by 1 km spatial grids, focusing on precipitation accumulations at temporal scales of 1-h, 3-h, 6-h, 12-h, and/or 24-h (daily). Their capability for instantaneous GPM product validation is severely limited due to the spatial and temporal mismatching between observations from the ground and space. This paper first presents the rationale and opportunities of using dual-polarization radar in validation of precipitation retrievals from GPM/DPR. A new dual-polarization radar rainfall algorithm is proposed on this ground and implemented for WSR-88DP radar observations, especially when there are GPM satellite overpasses. In addition, an interpolation scheme is developed in order to map the WSR-88DP radar rainfall estimates that are updated every five-six minutes into instantaneous scale ( 1 minute). Detailed comparisons between instantaneous precipitation retrievals from GPM/DPR and WSR-88DP estimates before and after interpolation are investigated from a statistical perspective. [1] Hou, A., R. Kakar, S. Neeck, and Coauthors, 2014: The Global Precipitation Measurement Mission. Bull. Amer. Meteor. Soc., 95, 701-722. [2] Chen, Haonan, V. Chandrasekar, and R. Bechini, 2017: An Improved Dual-Polarization Radar Rainfall Algorithm (DROPS2.0): Application in NASA IFloodS Field Campaign. Journal of Hydrometeorology. doi:10.1175/JHM-D-16-0124.1

  5. 75 FR 31433 - Science Advisory Board Staff Office; Notification of a Public Meeting of the SAB Lead Review Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... Lead Review Panel to provide a consultation on EPA's draft technical analyses that will be used to...-to-face meeting to provide a consultation on EPA's draft technical analyses that will be used to... buildings. In the future, EPA will also develop draft technical analyses to support the development of lead...

  6. 75 FR 65480 - Science Advisory Board Staff Office; Notification of Two Public Teleconferences of the Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... Quality Standards for NOX and SOX: Second External Review Draft (September 2010) and a teleconference for... the Secondary National Ambient Air Quality Standards for NO X and SO X : Second External Review Draft... External Review Draft (September 2010) should be directed to Dr. Byran Hubbell, OAR, at (919) 541-0621 or...

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A full size model of an H-II rocket is seen at the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) visitors center a week ahead of the planned launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A surfer navigates the waters in front of the Tanegashima Space Center (TNSC) launch pads on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A rocket is seen at the entrance to the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A roadside sign announces the upcoming launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Saturday, Feb. 22, 2014, Minamitane Town, Tanegashima Island, Japan. Once launched from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC) the NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  11. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A jogger runs past a sign welcoming NASA and other visitors to Minamitane Town on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Space themed signs are seen along the roads to and from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), Saturday, Feb. 22, 2014, Tanegashima Island, Japan. A launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014 from the space center. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Evaluation of 95 gpm Inductors for Aqueous Film Forming Foam,

    DTIC Science & Technology

    1984-04-30

    AQUEOUS FILM FORMING FOAM BACKGROUND/INTRODUCTION Early History The use of Aqueous Film Forming Foam ( AFFF ...vadIdniybybok46141 SECURITY CLASSIFICATION~ OF THIS PAGE 11. TITL (Include Secuit Cuaif~los) EVALUATION 0F795 GPM INDUCTORS FOR AQUEOUS FILM FORMING ...AD-A141 242 EVALUATION OF 95 GPM INDUCORG SEOR AQUEOUS FIL FORMING 1/GAM U) HUGHES ASSOCI A F S NC KEN S INO ON M0AD A14 24 RN GIE ETAL 3 00PR

  14. The Value of Supplementing Science Education with Outdoor Instruction for Sixth Grade Students

    NASA Astrophysics Data System (ADS)

    Jackson, Devin Joseph Guilford

    Science education is moving away from memorization of facts to inquiry based learning. Adding outdoor instruction can be an effective way to promote this exploratory method of learning. The limited number of empirical studies available have shown significant increase in attitudes and learning with outdoor science instruction. An eight-week quasi-experimental teacher research study was conducted to further this research and assess the value of schoolyard science instruction on student engagement and learning. Participants were 60 students in two sixth grade middle school Earth Science classes. A crossover study design was used with two classes alternating as experimental and control groups. NASA Global Precipitation Measurement mission curriculum was used (NASA/GPM, 2011). While the results did not show a clear increase in student engagement and content knowledge, the study adds to the body of knowledge on outdoor instruction and identifies limitations to consider in future studies.

  15. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    EPA Pesticide Factsheets

    EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding whether the current standard for SO2 sufficiently protects public health. Sulfur oxides is one of six principal (or “criteria”) pollutants for which EPA has established national ambient air quality standards (NAAQS).

  16. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    EPA Pesticide Factsheets

    EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria has been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding whether the current standard for SO2 sufficiently protects public health. Sulfur oxides is one of six principal (or “criteria”) pollutants for which EPA has established national ambient air quality standards (NAAQS).

  17. Global Precipitation Measurement (GPM) Ground Validation: Plans and Preparations

    NASA Technical Reports Server (NTRS)

    Schwaller, M.; Bidwell, S.; Durning, F. J.; Smith, E.

    2004-01-01

    The Global Precipitation Measurement (GPM) program is an international partnership led by the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM will improve climate, weather, and hydro-meteorological forecasts through more frequent and more accurate measurement of precipitation across the globe. This paper describes the concept, the planning, and the preparations for Ground Validation within the GPM program. Ground Validation (GV) plays an important role in the program by investigating and quantitatively assessing the errors within the satellite retrievals. These quantitative estimates of retrieval errors will assist the scientific community by bounding the errors within their research products. The two fundamental requirements of the GPM Ground Validation program are: (1) error characterization of the precipitation retrievals and (2) continual improvement of the satellite retrieval algorithms. These two driving requirements determine the measurements, instrumentation, and location for ground observations. This paper outlines GV plans for estimating the systematic and random components of retrieval error and for characterizing the spatial p d temporal structure of the error and plans for algorithm improvement in which error models are developed and experimentally explored to uncover the physical causes of errors within the retrievals. This paper discusses NASA locations for GV measurements as well as anticipated locations from international GPM partners. NASA's primary locations for validation measurements are an oceanic site at Kwajalein Atoll in the Republic of the Marshall Islands and a continental site in north-central Oklahoma at the U.S. Department of Energy's Atmospheric Radiation Measurement Program site.

  18. Ocean research plan reviewed

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    A draft plan setting out priorities for U.S. ocean research generally was lauded for its clear and well-articulated view in a recent report from a committee of the U.S. National Research Council (NRC) of the US. National Academies. However, the committee advised that the plan would benefit from a bold vision for the future of ocean science research, additional details, and a reorganization to include cross-cutting research.The draft "Charting the Course for Ocean Science in the United States: Research Priorities for the Next Decade" was made available for public comment in September 2006 by the U.S. National Science and Technology Council's Joint Subcommittee on Ocean Science and Technology.

  19. 75 FR 6030 - EPA Science Advisory Board Staff Office Request for Nominations of Experts for the SAB Lead (Pb...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... requesting public nominations of experts to form an SAB Ad Hoc Panel to review EPA's draft technical analyses... residential dust. OPPT is developing draft technical analyses that will be used to support: (a) Possible... that the SAB conduct a review of these draft technical analyses. The SAB was established by 42 U.S.C...

  20. Space and Missile Defense Acquisitions: Periodic Assessment Needed to Correct Parts Quality Problems in Major Programs

    DTIC Science & Technology

    2011-06-01

    understanding of the global water cycle and the accuracy of precipitation forecasts. GPM is composed of a core spacecraft carrying two main instruments: a dual...developed by NASA and the Space Agency of Argentina (Comisión Nacional de Actividades Espaciales) to investigate the links between the global water ... cycle , ocean circulation, and the climate. It will measure global sea surface salinity. The Aquarius science goals are to observe and model the

  1. SPECIAL SESSION: (H21) on Global Precipitation Mission for Hydrology and Hydrometeorology. Sampling-Error Considerations for GPM-Era Rainfall Products

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The proposed Global Precipitation Mission (GPM) builds on the success of the Tropical Rainfall Measuring Mission (TRMM), offering a constellation of microwave-sensor-equipped smaller satellites in addition to a larger, multiply-instrumented "mother" satellite that will include an improved precipitation radar system to which the precipitation estimates of the smaller satellites can be tuned. Coverage by the satellites will be nearly global rather than being confined as TRMM was to lower latitudes. It is hoped that the satellite constellation can provide observations at most places on the earth at least once every three hours, though practical considerations may force some compromises. The GPM system offers the possibility of providing precipitation maps with much better time resolution than the monthly averages around which TRMM was planned, and therefore opens up new possibilities for hydrology and data assimilation into models. In this talk, methods that were developed for estimating sampling error in the rainfall averages that TRMM is providing will be used to estimate sampling error levels for GPM-era configurations. Possible impacts on GPM products of compromises in the sampling frequency will be discussed.

  2. Global Precipitation Measurement. Report 1; Summary of the First GPM Partners Planning Workshop

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Mehta, Amita; Smith, Eric A. (Editor); Adams, W. James (Editor)

    2002-01-01

    This report provides a synopsis of the proceedings of the First Global Precipitation Measurement (GPM) Partners Planning Workshop held at the University of Maryland, College Park, from May 16 to 18, 2001. GPM consists of a multi-member global satellite constellation (i.e., an international set of satellite missions) and the accompanying scientific research program, with the main goal of providing frequent, accurate, and globally distributed precipitation measurements essential in understanding several fundamental issues associated with the global water and energy cycle (GWEC). The exchange of scientific and technical information at this and subsequent GPM workshops between representatives from around the world represents a key step in the formulation phase of GPM mission development. The U.S. National Aeronautics and Space Agency (NASA), the National Space Development Agency of Japan (NASDA), and other interested agencies from nations around the world seek to observe, understand, and model the Earth system to learn how it is changing and what consequences these changes have on life, particularly as they pertain to hydrological processes and the availability of fresh water resources. GWEN processes are central to a broader understanding of the Earth system.

  3. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  4. Improving Access to Precipitation Data for GIS Users: Designing for Ease of Use

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Kelley, Owen A.

    2007-01-01

    The Global Precipitation Measurement Mission (GPM) is a NASA/JAXA led international mission to configure a constellation of space-based radiometers to monitor precipitation over the globe. The GPM goal of making global 3-hour precipitation products available in near real-time will make such global products more useful to a broader community of modelers and Geographic Information Systems (GIS) users than is currently the case with remote sensed precipitation products. Based on the existing interest to make Tropical Rainfall Measuring Mission (TRMM) data available to a growing community of GIS users as well as what will certainly be an expanded community during the GPM era, it is clear that data systems must make a greater effort to provide data in formats easily used by GIS. We describe precipitation GIS products being developed for TRMM data. These products will serve as prototypes for production efforts during the GPM era. We describe efforts to convert TRMM precipitation data to GeoTIFF, Shapefile, and ASCII grid. Clearly, our goal is to format GPM data so that it can be easily used within GIS applications. We desire feedback on these efforts and any additions or direction changes that should be undertaken by the data system.

  5. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  6. IRIS Toxicological Review of Urea (Interagency Science ...

    EPA Pesticide Factsheets

    EPA is releasing the draft report, Toxicological Review of Urea,, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. The draft Toxicological Review of Urea provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to Urea.

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Shrubs and flowers in the shape of a space shuttle, star and planet are seen just outside the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A car drives on the twisty roads that hug the coast line of the Tanegashima Space Center (TNSC) on Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Envelopes with stamps depicting various space missions are shown at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-21

    A sign at an overlook, named Rocket Hill, helps viewers identify the various facilities of the Tanegashima Space Center (TNSC), including launch pad 1 that will be used Feb. 28, 2014 for the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory, Friday, Feb. 21, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  11. The 5000 GPM firefighting module evaluation test

    NASA Technical Reports Server (NTRS)

    Burns, Ralph A.

    1986-01-01

    The 5000 GPM Firefighting Module development was sponsored and shared by the Navy Facilities Engineering Command. It is a lightweight, compact, self-contained, helicopter-transportable unit for fighting harbor and other specialty fires as well as for use in emergency and shipboard water pumping applications. This unit is a more advanced model of the original 1500 GPM module developed for the U.S. Coast Guard. The module and an evaluation test program conducted at the North Island Naval Air Station, San Diego, California, by NASA and the U.S. Navy, are described.

  12. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A small roadside park honoring spaceflight is seen in Minamitane Town, Saturday Feb. 22, 2014, Tanegashima Island, Japan. Minamitane Town is located not far from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is planned for Feb. 28, 2014. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  13. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    A building designed to look like a space shuttle is seen a few kilometers outside of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  14. Science Goals of the U.S. Department of the Interior Southeast Climate Science Center

    USGS Publications Warehouse

    Dalton, Melinda S.

    2011-01-01

    In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.

  15. Improving Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Hossain, Faisal; Katiyar, Nitin

    2006-01-01

    In flood-prone international river basins (IRBs), many riparian nations that are located close to a basin's outlet face a major problem in effectively forecasting flooding because they are unable to assimilate in situ rainfall data in real time across geopolitical boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission, which is expected to begin in 2010, will comprise high-resolution passive microwave (PM) sensors (at resolution ~3-6 hours, 10 × 10 square kilometers) that may provide new opportunities to improve flood forecasting in these river basins. Research is now needed to realize the potential of GPM. With adequate research in the coming years, it may be possible to identify the specific IRBs that would benefit cost-effectively from a preprogrammed satellite-based forecasting system in anticipation of GPM. Acceleration of such a research initiative is worthwhile because it could reduce the risk of the cancellation of GPM [see Zielinski, 2005].

  16. Version 4 IMERG: Investigating Runs and High Latitudes

    NASA Astrophysics Data System (ADS)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K. L.; Joyce, R.; Kidd, C.; Nelkin, E. J.; Sorooshian, S.; Tan, J.; Xie, P.

    2016-12-01

    The Integrated Multi-satellitE Retrievals for GPM (IMERG) merged precipitation product is being computed by the U.S. Global Precipitation Measurement mission (GPM) science team, based on intercalibrated estimates from the international constellation of precipitation-relevant satellites and other data. Recently, GPM upgraded the precipitation retrieval algorithms applied to individual sensors, and following that, IMERG was upgraded to Version 4. These data sets are computed at the half hour, 0.1° x 0.1° resolution over the latitude belt 60°N-S. Various latency requirements for different users are accommodated by computing IMERG in three "Runs" - Early, Late, and Final (5 hours, 15 hours, and 2.5 months after observation time, respectively). The near-real-time Early and Late Runs and the research-quality Final Run incorporate increasing amounts of data; examples will highlight the contribution that additional data make for each Run. From Early to Late, the addition of backward propagated data in the Late allows temporally weighted interpolation of forward and backward propagated precipitation, rather than the forward-only extrapolation in the Early. From Late to Final, the major addition is the direct use of monthly precipitation gauge analysis (the Global Precipitation Climatology Centre's Monitoring Analysis), which mitigates the satellite biases over land for the Early and Late. In addition, the new capabilities of the input algorithms at higher latitudes will be discussed, both during the snow season and the summer rain season. These inputs have a dominant role in determining the utility of IMERG in all seasons. Rainfall over non-frozen surface is reasonably well represented, while precipitation over frozen surfaces is still a topic of active research.

  17. GPM Mission, its Scientific Agenda, and its Ground Validation Program

    NASA Technical Reports Server (NTRS)

    Smith Eric A.

    2004-01-01

    The GPM mission is currently planned for start in the late 2010 time frame. From the perspective of NASA s Earth Science Enterprise (ESE) and within the framework of ESE's global water and energy cycle (GWEC) research program, its main scientific goal is to help answer pressing scientific problems concerning how global and regional water cycle processes and precipitation fluctuations and trends influence the variability intrinsic to climate, weather, and hydrology. These problems cut across a hierarchy of space-time scales and include improving understanding of climate-water cycle interactions, developing better techniques for incorporating satellite precipitation measurements into weather and climate predictions, and demonstrating that more accurate, more complete, and better sampled observations of precipitation and other water budget variables used as inputs can improve the ability of prognostic hydrometeorological models in the prediction of hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource stores. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar (DPR) and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination (GMI). The other constellation members will include a combination of new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of calibration-quality rainrates, plus cloud-precipitation microphysical processes, to be used in conjunction with more basic rain retrievals from the other constellation satellites to ensure bias-free constellation coverage.

  18. IRIS Public Science Meeting (June 2016)

    EPA Pesticide Factsheets

    This June 2016 public meeting is made available to solicit comments on the public comment draft of the IRIS Assessment of tert-Butanol. The draft document was re-opened in the docket for a 60-day public comment period closing on July 16, 2016.

  19. 75 FR 2154 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ..., Office of the Assistant Secretary-- Water and Science. ACTION: Notice of Availability, Draft Environmental Assessment (Draft EA), Wasatch County Water Efficiency Project Recycled Water Project. SUMMARY... of the Interior and the Central Utah Water Conservancy District are evaluating the impacts of the...

  20. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for Cubesat Deployments

    NASA Technical Reports Server (NTRS)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  1. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  2. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-26

    Chief officers from Mitsubishi Heavy Industries, Ltd., the Japan Aerospace Exploration Agency (JAXA) and NASA met on Wednesday, Feb. 26, 2014 in the Range Control Center (RCC) of the Tanegashima Space Center, Japan, to review the readiness of the Global Precipitation Measurement (GPM) Core Observatory for launch. The spacecraft is scheduled to launch aboard an H-IIA rocket early on the morning of Feb. 28 Japan time. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  3. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A sign with a model of the Japanese H-IIB rocket welcomes visitors to Minamitane Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  4. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Tourist photograph themselves in astronaut space suites next to a cardboard cutout of Japan Aerospace Exploration Agency (JAXA) Astronaut Akihiko Hoshide at the visitor's center of the Tanegashima Space Center (TNSC), Sunday, Feb. 23, 2014, Tanegashima Island, Japan. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  5. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    A roadside sign shows visitors of Minamitane Town various locations for activities, including the viewing of rocket launches from the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory is scheduled to take place in the next week, Saturday, Feb. 22, 2014, Minamitane Town, Tanegashima Island, Japan. The NASA-JAXA GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  6. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Bouvier Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, center, tours the Tanegashima Space Center, Visitors Center with Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, right, on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  7. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-27

    Caroline Kennedy, U.S. Ambassador Extraordinary and Plenipotentiary to Japan, right, is welcomed by Japan Aerospace Exploration Agency (JAXA), President, Naoki Okumura, at the Tanegashima Space Center Visitors Center on Thursday, Feb. 27, 2014, Tanegashima, Japan. The Ambassador is visiting the space center and hopes to witness the planned launch of a Japanese H-IIA rocket carrying the NASA-JAXA, Global Precipitation Measurement (GPM) Core Observatory. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  8. Summary groundwater resources of Centre County, Pennsylvania

    USGS Publications Warehouse

    Wood, Charles R.

    1980-01-01

    The northwest third of Centre County lies in the Appalachian Plateaus physiographic province. The higher altitudes are underlain by the Conemaugh, Allegheny, and Pottsville Groups, which consist of sandstone, shale, and thin limestone and coal beds. The average yield of nondomestic wells in the Allegheny Group is 20 gpm (gallons per minute) and that in the Pottsville Group 100 gpm. Water from wells in these groups commonly has a high concentration of iron. Most of the rest of the Appalachian Plateaus province is underlain by the Burgoon Sandstone. The Burgoon yields soft water, and the average yield of nondomestic wells is 70 gpm.

  9. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure

    PubMed Central

    Fillingham, Melanie; Singh, Jessica; Burtt, Stephen; Crolla, Anna; Kinsley, Chris; MacDonald, J. Douglas

    2017-01-01

    Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N) loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM) were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE) GPM was used to (1) characterize the effect of total ammonium nitrogen (TAN) concentration, temperature, and pH on the ammonia capture rate using GPM, and (2) to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 and 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment. PMID:28991162

  10. Bridging Ground Validation and Algorithms: Using Scattering and Integral Tables to Incorporate Observed DSD Correlations into Satellite Algorithms

    NASA Astrophysics Data System (ADS)

    Williams, C. R.

