On the capability of SWARM for estimating time-variable gravity fields and mass variations
NASA Astrophysics Data System (ADS)
Reubelt, Tilo; Baur, Oliver; Weigelt, Matthias; Sneeuw, Nico
2013-04-01
Recently, the implementation of the GRACE Follow-On mission has been approved. However, this successor of GRACE is planned to become operational in 2017 at the earliest. In order to fill the impending gap of 3-4 years between GRACE and GRACE-FO, the capability of the magnetic field mission SWARM as a gap filler for time-variable gravity field determination has to be investigated. Since the three SWARM satellites, where two of them fly on a pendulum formation, are equipped with high-quality GPS receivers and accelerometers, orbit analysis from high-low Satellite-to-Satellite Tracking (hl-SST) can be applied for geopotential recovery. As data analysis from CHAMP and GRACE has shown, the detection of annual gravity signals and gravity trends from hl-SST is possible for long-wavelength features corresponding to a Gaussian radius of 1000 km, although the accuracy of a low-low SST mission like GRACE cannot be reached. However, since SWARM is a three-satellite constellation and might provide GPS data of higher quality compared to previous missions, improved gravity field recovery can be expected. We present detailed closed-loop simulation studies for a 5 years period based on time-variable gravity caused by mass changes in the hydrosphere, cryosphere and solid Earth. Models for these variations are used to simulate the SWARM satellite orbits. We recover time-variable gravity from orbit analysis adopting the acceleration approach. Finally, we convert time-variable gravity to mass change in order to compare with the a priori model input.
Time-variable gravity fields and ocean mass change from 37 months of kinematic Swarm orbits
NASA Astrophysics Data System (ADS)
Lück, Christina; Kusche, Jürgen; Rietbroek, Roelof; Löcher, Anno
2018-03-01
Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA) Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gürr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE) of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS) signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non-gravitational forces acting on the Swarm satellites is the key for reaching these accuracies. Our results have implications for sea level budget studies, but they may also guide further research in gravity field analysis schemes, including satellites not dedicated to gravity field studies.
Seismologic applications of GRACE time-variable gravity measurements
NASA Astrophysics Data System (ADS)
Li, Jin; Chen, Jianli; Zhang, Zizhan
2014-04-01
The Gravity Recovery and Climate Experiment (GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since 2002. As large earthquakes cause significant mass changes on and under the Earth's surface, GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission, GRACE has successfully detected seismic gravitational changes of several giant earthquakes, which include the 2004 Sumatra-Andaman earthquake, 2010 Maule (Chile) earthquake, and 2011 Tohoku-Oki (Japan) earthquake. In this review, we describe by examples how to process GRACE time-variable gravity data to retrieve seismic signals, and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.
Simulation Study of a Follow-on Gravity Mission to GRACE
NASA Technical Reports Server (NTRS)
Loomis, Bryant D.; Nerem, R. S.; Luthcke, Scott B.
2012-01-01
The gravity recovery and climate experiment (GRACE) has been providing monthly estimates of the Earth's time-variable gravity field since its launch in March 2002. The GRACE gravity estimates are used to study temporal mass variations on global and regional scales, which are largely caused by a redistribution of water mass in the Earth system. The accuracy of the GRACE gravity fields are primarily limited by the satellite-to-satellite range-rate measurement noise, accelerometer errors, attitude errors, orbit errors, and temporal aliasing caused by unmodeled high-frequency variations in the gravity signal. Recent work by Ball Aerospace and Technologies Corp., Boulder, CO has resulted in the successful development of an interferometric laser ranging system to specifically address the limitations of the K-band microwave ranging system that provides the satellite-to-satellite measurements for the GRACE mission. Full numerical simulations are performed for several possible configurations of a GRACE Follow-On (GFO) mission to determine if a future satellite gravity recovery mission equipped with a laser ranging system will provide better estimates of time-variable gravity, thus benefiting many areas of Earth systems research. The laser ranging system improves the range-rate measurement precision to approximately 0.6 nm/s as compared to approx. 0.2 micro-seconds for the GRACE K-band microwave ranging instrument. Four different mission scenarios are simulated to investigate the effect of the better instrument at two different altitudes. The first pair of simulated missions is flown at GRACE altitude (approx. 480 km) assuming on-board accelerometers with the same noise characteristics as those currently used for GRACE. The second pair of missions is flown at an altitude of approx. 250 km which requires a drag-free system to prevent satellite re-entry. In addition to allowing a lower satellite altitude, the drag-free system also reduces the errors associated with the accelerometer. All simulated mission scenarios assume a two satellite co-orbiting pair similar to GRACE in a near-polar, near-circular orbit. A method for local time variable gravity recovery through mass concentration blocks (mascons) is used to form simulated gravity estimates for Greenland and the Amazon region for three GFO configurations and GRACE. Simulation results show that the increased precision of the laser does not improve gravity estimation when flown with on-board accelerometers at the same altitude and spacecraft separation as GRACE, even when time-varying background models are not included. This study also shows that only modest improvement is realized for the best-case scenario (laser, low-altitude, drag-free) as compared to GRACE due to temporal aliasing errors. These errors are caused by high-frequency variations in the hydrology signal and imperfections in the atmospheric, oceanographic, and tidal models which are used to remove unwanted signal. This work concludes that applying the updated technologies alone will not immediately advance the accuracy of the gravity estimates. If the scientific objectives of a GFO mission require more accurate gravity estimates, then future work should focus on improvements in the geophysical models, and ways in which the mission design or data processing could reduce the effects of temporal aliasing.
Identifying high frequency signals in the daily swath mascon solutions from GRACE
NASA Astrophysics Data System (ADS)
Save, H.
2016-12-01
The Gravity Recovery and Climate Experiment (GRACE) mission has provided us with unique information about the total water column in the Earth system over the past 14 years. The GRACE project provides a monthly mean time-variable gravity solution. There has been significant progress in the community over the years to develop shorter time-window gravity solutions. The daily swath mascon solutions, which are under development at the Center for Space Research (CSR), are computed using daily GRACE observation data. This paper discusses the development and the progress of this product. This paper summarizes the analysis of these solutions with special emphasis on identifying the higher frequency natural processes observed by GRACE using these daily swath mascon solutions.
NASA Technical Reports Server (NTRS)
Hinderer, J.; Lemoine, Frank G.; Crossley, D.; Boy, J.-P.
2004-01-01
We investigate the time-variable gravity changes in Europe retrieved from the initial GRACE monthly solutions spanning a 18 month duration from April 2002 to October 2003. Gravity anomaly maps are retrieved in Central Europe from the monthly satellite solutions we compare the fields according to various truncation levels (typically between degree 10 and 20) of the initial fields (expressed in spherical harmonics to degree 120). For these different degrees, an empirical orthogonal function (EOF) decomposition of the time-variable gravity field leads us to its main spatial and temporal characteristics. We show that the dominant signal is found to be annual with an amplitude and a phase both in agreement with predictions in Europe modeled using snow and soil-moisture variations from recent hydrology models. We compare these GRACE gravity field changes to surface gravity observations from 6 superconducting gravimeters of the GGP (Global Geodynamics Project) European sub-network, with a special attention to loading corrections. Initial results suggest that all 3 data sets (GRACE, hydrology and GGP) are responding to annual changes in near-surface water in Europe of a few microGal (at length scales of approx.1000 km) that show a high value in winter and a summer minimum. We also point out that the GRACE gravity field evolution seems to indicate that there is a trend in gravity between summer 2002 and summer 2003 which can be related to the 2003 heatwave in Europe and its hydrological consequences (drought). Despite the limited time span of our analysis and the uncertainties in retrieving a regional solution from the network of gravimeters, the calibration and validation aspects of the GRACE data processing based on the annual hydrology cycle in Europe are in progress.
GRACE time-variable gravity field recovery using an improved energy balance approach
NASA Astrophysics Data System (ADS)
Shang, Kun; Guo, Junyi; Shum, C. K.; Dai, Chunli; Luo, Jia
2015-12-01
A new approach based on energy conservation principle for satellite gravimetry mission has been developed and yields more accurate estimation of in situ geopotential difference observables using K-band ranging (KBR) measurements from the Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission. This new approach preserves more gravity information sensed by KBR range-rate measurements and reduces orbit error as compared to previous energy balance methods. Results from analysis of 11 yr of GRACE data indicated that the resulting geopotential difference estimates agree well with predicted values from official Level 2 solutions: with much higher correlation at 0.9, as compared to 0.5-0.8 reported by previous published energy balance studies. We demonstrate that our approach produced a comparable time-variable gravity solution with the Level 2 solutions. The regional GRACE temporal gravity solutions over Greenland reveals that a substantially higher temporal resolution is achievable at 10-d sampling as compared to the official monthly solutions, but without the compromise of spatial resolution, nor the need to use regularization or post-processing.
Earth System Data Records of Mass Transport from Time-Variable Gravity Data
NASA Astrophysics Data System (ADS)
Zlotnicki, V.; Talpe, M.; Nerem, R. S.; Landerer, F. W.; Watkins, M. M.
2014-12-01
Satellite measurements of time variable gravity have revolutionized the study of Earth, by measuring the ice losses of Greenland, Antarctica and land glaciers, changes in groundwater including unsustainable losses due to extraction of groundwater, the mass and currents of the oceans and their redistribution during El Niño events, among other findings. Satellite measurements of gravity have been made primarily by four techniques: satellite tracking from land stations using either lasers or Doppler radio systems, satellite positioning by GNSS/GPS, satellite to satellite tracking over distances of a few hundred km using microwaves, and through a gravity gradiometer (radar altimeters also measure the gravity field, but over the oceans only). We discuss the challenges in the measurement of gravity by different instruments, especially time-variable gravity. A special concern is how to bridge a possible gap in time between the end of life of the current GRACE satellite pair, launched in 2002, and a future GRACE Follow-On pair to be launched in 2017. One challenge in combining data from different measurement systems consists of their different spatial and temporal resolutions and the different ways in which they alias short time scale signals. Typically satellite measurements of gravity are expressed in spherical harmonic coefficients (although expansions in terms of 'mascons', the masses of small spherical caps, has certain advantages). Taking advantage of correlations among spherical harmonic coefficients described by empirical orthogonal functions and derived from GRACE data it is possible to localize the otherwise coarse spatial resolution of the laser and Doppler derived gravity models. This presentation discusses the issues facing a climate data record of time variable mass flux using these different data sources, including its validation.
Water mass changes inferred by gravity field variations with GRACE
NASA Astrophysics Data System (ADS)
Fagiolini, Elisa; Gruber, Christian; Apel, Heiko; Viet Dung, Nguyen; Güntner, Andreas
2013-04-01
Since 2002 the Gravity Recovery And Climate Experiment (GRACE) mission has been measuring temporal variations of Earth's gravity field depicting with extreme accuracy how mass is distributed and varies around the globe. Advanced signal separation techniques enable to isolate different sources of mass such as atmospheric and oceanic circulation or land hydrology. Nowadays thanks to GRACE, floods, droughts, and water resources monitoring are possible on a global scale. At GFZ Potsdam scientists have been involved since 2000 in the initiation and launch of the GRACE precursor CHAMP satellite mission, since 2002 in the GRACE Science Data System and since 2009 in the frame of ESÁs GOCE High Processing Facility as well as projected GRACE FOLLOW-ON for the continuation of time variable gravity field determination. Recently GFZ has reprocessed the complete GRACE time-series of monthly gravity field spherical harmonic solutions with improved standards and background models. This new release (RL05) already shows significantly less noise and spurious artifacts. In order to monitor water mass re-distribution and fast moving water, we still need to reach a higher resolution in both time and space. Moreover, in view of disaster management applications we need to act with a shorter latency (current latency standard is 2 months). For this purpose, we developed a regional method based on radial base functions that is capable to compute models in regional and global representation. This new method localizes the gravity observation to the closest regions and omits spatial correlations with farther regions. Additionally, we succeeded to increase the temporal resolution to sub-monthly time scales. Innovative concepts such as Kalman filtering and regularization, along with sophisticated regional modeling have shifted temporal and spatial resolution towards new frontiers. We expect global hydrological models as WHGM to profit from such accurate outcomes. First results comparing the mass changes over the Mekong Delta observed with GRACE with spatial explicit hydraulic simulations of the large scale annual inundation volume during the flood season are presented and discussed.
NASA Astrophysics Data System (ADS)
Zhang, Liangjing; Dahle, Christoph; Neumayer, Karl-Hans; Dobslaw, Henryk; Flechtner, Frank; Thomas, Maik
2016-04-01
Terrestrial water storage (TWS) variations obtained from GRACE play an increasingly important role in various hydrological and hydro-meteorological applications. Since monthly-mean gravity fields are contaminated by errors caused by a number of sources with distinct spatial correlation structures, filtering is needed to remove in particular high frequency noise. Subsequently, bias and leakage caused by the filtering need to be corrected before the final results are interpreted as GRACE-based observations of TWS. Knowledge about the reliability and performance of different post-processing methods is highly important for the GRACE users. In this contribution, we re-assess a number of commonly used post-processing methods using a simulated GRACE-like gravity field time-series based on realistic orbits and instrument error assumptions as well as background error assumptions out of the updated ESA Earth System Model. Two non-isotropic filter methods from Kusche (2007) and Swenson and Wahr (2006) are tested. Rescaling factors estimated from five different hydrological models and the ensemble median are applied to the post-processed simulated GRACE-like TWS estimates to correct the bias and leakage. Since TWS anomalies out of the post-processed simulation results can be readily compared to the time-variable Earth System Model initially used as "truth" during the forward simulation step, we are able to thoroughly check the plausibility of our error estimation assessment and will subsequently recommend a processing strategy that shall also be applied to planned GRACE and GRACE-FO Level-3 products for hydrological applications provided by GFZ. Kusche, J. (2007): Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geodesy, 81 (11), 733-749, doi:10.1007/s00190-007-0143-3. Swenson, S. and Wahr, J. (2006): Post-processing removal of correlated errors in GRACE data. Geophysical Research Letters, 33(8):L08402.
Groundwater Storage Changes: Present Status from GRACE Observations
NASA Technical Reports Server (NTRS)
Chen, Jianli; Famiglietti, James S.; Scanlon, Bridget R.; Rodell, Matthew
2015-01-01
Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide quantitative measurement of terrestrial water storage (TWS) changes with unprecedented accuracy. Combining GRACE-observed TWS changes and independent estimates of water change in soil and snow and surface reservoirs offers a means for estimating groundwater storage change. Since its launch in March 2002, GRACE time-variable gravity data have been successfully used to quantify long-term groundwater storage changes in different regions over the world, including northwest India, the High Plains Aquifer and the Central Valley in the USA, the North China Plain, Middle East, and southern Murray-Darling Basin in Australia, where groundwater storage has been significantly depleted in recent years (or decades). It is difficult to rely on in situ groundwater measurements for accurate quantification of large, regional-scale groundwater storage changes, especially at long timescales due to inadequate spatial and temporal coverage of in situ data and uncertainties in storage coefficients. The now nearly 13 years of GRACE gravity data provide a successful and unique complementary tool for monitoring and measuring groundwater changes on a global and regional basis. Despite the successful applications of GRACE in studying global groundwater storage change, there are still some major challenges limiting the application and interpretation of GRACE data. In this paper, we present an overview of GRACE applications in groundwater studies and discuss if and how the main challenges to using GRACE data can be addressed.
Evaluation of new GRACE time-variable gravity data over the ocean
NASA Astrophysics Data System (ADS)
Chambers, Don P.
2006-09-01
Monthly GRACE gravity field models from the three science processing centers (CSR, GFZ, and JPL) are analyzed for the period from February 2003 to April 2005 over the ocean. The data are used to estimate maps of the mass component of sea level at smoothing radii of 500 km and 750 km. In addition to using new gravity field models, a filter has been applied to estimate and remove systematic errors in the coefficients that cause erroneous patterns in the maps of equivalent water level. The filter is described and its effects are discussed. The GRACE maps have been evaluated using a residual analysis with maps of altimeter sea level from Jason-1 corrected for steric variations using the World Ocean Atlas 2001 monthly climatology. The mean uncertainty of GRACE maps determined from an average of data from all 3 processing centers is estimated to be less than 1.8 cm RMS at 750 km smoothing and 2.4 cm at 500 km smoothing, which is better than was found previously using the first generation GRACE gravity fields.
Two decades of ice melt reconstruction in Greenland and Antarctica from time-variable gravity
NASA Astrophysics Data System (ADS)
Talpe, M.; Nerem, R. S.; Lemoine, F. G.
2014-12-01
In this study, we present a record of ice-sheet melt derived from space-borne gravity that spans over two decades—beyond the time-frame of the GRACE mission. GRACE fields are merged with conventional tracking data (SLR/DORIS) spanning 1992 to the present. They are provided as weekly global fields of degree and order five without C50 and S50 but with C61 and S61. Their multi-decade timespan complements the monthly fields of GRACE of degree and order 60 that start in 2003 and will end when the GRACE mission terminates. The two datasets are combined via an empirical orthogonal function analysis, whereby the conventional tracking data temporal modes are obtained by fitting the SLR/DORIS coefficients to the GRACE spatial modes via linear least squares. Combining those temporal modes with GRACE spatial modes yields the reconstructed global gravity fields. The error budget of the reconstructions is composed of three components: the SLR/DORIS covariances, the errors estimated from the assumption that GRACE spatial modes can be mapped over the SLR/DORIS timeframe, and the covariances from the least squares fit applied to obtain the SLR/DORIS temporal modes. The reconstructed surface mass changes in Greenland and Antarctica, predominantly captured in the first mode, show a rate of mass loss that is increasing since 1992. The trend of mass changes in Greenland over various epochs match with an overarching study assembling altimetry, gravimetry, and interferometry estimates of ice-sheet balance over a 1992-2011 time-frame [Shepherd et al., 2012]. Antarctica shows a trend that is different because of updated GIA models [A et al., 2013] compared to the other studies. We will also show regional mass changes over various other basins, as well as the influence of each SLR/DORIS coefficient on the reconstructions. The consistency of these results underscores the possibility of using low-resolution SLR/DORIS time-variable gravity solutions as a way to continuously monitor the behavior of the polar ice-sheets in the absence of GRACE. Shepherd, A., et al. (2012), Science 338, 1183. A, G., J. Wahr, and S. Zhong (2013), GJI 192, 557.
NASA Astrophysics Data System (ADS)
Hussain, Matloob; Eshagh, Mehdi; Ahmad, Zulfiqar; Sadiq, M.; Fatolazadeh, Farzam
2016-09-01
The earth's gravity changes are attributed to the redistribution of masses within and/or on the surface of the earth, which are due to the frictional sliding, tensile cracking and/or cataclastic flow of rocks along the faults and detectable by earthquake events. Inversely, the gravity changes are useful to describe the earthquake seismicity over the active orogenic belts. The time variable gravimetric data are hardly available to the public domain. However, Gravity Recovery and Climatic Experiment (GRACE) is the only satellite mission dedicated to model the variation of the gravity field and an available source to the science community. Here, we have tried to envisage gravity changes in terms of gravity anomaly (Δg), geoid (N) and the gravity gradients over the Indo-Pak plate with emphasis upon Kashmir earthquake of October 2005. For this purpose, we engaged the spherical harmonic coefficients of monthly gravity solutions from the GRACE satellite mission, which have good coverage over the entire globe with unprecedented accuracy. We have analysed numerically the solutions after removing the hydrological signals, during August to November 2005, in terms of corresponding monthly differentials of gravity anomaly, geoid and the gradients. The regional structures like Main Mantle Thrust (MMT), Main Karakoram Thrust (MKT), Herat and Chaman faults are in closed association with topography and with gravity parameters from the GRACE gravimetry and EGM2008 model. The monthly differentials of these quantities indicate the stress accumulation in the northeast direction in the study area. Our numerical results show that the horizontal gravity gradients seem to be in good agreement with tectonic boundaries and differentials of the gravitational elements are subtle to the redistribution of rock masses and topography caused by 2005 Kashmir earthquake. Moreover, the gradients are rather more helpful for extracting the coseismic gravity signatures caused by seismicity over the area. Higher positive values of gravity components having higher terrain elevations are more vulnerable to the seismicity and lower risk of diastrophism otherwise.
Insights into the Earth System mass variability from CSR-RL05 GRACE gravity fields
NASA Astrophysics Data System (ADS)
Bettadpur, S.
2012-04-01
The next-generation Release-05 GRACE gravity field data products are the result of extensive effort applied to the improvements to the GRACE Level-1 (tracking) data products, and to improvements in the background gravity models and processing methodology. As a result, the squared-error upper-bound in RL05 fields is half or less than the squared-error upper-bound in RL04 fields. The CSR-RL05 field release consists of unconstrained gravity fields as well as a regularized gravity field time-series that can be used for several applications without any post-processing error reduction. This paper will describe the background and the nature of these improvements in the data products, and provide an error characterization. We will describe the insights these new series offer in measuring the mass flux due to diverse Hydrologic, Oceanographic and Cryospheric processes.
Rapid variability of Antarctic Bottom Water transport into the Pacific Ocean inferred from GRACE
NASA Astrophysics Data System (ADS)
Mazloff, Matthew R.; Boening, Carmen
2016-04-01
Air-ice-ocean interactions in the Antarctic lead to formation of the densest waters on Earth. These waters convect and spread to fill the global abyssal oceans. The heat and carbon storage capacity of these water masses, combined with their abyssal residence times that often exceed centuries, makes this circulation pathway the most efficient sequestering mechanism on Earth. Yet monitoring this pathway has proven challenging due to the nature of the formation processes and the depth of the circulation. The Gravity Recovery and Climate Experiment (GRACE) gravity mission is providing a time series of ocean mass redistribution and offers a transformative view of the abyssal circulation. Here we use the GRACE measurements to infer, for the first time, a 2003-2014 time series of Antarctic Bottom Water export into the South Pacific. We find this export highly variable, with a standard deviation of 1.87 sverdrup (Sv) and a decorrelation timescale of less than 1 month. A significant trend is undetectable.
DORIS-based point mascons for the long term stability of precise orbit solutions
NASA Astrophysics Data System (ADS)
Cerri, L.; Lemoine, J. M.; Mercier, F.; Zelensky, N. P.; Lemoine, F. G.
2013-08-01
In recent years non-tidal Time Varying Gravity (TVG) has emerged as the most important contributor in the error budget of Precision Orbit Determination (POD) solutions for altimeter satellites' orbits. The Gravity Recovery And Climate Experiment (GRACE) mission has provided POD analysts with static and time-varying gravity models that are very accurate over the 2002-2012 time interval, but whose linear rates cannot be safely extrapolated before and after the GRACE lifespan. One such model based on a combination of data from GRACE and Lageos from 2002-2010, is used in the dynamic POD solutions developed for the Geophysical Data Records (GDRs) of the Jason series of altimeter missions and the equivalent products from lower altitude missions such as Envisat, Cryosat-2, and HY-2A. In order to accommodate long-term time-variable gravity variations not included in the background geopotential model, we assess the feasibility of using DORIS data to observe local mass variations using point mascons. In particular, we show that the point-mascon approach can stabilize the geographically correlated orbit errors which are of fundamental interest for the analysis of regional Mean Sea Level trends based on altimeter data, and can therefore provide an interim solution in the event of GRACE data loss. The time series of point-mass solutions for Greenland and Antarctica show good agreement with independent series derived from GRACE data, indicating a mass loss at rate of 210 Gt/year and 110 Gt/year respectively.
Recent results on modelling the spatial and temporal structure of the Earth's gravity field.
Moore, P; Zhang, Q; Alothman, A
2006-04-15
The Earth's gravity field plays a central role in sea-level change. In the simplest application a precise gravity field will enable oceanographers to capitalize fully on the altimetric datasets collected over the past decade or more by providing a geoid from which absolute sea-level topography can be recovered. However, the concept of a static gravity field is now redundant as we can observe temporal variability in the geoid due to mass redistribution in or on the total Earth system. Temporal variability, associated with interactions between the land, oceans and atmosphere, can be investigated through mass redistributions with, for example, flow of water from the land being balanced by an increase in ocean mass. Furthermore, as ocean transport is an important contributor to the mass redistribution the time varying gravity field can also be used to validate Global Ocean Circulation models. This paper will review the recent history of static and temporal gravity field recovery, from the 1980s to the present day. In particular, mention will be made of the role of satellite laser ranging and other space tracking techniques, satellite altimetry and in situ gravity which formed the basis of gravity field determination until the last few years. With the launch of Challenging Microsatellite Payload and Gravity and Circulation Experiment (GRACE) our knowledge of the spatial distribution of the Earth's gravity field is taking a leap forward. Furthermore, GRACE is now providing insight into temporal variability through 'monthly' gravity field solutions. Prior to this data we relied on satellite tracking, Global Positioning System and geophysical models to give us insight into the temporal variability. We will consider results from these methodologies and compare them to preliminary results from the GRACE mission.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Boy, J. P.
2003-01-01
With the advances of measurements, modern space geodesy has become a new type of remote sensing for the Earth dynamics, especially for mass transports in the geophysical fluids on large spatial scales. A case in point is the space gravity mission GRACE (Gravity Recovery And Climate Experiment) which has been in orbit collecting gravity data since early 2002. The data promise to be able to detect changes of water mass equivalent to sub-cm thickness on spatial scale of several hundred km every month or so. China s Three-Gorge Reservoir has already started the process of water impoundment in phases. By 2009,40 km3 of water will be stored behind one of the world s highest dams and spanning a section of middle Yangtze River about 600 km in length. For the GRACE observations, the Three-Gorge Reservoir would represent a geophysical controlled experiment , one that offers a unique opportunity to do detailed geophysical studies. -- Assuming a complete documentation of the water level and history of the water impoundment process and aided with a continual monitoring of the lithospheric loading response (such as in area gravity and deformation), one has at hand basically a classical forwardinverse modeling problem of surface loading, where the input and certain output are known. The invisible portion of the impounded water, i.e. underground storage, poses either added values as an observable or a complication as an unknown to be modeled. Wang (2000) has studied the possible loading effects on a local scale; we here aim for larger spatial scales upwards from several hundred km, with emphasis on the time-variable gravity signals that can be detected by GRACE and follow-on missions. Results using the Green s function approach on the PREM elastic Earth model indicate the geoid height variations reaching several millimeters on wavelengths of about a thousand kilometers. The corresponding vertical deformations have amplitude of a few centimeters. In terms of long-wavelength spherical harmonics, the induced geoid height variations are very close to the accuracy of GRACE- recoverable gravity field, while the low-degree (2 to 5) harmonics should be detectable. With a large regional time-variable gravity signal, the Three-Gorge experiment can serve as a useful calibration/verification for GRACE (including the elastic loading effects), and future gravity missions (especially for visco-elastic yielding as well as underground water variations).
Improved Uncertainty Quantification in Groundwater Flux Estimation Using GRACE
NASA Astrophysics Data System (ADS)
Reager, J. T., II; Rao, P.; Famiglietti, J. S.; Turmon, M.
2015-12-01
Groundwater change is difficult to monitor over large scales. One of the most successful approaches is in the remote sensing of time-variable gravity using NASA Gravity Recovery and Climate Experiment (GRACE) mission data, and successful case studies have created the opportunity to move towards a global groundwater monitoring framework for the world's largest aquifers. To achieve these estimates, several approximations are applied, including those in GRACE processing corrections, the formulation of the formal GRACE errors, destriping and signal recovery, and the numerical model estimation of snow water, surface water and soil moisture storage states used to isolate a groundwater component. A major weakness in these approaches is inconsistency: different studies have used different sources of primary and ancillary data, and may achieve different results based on alternative choices in these approximations. In this study, we present two cases of groundwater change estimation in California and the Colorado River basin, selected for their good data availability and varied climates. We achieve a robust numerical estimate of post-processing uncertainties resulting from land-surface model structural shortcomings and model resolution errors. Groundwater variations should demonstrate less variability than the overlying soil moisture state does, as groundwater has a longer memory of past events due to buffering by infiltration and drainage rate limits. We apply a model ensemble approach in a Bayesian framework constrained by the assumption of decreasing signal variability with depth in the soil column. We also discuss time variable errors vs. time constant errors, across-scale errors v. across-model errors, and error spectral content (across scales and across model). More robust uncertainty quantification for GRACE-based groundwater estimates would take all of these issues into account, allowing for more fair use in management applications and for better integration of GRACE-based measurements with observations from other sources.
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Krogh, P. E.; Michailovsky, C.; Bauer-Gottwein, P.; Christiansen, L.; Berry, P.; Garlick, J.
2008-12-01
Space-borne and ground-based time-lapse gravity observations provide new data for water balance monitoring and hydrological model calibration in the future. The HYDROGRAV project (www.hydrograv.dk) will explore the utility of time-lapse gravity surveys for hydrological model calibration and terrestrial water storage monitoring. Merging remote sensing data from GRACE with other remote sensing data like satellite altimetry and also ground based observations are important to hydrological model calibration and water balance monitoring of large regions and can serve as either supplement or as vital information in un-gauged regions. A system of GRACE custom designed Mass Concentration blocks (Mascons) have been designed to model time-variable gravity changes for the largest basins in Southern Africa (Zambezi, Okavango, Limpopo and Orange) covering an area of 9 mill km2 with a resolution of 1 by 1.25 degree. Satellite altimetry have been used to derive high resolution point-wise river height in some of the un-gauged rivers in the region by using dedicated retracking to recovers nearly un-interrupted time series over these rivers. First result from the HYDROGRAV project analyzing GRACE derived mass change from 2002 to 2008 along with in-situ gravity time-lapse observations and radar altimetry monitoring of surface water for the southern Africa river basins will be presented.
NASA Astrophysics Data System (ADS)
Baur, Oliver; Weigelt, Matthias; Zehentner, Norbert; Mayer-Gürr, Torsten; Jäggi, Adrian
2014-05-01
In the last decade, temporal variations of the gravity field from GRACE observations have become one of the most ubiquitous and valuable sources of information for geophysical and environmental studies. In the context of global climate change, mass balance of the Arctic and Antarctic ice sheets gained particular attention. Because GRACE has outlived its predicted lifetime by several years already, it is very likely that a gap between GRACE and its successor GRACE follow-on (supposed to be launched in 2017, at the earliest) occurs. The Swarm mission - launched on November 22, 2013 - is the most promising candidate to bridge this potential gap, i.e., to directly acquire large-scale mass variation information on the Earth's surface in case of a gap between the present GRACE and the upcoming GRACE follow-on projects. Although the magnetometry mission Swarm has not been designed for gravity field purposes, its three satellites have the characteristics for such an endeavor: (i) low, near-circular and near-polar orbits, (ii) precise positioning with high-quality GNSS receivers, (iii) on-board accelerometers to measure the influence of non-gravitational forces. Hence, from an orbit analysis point of view the Swarm satellites are comparable to the CHAMP, GRACE and GOCE spacecraft. Indeed and as data analysis from CHAMP has been shown, the detection of annual signals and trends from orbit analysis is possible for long-wavelength features of the gravity field, although the accuracy associated with the inter-satellite GRACE measurements cannot be reached. We assess the capability of the (non-dedicated) mission Swarm for mass variation detection in a real-case environment (opposed to simulation studies). For this purpose, we "approximate" the Swarm scenario by the GRACE+CHAMP and GRACE+GOCE constellations. In a first step, kinematic orbits of the individual satellites are derived from GNSS observations. From these orbits, we compute monthly combined GRACE+CHAMP and GRACE+GOCE time-variable gravity fields; sophisticated techniques based on Kalman filtering are applied to reduce noise in the time series. Finally, we infer mass variation in selected areas from to gravity signal. These results are compared to the findings obtained from mass variation detection exploiting CSR-RL05 gravity fields; due to their superior quality (which is due to the fact that they are derived from inter-satellite GRACE measurements), the CSR-RL05 solutions serve as benchmark. Our quantitative assessment shows the potential and limitations of what can be expected from Swarm with regard to surface mass variation monitoring.
NASA Astrophysics Data System (ADS)
Agrawal, R.; Singh, S. K.; Rajawat, A. S.; Ajai
2014-11-01
Time-variable gravity changes are caused by a combination of postglacial rebound, redistribution of water and snow/ice on land and as well as in the ocean. The Gravity Recovery and Climate Experiment (GRACE) satellite mission, launched in 2002, provides monthly average of the spherical harmonic co-efficient. These spherical harmonic co-efficient describe earth's gravity field with a resolution of few hundred kilometers. Time-variability of gravity field represents the change in mass over regional level with accuracies in cm in terms of Water Equivalent Height (WEH). The WEH reflects the changes in the integrated vertically store water including snow cover, surface water, ground water and soil moisture at regional scale. GRACE data are also sensitive towards interior strain variation, surface uplift and surface subsidence cover over a large area. GRACE data was extracted over the three major Indian River basins, Indus, Ganga and Brahmaputra, in the Himalayas which are perennial source of fresh water throughout the year in Northern Indian Plain. Time series analysis of the GRACE data was carried out from 2003-2012 over the study area. Trends and amplitudes of the regional mass anomalies in the region were estimated using level 3 GRACE data product with a spatial resolution at 10 by 10 grid provided by Center for Space Research (CSR), University of Texas at Austin. Indus basin has shown a subtle decreasing trend from 2003-2012 however it was observed to be statistically insignificant at 95 % confidence level. Ganga and Brahmaputra basins have shown a clear decreasing trend in WEH which was also observed to be statistically significant. The trend analysis over Ganga and Brahamputra basins have shown an average annual change of -1.28 cm and -1.06 cm in terms of WEH whereas Indus basin has shown a slight annual change of -0.07 cm. This analysis will be helpful to understand the loss of mass in terms of WEH over Indian Himalayas and will be crucial for hydrological and climate applications at regional scale.
AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data
NASA Astrophysics Data System (ADS)
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-05-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).
Weekly Solutions of Time-Variable Gravity from 1993 to 2010
NASA Technical Reports Server (NTRS)
Lemoine, F.; Chinn, D.; Le Bail, K.; Zelensky, N.; Melachroinos, S.; Beall, J.
2011-01-01
The GRACE mission has been highly successful in determining the time-variable gravity field of the Earth, producing monthly or even more frequent solutions (cf. 10-day) solutions using both spherical harmonics and mascons. However the GRACE time series only commences in 2002 - 2003 and a gap of several years may occur in the series before a GRACE follow-on satellite is launched. Satellites tracked by SLR and DORIS have also been used to study time variations in the Earth's gravitational field. These include (most recently) the solutions of Cox and Chao (2002), Cheng et al. (2004, 2007) and Lemoine et al. (2007). In this paper we discuss the development of a new time series of low degree spherical harmonic fields based on the available SLR, DORIS and GPS data. We develop simultaneous solutions for both the geocenter and the low degree harmonics up to 5x5. The solutions integrate data from SLR geodetic satellites (e.g., Lageos1, Lageos2, Starlette, Stella, Ajisai, Larets, Westpac), altimetry satellites (TOPEX/Poseidon, Envisat, Jason-1, Jason-2), and satellites tracked solely by DORIS (e.g. SPOT2-5). We discuss some pertinent aspects of the satellite-specific modeling. We include altimeter crossovers in the weekly solutions where feasible and time permits. The resulting geocenter time series is compared with geophysical model predictions and other independently-derived solutions. Over the GRACE time period the fidelity and consistency with the GRACE solutions are presented.
NASA Astrophysics Data System (ADS)
Bentel, Katrin; Meyer, Ulrich; Arnold, Daniel; Jean, Yoomin; Jäggi, Adrian
2017-04-01
The Astronomical Institute at the University of Bern (AIUB) derives static and time-variable gravity fields by means of the Celestial Mechanics Approach (CMA) from GRACE (level 1B) data. This approach makes use of the close link between orbit and gravity field determination. GPS-derived kinematic GRACE orbit positions, inter-satellite K-band observations, which are the core observations of GRACE, and accelerometer data are combined to rigorously estimate orbit and spherical harmonic gravity field coefficients in one adjustment step. Pseudo-stochastic orbit parameters are set up to absorb unmodeled noise. The K-band range measurements in along-track direction lead to a much higher correlation of the observations in this direction compared to the other directions and thus, to north-south stripes in the unconstrained gravity field solutions, so-called correlated errors. By using a full covariance matrix for the K-band observations the correlation can be taken into account. One possibility is to derive correlation information from post-processing K-band residuals. This is then used in a second iteration step to derive an improved gravity field solution. We study the effects of pre-defined covariance matrices and residual-derived covariance matrices on the final gravity field product with the CMA.
e.motion - European Initiatives for a Future Gravity Field Mission
NASA Astrophysics Data System (ADS)
Gruber, T.
2017-12-01
Since 2010 a large team of European scientists, with the support of technological and industrial partners, is preparing proposals for new gravity field missions as follow-up to GRACE, GOCE and GRACE-FO. The main goal of the proposed mission concepts is the long term observation of the time variable gravity field with significantly increased spatial and temporal resolution as it can be performed nowadays with GRACE or in the near future with GRACE Follow-On. These observations are crucial for long term monitoring of mass variations in the system Earth in order to improve our knowledge about the global and regional water cycle as well as about processes of the solid Earth. Starting from the existing concepts of single pair mission like GRACE and GRACE-FO, sensitivity, spatial and temporal resolution shall be increased, such that also smaller scale time variable signals can be resolved, which cannot be detected with the current techniques. For such a mission concept new and significantly improved observation techniques are needed. This concerns in particular the measurement of inter-satellite distances, the observation of non-gravitational accelerations, the configuration of the satellite orbit and most important the implementation of constellation of satellite pairs. All in all three proposals have been prepared by the e.motion team specifying in detail the mission design and the performance in terms of science applications. Starting with a single-pair pendulum mission, which was proposed for ESA's Earth Explorer 8 call (EE8), more recently a double-pair Bender-type mission was proposed for the ESA's EE9 call. In between several studies on European (DLR and ESA) and inter-agency level (ESA-NASA) have been performed. The presentation provides a summary about all these initiatives, derives some conclusions which can be drawn from the mission proposals and study results and gives an outlook about future initiatives for gravity field missions in Europe.
NASA Astrophysics Data System (ADS)
Crossley, D. J.; de Linage, C.; Hinderer, J.; Boy, J.
2007-12-01
As the number of different solutions from the GRACE satellite gravity project evolves, we can make more meaningful comparisons between the satellite-derived field and the surface field as recorded by superconducting gravimeters. On the GRACE side, we use CSR Level 2 products RL01 and the recent RL04 solutions, GFZ RL04 solutions, and the CNES/GRGS 10-day solutions, all for the time periods these are available. On the GGP side, we take advantage of the 10 years of SG data since July 1997 from 6-8 ground stations in Europe, allowing for the change in the network configuration as stations begin and end recording. Only data since 2002 can be compared directly to GRACE. Our primary measure of variability is the first principal component of the EOF analysis of all the fields. Unsurprisingly, the seasonal components for all the comparisons are similar in phase, but different in amplitude, to the predictions from a global hydrology model (GLDAS), provided allowance is made for the location of the SG stations above or below the soil moisture horizon that controls the gravity signature. We use detailed modeling at the Strasbourg station, as well as published results for Moxa and Membach, to confirm the gravity effect of hydrology. Good agreement is found between the GGP and the CNES/GRGS 10-day solutions, indicating the higher temporal resolution of this satellite solution is valid for our limited geographical area. We also synthesize the gravity field over the sub-group of GGP stations in N.E. Asia to see how the GRACE variability compares to that for the European array and to assess future ground validation using new GGP stations in that part of the world.
High-resolution CSR GRACE RL05 mascons
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2016-10-01
The determination of the gravity model for the Gravity Recovery and Climate Experiment (GRACE) is susceptible to modeling errors, measurement noise, and observability issues. The ill-posed GRACE estimation problem causes the unconstrained GRACE RL05 solutions to have north-south stripes. We discuss the development of global equal area mascon solutions to improve the GRACE gravity information for the study of Earth surface processes. These regularized mascon solutions are developed with a 1° resolution using Tikhonov regularization in a geodesic grid domain. These solutions are derived from GRACE information only, and no external model or data is used to inform the constraints. The regularization matrix is time variable and will not bias or attenuate future regional signals to some past statistics from GRACE or other models. The resulting Center for Space Research (CSR) mascon solutions have no stripe errors and capture all the signals observed by GRACE within the measurement noise level. The solutions are not tailored for specific applications and are global in nature. This study discusses the solution approach and compares the resulting solutions with postprocessed results from the RL05 spherical harmonic solutions and other global mascon solutions for studies of Arctic ice sheet processes, ocean bottom pressure variation, and land surface total water storage change. This suite of comparisons leads to the conclusion that the mascon solutions presented here are an enhanced representation of the RL05 GRACE solutions and provide accurate surface-based gridded information that can be used without further processing.
NASA Astrophysics Data System (ADS)
Nastula, J.; Kolaczek, B.; Salstein, D. A.
2009-09-01
Global geophysical excitation functions of polar motion do not explain fully the observed polar motion as determined by geodetic techniques. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation HAM (Hydrological Angular Momentum), is still inadequately estimated and not known so well as atmospheric and oceanic ones. Recently the GRACE (Gravity Recovery and Climate Experiment) satellite mission monitoring Earth's time variable gravity field has allowed us to determine global mass term of the polar motion excitation functions, which inherently includes the atmospheric, oceanic and hydrological portions. We use these terms to make comparisons with the mass term of the geodetic and geophysical excitation functions of polar motion on seasonal scales. Global GRACE excitation function of polar motion and hydrological excitation function of polar motion have been determined and were studied earlier
2017-11-09
The Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) mission is a partnership between NASA and the German Research Centre for Geosciences (GFZ). GRACE-FO is a successor to the original GRACE mission, which began orbiting Earth on March 17, 2002. GRACE-FO will carry on the extremely successful work of its predecessor while testing a new technology designed to dramatically improve the already remarkable precision of its measurement system. The GRACE missions measure variations in gravity over Earth's surface, producing a new map of the gravity field every 30 days. Thus, GRACE shows how the planet's gravity differs not only from one location to another, but also from one period of time to another. Airbus Defence and Space (Friedrichshafen/Germany) is the industrial prime contractor to build the satellites.
Combination of GRACE monthly gravity field solutions from different processing strategies
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2018-02-01
We combine the publicly available GRACE monthly gravity field time series to produce gravity fields with reduced systematic errors. We first compare the monthly gravity fields in the spatial domain in terms of signal and noise. Then, we combine the individual gravity fields with comparable signal content, but diverse noise characteristics. We test five different weighting schemes: equal weights, non-iterative coefficient-wise, order-wise, or field-wise weights, and iterative field-wise weights applying variance component estimation (VCE). The combined solutions are evaluated in terms of signal and noise in the spectral and spatial domains. Compared to the individual contributions, they in general show lower noise. In case the noise characteristics of the individual solutions differ significantly, the weighted means are less noisy, compared to the arithmetic mean: The non-seasonal variability over the oceans is reduced by up to 7.7% and the root mean square (RMS) of the residuals of mass change estimates within Antarctic drainage basins is reduced by 18.1% on average. The field-wise weighting schemes in general show better performance, compared to the order- or coefficient-wise weighting schemes. The combination of the full set of considered time series results in lower noise levels, compared to the combination of a subset consisting of the official GRACE Science Data System gravity fields only: The RMS of coefficient-wise anomalies is smaller by up to 22.4% and the non-seasonal variability over the oceans by 25.4%. This study was performed in the frame of the European Gravity Service for Improved Emergency Management (EGSIEM; http://www.egsiem.eu) project. The gravity fields provided by the EGSIEM scientific combination service (ftp://ftp.aiub.unibe.ch/EGSIEM/) are combined, based on the weights derived by VCE as described in this article.
Mascons, GRACE, and Time-variable Gravity
NASA Technical Reports Server (NTRS)
Lemoine, F.; Lutchke, S.; Rowlands, D.; Klosko, S.; Chinn, D.; Boy, J. P.
2006-01-01
The GRACE mission has been in orbit now for three years and now regularly produces snapshots of the Earth s gravity field on a monthly basis. The convenient standard approach has been to perform global solutions in spherical harmonics. Alternative local representations of mass variations using mascons show great promise and offer advantages in terms of computational efficiency, minimization of problems due to aliasing, and increased temporal resolution. In this paper, we discuss the results of processing the GRACE KBRR data from March 2003 through August 2005 to produce solutions for GRACE mass variations over mid-latitude and equatorial regions, such as South America, India and the United States, and over the polar regions (Antarctica and Greenland), with a focus on the methodology. We describe in particular mascon solutions developed on regular 4 degree x 4 degree grids, and those tailored specifically to drainage basins over these regions.
GRACE AOD1B Product Release 06: Long-Term Consistency and the Treatment of Atmospheric Tides
NASA Astrophysics Data System (ADS)
Dobslaw, Henryk; Bergmann-Wolf, Inga; Dill, Robert; Poropat, Lea; Flechtner, Frank
2017-04-01
The GRACE satellites orbiting the Earth at very low altitudes are affected by rapid changes in the Earth's gravity field caused by mass redistribution in atmosphere and oceans. To avoid temporal aliasing of such high-frequency variability into the final monthly-mean gravity fields, those effects are typically modelled during the numerical orbit integration by appling the 6-hourly GRACE Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) a priori model. In preparation of the next GRACE gravity field re-processing currently performed by the GRACE Science Data System, a new version of AOD1B has been calculated. The data-set is based on 3-hourly surface pressure anomalies from ECMWF that have been mapped to a common reference orography by means of ECMWF's mean sea-level pressure diagnostic. Atmospheric tides as well as the corresponding oceanic response at the S1, S2, S3, and L2 frequencies and its annual modulations have been fitted and removed in order to retain the non-tidal variability only. The data-set is expanded into spherical harmonics complete up to degree and order 180. In this contribution, we will demonstrate that AOD1B RL06 is now free from spurious jumps in the time-series related to occasional changes in ECMWF's operational numerical weather prediction system. We will also highlight the rationale for separating tidal signals from the AOD1B coefficients, and will finally discuss the current quality of the AOD1B forecasts that have been introduced very recently for GRACE quicklook or near-realtime applications.
NASA Astrophysics Data System (ADS)
Liau, Jen-Ru; Chao, Benjamin F.
2017-07-01
The southern annular mode (SAM) in the atmosphere and the Antarctic circumpolar current (ACC) in the ocean play decisive roles in the climatic system of the mid- to high-latitude southern hemisphere. Using the time-variable gravity data from the GRACE satellite mission, we find the link between the space-time variabilities of the ACC and the SAM. We calculate the empirical orthogonal functions (EOF) of the non-seasonal ocean bottom pressure (OBP) field in the circum-Antarctic seas from the GRACE data for the period from 2003 to 2015. We find that the leading EOF mode of the non-seasonal OBP represents a unison OBP oscillation around Antarctica with time history closely in pace with that of the SAM Index with a high correlation of 0.77. This OBP variation gives rise to a variation in the geostrophic flow field; the result for the same EOF mode shows heightened variations in the zonal velocity that resides primarily in the eastern hemispheric portion of the ACC and coincided geographically with the southernmost boundary of the ACC's main stream. Confirming previous oceanographic studies, these geodetic satellite results provide independent information toward better understanding of the ACC-SAM process.
GRACE-FO Spacecraft Artist Rendering
2017-05-04
This artist's rendering shows the twin spacecraft of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, a partnership between NASA and the German Research Centre for Geosciences (GFZ). GRACE-FO is a successor to the original GRACE mission, which began orbiting Earth on March 17, 2002. GRACE-FO will carry on the extremely successful work of its predecessor while testing a new technology designed to dramatically improve the already remarkable precision of its measurement system. The GRACE missions measure variations in gravity over Earth's surface, producing a new map of the gravity field every 30 days. Thus, GRACE shows how the planet's gravity differs not only from one location to another, but also from one period of time to another. https://photojournal.jpl.nasa.gov/catalog/PIA21607
NASA Astrophysics Data System (ADS)
Makowski, Jessica K.; Chambers, Don P.; Bonin, Jennifer A.
2015-06-01
Previous studies have suggested that ocean bottom pressure (OBP) from the Gravity Recovery and Climate Experiment (GRACE) can be used to measure the depth-averaged, or barotropic, transport variability of the Antarctic Circumpolar Current (ACC). Here, we use GRACE OBP observations to calculate transport variability in a region of the southern Indian Ocean encompassing the major fronts of the ACC. We use a statistical analysis of a simulated GRACE-like data set to determine the uncertainty of the estimated transport for the 2003.0-2013.0 time period. We find that when the transport is averaged over 60° of longitude, the uncertainty (one standard error) is close to 1 Sv (1 Sv = 106 m3 s-1) for low-pass filtered transport, which is significantly smaller than the signal and lower than previous studies have found. The interannual variability is correlated with the Southern Annual mode (SAM) (0.61), but more highly correlated with circumpolar zonally averaged winds between 45°S and 65°S (0.88). GRACE transport reflects significant changes in transport between 2007 and 2009 that is observed in the zonal wind variations but not in the SAM index. We also find a statistically significant trend in transport (-1.0 ± 0.4 Sv yr-1, 90% confidence) that is correlated with a local deceleration in zonal winds related to an asymmetry in the SAM on multidecadal periods.
NASA Astrophysics Data System (ADS)
Zhang, Liangjing; Dobslaw, Henryk; Dahle, Christoph; Thomas, Maik; Neumayer, Karl-Hans; Flechtner, Frank
2017-04-01
By operating for more than one decade now, the GRACE satellite provides valuable information on the total water storage (TWS) for hydrological and hydro-meteorological applications. The increasing interest in use of the GRACE-based TWS requires an in-depth assessment of the reliability of the outputs and also its uncertainties. Through years of development, different post-processing methods have been suggested for TWS estimation. However, since GRACE offers an unique way to provide high spatial and temporal scale TWS, there is no global ground truth data available to fully validate the results. In this contribution, we re-assess a number of commonly used post-processing methods using a simulated GRACE-type gravity field time-series based on realistic orbits and instrument error assumptions as well as background error assumptions out of the updated ESA Earth System Model. Three non-isotropic filter methods from Kusche (2007) and a combined filter from DDK1 and DDK3 based on the ground tracks are tested. Rescaling factors estimated from five different hydrological models and the ensemble median are applied to the post-processed simulated GRACE-type TWS estimates to correct the bias and leakage. Time variant rescaling factors as monthly scaling factors and scaling factors for seasonal and long-term variations separately are investigated as well. Since TWS anomalies out of the post-processed simulation results can be readily compared to the time-variable Earth System Model initially used as "truth" during the forward simulation step, we are able to thoroughly check the plausibility of our error estimation assessment (Zhang et al., 2016) and will subsequently recommend a processing strategy that shall also be applied for planned GRACE and GRACE-FO Level-3 products for terrestrial applications provided by GFZ. Kusche, J., 2007:Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models. J. Geodesy, 81 (11), 733-749, doi:10.1007/s00190-007-0143-3. Zhang L, Dobslaw H, Thomas M (2016) Globally gridded terrestrial water storage variations from GRACE satellite gravimetry for hydrometeorological applications. Geophysical Journal International 206(1):368-378, DOI 10.1093/gji/ggw153.
NASA Technical Reports Server (NTRS)
Loomis, B. D.; Luthcke, S. B.
2016-01-01
We present new measurements of mass evolution for the Mediterranean, Black, Red, and Caspian Seas as determined by the NASA Goddard Space Flight Center (GSFC) GRACE time-variable global gravity mascon solutions. These new solutions are compared to sea surface altimetry measurements of sea level anomalies with steric corrections applied. To assess their accuracy, the GRACE and altimetry-derived solutions are applied to the set of forward models used by GSFC for processing the GRACE Level-1B datasets, with the resulting inter-satellite range acceleration residuals providing a useful metric for analyzing solution quality.
Annual, Seasonal, and Secular Changes in Time-Variable Gravity from GRACE
NASA Astrophysics Data System (ADS)
Lemoine, F. G.; Luthcke, S. B.; Klosko, S. M.; Rowlands, D. D.; Chinn, D. S.; McCarthy, J. J.; Ray, R. D.; Boy, J.
2007-12-01
The NASA/DLR GRACE mission, launched in 2002, has now operated for more than five years, producing monthly and ten-day snapshots of the variations of the gravity field of the Earth. The available solutions, either from spherical harmonics or from mascons, allow us new insights into the variations of surface gravity on the Earth at annual, inter-annual, and secular time scales. Our baseline time series, based on GGM02C, NCEP Atmospheric Gravity with IB, and GOT00 tides now is extended to July 2007, spanning four+ years, and we analyze both mascon and spherical harmonic solutions from this time series with respect to global hydrology variations. Our 4degx4deg mascon solutions are extended to cover all continental regions of the globe. Comparisons with hydrology (land-surface) models can offer insights into how these models might be improved. We compare our baseline time series, with new time series that include an updated Goddard Ocean Tide (GOT) model, ECMWF- 3hr atmosphere de-aliasing data, and the MOG-2D ocean dealiasing product. Finally, we intercompare the spherical harmonic solutions at low degree from GRACE from the various product centers (e.g., GFZ, CSR, GRGS), and look for secular signals in both the GSFC mascon and spherical harmonic solutions, taking care to compare the results for secular gravity field change with independent solutions developed over 25 years of independent tracking to geodetic satellites by Satellite Laser Ranging (SLR) and DORIS.
NASA Astrophysics Data System (ADS)
Liu, Wei; Sneeuw, Nico; Jiang, Weiping
2017-04-01
GRACE mission has contributed greatly to the temporal gravity field monitoring in the past few years. However, ocean tides cause notable alias errors for single-pair spaceborne gravimetry missions like GRACE in two ways. First, undersampling from satellite orbit induces the aliasing of high-frequency tidal signals into the gravity signal. Second, ocean tide models used for de-aliasing in the gravity field retrieval carry errors, which will directly alias into the recovered gravity field. GRACE satellites are in non-repeat orbit, disabling the alias error spectral estimation based on the repeat period. Moreover, the gravity field recovery is conducted in non-strictly monthly interval and has occasional gaps, which result in an unevenly sampled time series. In view of the two aspects above, we investigate the data-driven method to mitigate the ocean tide alias error in a post-processing mode.
Assessment of noise in non-tectonic displacement derived from GRACE time-variable gravity filed
NASA Astrophysics Data System (ADS)
Li, Weiwei; Shen, Yunzhong
2017-04-01
Many studies have been focusing on estimating the noises in GNSS monitoring time series. While the noises of GNSS time series after the correction with non-tectonic displacement should be re-estimated. Knowing the noises in the non-tectonic can help to better identify the sources of re-estimated noises. However, there is a lack of knowledge of noises in the non-tectonic displacement. The objective of this work is to assess the noise in the non-tectonic displacement. GRACE time-variable gravity is used to reflect the global mass variation. The GRACE stokes coefficients of the gravity field are used to calculate the non-tectonic surface displacement at any point on the surface. The Atmosphere and Ocean AOD1B de-aliasing model to the GRACE solutions is added because the complete mass variation is requested. The monthly GRACE solutions from CSR, JPL, GFZ and Tongji span from January 2003 to September 2015 are compared. The degree-1 coefficients derived by Swenson et al (2008) are added and also the C20 terms are replaced with those obtained from Satellite Laser Ranging. The P4M6 decorrelation and Fan filter with a radius of 300 km are adopted to reduce the stripe errors. Optimal noise models for the 1054 stations in ITRF2014 are presented. It is found that white noise only take up a small proportion: less than 18% in horizontal and less than 13% in vertical. The dominant models in up and north components are ARMA and flicker, while in east the power law noise shows significance. The local distribution comparison of the optimal noise models among different products is quite similar, which shows that there is little dependence on the different strategies adopted. In addition, the reasons that caused to different distributions of the optimal noise models are also investigated. Meanwhile different filtering methods such as Gaussian filters, Han filters are applied to see whether the noise is related with filters. Keyword: optimal noise model; non-tectonic displacement;GRACE; local distribution; filters
Long-Term Gravity Changes Caused By Crustal Movement in Tibet Region
NASA Astrophysics Data System (ADS)
Fang, J.
2014-12-01
The uplift process of the Tibetan Plateau and its mechanism has always been the research hot spot for geoscientists. In this paper, 11 years of time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) newest Release 05 have been used to get the secular trends of gravity anomaly in CHINA and adjacent area by least square method. A reduction of hydrological signals from the detected integral secular trends using global hydrological models (Global Land Data Assimilation System, GLDAS and Climate Prediction Center, CPC) is attempted. The glacier model provided by Paulson is used to reduce the GIA(Glacial Isostatic Adjustment) effect. In addition, the scaling factor method is used to weaken the GRACE post-process errors. It turns out that a remarkable positive signal in the inner Tibetan Plateau, which is explained by a forward modeling with 3D rectangular prism based on the hypothesis of subduction of Indian plate beneath Eurasian plate. Bangong-Nujiang suture zone is used to divide the Tibetan Plateau into southern and northern parts, then we get the gravity anomaly rate of northern part +0.27, which is consistent with the GRACE result 0.35±0.13.
Near real-time GRACE gravity field solutions for hydrological monitoring applications
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Gouweleeuw, Ben; Mayer-Gürr, Torsten; Güntner, Andreas
2016-04-01
Within the EGSIEM (European Gravity Service for Improved Emergency Management) project, a demonstrator for a near real-time (NRT) gravity field service which provides daily GRACE gravity field solutions will be established. Compared to the official GRACE gravity products, these NRT solutions will increase the temporal resolution from one month to one day and reduce the latency from currently two months to five days. This fast availability allows the monitoring of total water storage variations and of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. A Kalman filter framework, in which GRACE data is combined with prior information, serves as basis for the gravity field recovery in order to increase the redundancy of the gravity field estimates. The on-line nature of the NRT service necessitates a tailored smoothing algorithm as opposed to post-processing applications, where forward-backward smoothing can be applied. This contribution gives an overview on the near real-time processing chain and highlights differences between the computed NRT solutions and the standard GRACE products. We discuss the special characteristics of the Kalman filtered gravity field models as well as derived products and give an estimate of the expected error levels. Additionally, we show the added value of the NRT solutions through comparison of the first results of the pre-operational phase with in-situ data and monthly GRACE gravity field models.
Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert
2011-11-01
In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity rates are most sensitive in the centre of the former ice sheet. As a result, tangential gravity rates offer constraints on a two-layer mantle viscosity profile that are different from radial gravity rates, which can be exploited in future GIA studies.
NASA Astrophysics Data System (ADS)
Wang, Xianwei; de Linage, Caroline; Famiglietti, James; Zender, Charles S.
2011-12-01
Water impoundment in the Three Gorges Reservoir (TGR) of China caused a large mass redistribution from the oceans to a concentrated land area in a short time period. We show that this mass shift is captured by the Gravity Recovery and Climate Experiment (GRACE) unconstrained global solutions at a 400 km spatial resolution after removing correlated errors. The WaterGAP Global Hydrology Model (WGHM) is selected to isolate the TGR contribution from regional water storage changes. For the first time, this study compares the GRACE (minus WGHM) estimated TGR volume changes with in situ measurements from April 2002 to May 2010 at a monthly time scale. During the 8 year study period, GRACE-WGHM estimated TGR volume changes show an increasing trend consistent with the TGR in situ measurements and lead to similar estimates of impounded water volume. GRACE-WGHM estimated total volume increase agrees to within 14% (3.2 km3) of the in situ measurements. This indicates that GRACE can retrieve the true amplitudes of large surface water storage changes in a concentrated area that is much smaller than the spatial resolution of its global harmonic solutions. The GRACE-WGHM estimated TGR monthly volume changes explain 76% (r2 = 0.76) of in situ measurement monthly variability and have an uncertainty of 4.62 km3. Our results also indicate reservoir leakage and groundwater recharge due to TGR filling and contamination from neighboring lakes are nonnegligible in the GRACE total water storage changes. Moreover, GRACE observations could provide a relatively accurate estimate of global water volume withheld by newly constructed large reservoirs and their impacts on global sea level rise since 2002.
Integration of GRACE and GNET GPS in modeling the deglaciation of Greenland
NASA Astrophysics Data System (ADS)
Knudsen, P.; Madsen, F. B.; Khan, S. A.; Bevis, M. G.; van Dam, T. M.
2017-12-01
The use the monthly gravity fields from the Gravity Recovery and Climate Experiment (GRACE) has become essential when assessing and modeling the mass changes of the ice sheets. The recent degradation of the current mission, however, has hampered the continuous monitoring of ice sheet masses, at least until GRACE Follow-On mission will become operational. Through the recent years it has been demonstrated that mass changes can be observed by GPS receivers mounted on the adjacent bedrock. Especially, the Greenland GPS Network (GNET) has proven that GPS is a valuable technique for detecting mass changes through the Earths elastic response. An integration of GNET with other observations of the Greenland ice sheet, e.g. satellite altimetry and GRACE, has made studies of GIA progressing significantly. In this study, we aim at improving the monitoring of the ice sheet mass by utilizing the redundancy for reducing the influence of errors and to fill in at data voids and, not at least to bridge the gap between GRACE and GRACE FO. Initial analyses are carried out to link GRACE and GNET time series empirically. EOF analyses are carried out to extract the main part of the variability and to isolate errors. Subsequently, empirical covariance functions are derived and used in the integration. Preliminary results are derived and inter-compared.
Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2003-01-01
Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to date. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. In addition, although less precise than GRACE, the GPS/Meteorology constellation mission COSMIC, with 6 mini-satellites to be launched in late 2005, is expected to provide continued and complementary time-variable gravity observations. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.
The spatial and temporal variability of terrestrial water storage and snowpack in the Pacific Northwest (PNW) was analyzed for water years 2001–2010 using measurements from the Gravity Recovery and Climate Experiment (GRACE) instrument. GRACE provides remotely-sensed measurements...
A SmallSat constellation mission architecture for a GRACE-type mission design
NASA Astrophysics Data System (ADS)
Deccia, C. M. A.; Nerem, R. S.; Yunck, T.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) launched in 2002 and has been providing invaluable information of Earth's time-varying gravity field and GRACE-FO will continue this time series. For this work, we focus on architectures of future post-GRACE-FO like missions. Single pairs of satellites like GRACE and GRACE-FO are inherently limited in their spatio-temporal coverage. Full global coverage for a single pair can take up to 30 days for spatial resolutions of a few hundred kilometers, thus a single satellite pair is unable to observe sub-monthly signals in the Earth's time varying gravity field (e.g. hydrologic signals, etc.). Small satellite systems are becoming increasingly affordable and will soon allow a constellation of GRACE-type satellites to be deployed, with the capability to range between multiple satellites. Here, using simulation studies, we investigate the performance of such a constellation for different numbers of satellites (N) and different orbital configurations, in order to understand the improved performance that might be gained from such future mission architectures.
NASA Astrophysics Data System (ADS)
Loomis, B.; Luthcke, S. B.
2016-12-01
The global time-variable gravity products from GRACE continue to provide unique and important measurements of vertically integrated terrestrial water storage (TWS). Despite substantial improvements in recent years to the quality of the GRACE solutions and analysis techniques, significant disagreements can still exist between various approaches to compute basin scale TWS. Applying the GRACE spherical harmonic solutions to TWS analysis requires the selection, design, and implementation of one of a wide variety of available filters. It is common to then estimate and apply a set of scale factors to these filtered solutions in an attempt to restore lost signal. The advent of global mascon solutions, such as those produced by our group at NASA GSFC, are an important advancement in time-variable gravity estimation. This method applies data-driven regularization at the normal equation level, resulting in improved estimates of regional TWS. Though mascons are a valuable product, the design of the constraint matrix, the global minimization of observation residuals, and the arc-specific parameters, all introduce the possibility that localized basin scale signals are not perfectly recovered. The precise inter-satellite ranging instrument provides the primary observation set for the GRACE gravity solutions. Recently, we have developed an approach to analyze and calibrate basin scale TWS estimates directly from the inter-satellite observation residuals. To summarize, we compute the range-acceleration residuals for two different forward models by executing separate runs of our Level-1B processing system. We then quantify the linear relationship that exists between the modeled mass and the residual differences, defining a simple differential correction procedure that is applied to the modeled signals. This new calibration procedure does not require the computationally expensive formation and inversion of normal equations, and it eliminates any influence the solution technique may have on the determined regional time series of TWS. We apply this calibration approach to sixteen drainage basins that cover North America and present new measurements of TWS determined directly from the Level-1B range-acceleration residuals. Lastly, we compare these new solutions to other GRACE solutions and independent datasets.