    2012-12-01

    The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V-polarization at the instrument view angles of nadir to 17 degrees (for DPR) and 48 & 53 degrees off nadir (for GMI). The GPM DSD Working Group is generating integral tables with GV observed DSD correlations and is performing sensitivity and verification tests. One advantage of keeping scattering tables separate from integral tables is that research can progress on the electromagnetic scattering of particles independent of cloud microphysics research. Another advantage of keeping the tables separate is that multiple scattering tables will be needed for frozen precipitation. Scattering tables are being developed for individual frozen particles based on habit, density and operating frequency. And a third advantage of keeping scattering and integral tables separate is that this framework provides an opportunity to communicate GV findings about DSD correlations into integral tables, and thus, into satellite algorithms.

  11. Precipitation Estimation Using Combined Radar/Radiometer Measurements Within the GPM Framework

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. The GPM mission centers upon the deployment of a Core Observatory in a 65o non-Sun-synchronous orbit to serve as a physics observatory and a transfer standard for intersatellite calibration of constellation radiometers. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles needed for improving precipitation retrievals from microwave sensors. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha- Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), and (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites. Data from Chinese and Russian microwave radiometers may also become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide next-generation precipitation products characterized by: (1) more accurate instantaneous precipitation estimate (especially for light rain and cold-season solid precipitation), (2) intercalibrated microwave brightness temperatures from constellation radiometers within a consistent framework, and (3) unified precipitation retrievals from constellation radiometers using a common a priori hydrometeor database constrained by combined radar/radiometer measurements provided by the GPM Core Observatory.

  12. IRIS Toxicological Review of Biphenyl (Interagency Science Consultation Draft)

    EPA Science Inventory

    On September 30, 2011, the draft Toxicological Review of Biphenyl and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House...

  13. Effects of Climate Change on Aquatic Invasive Species and ...

    EPA Pesticide Factsheets

    This draft report reviews available literature on climate change effects on aquatic invasive species (AIS) and examines state level AIS management activities. This draft report assesses the state of the science of climate change effects on AIS and examines state level AIS management activities.

  14. IRIS Toxicological Review of Acrylonitrile (Interagency Science Consultation Draft)

    EPA Science Inventory

    On June 30, 2011, the draft Toxicological Review of Acrylonitrile and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House...

  15. Activities in GPM Education and Public Outreach

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia

    2011-01-01

    This presentation will discuss the diverse and exciting activities planned for the GPM mission. I will present of our Education and Public Outreach (E/PO) strategy and will then outline our plans for some of the unique initiatives we are developing through this effort.

  16. IRIS Toxicological Review for Carbon Tetrachloride ...

    EPA Pesticide Factsheets

    EPA released the draft report,Toxicological Review for Carbon Tetrachloride(Interagency Science Discussion Draft), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of carbon tetrachloride that will appear on the Integrated Risk Information System (IRIS) database.

  17. 76 FR 50759 - National Science Board; Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... NATIONAL SCIENCE FOUNDATION National Science Board; Sunshine Act Meeting The National Science Board's Task Force on Merit Review, pursuant to NSF regulations (45 CFR Part 614), the National Science....T. SUBJECT MATTER: Discussion of proposed revisions to the draft principles and review criteria...

  18. A Vertical Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data

    NASA Astrophysics Data System (ADS)

    Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.

    2017-12-01

    Characterization of the vertical structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution vertical profiles of radar observations (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter profiles and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved profiles provide an excellent tool for characterization of the vertical profile structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the vertical structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized intercept parameter of the gamma drop size distribution.

  19. GPM Timeline Inhibits For IT Processing

    NASA Technical Reports Server (NTRS)

    Dion, Shirley K.

    2014-01-01

    The Safety Inhibit Timeline Tool was created as one approach to capturing and understanding inhibits and controls from IT through launch. Global Precipitation Measurement (GPM) Mission, which launched from Japan in March 2014, was a joint mission under a partnership between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA). GPM was one of the first NASA Goddard in-house programs that extensively used software controls. Using this tool during the GPM buildup allowed a thorough review of inhibit and safety critical software design for hazardous subsystems such as the high gain antenna boom, solar array, and instrument deployments, transmitter turn-on, propulsion system release, and instrument radar turn-on. The GPM safety team developed a methodology to document software safety as part of the standard hazard report. As a result of this process, a new tool safety inhibit timeline was created for management of inhibits and their controls during spacecraft buildup and testing during IT at GSFC and at the launch range in Japan. The Safety Inhibit Timeline Tool was a pathfinder approach for reviewing software that controls the electrical inhibits. The Safety Inhibit Timeline Tool strengthens the Safety Analysts understanding of the removal of inhibits during the IT process with safety critical software. With this tool, the Safety Analyst can confirm proper safe configuration of a spacecraft during each IT test, track inhibit and software configuration changes, and assess software criticality. In addition to understanding inhibits and controls during IT, the tool allows the Safety Analyst to better communicate to engineers and management the changes in inhibit states with each phase of hardware and software testing and the impact of safety risks. Lessons learned from participating in the GPM campaign at NASA and JAXA will be discussed during this session.

  20. GPM and TRMM Radar Vertical Profiles and Impact on Large-scale Variations of Surface Rain

    NASA Astrophysics Data System (ADS)

    Wang, J. J.; Adler, R. F.

    2017-12-01

    Previous studies by the authors using Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) data have shown that TRMM Precipitation Radar (PR) and GPM Dual-Frequency Precipitation Radar (DPR) surface rain estimates do not have corresponding amplitudes of inter-annual variations over the tropical oceans as do passive microwave observations by TRMM Microwave Imager (TMI) and GPM Microwave Imager (GMI). This includes differences in surface temperature-rainfall variations. We re-investigate these relations with the new GPM Version 5 data with an emphasis on understanding these differences with respect to the DPR vertical profiles of reflectivity and rainfall and the associated convective and stratiform proportions. For the inter-annual variation of ocean rainfall from both passive microwave (TMI and GMI) and active microwave (PR and DPR) estimates, it is found that for stratiform rainfall both TMI-PR and GMI-DPR show very good correlation. However, the correlation of GMI-DPR is much higher than TMI-PR in convective rainfall. The analysis of vertical profile of PR and DPR rainfall during the TRMM and GPM overlap period (March-August, 2014) reveals that PR and DPR have about the same rainrate at 4km and above, but PR rainrate is more than 10% lower that of DPR at the surface. In other words, it seems that convective rainfall is better defined with DPR near surface. However, even though the DPR results agree better with the passive microwave results, there still is a significant difference, which may be a result of DPR retrieval error, or inherent passive/active retrieval differences. Monthly and instantaneous GMI and DPR data need to be analyzed in details to better understand the differences.

  1. Sequence variations and protein expression levels of the two immune evasion proteins Gpm1 and Pra1 influence virulence of clinical Candida albicans isolates.

    PubMed

    Luo, Shanshan; Hipler, Uta-Christina; Münzberg, Christin; Skerka, Christine; Zipfel, Peter F

    2015-01-01

    Candida albicans, the important human fungal pathogen uses multiple evasion strategies to control, modulate and inhibit host complement and innate immune attack. Clinical C. albicans strains vary in pathogenicity and in serum resistance, in this work we analyzed sequence polymorphisms and variations in the expression levels of two central fungal complement evasion proteins, Gpm1 (phosphoglycerate mutase 1) and Pra1 (pH-regulated antigen 1) in thirteen clinical C. albicans isolates. Four nucleotide (nt) exchanges, all representing synonymous exchanges, were identified within the 747-nt long GPM1 gene. For the 900-nt long PRA1 gene, sixteen nucleotide exchanges were identified, which represented synonymous, as well as non-synonymous exchanges. All thirteen clinical isolates had a homozygous exchange (A to G) at position 73 of the PRA1 gene. Surface levels of Gpm1 varied by 8.2, and Pra1 levels by 3.3 fold in thirteen tested isolates and these differences influenced fungal immune fitness. The high Gpm1/Pra1 expressing candida strains bound the three human immune regulators more efficiently, than the low expression strains. The difference was 44% for Factor H binding, 51% for C4BP binding and 23% for plasminogen binding. This higher Gpm1/Pra1 expressing strains result in enhanced survival upon challenge with complement active, Factor H depleted human serum (difference 40%). In addition adhesion to and infection of human endothelial cells was increased (difference 60%), and C3b surface deposition was less effective (difference 27%). Thus, variable expression levels of central immune evasion protein influences immune fitness of the human fungal pathogen C. albicans and thus contribute to fungal virulence.

  2. Towards the Development of a Global Precipitation Measurement (GPM) Mission Concept

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study - Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-2008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-su n -synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia, government, and the private sector.

  3. A Process for Producing Highly Wettable Aluminum 6061 Surfaces Compatible with Hydrazine

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Ferraro, N. W.; Yue, A. F.; Estes, R. H.

    2007-01-01

    NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. The space-based portion of the mission architecture consists of a primary or core spacecraft and a constellation of NASA and contributed spacecrafts. The efforts described in this paper refer to the core spacecraft (hereafter referred to as simply GPM) which is to be fabricated at GSFC. It has been decided that the GPM spacecraft is to be a "design-for-demise-spacecraft." This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. Composite overwrapped aluminum lined propellant tanks with aluminum propellant management devices (PMD) were shown by analyses to demise and thus became the baseline configuration for GPM. As part of the GPM tank development effort, long term compatibility and wettability testing with hydrazine was performed on Al6061 and 2219 coupons fabricated and cleaned by conventional processes. Long term compatibility was confirmed. However, the wettability of the aluminum as measured by contact angle produced higher than desired angles (greater than 30 deg.) with excessive scatter. The availability of PMD materials exhibiting consistently low contact angles aids in the design of simple PMDs. Two efforts performed by Angeles Crest Engineering and funded by GSFC were undertaken to reduce the risk of using aluminum for the GPM PMD. The goal of the first effort was to develop a cleaning or treatment process to produce consistently low contact angles. The goal of the second effort was to prove via testing that the processed aluminum would retain compatibility with hydrazine and retain low contact angle after long term exposure to hydrazine. Both goals were achieved. This paper describes both efforts and the results achieved.

  4. 77 FR 1932 - Notification of a Public Teleconference of the Science Advisory Board Committee on Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... a draft report based on fact-finding activities conducted as part of a study of science integration... Science Advisory Board Committee on Science Integration for Decision Making AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA or Agency) Science...

  5. The Global Precipitation Measurement (GPM) Mission contributions to hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Huffman, G. J.; Skofronick Jackson, G.

    2016-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission provides near real-time precipitation data worldwide that is used by a broad range of end users, from tropical cyclone forecasters to agricultural modelers to researchers evaluating the spread of diseases. The GPM constellation provides merged, multi-satellite data products at three latencies that are critical for research and societal applications around the world. This presentation will outline current capabilities in using accurate and timely information of precipitation to directly benefit society, including examples of end user applications within the tropical cyclone forecasting, disasters response, agricultural forecasting, and disease tracking communities, among others. The presentation will also introduce some of the new visualization and access tools developed by the GPM team.

  6. Development of microbial genome-probing microarrays using digital multiple displacement amplification of uncultivated microbial single cells.

    PubMed

    Chang, Ho-Won; Sung, Youlboong; Kim, Kyoung-Ho; Nam, Young-Do; Roh, Seong Woon; Kim, Min-Soo; Jeon, Che Ok; Bae, Jin-Woo

    2008-08-15

    A crucial problem in the use of previously developed genome-probing microarrays (GPM) has been the inability to use uncultivated bacterial genomes to take advantage of the high sensitivity and specificity of GPM in microbial detection and monitoring. We show here a method, digital multiple displacement amplification (MDA), to amplify and analyze various genomes obtained from single uncultivated bacterial cells. We used 15 genomes from key microbes involved in dichloromethane (DCM)-dechlorinating enrichment as microarray probes to uncover the bacterial population dynamics of samples without PCR amplification. Genomic DNA amplified from single cells originating from uncultured bacteria with 80.3-99.4% similarity to 16S rRNA genes of cultivated bacteria. The digital MDA-GPM method successfully monitored the dynamics of DCM-dechlorinating communities from different phases of enrichment status. Without a priori knowledge of microbial diversity, the digital MDA-GPM method could be designed to monitor most microbial populations in a given environmental sample.

  7. Applications and Outreach for the Global Precipitation Measurement mission

    NASA Astrophysics Data System (ADS)

    Janney, D. W.; Kirschbaum, D.

    2017-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how people may be more or less impacted by disasters, the spread of water or vector-borne disease, or crop shortages. The Global Precipitation Measurement (GPM) mission provides near real-time precipitation data worldwide that is used by a broad range of end users, from tropical cyclone forecasters to agricultural modelers to researchers evaluating the spread of diseases. The GPM mission has an active applications and outreach program designed to engage and work closely with user communities across a broad spectrum of societal benefit areas with the goal of extending the application of GPM and other NASA data to support decision making. This presentation will outline some examples of how GPM has been engaging with the user community, highlighting some past and planned initiatives with specific organizations and across several thematic areas.

  8. IRIS TOXICOLOGICAL REVIEW OF HEXAVALENT CHROMIUM (INTERAGENCY SCIENCE CONSULTATION DRAFT)

    EPA Science Inventory

    On Septemeber 30, 2010, the draft Toxicological Review of Hexavalent Chromium and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agenc...

  9. IRIS Toxicological Review of Libby Amphibole Asbestos (Interagency Science Consultation Draft)

    EPA Science Inventory

    On August 25, 2011, the draft Toxicological Review of Libby Amphibole Asbestos and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies an...

  10. IRIS Toxicological Review of 1,4-Dioxane (Interagency Science Consultation Draft)

    EPA Science Inventory

    On September 9, 2011, the Toxicological Review of 1,4-Dioxane (with inhalation update) (External Review Draft) was posted for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House...

  11. IRIS Toxicological Review of n-Butanol (Interagency Science Consultation Draft)

    EPA Science Inventory

    On September 8, 2011, the Toxicological Review of n-Butanol (External Review Draft) was released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public re...

  12. IRIS Toxicological Review of Vanadium Pentoxide (Interagency Science Consultation Draft)

    EPA Science Inventory

    On September 30, 2011, the draft Toxicological Review of Vanadium Pentoxide and the charge to external peer reviewers were released for external peer review and public comment. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and W...

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), (7) ATMS instruments on the NOAA-NASA Joint Polar Satellite System (JPSS) satellites, and (8) a microwave imager under planning for the Defense Weather Satellite System (DWSS).

  14. Controlling Charging and Arcing on a Solar Powered Auroral Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.; Rhee, Michael S.

    2008-01-01

    The Global Precipitation Measurement satellite (GPM) will be launched into a high inclination (65 degree) orbit to monitor rainfall on a global scale. Satellites in high inclination orbits have been shown to charge to high negative potentials, with the possibility of arcing on the solar arrays, when three conditions are met: a drop in plasma density below approximately 10,000 cm(exp -3), an injection of energetic electrons of energy more that 7-10 keV, and passage through darkness. Since all of these conditions are expected to obtain for some of the GPM orbits, charging calculations were done using first the Space Environment and Effects (SEE) Program Interactive Spacecraft Charging Handbook, and secondly the NASA Air-force Spacecraft Charging Analyzer Program (NASCAP-2k). The object of the calculations was to determine if charging was likely for the GPM configuration and materials, and specifically to see if choosing a particular type of thermal white paint would help minimize charging. A detailed NASCAP-2k geometrical model of the GPM spacecraft was built, with such a large number of nodes that it challenged the capability of NASCAP-2k to do the calculations. The results of the calculations were that for worst-case auroral charging conditions, charging to levels on the order of -120 to -230 volts could occur on GPM during night-time, with differential voltages on the solar arrays that might lead to solar array arcing. In sunlit conditions, charging did not exceed -20 V under any conditions. The night-time results were sensitive to the spacecraft surface materials chosen. For non-conducting white paints, the charging was severe, and could continue unabated throughout the passage of GPM through the auroral zone. Somewhat conductive (dissipative) white paints minimized the night-time charging to levels of -120 V or less, and thus were recommended for GPM thermal control. It is shown that the choice of thermal control paints is important to prevent arcing on high inclination orbiting spacecraft solar arrays as well as for GEO satellites, even for solar array designs chosen to minimize arcing.

  15. An Overview of Demise Calculations, Conceptual Design Studies, and Hydrazine Compatibility Testing for the GPM Core Spacecraft Propellant Tank

    NASA Technical Reports Server (NTRS)

    Estes, Robert H.; Moore, N. R.

    2007-01-01

    NASA's Global Precipitation Measurement (GPM) mission is an ongoing Goddard Space Flight Center (GSFC) project whose basic objective is to improve global precipitation measurements. It has been decided that the GPM spacecraft is to be a "design for demise" spacecraft. This requirement resulted in the need for a propellant tank that would also demise or ablate to an appropriate degree upon re-entry. This paper will describe GSFC-performed spacecraft and tankage demise analyses, vendor conceptual design studies, and vendor performed hydrazine compatibility and wettability tests performed on 6061 and 2219 aluminum alloys.

  16. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-22

    Roadside flags welcome the NASA team and visitors to Minamitame Town, one of only a few small towns located outside of the Japan Aerospace Exploration Agency’s (JAXA) Tanegashima Space Center (TNSC), where the launch of an H-IIA rocket carrying the Global Precipitation Measurement (GPM) Core Observatory will take place in the next week, Saturday, Feb. 22, 2014, Tanegashima Island, Japan. The NASA-Japan Aerospace Exploration Agency (JAXA) GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. The launch is planned for Feb. 28, 2014. Photo Credit: (NASA/Bill Ingalls)

  17. Comprehensive Evaluation of GPM and TRMM: A Case Study of the Winter 2015-2016 over California

    NASA Astrophysics Data System (ADS)

    Li, J.; Liu, H.

    2016-12-01

    The Global Precipitation Measurement (GPM) has been established to provide the next-generation observations of precipitation globally. It gives the opportunities to measure the snow and lighter rainfall rates, which are relatively difficult to be retrieved by the previous missions. Recently, the state of California experienced with El Nino in the winter of 2015-2016, which brought more-than-average rainfall and snow to the much of areas in the state. This study focused on the state of California to examine how well GPM can capture the winter precipitation compared to the Tropical Rainfall Measuring Mission (TRMM). The Integrated Multi-satellitE Retrievals for GPM (IMERG) final-run and TRMM Multi-satellite Precipitation Analysis (TMPA) version 7 were evaluated against the ground reference of NOAA stage IV multi-sensor composite rain analysis. This study employed both the pixel-based and object-based verification measures to conduct a comprehensive evaluation for GPM and TRMM in the winter season. Probability of Detection, False Alarm Ratio, Bias Ratio, Taylor Diagram, Object-based Missing Ratio, Object-based False Alarm Ratio and Overall Interest Score were used as evaluation metrics. We found the IMERG-final has a better overall performance. We anticipate that the IMERG will benefit the applications of satellite remote-sensed precipitation, such as, hydrological flood modeling, watershed management and climate studies.

  18. TRMM Data Improvement as Part of the GPM Data Processing

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Ji, Y.; Kwiatkowski, J.; Kelley, O.; Stout, J.; Woltz, L.

    2016-01-01

    NASA has a long standing commitment to the improvement of its mission datasets. Indeed, data reprocessing is always built into the plans, schedule and budget for the mission data processing system. However, in addition to these ongoing mission reprocessing, NASA also supports a final reprocessing of all the data for a mission upon its completion (known as Phase F). TRMM Phase F started with the end of the TRMM mission in June of 2015. This last reprocessing has two overall goals: improvement of the TRMM mission data products; incorporation of the 17+ years of TRMM data into the ongoing NASA/JAXA GPM data processing. The first goal guarantees that the latest algorithms used for precipitation retrievals will also be used in reprocessing the TRMM data. The second goal ensures that as GPM algorithms are improved, the entire TRMM data will always be reprocessed with each GPM reprocessing. In essence TRMM becomes another of the GPM constellation satellites. This paper will concentrate on presenting the improvements to TMI level 1 data including calibration, geolocation, and emissive antenna corrections. It will describe the format changes that will occur how the TMI level 1C product will be intercalibrated using GMI as the reference calibration. It will also provide an overview of changes in the precipitation radar products as well as the combined TMIPR product.