Hydrology Applications of the GRACE missions
NASA Astrophysics Data System (ADS)
Srinivasan, M. M.; Ivins, E. R.; Jasinski, M. F.
2014-12-01
NASA and their German space agency partners have a rich history of global gravity observations beginning with the launch of the Gravity Recovery And Climate Experiment (GRACE) in 2002. The science goals of the mission include providing monthly maps of variations in the gravity field, where the major time-varying signal is due to water motion in the Earth system. GRACE has a unique ability to observe the mass flux of water movement at monthly time scales. The hydrology applications of the GRACE mission include measurements of seasonal storage of surface and subsurface water and evapotranspiration at the land-ocean-atmosphere boundary. These variables are invaluable for improved modeling and prediction of Earth system processes. Other mission-critical science objectives include measurements that are a key component of NASA's ongoing climate measuring capabilities. Successful strategies to enhance science and practical applications of the proposed GRACE-Follow On (GRACE-FO) mission, scheduled to launch in 2017, will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities. NASA's Applied Sciences Program is supporting collaboration on an applied approach to identifying communities of potential and of practice in order to identify and promote the societal benefits of these and future gravity missions. The objective is to engage applications-oriented users and organizations and enable them to envision possible applications and end-user needs as a way to increase the benefits of these missions to the nations. The focus of activities for this applications program include; engaging the science community in order to identify applications and current and potential data users, developing a written Applications Plan, conducting workshops and user tutorials, providing ready access to information via web pages, developing databases of key and interested users/scientists, creating printed materials (posters, brochures) that identify key capabilities and applications of the missions and data, and participation in key science meetings and decision support processes.
Daily GRACE gravity field solutions track major flood events in the Ganges-Brahmaputra Delta
NASA Astrophysics Data System (ADS)
Gouweleeuw, Ben T.; Kvas, Andreas; Gruber, Christian; Gain, Animesh K.; Mayer-Gürr, Thorsten; Flechtner, Frank; Güntner, Andreas
2018-05-01
Two daily gravity field solutions based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are evaluated against daily river runoff data for major flood events in the Ganges-Brahmaputra Delta (GBD) in 2004 and 2007. The trends over periods of a few days of the daily GRACE data reflect temporal variations in daily river runoff during major flood events. This is especially true for the larger flood in 2007, which featured two distinct periods of critical flood level exceedance in the Brahmaputra River. This first hydrological evaluation of daily GRACE gravity field solutions based on a Kalman filter approach confirms their potential for gravity-based large-scale flood monitoring. This particularly applies to short-lived, high-volume floods, as they occur in the GBD with a 4-5-year return period. The release of daily GRACE gravity field solutions in near-real time may enable flood monitoring for large events.
Application of Satellite Gravimetry for Water Resource Vulnerability Assessment
NASA Technical Reports Server (NTRS)
Rodell, Matthew
2012-01-01
The force of Earth's gravity field varies in proportion to the amount of mass near the surface. Spatial and temporal variations in the gravity field can be measured via their effects on the orbits of satellites. The Gravity Recovery and Climate Experiment (GRACE) is the first satellite mission dedicated to monitoring temporal variations in the gravity field. The monthly gravity anomaly maps that have been delivered by GRACE since 2002 are being used to infer changes in terrestrial water storage (the sum of groundwater, soil moisture, surface waters, and snow and ice), which are the primary source of gravity variability on monthly to decadal timescales after atmospheric and oceanic circulation effects have been removed. Other remote sensing techniques are unable to detect water below the first few centimeters of the land surface. Conventional ground based techniques can be used to monitor terrestrial water storage, but groundwater, soil moisture, and snow observation networks are sparse in most of the world, and the countries that do collect such data rarely are willing to share them. Thus GRACE is unique in its ability to provide global data on variations in the availability of fresh water, which is both vital to life on land and vulnerable to climate variability and mismanagement. This chapter describes the unique and challenging aspects of GRACE terrestrial water storage data, examples of how the data have been used for research and applications related to fresh water vulnerability and change, and prospects for continued contributions of satellite gravimetry to water resources science and policy.
Error Reduction Analysis and Optimization of Varying GRACE-Type Micro-Satellite Constellations
NASA Astrophysics Data System (ADS)
Widner, M. V., IV; Bettadpur, S. V.; Wang, F.; Yunck, T. P.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) mission has been a principal contributor in the study and quantification of Earth's time-varying gravity field. Both GRACE and its successor, GRACE Follow-On, are limited by their paired satellite design which only provide a full map of Earth's gravity field approximately every thirty days and at large spatial resolutions of over 300 km. Micro-satellite technology has presented the feasibility of improving the architecture of future missions to address these issues with the implementation of a constellations of satellites having similar characteristics as GRACE. To optimize the constellation's architecture, several scenarios are evaluated to determine how implementing this configuration affects the resultant gravity field maps and characterize which instrument system errors improve, which do not, and how changes in constellation architecture affect these errors.
NASA Astrophysics Data System (ADS)
van Dam, T.; Wahr, J.; LavalléE, David
2007-03-01
We compare approximately 3 years of GPS height residuals (with respect to the International Terrestrial Reference Frame) with predictions of vertical surface displacements derived from the Gravity Recovery and Climate Experiment (GRACE) gravity fields for stations in Europe. An annual signal fit to the residual monthly heights, corrected for atmospheric pressure and barotropic ocean loading effects, should primarily represent surface displacements due to long-wavelength variations in water storage. A comparison of the annual height signal from GPS and GRACE over Europe indicates that at most sites, the annual signals do not agree in amplitude or phase. We find that unlike the annual signal predicted from GRACE, the annual signal in the GPS heights is not coherent over the region, displaying significant variability from site to site. Confidence in the GRACE data and the unlikely possibility of large-amplitude small-scale features in the load field not captured by the GRACE data leads us to conclude that some of the discrepancy between the GPS and GRACE observations is due to technique errors in the GPS data processing. This is evidenced by the fact that the disagreement between GPS and GRACE is largest at coastal sites, where mismodeling of the semidiurnal ocean tidal loading signal can result in spurious annual signals.
The GRACE Mission in the Final Stage
NASA Astrophysics Data System (ADS)
Tapley, B. D.; Flechtner, F.; Watkins, M. M.; Boening, C.; Bettadpur, S. V.
2016-12-01
The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for over 13 years. The mission objectives are to sense the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The major cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequences which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The mission is entering the final phase of operations. The current mission operations strategy emphasizes extending the mission lifetime to achieve mission overlap with the GRACE Follow On Mission, whose launch is scheduled for late 2017. The mission operations decisions necessary to extend the mission lifetime impact both the science data yield and the data quality. This presentation will review the mission status, the projections for mission lifetime, summarize plans for the RL 06 data re-analysis, describe the issues that influence the operations philosophy and discuss the impact on the science data products during the remaining mission lifetime.
Low-degree gravity change from GPS data of COSMIC and GRACE satellite missions
NASA Astrophysics Data System (ADS)
Lin, Tingjung; Hwang, Cheinway; Tseng, Tzu-Pang; Chao, B. F.
2012-01-01
This paper demonstrates estimation of time-varying gravity harmonic coefficients from GPS data of COSMIC and GRACE satellite missions. The kinematic orbits of COSMIC and GRACE are determined to the cm-level accuracy. The NASA Goddard's GEODYN II software is used to model the orbit dynamics of COSMIC and GRACE, including the effect of a static gravity field. The surface forces are estimated per one orbital period. Residual orbits generated from kinematic and reference orbits serve as observables to determine the harmonic coefficients in the weighted-constraint least-squares. The monthly COSMIC and GRACE GPS data from September 2006 to December 2007 (16 months) are processed to estimate harmonic coefficients to degree 5. The geoid variations from the GPS and CSR RL04 (GRACE) solutions show consistent patterns over space and time, especially in regions of active hydrological changes. The monthly GPS-derived second zonal coefficient closely resembles the SLR-derived and CSR RL04 values, and third and fourth zonal coefficients resemble the CSR RL04 values.
Research on the impact factors of GRACE precise orbit determination by dynamic method
NASA Astrophysics Data System (ADS)
Guo, Nan-nan; Zhou, Xu-hua; Li, Kai; Wu, Bin
2018-07-01
With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth's gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3˜4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5˜1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.
NASA Astrophysics Data System (ADS)
Rietbroek, R.; Uebbing, B.; Lück, C.; Kusche, J.
2017-12-01
Ocean mass content (OMC) change due to the melting of the ice-sheets in Greenland and Antarctica, melting of glaciers and changes in terrestrial hydrology is a major contributor to present-day sea level rise. Since 2002, the GRACE satellite mission serves as a valuable tool for directly measuring the variations in OMC. As GRACE has almost reached the end of its lifetime, efforts are being made to utilize the Swarm mission for the recovery of low degree time-variable gravity fields to bridge a possible gap until the GRACE-FO mission and to fill up periods where GRACE data was not existent. To this end we compute Swarm monthly normal equations and spherical harmonics that are found competitive to other solutions. In addition to directly measuring the OMC, combination of GRACE gravity data with altimetry data in a global inversion approach allows to separate the total sea level change into individual mass-driven and steric contributions. However, published estimates of OMC from the direct and inverse methods differ not only depending on the time window, but also are influenced by numerous post-processing choices. Here, we will look into sources of such differences between direct and inverse approaches and evaluate the capabilities of Swarm to derive OMC. Deriving time series of OMC requires several processing steps; choosing a GRACE (and altimetry) product, data coverage, masks and filters to be applied in either spatial or spectral domain, corrections related to spatial leakage, GIA and geocenter motion. In this study, we compare and quantify the effects of the different processing choices of the direct and inverse methods. Our preliminary results point to the GIA correction as the major source of difference between the two approaches.
What GRACE/GRACE-FO satellite gravity may tell about the atmosphere (and what not)
NASA Astrophysics Data System (ADS)
Eicker, Annette; Springer, Anne; Hense, Andreas; Panet, Isabelle; Kusche, Jürgen
2017-04-01
In this presentation we would like to discuss the present benefit and future potential of satellite gravity observations, as obtained from the satellite mission GRACE and its successor GRACE-Follow-On (GRACE-FO), for studying the atmospheric water cycle. In the first part of the presentation, we will show recent results of using GRACE to constrain atmospheric water budgets. GRACE-derived water storage changes (in combination with observed runoff) can be used to solve for the vertical water flux deficit of precipitation (P) minus evapotranspiration (E), which links the terrestrial and the atmospheric water balance equations. This relates gravity change to moisture flux divergence and water vapor change and thus provides, in principle, a link between GRACE/GRACE-FO and (area-averaged) GNSS integrated water vapor observations that may be exploited in the future. We will show that such an independent estimate of P minus E can be used to constrain land-atmosphere fluxes from monthly time scales to decadal trends and even provides meaningful flux information down to daily time steps. In the second part of the presentation, we would like to give an outlook towards the potential of using satellite gravity data directly for the estimation of atmospheric water mass changes. On the basis of ERA-Interim data, we provide a first assessment which suggests that an anticipated future double-pair gravity mission with enhanced temporal and spatial resolution would be sensitive to 'feeling' atmospheric water mass (water vapor) variations. However, whether these (faster) variations could be separated from dry air mass variations through modeling needs to be investigated. If possible, this would offer a completely new tool for validating atmospheric analyses and for improving engergy and mass budgets in models.
Variability in Terrestrial Water Storage and its effect on polar motion
NASA Astrophysics Data System (ADS)
Śliwińska, Justyna; Nastula, Jolanta
2017-04-01
Explaining the hydrological part of observed polar motion excitation has been a major challenge over a dozen years. The terrestrial water storage (TWS) excitation of polar motion - hydrological angular momentum (HAM), has been investigated widely using global hydrological models mainly at seasonal timescales. Unfortunately, the results from the models do not fully explain the role of hydrological signal in polar motion excitation. The determination of TWS from the Earth's gravity field observations represents an indirect approach for estimating land hydrology. Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in Terrestrial Water Storage. Our investigations are focused on the influence of Terrestrial Water Storage (TWS) variations obtained from Gravity Recovery and Climate Experiment (GRACE) mission on polar motion excitation functions at decadal and inter-annual timescales. The global and regional trend, seasonal cycle as well as some extremes in TWS variations are considered here. Here TWS are obtained from the monthly mass grids land GRACE Tellus data: GRACE CSR RL05, GRACE GFZ RL05 and GRACE JPL RL05. As a comparative dataset, we also use TWS estimates determined from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5). GRACE data and state-of-the-art CMIP5 climate models allow us to show the variability of hydrological part of polar motion under climate changes. Our studies include two steps: first, the determination and comparisons of regional patterns of TWS obtained from GRACE data and climate models, and second, comparison of the regional and global hydrological excitation functions of polar motion with a hydrological signal in the geodetic excitation functions of polar motion.
NASA Technical Reports Server (NTRS)
Nerem, R. Steven; Leuliette, Eric; Russell, Gary
2003-01-01
This investigation has had four main thrusts: 1) The analysis of seasonal variations of the Earth's gravitational field using Lageos 1 and 2 SLR data and comparisons to geophysical models. We have estimated the annual variation of the gravity field via a spherical harmonic expansion complete to degree and order 4. We have also constructed a similar model using models of the annual variation in the gravity field due to atmospheric, hydrologic, and ocean mass redistribution. These three models, when combined together, are in excellent agreement with the variations observed by satellite laser ranging. An article on these results was published in the journal Geophysical Research Letters. 2) The second thrust of our investigation has been to analyze the output of a Global Climate Model (GCM) to determine if the GRACE gravity mission can be expected to detect climate change signals. Working with Gary Russell at the Goddard Institute for Space Studies (GISS), we have determined that there are several large secular signals that GRACE might be able to detect, including secular changes in snow cover, sea ice, polar ice, ocean mass, and other variables. It is possible that some of these signals could be detected with 5 years of GRACE measurements - its hard to judge this because the interannual variability in the GCM, which could mask the climate signals, is unreliable. Certainly a follow-on GRACE mission could detect these signals when compared to the data from the initial GRACE mission.). An article on these results will be published in the journal Journal of Geophysical Research. 3) In the last year of the investigation, we developed a new technique for analyzing temporal gravity variations using "geophysical fingerprints", which was successfully demonstrated on 20 years of satellite laser ranging data [Nerem et al., 20031. 4]. We also participated in a workshop on future satellite gravity measurements, which resulted in paper on measuring ocean mass variations using GRACE [Nerem et al., 20031 and on using laser interferometry for future gravity missions [Bender et al., 20031].
Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP?
NASA Astrophysics Data System (ADS)
Makowski, J.; Chambers, D. P.; Bonin, J. A.
2014-12-01
The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.
NASA Astrophysics Data System (ADS)
Meyer, Ulrich; Jäggi, Adrian; Beutler, Gerhard
2012-09-01
The main objective of the Gravity Recovery And Climate Experiment (GRACE) satellite mission consists of determining the temporal variations of the Earth's gravity field. These variations are captured by time series of gravity field models of limited resolution at, e.g., monthly intervals. We present a new time series of monthly models, which was computed with the so-called Celestial Mechanics Approach (CMA), developed at the Astronomical Institute of the University of Bern (AIUB). The secular and seasonal variations in the monthly models are tested for statistical significance. Calibrated errors are derived from inter-annual variations. The time-variable signal can be extracted at least up to degree 60, but the gravity field coefficients of orders above 45 are heavily contaminated by noise. This is why a series of monthly models is computed up to a maximum degree of 60, but only a maximum order of 45. Spectral analysis of the residual time-variable signal shows a distinctive peak at a period of 160 days, which shows up in particular in the C20 spherical harmonic coefficient. Basic filter- and scaling-techniques are introduced to evaluate the monthly models. For this purpose, the variability over the oceans is investigated, which serves as a measure for the noisiness of the models. The models in selected regions show the expected seasonal and secular variations, which are in good agreement with the monthly models of the Helmholtz Centre Potsdam, German Research Centre for Geosciences (GFZ). The results also reveal a few small outliers, illustrating the necessity for improved data screening. Our monthly models are available at the web page of the International Centre for Global Earth Models (ICGEM).
NASA Astrophysics Data System (ADS)
Tapley, B. D.; Flechtner, F. M.; Watkins, M. M.; Bettadpur, S. V.
2017-12-01
The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for nearly 16 years. The mission objectives are to observe the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The mass changes observed are related to both the changes within the solid earth and the change within and between the Erath system components. A significant cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequence which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. The fifth reanalysis on the mission data set, the RL05 data, were released in mid-2013. With the planned launch of GRACE Follow-On in early 2018, plans are underway for a reanalysis that will be consistent with the GRACE FO processing standards. The mission is entering the final phases of its operation life with mission end expected to occur in early 2018. The current mission operations strategy emphasizes extending the mission lifetime to obtain an overlap with the GRACE FO. This presentation will review the mission status and the projections for mission lifetime, describe the current operations philosophy and its impact on the science data, discuss the issues related to achieving the GRACE and GRACE FO connection and discuss issues related to science data products during this phase of the mission period.
Improvements in GRACE Gravity Fields Using Regularization
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S.; Tapley, B. D.
2008-12-01
The unconstrained global gravity field models derived from GRACE are susceptible to systematic errors that show up as broad "stripes" aligned in a North-South direction on the global maps of mass flux. These errors are believed to be a consequence of both systematic and random errors in the data that are amplified by the nature of the gravity field inverse problem. These errors impede scientific exploitation of the GRACE data products, and limit the realizable spatial resolution of the GRACE global gravity fields in certain regions. We use regularization techniques to reduce these "stripe" errors in the gravity field products. The regularization criteria are designed such that there is no attenuation of the signal and that the solutions fit the observations as well as an unconstrained solution. We have used a computationally inexpensive method, normally referred to as "L-ribbon", to find the regularization parameter. This paper discusses the characteristics and statistics of a 5-year time-series of regularized gravity field solutions. The solutions show markedly reduced stripes, are of uniformly good quality over time, and leave little or no systematic observation residuals, which is a frequent consequence of signal suppression from regularization. Up to degree 14, the signal in regularized solution shows correlation greater than 0.8 with the un-regularized CSR Release-04 solutions. Signals from large-amplitude and small-spatial extent events - such as the Great Sumatra Andaman Earthquake of 2004 - are visible in the global solutions without using special post-facto error reduction techniques employed previously in the literature. Hydrological signals as small as 5 cm water-layer equivalent in the small river basins, like Indus and Nile for example, are clearly evident, in contrast to noisy estimates from RL04. The residual variability over the oceans relative to a seasonal fit is small except at higher latitudes, and is evident without the need for de-striping or spatial smoothing.
High-Resolution Gravity and Time-Varying Gravity Field Recovery using GRACE and CHAMP
NASA Technical Reports Server (NTRS)
Shum, C. K.
2002-01-01
This progress report summarizes the research work conducted under NASA's Solid Earth and Natural Hazards Program 1998 (SENH98) entitled High Resolution Gravity and Time Varying Gravity Field Recovery Using GRACE (Gravity Recovery and Climate Experiment) and CHAMP (Challenging Mini-satellite Package for Geophysical Research and Applications), which included a no-cost extension time period. The investigation has conducted pilot studies to use the simulated GRACE and CHAMP data and other in situ and space geodetic observable, satellite altimeter data, and ocean mass variation data to study the dynamic processes of the Earth which affect climate change. Results from this investigation include: (1) a new method to use the energy approach for expressing gravity mission data as in situ measurements with the possibility to enhance the spatial resolution of the gravity signal; (2) the method was tested using CHAMP and validated with the development of a mean gravity field model using CHAMP data, (3) elaborate simulation to quantify errors of tides and atmosphere and to recover hydrological and oceanic signals using GRACE, results show that there are significant aliasing effect and errors being amplified in the GRACE resonant geopotential and it is not trivial to remove these errors, and (4) quantification of oceanic and ice sheet mass changes in a geophysical constraint study to assess their contributions to global sea level change, while the results improved significant over the use of previous studies using only the SLR (Satellite Laser Ranging)-determined zonal gravity change data, the constraint could be further improved with additional information on mantle rheology, PGR (Post-Glacial Rebound) and ice loading history. A list of relevant presentations and publications is attached, along with a summary of the SENH investigation generated in 2000.
NASA Astrophysics Data System (ADS)
Makowski, J.; Chambers, D. P.; Bonin, J. A.
2012-12-01
Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.
Characteristic mega-basin water storage behavior using GRACE.
Reager, J T; Famiglietti, James S
2013-06-01
[1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km 2 ), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world's largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤ E f ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation.
Characteristic mega-basin water storage behavior using GRACE
Reager, J T; Famiglietti, James S
2013-01-01
[1] A long-standing challenge for hydrologists has been a lack of observational data on global-scale basin hydrological behavior. With observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission, hydrologists are now able to study terrestrial water storage for large river basins (>200,000 km2), with monthly time resolution. Here we provide results of a time series model of basin-averaged GRACE terrestrial water storage anomaly and Global Precipitation Climatology Project precipitation for the world’s largest basins. We address the short (10 year) length of the GRACE record by adopting a parametric spectral method to calculate frequency-domain transfer functions of storage response to precipitation forcing and then generalize these transfer functions based on large-scale basin characteristics, such as percent forest cover and basin temperature. Among the parameters tested, results show that temperature, soil water-holding capacity, and percent forest cover are important controls on relative storage variability, while basin area and mean terrain slope are less important. The derived empirical relationships were accurate (0.54 ≤ Ef ≤ 0.84) in modeling global-scale water storage anomaly time series for the study basins using only precipitation, average basin temperature, and two land-surface variables, offering the potential for synthesis of basin storage time series beyond the GRACE observational period. Such an approach could be applied toward gap filling between current and future GRACE missions and for predicting basin storage given predictions of future precipitation. PMID:24563556
NASA Astrophysics Data System (ADS)
Tangdamrongsub, Natthachet; Han, Shin-Chan; Decker, Mark; Yeo, In-Young; Kim, Hyungjun
2018-03-01
An accurate estimation of soil moisture and groundwater is essential for monitoring the availability of water supply in domestic and agricultural sectors. In order to improve the water storage estimates, previous studies assimilated terrestrial water storage variation (ΔTWS) derived from the Gravity Recovery and Climate Experiment (GRACE) into land surface models (LSMs). However, the GRACE-derived ΔTWS was generally computed from the high-level products (e.g. time-variable gravity fields, i.e. level 2, and land grid from the level 3 product). The gridded data products are subjected to several drawbacks such as signal attenuation and/or distortion caused by a posteriori filters and a lack of error covariance information. The post-processing of GRACE data might lead to the undesired alteration of the signal and its statistical property. This study uses the GRACE least-squares normal equation data to exploit the GRACE information rigorously and negate these limitations. Our approach combines GRACE's least-squares normal equation (obtained from ITSG-Grace2016 product) with the results from the Community Atmosphere Biosphere Land Exchange (CABLE) model to improve soil moisture and groundwater estimates. This study demonstrates, for the first time, an importance of using the GRACE raw data. The GRACE-combined (GC) approach is developed for optimal least-squares combination and the approach is applied to estimate the soil moisture and groundwater over 10 Australian river basins. The results are validated against the satellite soil moisture observation and the in situ groundwater data. Comparing to CABLE, we demonstrate the GC approach delivers evident improvement of water storage estimates, consistently from all basins, yielding better agreement on seasonal and inter-annual timescales. Significant improvement is found in groundwater storage while marginal improvement is observed in surface soil moisture estimates.
A global reconstruction of climate-driven subdecadal water storage variability
NASA Astrophysics Data System (ADS)
Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.
2017-03-01
Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:
NASA Astrophysics Data System (ADS)
Frolova, Natalia; Zotov, Leonid; Grigoriev, Vadim; Sazonov, Alexey; Kireeva, Maria; Krylenko, Inna
2017-04-01
Space-based Earth observing systems provided a substantially large amount of information to the scientific community in recent decades. Cumulative effects of redistribution of masses in the Earth system can be seen in the changes of the gravity field of the Earth. Gravity Recovery and Climate Experiment (GRACE) satellites, launched 17.03.2002 from Plesetsk, provide a set of monthly Earth's gravity field observations. GRACE data is very useful for hydrological and climatological studies, especially over large territory, not completely covered by the meteorological and hydrological networks, like Russia. Possible application of the satellite gravity survey data obtained under the GRACE for solving various hydrological problems is discussed. The GRACE-based monthly gravity field data are transformed into the maps of water level equivalent and averaged for the catchments of the largest rivers of Russia. The temporal variability of the parameter is analyzed. Possible application of the GRACE data for the evaluation of particular components of water balance within the largest river basins of the European part of Russia is discussed. After averaging over 15 large Russian rivers basins annual component shows amplitude increase since 2009. Trend component grows until 2009 and then reaches a plateau. It is mostly dominated by Siberian rivers. Map for the trend show gravity field increase in Siberia, at Back Sea and decrease over Caspian Sea since 2003. GRACE satellite gravimetry data can be used for estimating terrestrial water storage (TWS) in a river basin scale. Terrestrial water storage (TWS) is the integrated sum of all basin storages (surface water bodies, soil and ground aquifer, snowpack and glaciers) and the ability to estimate TWS dynamics is useful for understanding the basin's water cycle, its interconnection with the local climate, physics of predictability of extreme hydrological events. Despite the importance of the TWS estimates, reliable ground-based monitoring data of all TWS components are scarce or absent at all. Since observations are not sufficient to monitor TWS, hydrological models are considered as a comprehensive tool to simulate TWS components at a basin scale. However accuracy of the model-derived TWS is influenced by the uncertainty of the model structure and parameters, reliability of input data, etc. To improve the TWS-estimates, it is reasonable to combine the simulated TWS with independent observations provided by the GRACE gravity data. Ninety-seven monthly TWS retrieval from GRACE data (from April 2002 to December 2009) was examined and compared with TWS-estimates obtained by the ECOMAG hydrological model simulations. The case study was carried out for the Northern Dvina River basin. Quantitative analyze between the hydrological model and GRACE-based TWS showed that latter is in good consistency with the simulation results on both seasonal and inter-annual time scales. Overall, the results highlight the benefit of assimilating GRACE data for hydrological applications, particularly in data-sparse regions, while also providing insight on future refinements of the methodology of GRACE-data application in watershed hydrology. The study is financially supported by the Russian Foundation for Basic Research (Proj.№ 16-35-60080; 16-05-00753) and the Russian Science Foundation (Grant No. 14-17-00155).
The Status and Future Directions for the GRACE Mission
NASA Astrophysics Data System (ADS)
Tapley, B. D.; Flechtner, F.; Watkins, M. M.; Bettadpur, S. V.
2015-12-01
The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for over 13 years. The mission objectives are to sense the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The major cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequences which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. In 2012, a complete reanalysis of the mission data, referred to as the RL05 data release, was initiated. The monthly solutions from this effort were released in mid-2013 with the mean fields following in 2014 and 2015. The mission is entering the final phases of operations. The current mission operations strategy emphasizes extending the mission lifetime to achieve mission overlap with the GRACE Follow On Mission. This presentation will review the mission status and the projections for mission lifetime, summarize plans for the RL 06 data re-analysis, describe the issues that influence the operations philosophy and discuss the impact the operations may have on the scientific data products.
The Current Status and Future Prospects for the GRACE Mission
NASA Astrophysics Data System (ADS)
Tapley, Byron; Flechtner, Frank; Watkins, Michael; Bettadpur, Srinivas; Boening, Carmen
2016-04-01
The twin satellites of the Gravity Recovery and Climate Experiment (GRACE) were launched on March 17, 2002 and have operated for over 13 years. The mission objectives are to sense the spatial and temporal variations of the Earth's mass through its effects on the gravity field at the GRACE satellite altitude. The major cause of the time varying mass is water motion and the GRACE mission has provided a continuous decade long measurement sequences which characterizes the seasonal cycle of mass transport between the oceans, land, cryosphere and atmosphere; its inter-annual variability; and the climate driven secular, or long period, mass transport signals. In 2012, the RLO5 solution, based on a complete reanalysis of the mission data, data release, was initiated. The monthly solutions from this effort were released in mid-2013 with the mean fields following in 2014 and 2015. The mission is entering the final phases of operations. The current mission operations strategy emphasizes extending the mission lifetime to achieve mission overlap with the GRACE Follow On Mission. This presentation will review the mission status and the projections for mission lifetime, summarize plans for the RL 06 data re-analysis, describe the issues that influence the operations philosophy and discuss the impact the operations may have on the scientific data products.
Progress towards CSR RL06 GRACE gravity solutions
NASA Astrophysics Data System (ADS)
Save, Himanshu
2017-04-01
The GRACE project plans to re-processes the GRACE mission data in order to be consistent with the first gravity products released by the GRACE-FO project. The next generation Release-06 (RL06) gravity products from GRACE will include the improvements in GRACE Level-1 data products, background gravity models and the processing methodology. This paper will outline the planned improvements for CSR - RL06 and discuss the preliminary results. This paper will discuss the evolution of the quality of the GRACE solutions, especially over the past few years. We will also discuss the possible challenges we may face in connecting/extending the measurements of mass fluxes from the GRACE era to the GRACE-FO era due quality of the GRACE solutions from recent years.
NASA Technical Reports Server (NTRS)
Rowlands, D. D.; Luthcke, S. B.; McCarthy J. J.; Klosko, S. M.; Chinn, D. S.; Lemoine, F. G.; Boy, J.-P.; Sabaka, T. J.
2010-01-01
The differences between mass concentration (mas con) parameters and standard Stokes coefficient parameters in the recovery of gravity infonnation from gravity recovery and climate experiment (GRACE) intersatellite K-band range rate data are investigated. First, mascons are decomposed into their Stokes coefficient representations to gauge the range of solutions available using each of the two types of parameters. Next, a direct comparison is made between two time series of unconstrained gravity solutions, one based on a set of global equal area mascon parameters (equivalent to 4deg x 4deg at the equator), and the other based on standard Stokes coefficients with each time series using the same fundamental processing of the GRACE tracking data. It is shown that in unconstrained solutions, the type of gravity parameter being estimated does not qualitatively affect the estimated gravity field. It is also shown that many of the differences in mass flux derivations from GRACE gravity solutions arise from the type of smoothing being used and that the type of smoothing that can be embedded in mas con solutions has distinct advantages over postsolution smoothing. Finally, a 1 year time series based on global 2deg equal area mascons estimated every 10 days is presented.
NASA Astrophysics Data System (ADS)
Reimond, S.; Klinger, B.; Krauss, S.; Mayer-Gürr, T.; Eicker, A.; Zemp, M.
2017-12-01
In recent years, remotely sensed observations have become one of the most ubiquitous and valuable sources of information for glacier monitoring. In addition to altimetry and interferometry data (as observed, e.g., by the CryoSat-2 and TanDEM-X satellites), time-variable gravity field data from the GRACE satellite mission has been used by several authors to assess mass changes in glacier systems. The main challenges in this context are i) the limited spatial resolution of GRACE, ii) the gravity signal attenuation in space and iii) the problem of isolating the glaciological signal from the gravitational signatures as detected by GRACE.In order to tackle the challenges i) and ii), we thoroughly investigate the point-mass modeling technique to represent the local gravity field. Instead of simply evaluating global spherical harmonics, we operate on the normal equation level and make use of GRACE K-band ranging data (available since April 2002) processed at the Graz University of Technology. Assessing such small-scale mass changes from space-borne gravimetric data is an ill-posed problem, which we aim to stabilize by utilizing a Genetic Algorithm based Tikhonov regularization. Concerning issue iii), we evaluate three different hydrology models (i.e. GLDAS, LSDM and WGHM) for validation purposes and the derivation of error bounds. The non-glaciological signal is calculated for each region of interest and reduced from the GRACE results.We present mass variations of several alpine glacier systems (e.g. the European Alps, Svalbard or Iceland) and compare our results to glaciological observations provided by the World Glacier Monitoring Service (WGMS) and alternative inversion methods (surface density modeling).
Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements
NASA Astrophysics Data System (ADS)
Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois
2017-03-01
We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.