  19. Clinical decision support for genetically guided personalized medicine: a systematic review

    PubMed Central

    Welch, Brandon M

    2013-01-01

    Objective To review the literature on clinical decision support (CDS) for genetically guided personalized medicine (GPM). Materials and Methods MEDLINE and Embase were searched from 1990 to 2011. The manuscripts included were summarized, and notable themes and trends were identified. Results Following a screening of 3416 articles, 38 primary research articles were identified. Focal areas of research included family history-driven CDS, cancer management, and pharmacogenomics. Nine randomized controlled trials of CDS interventions for GPM were identified, seven of which reported positive results. The majority of manuscripts were published on or after 2007, with increased recent focus on genotype-driven CDS and the integration of CDS within primary clinical information systems. Discussion Substantial research has been conducted to date on the use of CDS to enable GPM. In a previous analysis of CDS intervention trials, the automatic provision of CDS as a part of routine clinical workflow had been identified as being critical for CDS effectiveness. There was some indication that CDS for GPM could potentially be effective without the CDS being provided automatically, but we did not find conclusive evidence to support this hypothesis. Conclusion To maximize the clinical benefits arising from ongoing discoveries in genetics and genomics, additional research and development is recommended for identifying how best to leverage CDS to bridge the gap between the promise and realization of GPM. PMID:22922173

  20. 75 FR 67149 - Request for Public Comment on the Draft 2010 National Nanotechnology Initiative Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-01

    ... Nanotechnology Initiative Strategic Plan AGENCY: White House Office of Science and Technology Policy. ACTION... Nanotechnology Initiative (NNI) Strategic Plan. The draft plan is posted at http://strategy.nano.gov . Comments... information. Overview: The National Nanotechnology Initiative (NNI) Strategic Plan is the framework that...

  1. 77 FR 6796 - Notification of a Public Meeting of the Clean Air Scientific Advisory Committee (CASAC); Ozone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... Scientific Advisory Committee (CASAC); Ozone Review Panel AGENCY: Environmental Protection Agency (EPA... teleconference of the CASAC Ozone Review Panel to discuss its draft review of EPA's Integrated Science Assessment for Ozone and Related Photochemical Oxidants (Second External Review Draft--September 2011). DATES...

  2. 77 FR 64334 - Notification of a Public Teleconference of the Clean Air Scientific Advisory Committee (CASAC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Air Scientific Advisory Committee (CASAC) Ozone Review Panel AGENCY: Environmental Protection Agency... teleconference of the CASAC Ozone Review Panel to discuss its draft reviews of four EPA documents: Integrated Science Assessment for Ozone and Related Photochemical Oxidants (Third External Review Draft-- June 2012...

  3. Air Quality Criteria for Ozone and Related Photochemical Oxidants (First External Review Draft)

    EPA Science Inventory

    This first external review draft of the Air Quality Criteria for Ozone and Related Photochemical Oxidants (Ozone Criteria Document) is being released in January 2005 for public comment and for review by EPA's Clean A...

  4. 75 FR 56104 - Science Advisory Board Staff Office; Notification of Public Teleconferences of the Mountaintop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-15

    ... Public Teleconferences of the Mountaintop Mining Panel AGENCY: Environmental Protection Agency (EPA... teleconferences of the SAB Mountaintop Mining Panel to discuss the Panel's draft reports. DATES: A public... that the SAB Mountaintop Mining Panel will hold a public teleconference to discuss its draft reports...

  5. 75 FR 19971 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... Quality Standards--First External Review Draft (March 2010). DATES: The teleconference will be held on May... assessment documents titled Particulate Matter Urban-Focused Visibility Assessment: Second External Review Draft (January 2010) and Quantitative Health Risk Assessment for Particulate Matter: Second External...

  6. 78 FR 2685 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... to fish passage, and enhancement of the existing water supply. Public Disclosure Before including... for Water and Science, Interior. ACTION: Notice of availability. SUMMARY: The draft environmental... Environmental Assessment are available for inspection at: Central Utah Water Conservancy District, 355 West...

  7. 76 FR 61100 - Notification of a Public Meeting of the Science Advisory Board Biogenic Carbon Emissions Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... demonstrated expertise in forestry, agriculture, measurement and carbon accounting methodologies, land use... draft Accounting Framework for Biogenic CO 2 Emissions from Stationary Sources (September 2011). DATES... review EPA's draft Accounting Framework for Biogenic CO 2 Emissions from Stationary Sources (September...

  8. IRIS Toxicological Review of 1,4-Dioxane (with Inhalation Update) (Interagency Science Discussion Draft)

    EPA Science Inventory

    On September 9, 2011, the Toxicological Review of 1,4-Dioxane (inhalation) (External Review Draft) was posted for external peer review and public comment. Subsequently, the Toxicological Review and IRIS Summary were reviewed internally by EPA and by other federal agencies and Exe...

  9. 76 FR 10896 - Science Advisory Board Staff Office; Request for Nominations; CASAC Mercury Review Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... the emissions of hazardous air pollutants (HAPs) released from coal-burning electric generating units...-based standard for reducing HAP emissions. EPA is developing a draft risk assessment for mercury, entitled Technical Support Document: National- Scale Mercury Risk Assessment. This draft assessment...

  10. 78 FR 25702 - Notice of Availability of a Draft Programmatic Environmental Assessment for Fisheries Research...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-02

    ... Availability of a Draft Programmatic Environmental Assessment for Fisheries Research Conducted and Funded by... Research Conducted and Funded by the Southwest Fisheries Science Center (SWFSC).'' Publication of this... cumulative impacts of conducting and funding fisheries and ecosystem research along the U.S. West Coast...

  11. 76 FR 68791 - Notice of Availability for Public Comment on the Interagency Ocean Observing Committee Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... NATIONAL SCIENCE FOUNDATION Notice of Availability for Public Comment on the Interagency Ocean Observing Committee Draft Certification Criteria for Non-Federal Asset Integration Into IOOS AGENCY... eligibility for integration into the System and to ensure compliance with all applicable standards and...

  12. 75 FR 16106 - Draft Toxicological Review of Dichloromethane: In Support of Summary Information on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... science-based human health assessments to support the Agency's regulatory activities. The IRIS database... for the external review draft human health assessment titled, ``Toxicological Review of... developing human health assessments for inclusion in the IRIS database. The purpose of the listening session...

  13. 77 FR 5797 - Draft Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... Office of Research and Development. EPA is releasing this draft assessment for the purposes of public... health assessment program that evaluates quantitative and qualitative risk information on effects that..., EPA provides the highest quality science- based human health assessments to support the Agency's...

  14. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    In December 2016, EPA finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. EPA’s evaluation was reviewed internally by EPA and by other federal agencies and White House Offices in October 2016, before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science discussion materials provided to other agencies, including interagency review drafts of the EPA’s Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide, are posted on this site. Note: No major science comments were received on the Interagency Science Discussion Draft. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science consultation materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ammonia and the charge to external peer reviewers, are posted on this site.

  15. blessing ceremony for the rocket

    NASA Image and Video Library

    2014-02-27

    The H-IIA No. 23 rocket that will carry the GPM Core Observatory into space arrived at Tanegashima Space Center on Jan. 20, 2014. The rocket has two stages, an lower first stage that, with the help of two solid rocket boosters gets them off the ground, and an upper second stage that lights up a few minutes after launch to boost the satellite the rest of the way to orbit. The launch services provider, Mitsubishi Heavy Industries (MHI), immediately began assembling the rocket. On Jan. 22, the GPM team in Tanegashima was invited to participate in a blessing ceremony for the rocket. Lynette Marbley, the Instruments Chief Safety and Mission Assurance Officer for GPM, represented the NASA team.

  16. KSC-2009-4343

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – NASA Administrator Charles Bolden signs an agreement defining the terms of cooperation between NASA and JAXA on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  17. Connectivity of Streams and Wetlands to Downstream Waters: A Review and Synthesis of the Scientific Evidence (External Review Draft)

    EPA Science Inventory

    The Environmental Protection Agency – through the independent Scientific Advisory Board (SAB) - is soliciting public comment on a new draft science report titled: Connectivity of Streams and Wetlands to Downstream Waters. A public docket has been opened to receive com...

  18. 76 FR 36143 - Central Utah Project Completion Act: Availability of Draft Environmental Assessment; Block Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... DEPARTMENT OF THE INTERIOR Central Utah Project Completion Act: Availability of Draft Environmental Assessment; Block Notice 1A, Heber Sub-Area Irrigation to M&I Water Conversion, Wasatch County, UT AGENCY: Department of the Interior, Office of the Assistant Secretary-- Water and Science. ACTION: Notice...

  19. 76 FR 21346 - Science Advisory Board Staff Office, Notification of a Public Teleconference of the Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... a Public Teleconference of the Clean Air Scientific Advisory Committee (CASAC) Lead Review Panel... (CASAC) Lead Review Panel to provide consultative advice on EPA's draft Integrated Review Plan for the National Ambient Air Quality Standards for Lead (draft IRP). DATES: The public teleconference will be held...

  20. 75 FR 59716 - Draft Toxicological Review of Urea: In Support of Summary Information on the Integrated Risk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... environment. Through the IRIS Program, EPA provides the highest quality science- based human health... external review draft human health assessment titled, ``Toxicological Review of Urea: In Support of Summary... register, please indicate if you will need audio-visual equipment (e.g., laptop computer and slide...

  1. 77 FR 47067 - Notification of Two Public Quality Review Teleconferences of the Chartered Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-07

    ... Assessment in Environmental Decision- Making'' (EPA-SAB-08-002). Background information about this advisory... ecological assessment action plan and (2) an SAB draft review report on EPA's accounting framework for... ``SAB Review (7-26-12 Draft) of EPA's Accounting Framework for Biogenic CO 2 Emissions from Stationary...

  2. 78 FR 68459 - Medical Device Development Tools; Draft Guidance for Industry, Tool Developers, and Food and Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... Radiological Health (CDRH) for qualification of medical device development tools (MDDT) for use in device.... Background The draft guidance describes the framework and process for the voluntary CDRH qualification of... science; and (4) more quickly and more clearly communicate with CDRH stakeholders about important advances...

  3. 77 FR 52022 - Notification of a Joint Public Teleconference of the Chartered Science Advisory Board and Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Counselors (BOSC) to discuss a draft report providing advice on implementation of Office of Research and... discuss a draft report providing advice on implementation of ORD's new strategic directions for research... report. Additional information about SAB and BOSC advice on implementing ORD strategic research...

  4. 76 FR 54463 - Notification of a Joint Public Teleconference of the Chartered Science Advisory Board and Board...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Scientific Counselors (BOSC) to discuss a draft report providing advice on Office of Research and Development... discuss a draft report providing advice on Office of Research and Development's (ORD's) new strategic... advisory report. Additional information about SAB and BOSC advice on new ORD strategic research directions...

  5. 76 FR 60825 - Draft Toxicological Review of Vanadium Pentoxide: In Support of Summary Information on the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ...) within the EPA Office of Research and Development (ORD). EPA is releasing this draft assessment solely... quantitative and qualitative risk information on effects that may result from exposure to chemical substances found in the environment. Through the IRIS Program, EPA provides the highest quality science- based...

  6. 76 FR 17434 - Receipt of Application for an Endangered Species Act Incidental Take Permit

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... science about the delivery of wood into fish habitat. The NMFS conducted the third review through its Northwest Fisheries Science Center (Science Center) in Seattle, Washington. The Science Center review found... would be available following the provisions of the draft Lewis County HCP. Specifically, the Science...

  7. Passive Microwave Rainfall Estimates from the GPM Mission

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Petkovic, Veljko

    2017-04-01

    The Global Precipitation Measurement (GPM) mission was launched in February 2014 as a joint mission between JAXA from Japan and NASA from the United States. GPM carries a state of the art dual-frequency precipitation radar and a multi-channel passive microwave radiometer that acts not only to enhance the radar's retrieval capability, but also as a reference for a constellation of existing satellites carrying passive microwave sensors. In March of 2016, GPM released Version 4 of its precipitation products that consists of radar, radiometer, and combined radar/radiometer products. The precipitation products from these sensors or sensor combination are consistent by design and show relatively minor differences in the mean global sense. Closer examination of the biases, however, reveals regional biases between active and passive sensors that can be directly related top the nature of the convection. By looking at cloud systems instead of individual satellite pixels, the relationship between biases and the large scale environmental state become obvious. Organized convection, which occurs more readily in regimes with large Convective Available Potential Energy (CAPE) and shear tend to drive biases in different directions than isolated convection. This is true over both land and ocean. This talk will present the latest findings and explore these discrepancies from a physical perspective in order to gain some understanding between cloud structures, information content, and retrieval differences. This analysis will be used to then drive a bigger picture of how GPM's latest results inform the Global Water and Energy budgets.

  8. Effects of dialectical behaviour therapy-mindfulness training on emotional reactivity in borderline personality disorder: preliminary results.

    PubMed

    Feliu-Soler, Albert; Pascual, Juan C; Borràs, Xavier; Portella, Maria J; Martín-Blanco, Ana; Armario, Antonio; Alvarez, Enric; Pérez, Víctor; Soler, Joaquim

    2014-01-01

    Emotional dysregulation has been proposed as a hallmark of borderline personality disorder (BPD). Mindfulness techniques taught in dialectical behaviour therapy (DBT) appear to be effective in reducing affective symptoms and may enhance emotion regulation in BPD patients. In the present study, we assessed whether 10 weeks of DBT-mindfulness (DBT-M) training added to general psychiatric management (GPM) could improve emotion regulation in BPD patients. A total of 35 patients with BPD were included and sequentially assigned to GPM (n = 17) or GPM plus DBT-M (n = 18). Participants underwent a negative emotion induction procedure (presentation of standardized unpleasant images) both pre-intervention and post-intervention. Clinical evaluation was also performed before and after treatment. No differences were observed in emotional response at the post-treatment session. However, patients in the DBT-M group showed greater improvement in clinical symptoms. Formal mindfulness practice was positively correlated with clinical improvements and lower self-reported emotional reactivity. Our preliminary results suggest that mindfulness training reduces some psychiatric symptoms but may not have a clear effect on how patients respond to emotional stimuli in an experimental setting. No clear effect of mindfulness training was observed on emotional response to a negative emotion induction procedure. Application of the DBT-M module jointly to GPM induced better clinical outcomes than GPM alone. Formal mindfulness practice showed a positive impact on emotion regulation and clinical improvement. Copyright © 2013 John Wiley & Sons, Ltd.

  9. A Summary of Large Raindrop Observations from GPM GV Field Campaigns

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick N.; Petersen, Walter; Tokay, Ali; Thurai, Merhala; Bringi, V. N.; Carey, Lawrence; Wingo, Matthew

    2013-01-01

    NASA's Global Precipitation Measurement Mission (GPM) has conducted as series of Ground Validation (GV) studies to assist algorithm development for the GPM core satellite. Characterizing the drop size distribution (DSD) for different types of precipitation systems is critical in order to accurately estimate precipitation across the majority of the planet. Thus far, GV efforts have sampled DSDs in a variety of precipitation systems from Finland to Oklahoma. This dataset consists of over 33 million raindrops sampled by GPM GV's two-dimensional video disdrometers (2DVD) and includes RSD observations from the LPVEx, MC3E, GCPEx, HyMEx and IFloodS campaigns as well as from GV sites in Huntsville, AL and Wallops Island, VA. This study focuses on the larger end of the raindrop size spectrum, which greatly influences radar reflectivity and has implications for moment estimation. Thus knowledge of the maximum diameter is critical to GPM algorithm development. There are over 24,000 raindrops exceeding 5 mm in diameter contained within this disdrometer dataset. The largest raindrops in the 2DVD dataset (>7-8 mm in diameter) are found within intense convective thunderstorms, and their origins are believed to be hailstones. In stratiform rainfall, large raindrops have also been found to fall from lower and thicker melting layers. The 2DVD dataset will be combined with that collected by dual-polarimetric radar and aircraft particle imaging probes to "follow" the vertical evolution of the DSD tail (i.e., retrace the large drops from the surface to their origins aloft).

  10. Draft Plan for Characterizing Commercial Data Products in Support of Earth Science Research

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Terrie, Greg; Berglund, Judith

    2006-01-01

    This presentation introduces a draft plan for characterizing commercial data products for Earth science research. The general approach to the commercial product verification and validation includes focused selection of a readily available commercial remote sensing products that support Earth science research. Ongoing product verification and characterization will question whether the product meets specifications and will examine its fundamental properties, potential and limitations. Validation will encourage product evaluation for specific science research and applications. Specific commercial products included in the characterization plan include high-spatial-resolution multispectral (HSMS) imagery and LIDAR data products. Future efforts in this process will include briefing NASA headquarters and modifying plans based on feedback, increased engagement with the science community and refinement of details, coordination with commercial vendors and The Joint Agency Commercial Imagery Evaluation (JACIE) for HSMS satellite acquisitions, acquiring waveform LIDAR data and performing verification and validation.

  11. Advances In Understanding Global Water Cycle With Advent of GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    During the coming decade, the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space based on an international fleet of satellites operated as a constellation. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the Earth's water cycle from a global measurement perspective and on down to regional scales and below. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper first presents an overview of the GPM Mission and how its overriding scientific objectives for climate, weather, and hydrology flow from the anticipated improvements that are being planned for the constellation-based measuring system. Next, the paper shows how the GPM observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is simply part of the natural variability of a fixed rate cycle.

  12. Verification of the Global Precipitation Measurement (GPM) Satellite by the Olympic Mountains Experiment (OLYMPEX)

    NASA Astrophysics Data System (ADS)

    McMurdie, L. A.; Houze, R.

    2017-12-01

    Measurements of global precipitation are critical for monitoring Earth's water resources and hydrological processes, including flooding and snowpack accumulation. As such, the Global Precipitation Measurement (GPM) Mission `Core' satellite detects precipitation ranging from light snow to heavy downpours in a wide range locations including remote mountainous regions. The Olympic Mountains Experiment (OLYMPEX) during the 2015-2016 fall-winter season in the mountainous Olympic Peninsula of Washington State provide physical and hydrological validation for GPM precipitation algorithms and insight into the modification of midlatitude storms by passage over mountains. The instrumentation included ground-based dual-polarization Doppler radars on the windward and leeward sides of the Olympic Mountains, surface stations that measured precipitation rates, particle size distributions and fall velocities at various altitudes, research aircraft equipped with cloud microphysics probes, radars, lidar, and passive radiometers, supplemental rawinsondes and dropsondes, and autonomous recording cameras that monitored snowpack accumulation. Results based on dropsize distributions (DSDs) and cross-sections of radar reflectivity over the ocean and windward slopes have revealed important considerations for GPM algorithm development. During periods of great precipitation accumulation and enhancement by the mountains on windward slopes, both warm rain and ice-phase processes are present, implying that it is important for GPM retrievals be sensitive to both types of precipitation mechanisms and to represent accurately the concentration of precipitation at the lowest possible altitudes. OLYMPEX data revealed that a given rain rate could be associated with a variety of DSDs, which presents a challenge for GPM precipitation retrievals in extratropical cyclones passing over mountains. Some of the DSD regimes measured during OLYMPEX stratiform periods have the same characteristics found in prior studies of tropical convection, and it was common to observe high reflectivities in the stratiform brightband region. These findings cast doubt on traditional methods of identifying and measuring convective and stratiform rain based on DSDs and radar reflectivity thresholds.

  13. Satellite-based high-resolution mapping of rainfall over southern Africa

    NASA Astrophysics Data System (ADS)

    Meyer, Hanna; Drönner, Johannes; Nauss, Thomas

    2017-06-01

    A spatially explicit mapping of rainfall is necessary for southern Africa for eco-climatological studies or nowcasting but accurate estimates are still a challenging task. This study presents a method to estimate hourly rainfall based on data from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI). Rainfall measurements from about 350 weather stations from 2010-2014 served as ground truth for calibration and validation. SEVIRI and weather station data were used to train neural networks that allowed the estimation of rainfall area and rainfall quantities over all times of the day. The results revealed that 60 % of recorded rainfall events were correctly classified by the model (probability of detection, POD). However, the false alarm ratio (FAR) was high (0.80), leading to a Heidke skill score (HSS) of 0.18. Estimated hourly rainfall quantities were estimated with an average hourly correlation of ρ = 0. 33 and a root mean square error (RMSE) of 0.72. The correlation increased with temporal aggregation to 0.52 (daily), 0.67 (weekly) and 0.71 (monthly). The main weakness was the overestimation of rainfall events. The model results were compared to the Integrated Multi-satellitE Retrievals for GPM (IMERG) of the Global Precipitation Measurement (GPM) mission. Despite being a comparably simple approach, the presented MSG-based rainfall retrieval outperformed GPM IMERG in terms of rainfall area detection: GPM IMERG had a considerably lower POD. The HSS was not significantly different compared to the MSG-based retrieval due to a lower FAR of GPM IMERG. There were no further significant differences between the MSG-based retrieval and GPM IMERG in terms of correlation with the observed rainfall quantities. The MSG-based retrieval, however, provides rainfall in a higher spatial resolution. Though estimating rainfall from satellite data remains challenging, especially at high temporal resolutions, this study showed promising results towards improved spatio-temporal estimates of rainfall over southern Africa.