On the Retrieval of Geocenter Motion from Gravity Data
NASA Astrophysics Data System (ADS)
Rosat, S.; Mémin, A.; Boy, J. P.; Rogister, Y. J. G.
2017-12-01
The center of mass of the whole Earth, the so-called geocenter, is moving with respect to the Center of Mass of the solid Earth because of the loading exerted by the Earth's fluid layers on the solid crust. Space geodetic techniques tying satellites and ground stations (e.g. GNSS, SLR and DORIS) have been widely employed to estimate the geocenter motion. Harmonic degree-1 variations of the gravity field are associated to the geocenter displacement. We show that ground records of time-varying gravity from Superconducting Gravimeters (SGs) can be used to constrain the geocenter motion. Two major difficulties have to be tackled: (1) the sensitivity of surface gravimetric measurements to local mass changes, and in particular hydrological and atmospheric variabilities; (2) the spatial aliasing (spectral leakage) of spherical harmonic degrees higher than 1 induced by the under-sampling of station distribution. The largest gravity variations can be removed from the SG data by subtracting solid and oceanic tides as well as atmospheric and hydrologic effects using global models. However some hydrological signal may still remain. Since surface water content is well-modelled using GRACE observations, we investigate how the spatial aliasing in SG data can be reduced by employing GRACE solutions when retrieving geocenter motion. We show synthetic simulations using complete surface loading models together with GRACE solutions computed at SG stations. In order to retrieve the degree-one gravity variations that are associated with the geocenter motion, we use a multi-station stacking method that performs better than a classical spherical harmonic stacking when the station distribution is inhomogeneous. We also test the influence of the network configuration on the estimate of the geocenter motion. An inversion using SG and GRACE observations is finally presented and the results are compared with previous geocenter estimates.
Humphrey, Vincent; Gudmundsson, Lukas; Seneviratne, Sonia I
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.
NASA Technical Reports Server (NTRS)
Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas; Beckley, Brain D.; Melachroinos, Stavros; Rowlands, David D.; Luthcke, Scott B.
2011-01-01
Modeling of the Time Variable Gravity (TVG) is believed to constitute one of the the largest remaining source of orbit error for altimeter satellite POD. The GSFC operational TVG model consists of forward modeling the atmospheric gravity using ECMWF 6-hour pressure data, a GRACE derived 20x20 annual field to account for changes in the hydrology and ocean water mass, and linear rates for C20, C30, C40, based on 17 years of SLR data analysis (IERS 2003) using the EIGEN-GL04S1 (a GRACE+Lageos-based geopotential solution). Although the GSFC Operational model can be applied from 1987, there may be long-term variations not captured by these linear models, and more importantly the linear models may not be consistent with more recent surface mass trends due to global climate change, We have evaluated the impact of TVG in two different wavs: (1) by using the more recent EIGEN-6S gravity model developed by the GFZ/GRGS tearm, which consists of annual, semi-annual and secular changes in the coefficients to 50x50 determined over 8(?) years of GRACE+Lageos+GOCE data (2003-200?): (2) Application of 4x4 solutions developed from a multi satellite SLR+DORIS solution based on GGM03S that span the period from 1993 to 2011. We have evaluated the recently released EIGEN6s static and time-varying gravity field for Jason-2 (J2). Jason-I (J1), and TOPEX/Posiedon (TP) Precise Orbit Determination (POD) spanning 1993-2011. Although EIGEN6s shows significant improvement for J2POD spanning 2008 - 2011, it also shows significant degradation for TP POD from 1992. The GSFC 4x4 time SLR+DORIS-based series spans 1993 to mid 2011, and shows promise for POD. We evaluate the performance of the different TVG models based on analysis of tracking data residuals use of independent data such as altimeter crossovers, and through analysis of differences with internally-generated and externally generated orbits.
NASA Astrophysics Data System (ADS)
Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean
2014-05-01
We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Klemann, Volker; Martinec, Zdeněk
2012-09-01
We perform an inversion of gravity fields from the Gravity Recovery and Climate Experiment (GRACE) (August 2002 to August 2009) of four processing centres for glacial-isostatic adjustment (GIA) over North America and present-day ice-mass change in Alaska and Greenland. We apply a statistical filtering approach to reduce noise in the GRACE data by confining our investigations to GRACE coefficients containing a statistically significant linear trend. Selecting the subset of reliable coefficients in all GRACE time series (GFZ RL04, ITG 2010, JPL RL04 and CSR RL04) results in a non-isotropic smoothing of the GRACE gravity fields, which is effective in reducing the north-south oriented striping associated with correlated errors in GRACE coefficients. In a next step, forward models of GIA induced by the glacial history NAWI (Zweck and Huybrechts, 2005), as well as present-day ice mass changes in Greenland from ICESat (Sørensen et al., 2011) and Alaska from airborne laser altimetry (Arendt et al., 2002) are simultaneously adjusted in scale to minimize the misfit to the filtered GRACE trends. From the adjusted models, we derive the recent sea-level contributions for Greenland and Alaska (August 2002 to August 2009), and, interpret the residual misfit over the GIA-dominated region around the Hudson Bay, Canada, in terms of mantle viscosities beneath North America.
Antarctic Circumpolar Current Transport Variability during 2003-05 from GRACE
NASA Technical Reports Server (NTRS)
Zlotnicki, Victor; Wahr, John; Fukumori, Ichiro; Song, Yuhe T.
2006-01-01
Gravity Recovery and Climate Experiment (GRACE) gravity data spanning January 2003 - November 2005 are used as proxies for ocean bottom pressure (BP) averaged over 1 month, spherical Gaussian caps 500 km in radius, and along paths bracketing the Antarctic Circumpolar Current's various fronts. The GRACE BP signals are compared with those derived from the Estimating the Circulation and Climate of the Ocean (ECCO) ocean modeling-assimilation system, and to a non-Boussinesq version of the Regional Ocean Model System (ROMS). The discrepancy found between GRACE and the models is 1.7 cm(sub H2O) (1 cm(sub H2O) similar to 1 hPa), slightly lower than the 1.9 cm(sub H2O) estimated by the authors independently from propagation of GRACE errors. The northern signals are weak and uncorrelated among basins. The southern signals are strong, with a common seasonality. The seasonal cycle GRACE data observed in the Pacific and Indian Ocean sectors of the ACC are consistent, with annual and semiannual amplitudes of 3.6 and 0.6 cm(sub H2O) (1.1 and 0.6 cm(sub H2O) with ECCO), the average over the full southern path peaks (stronger ACC) in the southern winter, on days of year 197 and 97 for the annual and semiannual components, respectively; the Atlantic Ocean annual peak is 20 days earlier. An approximate conversion factor of 3.1 Sv ( Sv equivalent to 10(exp 6) m(exp 3) s(exp -1)) of barotropic transport variability per cm(sub H2O) of BP change is estimated. Wind stress data time series from the Quick Scatterometer (QuikSCAT), averaged monthly, zonally, and over the latitude band 40 de - 65 deg S, are also constructed and subsampled at the same months as with the GRACE data. The annual and semiannual harmonics of the wind stress peak on days 198 and 82, respectively. A decreasing trend over the 3 yr is observed in the three data types.
Antarctic Circumpolar Current Transport Variability during 2003-05 from GRACE
NASA Technical Reports Server (NTRS)
Zlotnicki, Victor; Wahr, John; Fukumori, Ichiro; Song, Yuhe T.
2007-01-01
Gravity Recovery and Climate Experiment (GRACE) gravity data spanning January 2003-November 2005 are used as proxies for ocean bottom pressure (BP) averaged over 1 month, spherical Gaussian caps 500 km in radius, and along paths bracketing the Antarctic Circumpolar Current's various fronts. The GRACE BP signals are compared with those derived from the Estimating the Circulation and Climate of the Ocean (ECCO) ocean modeling-assimilation system, and to a non-Boussinesq version of the Regional Ocean Model System (ROMS). The discrepancy found between GRACE and the models is 1.7 cm
The ITSG-Grace2014 Gravity Field Model
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Mayer-Gürr, Torsten; Zehenter, Norbert; Klinger, Beate
2015-04-01
The ITSG-Grace2014 GRACE-only gravity field model consists of a high resolution unconstrained static model (up to degree 200) with trend and annual signal, monthly unconstrained solutions with different spatial resolutions as well as daily snapshots derived by using a Kalman smoother. Apart from the estimated spherical harmonic coefficients, full variance-covariance matrices for the monthly solutions and the static gravity field component are provided. Compared to the previous release, multiple improvements in the processing chain are implemented: updated background models, better ionospheric modeling for GPS observations, an improved satellite attitude by combination of star camera and angular accelerations, estimation of K-band antenna center variations within the gravity field recovery process as well as error covariance function determination. Furthermore, daily gravity field variations have been modeled in the adjustment process to reduce errors caused by temporal leakage. This combined estimation of daily gravity variations field variations together with the static gravity field component represents a computational challenge due to the significantly increased parameter count. The modeling of daily variations up to a spherical harmonic degree of 40 for the whole GRACE observation period results in a system of linear equations with over 6 million unknown gravity field parameters. A least squares adjustment of this size is not solvable in a sensible time frame, therefore measures to reduce the problem size have to be taken. The ITSG-Grace2014 release is presented and selected parts of the processing chain and their effect on the estimated gravity field solutions are discussed.
Antarctic Ice Mass Balance from GRACE
NASA Astrophysics Data System (ADS)
Boening, C.; Firing, Y. L.; Wiese, D. N.; Watkins, M. M.; Schlegel, N.; Larour, E. Y.
2014-12-01
The Antarctic ice mass balance and rates of change of ice mass over the past decade are analyzed based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, in the form of JPL RL05M mascon solutions. Surface mass balance (SMB) fluxes from ERA-Interim and other atmospheric reanalyses successfully account for the seasonal GRACE-measured mass variability, and explain 70-80% of the continent-wide mass variance at interannual time scales. Trends in the residual (GRACE mass - SMB accumulation) mass time series in different Antarctic drainage basins are consistent with time-mean ice discharge rates based on radar-derived ice velocities and thicknesses. GRACE also resolves accelerations in regional ice mass change rates, including increasing rates of mass gain in East Antarctica and accelerating ice mass loss in West Antarctica. The observed East Antarctic mass gain is only partially explained by anomalously large SMB events in the second half of the record, potentially implying that ice discharge rates are also decreasing in this region. Most of the increasing mass loss rate in West Antarctica, meanwhile, is explained by decreasing SMB (principally precipitation) over this time period, part of the characteristic decadal variability in regional SMB. The residual acceleration of 2+/-1 Gt/yr, which is concentrated in the Amundsen Sea Embayment (ASE) basins, represents the contribution from increasing ice discharge rates. An Ice Sheet System Model (ISSM) run with constant ocean forcing and stationary grounding lines both underpredicts the largest trends in the ASE and produces negligible acceleration or interannual variability in discharge, highlighting the potential importance of ocean forcing for setting ice discharge rates at interannual to decadal time scales.
Broad-Band Analysis of Polar Motion Excitations
NASA Astrophysics Data System (ADS)
Chen, J.
2016-12-01
Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.
Hydrologic implications of GRACE satellite data in the Colorado River Basin
Scanlon, Bridget R.; Zhang, Zizhan; Reedy, Robert C.; Pool, Donald R.; Save, Himanshu; Long, Di; Chen, Jianli; Wolock, David M.; Conway, Brian D.; Winester, Daniel
2015-01-01
Use of GRACE (Gravity Recovery and Climate Experiment) satellites for assessing global water resources is rapidly expanding. Here we advance application of GRACE satellites by reconstructing long-term total water storage (TWS) changes from ground-based monitoring and modeling data. We applied the approach to the Colorado River Basin which has experienced multiyear intense droughts at decadal intervals. Estimated TWS declined by 94 km3 during 1986–1990 and by 102 km3 during 1998–2004, similar to the TWS depletion recorded by GRACE (47 km3) during 2010–2013. Our analysis indicates that TWS depletion is dominated by reductions in surface reservoir and soil moisture storage in the upper Colorado basin with additional reductions in groundwater storage in the lower basin. Groundwater storage changes are controlled mostly by natural responses to wet and dry cycles and irrigation pumping outside of Colorado River delivery zones based on ground-based water level and gravity data. Water storage changes are controlled primarily by variable water inputs in response to wet and dry cycles rather than increasing water use. Surface reservoir storage buffers supply variability with current reservoir storage representing ∼2.5 years of available water use. This study can be used as a template showing how to extend short-term GRACE TWS records and using all available data on storage components of TWS to interpret GRACE data, especially within the context of droughts.
NASA Astrophysics Data System (ADS)
Peralta Ferriz, C.; Morison, J.
2014-12-01
Since 2003, the Gravity Recovery and Climate Experiment (GRACE) satellite system has provided the means of investigating month-to-month to inter-annual variability of, among many other things, Arctic Ocean circulation over the entire Arctic Basin. Such a comprehensive picture could not have been achieved with the limited in situ pressure observations available. Results from the first 10 years of ocean bottom pressure measurements from GRACE in the Arctic Ocean reveal distinct patterns of ocean variability that are strongly associated with changes in large-scale atmospheric circulation (Peralta-Ferriz et al., 2014): the leading mode of variability being a wintertime basin-coherent mass change driven by winds in the Nordic Seas; the second mode of variability corresponding to a mass signal coherent along the Siberian shelves, and driven by the Arctic Oscillation; and the third mode being a see-saw between western and eastern Arctic shelves, also driven by the large-scale wind patterns. In order to understand Arctic Ocean changes, it is fundamental to continue to track ocean bottom pressure. Our concern is what to do if the present GRACE system, which is already well beyond its design lifetime, should fail before its follow-on is launched, currently estimated to be in 2017. In this work, we regress time series of pressure from the existing and potential Arctic Ocean bottom pressure recorder locations against the fundamental modes of bottom pressure variation. Our aim is to determine the optimum combination of in situ measurements to represent the broader scale variability now observed by GRACE. With this understanding, we can be better prepared to use in situ observations to at least partially cover a possible gap in GRACE coverage. Reference:Peralta-Ferriz, Cecilia, James H. Morison, John M. Wallace, Jennifer A. Bonin, Jinlun Zhang, 2014: Arctic Ocean Circulation Patterns Revealed by GRACE. J. Climate, 27, 1445-1468. doi: http://dx.doi.org/10.1175/JCLI-D-13-00013.1
Land Water Storage within the Congo Basin Inferred from GRACE Satellite Gravity Data
NASA Technical Reports Server (NTRS)
Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.
2006-01-01
GRACE satellite gravity data is used to estimate terrestrial (surface plus ground) water storage within the Congo Basin in Africa for the period of April, 2002 - May, 2006. These estimates exhibit significant seasonal (30 +/- 6 mm of equivalent water thickness) and long-term trends, the latter yielding a total loss of approximately 280 km(exp 3) of water over the 50-month span of data. We also combine GRACE and precipitation data set (CMAP, TRMM) to explore the relative contributions of the source term to the seasonal hydrological balance within the Congo Basin. We find that the seasonal water storage tends to saturate for anomalies greater than 30-44 mm of equivalent water thickness. Furthermore, precipitation contributed roughly three times the peak water storage after anomalously rainy seasons, in early 2003 and 2005, implying an approximately 60-70% loss from runoff and evapotranspiration. Finally, a comparison of residual land water storage (monthly estimates minus best-fitting trends) in the Congo and Amazon Basins shows an anticorrelation, in agreement with the 'see-saw' variability inferred by others from runoff data.
Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS
NASA Technical Reports Server (NTRS)
Syed, Tajdarul H.; Famiglietti, James S.; Rodell, Matthew; Chen, Jianli; Wilson, Clark R.
2008-01-01
Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.
Han, S.-C.; Sauber, J.; Luthcke, S.B.; Ji, C.; Pollitz., F. F.
2008-01-01
We report Gravity Recovery and Climate Experiment (GRACE) satellite observations of coseismic displacements and postseismic transients from the great Sumatra-Andaman Islands (thrust event; Mw ???9.2) earthquake in December 2004. Instead of using global spherical harmonic solutions of monthly gravity fields, we estimated the gravity changes directly using intersatellite range-rate data with regionally concentrated spherical Slepian basis functions every 15-day interval. We found significant step-like (coseismic) and exponential-like (postseismic) behavior in the time series of estimated coefficients (from May 2003 to April 2007) for the spherical Slepian function's. After deriving coseismic slip estimates from seismic and geodetic data that spanned different time intervals, we estimated and evaluated postseismic relaxation mechanisms with alternate asthenosphere viscosity models. The large spatial coverage and uniform accuracy of our GRACE solution enabled us to clearly delineate a postseismic transient signal in the first 2 years of postearthquake GRACE data. Our preferred interpretation of the long-wavelength components of the postseismic avity change is biviscous viscoelastic flow. We estimated a transient viscosity of 5 ??17 Pa s and a steady state viscosity of 5 ?? 1018 - 1019 Pa s. Additional years of the GRACE observations should provide improved steady state viscosity estimates. In contrast to our interpretation of coseismic gravity change, the prominent postearthquake positive gravity change around the Nicobar Islands is accounted for by seafloor uplift with less postseismic perturbation in intrinsic density in the region surrounding the earthquake. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze
2016-06-01
The main contribution of this study is to improve the GRACE gravity field solution by taking errors of non-conservative acceleration and attitude observations into account. Unlike previous studies, the errors of the attitude and non-conservative acceleration data, and gravity field parameters, as well as accelerometer biases are estimated by means of weighted least squares adjustment. Then we compute a new time series of monthly gravity field models complete to degree and order 60 covering the period Jan. 2003 to Dec. 2012 from the twin GRACE satellites' data. The derived GRACE solution (called Tongji-GRACE02) is compared in terms of geoid degree variances and temporal mass changes with the other GRACE solutions, namely CSR RL05, GFZ RL05a, and JPL RL05. The results show that (1) the global mass signals of Tongji-GRACE02 are generally consistent with those of CSR RL05, GFZ RL05a, and JPL RL05; (2) compared to CSR RL05, the noise of Tongji-GRACE02 is reduced by about 21 % over ocean when only using 300 km Gaussian smoothing, and 60 % or more over deserts (Australia, Kalahari, Karakum and Thar) without using Gaussian smoothing and decorrelation filtering; and (3) for all examples, the noise reductions are more significant than signal reductions, no matter whether smoothing and filtering are applied or not. The comparison with GLDAS data supports that the signals of Tongji-GRACE02 over St. Lawrence River basin are close to those from CSR RL05, GFZ RL05a and JPL RL05, while the GLDAS result shows the best agreement with the Tongji-GRACE02 result.
NASA Astrophysics Data System (ADS)
Panda, Dileep K.; Wahr, John
2016-01-01
Investigating changes in terrestrial water storage (TWS) is important for understanding response of the hydrological cycle to recent climate variability worldwide. This is particularly critical in India where the current economic development and food security greatly depend on its water resources. We use 129 monthly gravity solutions from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites for the period of January 2003 to May 2014 to characterize spatiotemporal variations of TWS and groundwater storage (GWS). The spatiotemporal evolution of GRACE data reflects consistent patterns with that of several hydroclimatic variables and also shows that most of the water loss has occurred in the northern parts of India. Substantial GWS depletion at the rate of 1.25 and 2.1 cm yr-1 has taken place, respectively in the Ganges Basin and Punjab state, which are known as the India's grain bowl. Of particular concern is the Ganges Basin's storage loss in drought years, primarily due to anthropogenic groundwater withdrawals that sustain rice and wheat cultivation. We estimate these losses to be approximately 41, 44, and 42 km3 in 2004, 2009, and 2012, respectively. The GWS depletions that constitute about 90% of the observed TWS loss are also influenced by a marked rise in temperatures since 2008. A high degree of correspondence between GRACE-derived GWS and in situ groundwater levels from observation well validates the results. This validation increases confidence level in the application of GRACE observations in monitoring large-scale storage changes in intensely irrigated areas in India and other regions around the world.
Assessing modern rates of river sediment discharge to the ocean using satellite gravimetry
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Longuevergne, Laurent; Steer, Philippe; Crave, Alain; Lemoine, Jean-Michel; Save, Himanshu; Robin, Cécile
2017-04-01
Worldwide rivers annually export about 19 Gigatons of sediments to the ocean that mostly accumulate in the coastal zones and on the continental shelves. This sediment discharge testifies of the intensity of continental erosion and records changes in climate, tectonics and human activity. However, natural and instrumental uncertainties inherent to the in-situ measurements of sediment discharge prevent from conclusive estimates to better understand these linkages. Here we develop a new method, using the Gravity Recovery and Climate Experiment (GRACE) satellite data, to infer mass-integrative estimates of sediment discharge of large rivers to the ocean. GRACE satellite provides global gravity time series that have proven useful for quantifying mass transport, including continental water redistribution at the Earth surface (ice sheets and glaciers melting, groundwater storage variations) but has been seldom used for monitoring sediment mass transfers so far. Here we pair the analysis of regularized GRACE solutions at high spatial resolution corrected from all known contributions (hydrology, ocean, atmosphere) to a particle tracking model that predicts the location of the sediment sinks for 13 rivers with the highest sediments loads in the world. We find that the resulting GRACE-derived sediment discharges off the mouth of the Amazon, Ganges-Brahmaputra, Changjiang (Yangtze), Indus, Magdalena, Godavari and Mekong rivers are consistent with in-situ measurements. Our results suggest that the lack of time continuity and of global coverage in terrestrial sediment discharge measurements could be reduced by using GRACE, which provides global and continuous data since 2002. GRACE solutions are regularly improved and new satellite gravity missions are being prepared hence making our approach even more relevant in a near future. The accumulation of sediments over time will keep increasing the signal to noise ratio of the gravity time series, which will improve the precision of the GRACE-derived sediment discharges values.
GRACE, time-varying gravity, Earth system dynamics and climate change
NASA Astrophysics Data System (ADS)
Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.
2014-11-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.
GRACE, time-varying gravity, Earth system dynamics and climate change.
Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J
2014-11-01
Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data-provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)-can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.
Status of CSR RL06 GRACE reprocessing and preliminary results
NASA Astrophysics Data System (ADS)
Save, H.
2017-12-01
The GRACE project plans to re-processes the GRACE mission data in order to be consistent with the first gravity products released by the GRACE-FO project. The RL06 reprocessing will harmonize the GRACE time-series with the first release of GRACE-FO. This paper catalogues the changes in the upcoming RL06 release and discusses the quality improvements as compared to the current RL05 release. The processing and parameterization changes as compared to the current release are also discussed. This paper discusses the evolution of the quality of the GRACE solutions and characterize the errors over the past few years. The possible challenges associated with connecting the GRACE time series with that from GRACE-FO are also discussed.
Estimation of the Earth's gravity field by combining normal equation matrices from GRACE and SLR
NASA Astrophysics Data System (ADS)
Haberkorn, Christoph; Bloßfeld, Mathis; Bouman, Johannes
2014-05-01
Since 2002, GRACE observes the Earth's gravity field with a spatial resolution up to 150 km. The main goal of this mission is the determination of temporal variations in the Earth's gravity field to detect mass displacements. The GRACE mission consists of two identical satellites, which observe the range along the line of sight of both satellites. GRACE observations can be linked with the Earth's gravitational potential, which is expressed in terms of spherical harmonics for global solutions. However, the estimation of low degree coefficients is difficult with GRACE. In contrast to gravity field missions, which observe the gravity field with high spectral resolution, SLR data allow to estimate the lower degree coefficients. Therefore, the coefficient C20 is often replaced by a value derived from Satellite Laser Ranging (SLR). Instead of replacing C20, it can be determined consistently by a combined estimation using GRACE and SLR data. We compute monthly normal equation (NEQ) matrices for GRACE and SLR. Coefficients from monthly GRACE gravity field models of different institutions (Center for Space Research (CSR), USA, Geoforschungszentrum Potsdam (GFZ), Germany and Jet Propulsion Laboratory (JPL), USA) and coefficients from monthly gravity field models of our SLR processing are then combined using the NEQ matrices from both techniques. We will evaluate several test scenarios with gravity field models from different institutions and with different set ups for the SLR NEQ matrices. The effect of the combination on the estimated gravity field will be analysed and presented.
Mandea, Mioara; Panet, Isabelle; Lesur, Vincent; de Viron, Olivier; Diament, Michel; Le Mouël, Jean-Louis
2012-11-20
To understand the dynamics of the Earth's fluid, iron-rich outer core, only indirect observations are available. The Earth's magnetic field, originating mainly within the core, and its temporal variations can be used to infer the fluid motion at the top of the core, on a decadal and subdecadal time-scale. Gravity variations resulting from changes in the mass distribution within the Earth may also occur on the same time-scales. Such variations include the signature of the flow inside the core, though they are largely dominated by the water cycle contributions. Our study is based on 8 y of high-resolution, high-accuracy magnetic and gravity satellite data, provided by the CHAMP and GRACE missions. From the newly derived geomagnetic models we have computed the core magnetic field, its temporal variations, and the core flow evolution. From the GRACE CNES/GRGS series of time variable geoid models, we have obtained interannual gravity models by using specifically designed postprocessing techniques. A correlation analysis between the magnetic and gravity series has demonstrated that the interannual changes in the second time derivative of the core magnetic field under a region from the Atlantic to Indian Ocean coincide in phase with changes in the gravity field. The order of magnitude of these changes and proposed correlation are plausible, compatible with a core origin; however, a complete theoretical model remains to be built. Our new results and their broad geophysical significance could be considered when planning new Earth observation space missions and devising more sophisticated Earth's interior models.
Development of daily "swath" mascon solutions from GRACE
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas
2016-04-01
The Gravity Recovery and Climate Experiment (GRACE) mission has provided invaluable and the only data of its kind over the past 14 years that measures the total water column in the Earth System. The GRACE project provides monthly average solutions and there are experimental quick-look solutions and regularized sliding window solutions available from Center for Space Research (CSR) that implement a sliding window approach and variable daily weights. The need for special handling of these solutions in data assimilation and the possibility of capturing the total water storage (TWS) signal at sub-monthly time scales motivated this study. This study discusses the progress of the development of true daily high resolution "swath" mascon total water storage estimate from GRACE using Tikhonov regularization. These solutions include the estimates of daily total water storage (TWS) for the mascon elements that were "observed" by the GRACE satellites on a given day. This paper discusses the computation techniques, signal, error and uncertainty characterization of these daily solutions. We discuss the comparisons with the official GRACE RL05 solutions and with CSR mascon solution to characterize the impact on science results especially at the sub-monthly time scales. The evaluation is done with emphasis on the temporal signal characteristics and validated against in-situ data set and multiple models.
NASA Astrophysics Data System (ADS)
Bergmann-Wolf, I.; Dobslaw, H.
2015-12-01
Estimating global barystatic sea-level variations from monthly mean gravity fields delivered by the Gravity Recovery and Climate Experiment (GRACE) satellite mission requires additional information about geocenter motion. These variations are not available directly due to the mission implementation in the CM-frame and are represented by the degree-1 terms of the spherical harmonics expansion. Global degree-1 estimates can be determined with the method of Swenson et al. (2008) from ocean mass variability, the geometry of the global land-sea distribution, and GRACE data of higher degrees and orders. Consequently, a recursive relation between the derivation of ocean mass variations from GRACE data and the introduction of geocenter motion into GRACE data exists.In this contribution, we will present a recent improvement to the processing strategy described in Bergmann-Wolf et al. (2014) by introducing a non-homogeneous distribution of global ocean mass variations in the geocenter motion determination strategy, which is due to the effects of loading and self-attraction induced by mass redistributions at the surface. A comparison of different GRACE-based oceanographic products (barystatic signal for both the global oceans and individual basins; barotropic transport variations of major ocean currents) with degree-1 terms estimated with a homogeneous and non-homogeneous ocean mass representation will be discussed, and differences in noise levels in most recent GRACE solutions from GFZ (RL05a), CSR, and JPL (both RL05) and their consequences for the application of this method will be discussed.
Using GRACE and climate model simulations to predict mass loss of Alaskan glaciers through 2100
Wahr, John; Burgess, Evan; Swenson, Sean
2016-05-30
Glaciers in Alaska are currently losing mass at a rate of ~–50 Gt a –1, one of the largest ice loss rates of any regional collection of mountain glaciers on Earth. Existing projections of Alaska's future sea-level contributions tend to be divergent and are not tied directly to regional observations. Here we develop a simple, regional observation-based projection of Alaska's future sea-level contribution. We compute a time series of recent Alaska glacier mass variability using monthly GRACE gravity fields from August 2002 through December 2014. We also construct a three-parameter model of Alaska glacier mass variability based on monthly ERA-Interimmore » snowfall and temperature fields. When these three model parameters are fitted to the GRACE time series, the model explains 94% of the variance of the GRACE data. Using these parameter values, we then apply the model to simulated fields of monthly temperature and snowfall from the Community Earth System Model, to obtain predictions of mass variations through 2100. Here, we conclude that mass loss rates may increase between –80 and –110 Gt a –1by 2100, with a total sea-level rise contribution of 19 ± 4 mm during the 21st century.« less
NASA Astrophysics Data System (ADS)
Chen, Qiujie; Chen, Wu; Shen, Yunzhong; Zhang, Xingfu; Hsu, Houze
2016-04-01
The existing unconstrained Gravity Recovery and Climate Experiment (GRACE) monthly solutions i.e. CSR RL05 from Center for Space Research (CSR), GFZ RL05a from GeoForschungsZentrum (GFZ), JPL RL05 from Jet Propulsion Laboratory (JPL), DMT-1 from Delft Institute of Earth Observation and Space Systems (DEOS), AIUB from Bern University, and Tongji-GRACE01 as well as Tongji-GRACE02 from Tongji University, are dominated by correlated noise (such as north-south stripe errors) in high degree coefficients. To suppress the correlated noise of the unconstrained GRACE solutions, one typical option is to use post-processing filters such as decorrelation filtering and Gaussian smoothing , which are quite effective to reduce the noise and convenient to be implemented. Unlike these post-processing methods, the CNES/GRGS monthly GRACE solutions from Centre National d'Etudes Spatiales (CNES) were developed by using regularization with Kaula rule, whose correlated noise are reduced to such a great extent that no decorrelation filtering is required. Actually, the previous studies demonstrated that the north-south stripes in the GRACE solutions are due to the poor sensitivity of gravity variation in east-west direction. In other words, the longitudinal sampling of GRACE mission is very sparse but the latitudinal sampling of GRACE mission is quite dense, indicating that the recoverability of the longitudinal gravity variation is poor or unstable, leading to the ill-conditioned monthly GRACE solutions. To stabilize the monthly solutions, we constructed the regularization matrices by minimizing the difference between the longitudinal and latitudinal gravity variations and applied them to derive a time series of regularized GRACE monthly solutions named RegTongji RL01 for the period Jan. 2003 to Aug. 2011 in this paper. The signal powers and noise level of RegTongji RL01 were analyzed in this paper, which shows that: (1) No smoothing or decorrelation filtering is required for RegTongji RL01 anymore. (2) The signal powers of RegTongji RL01 are obviously stronger than those of the filtered solutions but the noise levels of the regularized and filtered solutions are consistent, suggesting that RegTongji RL01 has the higher signal-to-noise ratio.
Secular gravity variation at Svalbard (Norway) from ground observations and GRACE satellite data
NASA Astrophysics Data System (ADS)
Mémin, A.; Rogister, Y.; Hinderer, J.; Omang, O. C.; Luck, B.