  14. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory

    NASA Astrophysics Data System (ADS)

    Marra, A. C.; Porcù, F.; Baldini, L.; Petracca, M.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Vulpiani, G.; Panegrossi, G.

    2017-08-01

    On 5 September 2015 a violent hailstorm hit the Gulf and the city of Naples in Italy. The storm originated over the Tyrrhenian Sea dropping 7-10 cm diameter hailstones along its path. During its mature phase, at 08:47 UTC, the hailstorm was captured by one overpass of the Global Precipitation Measurement mission Core Observatory (GPM-CO) embarking the GPM Microwave Imager (GMI) and the Ka/Ku-band Dual-frequency Precipitation Radar (DPR). In this paper, observations by both GMI and DPR are thoroughly analyzed in conjunction with other spaceborne and ground-based measurements, to show how the GPM-CO integrates established observational tools in monitoring, understanding, and characterizing severe weather. Rapid-scan MSG SEVIRI images show an extremely rapid development, with 10.8 μm cloud-top temperatures dropping by 65 K in 40 min down to 198 K. The LIghtning NETwork registered over 37,000 strokes in 5 h, with intracloud positive stroke fraction increasing during the regeneration phases, when ground-based polarimetric radar and DPR support the presence of large graupel/hail particles. DPR Ku 40 dBZ and 20 dBZ echo top heights at 14 km and 16 km, respectively, indicate strong updraft and deep overshooting. GMI extremely low brightness temperatures (TBs) in correspondence of the convective core (158, 97, 67, and 87 K at 18.7, 36.5, 89 and 166 GHz) are compatible with the presence of massive ice particles. In two years of GPM global observations the storm ranks as fourth and first in terms of minimum 36.5 and 18.7 GHz (V-pol) TBs, respectively. This study illustrates GPM-CO sensing capabilities for characterizing the structure of such severe hailstorm, while providing observational evidence of its intensity and rarity, both globally and over the Mediterranean area.

  15. The Olympic Mountains Experiment for GPM (OLYMPEX)

    NASA Astrophysics Data System (ADS)

    Houze, R.; McMurdie, L. A.; Petersen, W. A.; Schwaller, M.

    2016-12-01

    The GPM satellite has made it possible to observe the amount and nature of precipitation in remote areas of midlatitudes, including oceans and mountain ranges. OLYMPEX conducted over the Olympic Mountains on the northwest coast of Washington State was designed to provide the means for evaluating the physical basis of the algorithms used to convert GPM satellite measurements to determine the amount and nature of precipitation in midlatitude extratropical cyclones. Microphysical processes producing precipitation are highly sensitive to the vertical profile of temperature. In the tropics, the domain of the TRMM satellite, the temperature profile varies only slightly. GPM algorithms, however, must account for the strong horizontal variation of temperature profiles in baroclinic storms systems of midlatitudes and for the variations of precipitation mechanisms caused by passage of these storms over mountains. The OLYMPEX scientific strategy was: 1) collect a statistically robust set of measurements in midlatitude cyclones upstream of, over, and downstream of a midlatitude mountain range that can be used to improve GPM satellite algorithms; 2) determine how the physics and dynamics of the mechanisms affecting precipitation formation in relation to storm structure and terrain. To accomplish these goals 3 aircraft, 4 scanning dual polarization Doppler radars, supplemental soundings, and sophisticated surface instruments were deployed on the Olympic Peninsula of Washington, where Pacific frontal systems produce seasonal precipitation of 2000-4000 mm. 13 storms were observed. 3 of these were atmospheric rivers. The NASA DC-8 and ER-2 aircraft overflew the storms with instruments similar to those on GPM. The U. North Dakota Citation sampled hydrometeors in situ. Preliminary analysis indicates that one of the primary modes of orographic enhancement is low-level moist flow rising over the lower windward slopes and producing many very small drops. Ice-phase processes producing larger particles also vary in relation to shear-enhanced turbulence over topography.

  16. A Machine Learning-based Rainfall System for GPM Dual-frequency Radar

    NASA Astrophysics Data System (ADS)

    Tan, H.; Chandrasekar, V.; Chen, H.

    2017-12-01

    Precipitation measurement produced by the Global Precipitation Measurement (GPM) Dual-frequency Precipitation Radar (DPR) plays an important role in researching the water circle and forecasting extreme weather event. Compare with its predecessor - Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), GRM DPR measures precipitation in two different frequencies (i.e., Ku and Ka band), which can provide detailed information on the microphysical properties of precipitation particles, quantify particle size distribution and quantitatively measure light rain and falling snow. This paper presents a novel Machine Learning system for ground-based and space borne radar rainfall estimation. The system first trains ground radar data for rainfall estimation using rainfall measurements from gauges and subsequently uses the ground radar based rainfall estimates to train GPM DPR data in order to get space based rainfall product. Therein, data alignment between space DPR and ground radar is conducted using the methodology proposed by Bolen and Chandrasekar (2013), which can minimize the effects of potential geometric distortion of GPM DPR observations. For demonstration purposes, rainfall measurements from three rain gauge networks near Melbourne, Florida, are used for training and validation purposes. These three gauge networks, which are located in Kennedy Space Center (KSC), South Florida Water Management District (SFL), and St. Johns Water Management District (STJ), include 33, 46, and 99 rain gauge stations, respectively. Collocated ground radar observations from the National Weather Service (NWS) Weather Surveillance Radar - 1988 Doppler (WSR-88D) in Melbourne (i.e., KMLB radar) are trained with the gauge measurements. The trained model is then used to derive KMLB radar based rainfall product, which is used to train GPM DPR data collected from coincident overpasses events. The machine learning based rainfall product is compared against the GPM standard products, which shows great potential of the machine learning concept in radar rainfall estimation.

  17. Facilitating the Easy Use of Earth Observation Data in Earth System Models through CyberConnector

    NASA Astrophysics Data System (ADS)

    Di, L.; Sun, Z.; Zhang, C.

    2017-12-01

    Earth system models (ESM) are an important tool used to understand the Earth system and predict its future states. On other hand, Earth observations (EO) provides the current state of the system. EO data are very useful in ESM initialization, verification, validation, and inter-comparison. However, EO data often cannot directly be consumed by ESMs because of the syntactic and semantic mismatches between EO products and ESM requirements. In order to remove the mismatches, scientists normally spend long time to customize EO data for ESM consumption. CyberConnector, a NSF EarthCube building block, is intended to automate the data customization so that scientists can be relieved from the laborious EO data customization. CyberConnector uses web-service-based geospatial processing models (GPM) as the mechanism to automatically customize the EO data into the right products in the right form needed by ESMs. It can support many different ESMs through its standard interfaces. It consists of seven modules: GPM designer, GPM binder, GPM runner, GPM monitor, resource register, order manager, and result display. In CyberConnector, EO data instances and GPMs are independent and loosely coupled. A modeler only needs to create a GPM in the GMP designer for EO data customization. Once the modeler specifies a study area, the designed GPM will be activated and take the temporal and spatial extents as constraints to search the data sources and customize the available EO data into the ESM-acceptable form. The execution of GMP is completely automatic. Currently CyberConnector has been fully developed. In order to validate the feasibility, flexibility, and ESM independence of CyberConnector, three ESMs from different geoscience disciplines, including the Cloud-Resolving Model (CRM), the Finite Volume Coastal Ocean Model (FVCOM), and the Community Multiscale Air Quality Model (CMAQ), have been experimented with CyberConnector through closely collaborating with modelers. In the experiment, the time of traditional manual operation and CyberConnector operation was compared and other benefits were identified. The result indicates that CyberConnector can save about 80% of data customization time. In addition, it can simplify the steps to plug in a data source into an ESM and lower the entry barriers for beginners to use EO data in ESMs.

  18. ENSO Precipitation Variations as Seen by GPM and TRMM Radar and Passive Microwave Observations

    NASA Astrophysics Data System (ADS)

    Adler, R. F.; Wang, J. J.

    2017-12-01

    Tropical precipitation variations related to ENSO are the largest-scale such variations both spatially and in magnitude and are also the main driver of surface temperature-surface rainfall relationships on the inter-annual scale. GPM (and TRMM before it) provide a unique capability to examine these relations with both the passive and active microwave approaches. Documenting the phase and magnitudes of these relationships are important to understand these large-scale processes and to validate climate models. However, as past research by the authors have shown, the results of these relations have been different for passive vs. radar retrievals. In this study we re-examine these relations with the new GPM Version 5 products, focusing on the 2015-2016 El Nino event. The recent El Nino peaked in Dec. 2015 through Feb. 2016 with the usual patterns of precipitation anomalies across the Tropics as evident in both the GPM GMI and the Near Surface (NS) DPR (single frequency) retrievals. Integrating both the rainfall anomalies and the SST anomalies over the entire tropical ocean area (25N-25S) and comparing how they vary as a function of time on a monthly scale during the GPM era (2014-2017), the radar-based results show contrasting results to those from the GMI-based (and GPCP) results. The passive microwave data (GMI and GPCP) indicates a slope of 17%/C for the precipitation variations, while the radar NS indicates about half that ( 8%/C). This NS slope is somewhat less than calculated before with GPM's V4 data, but is larger than obtained with TRMM PR data ( 0%/C) for an earlier period during the TRMM era. Very similar results as to the DPR NS calculations are also obtained for rainfall at 2km and 4km altitude and for the Combined (DPR + GMI) product. However, at 6km altitude, although the reflectivity and rainfall magnitudes are much less than at lower altitudes, the slope of the rainfall/SST relation is 17%/C, the same as calculated with the passive microwave data. The reasons for these differences are explored and lead to conclusions that the radar-based estimates of surface rainfall with GPM have limitations (and are negatively biased) in relatively intense rainfall and this leads to an underestimation of large-scale rainfall under El Nino conditions, where more oceanic rainfall, and more intense rainfall are prevalent.

  19. GPM SLH: Convective Latent Heating Estimated with GPM Dual-frequency Precipitation Radar Data

    NASA Astrophysics Data System (ADS)

    Takayabu, Y. N.; Hamada, A.; Yokoyama, C.; Ikuta, Y.; Shige, S.; Yamaji, M.; Kubota, T.

    2017-12-01

    Three dimensional diabatic heating distribution plays essential roles to determine large-scale circulation, as well as to generate mesoscale circulation associated with tropical convection (e.g. Hartmann et al., 1984; Houze et al. 1982). For mid-latitude systems also, diabatic heating contributes to generate PVs resulting in, for example, explosive intensifications of mid-lattitude storms (Boettcher and Wernli, 2011). Previously, with TRMM PR data, we developed a Spectral Latent Heating algorithm (SLH; Shige et al. 2004, etc.) for 36N-36S region. It was based on the spectral LH tables produced from a simulation utilizing the Goddard Cloud Ensemble Model forced with the TOGA-COARE data. With GPM DPR, the observation region is extended to 65N-65S. Here, we introduce a new version of SLH algorithm which is applicable also to the mid-latitude precipitation. A new global GPM SLH ver.5 product is released as one of NASA/JAXA GPM standard products on July 11, 2017. For GPM SLH mid-latitude algorithm, we employ the Japan Meteorological Agency (JMA)'s high resolution (horizontally 2km) Local Forecast Model (LFM) to construct the LUTs. With collaborations of JMA's forecast group, forecast data for 8 extratropical cyclone cases are collected and utilized. For mid-latitude precipitation, we have to deal with large temperature gradients and complex relationship between the freezing level and cloud base levels. LUTs are constructed for LH, Q1-QR, and Q2 (Yanai et al. 1973), for six different precipitation types: Convective and shallow stratiform LUTs are made against precipitation top heights. For deep stratiform and other precipitation, LUTs are made against maximum precipitation to handle the unknown cloud-bases. Finally, three-dimensional convective latent heating is retrieved, utilizing the LUTs and precipitation profile data from GPM 2AKu. We can confirm that retrieved LH looks very similar to simulated LH, for a consistency check. We also confirm a good continuities of mean LH distributions between tropics and mid-latitudes in horizontal as well as in vertical. Further analysis results will also be presented. Acknowledgments: This research was supported by JAXA PMM RA8 and the Environment Research and Technology Development Fund (2-1503) of Environmental Restoration and Conservation Agency.

  20. IRIS Toxicological Review of Dichloromethane (Methylene ...

    EPA Pesticide Factsheets

    On March 31, 2010, the draft IRIS Toxicological Review of Dichloromethane (Methylene Chloride) external review draft document and the charge to external peer reviewers were released for public review and comment. The draft document and the charge to external peer reviewers were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency science consultation draft of the Toxicological Review of Dichloromethane (Methylene Chloride) and the charge to external peer reviewers are posted on this site. The draft Toxicological Review of Dichloromethane provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to dichloromethane.

  1. SUBMIT YOUR IMAGES TO NASA's "LET IT SNOW" PHOTO CONTEST!

    NASA Image and Video Library

    2017-12-08

    NASA's Global Precipitation Measurement (GPM) mission wants to see your best photos of winter weather! You can submit your images to the contest here: www.flickr.com/groups/gpm-extreme-weather/ To read more about this image and or to see the high res file go to: earthobservatory.nasa.gov/IOTD/view.php?id=80082

  2. KSC-2009-4342

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – Japan Aerospace Exploration Agency, or JAXA, President Keiji Tachikawa signs an agreement defining the terms of cooperation between NASA and JAXA on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  3. 76 FR 39103 - Science Advisory Board Staff Office Notification of a Public Teleconference of the Air Monitoring...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... draft plans for Photochemical Assessment Monitoring Stations (PAMS) Network Re-engineering. DATES: A... information concerning the EPA CASAC can be found at the EPA CASAC Web site at http://www.epa.gov/casac . Any inquiry regarding EPA's draft plans for PAMS Network Re-engineering should be directed to Mr. Kevin...

  4. 78 FR 2394 - Release of Draft Document Related to the Review of the National Ambient Air Quality Standards for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... technical difficulties and cannot contact you for clarification, the EPA may not be able to consider your... docket number and other identifying information (subject heading, Federal Register date and page number... information presented in the third draft Integrated Science Assessment for Lead \\2\\ and health and ecological...

  5. A Thesaurus for Information Technology and Education. Occasional Paper ITE/6/86.

    ERIC Educational Resources Information Center

    Lewis, R.

    Prepared for use by the Information Technology and Education (ITE) Programme of the Economic and Social Science Research Council (ESRC), this draft document is based on the 1984 EUDISED (European Documentation and Information System for Education) Thesaurus for Information Processing. This draft is a modified thesaurus which aims to keep as close…

  6. 78 FR 24693 - Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations for Activities (Outside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... Analysis and Risk-Based Preventive Controls for Human Food'' (the proposed preventive controls rule) and... Farm.'' The purpose of the draft RA is to provide a science-based risk analysis of those activity/food... Food, Drug, and Cosmetic Act for hazard analysis and risk-based preventive controls (the proposed...

  7. Addressing Needs of Rural Health Care Providers via Distance Learning. Draft.

    ERIC Educational Resources Information Center

    Adeyemi, Gloria; And Others

    This document describes a distance learning program designed to meet the needs of rural health care providers. The program allows students to complete an Associate of Applied Science (AS) in the Meramec Physical Therapist Assistant (PTA) program through St. Louis Community College (SLCC). The first section of the document provides a draft of the…

  8. 76 FR 54227 - Draft Toxicological Review of n-Butanol: In Support of Summary Information on the Integrated Risk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... found in the environment. Through the IRIS Program, EPA provides the highest quality science-based human... for the external review draft human health assessment titled, ``Toxicological Review of n-Butanol: In... will need audio-visual equipment (e.g., laptop computer and slide projector). In general, each...

  9. 78 FR 44117 - Notice of a Public Comment Period on the Draft IRIS Carcinogenicity Assessment for Ethylene Oxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-23

    ... Assessment (NCEA) within the EPA Office of Research and Development (ORD). The 45-day public comment period... anticipates will be undertaken by the Science Advisory Board. EPA is releasing this draft carcinogenicity... Research and Development (ORD). The public has been provided an opportunity to comment on a previous...

  10. Workshop to Obtain Input on Draft Materials for the Integrated Science Assessment (ISA) for Sulfur Oxides (SOx): Health Criteria

    EPA Science Inventory

    As part of the review of the air quality criteria for sulfur oxides (SOX) and primary (health-based) National Ambient Air Quality Standards (NAAQS) for sulfur dioxide (SO2), EPA is announcing a teleconference workshop to evaluate preliminary draft materials ...

  11. Earth Science: It's All about the Processes

    ERIC Educational Resources Information Center

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. 78 FR 69462 - National Nanotechnology Initiative Strategic Plan; National Science and Technology Council...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY OFFICE National Nanotechnology Initiative Strategic Plan; National Science and Technology Council; National Nanotechnology Coordination Office AGENCY: Executive... Nanotechnology Initiative (NNI) Strategic Plan. The draft plan will be posted at www.nano.gov/2014strategy...

  13. 76 FR 7199 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Science Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ...The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB) Staff Office announces a public face-to-face meeting of the SAB Panel to conduct an independent review of EPA's Draft Hydraulic Fracturing Study Plan.

  14. The Next Generation of Science Standards: Implications for Biology Education

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2012-01-01

    The release of A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2012) provides the basis for the next generation of science standards. This article first describes that foundation for the life sciences; it then presents a draft standard for natural selection and evolution. Finally, there is a…

  15. NANOTECHNOLOGY WHITE PAPER | Science Inventory | US ...

    EPA Pesticide Factsheets

    Nanotechnology is the science of manipulating materials at the atomic and molecular level to develop new or enhanced materials and products. In December 2004, EPA’s Science Policy Council created a cross-Agency workgroup to identify and describe the issues EPA must address to ensure protection of human health and the environment as this new technology is developed. The draft white paper on nanotechnology is the product of the workgroup. The draft white paper describes the technology, and provides a discussion of the potential environmental benefits of nanotechnology and its applications that can foster sustainable use of resources. Risk management issues and the Agency’s statutory mandates are outlined, followed by an extensive discussion of risk assessment issues. The paper identifies research needs for both environmental applications and implications of nanotechnology and concludes with recommendations on next steps for addressing science policy issues and research needs. Supplemental information is provided in a number of appendices. The Agency will use the white paper to address research needs and risk assessment issues concerning nanotechnology. The draft white paper will undergo independent expert review, which will be conducted in the February time frame. All public comments received by January 31, 2006 will be submitted to the external review panel for their consideration. Comments received beyond that time will be considered by EPA. Follo

  16. A study of atmospheric dispersion of radionuclides at a coastal site using a modified Gaussian model and a mesoscale sea breeze model

    NASA Astrophysics Data System (ADS)

    Venkatesan, R.; Mathiyarasu, R.; Somayaji, K. M.

    Ground level concentration and sky-shine dose due to radioactive emissions from a nuclear power plant at a coastal site have been estimated using the standard Gaussian Plume Model (GPM) and the modified GPM suggested by Misra (Atmospheric Environment 14 (1980) 397), which incorporates fumigation effect under sea breeze condition. The difference in results between these two models is analysed in order to understand their significance and errors that would occur if proper choice were not made. Radioactive sky-shine dose from 41Ar, emitted from a 100 m stack of the nuclear plant is continuously recorded by environmental gamma dose monitors and the data is used to validate the modified GPM. It is observed that the dose values increase by a factor of about 2 times than those of the standard GPM estimates, up to a downwind distance of 6 km during sea breeze hours. In order to examine the dispersion of radioactive effluents in the mesoscale range, a sea breeze model coupled with a particle dispersion model is used. The deposited activity, thyroid dose and sky-shine radioactive dose are simulated for a range of 30 km. In this range, the plume is found to deviate from its straight-line trajectory, as otherwise assumed in GPM. A secondary maximum in the concentration and the sky-shine dose is also observed in the model results. These results are quite significant in realistically estimating the area affected under any unlikely event of an accidental release of radioactivity.

  17. The assessment of Global Precipitation Measurement estimates over the Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Murali Krishna, U. V.; Das, Subrata Kumar; Deshpande, Sachin M.; Doiphode, S. L.; Pandithurai, G.

    2017-08-01

    Accurate and real-time precipitation estimation is a challenging task for current and future spaceborne measurements, which is essential to understand the global hydrological cycle. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing the global precipitation characteristics. The purpose of the GPM is to enhance the spatiotemporal resolution of global precipitation. The main objective of the present study is to assess the rainfall products from the GPM, especially the Integrated Multi-satellitE Retrievals for the GPM (IMERG) data by comparing with the ground-based observations. The multitemporal scale evaluations of rainfall involving subdaily, diurnal, monthly, and seasonal scales were performed over the Indian subcontinent. The comparison shows that the IMERG performed better than the Tropical Rainfall Measuring Mission (TRMM)-3B42, although both rainfall products underestimated the observed rainfall compared to the ground-based measurements. The analyses also reveal that the TRMM-3B42 and IMERG data sets are able to represent the large-scale monsoon rainfall spatial features but are having region-specific biases. The IMERG shows significant improvement in low rainfall estimates compared to the TRMM-3B42 for selected regions. In the spatial distribution, the IMERG shows higher rain rates compared to the TRMM-3B42, due to its enhanced spatial and temporal resolutions. Apart from this, the characteristics of raindrop size distribution (DSD) obtained from the GPM mission dual-frequency precipitation radar is assessed over the complex mountain terrain site in the Western Ghats, India, using the DSD measured by a Joss-Waldvogel disdrometer.

  18. IRIS Toxicological Review of Inorganic Arsenic (Cancer) ...

    EPA Pesticide Factsheets

    On February 19, 2010, the draft IRIS Toxicological Review of Inorganic Arsenic (Cancer) external review draft document and the charge to external peer reviewers were released for public review and comment. The draft document and the charge to external peer reviewers were reviewed internally by EPA and by other federal agencies and White House Offices before public release. In the new IRIS process, introduced by the EPA Administrator, all written comments on IRIS assessments submitted by other federal agencies and White House Offices will be made publicly available. Accordingly, interagency comments and the interagency science consultation draft of the Toxicological Review of Inorganic Arsenic and the charge to external peer reviewers are posted on this site. This draft IRIS health assessment addresses only cancer human health effects that may result from chronic exposure to this chemical. An assessment of noncancer health effects of inorganic arsenic will be released for external peer review and public comment at a later date.

  19. 76 FR 64327 - Office of Oceanic and Atmospheric Research Draft Strategic Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... science integrity. Ultimately, this plan provides the framework that OAR will use to deliver significant benefits to society while working to advance NOAA's mission of science, service, and stewardship. Dated...

  20. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... later model year light-duty vehicles at low altitude and 1982 and later model year vehicles at high altitude to which high altitude certification standards of 1.5 gpm HC and 15 gpm CO or less apply), short... model year light-duty trucks at low altitude and 1982 and later model year trucks at high altitude to...

  1. Use of Seawater for Fighting Electrical Fires

    DTIC Science & Technology

    1989-05-25

    56,300 microsiemens/cm, after mixing with the AFFF concentrate (3M Company’s FC 206 CE brand). In view of this similarity in conductivity, it is not...gpm Nozzle ... ...... 7 Feecon Dual Agent Nozzle, 95 gpm ... ...... 7 Portable AFFF Extinguisher .... ......... 7 EXPERIMENTAL PROCEDURES...29 Fresh Watet "Oest ..... .............. . 29 AFFF Test ...... .................. . 29 Proposed Type III Nozzle Test Results .... 29

  2. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  3. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  4. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  5. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  6. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  7. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    NASA Technical Reports Server (NTRS)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  8. 75 FR 71702 - Science Advisory Board Staff Office; Request for Nominations of Experts for Review of EPA's Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Nominations of Experts for Review of EPA's Draft Technical Report Pertaining to Uranium and Thorium In-Situ... expectation is that In-Situ Leach Recovery (ISL/ISR) operations will be the most common type of new uranium... pertaining to Uranium In-Situ Leach Recovery--Post-Closure Stability Monitoring can be found at the following...

  9. Global Precipitation Measurement (GPM) Mission

    NASA Image and Video Library

    2014-02-23

    Minamitane elementary school girls pose for a photo in front of a sign featuring the town's mascot "Chuta-kun", Sunday, Feb. 23, 2014, Tanegashima Island, Japan. The Chuta-kun mascot rides a rocket and has guns on the side of his helmet to show the areas history as the site of the first known contact of Europe and the Japanese, in 1543 and the introduction of the gun. A Japanese H-IIA rocket carrying the NASA-Japan Aerospace Exploration Agency (JAXA), Global Precipitation Measurement (GPM) Core Observatory is planned for launch from the space center on Feb. 28, 2014. Once launched, the GPM spacecraft will collect information that unifies data from an international network of existing and future satellites to map global rainfall and snowfall every three hours. Photo Credit: (NASA/Bill Ingalls)

  10. KSC-2009-4341

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – NASA Administrator Charles Bolden (left) and Japan Aerospace Exploration Agency, or JAXA, President Keiji Tachikawa sign an agreement defining the terms of cooperation between the agencies on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-4344

    NASA Image and Video Library

    2009-07-31

    CAPE CANAVERAL, Fla. – NASA Administrator Charles Bolden (left) and Japan Aerospace Exploration Agency, or JAXA, President Keiji Tachikawa pose for photographers after signing an agreement defining the terms of cooperation between NASA and JAXA on the Global Precipitation Measurement, or GPM, mission. The ceremony took place July 30 at the Kennedy Space Center Visitor Complex, Fla. Through the agreement, NASA is responsible for the GPM core observatory spacecraft bus, the GPM Microwave Imager, or GMI, carried by it, and a second GMI to be flown on a partner-provided Low-Inclination Observatory. JAXA will supply the Dual-frequency Precipitation Radar for the core observatory, an H-IIA rocket for the core observatory's launch in July 2013, and data from a conical-scanning microwave imager on the upcoming Global Change Observation Mission satellite. Photo credit: NASA/Jack Pfaller

  12. Anticipated Improvements in Precipitation Physics and Understanding of Water Cycle from GPM Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2003-01-01

    The GPM mission is currently planned for start in the late-2007 to early-2008 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like core satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe -- continuously. The constellation s orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly AS1 in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave the way for what is expected to become an internationally-organized operational global precipitation observing system. Notably, the broad societal applications of GPM are reflected in the United Nation s identification of GPM as a foremost candidate for its Peaceful Uses of Space Program. An overview of the GPM mission design is given, followed by an explanation of its scientific agenda as an outgrowth of making improvements in rain retrieval accuracy, microphysics dexterity, sampling frequency, and global coverage. All of these improvements offer new means to observe variability in precipitation and water cycle fluxes and to achieve improved predictability of weather, climate, and hydrometeorology. Specifically, the scientific agenda of GPM has been designed to leverage the measurement improvements to improve prognostic model performance, particularly quantitative precipitation forecasting and its linked phenomena at short, intermediate, and extended time scales. The talk addresses how GPM measurements will enable better detection of accelerations and decelerations in regional and global water cycle processes and their relationship to climate variability, better impacts of precipitation data assimilation on numerical weather prediction and global climate reanalysis, and better performance from basin scale hydrometeorological models for short and long term flood-drought forecasting and seasonal fresh water resource assessment. These improvements become possible by using more accurate, more microphysically-centric, more frequent, and fully global precipitation observations to achieve better water budget closure and to provide more realistic forcing and assessment of prediction models.

  13. Integrated Science Assessment (ISA) for Carbon Monoxide ...

    EPA Pesticide Factsheets

    EPA announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA's decision regarding whether the current standards for CO sufficiently protect public health and the environment. The Integrated Plan for Review of the NAAQS for CO {U.S. EPA, 2008 #8615} identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that it, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions during the NAAQS review:

  14. 77 FR 52025 - Notification of a Public Teleconference of the Science Advisory Board; Exposure and Human Health...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ... Science Advisory Board; Exposure and Human Health Committee AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA) Science Advisory Board (SAB) Staff... draft report concerning EPA's application of computational toxicology (CompTox) data in risk assessment...

  15. 77 FR 41185 - Notification of Public Teleconferences of the Science Advisory Board Animal Feeding Operations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9699-7] Notification of Public Teleconferences of the Science...). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA or Agency) Science Advisory Board (SAB... Panel (AFO Panel) to discuss additional EPA data and the Panel's draft advisory report regarding EPA...

  16. 75 FR 54628 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... a Public Teleconference of the Science Advisory Board; Polycyclic Aromatic Hydrocarbon (PAH... Hydrocarbon (PAH) Mixtures Review Panel to discuss its draft report on EPA's Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures. DATES: The SAB PAH Mixtures...

  17. 78 FR 53144 - Request for Nominations of Experts To Augment the Science Advisory Board Chemical Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... Science Advisory Board Chemical Assessment Advisory Committee for the Review of the EPA's Draft... Ethylene Oxide AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The EPA Science... policies. The National Center for Environmental Assessment (NCEA) in the EPA's Office of Research and...

  18. Status Update on the GPM Ground Validation Iowa Flood Studies (IFloodS) Field Experiment

    NASA Astrophysics Data System (ADS)

    Petersen, Walt; Krajewski, Witold

    2013-04-01

    The overarching objective of integrated hydrologic ground validation activities supporting the Global Precipitation Measurement Mission (GPM) is to provide better understanding of the strengths and limitations of the satellite products, in the context of hydrologic applications. To this end, the GPM Ground Validation (GV) program is conducting the first of several hydrology-oriented field efforts: the Iowa Flood Studies (IFloodS) experiment. IFloodS will be conducted in the central to northeastern part of Iowa in Midwestern United States during the months of April-June, 2013. Specific science objectives and related goals for the IFloodS experiment can be summarized as follows: 1. Quantify the physical characteristics and space/time variability of rain (rates, DSD, process/"regime") and map to satellite rainfall retrieval uncertainty. 2. Assess satellite rainfall retrieval uncertainties at instantaneous to daily time scales and evaluate propagation/impact of uncertainty in flood-prediction. 3. Assess hydrologic predictive skill as a function of space/time scales, basin morphology, and land use/cover. 4. Discern the relative roles of rainfall quantities such as rate and accumulation as compared to other factors (e.g. transport of water in the drainage network) in flood genesis. 5. Refine approaches to "integrated hydrologic GV" concept based on IFloodS experiences and apply to future GPM Integrated GV field efforts. These objectives will be achieved via the deployment of the NASA NPOL S-band and D3R Ka/Ku-band dual-polarimetric radars, University of Iowa X-band dual-polarimetric radars, a large network of paired rain gauge platforms with attendant soil moisture and temperature probes, a large network of both 2D Video and Parsivel disdrometers, and USDA-ARS gauge and soil-moisture measurements (in collaboration with the NASA SMAP mission). The aforementioned measurements will be used to complement existing operational WSR-88D S-band polarimetric radar measurements, USGS streamflow, and Iowa Flood Center stream monitoring measurements. Coincident satellite datasets will be archived from current microwave imaging and sounding radiometers flying on NOAA, DMSP, NASA, and EU (METOP) low-earth orbiters, and rapid-scanned IR datasets collected from geostationary (GOES) platforms. Collectively the observational assets will provide a means to create high quality (time and space sampling) ground "reference" rainfall and stream flow datasets. The ground reference radar and rainfall datasets will provide a means to assess uncertainties in both satellite algorithms (physics) and products. Subsequently, the impact of uncertainties in the satellite products can be evaluated in coupled weather, land-surface and distributed hydrologic modeling frameworks as related to flood prediction.

  19. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation satellites. Both of these gridded products are generated for a.25 degree x.25 degree hourly grid, which are packaged into daily ASCII (American Standard Code for Information Interchange) files that can downloaded from the PPS FTP (File Transfer Protocol) site. To reduce the download size, the files are compressed using the gzip utility.This paper will focus on presenting high-level details about the gridded text product being generated from the instruments on the GPM core satellite. But summary information will also be presented about the partner radiometer gridded product. All retrievals for the partner radiometer are done using the GPROF2014 algorithmusing as input the PPS generated inter-calibrated 1C product for the radiometer.

  20. Inventory of File nam.t00z.awiphi00.tm00.grib2

    Science.gov Websites

    Factor [non-dim] 041 50 mb HGT analysis Geopotential Height [gpm] 042 50 mb TMP analysis Temperature [K /kg] 052 50 mb RIME analysis Rime Factor [non-dim] 053 75 mb HGT analysis Geopotential Height [gpm SNMR analysis Snow Mixing Ratio [kg/kg] 064 75 mb RIME analysis Rime Factor [non-dim] 065 100 mb HGT

  1. An Open-Book Modular Watershed Modeling Framework for Rapid Prototyping of GPM- based Flood Forecasting in International River Basins

    NASA Astrophysics Data System (ADS)

    Katiyar, N.; Hossain, F.

    2006-05-01

    Floods have always been disastrous for human life. It accounts for about 15 % of the total death related to natural disasters. There are around 263 transboundary river basins listed by UNESCO, wherein at least 30 countries have more than 95% of their territory locked in one or more such transboundary basins. For flood forecasting in the lower riparian nations of these International River Basins (IRBs), real-time rainfall data from upstream nations is naturally the most critical factor governing the forecasting effectiveness. However, many upstream nations fail to provide data to the lower riparian nations due to a lack of in-situ rainfall measurement infrastructure or a lack of a treaty for real-time sharing of rainfall data. A potential solution is therefore to use satellites that inherently measure rainfall across political boundaries. NASA's proposed Global Precipitation Measurement (GPM) mission appears very promising in providing this vital rainfall information under the data- limited scenario that will continue to prevail in most IRBs. However, satellite rainfall is associated with uncertainty and hence, proper characterization of the satellite rainfall error propagation in hydrologic models for flood forecasting is a critical priority that should be resolved in the coming years in anticipation of GPM. In this study, we assess an open book modular watershed modeling approach for estimating the expected error in flood forecasting related to GPM rainfall data. Our motivation stems from the critical challenge in identifying the specific IRBs that would benefit from a pre-programmed satellite-based forecasting system in anticipation of GPM. As the number of flood-prone IRBs is large, conventional data-intensive implementation of existing physically-based distributed hydrologic models on case-by-case IRBs is considered time-consuming for completing such a global assessment. A more parsimonious approach is justified at the expense of a tolerable loss of detail and accuracy. Through assessment of our proposed modular modeling framework, we present our initial understanding in resolving the fundamental question - Can a parsimonious open-book watershed modeling framework be a physically consistent proxy for rapid and global identification of IRBs in greater need of a GPM-based flood forecasting system?

  2. First evaluation of the utility of GPM precipitation in global flood monitoring

    NASA Astrophysics Data System (ADS)

    Wu, H.; Yan, Y.; Gao, Z.

    2017-12-01

    The Global Flood Monitoring System (GFMS) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations (Wu et al., 2014). It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of the Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (4 hrs) and "late" (12 hrs) products for operational use. Specifically, this study is focused on (1) understanding the difference between the new IMERG products and other existing satellite precipitation products, e.g., TMPA, CMORPH, and ground observations; (2) addressing the challenge in the usage of the IMERG for flood monitoring through hydrologic models, given that only a short period of precipitation data record has been accumulated since the lunch of GPM in 2014; and (3) comparing the statistics of flood simulation based on the DRIVE model with IMERG, TMPA, CMORPH etc. as precipitation inputs respectively. Derivation of a global threshold map is a necessary step to define flood events out of modelling results, which requires a relatively longer historic information. A set of sensitivity tests are conducted by adjusting IMERG's light, moderate, heavy rain to existing precipitation products with long-term records separately, to optimize the strategy of PDF matching. Other aspects are also examined, including higher latitude events, where GPM precipitation algorithms should also provide improvements. This study provides a first evaluating the utility of the new IMERG products in flood monitoring through hydrologic modeling at a global scale.

  3. Intercomparison of spaceborne precipitation radars and its applications in examining precipitation-topography relationships in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Tang, G.; Gao, J.; Long, D.

    2017-12-01

    Precipitation is one of the most important components in the water and energy cycles. Spaceborne radars are considered the most direct technology for observing precipitation from space since 1998. This study compares and evaluates the only three existing spaceborne precipitation radars, i.e., the Ku-band precipitation radar (TRMM PR), the W-band Cloud Profiling Radar (CloudSat CPR), and the Ku/Ka-band Dual-frequency Precipitation Radar (GPM DPR). In addition, TRMM PR and GPM DPR are evaluated against hourly rain gauge data in Mainland China. The Tibetan Plateau (TP) is known as the Earth's third pole where precipitation is affected profoundly by topography. However, ground gauges are extremely sparse in the TP, and spaceborne radars can provide valuable data with relatively high accuracy. The relationships between precipitation and topography over the TP are investigated using 17-year TRMM PR data and 2-year GPM DPR data, in combination with rain gauge data. Results indicate that: (1) DPR and PR agree with each other and correlate very well with gauges in Mainland China. DPR improves light precipitation detectability significantly compared with PR. However, DPR high sensitivity scans (HS) deviates from DPR normal and matched scans (NS and MS) and PR in the comparison based on global coincident events and rain gauges in China; (2) CPR outperforms the other two radars in terms of light precipitation detection. In terms of global snowfall estimation, DPR and CPR show very different global snowfall distributions originating from different frequencies, retrieval algorithms, and sampling characteristics; and (3) Precipitation generally decreases exponentially with increasing elevation in the TP. The precipitation-topography relationships are regressed using exponential fitting in seventeen river basins in the TP with good coefficients of determination. Due to the short time span of GPM DPR, the relationships based on GPM DPR data are less robust than those derived from TRMM PR data. The Level-3 precipitation products, i.e., GPM IMERG and GSMaP, can reproduce the general pattern on how precipitation varies with elevation but misrepresent some important details.

  4. Initial Results in Global Flood Monitoring System (GFMS) Using GPM Data

    NASA Astrophysics Data System (ADS)

    Wu, H.; Adler, R. F.; Kirschbaum, D.; Huffman, G. J.; Tian, Y.

    2016-12-01

    The Global Flood Monitoring System (GFMS) (http://flood.umd.edu) has been developed and used to provide real-time flood detection and streamflow estimates over the last few years with significant success shown by validation against global flood event data sets and observed streamflow variations. It has become a tool for various national and international organizations to appraise flood conditions in various areas, including where rainfall and hydrology information is limited. The GFMS has been using the TRMM Multi-satellite Precipitation Analysis (TMPA) as its main rainfall input. Now, with the advent of NASA's Global Precipitation Measurement (GPM) mission there is an opportunity to significantly improve global flood monitoring and forecasting. GPM's Integrated Multi-satellitE Retrievals for GPM (IMERG) multi-satellite product is designed to take advantage of various technical advances in the field and combine that with an efficient processing system producing "early" (4 hrs) and "late" (12 hrs) products for operational use. The products are also more uniform in results than TMPA among the various satellites going into the analysis and available at finer time and space resolutions. On the road to replacing TMPA with the IMERG in the operational version of the GFMS parallel systems were run for periods to understand the impact of the new type of data on the streamflow and flood estimates. Results of this comparison are the basis for this presentation. It is expected that an improvement will be noted both in the accuracy of the precipitation estimates and a smoother transition in and out of heavy rain events, helping to reduce "shock" in the hydrology model. The finer spatial resolution should also help in this regard. The GFMS will be initially run at its primary resolution of 1/8th degree latitude/longitude with both data sets to isolate the impact of the rain information change. Other aspects will also be examined, including higher latitude events, where GPM precipitation algorithms should also provide improvements. This initial work will help focus full implementation of the IMERG into GFMS and the retrospective calculations to be done for the full TRMM/GPM era.