2011-03-01
The Svalbard archipelago, Norway, is affected by both the present-day ice melting (PDIM) and Glacial Isostatic Adjustment (GIA) subsequent to the Last Pleistocene deglaciation. The induced deformation of the Earth is observed by using different techniques. At the Geodetic Observatory in Ny-Ålesund, precise positioning measurements have been collected since 1991, a superconducting gravimeter (SG) has been installed in 1999, and six campaigns of absolute gravity (AG) measurements were performed between 1998 and 2007. Moreover, the Gravity Recovery and Climate Experiment (GRACE) satellite mission provides the time variation of the Earth gravity field since 2002. The goal of this paper is to estimate the present rate of ice melting by combining geodetic observations of the gravity variation and uplift rate with geophysical modelling of both the GIA and Earth's response to the PDIM. We estimate the secular gravity variation by superimposing the SG series with the six AG measurements. We collect published estimates of the vertical velocity based on GPS and VLBI data. We analyse the GRACE solutions provided by three groups (CSR, GFZ, GRGS). The crux of the problem lies in the separation of the contributions from the GIA and PDIM to the Earth's deformation. To account for the GIA, we compute the response of viscoelastic Earth models having different radial structures of mantle viscosity to the deglaciation histories included in the models ICE-3G or ICE-5G. To account for the effect of PDIM, we compute the deformation of an elastic Earth model for six models of ice-melting extension and rates. Errors in the gravity variation and vertical velocity are estimated by taking into account the measurement uncertainties and the variability of the GRACE solutions and GIA and PDIM models. The ground observations agree with models that involve a current ice loss of 25 km3 water equivalent yr-1 over Svalbard, whereas the space observations give a value in the interval [5, 18] km3 water equivalent yr-1. A better modelling of the PDIM, which would include the precise topography of the glaciers and altitude-dependency of ice melting, is necessary to decrease the discrepancy between the two estimates.
Hydrologic implications of GRACE satellite data in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Zhang, Zizhan; Reedy, Robert C.; Pool, Donald R.; Save, Himanshu; Long, Di; Chen, Jianli; Wolock, David M.; Conway, Brian D.; Winester, Daniel
2015-12-01
Use of GRACE (Gravity Recovery and Climate Experiment) satellites for assessing global water resources is rapidly expanding. Here we advance application of GRACE satellites by reconstructing long-term total water storage (TWS) changes from ground-based monitoring and modeling data. We applied the approach to the Colorado River Basin which has experienced multiyear intense droughts at decadal intervals. Estimated TWS declined by 94 km3 during 1986-1990 and by 102 km3 during 1998-2004, similar to the TWS depletion recorded by GRACE (47 km3) during 2010-2013. Our analysis indicates that TWS depletion is dominated by reductions in surface reservoir and soil moisture storage in the upper Colorado basin with additional reductions in groundwater storage in the lower basin. Groundwater storage changes are controlled mostly by natural responses to wet and dry cycles and irrigation pumping outside of Colorado River delivery zones based on ground-based water level and gravity data. Water storage changes are controlled primarily by variable water inputs in response to wet and dry cycles rather than increasing water use. Surface reservoir storage buffers supply variability with current reservoir storage representing ˜2.5 years of available water use. This study can be used as a template showing how to extend short-term GRACE TWS records and using all available data on storage components of TWS to interpret GRACE data, especially within the context of droughts. This article was corrected on 12 JAN 2016. See the end of the full text for details.
Large scale mass redistribution and surface displacement from GRACE and SLR
NASA Astrophysics Data System (ADS)
Cheng, M.; Ries, J. C.; Tapley, B. D.
2012-12-01
Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.
NASA Astrophysics Data System (ADS)
Gouweleeuw, Ben; Kvas, Andreas; Gruber, Christian; Mayer-Gürr, Torsten; Flechtner, Frank; Hasan, Mehedi; Güntner, Andreas
2017-04-01
Since April 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite mission has been churning out water storage anomaly data, which has been shown to be a unique descriptor of large-scale hydrological extreme events. Nonetheless, efforts to assess the comprehensive information from GRACE on total water storage variations for near-real time flood or drought monitoring have been limited so far, primarily due to its coarse temporal (weekly to monthly) and spatial (> 150.000 km2) resolution and the latency of standard products of about 2 months,. Pending the status of the aging GRACE satellite mission, the Horizon 2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project is scheduled to launch a 6 month duration near-real time test run of GRACE gravity field data from April 2017 onward, which will provide daily gridded data with a latency of 5 days. This fast availability allows the monitoring of total water storage variations related to hydrological extreme events, as they occur, as opposed to a 'confirmation after occurrence', which is the current situation. This contribution proposes a global GRACE-derived gridded wetness indicator, expressed as a gravity anomaly in dimensionless units of standard deviation. Results of a retrospective evaluation (April 2002-December 2015) of the proposed index against databases of hydrological extremes will be presented. It is shown that signals for large extreme floods related to heavy/monsoonal rainfall are picked up really well in the Southern Hemisphere and lower Northern Hemisphere (Africa, S-America, Australia, S-Asia), while extreme floods in the Northern Hemisphere (Russia) related to snow melt are often not. The latter is possibly related to a lack of mass movement over longer distances, e.g. when melt water is not drained due to river ice blocking.
Development and Performance of an Atomic Interferometer Gravity Gradiometer for Earth Science
NASA Astrophysics Data System (ADS)
Luthcke, S. B.; Saif, B.; Sugarbaker, A.; Rowlands, D. D.; Loomis, B.
2016-12-01
The wealth of multi-disciplinary science achieved from the GRACE mission, the commitment to GRACE Follow On (GRACE-FO), and Resolution 2 from the International Union of Geodesy and Geophysics (IUGG, 2015), highlight the importance to implement a long-term satellite gravity observational constellation. Such a constellation would measure time variable gravity (TVG) with accuracies 50 times better than the first generation missions, at spatial and temporal resolutions to support regional and sub-basin scale multi-disciplinary science. Improved TVG measurements would achieve significant societal benefits including: forecasting of floods and droughts, improved estimates of climate impacts on water cycle and ice sheets, coastal vulnerability, land management, risk assessment of natural hazards, and water management. To meet the accuracy and resolution challenge of the next generation gravity observational system, NASA GSFC and AOSense are currently developing an Atomic Interferometer Gravity Gradiometer (AIGG). This technology is capable of achieving the desired accuracy and resolution with a single instrument, exploiting the advantages of the microgravity environment. The AIGG development is funded under NASA's Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP), and includes the design, build, and testing of a high-performance, single-tensor-component gravity gradiometer for TVG recovery from a satellite in low Earth orbit. The sensitivity per shot is 10-5 Eötvös (E) with a flat spectral bandwidth from 0.3 mHz - 0.03 Hz. Numerical simulations show that a single space-based AIGG in a 326 km altitude polar orbit is capable of exceeding the IUGG target requirement for monthly TVG accuracy of 1 cm equivalent water height at 200 km resolution. We discuss the current status of the AIGG IIP development and estimated instrument performance, and we present results of simulated Earth TVG recovery of the space-based AIGG. We explore the accuracy, and spatial and temporal resolution of surface mass change observations from several space-based implementations of the AIGG instrument, including various orbit configurations and multi-satellite/multi-orbit configurations.
Application of GRACE for Monitoring Groundwater in Data Scarce Regions
NASA Technical Reports Server (NTRS)
Rodell, Matt; Li, Bailing; Famiglietti, Jay; Zaitchik, Ben
2012-01-01
In the United States, groundwater storage is somewhat well monitored (spatial and temporal data gaps notwithstanding) and abundant data are freely and easily accessible. Outside of the U.S., groundwater often is not monitored systematically and where it is the data are rarely centralized and made available. Since 2002 the Gravity Recovery and Climate Experiment (GRACE) satellite mission has delivered gravity field observations which have been used to infer variations in total terrestrial water storage, including groundwater, at regional to continental scales. Challenges to using GRACE for groundwater monitoring include its relatively coarse spatial and temporal resolutions, its inability to differentiate groundwater from other types of water on and under the land surface, and typical 2-3 month data latency. Data assimilation can be used to overcome these challenges, but uncertainty in the results remains and is difficult to quantify without independent observations. Nevertheless, the results are preferable to the alternative - no data at all- and GRACE has already revealed groundwater variability and trends in regions where only anecdotal evidence existed previously.
A Test Run of the EGSIEM Near Real-Time Service Based on GRACE Mission Data
NASA Astrophysics Data System (ADS)
Kvas, A.; Gruber, C.; Gouweleeuw, B.; Guntner, A.; Mayer-Gürr, T.; Flechtner, F. M.
2017-12-01
To enable the use of GRACE and GRACE-FO data for rapid monitoring applications, the EGSIEM (European Gravity Service for Improved Emergency Management) project, funded by the Horizon 2020 Framework Program for Research and Innovation of the European Union, has implemented a demonstrator for a near real-time (NRT) gravity field service. The goal of this service is to provide daily gravity field solutions with a maximum latency of five days. For this purpose, two independent approaches were developed at the German Research Centre for Geosciences (GFZ) and Graz University of Technology (TUG). Based on these daily gravity field solutions, statistical flood and drought indicators are derived by the EGSIEM Hydrological Service, developed at GFZ. The NRT products are subsequently provided to the Center for Satellite based Crisis Information (ZKI) at the German Aerospace Center as well as the Global Flood Awareness System (GloFAS) at the Joint Research Center of the European Commission. In the first part of this contribution, the performance of the service based on a statistical analysis of historical flood events during the GRACE period is evaluated. Then, results from the six month long operational test run of the service which started on April 1st 2017 are presented and a comparison between historical and operational gravity products and flood indicators is made.
Validation of the EGSIEM combined monthly GRACE gravity fields
NASA Astrophysics Data System (ADS)
Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul
2016-04-01
Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.
NASA Astrophysics Data System (ADS)
Bergmann-Wolf, Inga; Dobslaw, Henryk
2016-04-01
Estimating global barystatic sea-level variations from monthly mean gravity fields delivered by the Gravity Recovery and Climate Experiment (GRACE) satellite mission requires additional information about geocenter motion. These variations are not available directly due to the mission implementation in the CM-frame and are represented by the degree-1 terms of the spherical harmonics expansion. Global degree-1 estimates can be determined with the method of Swenson et al. (2008) from ocean mass variability, the geometry of the global land-sea distribution, and GRACE data of higher degrees and orders. Consequently, a recursive relation between the derivation of ocean mass variations from GRACE data and the introduction of geocenter motion into GRACE data exists. In this contribution, we will present a recent improvement to the processing strategy described in Bergmann-Wolf et al. (2014) by introducing a non-homogeneous distribution of global ocean mass variations in the geocenter motion determination strategy, which is due to the effects of loading and self-attraction induced by mass redistributions at the surface. A comparison of different GRACE-based oceanographic products (barystatic signal for both the global oceans and individual basins; barotropic transport variations of major ocean currents) with degree-1 terms estimated with a homogeneous and non-homogeneous ocean mass representation will be discussed, and differences in noise levels in most recent GRACE solutions from GFZ (RL05a), CSR, and JPL (both RL05) and their consequences for the application of this method will be discussed. Swenson, S., D. Chambers and J. Wahr (2008), Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410 Bergmann-Wolf, I., L. Zhang and H. Dobslaw (2014), Global Eustatic Sea-Level Variations for the Approximation of Geocenter Motion from GRACE, J. Geod. Sci., 4, 37-48
NASA Astrophysics Data System (ADS)
Root, Bart; Tarasov, Lev; van der Wal, Wouter
2014-05-01
The global ice budget is still under discussion because the observed 120-130 m eustatic sea level equivalent since the Last Glacial Maximum (LGM) can not be explained by the current knowledge of land-ice melt after the LGM. One possible location for the missing ice is the Barents Sea Region, which was completely covered with ice during the LGM. This is deduced from relative sea level observations on Svalbard, Novaya Zemlya and the North coast of Scandinavia. However, there are no observations in the middle of the Barents Sea that capture the post-glacial uplift. With increased precision and longer time series of monthly gravity observations of the GRACE satellite mission it is possible to constrain Glacial Isostatic Adjustment in the center of the Barents Sea. This study investigates the extra constraint provided by GRACE data for modeling the past ice geometry in the Barents Sea. We use CSR release 5 data from February 2003 to July 2013. The GRACE data is corrected for the past 10 years of secular decline of glacier ice on Svalbard, Novaya Zemlya and Frans Joseph Land. With numerical GIA models for a radially symmetric Earth, we model the expected gravity changes and compare these with the GRACE observations after smoothing with a 250 km Gaussian filter. The comparisons show that for the viscosity profile VM5a, ICE-5G has too strong a gravity signal compared to GRACE. The regional calibrated ice sheet model (GLAC) of Tarasov appears to fit the amplitude of the GRACE signal. However, the GRACE data are very sensitive to the ice-melt correction, especially for Novaya Zemlya. Furthermore, the ice mass should be more concentrated to the middle of the Barents Sea. Alternative viscosity models confirm these conclusions.
A modified acceleration-based monthly gravity field solution from GRACE data
NASA Astrophysics Data System (ADS)
Chen, Qiujie; Shen, Yunzhong; Chen, Wu; Zhang, Xingfu; Hsu, Houze; Ju, Xiaolei
2015-08-01
This paper describes an alternative acceleration approach for determining GRACE monthly gravity field models. The main differences compared to the traditional acceleration approach can be summarized as: (1) The position errors of GRACE orbits in the functional model are taken into account; (2) The range ambiguity is eliminated via the difference of the range measurements and (3) The mean acceleration equation is formed based on Cowell integration. Using this developed approach, a new time-series of GRACE monthly solution spanning the period January 2003 to December 2010, called Tongji_Acc RL01, has been derived. The annual signals from the Tongji_Acc RL01 time-series agree well with those from the GLDAS model. The performance of Tongji_Acc RL01 shows that this new model is comparable with the RL05 models released by CSR and JPL as well as with the RL05a model released by GFZ.
Observed changes in the Earth's dynamic oblateness from GRACE data and geophysical models.
Sun, Y; Ditmar, P; Riva, R
A new methodology is proposed to estimate changes in the Earth's dynamic oblateness ([Formula: see text] or equivalently, [Formula: see text]) on a monthly basis. The algorithm uses monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions, an ocean bottom pressure model and a glacial isostatic adjustment (GIA) model. The resulting time series agree remarkably well with a solution based on satellite laser ranging (SLR) data. Seasonal variations of the obtained time series show little sensitivity to the choice of GRACE solutions. Reducing signal leakage in coastal areas when dealing with GRACE data and accounting for self-attraction and loading effects when dealing with water redistribution in the ocean is crucial in achieving close agreement with the SLR-based solution in terms of de-trended solutions. The obtained trend estimates, on the other hand, may be less accurate due to their dependence on the GIA models, which still carry large uncertainties.
NASA Astrophysics Data System (ADS)
Piecuch, Christopher G.; Landerer, Felix W.; Ponte, Rui M.
2018-05-01
Monthly ocean bottom pressure solutions from the Gravity Recovery and Climate Experiment (GRACE), derived using surface spherical cap mass concentration (MC) blocks and spherical harmonics (SH) basis functions, are compared to tide gauge (TG) monthly averaged sea level data over 2003-2015 to evaluate improved gravimetric data processing methods near the coast. MC solutions can explain ≳ 42% of the monthly variance in TG time series over broad shelf regions and in semi-enclosed marginal seas. MC solutions also generally explain ˜5-32 % more TG data variance than SH estimates. Applying a coastline resolution improvement algorithm in the GRACE data processing leads to ˜ 31% more variance in TG records explained by the MC solution on average compared to not using this algorithm. Synthetic observations sampled from an ocean general circulation model exhibit similar patterns of correspondence between modeled TG and MC time series and differences between MC and SH time series in terms of their relationship with TG time series, suggesting that observational results here are generally consistent with expectations from ocean dynamics. This work demonstrates the improved quality of recent MC solutions compared to earlier SH estimates over the coastal ocean, and suggests that the MC solutions could be a useful tool for understanding contemporary coastal sea level variability and change.
NASA Astrophysics Data System (ADS)
Shamsudduha, Mohammad; Taylor, Richard G.; Jones, Darren; Longuevergne, Laurent; Owor, Michael; Tindimugaya, Callist
2017-09-01
GRACE (Gravity Recovery and Climate Experiment) satellite data monitor large-scale changes in total terrestrial water storage (ΔTWS), providing an invaluable tool where in situ observations are limited. Substantial uncertainty remains, however, in the amplitude of GRACE gravity signals and the disaggregation of TWS into individual terrestrial water stores (e.g. groundwater storage). Here, we test the phase and amplitude of three GRACE ΔTWS signals from five commonly used gridded products (i.e. NASA's GRCTellus: CSR, JPL, GFZ; JPL-Mascons; GRGS GRACE) using in situ data and modelled soil moisture from the Global Land Data Assimilation System (GLDAS) in two sub-basins (LVB: Lake Victoria Basin; LKB: Lake Kyoga Basin) of the Upper Nile Basin. The analysis extends from January 2003 to December 2012, but focuses on a large and accurately observed reduction in ΔTWS of 83 km3 from 2003 to 2006 in the Lake Victoria Basin. We reveal substantial variability in current GRACE products to quantify the reduction of ΔTWS in Lake Victoria that ranges from 80 km3 (JPL-Mascons) to 69 and 31 km3 for GRGS and GRCTellus respectively. Representation of the phase in TWS in the Upper Nile Basin by GRACE products varies but is generally robust with GRGS, JPL-Mascons, and GRCTellus (ensemble mean of CSR, JPL, and GFZ time-series data), explaining 90, 84, and 75 % of the variance respectively in "in situ" or "bottom-up" ΔTWS in the LVB. Resolution of changes in groundwater storage (ΔGWS) from GRACE ΔTWS is greatly constrained by both uncertainty in changes in soil-moisture storage (ΔSMS) modelled by GLDAS LSMs (CLM, NOAH, VIC) and the low annual amplitudes in ΔGWS (e.g. 1.8-4.9 cm) observed in deeply weathered crystalline rocks underlying the Upper Nile Basin. Our study highlights the substantial uncertainty in the amplitude of ΔTWS that can result from different data-processing strategies in commonly used, gridded GRACE products; this uncertainty is disregarded in analyses of ΔTWS and individual stores applying a single GRACE product.
Excitation of Earth Rotation Variations "Observed" by Time-Variable Gravity
NASA Technical Reports Server (NTRS)
Chao, Ben F.; Cox, C. M.
2005-01-01
Time variable gravity measurements have been made over the past two decades using the space geodetic technique of satellite laser ranging, and more recently by the GRACE satellite mission with improved spatial resolutions. The degree-2 harmonic components of the time-variable gravity contain important information about the Earth s length-of-day and polar motion excitation functions, in a way independent to the traditional "direct" Earth rotation measurements made by, for example, the very-long-baseline interferometry and GPS. In particular, the (degree=2, order= 1) components give the mass term of the polar motion excitation; the (2,O) component, under certain mass conservation conditions, gives the mass term of the length-of-day excitation. Combining these with yet another independent source of angular momentum estimation calculated from global geophysical fluid models (for example the atmospheric angular momentum, in both mass and motion terms), in principle can lead to new insights into the dynamics, particularly the role or the lack thereof of the cores, in the excitation processes of the Earth rotation variations.
NASA Astrophysics Data System (ADS)
Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros
2017-10-01
The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.
NASA Astrophysics Data System (ADS)
Crossley, D. J.; Boy, J.-P.; Hinderer, J.; Jahr, T.; Weise, A.; Wziontek, H.; Abe, M.; Förste, C.
2014-12-01
The paper in question by Van Camp and co-authors [MVC] challenges previous work showing that ground gravity data arising from hydrology can provide a consistent signal for the comparison with satellite gravity data. The data sets used are similar to those used previously, that is, the gravity field as measured by the GRACE satellites versus ground-based data from superconducting gravimeters (SGs) over the same continental area, in this case Central Europe. One of the main impediments in this paper is the presentation that is frequently confusing and misleading as to what the data analysis really shows, for example, the irregular treatment of annual components that are first subtracted then reappear in the analysis. More importantly, we disagree on specific points. Two calculations are included in our comment to illustrate where we believe that the processing in [MVC] paper is deficient. The first deals with their erroneous treatment of the global hydrology using a truncated spherical harmonic approach which explains almost a factor 2 error in their computation of the loading. The second shows the effect of making the wrong assumption in the GRACE/hydrology/surface gravity comparison by inverting the whole of the hydrology loading for underground stations. We also challenge their claims that empirical orthogonal function techniques cannot be done in the presence of periodic components, and that SG data cannot be corrected for comparisons with GRACE data. The main conclusion of their paper, that there is little coherence between ground gravity stations and this invalidates GRACE comparisons, is therefore questionable. There is nothing in [MVC] that contradicts any of the previous papers that have shown clearly a strong relation between seasonal signals obtained from both ground gravity and GRACE satellite data.
Basin Scale Estimates of Evapotranspiration Using GRACE and other Observations
NASA Technical Reports Server (NTRS)
Rodell, M.; Famiglietti, J. S.; Chen, J.; Seneviratne, S. I.; Viterbo, P.; Holl, S.; Wilson, C. R.
2004-01-01
Evapotranspiration is integral to studies of the Earth system, yet it is difficult to measure on regional scales. One estimation technique is a terrestrial water budget, i.e., total precipitation minus the sum of evapotranspiration and net runoff equals the change in water storage. Gravity Recovery and Climate Experiment (GRACE) satellite gravity observations are now enabling closure of this equation by providing the terrestrial water storage change. Equations are presented here for estimating evapotranspiration using observation based information, taking into account the unique nature of GRACE observations. GRACE water storage changes are first substantiated by comparing with results from a land surface model and a combined atmospheric-terrestrial water budget approach. Evapotranspiration is then estimated for 14 time periods over the Mississippi River basin and compared with output from three modeling systems. The GRACE estimates generally lay in the middle of the models and may provide skill in evaluating modeled evapotranspiration.
Potential fields & satellite missions: what they tell us about the Earth's core?
NASA Astrophysics Data System (ADS)
Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.
2012-12-01
Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.
On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.
New Views of Earth's Gravity Field from GRACE
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] [figure removed for brevity, see original site] Map 1Map 2Gravity and the Earth's Shape Gravity is the force that is responsible for the weight of an object and is determined by how the material that makes up the Earth is distributed throughout the Earth. Because gravity changes over the surface of the Earth, the weight of an object changes along with it. One can define standard gravity as the value of gravity for an perfectly smooth 'idealized' Earth, and the gravity 'anomaly' is a measure of how actual gravity deviates from this standard. Gravity reflects the Earth's surface topography to a high degree and is associated with features that most people are familiar with such as large mountains and deep ocean trenches.Progress in Measuring the Earth's Gravity Field Through GRACE Prior to GRACE, the Earth's gravity field was determined using measurements of varying quality from different satellites and of incomplete coverage. Consequently the accuracy and resolution of the gravity field were limited. As is shown in Figure 1, the long wavelength components of the gravity field determined from satellite tracking were limited to a resolution of approximately 700 km. At shorter wavelengths, the errors were too large to be useful. Only broad geophysical features of the Earth's structure could be detected (see map 1).In contrast, GRACE, by itself, has provided accurate gravity information with a resolution of 200 km. Now, much more detail is clearly evident in the Earth's geophysical features (see map 2). High resolution features detected by GRACE that are representative of geophysical phenomena include the Tonga/Kermadec region (a zone where one tectonic plate slides under another), the Himalayan/Tibetan Plateau region (an area of uplift due to colliding plates), and the mid-Atlantic ridge (an active spreading center in the middle of the Atlantic ocean where new crust is being created). Future GRACE gravity models are expected to increase the resolution further. The second figure confirms that the Grace data is global, homogeneous and highly accurate. These are all properties that have been sought for gravity model development. [figure removed for brevity, see original site] Ocean Circulation Measurements from Grace The arrows in the three data sets in Figure 3 depict ocean currents off the East Coast of the United States, 1,000 meters (approximately 3,280 feet) beneath the surface. The top panel is obtained from the GRACE geoid, satellite altimetry and ship measurements of temperature and salt. The bottom panel is computed in the same manner as the top one, except that the best geoid prior to GRACE is used instead of the GRACE geoid. The middle panel shows direct measurement of those currents by floats deployed from ships. Notice that the current arrows in the Gulf Stream extension, East and slightly South of Washington DC, point eastward, toward Europe, in the two upper panels, but in the opposite direction in the lower panel. Colors indicate the strength of the ocean current, with red being strongest and blue-green weakest. Areas in white have no available data.The Gulf Stream region of the North Atlantic is among the best studied in the world's oceans, with a significant quantity of high-quality data available on it as a result of shipborne instrument measurements. In less well studied regions, the new information provided by GRACE, together with satellite altimetry, will increase our knowledge of ocean circulation.Analysis of GRACE Range-rate Residuals with Emphasis on Reprocessed Star-Camera Datasets
NASA Astrophysics Data System (ADS)
Goswami, S.; Flury, J.; Naeimi, M.; Bandikova, T.; Guerr, T. M.; Klinger, B.
2015-12-01
Since March 2002 the two GRACE satellites orbit the Earth at rela-tively low altitude. Determination of the gravity field of the Earth including itstemporal variations from the satellites' orbits and the inter-satellite measure-ments is the goal of the mission. Yet, the time-variable gravity signal has notbeen fully exploited. This can be seen better in the computed post-fit range-rateresiduals. The errors reflected in the range-rate residuals are due to the differ-ent sources as systematic errors, mismodelling errors and tone errors. Here, weanalyse the effect of three different star-camera data sets on the post-fit range-rate residuals. On the one hand, we consider the available attitude data andon other hand we take the two different data sets which has been reprocessedat Institute of Geodesy, Hannover and Institute of Theoretical Geodesy andSatellite Geodesy, TU Graz Austria respectively. Then the differences in therange-rate residuals computed from different attitude dataset are analyzed inthis study. Details will be given and results will be discussed.
Contributions of GRACE to Climate Monitoring
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Famiglietti, James; Chambers, Don P.; Wahr, John
2011-01-01
The NASA/German Gravity Recovery and Climate Experiment (GRACE) was launched in March 2002. Rather than looking downward, GRACE continuously monitors the locations of and precise distance between twin satellites which orbit in tandem about 200 km apart. Variations in mass near Earth's surface cause heterogeneities in its gravity field, which in turn affect the orbits of satellites. Thus scientists can use GRACE data to map Earth's gravity field with enough accuracy to discern month to month changes caused by ocean circulation and redistribution of water stored on and in the land. Other gravitational influences, such as atmospheric circulation, post-glacial rebound, and solid earth movements are either independently determined and removed or are negligible on a monthly to sub-decadal timescale. Despite its coarse spatial (>150,000 sq km at mid-latitudes) and temporal (approx monthly) resolutions, GRACE has enabled significant advancements in the oceanic, hydrologic, and cryospheric science, and has great potential for climate monitoring, because it is the only global observing system able to measure ocean bottom pressures, total terrestrial water storage, and ice mass changes. The best known GRACE results are estimates of Greenland and Antarctic ice sheet loss rates. Previously, scientists had estimated ice mass losses using ground and satellite based altimetry and surface mass balance estimates based on snowfall accumulation and glacier discharge. While such measurements are still very useful for their spatial detail, they are imperfectly correlated with large-scale ice mass changes, due to snow and ice compaction and incomplete spatial coverage. GRACE enables scientists to generate monthly time series of Greenland and Antarctic ice mass, which have confirmed the shrinking of the polar ice sheets, one of the most obvious and indisputable manifestations of climate change. Further, GRACE has located and quantified hot spots of ice loss in southeastern Greenland and western Antarctica. For 2002 to present, the rate of ice mass loss has been 200 to 300 GT/yr in Greenland and 70 to 210 GT/yr in Antarctica, and some scientists are suggesting that the rates are accelerating. Similarly, GRACE has been used to monitor mass changes in alpine glaciers. Tamisiea et al. first characterized glacier melt along the southern coast of Alaska, more recently estimated to be occurring at a rate of 84 GT/yr. Chen et al. estimated that Patagonian glaciers are melting at a rate of 28 GT/yr, and estimated that the high mountains of central Asia lose ice at a rate of 47 GT/yr. Tapley et al. and Wahr et al. presented the first GRACE based estimates of changes in column-integrated terrestrial water storage (TWS; the sum of ground-water, soil moisture, surface waters, snow, ice, and water stored in vegetation) at continental scales. Since then, dozens of studies have shown that GRACE based estimates of regional to continental scale TWS variations agree with independent information, and some innovative uses of GRACE data have been developed. Rodell et al. (2004) and Swenson and Wahr (2006) demonstrated that by combining GRACE derived terrestrial water storage changes with observations of precipitation and runoff in a river basin scale water budget, it was possible to produce new estimates of evapotranspiration and atmospheric moisture convergence, essential climate variables that are difficult to estimate accurately. Similarly, GRACE has been used to constrain estimates of global river discharge and the contribution of changes in TWS to sea level rise. Crowley et al. observed a negative correlation between interannual TWS anomalies in the Amazon and the Congo River basin. Yeh et al. and Rodell et al. estimated regionally averaged groundwater storage variations based on GRACE and auxiliary observations. Rodell et al. and Tiwari et al. applied that method to quantify massive groundwater depletion in northern India caused by over reliance on aquifers for irration, and Famiglietti et al. found a similar situation in California's Central Valley. Zaitchik et al. and Lo et al. described approaches to use GRACE to constrain hydrological models, enabling integration of GRACE data with other observations and achieving much higher spatial and temporal resolutions than GRACE alone. Such approaches are now supporting applications including drought and water resources monitoring. Oceanography has likewise benefitted from the independent nature of GRACE observations. One application is measurement of the mass component of sea level rise, which complements radar altimetry and in situ measurements. GRACE also measures ocean bottom pressures (OBP), which help to refine understanding and modeling of ocean circulation and the ocean's fresh water budget, among other things. For example, Hayakawa et al. showed that GRACE observes OBP patterns absent from the background models of oceanic variability. Morison et al. used GRACE to describe important decadal scale shifts in circulation and an ongoing trend of freshening of the western Arctic, important indicators of climate variability. The research of Song and Zlotnicki and Chambers and Willis on GRACE-derived ocean bottom pressures in the sub-polar gyre led to the discovery of an ENSO teleconnection and a long-term change in OBP in the North Pacific sub-polar gyre that was not predicted by an ocean model. Further, Chambers and Willis were able to identify an internal redistribution of mass between Atlantic and Pacific Oceans lasting at least six years, which was not predicted by ocean models and was the first direct evidence of sustained mass transport from one ocean basin to another on periods longer than a year. Boening et al. observed a record increase in OBP over part of the southeastern Pacific in late 2009 and early 2010, primarily caused by wind stress curl associated with a strong and persistent anticyclone and likely related to the concurrent Central Pacific El Nino. GRACE has far surpassed its 5-year design lifetime, but it will likely succumb to the aging of batteries and instrument systems sometime in the next few years. NASA has begun initial development of a follow-on to GRACE with very similar design, which could launch as soon as 2016 and would provide continuity in the data record while improving resolution slightly. Higher resolution time variable gravity missions are also on the drawing board .
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Arnold, Daniel; Bentel, Katrin; Jäggi, Adrian
2017-04-01
The monthly global gravity field solutions derived using the measurements from the GRACE (Gravity Recovery and Climate Experiment) satellites have been continuously improved by the processing centers. One of the improvements in the processing method is a more detailed calibration of the on-board accelerometers in the GRACE satellites. The accelerometer data calibration is usually restricted to the scale factors and biases. It has been assumed that the three different axes are perfectly orthogonal in the GRACE science reference frame. Recently, it was shown by Klinger and Mayer-Gürr (2016) that a fully-populated scale matrix considering the non-orthogonality of the axes and the misalignment of the GRACE science reference frame and the GRACE accelerometer frame improves the quality of the C20 coefficient in the GRACE monthly gravity field solutions. We investigate the effect of the more detailed calibration of the GRACE accelerometer data on the C20 coefficient in the case of the AIUB (Astronomical Institute of the University of Bern) processing method using the Celestial Mechanics Approach. We also investigate the effect of the new calibration parameters on the stochastic parameters in the Celestial Mechanics Approach.
Instrument Noise Simulation for GRACE Follow-On
NASA Astrophysics Data System (ADS)
Darbeheshti, N.; Mueller, V.; Wegener, H.; Hewitson, M.; Heinzel, G.; Naeimi, M.; Flury, J.
2016-12-01
The quality of the temporal gravity field from GRACE Follow-On mission depends on its multi-sensor system consisting of inter-satellite ranging with microwave and laser ranging instrument, GNSS orbit tracking, accelerometry, and attitude sensing. In this presentation, the noise models for GRACE Follow-On major instruments are described and their effect on the estimation of Earth's gravity field accuracy are discussed. To do this the spectrum of the instruments noise models has been related to the spectrum of the disturbing potential of the Earth's gravity field. The instrument noise models are available to the geodesy community through GRACE Follow-On mock data challenges. The performance of gravity field recovery approaches can be tested by comparing observation residuals to the simulated instrument noises. The instrument noise models will also provide valuable insight for inter-satellite ranging configurations beyond GRACE Follow-On.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-07-01
Current temporal gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) suffer from temporal aliasing errors due to undersampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean) and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high-resolution temporal gravity fields from future gravity missions such as GRACE Follow-On and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parametrize ocean tide parameters of the eight main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from 1 to 3 yr leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
NASA Astrophysics Data System (ADS)
Häusler, K.; Hagan, M. E.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.