  5. 78 FR 79706 - Office of the Assistant Secretary-Water and Science; Draft Environmental Assessment of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...The Department of the Interior (Department), the Utah Reclamation Mitigation and Conservation Commission (Mitigation Commission), and the Central Utah Water Conservancy District (CUWCD), as joint leads, are evaluating the impacts of a proposed increase in operation, maintenance and replacement activities associated with the Wasatch County Water Efficiency Project (WCWEP) and have prepared a Draft Environmental Assessment.

  6. Characterizing the physical-basis of orographic rainfall retrieval errors due to terrain artifacts on GPM-DPR reflectivity profiles

    NASA Astrophysics Data System (ADS)

    Arulraj, M.; Barros, A. P.

    2017-12-01

    GPM-DPR reflectivity profiles in mountainous regions are severely handicapped by low level ground-clutter artifacts which have different error characteristics depending on landform (upwind slopes of high mountains versus complex topography in middle-mountains) and precipitation regime. These artifacts result in high detection and estimation errors especially in mid-latitude and tropical mountain regions where low-level light precipitation and complex multi-layer clouds interact with incoming storms. Here, we present results assessment studies in the Southern Appalachian Mountains (SAM) and preliminary results over the eastern slopes of the Andes using ground-based observations from the long-term hydrometeorological networks and model studies toward developing a physically-based framework to systematically identify and attribute measurement errors. Specifically, the focus is on events when GPM-DPR Ka- and Ku- Band precipitation radar misses low-level precipitation with vertical altitude less than 2 km AGL (above ground level). For this purpose, ground-based MRR and Parsivel disdrometer observations near the surface are compared with the reflectivity profiles observed by the GPM-DPR overpasses, the raindrop-size spectra are used to classify the precipitation regime associated with different classes of detection and estimation errors. This information will be used along with a coupled rainfall dynamics and radar simulator model to 1) merge the low-level GPM-DPR measured reflectivity with the MRR reflectivities optimally under strict physically-based constraints and 2) build a library of reflectivity profile corrections. Finally, preliminary 4D analysis of the organization of reflectivity correction modes, microphysical regimes, topography and storm environment will be presented toward developing a general physically-based error model.

  7. Towards the Development of a Global Precipitation Measurement Mission Concept

    NASA Astrophysics Data System (ADS)

    Shepherd, J. M.

    2001-12-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study-Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-20008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia, government, and the private sector.

  8. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  9. 76 FR 6784 - Science Advisory Board Staff Office; Notification of Two Public Teleconferences of the Science...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ... Two Public Teleconferences of the Science Advisory Board Dioxin Review Panel AGENCY: Environmental... two public teleconferences of the SAB Dioxin Review Panel to discuss its draft advisory report concerning EPA's Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments, External...

  10. 76 FR 12732 - Science Advisory Board Staff Office; Notification of a Public Teleconference of the Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9277-5] Science Advisory Board Staff Office; Notification of... Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA or Agency) Science... inquiry regarding EPA's draft monitoring documents for NO X and SO X should be directed to Dr. Richard...

  11. 77 FR 56202 - Notification of an External Peer Review Meeting for the Draft Framework for Human Health Risk...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... the Science Advisor announces that Versar, Inc., a contractor to the EPA, will convene an independent...: Julie Fitzpatrick, Office of the Science Advisor, Mail Code 8105-R, U.S. Environmental Protection Agency... recommendations presented in the National Research Council's report Science and Decisions: Advancing Risk...

  12. A Critical Review of the Massachusetts Next Generation Science and Technology/Engineering Standards. Policy Brief

    ERIC Educational Resources Information Center

    Metzenberg, Stan

    2015-01-01

    Stan Metzenberg offers a critical analysis of the draft "Massachusetts Science and Technology/Engineering Standards," which are for pre-Kindergarten to Grade 8 and introductory high school courses. Metzenberg claims that the document reveals significant, unacceptable gaps in science content, as well as some notable errors and…

  13. Occupationally Related Science. Draft Curriculum 1986-87.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Div. of Occupational Education Programs.

    To prepare occupational students for employment, a basic understanding of scientific knowledge and the processes of science that have been applied in the development of tools, machines, instruments, and technological techniques or processes should be taught. When a second unit of science was included for all high school students in the New York…

  14. [Common law, civil law: thinking about the tools of the judge in bioethics].

    PubMed

    Baudouin, Jean-Louis

    2006-01-01

    Civilian and common law judges differ substantially in their approach to the resolution of issues concerning bioethics and health sciences. Whereas the civilian judge will first take into account the legislative source, his common law counterpart will most probably first look at judicial precedents for guidance. In both systems, however, the legislative drafting technique differs substantially and has a direct impact on judicial interpretation of the law. Both systems also differ in the way that judicial decisions are drafted and rendered. In the common law tradition, judges draft their own opinion, leaving the possibility of dissent which, in turn, helps to better illustrate contentious issues and may have an influence on social awareness of difficult problems. Finally, in bioethics, legislation should be preferred if only for a question of social legitimacy, since decisions are then taken by elected representatives. However, this type of legislation should be subject to periodical review to better adapt its rules to the evolution of science and society.

  15. Inventory of File nam.t00z.awipak00.tm00.grib2

    Science.gov Websites

    Rime Factor [non-dim] 009 1 hybrid level HGT analysis Geopotential Height [gpm] 010 1 hybrid level TMP [kg/kg] 040 30 mb SNMR analysis Snow Mixing Ratio [kg/kg] 041 30 mb RIME analysis Rime Factor [non-dim Factor [non-dim] 054 75 mb HGT analysis Geopotential Height [gpm] 055 75 mb TMP analysis Temperature [K

  16. Recent Observations of Clouds and Precipitation by the Airborne Precipitation Radar 2nd Generation in Support of the GPM and ACE Missions

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Tanelli, Simone; Im, Eastwood

    2012-01-01

    In this paper we illustrate the unique dataset collected during the Global Precipitation Measurement Cold-season Precipitation Experiment (GCPEx, US/Canada Jan/Feb 2012). We will focus on the significance of these observations for the development of algorithms for GPM and ACE, with particular attention to classification and retrievals of frozen and mixed phase hydrometeors.

  17. Technical Subjects. Mathematics. Science. Curriculum RP-27.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto.

    GRADES OR AGES: Grades 9-12. SUBJECT MATTER: Technical subjects and special mathematics and science courses for technical students. Technical subjects include air conditioning, auto mechanics, carpentry, drafting, applied electronics, masonry, painting, plumbing, service station operation, welding, and woodworking. ORGANIZATION AND PHYSICAL…

  18. 75 FR 4043 - Science Advisory Board; Draft Report of the NOAA Science Advisory Board Oceans and Health Working...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ...: January 20, 2010. Mark E. Brown, Chief Financial Officer, Office of Oceanic and Atmospheric Research... decide to entertain: (1) What are NOAA's unique and important scientific roles in addressing ocean health...

  19. Speculations on the Growth of Ethnobotanical Nomenclature

    ERIC Educational Resources Information Center

    Berlin, Brent

    1972-01-01

    Earlier draft of this paper prepared with the fellowship support of the Center for Advanced Study in the Behavioral Sciences and a grant from the National Science Foundation, and distributed as Working Paper No. 39, Language-Behavior Research Laboratory (March 1971). (VM)

  20. RE:RE: Comments on the Draft US EPA Document Toxicological Review of Inorganic Arsenic: In Support of the Summary Information on the Integrated Risk Information System (IRIS).

    EPA Pesticide Factsheets

    Letter from the Organic Arsenical Products Task Force expressing concern about aspects of the Science Advisory Board Workgroup's review of a draft document Toxicological Review of Inorganic Arsenic: In Support of the Summary Information on the Integrated Risk Information System (IRIS) and decision not to grant more time to prepare for meeting.

  1. Inventory of File nam.t00z.hawaiinest.hiresf06.tm00.gr

    Science.gov Websites

    Water Equivalent [kg/m^2/s] 628 surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K

  2. Inventory of File nam.t00z.firewxnest.hiresf06.tm00.gr

    Science.gov Websites

    Water Equivalent [kg/m^2/s] 628 surface NCPCP 5-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K

  3. Inventory of File nam.t00z.alaskanest.hiresf06.tm00.gr

    Science.gov Websites

    Water Equivalent [kg/m^2/s] 628 surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K

  4. Inventory of File nam.t00z.conusnest.hiresf06.tm00.gri

    Science.gov Websites

    Water Equivalent [kg/m^2/s] 628 surface NCPCP 3-6 hour acc Large-Scale Precipitation (non-convective [non-dim] 010 1 hybrid level HGT 6 hour fcst Geopotential Height [gpm] 011 1 hybrid level TMP 6 hour [non-dim] 056 50 mb HGT 6 hour fcst Geopotential Height [gpm] 057 50 mb TMP 6 hour fcst Temperature [K

  5. Solutions Network Formulation Report. The Potential Contribution of the International GPM Program to the NOAA Estuarine Reserves Division's System-wide Monitoring Program

    NASA Technical Reports Server (NTRS)

    Hilbert, Kent; Anderson, Daniel; Lewis, David

    2007-01-01

    Data collected via the International GPM Program could be used to provide a solution for the NOAA Estuarine Reserves Division s System-wide Monitoring Program by augmenting in situ rainfall measurements with data acquired via future satellite-acquired precipitation data. This Candidate Solution is in alignment with the Coastal Management National Application and will benefit society by assisting in estuary preservation.

  6. Global Precipitation Measurement Program and the Development of Dual-Frequency Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Iguchi, Toshio; Oki, Riko; Smith, Eric A.; Furuhama, Yoji

    2002-01-01

    The Global Precipitation Measurement (GPM) program is a mission to measure precipitation from space, and is a similar but much expanded mission of the Tropical Rainfall Measuring Mission. Its scope is not limited to scientific research, but includes practical and operational applications such as weather forecasting and water resource management. To meet the requirements of operational use, the GPM uses multiple low-orbiting satellites to increase the sampling frequency and to create three-hourly global rain maps that will be delivered to the world in quasi-real time. A dual-frequency radar (DPR) will be installed on the primary satellite that plays an important role in the whole mission. The DPR will realize measurement of precipitation with high sensitivity, high precision and high resolutions. This paper describes an outline of the GPM program, its issues and the roles and development of the DPR.

  7. Gain-phase modulation in chirped-pulse amplification

    NASA Astrophysics Data System (ADS)

    Shen, Yijie; Gao, Gan; Meng, Yuan; Fu, Xing; Gong, Mali

    2017-10-01

    The cross-modulation between the gain and chirped phase in chirped-pulse amplification (CPA) is theoretically and experimentally demonstrated. We propose a gain-phase coupled nonlinear Schrödinger equation (GPC-NLSE) for solving chirped-pulse propagation in a nonlinear gain medium involved in the gain-phase modulation (GPM) process. With the GPC-NLSE, the space-time-frequency-dependent gain, chirped phase, pulse, and spectrum evolutions can be precisely calculated. Moreover, a short-length high-gain Yb-doped fiber CPA experiment is presented in which a self-steepening distortion of the seed pulse is automatically compensated after amplification. This phenomenon can be explained by the GPM theory whereas conventional models cannot. The experimental results for the temporal and spectral intensities show excellent agreement with our theory. Our GPM theory paves the way for further investigations of the finer structures of the pulse and spectrum in CPA systems.

  8. Reconciling CloudSat and GPM Estimates of Falling Snow

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Jackson, Gail Skofronick; Kulie, Mark; Wood, Norm; Miliani, Lisa

    2017-01-01

    Satellite-based estimates of falling snow have been provided by CloudSat (launched in 2006) and the Global Precipitation Measurement (GPM) core satellite (launched in 2014). The CloudSat estimates are derived from W-band radar measurements whereas the GPM estimates are derived from its scanning Ku- and Ka-band Dual-Frequency Precipitation Radar (DPR) and 13-channel microwave imager (GMI). Each platform has advantages and disadvantages: CloudSat has higher resolution (approximately 1.5 km) and much better sensitivity (-28 dBZ), but poorer sampling (nadir-only and daytime-only since 2011) and the reflectivity-snowfall (Z-S) relationship is poorly constrained with single-frequency measurements. Meanwhile, DPR suffers from relatively poor resolution (5 km) and sensitivity (approximately 13 dBZ), but has cross-track scanning capability to cover a 245-km swath. Additionally, where Ku and Ka measurements are available, the conversion of reflectivity to snowfall rate is better-constrained than with a single frequency.

  9. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    NASA Astrophysics Data System (ADS)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and total precipitable water. One year of coincident observations, generating 20 and 80 million database entries, depending upon the sensor, are used in the retrieval algorithm. The remaining areas such as sea ice and high latitude coastal zones are filled with a combination of CloudSat and AMSR-E plus MHS observations together with a model to create the equivalent databases for other radiometers in the constellation. The most noteworthy result from the Day-1 algorithm is the quality of the land products when compared to existing products. Unlike previous versions of land algorithms that depended upon complex screening routines to decide if pixels were precipitating or not, the current scheme is free of conditional rain statements and appears to produce rain rate with much greater fidelity than previous schemes. There results will be shown.

  10. Stepping Into Science Data: Data Visualization in Virtual Reality

    NASA Astrophysics Data System (ADS)

    Skolnik, S.

    2017-12-01

    Have you ever seen people get really excited about science data? Navteca, along with the Earth Science Technology Office (ESTO), within the Earth Science Division of NASA's Science Mission Directorate have been exploring virtual reality (VR) technology for the next generation of Earth science technology information systems. One of their first joint experiments was visualizing climate data from the Goddard Earth Observing System Model (GEOS) in VR, and the resulting visualizations greatly excited the scientific community. This presentation will share the value of VR for science, such as the capability of permitting the observer to interact with data rendered in real-time, make selections, and view volumetric data in an innovative way. Using interactive VR hardware (headset and controllers), the viewer steps into the data visualizations, physically moving through three-dimensional structures that are traditionally displayed as layers or slices, such as cloud and storm systems from NASA's Global Precipitation Measurement (GPM). Results from displaying this precipitation and cloud data show that there is interesting potential for scientific visualization, 3D/4D visualizations, and inter-disciplinary studies using VR. Additionally, VR visualizations can be leveraged as 360 content for scientific communication and outreach and VR can be used as a tool to engage policy and decision makers, as well as the public.

  11. 75 FR 71701 - Science Advisory Board Staff Office; Request for Nominations of Experts for the Review of a Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... fluctuation in microbial populations. The EPA Office of the Science Advisor's Risk Assessment Forum has.... Kathryn Gallagher, Executive Director, Risk Assessment Forum, Office of the Science Advisor US EPA, Mail... person or organization may nominate qualified individuals in the areas of expertise described above for...

  12. 76 FR 10342 - Availability of Fiscal Years 2011-2016 Draft Strategic Plan and Request for Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... ">[email protected] hq.doe.gov . Michael Holland, Office of the Under Secretary for Science at (202) 586-0505, or e-mail [email protected]science.doe.gov . SUPPLEMENTARY INFORMATION: The DOE was established in... clear goals for DOE's four main business lines: nuclear security, environmental clean-up, science and...

  13. 78 FR 3824 - Draft Qualitative Risk Assessment of Risk of Activity/Food Combinations for Activities (Outside...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... available electronically at http://www.regulations.gov and at http://www.fda.gov/Food/ScienceResearch.... Available at: http://www.fda.gov/Food/ScienceResearch/ResearchAreas/RiskAssessmentSafetyAssessment/default...) Conducted in a Facility Co-Located on a Farm,'' 2012. Available at: http://www.fda.gov/ScienceResearch...

  14. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    EPA Pesticide Factsheets

    EPA announced the availability of the external review draft of the Integrated Science Assessment for Sulfur Oxides– Health Criteria for public comment and independent peer review in a November 24, 2015 Federal Register Notice. This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The Integrated Plan for Review of the Primary NAAQS for SOx U.S. 2: EPA (2007) identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions in completing the NAAQS review.

  15. The Global Precipitation Measurement (GPM) Project

    NASA Technical Reports Server (NTRS)

    Azarbarazin, Ardeshir Art; Carlisle, Candace C.

    2008-01-01

    The GIobd Precipitation hleasurement (GPM) mission is an international cooperatiee ffort to advance weather, climate, and hydrological predictions through space-based precipitation measurements. The Core Observatory will be a reference standard to uniform11 calibrate data from a constellatism of spacecraft with passive microuave sensors. GP3l mission data will be used for scientific research as well as societal applications. GPM is being developed under a partnership between the United States (US) National .Aeronautics and Space Administration (XASA) and the Japanese Aerospace and Exploration Agency (JAYA). NASA is developing the Core Observatory, a Low-Inclination Constellation Observatory, two GPM Rlicrowave Imager (GXII) instruments. Ground Validation System and Precipitation Processing System for the GPRl mission. JAXA will provide a Dual-frequency Precipitation Radar (DPR) for installation on the Core satellite and launch services for the Core Observatory. Other US agencies and international partners contribute to the GPkf mission by providing precipitation measurements obtained from their own spacecraft and,'or providing ground-based precipitation measurements to support ground validation activities. The GPM Core Observatory will be placed in a low earth orbit (-400 krn) with 65-degree inclination, in order to calibrate partner instruments in a variety of orbits. The Core Observatory accommodates 3 instruments. The GkfI instrument provides measurements of precipitation intensity and distribution. The DPR consists of Ka and Ku band instruments, and provides threedimensional measurements of cloud structure, precipitation particle size distribution and precipitation intensitj and distribution. The instruments are key drivers for GPM Core Observatory overall size (1 1.6m x 6.5m x 5.0m) and mass (3500kg), as well as the significant (-1 950U.3 power requirement. The Core Spacecraft is being built in-house at Goddard Space Flight Center. The spacecraft structure consists of an aluminum lower bus structure. composite upper bus structure, '-axis steerable High Gain Antenna System on a dual-hinged boom, and two deploy able solar arraq s. The propulsion system features twelve thrusters and a single Composite OverlvapP ressure Vessel tank. The GPhl Core spacecraft is one of the first large spacecraft developed to be demiseable (i.e. burn up upon atmospheric reentry j. The spacecraft dernissable components-- structure. propulsion tank, lithium-ion battery, sotar array md reaction wheels. are a unique fcature.

  16. The new Cloud Dynamics and Radiation Database algorithms for AMSR2 and GMI: exploitation of the GPM observational database for operational applications

    NASA Astrophysics Data System (ADS)

    Cinzia Marra, Anna; Casella, Daniele; Martins Costa do Amaral, Lia; Sanò, Paolo; Dietrich, Stefano; Panegrossi, Giulia

    2017-04-01

    Two new precipitation retrieval algorithms for the Advanced Microwave Scanning Radiometer 2 (AMSR2) and for the GPM Microwave Imager (GMI) are presented. The algorithms are based on the Cloud Dynamics and Radiation Database (CDRD) Bayesian approach and represent an evolution of the previous version applied to Special Sensor Microwave Imager/Sounder (SSMIS) observations, and used operationally within the EUMETSAT Satellite Application Facility on support to Operational Hydrology and Water Management (H-SAF). These new products present as main innovation the use of an extended database entirely empirical, derived from coincident radar and radiometer observations from the NASA/JAXA Global Precipitation Measurement Core Observatory (GPM-CO) (Dual-frequency Precipitation Radar-DPR and GMI). The other new aspects are: 1) a new rain-no-rain screening approach; 2) the use of Empirical Orthogonal Functions (EOF) and Canonical Correlation Analysis (CCA) both in the screening approach, and in the Bayesian algorithm; 2) the use of new meteorological and environmental ancillary variables to categorize the database and mitigate the problem of non-uniqueness of the retrieval solution; 3) the development and implementations of specific modules for computational time minimization. The CDRD algorithms for AMSR2 and GMI are able to handle an extremely large observational database available from GPM-CO and provide the rainfall estimate with minimum latency, making them suitable for near-real time hydrological and operational applications. As far as CDRD for AMSR2, a verification study over Italy using ground-based radar data and over the MSG full disk area using coincident GPM-CO/AMSR2 observations has been carried out. Results show remarkable AMSR2 capabilities for rainfall rate (RR) retrieval over ocean (for RR > 0.25 mm/h), good capabilities over vegetated land (for RR > 1 mm/h), while for coastal areas the results are less certain. Comparisons with NASA GPM products, and with ground-based radar data, show that CDRD for AMSR2 is able to depict very well the areas of high precipitation over all surface types. Similarly, preliminary results of the application of CDRD for GMI are also shown and discussed, highlighting the advantage of the availability of high frequency channels (> 90 GHz) for precipitation retrieval over land and coastal areas.

  17. Research on TRMM and GPM Through Collaboration Between JAXA & NASA

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2003-01-01

    The Japan Aerospace Exploration Agency (JAXA) is conducting joint research with the Communications Research Laboratory (CRL) and the National Aeronautics and Space Administration (NASA) on a new constellation satellite observation project called Global Precipitation Measurement (GPM), the main satellite of which is planned for launch in 2008 by JAXA. This GPM project was proposed as a follow-up mission to the Tropical Rainfall Measuring Mission (TRMM) by both the Japanese and American sides based on the unparalleled scientific success of TRMM. A major reason for TRMM's success was the use of the worlds first spaceborne rain radar, the Precipitation Radar (PR) system developed by the National Space Development Agency of Japan (NASDA, now JAXA) and CRL. Measurements from this instrument have ushered in many new scientific findings and have opened a new era of precipitation measuring from space. GPM is an ambitious project which will produce accurate and frequent global observations of precipitation (both rain and snow) made possible by replacing TRMM with a new core satellite carrying an advanced radar-radiometer system, and serving as the centerpiece for a constellation of some eight (8) additional satellites being provided through international cooperation. The core satellite is to be flown up to high latitudes (inclined some 65-70 degrees), and will carry a dual-frequency precipitation radar (DPR) that will be newly developed by JAXA and CRL, along with a large aperture, extended frequency-range passive microwave radiometer being provided by NASA. Each constellation satellite will also carry some type of multi-channel passive microwave radiometer whose rain estimates will be calibrated and referenced to those made by the core satellite, producing for the first time fully-global, continuous, and bias-free precipitation datasets. GPM data will be delivered in near-realtime, taking a major step toward the operational use of precipitation information for model initialization and data assimilation in a number of application areas such as hazardous weather forecasting, flood warning, fresh water resource assessment, and crop growth prediction. In addition, GPM data will complement the now-existing global temperature record, allowing for improved assessments of climate change, particularly those processes in which the global water cycle both forces and responds to climatic drifts in global temperature conditions.

  18. IRIS Toxicological Review of Dichloromethane (Methylene ...

    EPA Pesticide Factsheets

    EPA is releasing the draft report, Toxicological Review of Dichloromethane, that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. The draft Toxicological Review of Dichloromethane provides scientific support and rationale for the hazard and dose-response assessment pertaining to chronic exposure to dichloromethane.

  19. Ground-water geology of Karnes County, Texas

    USGS Publications Warehouse

    Anders, Robert B.

    1963-01-01

    Most of the usable ground water in Karnes County is of substandard quality; whereas water from the San Antonio River, although hard, is of excellent quality. Wells tapping the Carrizo may yield as much as 1,000 gpm in the northwestern part of the county; wells in the shallower formations may yield as much as 600 gpm in the most favorable areas, but in some places may yield only a few gallons per minute of water suitable only for stock.

  20. Assessment of the GPM and TRMM Precipitation Products Using the Rain Gauge Network over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zhang, Sijia; Wang, Donghai; Qin, Zhengkun; Zheng, Yaoyao; Guo, Jianping

    2018-04-01

    Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement (GPM) Integrated MultisatellitE Retrievals for GPM (IMERG) and its predecessor, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), are statistically evaluated over the Tibetan Plateau (TP), with an emphasis on the diurnal variation. The results indicate that: (1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m; (2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and (3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion, GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.

  1. USSR Report, Science and Technology Policy.

    DTIC Science & Technology

    1987-05-22

    aspect of scientific communication. It is well known that the history of science abounds in debates which are connected with factual, theoretical, and...community on the given question. The study of the forms of debate in the history of science clearly demonstrates the nature of the scientific community as...interdisciplinary research in the history of science . The plan of the State Commission for the Electrification of Russia, which was drafted in 1920 on

  2. Reflections on nursing practice science: the nature, the structure, and the foundation of nursing sciences.

    PubMed

    Orem, Dorothea E; Taylor, Susan G

    2011-01-01

    In preparation for the self-care deficit nursing theory conference to be held in Ulm, Germany in 2004, Dorothea Orem and I reflected on the development of nursing science. Orem drafted this paper which I edited. The International Orem Society is sharing this paper with Nursing Science Quarterly as presented to the conference as a memorial to Orem and her work.

  3. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave the way for what ultimately is expected to become an internationally-organized operational global precipitation observing system. Notably, the broad societal applications of GPM are reflected in the United Nation s identification of this mission as a foremost candidate for its Peaceful Uses of Space Program. In this presentation, an overview of the GPM mission design will be presented, followed by an explanation of its scientific agenda as an outgrowth of making improvements in rain retrieval accuracy, microphysics dexterity, sampling frequency, and global coverage. All of these improvements offer new means to observe variability in precipitation and water cycle fluxes and to achieve improved predictability of weather, climate, and hydrometeorology. Specifically, the scientific agenda of GPM has been designed to leverage the measurement improvements to improve prognostic model performance, particularly quantitative precipitation forecasting and its linked phenomena at short, intermediate, and extended time scales. The talk will address how GPM measurements will enable better detection of accelerations and decelerations in regional and global water cycle processes and their relationship to climate variability, better impacts of precipitation data assimilation on numerical weather prediction and global climate reanalysis, and better performance from basin scale hydrometeorological models for short and long term flood-drought forecasting and seasonal fresh water resource assessment. Improved hydrometeorological forecasting will be possible by using continuous global precipitation observations to obtain better closure in water budgets and to generate more realistic forcing of the models themselves to achieve more accurate estimates of interception, infiltration, evaporation/transpiration fluxes, storage, and runoff.

  4. Water Cycling &the GPM Mission

    NASA Astrophysics Data System (ADS)

    Smith, E. A.

    2003-04-01

    The GPM mission is currently planned for start in the late'07 - early'08 time frame. Its main scientific goal is to help answer pressing scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve 3-hour sampling at any spot on the globe - continuously. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the "core" satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrates to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, involving existing, pending, projected, and under-study partnerships which will link NASA and NOAA in the US, NASDA in Japan, ESA in Europe, ISRO in India, CNES in France, and possibly ASI in Italy, KARI in South Korea, CSA in Canada, and AEB in Brazil. Additionally, the program is actively pursuing agreements with other international collaborators and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave the way for what ultimately is expected to become an internationally-organized operational global precipitation observing system. Notably, the broad societal applications of GPM are reflected in the United Nation's identification of this mission as a foremost candidate for its Peaceful Uses of Space Program. An overview of the GPM mission design is given, followed by an explanation of its scientific agenda as an outgrowth of making improvements in rain retrieval accuracy, microphysics dexterity, sampling frequency, and global coverage. All of these improvements offer new means to observe variability in precipitation and water cycle fluxes, to improve water budget closure at regional and global scales, and to leverage these improvements in achieving improved predictability of weather, climate, and hydrometeorology. Specifically, the scientific agenda of GPM has been designed to leverage the measurement improvements to improve prognostic model performance, particularly quantitative precipitation forecasting and its linked phenomena at short, intermediate, and extended time scales. The talk addresses how GPM measurements will enable more accurate satellite-based calculations of the water cycle relative to where things stand today (two examples will be provided), and how such measurements can be used to evaluate accelerations and decelerations in regional and global water cycle processes and thus improve our understanding of water-driven climatic shifts. These improvements become possible by using more accurate, more microphysically-centric, more frequent, and fully global precipitation observations to achieve better water budget closure and to provide more realistic forcing and assessment of prediction models.

  5. Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria

    NASA Astrophysics Data System (ADS)

    O, Sungmin; Foelsche, Ulrich; Kirchengast, Gottfried; Fuchsberger, Juergen; Tan, Jackson; Petersen, Walter A.

    2017-12-01

    The Global Precipitation Measurement (GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) products provide quasi-global (60° N-60° S) precipitation estimates, beginning March 2014, from the combined use of passive microwave (PMW) and infrared (IR) satellites comprising the GPM constellation. The IMERG products are available in the form of near-real-time data, i.e., IMERG Early and Late, and in the form of post-real-time research data, i.e., IMERG Final, after monthly rain gauge analysis is received and taken into account. In this study, IMERG version 3 Early, Late, and Final (IMERG-E,IMERG-L, and IMERG-F) half-hourly rainfall estimates are compared with gauge-based gridded rainfall data from the WegenerNet Feldbach region (WEGN) high-density climate station network in southeastern Austria. The comparison is conducted over two IMERG 0.1° × 0.1° grid cells, entirely covered by 40 and 39 WEGN stations each, using data from the extended summer season (April-October) for the first two years of the GPM mission. The entire data are divided into two rainfall intensity ranges (low and high) and two seasons (warm and hot), and we evaluate the performance of IMERG, using both statistical and graphical methods. Results show that IMERG-F rainfall estimates are in the best overall agreement with the WEGN data, followed by IMERG-L and IMERG-E estimates, particularly for the hot season. We also illustrate, through rainfall event cases, how insufficient PMW sources and errors in motion vectors can lead to wide discrepancies in the IMERG estimates. Finally, by applying the method of Villarini and Krajewski (2007), we find that IMERG-F half-hourly rainfall estimates can be regarded as a 25 min gauge accumulation, with an offset of +40 min relative to its nominal time.

  6. Improving Database Simulations for Bayesian Precipitation Retrieval using Non-Spherical Ice Particles

    NASA Astrophysics Data System (ADS)

    Ringerud, S.; Skofronick Jackson, G.; Kulie, M.; Randel, D.

    2016-12-01

    NASA's Global Precipitation Measurement Mission (GPM) provides a wealth of both active and passive microwave observations aimed at furthering understanding of global precipitation and the hydrologic cycle. Employing a constellation of passive microwave radiometers increases global coverage and sampling, while the core satellite acts as a transfer standard, enabling consistent retrievals across individual constellation members. The transfer standard is applied in the form of a physically based a priori database constructed for use in Bayesian retrieval algorithms for each radiometer. The database is constructed using hydrometeor profiles optimized for the best fit to simultaneous active/passive core satellite measurements via the GPM Combined Algorithm. Initial validation of GPM rainfall products using the combined database suggests high retrieval errors for convective precipitation over land and at high latitudes. In such regimes, the signal from ice scattering observed at the higher microwave frequencies becomes particularly important for detecting and retrieving precipitation. For cross-track sounders such as MHS and SAPHIR, this signal is crucial. It is therefore important that the scattering signals associated with precipitation are accurately represented and modeled in the retrieval database. In the current GPM combined retrieval and constellation databases, ice hydrometeors are represented as "fluffy spheres", with assumed density and scattering parameters calculated using Mie theory. Resulting simulated Tb agree reasonably well at frequencies up to 89 GHz, but show significant biases at higher frequencies. In this work the database is recreated using an ensemble of non-spherical ice particles with single scattering properties calculated using discrete dipole approximation. Simulated Tb agreement is significantly improved across the high frequencies, decreasing biases by an order of magnitude in several of the channels. The new database is applied for a sample of GPM constellation retrievals and the retrieved precipitation rates compared, to demonstrate areas where the use of more complex ice particles will have the greatest effect upon the final retrievals.

  7. Towards combining GPM and MFG observations to monitor near real time heavy precipitation at fine scale over India and nearby oceanic regions

    NASA Astrophysics Data System (ADS)

    Mishra, Anoop; Rafiq, Mohammd

    2017-12-01

    This is the first attempt to merge highly accurate precipitation estimates from Global Precipitation Measurement (GPM) with gap free satellite observations from Meteosat to develop a regional rainfall monitoring algorithm to estimate heavy rainfall over India and nearby oceanic regions. Rainfall signature is derived from Meteosat observations and is co-located against rainfall from GPM to establish a relationship between rainfall and signature for various rainy seasons. This relationship can be used to monitor rainfall over India and nearby oceanic regions. Performance of this technique was tested by applying it to monitor heavy precipitation over India. It is reported that our algorithm is able to detect heavy rainfall. It is also reported that present algorithm overestimates rainfall areal spread as compared to rain gauge based rainfall product. This deficiency may arise from various factors including uncertainty caused by use of different sensors from different platforms (difference in viewing geometry from MFG and GPM), poor relationship between warm rain (light rain) and IR brightness temperature, and weak characterization of orographic rain from IR signature. We validated hourly rainfall estimated from the present approach with independent observations from GPM. We also validated daily rainfall from this approach with rain gauge based product from India Meteorological Department (IMD). Present technique shows a Correlation Coefficient (CC) of 0.76, a bias of -2.72 mm, a Root Mean Square Error (RMSE) of 10.82 mm, Probability of Detection (POD) of 0.74, False Alarm Ratio (FAR) of 0.34 and a Skill score of 0.36 with daily rainfall from rain gauge based product of IMD at 0.25° resolution. However, FAR reduces to 0.24 for heavy rainfall events. Validation results with rain gauge observations reveal that present technique outperforms available satellite based rainfall estimates for monitoring heavy rainfall over Indian region.

  8. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mitra, Ashis K.; AghaKouchak, Amir; Liu, Zhong; Norouzi, Hamidreza; Pai, D. S.

    2018-01-01

    Following the launch of the Global Precipitation Measurement (GPM) Core Observatory, two advanced high resolution multi-satellite precipitation products namely, Integrated Multi-satellitE Retrievals for GPM (IMERG) and Global Satellite Mapping of Precipitation (GSMaP) version 6 are released. A critical evaluation of these newly released precipitation data sets is very important for both the end users and data developers. This study provides a comprehensive assessment of IMERG research product and GSMaP estimates over India at a daily scale for the southwest monsoon season (June to September 2014). The GPM-based precipitation products are inter-compared with widely used TRMM Multi-satellite Precipitation Analysis (TMPA), and gauge-based observations over India. Results show that the IMERG estimates represent the mean monsoon rainfall and its variability more realistically than the gauge-adjusted TMPA and GSMaP data. However, GSMaP has relatively smaller root-mean-square error than IMERG and TMPA, especially over the low mean rainfall regimes and along the west coast of India. An entropy-based approach is employed to evaluate the distributions of the selected precipitation products. The results indicate that the distribution of precipitation in IMERG and GSMaP has been improved markedly, especially for low precipitation rates. IMERG shows a clear improvement in missed and false precipitation bias over India. However, all the three satellite-based rainfall estimates show exceptionally smaller correlation coefficient, larger RMSE, larger negative total bias and hit bias over the northeast India where precipitation is dominated by orographic effects. Similarly, the three satellite-based estimates show larger false precipitation over the southeast peninsular India which is a rain-shadow region. The categorical verification confirms that these satellite-based rainfall estimates have difficulties in detection of rain over the southeast peninsula and northeast India. These preliminary results need to be confirmed in other monsoon seasons in future studies when the fully GPM-based IMERG retrospectively processed data prior to 2014 are available.

  9. Visualization of GPM Standard Products at the Precipitation Processing System (PPS)

    NASA Astrophysics Data System (ADS)

    Kelley, O.

    2010-12-01

    Many of the standard data products for the Global Precipitation Measurement (GPM) constellation of satellites will be generated at and distributed by the Precipitation Processing System (PPS) at NASA Goddard. PPS will provide several means to visualize these data products. These visualization tools will be used internally by PPS analysts to investigate potential anomalies in the data files, and these tools will also be made available to researchers. Currently, a free data viewer called THOR, the Tool for High-resolution Observation Review, can be downloaded and installed on Linux, Windows, and Mac OS X systems. THOR can display swath and grid products, and to a limited degree, the low-level data packets that the satellite itself transmits to the ground system. Observations collected since the 1997 launch of the Tropical Rainfall Measuring Mission (TRMM) satellite can be downloaded from the PPS FTP archive, and in the future, many of the GPM standard products will also be available from this FTP site. To provide easy access to this 80 terabyte and growing archive, PPS currently operates an on-line ordering tool called STORM that provides geographic and time searches, browse-image display, and the ability to order user-specified subsets of standard data files. Prior to the anticipated 2013 launch of the GPM core satellite, PPS will expand its visualization tools by integrating an on-line version of THOR within STORM to provide on-the-fly image creation of any portion of an archived data file at a user-specified degree of magnification. PPS will also provide OpenDAP access to the data archive and OGC WMS image creation of both swath and gridded data products. During the GPM era, PPS will continue to provide realtime globally-gridded 3-hour rainfall estimates to the public in a compact binary format (3B42RT) and in a GIS format (2-byte TIFF images + ESRI WorldFiles).

  10. Development of ground-water supplies at Mississippi test facility, Hancock County, Mississippi

    USGS Publications Warehouse

    Newcome, Roy

    1967-01-01

    Potable and industrial water supplies at the National Aeronautics and Space Administration's Mississippi Test Facility in Hancock County, Miss., are obtained from large-capacity wells that tap southward-dipping water-bearing sands of Miocene and Pliocene age. The fresh-water-bearing section is 2,000-3,000 feet thick in the area, and individual aquifers are as thick as 450 feet. Aquifer thickness is not constant over large areas, however; and 100 feet is a more common thickness. Three wells installed for potable water supply are 1,434-1,524 feet deep and have produced 1,100-2,500 gpm (gallons per minute) by natural flow. Artesian pressure is sufficient to provide a static head as high as 90 feet above land surface. Planned use rate for two of the wells is about 600 gpm each and for the third, 1,250 gpm. Water for cooling Saturn rocket test-stand deflectors is obtained from three wells 1,873, 1,695, and 672 feet deep. The production rates of these wells are 3,100, 4,500, and 5,000 gpm, respectively; the wells are capable of supplying 7.5 million gallons in a 10-hour period (18 million gallons per day). Artesian head for the aquifers tapped by these wells ranges from 104 feet above land surface for the deepest aquifer to 15 feet for the shallowest. Aquifer transmissibilities determined in pumping tests range from 81,000 to 200,000 gallons per day per foot. Specific capacities of the wells range from a 15 to 47 gpm per foot of drawdown. Water from the supply wells is soft and of good quality. Dissolved solids range from 236 to 315 parts per million. The water is a sodium bicarbonate type, with high pH. The concentration of iron is less than 0.3 part per million. Water temperatures range from 79?F in the shallowest supply well to 100?F in the deepest.

  11. Draft genome sequence of Lactobacillus mali KCTC 3596.

    PubMed

    Kim, Dong-Wook; Choi, Sang-Haeng; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dae-Soo; Kim, Ryong Nam; Kim, Aeri; Park, Hong-Seog

    2011-09-01

    We announce the draft genome sequence of the type strain Lactobacillus mali KCTC 3596 (2,652,969 bp, with a G+C content of 36.0%), which is one of the most prevalent lactic acid bacteria present during the manufacturing process of apple juice. The genome consists of 122 large contigs (>100 bp). All of the contigs were assembled by Newbler Assembler 2.3 (454 Life Science). Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  12. EPA's Science Plan for Activities Related to Dioxins in the ...

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency is currently addressing several issues related to dioxins and dioxin-like chemicals in the environment. These include the comprehensive human health and exposure assessment for dioxin, commonly called the dioxin reassessment and a review of dioxin soil clean-up levels currently in use across the United States. To move forward with both of these efforts, as well as other dioxin related activities, a plan with interim milestones has been developed and it is outlined below. EPA’sExposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin(TCDD) and Related Compounds; Response to NAS and Completion of Dioxin Reassessment 1. EPA will release a draft report that responds to the recommendations and comments included in the National Academy of Sciences’ (NAS) 2006 review of EPA’s 2003 draft dioxin reassessment. UPDATED May 21, 2010: The draft response to comments report titled EPA’s Reanalysis of Key Issues Related to Dioxin Toxicity and Response to NAS Comments (External Review Draft) (“Draft Dioxin Reanalysis”) was completed and released for public review and comment on May 21, 2010. EPA’s National Center for Environment Assessment (NCEA) in the Office of Research and Development, will prepare a limited response to key comments and recommendations in the NAS report (draft response to comments report). The draft response will focus on dose-response

  13. This Week @NASA - September 22, 2017

    NASA Image and Video Library

    2017-09-22

    Satellite data continues to enable weather forecasters to look inside and outside of powerful hurricanes. Imagery from NOAA's GOES East satellite, captured Sept. 17 to Sept. 20, shows Hurricane Jose along the U.S. east coast, and Hurricane Maria, as it moved through the Leeward Islands, strengthening to a Category 5 hurricane, and making landfall in Puerto Rico. Meanwhile, The Global Precipitation Measurement (GPM) satellite found rain falling inside Maria at a rate of over 6.44 inches per hour in powerful storms that reached above 9.7 miles high. Also, SpaceX Dragon Returns with Science, Katherine Johnson Research Facility Opened, Earth’s Gravity Assist to OSIRIS-REx, Hubble Spots Asteroids Orbiting Each Other, and Engineering the Future!