2015-01-01
In this paper, we provide insights into limitations imposed by current satellite-based strategies to delineate tidal variability in the thermosphere, as well as the ability of a state-of-the-art model to replicate thermospheric tidal determinations. Toward this end, we conducted a year-long thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulation for 2009, which is characterized by low solar and geomagnetic activity. In order to account for tropospheric waves and tides propagating upward into the ˜30-400 km model domain, we used 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data. We focus on exospheric tidal temperatures, which are also compared with 72 day mean determinations from combined Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellite observations to assess the model's capability to capture the observed tidal signatures and to quantify the uncertainties associated with the satellite exospheric temperature determination technique. We found strong day-to-day tidal variability in TIME-GCM that is smoothed out when averaged over as few as ten days. TIME-GCM notably overestimates the 72 day mean eastward propagating tides observed by CHAMP/GRACE, while capturing many of the salient features of other tidal components. However, the CHAMP/GRACE tidal determination technique only provides a gross climatological representation, underestimates the majority of the tidal components in the climatological spectrum, and moreover fails to characterize the extreme variability that drives the dynamics and electrodynamics of the ionosphere-thermosphere system. A multisatellite mission that samples at least six local times simultaneously is needed to provide this quantification.
NASA Technical Reports Server (NTRS)
Kumar, Sujay V.; Zaitchik, Benjamin F.; Peters-Lidard, Christa D.; Rodell, Matthew; Reichle, Rolf; Li, Bailing; Jasinski, Michael; Mocko, David; Getirana, Augusto; De Lannoy, Gabrielle;
2016-01-01
The objective of the North American Land Data Assimilation System (NLDAS) is to provide best available estimates of near-surface meteorological conditions and soil hydrological status for the continental United States. To support the ongoing efforts to develop data assimilation (DA) capabilities for NLDAS, the results of Gravity Recovery and Climate Experiment (GRACE) DA implemented in a manner consistent with NLDAS development are presented. Following previous work, GRACE terrestrial water storage (TWS) anomaly estimates are assimilated into the NASA Catchment land surface model using an ensemble smoother. In contrast to many earlier GRACE DA studies, a gridded GRACE TWS product is assimilated, spatially distributed GRACE error estimates are accounted for, and the impact that GRACE scaling factors have on assimilation is evaluated. Comparisons with quality-controlled in situ observations indicate that GRACE DA has a positive impact on the simulation of unconfined groundwater variability across the majority of the eastern United States and on the simulation of surface and root zone soil moisture across the country. Smaller improvements are seen in the simulation of snow depth, and the impact of GRACE DA on simulated river discharge and evapotranspiration is regionally variable. The use of GRACE scaling factors during assimilation improved DA results in the western United States but led to small degradations in the eastern United States. The study also found comparable performance between the use of gridded and basin averaged GRACE observations in assimilation. Finally, the evaluations presented in the paper indicate that GRACE DA can be helpful in improving the representation of droughts.
Earth rotation excitation mechanisms derived from geodetic space observations
NASA Astrophysics Data System (ADS)
Göttl, F.; Schmidt, M.
2009-04-01
Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.
NASA Technical Reports Server (NTRS)
Houborg, Rasmus; Rodell, Matthew; Lawrimore, Jay; Li, Bailing; Reichle, Rolf; Heim, Richard; Rosencrans, Matthew; Tinker, Rich; Famiglietti, James S.; Svoboda, Mark;
2011-01-01
NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations of the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including groundwater. The U.S. and North American Drought Monitors rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors by filling this observational gap. GRACE TWS data were assimilating into the Catchment Land Surface Model using an ensemble Kalman smoother enabling spatial and temporal downscaling and vertical decomposition into soil moisture and groundwater components. The Drought Monitors combine several short- and long-term drought indicators expressed in percentiles as a reference to their historical frequency of occurrence. To be consistent, we generated a climatology of estimated soil moisture and ground water based on a 60-year Catchment model simulation, which was used to convert seven years of GRACE assimilated fields into drought indicator percentiles. At this stage we provide a preliminary evaluation of the GRACE assimilated moisture and indicator fields.
A 1985-2015 data-driven global reconstruction of GRACE total water storage
NASA Astrophysics Data System (ADS)
Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia
2016-04-01
After thirteen years of measurements, the Gravity Recovery and Climate Experiment (GRACE) mission has enabled for an unprecedented view on total water storage (TWS) variability. However, the relatively short record length, irregular time steps and multiple data gaps since 2011 still represent important limitations to a wider use of this dataset within the hydrological and climatological community especially for applications such as model evaluation or assimilation of GRACE in land surface models. To address this issue, we make use of the available GRACE record (2002-2015) to infer local statistical relationships between detrended monthly TWS anomalies and the main controlling atmospheric drivers (e.g. daily precipitation and temperature) at 1 degree resolution (Humphrey et al., in revision). Long-term and homogeneous monthly time series of detrended anomalies in total water storage are then reconstructed for the period 1985-2015. The quality of this reconstruction is evaluated in two different ways. First we perform a cross-validation experiment to assess the performance and robustness of the statistical model. Second we compare with independent basin-scale estimates of TWS anomalies derived by means of combined atmospheric and terrestrial water-balance using atmospheric water vapor flux convergence and change in atmospheric water vapor content (Mueller et al. 2011). The reconstructed time series are shown to provide robust data-driven estimates of global variations in water storage over large regions of the world. Example applications are provided for illustration, including an analysis of some selected major drought events which occurred before the GRACE era. References Humphrey V, Gudmundsson L, Seneviratne SI (in revision) Assessing global water storage variability from GRACE: trends, seasonal cycle, sub-seasonal anomalies and extremes. Surv Geophys Mueller B, Hirschi M, Seneviratne SI (2011) New diagnostic estimates of variations in terrestrial water storage based on ERA-Interim data. Hydrol Process 25:996-1008
NASA Astrophysics Data System (ADS)
Pool, D. R.; Scanlon, B. R.
2017-12-01
There is uncertainty of how storage change in confined and unconfined aquifers would register from space-based platforms, such as the GRACE (Gravity Recovery and Climate Experiment) satellites. To address this concern, superposition groundwater models (MODFLOW) of equivalent storage change in simplified confined and unconfined aquifers of extent, 500 km2 or approximately 5X5 degrees at mid-latitudes, and uniform transmissivity were constructed. Gravity change resulting from the spatial distribution of aquifer storage change for each aquifer type was calculated at the initial GRACE satellite altitude ( 500 km). To approximate real-world conditions, the confined aquifer includes a small region of unconfined conditions at one margin. A uniform storage coefficient (specific yield) was distributed across the unconfined aquifer. For both cases, storage change was produced by 1 year of groundwater withdrawal from identical aquifer-centered well distributions followed by decades of no withdrawal and redistribution of the initial storage loss toward a new steady-state condition. The transient simulated storage loss includes equivalent volumes for both conceptualizations, but spatial distributions differ because of the contrasting aquifer diffusivity (Transmissivity/Storativity). Much higher diffusivity in the confined aquifer results in more rapid storage redistribution across a much larger area than for the unconfined aquifer. After the 1 year of withdrawals, the two simulated storage loss distributions are primarily limited to small regions within the model extent. Gravity change after 1 year observed at the satellite altitude is similar for both aquifers including maximum gravity reductions that are coincident with the aquifer center. With time, the maximum gravity reduction for the confined aquifer case shifts toward the aquifer margin as much as 200 km because of increased storage loss in the unconfined region. Results of the exercise indicate that GRACE observations are largely insensitive to confined or unconfined conditions for most aquifers. Lateral shifts in storage change with time in confined aquifers could be resolved by space-based gravity missions with durations of decades and improved spatial resolution, 1 degree or less ( 100 km), over the GRACE resolution of 3 degrees ( 300 km).
Intercomparison and Assessment of GRACE Temporal Gravity Solutions Performance
NASA Astrophysics Data System (ADS)
Choe, J.; Nerem, R. S.; Leuliette, E. W.
2006-12-01
The GRACE mission has been producing monthly estimates of changes in the Earth's gravity field since April 2002. Converting the raw GRACE range, accelerometer, and GPS measurements into estimates of the gravity field is a complex process, and therefore different analysis groups use various "recipes" resulting in different models of the time-varying gravity field. We have intercompared the solutions generated by a number of groups: Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), Goddard Space Flight Center (GSFC), Centre National d'Etudes Spatiales (CNES) and GeoForschungsZentrum (GFZ), to determine the characteristics of each group's solutions as applied to different scientific applications. For different scales of gaussian smoothing, we have examined the power spectrum of each model, the pattern of seasonal gravity variations, the residuals from a seasonal fit, and results from locations in the Sahara desert and Atlantic Ocean where the signals are known to be small. We have also characterized the level of "striping" in each center's solutions. In addition, we have compared each center's solutions for changes in Greenland and Antarctic ice mass, global ocean mass, and hydrologic changes over the continents. Using these tests and evaluations, we have been able to characterize the performance of each center's gravity solutions.
Regional Deformation Studies with GRACE and GPS
NASA Technical Reports Server (NTRS)
Davis, J. L.; Elosequi, P.; Tamisiea, M.; Mitrovica, J. X.
2005-01-01
GRACE data indicate large seasonal variations in gravity that have been shown to be to be related to climate-driven fluxes of surface water. Seasonal redistribution of surface mass deforms the Earth, and our previous study using GRACE data demonstrate that annual radial deformations of +/-13 mm in the region of Amazon River Basin were observed by both GRACE and ten GPS sites in the region. For the GRACE determinations, we estimate in a least-squares solution for each Stokes coefficient parameters that represent the amplitudes of the annual variation. We then filter these parameters based on a statistical test that uses the scatter of the postfit residuals. We demonstrate by comparison to the GPS amplitudes that this method is more accurate, for this region, than Gaussian smoothing. Our model for the temporal behavior of the gravity coefficients includes a rate term, and although the time series are noisy, the glacial isostatic adjustment signal over Hudson s Bay can be observed. .
NASA Astrophysics Data System (ADS)
Van Loon, Anne F.; Kumar, Rohini; Mishra, Vimal
2017-04-01
In 2015, central and eastern Europe were affected by a severe drought. This event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater situation has been performed. One of the reasons is that real-time groundwater level observations often are not available. In this study, we evaluate two alternative approaches to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. The first approach is based on spatially explicit relationships between meteorological conditions and historic groundwater level observations. The second approach uses the Gravity Recovery Climate Experiment (GRACE) terrestrial water storage (TWS) and groundwater anomalies derived from GRACE-TWS and (near-)surface storage simulations by the Global Land Data Assimilation System (GLDAS) models. We combined the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardised Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.25° gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on the estimated optimal accumulation periods and available meteorological time series, we reconstructed the groundwater anomalies up to 2015 and found that in Germany a uniform severe groundwater drought persisted for several months during this year, whereas the Netherlands appeared to have relatively high groundwater levels. The differences between this event and the 2003 European benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany. This is because slowly responding wells (the ones with optimal accumulation periods of more than 12 months) still were above average from the wet year of 2002, which experienced severe flooding in central Europe. GRACE-TWS and GRACE-based groundwater anomalies did not capture the spatial variability of the 2003 and 2015 drought events satisfactorily. GRACE-TWS did show that both 2003 and 2015 were relatively dry, but the differences between Germany and the Netherlands in 2015 and the spatially variable groundwater drought pattern in 2003 were not captured. This could be associated with the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. The uncertainty in the GRACE-based groundwater anomalies mainly results from uncertainties in the simulation of soil moisture by the different GLDAS models. The GRACE-based groundwater anomalies are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. The alternative approach based on the spatially variable relationship between meteorological conditions and groundwater levels is more suitable to quantify groundwater drought in near real-time. Compared to the meteorological drought and streamflow drought (described in previous studies), the groundwater drought of 2015 had a more pronounced spatial variability in its response to meteorological conditions, with some areas primarily influenced by short-term meteorological deficits and others influenced by meteorological deficits accumulated over the preceding 2 years or more. In drought management, this information is very useful and our approach to quantify groundwater drought can be used until real-time groundwater observations become readily available.
ITSG-Grace2016 data preprocessing methodologies revisited: impact of using Level-1A data products
NASA Astrophysics Data System (ADS)
Klinger, Beate; Mayer-Gürr, Torsten
2017-04-01
For the ITSG-Grace2016 release, the gravity field recovery is based on the use of official GRACE (Gravity Recovery and Climate Experiment) Level-1B data products, generated by the Jet Propulsion Laboratory (JPL). Before gravity field recovery, the Level-1B instrument data are preprocessed. This data preprocessing step includes the combination of Level-1B star camera (SCA1B) and angular acceleration (ACC1B) data for an improved attitude determination (sensor fusion), instrument data screening and ACC1B data calibration. Based on a Level-1A test dataset, provided for individual month throughout the GRACE period by the Center of Space Research at the University of Texas at Austin (UTCSR), the impact of using Level-1A instead of Level-1B data products within the ITSG-Grace2016 processing chain is analyzed. We discuss (1) the attitude determination through an optimal combination of SCA1A and ACC1A data using our sensor fusion approach, (2) the impact of the new attitude product on temporal gravity field solutions, and (3) possible benefits of using Level-1A data for instrument data screening and calibration. As the GRACE mission is currently reaching its end-of-life, the presented work aims not only at a better understanding of GRACE science data to reduce the impact of possible error sources on the gravity field recovery, but it also aims at preparing Level-1A data handling capabilities for the GRACE Follow-On mission.
NASA Astrophysics Data System (ADS)
Döll, Petra; Fritsche, Mathias; Eicker, Annette; Müller Schmied, Hannes
2014-11-01
Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude ( f GRACE) and time series of monthly TWS ( f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake.
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-09-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10(-8) m/s²), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately -1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth's surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution.
Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)
NASA Astrophysics Data System (ADS)
Khaki, Mehdi; Sneeuw, Nico
2015-04-01
Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.
Terrestrial Water Mass Load Changes from Gravity Recovery and Climate Experiment (GRACE)
NASA Technical Reports Server (NTRS)
Seo, K.-W.; Wilson, C. R.; Famiglietti, J. S.; Chen, J. L.; Rodell M.
2006-01-01
Recent studies show that data from the Gravity Recovery and Climate Experiment (GRACE) is promising for basin- to global-scale water cycle research. This study provides varied assessments of errors associated with GRACE water storage estimates. Thirteen monthly GRACE gravity solutions from August 2002 to December 2004 are examined, along with synthesized GRACE gravity fields for the same period that incorporate simulated errors. The synthetic GRACE fields are calculated using numerical climate models and GRACE internal error estimates. We consider the influence of measurement noise, spatial leakage error, and atmospheric and ocean dealiasing (AOD) model error as the major contributors to the error budget. Leakage error arises from the limited range of GRACE spherical harmonics not corrupted by noise. AOD model error is due to imperfect correction for atmosphere and ocean mass redistribution applied during GRACE processing. Four methods of forming water storage estimates from GRACE spherical harmonics (four different basin filters) are applied to both GRACE and synthetic data. Two basin filters use Gaussian smoothing, and the other two are dynamic basin filters which use knowledge of geographical locations where water storage variations are expected. Global maps of measurement noise, leakage error, and AOD model errors are estimated for each basin filter. Dynamic basin filters yield the smallest errors and highest signal-to-noise ratio. Within 12 selected basins, GRACE and synthetic data show similar amplitudes of water storage change. Using 53 river basins, covering most of Earth's land surface excluding Antarctica and Greenland, we document how error changes with basin size, latitude, and shape. Leakage error is most affected by basin size and latitude, and AOD model error is most dependent on basin latitude.
Girotto, Manuela; De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.; Rodell, Matthew; Draper, Clara; Bhanja, Soumendra N.; Mukherjee, Abhijit
2018-01-01
This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems. PMID:29643570
Girotto, Manuela; De Lannoy, Gabriëlle J M; Reichle, Rolf H; Rodell, Matthew; Draper, Clara; Bhanja, Soumendra N; Mukherjee, Abhijit
2017-05-16
This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
NASA Technical Reports Server (NTRS)
Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew; Draper, Clara S.; Bhanja, Soumendra N.; Mukherjee, Abhijit
2017-01-01
This study investigates some of the benefits and drawbacks of assimilating Terrestrial Water Storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) into a land surface model over India. GRACE observes TWS depletion associated with anthropogenic groundwater extraction in northwest India. The model, however, does not represent anthropogenic groundwater withdrawals and is not skillful in reproducing the interannual variability of groundwater. Assimilation of GRACE TWS introduces long-term trends and improves the interannual variability in groundwater. But the assimilation also introduces a negative trend in simulated evapotranspiration whereas in reality evapotranspiration is likely enhanced by irrigation, which is also unmodeled. Moreover, in situ measurements of shallow groundwater show no trend, suggesting that the trends are erroneously introduced by the assimilation into the modeled shallow groundwater, when in reality the groundwater is depleted in deeper aquifers. The results emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
Treatment of ocean tide aliasing in the context of a next generation gravity field mission
NASA Astrophysics Data System (ADS)
Hauk, Markus; Pail, Roland
2018-04-01
Current temporal gravity field solutions from GRACE suffer from temporal aliasing errors due to under-sampling of signal to be recovered (e.g. hydrology), uncertainties in the de-aliasing models (usually atmosphere and ocean), and imperfect ocean tide models. Especially the latter will be one of the most limiting factors in determining high resolution temporal gravity fields from future gravity missions such as GRACE Follow-on and Next-Generation Gravity Missions (NGGM). In this paper a method to co-parameterize ocean tide parameters of the 8 main tidal constituents over time spans of several years is analysed and assessed. Numerical closed-loop simulations of low-low satellite-to-satellite-tracking missions for a single polar pair and a double pair Bender-type formation are performed, using time variable geophysical background models and noise assumptions for new generation instrument technology. Compared to the single pair mission, results show a reduction of tide model errors up to 70 per cent for dedicated tidal constituents due to an enhanced spatial and temporal sampling and error isotropy for the double pair constellation. Extending the observation period from one to three years leads to a further reduction of tidal errors up to 60 per cent for certain constituents, and considering non-tidal mass changes during the estimation process leads to reductions of tidal errors between 20 per cent and 80 per cent. As part of a two-step approach, the estimated tide model is used for de-aliasing during gravity field retrieval in a second iteration, resulting in more than 50 per cent reduction of ocean tide aliasing errors for a NGGM Bender-type formation.
Integrating Data from GRACE and Other Observing Systems for Hydrological Research and Applications
NASA Technical Reports Server (NTRS)
Rodell, M.; Famiglietti, J. S.; McWilliams, E.; Beaudoing, H. K.; Li, B.; Zaitchik, B.; Reichle, R.; Bolten, J.
2011-01-01
The Gravity Recovery and Climate Experiment (GRACE) mission provides a unique view of water cycle dynamics, enabling the only space based observations of water on and beneath the land surface that are not limited by depth. GRACE data are immediately useful for large scale applications such as ice sheet ablation monitoring, but they are even more valuable when combined with other types of observations, either directly or within a data assimilation system. Here we describe recent results of hydrological research and applications projects enabled by GRACE. These include the following: 1) global monitoring of interannual variability of terrestrial water storage and groundwater; 2) water balance estimates of evapotranspiration over several large river basins; 3) NASA's Energy and Water Cycle Study (NEWS) state of the global water budget project; 4) drought indicator products now being incorporated into the U.S. Drought Monitor; 5) GRACE data assimilation over several regions.
NASA Astrophysics Data System (ADS)
Yang, Yikang; Li, Xue; Liu, Lei
2009-12-01
Gravity field measurement for the interested planets and their moos in solar system, such as Luna and Mars, is one important task in the next step of deep-space mission. In this paper, Similar to GRACE mission, LLSST and DOWR technology of common-orbit master-slave satellites around task planet is inherited in this scheme. Furthermore, by intersatellite 2-way UQPSK-DSSS link, time synchronization and data processing are implemented autonomously by masterslave satellites instead of GPS and ground facilities supporting system. Conclusion is derived that the ISL DOWR based on 2-way incoherent time synchronization has the same precise level to GRACE DOWR based on GPS time synchronization. Moreover, because of inter-satellite link, the proposed scheme is rather autonomous for gravity field measurement of the task planet in deep-space mission.
NASA Technical Reports Server (NTRS)
Talpe, Matthieu J.; Nerem, R. Steven; Forootan, Ehsan; Schmidt, Michael; Lemoine, Frank G.; Enderlin, Ellyn M.; Landerer, Felix W.
2017-01-01
We construct long-term time series of Greenland and Antarctic ice sheet mass change from satellite gravity measurements. A statistical reconstruction approach is developed based on a principal component analysis (PCA) to combine high-resolution spatial modes from the Gravity Recovery and Climate Experiment (GRACE) mission with the gravity information from conventional satellite tracking data. Uncertainties of this reconstruction are rigorously assessed; they include temporal limitations for short GRACE measurements, spatial limitations for the low-resolution conventional tracking data measurements, and limitations of the estimated statistical relationships between low- and high-degree potential coefficients reflected in the PCA modes. Trends of mass variations in Greenland and Antarctica are assessed against a number of previous studies. The resulting time series for Greenland show a higher rate of mass loss than other methods before 2000, while the Antarctic ice sheet appears heavily influenced by interannual variations.
Remote Sensing of Terrestrial Water Storage with GRACE and Future Gravimetry Missions
NASA Technical Reports Server (NTRS)
Rodell, Matt; Watkins, Mike; Famiglietti, Jay
2011-01-01
The Gravity Recovery and Climate Experiment (GRACE) has demonstrated that satellite gravimetry can be a valuable tool for regional to global water cycle observation. Studies of ice sheet and glacier mass losses, ocean bottom pressure and circulation, and variability of water stored on and in the land including groundwater all have benefited from GRACE observations, and the list of applications and discoveries continues to grow. As the mission approaches its tenth anniversary of launch on March 12,2012, it has nearly doubled its proposed lifetime but is showing some signs of age. In particular, degraded battery capacity limits the availability of power in certain orbital configurations, so that the accelerometers must be turned off for approximately one month out of six. The mission managers have decided to operate the spacecrafts in a manner that maximizes the remaining lifetime, so that the longest possible climate data record is available from GRACE. Nevertheless, it is not unlikely that there will be a data gap between GRACE and the GRACE Follow On mission, currently proposed for launch in 2016. In this presentation we will describe recent GRACE enabled science, GRACE mission health, and plans for GRACE Follow On and other future satellite gravimetry missions.
Large-scale vegetation responses to terrestrial moisture storage changes
NASA Astrophysics Data System (ADS)
Andrew, Robert L.; Guan, Huade; Batelaan, Okke
2017-09-01
The normalised difference vegetation index (NDVI) is a useful tool for studying vegetation activity and ecosystem performance at a large spatial scale. In this study we use the Gravity Recovery and Climate Experiment (GRACE) total water storage (TWS) estimates to examine temporal variability of the NDVI across Australia. We aim to demonstrate a new method that reveals the moisture dependence of vegetation cover at different temporal resolutions. Time series of monthly GRACE TWS anomalies are decomposed into different temporal frequencies using a discrete wavelet transform and analysed against time series of the NDVI anomalies in a stepwise regression. The results show that combinations of different frequencies of decomposed GRACE TWS data explain NDVI temporal variations better than raw GRACE TWS alone. Generally, the NDVI appears to be more sensitive to interannual changes in water storage than shorter changes, though grassland-dominated areas are sensitive to higher-frequencies of water-storage changes. Different types of vegetation, defined by areas of land use type, show distinct differences in how they respond to the changes in water storage, which is generally consistent with our physical understanding. This unique method provides useful insight into how the NDVI is affected by changes in water storage at different temporal scales across land use types.
NASA Astrophysics Data System (ADS)
Ran, J.; Ditmar, P.; Klees, R.; Farahani, H. H.
2018-03-01
We present an improved mascon approach to transform monthly spherical harmonic solutions based on GRACE satellite data into mass anomaly estimates in Greenland. The GRACE-based spherical harmonic coefficients are used to synthesize gravity anomalies at satellite altitude, which are then inverted into mass anomalies per mascon. The limited spectral content of the gravity anomalies is properly accounted for by applying a low-pass filter as part of the inversion procedure to make the functional model spectrally consistent with the data. The full error covariance matrices of the monthly GRACE solutions are properly propagated using the law of covariance propagation. Using numerical experiments, we demonstrate the importance of a proper data weighting and of the spectral consistency between functional model and data. The developed methodology is applied to process real GRACE level-2 data (CSR RL05). The obtained mass anomaly estimates are integrated over five drainage systems, as well as over entire Greenland. We find that the statistically optimal data weighting reduces random noise by 35-69%, depending on the drainage system. The obtained mass anomaly time-series are de-trended to eliminate the contribution of ice discharge and are compared with de-trended surface mass balance (SMB) time-series computed with the Regional Atmospheric Climate Model (RACMO 2.3). We show that when using a statistically optimal data weighting in GRACE data processing, the discrepancies between GRACE-based estimates of SMB and modelled SMB are reduced by 24-47%.
Drought Indicators Based on Model Assimilated GRACE Terrestrial Water Storage Observations
NASA Technical Reports Server (NTRS)
Houborg, Rasmus; Rodell, Matthew; Li, Bailing; Reichle, Rolf; Zaitchik, Benjamin F.
2012-01-01
The Gravity Recovery and Climate Experiment (GRACE) twin satellites observe time variations in Earth's gravity field which yield valuable information about changes in terrestrial water storage (TWS). GRACE is characterized by low spatial (greater than 150,000 square kilometers) and temporal (greater than 10 day) resolution but has the unique ability to sense water stored at all levels (including groundwater) systematically and continuously. The GRACE Data Assimilation System (GRACE-DAS), based on the Catchment Land Surface Model (CLSM) enhances the value of the GRACE water storage data by enabling spatial and temporal downscaling and vertical decomposition into moisture 39 components (i.e. groundwater, soil moisture, snow), which individually are more useful for scientific applications. In this study, GRACE-DAS was applied to North America and GRACE-based drought indicators were developed as part of a larger effort that investigates the possibility of more comprehensive and objective identification of drought conditions by integrating spatially, temporally and vertically disaggregated GRACE data into the U.S. and North American Drought Monitors. Previously, the Drought Monitors lacked objective information on deep soil moisture and groundwater conditions, which are useful indicators of drought. Extensive datasets of groundwater storage from USGS monitoring wells and soil moisture from the Soil Climate Analysis Network (SCAN) were used to assess improvements in the hydrological modeling skill resulting from the assimilation of GRACE TWS data. The results point toward modest, but statistically significant, improvements in the hydrological modeling skill across major parts of the United States, highlighting the potential value of GRACE assimilated water storage field for improving drought detection.
NASA Astrophysics Data System (ADS)
Rahimi, A.; Shahrisvand, M.
2017-09-01
GRACE satellites (the Gravity Recovery And climate Experiment) are very useful sensors to extract gravity anomalies after earthquakes. In this study, we reveal co-seismic signals of the two combined earthquakes, the 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands from GRACE observations. We compute monthly full gravitational gradient tensor in the local north-east-down frame for Kuril Islands earthquakes without spatial averaging and de-striping filters. Some of gravitational gradient components (e.g. ΔVxx, ΔVxz) enhance high frequency components of the earth gravity field and reveal more details in spatial and temporal domain. Therefore, co-seismic activity can be better illustrated. For the first time, we show that the positive-negative-positive co-seismic ΔVxx due to the Kuril Islands earthquakes ranges from - 0.13 to + 0.11 milli Eötvös, and ΔVxz shows a positive-negative-positive pattern ranges from - 0.16 to + 0.13 milli Eötvös, agree well with seismic model predictions.
Interaction of the Climate System and the Solid Earth: Analysis of Observations and Models
NASA Technical Reports Server (NTRS)
Bryan, Frank
2001-01-01
Under SENH funding we have carried out a number of diverse analyses of interactions of the climate system (atmosphere, ocean, land surface hydrology) with the solid Earth. While the original work plan emphasized analysis of excitation of variations in Earth rotation, with a lesser emphasis on time variable gravity, opportunities that developed during the proposal period in connection with preparations for the GRACE mission led us to a more balanced effort between these two topics. The results of our research are outlined in several topical sections: (1) oceanic excitation of variations in Earth rotation; (2) short period atmosphere-ocean excitation of variations in Earth rotation; (3) analysis of coupled climate system simulation; (4) observing system simulation studies for GRACE mission design; and (5) oceanic response to atmospheric pressure loading.
NASA Astrophysics Data System (ADS)
Douch, Karim; Müller, Jürgen; Heinzel, Gerhard; Wu, Hu
2017-04-01
The successful GRACE mission and its far-reaching benefits have highlighted the interest to continue and extend the mapping of the Earth's time-variable gravitational field with follow-on missions and ideally a higher spatiotemporal resolution. Here, we would like to put forward satellite gravitational gradiometry as an alternative solution to satellite-to-satellite tracking for future missions. Besides the higher sensitivity to smaller scales compared to GRACE-like missions, a gradiometry mission would only require one satellite and would provide a direct estimation of a functional of the gravitational field. GOCE, the only gradiometry mission launched so far, was not sensitive enough to map the time-variable part of the gravity field. However, the unprecedented precision of the state-of-the-art optical metrology system on-board the LISA PATHFINDER satellite has opened the way to more performant space inertial sensors. We will therefore examine whether it is technically possible to go beyond GOCE performances and to quantify to what extent the time-variable gravitational field could be determined. First, we derive the requirements on the knowledge of the attitude and the position of the satellite and on the measured gradients in terms of sensitivity and calibration accuracy for a typical repeat low-orbit. We conclude in particular that a noise level smaller than 0.1 mE/√Hz- is required in the measurement bandwidth [5x10-4 ; 10-2]Hz so as to be sensitive to the time-variable gravity signal. We introduce then the design and characteristics of the new gradiometer concept and give an assessment of its noise budget. Contrary to the GOCE electrostatic gradiometer, the position of the test-mass in the accelerometer is measured here by laser interferometry rather than by a capacitive readout system, which improves the overall measurement chain. Finally, the first results of a performance analysis carried out thanks to an end-to-end simulator are discussed and compared to the previously defined requirements.
Global Biomass Variation and its Geodynamic Effects, 1982-1998
NASA Technical Reports Server (NTRS)
Rodell, M.; Chao, B. F.; Au, A. Y.; Kimball, J. S.; McDonald, K. C.
2005-01-01
Redistribution of mass near Earth's surface alters its rotation, gravity field, and geocenter location. Advanced techniques for measuring these geodetic variations now exist, but the ability to attribute the observed modes to individual Earth system processes has been hampered by a shortage of reliable global data on such processes, especially hydrospheric processes. To address one aspect of this deficiency, 17 yrs of monthly, global maps of vegetation biomass were produced by applying field-based relationships to satellite-derived vegetation type and leaf area index. The seasonal variability of biomass was estimated to be as large as 5 kg m(exp -2). Of this amount, approximately 4 kg m(exp -2) is due to vegetation water storage variations. The time series of maps was used to compute geodetic anomalies, which were then compared with existing geodetic observations as well as the estimated measurement sensitivity of the Gravity Recovery and Climate Experiment (GRACE). For gravity, the seasonal amplitude of biomass variations may be just within GRACE'S limits of detectability, but it is still an order of magnitude smaller than current observation uncertainty using the satellite-laser-ranging technique. The contribution of total biomass variations to seasonal polar motion amplitude is detectable in today's measurement, but it is obscured by contributions from various other sources, some of which are two orders of magnitude larger. The influence on the length of day is below current limits of detectability. Although the nonseasonal geodynamic signals show clear interannual variability, they are too small to be detected.
Evaluating Water Storage Variations in the MENA region using GRACE Satellite Data
NASA Astrophysics Data System (ADS)
Lopez, O.; Houborg, R.; McCabe, M. F.