  14. Precipitation Estimates for Hydroelectricity

    NASA Technical Reports Server (NTRS)

    Tapiador, Francisco J.; Hou, Arthur Y.; de Castro, Manuel; Checa, Ramiro; Cuartero, Fernando; Barros, Ana P.

    2011-01-01

    Hydroelectric plants require precise and timely estimates of rain, snow and other hydrometeors for operations. However, it is far from being a trivial task to measure and predict precipitation. This paper presents the linkages between precipitation science and hydroelectricity, and in doing so it provides insight into current research directions that are relevant for this renewable energy. Methods described include radars, disdrometers, satellites and numerical models. Two recent advances that have the potential of being highly beneficial for hydropower operations are featured: the Global Precipitation Measuring (GPM) mission, which represents an important leap forward in precipitation observations from space, and high performance computing (HPC) and grid technology, that allows building ensembles of numerical weather and climate models.

  15. Dynamic Emulation of NASA Missions for IVandV: A Case Study of JWST and SLS

    NASA Technical Reports Server (NTRS)

    Yokum, Steve

    2015-01-01

    Software-Only-Simulations are an emerging but quickly developing field of study throughout NASA. The NASA Independent Verification Validation (IVV) Independent Test Capability (ITC) team has been rapidly building a collection of simulators for a wide range of NASA missions. ITC specializes in full end-to-end simulations that enable developers, VV personnel, and operators to test-as-you-fly. In four years, the team has delivered a wide variety of spacecraft simulations ranging from low complexity science missions such as the Global Precipitation Management (GPM) satellite and the Deep Space Climate Observatory (DSCOVR), to the extremely complex missions such as the James Webb Space Telescope (JWST) and Space Launch System (SLS).

  16. 77 FR 64335 - Notification of a Public Teleconference of the Science Advisory Board; Perchlorate Advisory Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Science Advisory Board; Perchlorate Advisory Panel AGENCY: Environmental Protection Agency (EPA). ACTION... announces two public teleconferences of the SAB Perchlorate Advisory Panel to discuss its revised draft... Epidemiological Evidence to Develop a Maximum Contaminant Level Goal (MCLG) for Perchlorate. DATES: The public...

  17. 77 FR 18808 - Notification of Two Public Teleconferences of the Science Advisory Board; Libby Amphibole...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... Science Advisory Board; Libby Amphibole Asbestos Review Panel AGENCY: Environmental Protection Agency (EPA...) Staff Office announces two public teleconferences of the SAB Libby Amphibole Asbestos Panel to discuss the Panel's draft review report of EPA's Toxicological Review of Libby Amphibole Asbestos (August 2011...

  18. 78 FR 70040 - Draft Integrated Science Assessment for Nitrogen Oxides-Health Criteria

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-22

    ... (NO 2 ). The Integrated Science Assessment (ISA), in conjunction with additional technical and policy... the secondary (welfare-based) NAAQS for NO 2 , in conjunction with a review of the secondary NAAQS for... called an Air Quality Criteria Document). The ISA, in conjunction with additional technical and policy...

  19. 76 FR 38650 - Draft Integrated Science Assessment for Lead

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Science Assessment for Lead AGENCY: Environmental Protection Agency. ACTION: Notice of extension of public... Lead'' (EPA/600/R-10/075A). The original Federal Register notice announcing the public comment period... review of the National Ambient Air Quality Standards (NAAQS) for Lead. DATES: The public comment period...

  20. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Phosphorus Reduction Efforts in the Florida Everglades

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2009-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the CERP. Specifically, GPM measurements could augment in situ precipitation data that are used to model agricultural phosphorus discharged into the Everglades. This solution benefits society by aiding water resource managers in identifying effective phosphorus reduction scenarios and thereby returning the Everglades to a more natural state. This solution supports the Water Management, Coastal Management, and Ecological Forecasting National Applications.

  1. GPM Solar Array Gravity Negated Deployment Testing

    NASA Technical Reports Server (NTRS)

    Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso

    2014-01-01

    NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.

  2. The Development and Design of a Prototype Ultra High Pressure P-19 Firefighting Vehicle

    DTIC Science & Technology

    2007-02-03

    the energizing affects of a delivery pressure 4 times (approximately 1200 psi) the magnitude of the standard system at the bumper turret nozzle...permanently extinguish a fire. The onboard CAF system is capable of 300 gpm delivery of foam at approximately 165 psi out of the bumper turret, and a...hand line flowing 45 gpm at approximately 165 psi also. The dry chemical system is designed to flow approximately 7 pps from the bumper turret, and 5

  3. MX Siting Investigation. Volume IIC. Geotechnical Report, Nellis Air Force Base Bombing and Gunnery Range (NBGR).

    DTIC Science & Technology

    1975-06-30

    water holes in the mountain areas (Colton, 1965; Thordarson and Robinson, 1971; Winograd and others, 1971). Surface water conditions within NBGR are...gpm) to a maximum of over 400 gpm at Indian Spring ( Thordarson and Robinson, 1971). Most spring water not retained in catchments is lost to either...The earthquakes of Nevada and the tidal forces: Jour. Geophys. Research, v. 73, no. 18, p. 6013-6018. * Thordarson , W., and Robinson, B. P., 1971

  4. Intersatellite Calibration of Microwave Radiometers for GPM

    NASA Astrophysics Data System (ADS)

    Wilheit, T. T.

    2010-12-01

    The aim of the GPM mission is to measure precipitation globally with high temporal resolution by using a constellation of satellites logically united by the GPM Core Satellite which will be in a non-sunsynchronous, medium inclination orbit. The usefulness of the combined product depends on the consistency of precipitation retrievals from the various microwave radiometers. The calibration requirements for this consistency are quite daunting requiring a multi-layered approach. The radiometers can vary considerably in their frequencies, view angles, polarizations and spatial resolutions depending on their primary application and other constraints. The planned parametric algorithms will correct for the varying viewing parameters, but they are still vulnerable to calibration errors, both relative and absolute. The GPM Intersatellite Calibration Working Group (aka X-CAL) will adjust the calibration of all the radiometers to a common consensus standard for the GPM Level 1C product to be used in precipitation retrievals. Finally, each Precipitation Algorithm Working Group must have its own strategy for removing the residual errors. If the final adjustments are small, the credibility of the precipitation retrievals will be enhanced. Before intercomparing, the radiometers must be self consistent on a scan-wise and orbit-wise basis. Pre-screening for this consistency constitutes the first step in the intercomparison. The radiometers are then compared pair-wise with the microwave radiometer (GMI) on the GPM Core Satellite. Two distinct approaches are used for sake of cross-checking the results. On the one hand, nearly simultaneous observations are collected at the cross-over points of the orbits and the observations of one are converted to virtual observations of the other using a radiative transfer model to permit comparisons. The complementary approach collects histograms of brightness temperature from each instrument. In each case a model is needed to translate the observations from one set of viewing parameters to those of the GMI. For the conically scanning window channel radiometers, the models are reasonably complete. Currently we have compared TMI with Windsat and arrived at a preliminary consensus calibration based on the pair. This consensus calibration standard has been applied to TMI and is currently being compared with AMSR-E on the Aqua satellite. In this way we are implementing a rolling wave spin-up of X-CAL. In this sense, the launch of GPM core will simply provide one more radiometer to the constellation; one hopes it will be the best calibrated. Water vapor and temperature sounders will use a different scenario. Some of the precipitation retrieval algorithms will use sounding channels. The GMI will include typical water vapor sounding channels. The radiances are ingested directly via 3DVAR and 4DVAR techniques into forecast models by many operational weather forecast agencies. The residuals and calibration adjustments of this process will provide a measure of the relative calibration errors throughout the constellation. The use of the ARM Southern Great Plains site as a benchmark for calibrating the more opaque channels is also being investigated.

  5. Data Visualization and Analysis Tools for the Global Precipitation Measurement (GPM) Validation Network

    NASA Technical Reports Server (NTRS)

    Morris, Kenneth R.; Schwaller, Mathew

    2010-01-01

    The Validation Network (VN) prototype for the Global Precipitation Measurement (GPM) Mission compares data from the Tropical Rainfall Measuring Mission (TRMM) satellite Precipitation Radar (PR) to similar measurements from U.S. and international operational weather radars. This prototype is a major component of the GPM Ground Validation System (GVS). The VN provides a means for the precipitation measurement community to identify and resolve significant discrepancies between the ground radar (GR) observations and similar satellite observations. The VN prototype is based on research results and computer code described by Anagnostou et al. (2001), Bolen and Chandrasekar (2000), and Liao et al. (2001), and has previously been described by Morris, et al. (2007). Morris and Schwaller (2009) describe the PR-GR volume-matching algorithm used to create the VN match-up data set used for the comparisons. This paper describes software tools that have been developed for visualization and statistical analysis of the original and volume matched PR and GR data.

  6. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  7. The Effect of Attending Good Psychiatric Management (GPM) Workshops on Attitudes Toward Patients With Borderline Personality Disorder.

    PubMed

    Keuroghlian, Alex S; Palmer, Brian A; Choi-Kain, Lois W; Borba, Christina P C; Links, Paul S; Gunderson, John G

    2016-08-01

    The effect that attending a 1-day workshop on Good Psychiatric Management (GPM) had on attitudes about borderline personality disorder (BPD) was assessed among 297 clinicians. Change was recorded by comparing before and after scores on a 9-item survey previously developed to assess the effects of workshops on Systems Training for Emotional Predictability and Problem Solving (STEPPS). Participants reported decreased inclination to avoid borderline patients, dislike of borderline patients, and belief that BPD's prognosis is hopeless, as well as increased feeling of competence, belief that borderline patients have low self-esteem, feeling of being able to make a positive difference, and belief that effective psychotherapies exist. Less clinical experience was related to an increased feeling of competence and belief that borderline patients have low self-esteem. These findings were compared to those from the STEPPS workshop. This assessment demonstrates GPM's potential for training clinicians to meet population-wide needs related to borderline personality disorder.

  8. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  9. Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture

    PubMed Central

    Li, Lingling; Wang, Pengchong; Chao, Kuei-Hsiang; Zhou, Yatong; Xie, Yang

    2016-01-01

    The remaining useful life (RUL) prediction of Lithium-ion batteries is closely related to the capacity degeneration trajectories. Due to the self-charging and the capacity regeneration, the trajectories have the property of multimodality. Traditional prediction models such as the support vector machines (SVM) or the Gaussian Process regression (GPR) cannot accurately characterize this multimodality. This paper proposes a novel RUL prediction method based on the Gaussian Process Mixture (GPM). It can process multimodality by fitting different segments of trajectories with different GPR models separately, such that the tiny differences among these segments can be revealed. The method is demonstrated to be effective for prediction by the excellent predictive result of the experiments on the two commercial and chargeable Type 1850 Lithium-ion batteries, provided by NASA. The performance comparison among the models illustrates that the GPM is more accurate than the SVM and the GPR. In addition, GPM can yield the predictive confidence interval, which makes the prediction more reliable than that of traditional models. PMID:27632176

  10. From TRMM to GPM: How well can heavy rainfall be detected from space?

    NASA Astrophysics Data System (ADS)

    Prakash, Satya; Mitra, Ashis K.; Pai, D. S.; AghaKouchak, Amir

    2016-02-01

    In this study, we investigate the capabilities of the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and the recently released Integrated Multi-satellitE Retrievals for GPM (IMERG) in detecting and estimating heavy rainfall across India. First, the study analyzes TMPA data products over a 17-year period (1998-2014). While TMPA and reference gauge-based observations show similar mean monthly variations of conditional heavy rainfall events, the multi-satellite product systematically overestimates its inter-annual variations. Categorical as well as volumetric skill scores reveal that TMPA over-detects heavy rainfall events (above 75th percentile of reference data), but it shows reasonable performance in capturing the volume of heavy rain across the country. An initial assessment of the GPM-based multi-satellite IMERG precipitation estimates for the southwest monsoon season shows notable improvements over TMPA in capturing heavy rainfall over India. The recently released IMERG shows promising results to help improve modeling of hydrological extremes (e.g., floods and landslides) using satellite observations.

  11. IRIS Toxicological Review of Ethyl Tertiary Butyl Ether (Etbe) ...

    EPA Pesticide Factsheets

    In September 2016, the U.S. Environmental Protection Agency's (USEPA) released the draft Integrated Risk Information System (IRIS) Toxicological Review of Ethyl Tertiary Butyl Ether (ETBE). Consistent with the 2013 IRIS Enhancements, draft IRIS assessments are released prior to external peer review for a 60-day public comment period and discussed at an upcoming public science meeting. Accordingly, the toxicological review, supplementary information, and other materials pertaining to this draft assessment are posted on this site. This material is being released for public viewing and comment prior to a public meeting, providing an opportunity for the IRIS Program to engage in early discussions with stakeholders and the public on data that may be used to identify adverse health effects and characterize exposure-response relationships.

  12. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  13. Evaluation of the Sarex (trade name) 5-gpm oil-water separator, Type B. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musa, G.D.

    1986-06-01

    This report covers an investigation conducted to evaluate the operational effectiveness of the Sarex 5 GPM Oil-Water Separator, Type B. The results of this study indicate that the Sarex 5 GPM Oil-Water Separator, Type B, is an effective method for the removal of crude oil from feedwater. The Sarex 5 GPM Oil-Water Separator Type B, could be operated under field conditions. An efficient and effective oil-water separator device is imperative in certain areas of the world where crude-oil contaminated feedwater is found. The presence of crude oil in the feedwater adversely affects the performance of the reverse osmosis water-purification unitsmore » (ROWPUs) used by the Army and Marines to purify fresh, brackish, and salt water. Both the 600 GPH ROWPU and the 150,000 GPD ROWPU use multi-media and cartridge filters for the removal of suspended solids from the feedwater before they enter the reverse-osmosis membranes. Removal of the crude oil, which affixes to the filters, is accomplished by a laborious cleaning process or by replacement of the filters. Crude oil or a derived soluble oil passing the filters and entering the reverse osmosis elements would result in decreased production rate, degradation of the membrane elements, and decreased quality of product water. Thus, satisfactory operation of the ROWPU in this scenario is dependent upon an efficient and effective oil-water separator device.« less

  14. IRIS Toxicological Review of Trichloroacetic Acid (TCA) ...

    EPA Pesticide Factsheets

    EPA is releasing the draft report, Toxicological Review of Trichloroacetic Acid (TCA), that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. The draft Toxicological Review of Trichloroacetic Acid provides scientific support and rationale for the hazard identification and dose-response assessment pertaining to chronic exposure to trichloroacetic acid.

  15. Current Status of Japan's Activity for GPM/DPR and Global Rainfall Map algorithm development

    NASA Astrophysics Data System (ADS)

    Kachi, M.; Kubota, T.; Yoshida, N.; Kida, S.; Oki, R.; Iguchi, T.; Nakamura, K.

    2012-04-01

    The Global Precipitation Measurement (GPM) mission is composed of two categories of satellites; 1) a Tropical Rainfall Measuring Mission (TRMM)-like non-sun-synchronous orbit satellite (GPM Core Observatory); and 2) constellation of satellites carrying microwave radiometer instruments. The GPM Core Observatory carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). GPM Core Observatory will be launched in February 2014, and development of algorithms is underway. DPR Level 1 algorithm, which provides DPR L1B product including received power, will be developed by the JAXA. The first version was submitted in March 2011. Development of the second version of DPR L1B algorithm (Version 2) will complete in March 2012. Version 2 algorithm includes all basic functions, preliminary database, HDF5 I/F, and minimum error handling. Pre-launch code will be developed by the end of October 2012. DPR Level 2 algorithm has been developing by the DPR Algorithm Team led by Japan, which is under the NASA-JAXA Joint Algorithm Team. The first version of GPM/DPR Level-2 Algorithm Theoretical Basis Document was completed on November 2010. The second version, "Baseline code", was completed in January 2012. Baseline code includes main module, and eight basic sub-modules (Preparation module, Vertical Profile module, Classification module, SRT module, DSD module, Solver module, Input module, and Output module.) The Level-2 algorithms will provide KuPR only products, KaPR only products, and Dual-frequency Precipitation products, with estimated precipitation rate, radar reflectivity, and precipitation information such as drop size distribution and bright band height. It is important to develop algorithm applicable to both TRMM/PR and KuPR in order to produce long-term continuous data set. Pre-launch code will be developed by autumn 2012. Global Rainfall Map algorithm has been developed by the Global Rainfall Map Algorithm Development Team in Japan. The algorithm succeeded heritages of the Global Satellite Mapping for Precipitation (GSMaP) project between 2002 and 2007, and near-real-time version operating at JAXA since 2007. "Baseline code" used current operational GSMaP code (V5.222,) and development completed in January 2012. Pre-launch code will be developed by autumn 2012, including update of database for rain type classification and rain/no-rain classification, and introduction of rain-gauge correction.

  16. GPM Mission Gridded Text Products Providing Surface Precipitation Retrievals

    NASA Astrophysics Data System (ADS)

    Stocker, Erich Franz; Kelley, Owen; Huffman, George; Kummerow, Christian

    2015-04-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar), and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMI/DPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for reseachers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations. This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments - GMI, DPR, and combined GMI/DPR (2) surface precipitation retrievals for the partner constellation satellites. Both of these gridded products are generated for a .25 degree x .25 degree hourly grid, which are packaged into daily ASCII files that can downloaded from the PPS FTP site. To reduce the download size, the files are compressed using the gzip utility. This paper will focus on presenting high-level details about the gridded text product being generated from the instruments on the GPM core satellite. But summary information will also be presented about the partner radiometer gridded product. All retrievals for the partner radiometer are done using the GPROF2014 algorithm using as input the PPS generated inter-calibrated 1C product for the radiometer.

  17. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Su, J.; Acker, J.; Huffman, G.; Vollmer, B.; Wei, J.; Meyer, D.

    2017-01-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. The collected and archived satellite data at 12 NASA data centers can also be used for STEM education and activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programming languages, etc. Over the years, many efforts including tools, training classes, and tutorials have been developed to improve satellite data access for users, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses a very popular online video sharing Web site, YouTube (https://www.youtube.com/), for accessing visualizations of our global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without the necessity to learn new software or download data. The dataset in this activity is a one-month animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellite Retrievals for GPM (IMERG). IMERG provides precipitation on a near-global (60 deg. N-S) coverage at half-hourly time interval, providing more details on precipitation processes and development compared to the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multisatellite Precipitation Analysis (TMPA, 3B42) product. When the retro-processing of IMERG during the TRMM era is finished in 2018, the entire video will contain more than 330,000 files and will last 3.6 hours. Future plans include development of flyover videos for orbital data for an entire satellite mission or project. All videos, including the one-month animation, will be uploaded and available at the GES DISC site on YouTube (https://www.youtube.com/user/NASAGESDISC).

  18. 77 FR 4584 - Sunshine Act Meetings; National Science Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... of a National Academy of Sciences/National Research Council study CPP Task Force on Unsolicited Mid... and December 13 meeting minutes Discussion of the MS Task Force draft report CSB Task Force on Data... Task Force Closing Remarks From the Chairman Committee on Audit and Oversight (A&O) Open Session: 4-4...

  19. Interactive Learning through Web-Mediated Peer Review of Student Science Reports

    ERIC Educational Resources Information Center

    Trautmann, Nancy M.

    2009-01-01

    Two studies analyzed impacts of writing and receiving web-mediated peer reviews on revision of research reports by undergraduate science students. After conducting toxicology experiments, 77 students posted draft reports and exchanged double-blind reviews. The first study randomly assigned students to four groups representing full, partial, or no…

  20. Structural Science Laboratory Supplement. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Luthens, Roger

    This module, a laboratory supplement on the theory of bending and properties of sections, is part of a first-year, postsecondary structural science technical support course for architectural drafting and design. The first part of this two-part supplement is directed at the instructor and includes the following sections: program objectives; course…

Top