2013-12-01
Terrestrial water storage (TWS) variations over large river basins can be derived from temporal gravity field variations observed by the Gravity Recovery and Climate Experiment (GRACE) satellites. These signals are useful for determining accurate estimates of water storage and fluxes over areas covering a minimum of 150,000 km2 (length scales of a few hundred kilometers) and thus prove to be a valuable tool for regional water resources management, particularly for areas with a lack of in-situ data availability or inconsistent monitoring, such as the Middle East and North Africa (MENA) region. This already stressed arid region is particularly vulnerable to climate change and overdraft of its non-renewable freshwater sources, and thus direction in managing its resources is a valuable aid. An inter-comparison of different GRACE-derived TWS products was done in order to provide a quantitative assessment on their uncertainty and their utility for diagnosing spatio-temporal variability in water storage over the MENA region. Different processing approaches for the inter-satellite tracking data from the GRACE mission have resulted in the development of TWS products, with resolutions in time from 10 days to 1 month and in space from 0.5 to 1 degree global gridded data, while some of them use input from land surface models in order to restore the original signal amplitudes. These processing differences and the difficulties in recovering the mass change signals over arid regions will be addressed. Output from the different products will be evaluated and compared over basins inside the MENA region, and compared to output from land surface models.
Using satellite laser ranging to measure ice mass change in Greenland and Antarctica
NASA Astrophysics Data System (ADS)
Bonin, Jennifer A.; Chambers, Don P.; Cheng, Minkang
2018-01-01
A least squares inversion of satellite laser ranging (SLR) data over Greenland and Antarctica could extend gravimetry-based estimates of mass loss back to the early 1990s and fill any future gap between the current Gravity Recovery and Climate Experiment (GRACE) and the future GRACE Follow-On mission. The results of a simulation suggest that, while separating the mass change between Greenland and Antarctica is not possible at the limited spatial resolution of the SLR data, estimating the total combined mass change of the two areas is feasible. When the method is applied to real SLR and GRACE gravity series, we find significantly different estimates of inverted mass loss. There are large, unpredictable, interannual differences between the two inverted data types, making us conclude that the current 5×5 spherical harmonic SLR series cannot be used to stand in for GRACE. However, a comparison with the longer IMBIE time series suggests that on a 20-year time frame, the inverted SLR series' interannual excursions may average out, and the long-term mass loss estimate may be reasonable.
Analysis of a GRACE Global Mascon Solution for Gulf of Alaska Glaciers
NASA Technical Reports Server (NTRS)
Arendt, Anthony; Luthcke, Scott B.; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed
2013-01-01
We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of -6511 Gt a(exp.-1) for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of -6111 Gt a(exp. -1) from GRACE, which compares well with -6512 Gt a(exp. -1) from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June-August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements atWolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.
Analysis of a GRACE global mascon solution for Gulf of Alaska glaciers
Arendt, Anthony; Luthcke, Scott; Gardner, Alex; O'Neel, Shad; Hill, David; Moholdt, Geir; Abdalati, Waleed
2013-01-01
We present a high-resolution Gravity Recovery and Climate Experiment (GRACE) mascon solution for Gulf of Alaska (GOA) glaciers and compare this with in situ glaciological, climate and other remote-sensing observations. Our GRACE solution yields a GOA glacier mass balance of –65 ± 11 Gt a–1 for the period December 2003 to December 2010, with summer balances driving the interannual variability. Between October/November 2003 and October 2009 we obtain a mass balance of –61 ± 11 Gt a–1 from GRACE, which compares well with –65 ± 12 Gt a–1 from ICESat based on hypsometric extrapolation of glacier elevation changes. We find that mean summer (June–August) air temperatures derived from both ground and lower-troposphere temperature records were good predictors of GRACE-derived summer mass balances, capturing 59% and 72% of the summer balance variability respectively. Large mass losses during 2009 were likely due to low early melt season surface albedos, measured by the Moderate Resolution Imaging Spectroradiometer (MODIS) and likely associated with the 31 March 2009 eruption of Mount Redoubt, southwestern Alaska. GRACE data compared well with in situ measurements at Wolverine Glacier (maritime Alaska), but poorly with those at Gulkana Glacier (interior Alaska). We conclude that, although GOA mass estimates from GRACE are robust over the entire domain, further constraints on subregional and seasonal estimates are necessary to improve fidelity to ground observations.
Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Oberheide, J.; Sutton, E. K.; Liu, H.-L.; Anderson, J. L.; Raeder, K.
2016-04-01
The intraseasonal variability of the eastward propagating nonmigrating diurnal tide with zonal wave number 3 (DE3) during 2007 in the mesosphere, ionosphere, and thermosphere is investigated using a whole atmosphere model reanalysis and satellite observations. The atmospheric reanalysis is based on implementation of data assimilation in the Whole Atmosphere Community Climate Model (WACCM) using the Data Assimilation Research Testbed (DART) ensemble Kalman filter. The tidal variability in the WACCM+DART reanalysis is compared to the observed variability in the mesosphere and lower thermosphere (MLT) based on the Thermosphere Ionosphere Mesosphere Energetics Dynamics satellite Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observations, in the ionosphere based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) observations, and in the upper thermosphere (˜475 km) based on Gravity Recovery and Climate Experiment (GRACE) neutral density observations. To obtain the short-term DE3 variability in the MLT and upper thermosphere, we apply the method of tidal deconvolution to the TIMED/SABER observations and consider the difference in the ascending and descending longitudinal wave number 4 structure in the GRACE observations. The results reveal that tidal amplitude changes of 5-10 K regularly occur on short timescales (˜10-20 days) in the MLT. Similar variability occurs in the WACCM+DART reanalysis and TIMED/SABER observations, demonstrating that the short-term variability can be captured in whole atmosphere models that employ data assimilation and in observations by the technique of tidal deconvolution. The impact of the short-term DE3 variability in the MLT on the ionosphere and thermosphere is also clearly evident in the COSMIC and GRACE observations. Analysis of the troposphere forcing in WACCM+DART and simulations of the Global Scale Wave Model (GSWM) show that the short-term DE3 variability in the MLT is not related to a single source; rather, it is due to a combination of changes in troposphere forcing, zonal mean atmosphere, and wave-wave interactions.
Estimating continental water storage variations in Central Asia area using GRACE data
NASA Astrophysics Data System (ADS)
Dapeng, Mu; Zhongchang, Sun; Jinyun, Guo
2014-03-01
The goal of GRACE satellite is to determine time-variations of the Earth's gravity, and particularly the effects of fluid mass redistributions at the surface of the Earth. This paper uses GRACE Level-2 RL05 data provided by CSR to estimate water storage variations of four river basins in Asia area for the period from 2003 to 2011. We apply a two-step filtering method to reduce the errors in GRACE data, which combines Gaussian averaging function and empirical de-correlation method. We use GLDAS hydrology to validate the result from GRACE. Special averaging approach is preformed to reduce the errors in GLDAS. The results of former three basins from GRACE are consistent with GLDAS hydrology model. In the Tarim River basin, there is more discrepancy between GRACE and GLDAS. Precipitation data from weather station proves that the results of GRACE are more plausible. We use spectral analysis to obtain the main periods of GRACE and GLDAS time series and then use least squares adjustment to determine the amplitude and phase. The results show that water storage in Central Asia is decreasing.
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-01-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10−8 m/s2), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately −1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth’s surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution. PMID:27598158
A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data
NASA Astrophysics Data System (ADS)
Wu, Xiaoping; Kusche, Jürgen; Landerer, Felix W.
2017-06-01
Geocentre motion between the centre-of-mass of the Earth system and the centre-of-figure of the solid Earth surface is a critical signature of degree-1 components of global surface mass transport process that includes sea level rise, ice mass imbalance and continental-scale hydrological change. To complement GRACE data for complete-spectrum mass transport monitoring, geocentre motion needs to be measured accurately. However, current methods of geodetic translational approach and global inversions of various combinations of geodetic deformation, simulated ocean bottom pressure and GRACE data contain substantial biases and systematic errors. Here, we demonstrate a new and more reliable unified approach to geocentre motion determination using a recently formed satellite laser ranging based geocentric displacement time-series of an expanded geodetic network of all four space geodetic techniques and GRACE gravity data. The unified approach exploits both translational and deformational signatures of the displacement data, while the addition of GRACE's near global coverage significantly reduces biases found in the translational approach and spectral aliasing errors in the inversion.
Development of an Atom Interferometer Gravity Gradiometer for Earth Sciences
NASA Technical Reports Server (NTRS)
Rakholia, A.; Sugarbaker, A.; Black, A.; Kasecivh, M.; Saif, B.; Luthcke, S.; Callahan, L.; Seery, B.; Feinberg, L.; Mather, J.;
2017-01-01
We report progress towards a prototype atom interferometer gravity gradiometer for Earth science studies from a satellite in low Earth orbit.The terrestrial prototype has a target sensitivity of 8 x 10(exp -2) E/Hz(sup 1/2) and consists of two atom sources running simultaneous interferometers with interrogation time T = 300 ms and 12 hk photon recoils, separated by a baseline of 2 m. By employing Raman side band cooling and magnetic lensing, we will generate atomic ensembles with N = 10(exp 6) atoms at a temperature of 3 nK. The sensitivity extrapolates to 7 x 10(exp -5) E/Hz(sup 1/2) in microgravity on board a satellite. Simulations derived from this sensitivity demonstrate a monthly time-variable gravity accuracy of 1 cm equivalent water height at 200 km resolution, yielding an improvement over GRACE by 1-2 orders of magnitude. A gravity gradiometer with this sensitivity would also benefit future planetary, lunar, and asteroidal missions.
NASA Technical Reports Server (NTRS)
Watkins, M.; Bettadpur, S.
2000-01-01
The GRACE Mission, to be launched in mid-2001, will provide an unprecedented map of the Earth's gravity field every month. In this paper, we outline the challenges associated with this micron-level satellite-to-satellite ranging, the solutions used by the GRACE project, and the expected science applications of the data.
NASA Astrophysics Data System (ADS)
Feng, W.; Lemoine, J.-M.; Zhong, M.; Hsu, H. T.
2014-08-01
An annual amplitude of ∼18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from the Gravity Recovery and Climate Experiment (GRACE) satellites and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the region dominate the mean SLV, and generally reach maximum in late January/early February. The annual steric component of the mean SLV is relatively small (<3 cm) and out of phase of the mass-induced SLV. In situ bottom pressure records at the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. In addition, the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected altimetry is validated by hydrographic observations.
Basin-Scale Freshwater Storage Trends from GRACE
NASA Astrophysics Data System (ADS)
Famiglietti, J.; Kiel, B.; Frappart, F.; Syed, T. H.; Rodell, M.
2006-12-01
Four years have passed since the GRACE satellite tandem began recording variations in Earth's gravitational field. On monthly to annual timescales, variations in the gravity signal for a given location correspond primarily to changes in water storage. GRACE thus reveals, in a comprehensive, vertically-integrated manner, which areas and basins have experienced net increases or decreases in water storage. GRACE data (April 2002 to November 2005) released by the Center for Space Research at the University of Texas at Austin (RL01) is used for this study. Model-based data from GLDAS (Global Land Data Assimilation System) is integrated into this study for comparison with the CSR GRACE data. Basin-scale GLDAS storage trends are similar to those from GRACE, except in the Arctic, likely due to the GLDAS snow module. Outside of the Arctic, correlation of GRACE and GLDAS data confirms significant basin-scale storage trends across the GRACE data collection period. Sharp storage decreases are noted in the Congo, Zambezi, Mekong, Parana, and Yukon basins, among others. Significant increases are noted in the Niger, Lena, and Volga basins, and others. Current and future work involves assessment of these trends and their causes in the context of hydroclimatological variability.
Co-Seismic Mass Displacement and its Effect on Earth's Rotation and Gravity
NASA Technical Reports Server (NTRS)
Chao, B. F.; Gross, R. S.
2004-01-01
Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) displacements in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field. The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross. The calculation uses the normal mode summation scheme, applied to over twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Centroid Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies, conspiring to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards approx. 140 deg.E, roughly opposite to the observed polar drift direction. Currently, the Gravity Recovery And Climate Experiment (GRACE) is measuring the time-variable gravity to high degree and order with unprecedented accuracy. Our results show that great earthquakes such as the 1960 Chilean or 1964 Alaskan events cause gravitational field changes that are large enough to be detected by GRACE.
GRACE Accelerometer data transplant
NASA Astrophysics Data System (ADS)
Bandikova, T.; McCullough, C. M.; Kruizinga, G. L. H.
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) has recently celebrated its 15th anniversary. The aging of the satellites brings along new challenges for both mission operation and science data delivery. Since September 2016, the accelerometer (ACC) onboard GRACE-B has been permanently turned off in order to reduce the battery load. The absence of the information about the non-gravitational forces acting on the spacecraft dramatically decreases the accuracy of the monthly gravity field solutions. The missing GRACE-B accelerometer data, however, can be recovered from the GRACE-A accelerometer measurement with satisfactory accuracy. In the current GRACE data processing, simple ACC data transplant is used which includes only attitude and time correction. The full ACC data transplant, however, requires not only the attitude and time correction, but also modeling of the residual accelerations due to thruster firings, which is the most challenging part. The residual linear accelerations ("thruster spikes") are caused by thruster imperfections such as misalignment of thruster pair, force imbalance or differences in reaction time. The thruster spikes are one of the most dominant high-frequency signals in the ACC measurement. The shape and amplitude of the thruster spikes are unique for each thruster pair, for each firing duration (30 ms - 1000 ms), for each x,y,z component of the ACC linear acceleration, and for each spacecraft. In our approach, the thruster spike model is an analytical function obtained by inverse Laplace transform of the ACC transfer function. The model shape parameters (amplitude, width and time delay) are estimated using Least squares method. The ACC data transplant is validated for days when ACC data from both satellites were available. The fully transplanted data fits the original GRACE-B measurement very well. The full ACC data transplant results in significantly reduced high frequency noise compared to the simple ACC transplant (i.e. without thruster spike modeling). The full ACC data transplant is a promising solution, which will allow GRACE to deliver high quality science data despite the serious problems related to satellite aging.
The unexpected signal in GRACE estimates of C_{20}
NASA Astrophysics Data System (ADS)
Cheng, Minkang; Ries, John
2017-08-01
For science applications of the gravity recovery and climate experiment (GRACE) monthly solutions, the GRACE estimates of C_{20} (or J2) are typically replaced by the value determined from satellite laser ranging (SLR) due to an unexpectedly strong, clearly non-geophysical, variation at a period of ˜ 160 days. This signal has sometimes been referred to as a tide-like variation since the period is close to the perturbation period on the GRACE orbits due to the spherical harmonic coefficient pair C_{22}/S_{22} of S2 ocean tide. Errors in the S2 tide model used in GRACE data processing could produce a significant perturbation to the GRACE orbits, but it cannot contribute to the ˜ 160-day signal appearing in C_{20}. Since the dominant contribution to the GRACE estimate of C_{20} is from the global positioning system tracking data, a time series of 138 monthly solutions up to degree and order 10 (10× 10) were derived along with estimates of ocean tide parameters up to degree 6 for eight major tides. The results show that the ˜ 160-day signal remains in the C_{20} time series. Consequently, the anomalous signal in GRACE C_{20} cannot be attributed to aliasing from the errors in the S2 tide. A preliminary analysis of the cross-track forces acting on GRACE and the cross-track component of the accelerometer data suggests that a temperature-dependent systematic error in the accelerometer data could be a cause. Because a wide variety of science applications relies on the replacement values for C_{20}, it is essential that the SLR estimates are as reliable as possible. An ongoing concern has been the influence of higher degree even zonal terms on the SLR estimates of C_{20}, since only C_{20} and C_{40} are currently estimated. To investigate whether a better separation between C_{20} and the higher-degree terms could be achieved, several combinations of additional SLR satellites were investigated. In addition, a series of monthly gravity field solutions (60× 60) were estimated from a combination of GRACE and SLR data. The results indicate that the combination of GRACE and SLR data might benefit the resonant orders in the GRACE-derived gravity fields, but it appears to degrade the recovery of the C_{20} variations. In fact, the results suggest that the poorer recovery of C_{40} by GRACE, where the annual variation is significantly underestimated, may be affecting the estimates of C_{20}. Consequently, it appears appropriate to continue using the SLR-based estimates of C_{20}, and possibly also C_{40}, to augment the existing GRACE mission.
GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake
NASA Astrophysics Data System (ADS)
Cambiotti, G.; Bordoni, A.; Sabadini, R.; Colli, L.
2011-10-01
The analysis of Gravity Recovery and Climate Experiment (GRACE) Level 2 data time series from the Center for Space Research (CSR) and GeoForschungsZentrum (GFZ) allows us to extract a new estimate of the co-seismic gravity signal due to the 2004 Sumatran earthquake. Owing to compressible self-gravitating Earth models, including sea level feedback in a new self-consistent way and designed to compute gravitational perturbations due to volume changes separately, we are able to prove that the asymmetry in the co-seismic gravity pattern, in which the north-eastern negative anomaly is twice as large as the south-western positive anomaly, is not due to the previously overestimated dilatation in the crust. The overestimate was due to a large dilatation localized at the fault discontinuity, the gravitational effect of which is compensated by an opposite contribution from topography due to the uplifted crust. After this localized dilatation is removed, we instead predict compression in the footwall and dilatation in the hanging wall. The overall anomaly is then mainly due to the additional gravitational effects of the ocean after water is displaced away from the uplifted crust, as first indicated by de Linage et al. (2009). We also detail the differences between compressible and incompressible material properties. By focusing on the most robust estimates from GRACE data, consisting of the peak-to-peak gravity anomaly and an asymmetry coefficient, that is given by the ratio of the negative gravity anomaly over the positive anomaly, we show that they are quite sensitive to seismic source depths and dip angles. This allows us to exploit space gravity data for the first time to help constraining centroid-momentum-tensor (CMT) source analyses of the 2004 Sumatran earthquake and to conclude that the seismic moment has been released mainly in the lower crust rather than the lithospheric mantle. Thus, GRACE data and CMT source analyses, as well as geodetic slip distributions aided by GPS, complement each other for a robust inference of the seismic source of large earthquakes. Particular care is devoted to the spatial filtering of the gravity anomalies estimated both from observations and models to make their comparison significant.
Antarctic mass balance changes from GRACE
NASA Astrophysics Data System (ADS)
Kallenberg, B.; Tregoning, P.
2012-04-01
The Antarctic ice sheet contains ~30 million km3 of ice and constitutes a significant component of the global water balance with enough freshwater to raise global sea level by ~60 m. Altimetry measurements and climate models suggest variable behaviour across the Antarctic ice sheet, with thickening occurring in a vast area of East Antarctica and substantial thinning in West Antarctica caused by increased temperature gradients in the surrounding ocean. However, the rate at which the polar ice cap is melting is still poorly constrained. To calculate the mass loss of an ice sheet it is necessary to separate present day mass balance changes from glacial isostatic adjustment (GIA), the response of the Earth's crust to mass loss, wherefore it is essential to undertake sufficient geological and geomorphological sampling. As there is only a limited possibility for this in Antarctica, all models (i.e. geological, hydrological as well as atmospheric) are very poorly constrained. Therefore, space-geodetic observations play an important role in detecting changes in mass and spatial variations in the Earth's gravity field. The Gravity Recovery And Climate Experiment (GRACE) observed spatial variations in the Earth's gravity field over the past ten years. The satellite detects mass variations in the Earth system including geophysical, hydrological and atmospheric shifts. GRACE itself is not able to separate the GIA from mass balance changes and, due to the insufficient geological and geomorphological database, it is not possible to model the GIA effect accurately for Antarctica. However, the results from GRACE can be compared with other scientific results, coming from other geodetic observations such as satellite altimetry and GPS or by the use of geological observations. In our contribution we compare the GRACE data with recorded precipitation patterns and mass anomalies over East Antarctica to separate the observed GRACE signal into its two components: GIA as a result of mass loss and present day surface load changes due to possible snow/ice accumulation.
GOCE, Satellite Gravimetry and Antarctic Mass Transports
NASA Astrophysics Data System (ADS)
Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger
2011-09-01
In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.
Development and Release of a GRACE-FO "Grand Simulation" Data Set by JPL
NASA Astrophysics Data System (ADS)
Fahnestock, E.; Yuan, D. N.; Wiese, D. N.; McCullough, C. M.; Harvey, N.; Sakumura, C.; Paik, M.; Bertiger, W. I.; Wen, H. Y.; Kruizinga, G. L. H.
2017-12-01
The GRACE-FO mission, to be launched early in 2018, will require several stages of data processing to be performed within its Science Data System (SDS). In an effort to demonstrate effective implementation and inter-operation of this level 1, 2, and 3 data processing, and to verify its combined ability to recover a truth Earth gravity field to within top-level requirements, the SDS team has performed a system test which it has termed the "Grand Simulation". This process starts with iteration to converge on a mutually consistent integrated truth orbit, non-gravitational acceleration time history, and spacecraft attitude time history, generated with the truth models for all elements of the integrated system (geopotential, both GRACE-FO spacecraft, constellation of GPS spacecraft, etc.). Level 1A data products are generated and then the GPS time to onboard receiver time clock error is introduced into those products according to a realistic truth clock offset model. The various data products are noised according to current best estimate noise models, and then some are used within a precision orbit determination and clock offset estimation/recovery process. Processing from level 1A to level 1B data products uses the recovered clock offset to correct back to GPS time, and performs gap-filling, compression, etc. This exercises nearly all software pathways intended for processing actual GRACE-FO science data. Finally, a monthly gravity field is recovered and compared against the truth background field. In this talk we briefly summarize the resulting performance vs. requirements, and lessons learned in the system test process. Finally, we provide information for use of the level 1B data set by the general community for gravity solution studies and software trials in anticipation of operational GRACE-FO data. ©2016 California Institute of Technology. Government sponsorship acknowledged.
JPL-20180420-GRACFOf-0001-GRACE Follow-On Media Reel 1
2018-04-20
The original GRACE mission (Gravity Recovery and Climate Experiment) revolutionized our understanding of Earth's water cycle and how water and ice are distributed on the planet. The GRACE Follow-On satellites will continue GRACE's legacy.
Earthquake Signal Visible in GRACE Data
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Figure1 This figure shows the effect of the December 2004 great Sumatra earthquake on the Earth's gravity field as observed by GRACE. The signal is expressed in terms of the relative acceleration of the two GRACE satellites, in this case a few nanometers per second squared, or about 1 billionth of the acceleration we experience everyday at the Earth's surface.GRACE observations show comparable signals in the region of the earthquake. Other natural variations are also apparent in the expected places, whereas no other significant change would be expected in the region of the earthquake GRACE, twin satellites launched in March 2002, are making detailed measurements of Earth's gravity field which will lead to discoveries about gravity and Earth's natural systems. These discoveries could have far-reaching benefits to society and the world's population.The GRACE Mission: Meeting the Technical Challenges
NASA Technical Reports Server (NTRS)
Davis, E. S.; Dunn, C. E.; Stanton, R. H.; Thomas, J. B.
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) Mission is scheduled for launch in June 2001. Within the first year of the GRACE Mission, the project has a minimum science requirement to deliver a new model of the Earth's static geoid with an error of less than 1 cm to spherical harmonic degree seventy (70). However, the performance of the GRACE Mission is designed to exceed this minimum requirement by a factor of 25 or more. For spherical harmonic degrees of up to 40, we expect to improve the current knowledge of the gravity field by one thousand (1000x). The GRACE Mission uses the satellite-to-satellite tracking (SST) technique. The twin GRACE satellites are the instruments that measure the nonuniformities in the Earth's gravity field. Nonuniformities in the gravity field cause the relative distance between the centers-of-mass of the two satellites to vary as they fly over the Earth. Atmospheric drag is the largest non-gravitational disturbing force. Drag is measured and will be used to correct changes in the satellite-to-satellite range measured by an SST microwave link. The microwave link will measure changes in the range between the two GRACE satellites with an error approaching 1 micron. We will discuss how these instrumentation requirements affect the configuration, the mass balance, the thermal control and the aerodynamic design of the satellites, and the design of the microwave SST link and the accelerometer. Finally, the question of how noise in these components limits the overall accuracy of the gravity models will be addressed.
NASA Astrophysics Data System (ADS)
Song, Chunqiao; Ke, Linghong; Huang, Bo; Richards, Keith S.
2015-01-01
The southeast Tibetan Plateau (SETP) includes the majority of monsoonal temperate glaciers in High Mountain Asia (HMA), which is an important source of water for the upper reaches of several large Asian river systems. Climatic change and variability has substantial impacts on cryosphere and hydrological processes in the SETP. The Gravity Recovery and Climate Experiment (GRACE) gravimetry observations between 2003 and 2009 suggest that there was an average mass loss rate of - 5.99 ± 2.78 Gigatonnes (Gt)/yr in this region. Meanwhile, the hydrological data by model calculations from the GLDAS/Noah and CPC are used to estimate terrestrial water storage (TWS) changes with a slight negative trend of about - 0.3 Gt/yr. The recent studies (Kääb et al., 2012; Gardner et al., 2013) reported the thinning rates of mountain glaciers in HMA based on the satellite laser altimetry, and an approximate estimation of the glacier mass budget in the SETP was 4.69 ± 2.03 Gt/yr during 2003-2009. This estimate accounted for a large proportion ( 78.3%) of the difference between the GRACE TWS and model-calculated TWS changes. To better understand the cause of sharp mass loss existing in the SETP, the correlations between key climatic variables (precipitation and temperature) and the GRACE TWS changes are examined at different timescales between 2003 and 2011. The results show that precipitation is the leading factors of abrupt, seasonal and multi-year undulating signals of GRACE TWS anomaly time series, but with weak correlations with the inter-annual trend and annual mass budget of GRACE TWS. In contrast, the annual mean temperature is tightly associated with the annual net mass budget (r = 0.81, p < 0.01), which indirectly suggests that the GRACE-observed mass loss in the SETP may be highly related to glacial processes.
JPL-20180522-GRACFOf-0001-NASAs GRACE FO Satellite Launches Aboard a SpaceX Falcon 9 Rocket
2018-05-22
3-2-1 liftoff of Falcon 9 with GRACE-FO! NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, launched from Vandenberg Air Force Base on California's Central Coast on May 22, 2018. The twin orbiters shared a ride to space with five Iridium NEXT communications satellites. GRACE-FO will continue a study begun by the original GRACE mission, which proved that water movement can be tracked with high precision by its effect on Earth's gravitational field. GRACE-FO will continue the record of regional variations in gravity, telling us about changes in glaciers, ground water, sea levels and the health of our planet as a whole. For more, visit https://gracefo.jpl.nasa.gov .
CHAMP and GRACE Resonances and the Gravity Field of the Earth
NASA Astrophysics Data System (ADS)
Gooding, R. H.; Wagner, C. A.; Klokocnik, J.; Kostelecky, J.
With the far more precise orbits of CHAMP and GRACE today than was the standard 2-3 decades ago there was and is an unprecedented opportunity for determining precise and valuable values of certain lumped geopotential harmonic coefficients of selected orders independently of comprehensive gravity field models via the recently revived technique that capitalizes on the resonant variation of appropriate orbital elements the inclination in particular Here we first identify important resonances during the lifetime of CHAMP and GRACE in terms of the decaying semimajor axis these being 46 3 77 5 31 2 78 5 and 47 3 for CHAMP and 61 4 for GRACE Then we analyze state vectors for CHAMP and TLE for GRACE A from GFZ and determined the relevant lumped coefficients To increase its lifetime the CHAMP satellite orbit was raised twice in June and December 2002 so CHAMP passed through 31 2 resonance three times More accurate values for these coefficients are obtained than originally and the precision for the 62 4 overtone resonance implicit in 31 2 is striking comparable to that for 31 2 Most recently CHAMP passed throughout the 47 3 resonance yielding the opportunity to determine new lumped coefficients For GRACE we have no state vectors and have to work with the TLE only nevertheless we have lumped coefficients of 61st order from its strong 61 4 resonance In each case the resonant lumped values are compared with those derivable from various global gravity models We thereby confirm the continuing power of the resonance technique
Monitoring groundwater variation by satellite and implications for in-situ gravity measurements.
Fukuda, Yoichi; Yamamoto, Keiko; Hasegawa, Takashi; Nakaegawa, Toshiyuki; Nishijima, Jun; Taniguchi, Makoto
2009-04-15
In order to establish a new technique for monitoring groundwater variations in urban areas, the applicability of precise in-situ gravity measurements and extremely high precision satellite gravity data via GRACE (Gravity Recovery and Climate Experiment) was tested. Using the GRACE data, regional scale water mass variations in four major river basins of the Indochina Peninsula were estimated. The estimated variations were compared with Soil-Vegetation-Atmosphere Transfer Scheme (SVATS) models with a river flow model of 1) globally uniform river velocity, 2) river velocity tuned by each river basin, 3) globally uniform river velocity considering groundwater storage, and 4) river velocity tuned by each river basin considering groundwater storage. Model 3) attained the best fit to the GRACE data, and the model 4) yielded almost the same values. This implies that the groundwater plays an important role in estimating the variation of total terrestrial storage. It also indicates that tuning river velocity, which is based on the in-situ measurements, needs further investigations in combination with the GRACE data. The relationships among GRACE data, SVATS models, and in-situ measurements were also discussed briefly.
NASA Technical Reports Server (NTRS)
Housborg, Rasmus; Rodell, Matthew
2010-01-01
NASA's Gravity Recovery and Climate Experiment (GRACE) satellites measure time variations nf the Earth's gravity field enabling reliable detection of spatio-temporal variations in total terrestrial water storage (TWS), including ground water. The U.S. and North American Drought Monitors are two of the premier drought monitoring products available to decision-makers for assessing and minimizing drought impacts, but they rely heavily on precipitation indices and do not currently incorporate systematic observations of deep soil moisture and groundwater storage conditions. Thus GRACE has great potential to improve the Drought Monitors hy filling this observational gap. Horizontal, vertical and temporal disaggregation of the coarse-resolution GRACE TWS data has been accomplished by assimilating GRACE TWS anomalies into the Catchment Land Surface Model using ensemble Kalman smoother. The Drought Monitors combine several short-term and long-term drought indices and indicators expressed in percentiles as a reference to their historical frequency of occurrence for the location and time of year in question. To be consistent, we are in the process of generating a climatology of estimated soil moisture and ground water based on m 60-year Catchment model simulation which will subsequently be used to convert seven years of GRACE assimilated fields into soil moisture and groundwater percentiles. for systematic incorporation into the objective blends that constitute Drought Monitor baselines. At this stage we provide a preliminary evaluation of GRACE assimilated Catchment model output against independent datasets including soil moisture observations from Aqua AMSR-E and groundwater level observations from the U.S. Geological Survey's Groundwater Climate Response Network.
Reducing errors in the GRACE gravity solutions using regularization
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron D.
2012-09-01
The nature of the gravity field inverse problem amplifies the noise in the GRACE data, which creeps into the mid and high degree and order harmonic coefficients of the Earth's monthly gravity fields provided by GRACE. Due to the use of imperfect background models and data noise, these errors are manifested as north-south striping in the monthly global maps of equivalent water heights. In order to reduce these errors, this study investigates the use of the L-curve method with Tikhonov regularization. L-curve is a popular aid for determining a suitable value of the regularization parameter when solving linear discrete ill-posed problems using Tikhonov regularization. However, the computational effort required to determine the L-curve is prohibitively high for a large-scale problem like GRACE. This study implements a parameter-choice method, using Lanczos bidiagonalization which is a computationally inexpensive approximation to L-curve. Lanczos bidiagonalization is implemented with orthogonal transformation in a parallel computing environment and projects a large estimation problem on a problem of the size of about 2 orders of magnitude smaller for computing the regularization parameter. Errors in the GRACE solution time series have certain characteristics that vary depending on the ground track coverage of the solutions. These errors increase with increasing degree and order. In addition, certain resonant and near-resonant harmonic coefficients have higher errors as compared with the other coefficients. Using the knowledge of these characteristics, this study designs a regularization matrix that provides a constraint on the geopotential coefficients as a function of its degree and order. This regularization matrix is then used to compute the appropriate regularization parameter for each monthly solution. A 7-year time-series of the candidate regularized solutions (Mar 2003-Feb 2010) show markedly reduced error stripes compared with the unconstrained GRACE release 4 solutions (RL04) from the Center for Space Research (CSR). Post-fit residual analysis shows that the regularized solutions fit the data to within the noise level of GRACE. A time series of filtered hydrological model is used to confirm that signal attenuation for basins in the Total Runoff Integrating Pathways (TRIP) database over 320 km radii is less than 1 cm equivalent water height RMS, which is within the noise level of GRACE.
Global Assessment of New GRACE Mascons Solutions for Hydrologic Applications
NASA Astrophysics Data System (ADS)
Save, H.; Zhang, Z.; Scanlon, B. R.; Wiese, D. N.; Landerer, F. W.; Long, D.; Longuevergne, L.; Chen, J.
2016-12-01
Advances in GRACE (Gravity Recovery and Climate Experiment) satellite data processing using new mass concentration (mascon) solutions have greatly increased the spatial localization and amplitude of recovered total Terrestrial Water Storage (TWS) signals; however, limited testing has been conduct on land hydrologic applications. In this study we compared TWS anomalies from (1) Center for Space Research mascons (CSR-M) solution with (2) NASA JPL mascon (JPL-M) solution, and with (3) a CSR gridded spherical harmonic rescaled (sf) solution from Tellus (CSRT-GSH.sf) in 176 river basins covering 80% of the global land area. There is good correspondence in TWS anomalies from mascons (CSR-M and JPL-M) and SH solutions based on high correlations between time series (rank correlation coefficients mostly >0.9). The long-term trends in basin TWS anomalies represent a relatively small signal (up to ±20 mm/yr) with differences among GRACE solutions and inter-basin variability increasing with decreasing basin size. Long-term TWS declines are greatest in (semi)arid and irrigated basins. Annual and semiannual signals have much larger amplitudes (up to ±250 mm). There is generally good agreement among GRACE solutions, increasing confidence in seasonal fluctuations from GRACE data. Rescaling spherical harmonics to restore lost signal increases agreement with mascons solutions for long-term trends and seasonal fluctuations. There are many advantages to using GRACE mascons solutions relative to SH solutions, such as reduced leakage from land to ocean increasing signal amplitude, and constraining results by applying geophysical data during processing with little or no post-processing requirements, making mascons more user friendly for non-geodetic users. This inter-comparison of various GRACE solutions should allow hydrologists to better select suitable GRACE products for hydrologic applications.
NASA Astrophysics Data System (ADS)
Cheng, X.; Lambert, V.; Masuti, S.; Wang, R.; Barbot, S.; Moore, J. G.; Qiu, Q.; Yu, H.; Wu, S.; Dauwels, J.; Nanjundiah, P.; Bannerjee, P.; Peng, D.
2017-12-01
The April 2012 Mw 8.6 Indian Ocean earthquake is the largest strike-slip earthquake instrumentally recorded. The event ruptured multiple faults and reached great depths up to 60 km, which may have induced significant viscoelastic flow in the asthenosphere. Instead of performing the time-consuming iterative forward modeling, our previous studies used linear inversions for postseismic deformation including both afterslip on the coseismic fault and viscoelastic flow in the strain volumes, making use of three-dimensional analytical Green's functions for distributed strain in finite volumes. Constraints and smoothing were added to reduce the degree of freedom in order to obey certain physical laws. The advent of Gravity Recovery and Climate Experiment (GRACE) satellite gravity field data now allows us to measure the mass displacements associated with various Earth processes. In the case of postseismic deformation, viscoelastic flow can potentially lead to significant mass displacements in the asthenosphere, corresponding to the temporal and spatial gravity change. In this new joint model, we add GRACE gravity data to the GPS measurement of postseismic crustal displacement, so as to improve the constraint on the postseismic relaxation processes in the upper mantle.
NASA Astrophysics Data System (ADS)
Yi, Shuang; Song, Chunqiao; Wang, Qiuyu; Wang, Linsong; Heki, Kosuke; Sun, Wenke
2017-08-01
Artificial reservoirs are important indicators of anthropogenic impacts on environments, and their cumulative influences on the local water storage will change the gravity signal. However, because of their small signal size, such gravity changes are seldom studied using satellite gravimetry from the Gravity Recovery and Climate Experiment (GRACE). Here we investigate the ability of GRACE to detect water storage changes in the Longyangxia Reservoir (LR), which is situated in the upper main stem of the Yellow River. Three different GRACE solutions from the CSR, GFZ, and JPL with three different processing filters are compared here. We find that heavy precipitation in the summer of 2005 caused the LR water storage to increase by 37.9 m in height, which is equivalent to 13.0 Gt in mass, and that the CSR solutions with a DDK4 filter show the best performance in revealing the synthetic gravity signals. We also obtain 109 pairs of reservoir inundation area measurements from satellite imagery and water level changes from laser altimetry and in situ observations to derive the area-height ratios for the LR. The root mean square of GRACE series in the LR is reduced by 39% after removing synthetic signals caused by mass changes in the LR or by 62% if the GRACE series is further smoothed. We conclude that GRACE data show promising potential in detecting water storage changes in this ˜400 km2 reservoir and that a small signal size is not a restricting factor for detection using GRACE data.
NASA Astrophysics Data System (ADS)
Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia
2017-04-01
The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.
Monitoring Lakes in Africa with Altimetry and GRACE
NASA Astrophysics Data System (ADS)
Carabajal, C. C.; Boy, J. P.
2017-12-01
Thanks to more than two decades of radar altimetry measurements from TOPEX/POSEIDON, Jason 1, 2 and 3, ENVISAT and others, 18 Ice, Cloud and Land Elevation Satellite (ICESat) laser altimeter measurement campaigns over 6 years, and 15 years of Gravity Recovery And Climate Experiment (GRACE) observations, water levels changes of major lakes and reservoirs can be remotely measured regularly with unprecedented precision, facilitating monitoring of continental water storage variations. Smaller footprint laser altimeters like ICESat are more suitable for the retrieval of water level variations of small inland water bodies, better discriminating water returns when water height measurements have the potential to be contaminated by land or vegetation. Using imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) contemporaneous with the altimetry data collections, in combination with careful examination of the laser waveforms, one can better isolate returns form the water surface. Combining these altimetry observations, we derive and compare water height estimates for several lakes and reservoirs in Africa from radar and laser altimetry measurements, we estimate the surface extent of each individual water body from available MODIS imagery, and derive corresponding estimates of volume variations for each water body. Mass variations from time-variable gravity measurements from the GRACE mission, using the latest one-degree global iterated mascons solution from GSFC are then transformed into volume changes, assuming a constant density, and compared to altimetry plus imagery estimates. These methods demonstrate the power of combined observations to monitor water resources and facilitate their management. Upcoming laser altimetry missions like ICESat-2, with vastly improved coverage and temporal sampling, continuous observations, better measurements techniques, including inland water products specifically formulated for these applications, when combined with SWOT, and GRACE-follow on mission data, will help address the need for continuous monitoring of continental water storage variations from space measurements.
NASA Astrophysics Data System (ADS)
Miller, K. A.; Clancy, K.
2016-12-01
The NASA and German Aerospace Center Gravity Recovery and Climate Experiment (GRACE) detects monthly changes in the gravity of the earth assumed to be water storage using the distance between two satellites, GRACE A and GRACE B, as a phase change. We will use level 3 GRACE Tellus data from the NASA Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (PO.DAAC). The data have a resolution of 9 km2 and are available for 2002 to 2015. We examine GRACE data for the High Plains aquifer (Texas, Oklahoma, Wyoming, Nebraska, Kansas, New Mexico, Colorado and South Dakota) and compare changes to monthly averaged precipitation gauges, standardized precipitation indices for one, three, six, and twelve-months. We hypothesize that GRACE data will correlate best with 1) three-month standardized precipitation indices; 2) regions with natural land cover; 3) and in years where precipitation is at or above average.
NASA Astrophysics Data System (ADS)
O'Donnell, J. P.; Daly, E.; Tiberi, C.; Bastow, I. D.; O'Reilly, B. M.; Readman, P. W.; Hauser, F.
2011-03-01
The nature and extent of the regional lithosphere-asthenosphere interaction beneath Ireland and Britain remains unclear. Although it has been established that ancient Caledonian signatures pervade the lithosphere, tertiary structure related to the Iceland plume has been inferred to dominate the asthenosphere. To address this apparent contradiction in the literature, we image the 3-D lithospheric and deeper upper-mantle structure beneath Ireland via non-linear, iterative joint teleseismic-gravity inversion using data from the ISLE (Irish Seismic Lithospheric Experiment), ISUME (Irish Seismic Upper Mantle Experiment) and GRACE (Gravity Recovery and Climate Experiment) experiments. The inversion combines teleseismic relative arrival time residuals with the GRACE long wavelength satellite derived gravity anomaly by assuming a depth-dependent quasilinear velocity-density relationship. We argue that anomalies imaged at lithospheric depths probably reflect compositional contrasts, either due to terrane accretion associated with Iapetus Ocean closure, frozen decompressional melt that was generated by plate stretching during the opening of the north Atlantic Ocean, frozen Iceland plume related magmatic intrusions, or a combination thereof. The continuation of the anomalous structure across the lithosphere-asthenosphere boundary is interpreted as possibly reflecting sub-lithospheric small-scale convection initiated by the lithospheric compositional contrasts. Our hypothesis thus reconciles the disparity which exists between lithospheric and asthenospheric structure beneath this region of the north Atlantic rifted margin.
Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; Zaitchik, Benjamin F.; Rodell, Matt
2008-01-01
The NASA Gravity Recovery and Climate Experiment (GRACE) system of satellites provides observations of large-scale, monthly terrestrial water storage (TWS) changes. In. this presentation we describe a land data assimilation system that ingests GRACE observations and show that the assimilation improves estimates of water storage and fluxes, as evaluated against independent measurements. The ensemble-based land data assimilation system uses a Kalman smoother approach along with the NASA Catchment Land Surface Model (CLSM). We assimilated GRACE-derived TWS anomalies for each of the four major sub-basins of the Mississippi into the Catchment Land Surface Model (CLSM). Compared with the open-loop (no assimilation) CLSM simulation, assimilation estimates of groundwater variability exhibited enhanced skill with respect to measured groundwater. Assimilation also significantly increased the correlation between simulated TWS and gauged river flow for all four sub-basins and for the Mississippi River basin itself. In addition, model performance was evaluated for watersheds smaller than the scale of GRACE observations, in the majority of cases, GRACE assimilation led to increased correlation between TWS estimates and gauged river flow, indicating that data assimilation has considerable potential to downscale GRACE data for hydrological applications. We will also describe how the output from the GRACE land data assimilation system is now being prepared for use in the North American Drought Monitor.
NASA Astrophysics Data System (ADS)
Wang, L.; Davis, J. L.; Tamisiea, M. E.
2017-12-01
The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.
NASA Astrophysics Data System (ADS)
Yi, Shuang; Wang, Qiuyu; Sun, Wenke
2016-02-01
With absolute gravimetric observations from 2010 to 2013 in the southern Tibet, Chen et al. (2016) reported a gravity increase of up to 20 μGal/yr and concluded that it is possible if there was a density increase in a disk range of 580 km in diameter. Here we used observations from the gravity satellites Gravity Recovery and Climate Experiment (GRACE) over 12 years to evaluate whether the model was practical, because a mass accumulation in such a large spatial range is well within the detectability ability of GRACE. The gravity trend based on their model is orders of magnitude larger than the GRACE observation, thus negating its conclusions. We then evaluated contributions from seasonal variation, lakes, glaciers, rivers, precipitation, and snowfall and concluded that these factors cannot cause such a large gravity signal. Finally, we discussed some possible explanations for the gravity increase of 40 μGal in two years.
Assessment of 3D hydrologic deformation using GRACE and GPS
NASA Astrophysics Data System (ADS)
Watson, C. S.; Tregoning, P.; Fleming, K.; Burgette, R. J.; Featherstone, W. E.; Awange, J.; Kuhn, M.; Ramillien, G.
2009-12-01
Hydrological processes cause variations in gravitational potential and surface deformations, both of which are detectable with ever increasing precision using space geodetic techniques. By comparing the elastic deformation computed from continental water load estimates derived from the Gravity Recovery and Climate Experiment (GRACE), with three-dimensional surface deformation derived from GPS observations, there is clear potential to better understand global to regional hydrological processes, in addition to acquiring further insight into the systematic error contributions affecting each space geodetic technique. In this study, we compare elastic deformation derived from water load estimates taken from the CNES, CSR, GFZ and JPL time variable GRACE fields. We compare these surface displacements with those derived at a global network of GPS sites that have been homogeneously reprocessed in the GAMIT/GLOBK suite. We extend our comparison to include a series of different GPS solutions, with each solution only subtly different based on the methodology used to down weight the height component in realizing site coordinates on the terrestrial reference frame. Each of the GPS solutions incorporate modeling of atmospheric loading and utilization of the VMF1 and a priori zenith hydrostatic delays derived via ray tracing through ECMWF meteorological fields. The agreement between GRACE and GPS derived deformations is not limited to the vertical component, with excellent agreement in the horizontal component across areas where large hydrologic signals occur over broad spatial scales (with correlation in horizontal components as high as 0.9). Agreement is also observed at smaller scales, including across Europe. These comparisons assist in understanding the magnitude of current error contributions within both space geodetic techniques. With the emergence of homogeneously reprocessed GPS time series spanning the GRACE mission, this technique offers one possible means of validating the amplitude and phase of quasi-periodic signals present in GPS time series.
Transient ice mass variations over Greenland detected by the combination of GPS and GRACE data
NASA Astrophysics Data System (ADS)
Zhang, B.; Liu, L.; Khan, S. A.; van Dam, T. M.; Zhang, E.
2017-12-01
Over the past decade, the Greenland Ice Sheet (GrIS) has been undergoing significant warming and ice mass loss. Such mass loss was not always a steady process but had substantial temporal and spatial variabilities. Here we apply multi-channel singular spectral analysis to crustal deformation time series measured at about 50 Global Positioning System (GPS) stations mounted on bedrock around the Greenland coast and mass changes inferred from Gravity Recovery and Climate Experiment (GRACE) to detect transient changes in ice mass balance over the GrIS. We detect two transient anomalies: one is a negative melting anomaly (Anomaly 1) that peaked around 2010; the other is a positive melting anomaly (Anomaly 2) that peaked between 2012 and 2013. The GRACE data show that both anomalies caused significant mass changes south of 74°N but negligible changes north of 74°N. Both anomalies caused the maximum mass change in southeast GrIS, followed by in west GrIS near Jakobshavn. Our results also show that the mass change caused by Anomaly 1 first reached the maximum in late 2009 in the southeast GrIS and then migrated to west GrIS. However, in Anomaly 2, the southeast GrIS was the last place that reached the maximum mass change in early 2013 and the west GrIS near Jakobshavn was the second latest place that reached the maximum mass change. Most of the GPS data show similar spatiotemporal patterns as those obtained from the GRACE data. However, some GPS time series show discrepancies in either space or time, because of data gaps and different sensitivities of mass loading change. Namely, loading deformation measured by GPS can be significantly affected by local dynamical mass changes, which, yet, has little impact on GRACE observations.
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Fayne, J.; Bolten, J. D.
2016-12-01
We will use satellite data from TRMM (Tropical Rainfall Measurement Mission), AMSR (Advanced Microwave Scanning Radiometer), GRACE (Gravity Recovery and Climate Experiment) and MODIS (Moderate Resolution Spectroradiometer) and model output from NASA GLDAS (Global Land Data Assimilation System) to understand the linkages between hydrological variables. These hydrological variables include precipitation soil moisture vegetation index surface temperature ET and total water. We will present results for major river basins such as Amazon, Colorado, Mississippi, California, Danube, Nile, Congo, Yangtze Mekong, Murray-Darling and Ganga-Brahmaputra.The major floods and droughts in these watersheds will be mapped in time and space using the satellite data and model outputs mentioned above. We will analyze the various hydrological variables and conduct a synergistic study during times of flood and droughts. In order to compare hydrological variables between river basins with vastly different climate and land use we construct an index that is scaled by the climatology. This allows us to compare across different climate, topography, soils and land use regimes. The analysis shows that the hydrological variables derived from satellite data and NASA models clearly reflect the hydrological extremes. This is especially true when data from different sensors are analyzed together - for example rainfall data from TRMM and total water data from GRACE. Such analyses will help to construct prediction tools for water resources applications.
NASA Astrophysics Data System (ADS)
Zheng, Zengji; Jin, Shuanggen; Fan, Lihong
2018-07-01
Gravity changes caused by giant earthquakes can be detected by Gravity Recovery and Climate Experiment (GRACE), which provide new constraints on earthquake ruptures. However, detailed rupture, seismic moment and density/displacement-induced gravity changes are not clear for less than Mw = 8.5 earthquakes. In this paper, the fault parameters of the 2007 Mw = 8.4 Bengkulu earthquake are retrieved from GRACE and GPS data, and the fault slip distribution is inverted using GPS data. Furthermore, the theoretical coseismic displacements and coseismic gravity changes from different slip models are compared with GPS and GRACE data. The results show that the significant positive and negative gravity anomalies with a peak magnitude of -2.0 to 1.3 μgal are extracted from GRACE data. The GRACE-inverted and joint-inverted seismic moment of the Bengkulu earthquake are 3.27 ×1021 Nm and 3.30 ×1021 Nm with the rake angle of 108° and 114°, respectively. The GPS-inverted Mw = 8.4 earthquake is mainly dominated by the thrusting with slight right-lateral strike-slip, which is consistent with the focal mechanism. GRACE-observed coseismic gravity changes agree well with the results from the fault models based on the spherically dislocation theories in spatial pattern, but are larger than model-estimated results in magnitude. The coseismic gravity changes caused by the density change are basically same as those caused by the vertical displacement in the magnitude of order, which are -0.8 to 0.2 μgal and -0.2 to 1.4 μgal for the Caltech model, -0.9 to 0.2 μgal and -0.5 to 1.3 μgal for the USGS model, and -0.9 to 0.2 μgal and -0.3 to 1.3 μgal for the GPS-inverted layered model. In addition, both the near-field and the far-field displacements calculated from the Caltech model and GPS-inverted layered model are in good agreement with the GPS observations, whereas the USGS model has good agreement in the far-field and poor agreement in the near-field with the GPS observations, especially in the Pagai Selatan area.
Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2003-01-01
Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth s dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease - until around 1998, when it switched quite suddenly to an increase trend which has continued to date. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this 52 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution @e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.
NASA Astrophysics Data System (ADS)
Foerste, C.; Flechtner, F.; Stubenvoll, R.; Rothacher, M.; Kusche, J.; Neumayer, H. K.; Biancale, R.; Lemoine, J.; Barthelmes, F.; Bruinsma, S.; Koenig, R.; Dahle, C.
2008-12-01
Global gravity field models play a fundamental role in geodesy and Earth sciences, ranging from practical purposes, like precise orbit determination, to applications in geosciences, like investigations of the density structure of the Earth's interior. In this presentation we report on the latest, recently released EIGEN-model, EIGEN-5C (EIGEN = European Improved Gravity model of the Earth by New techniques) and its associated satellite-only model EIGEN-5S. The global gravity field model EIGEN-5C is complete to degree and order 360 (corresponding to half-wavelength of 55 km) and was jointly elaborated by GFZ Potsdam and CNES/GRGS Toulouse. As its precursor EIGEN-GL04C (released in March 2006), this model is inferred from a combination of GRACE and LAGEOS satellite tracking data with surface gravity data, based on the accumulation of normal equations. However, this new model presents remarkable changes and improvements compared to its precursors. EIGEN-5C incorporates a further extended GRACE and LAGEOS data set, covering almost the entire GRACE period from mid 2002 to end of 2007, but also newly available gravity anomaly data sets for Europe and Australia. New processing features are the complete reprocessing of the GRACE and LAGEOS data using the recent RL04 standards and background models by GFZ (combined with the GRACE/LAGEOS 10-days time series derived at GRGS based on nearly identical standards and background models) and a further extension of the full normal equations (in contrast to block diagonal form) derived from terrestrial data to a maximum degree and order of 280 (which was restricted to 179 for EIGEN-GL04C). In particular, this presentation focuses on the inter-comparison of this latest EIGEN model with the recently presented EGM08 model, which was developed by the National Geospatial-Intelligence Agency (NGA) of the USA. The EIGEN-5C model and its associated satellite-only model EIGEN-5S are available for download at the ICGEM data base (International Center for Global Earth Models) at GFZ Potsdam via the following URL: http://icgem.gfz-potsdam.de/ICGEM/ potsdam.de/ICGEM/
NASA Astrophysics Data System (ADS)
Katpatal, Yashwant B.; Rishma, C.; Singh, Chandan K.
2018-05-01
The Gravity Recovery and Climate Experiment (GRACE) satellite mission is aimed at assessment of groundwater storage under different terrestrial conditions. The main objective of the presented study is to highlight the significance of aquifer complexity to improve the performance of GRACE in monitoring groundwater. Vidarbha region of Maharashtra, central India, was selected as the study area for analysis, since the region comprises a simple aquifer system in the western region and a complex aquifer system in the eastern region. Groundwater-level-trend analyses of the different aquifer systems and spatial and temporal variation of the terrestrial water storage anomaly were studied to understand the groundwater scenario. GRACE and its field application involve selecting four pixels from the GRACE output with different aquifer systems, where each GRACE pixel encompasses 50-90 monitoring wells. Groundwater storage anomalies (GWSA) are derived for each pixel for the period 2002 to 2015 using the Release 05 (RL05) monthly GRACE gravity models and the Global Land Data Assimilation System (GLDAS) land-surface models (GWSAGRACE) as well as the actual field data (GWSAActual). Correlation analysis between GWSAGRACE and GWSAActual was performed using linear regression. The Pearson and Spearman methods show that the performance of GRACE is good in the region with simple aquifers; however, performance is poorer in the region with multiple aquifer systems. The study highlights the importance of incorporating the sensitivity of GRACE in estimation of groundwater storage in complex aquifer systems in future studies.
NASA Technical Reports Server (NTRS)
Zlotnicki, V.; Stammer, D.; Fukumori, I.
2003-01-01
Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.
Study of Extreme Weather Hazards Using GRACE
NASA Astrophysics Data System (ADS)
Zhang, Y.; Shum, C. K.; Shang, K.; Guo, J.; Schwartz, F. W.; Akyılmaz, O.; Feng, W.; Forootan, E.; LIU, G.; Zhong, M.
2017-12-01
Extreme weather events significantly affect humans and economics in the region. Synoptic and timely observations of these abrupt meteoro-hydrological hazards would benefit disaster management and improve storm forecasting. Contemporary processing of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite data at monthly sampling would miss or under-sample abrupt events such as large ice storms with durations much shorter than a month. Here, we employ the energy balance approach processing GRACE Level 1 data, which is flexible to allow sub-monthly solutions at daily sampling covering the genesis and evolution of large winter storms. We studied the 2008 Southeast China snow and ice storm, which lasted from mid-January to mid-February, and affected 21 out of China's 34 provinces with heavy snows, ice and freezing rains, caused extensive damage and transportation disruption, displaced nearly 1.7 million people, and claimed 129 lives. We also investigated the devastating North America blizzard which occurred during late January through mid-February 2010. The massive accumulations of snow and ice in both storms slightly changed the gravity field of the Earth, and were sensitive to the GRACE satellite measurements, manifested as transient terrestrial water storage (TWS) change. We compared our solutions with other available high temporal frequency GRACE solutions. The GRACE observed total storage change for both storms are in good agreement with in situ precipitation measurements, and with GRACE observations clearly show the complex genesis, decline, strengthening and melting phases depicting the detailed evolution of these example large snow storms.
Constraining Earth's Rheology of the Barents Sea Using Grace Gravity Change Observations
NASA Astrophysics Data System (ADS)
van der Wal, W.; Root, B. C.; Tarasov, L.
2014-12-01
The Barents Sea region was ice covered during last glacial maximum and experiences Glacial Isostatic Adjustment (GIA). Because of the limited amount of relevant geological and geodetic observations, it is difficult to constrain GIA models for this region. With improved ice sheet models and gravity observations from GRACE, it is possible to better constrain Earth rheology. This study aims to constrain the upper mantle viscosity and elastic lithosphere thickness from GRACE data in the Barents Sea region. The GRACE observations are corrected for current ice melting on Svalbard, Novaya Zemlya and Frans Joseph Land. A secular trend in gravity rate trend is estimated from the CSR release 5 GRACE data for the period of February 2003 to July 2013. Furthermore, long wavelength effects from distant large mass balance signals such as Greenland ice melting are filtered out. A new high-variance set of ice loading histories from calibrated glaciological modeling are used in the GIA modeling as it is found that ICE-5G over-estimates the observed GIA gravity change in the region. It is found that the rheology structure represented by VM5a results in over-estimation of the observed gravity change in the region for all ice sheet chronologies investigated. Therefore, other rheological Earth models were investigated. The best fitting upper mantle viscosity and elastic lithosphere thickness in the Barents Sea region are 4 (±0.5)*10^20 Pas and 110 (±20) km, respectively. The GRACE satellite mission proves to be a useful constraint in the Barents Sea Region for improving our knowledge on the upper mantle rheology.
Gravity field models from kinematic orbits of CHAMP, GRACE and GOCE satellites
NASA Astrophysics Data System (ADS)
Bezděk, Aleš; Sebera, Josef; Klokočník, Jaroslav; Kostelecký, Jan
2014-02-01
The aim of our work is to generate Earth's gravity field models from GPS positions of low Earth orbiters. Our inversion method is based on Newton's second law, which relates the observed acceleration of the satellite with forces acting on it. The observed acceleration is obtained as numerical second derivative of kinematic positions. Observation equations are formulated using the gradient of the spherical harmonic expansion of the geopotential. Other forces are either modelled (lunisolar perturbations, tides) or provided by onboard measurements (nongravitational perturbations). From this linear regression model the geopotential harmonic coefficients are obtained. To this basic scheme of the acceleration approach we added some original elements, which may be useful in other inversion techniques as well. We tried to develop simple, straightforward and still statistically correct model of observations. (i) The model is linear in the harmonic coefficients, no a priori gravity field model is needed, no regularization is applied. (ii) We use the generalized least squares to successfully mitigate the strong amplification of noise due to numerical second derivative. (iii) The number of other fitted parameters is very small, in fact we use only daily biases, thus we can monitor their behaviour. (iv) GPS positions have correlated errors. The sample autocorrelation function and especially the partial autocorrelation function indicate suitability of an autoregressive model to represent the correlation structure. The decorrelation of residuals improved the accuracy of harmonic coefficients by a factor of 2-3. (v) We found it better to compute separate solutions in the three local reference frame directions than to compute them together at the same time; having obtained separate solutions for along-track, cross-track and radial components, we combine them using the normal matrices. Relative contribution of the along-track component to the combined solution is 50 percent on average. (vi) The computations were performed on an ordinary PC up to maximum degree and order 120. We applied the presented method to orbits of CHAMP and GRACE spanning seven years (2003-2009) and to two months of GOCE (Nov/Dec 2009). The obtained long-term static gravity field models are of similar or better quality compared to other published solutions. We also tried to extract the time-variable gravity signal from CHAMP and GRACE orbits. The acquired average annual signal shows clearly the continental areas with important and known hydrological variations.
Glacial isostatic adjustment on the Northern Hemisphere - new results from GRACE
NASA Astrophysics Data System (ADS)
Mueller, J.; Steffen, H.; Gitlein, O.; Denker, H.; Timmen, L.
2007-12-01
The Earth's gravity field mapped by the Gravity Recovery and Climate Experiment (GRACE) satellite mission shows variations due to the integral effect of mass variations in the atmosphere, hydrosphere and geosphere. The Earth's gravity field is provided in form of monthly solutions by several institutions, e.~g. GFZ Potsdam, CSR and JPL. During the GRACE standard processing of these analysis centers, oceanic and atmospheric contributions as well as tidal effects are reduced. The solutions of the analysis centers differ slightly, which is due the application of different reduction models and center-specific processing schemes. We present our investigation of mass variations in the areas of glacial isostatic adjustment (GIA) in North America and Northern Europe from GRACE data. One key issue is the separation of GIA parts and the reduction of the observed quantities by applying dedicated filters (e.~g. isotropic, non-isotropic, and destriping filters) and global models of hydrological variations (e.~g. WGHM, LaDWorld, GLDAS). In a further step, we analyze the results of both regions regarding their reliability, and finally present a comparison to results of a geodynamical modeling and absolute gravity measurements. Our results clearly show that the quality of the GRACE-derived gravity- change signal benefits from improved reduction models and chosen analysis techniques. Nevertheless, the comparison to results of geodynamic models still reveals differences, and thus further studies are in progress.
NASA Astrophysics Data System (ADS)
Velicogna, I.; Hsu, C. W.; Ciraci, E.; Sutterley, T. C.
2015-12-01
We use observations of time variable gravity from GRACE to estimate mass changes for the Antarctic and Greenland Ice Sheets, the Glaciers and Ice Caps (GIC) and land water storage for the time period 2002-2015 and evaluate their total contribution to sea level. We calculate regional sea level changes from these present day mass fluxes using an improved scaling factor for the GRACE data that accounts for the spatial and temporal variability of the observed signal. We calculate a separate scaling factor for the annual and the long-term components of the GRACE signal. To estimate the contribution of the GIC, we use a least square mascon approach and we re-analyze recent inventories to optimize the distribution of mascons and recover the GRACE signal more accurately. We find that overall, Greenland controls 43% of the global trend in eustatic sea level rise, 16% for Antarctica and 29% for the GIC. The contribution from the GIC is dominated by the mass loss of the Canadian Arctic Archipelago, followed by Alaska, Patagonia and the High Mountains of Asia. We report a marked increase in mass loss for the Canadian Arctic Archipelago. In Greenland, following the 2012 high summer melt, years 2013 and 2014 have slowed down the increase in mass loss, but our results will be updated with summer 2015 observations at the meeting. In Antarctica, the mass loss is still on the rise with increased contributions from the Amundsen Sea sector and surprisingly from the Wilkes Land sector of East Antarctica, including Victoria Land. Conversely, the Queen Maud Land sector experienced a large snowfall in 2009-2013 and has now resumed to a zero mass gain since 2013. We compare sea level changes from these GRACE derived mass fluxes after including the atmospheric and ocean loading signal with sea level change from satellite radar altimetry (AVISO) corrected for steric signal of the ocean using Argo measurements and find an excellent agreement in amplitude, phase and trend in these estimates. This work was conducted at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.
GRACE storage-runoff hystereses reveal the dynamics of ...
Watersheds function as integrated systems where climate and geology govern the movement of water. In situ instrumentation can provide local-scale insights into the non-linear relationship between streamflow and water stored in a watershed as snow, soil moisture, and groundwater. However, there is a poor understanding of these processes at the regional scale—primarily because of our inability to measure water stores and fluxes in the subsurface. Now NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites quantify changes in the amount of water stored across and through the Earth, providing measurements of regional hydrologic behavior. Here we apply GRACE data to characterize for the first time how regional watersheds function as simple, dynamic systems through a series of hysteresis loops. While the physical processes underlying the loops are inherently complex, the vertical integration of terrestrial water in the GRACE signal provides process-based insights into the dynamic and non-linear function of regional-scale watersheds. We use this process-based understanding with GRACE data to effectively forecast seasonal runoff (mean R2 of 0.91) and monthly runoff (mean R2 of 0.77) in three regional-scale watersheds (>150,000 km2) of the Columbia River Basin, USA. Data from the Gravity Recovery and Climate Experiment (GRACE) satellites provide a novel dataset for understanding changes in the amount of water stored across and through the surface of the Ear
NASA Astrophysics Data System (ADS)
Gu, Yanchao; Fan, Dongming; You, Wei
2017-07-01
Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.
NASA Astrophysics Data System (ADS)
Girotto, M.; De Lannoy, G. J. M.; Reichle, R. H.; Rodell, M.
2015-12-01
The Gravity Recovery And Climate Experiment (GRACE) mission is unique because it provides highly accurate column integrated estimates of terrestrial water storage (TWS) variations. Major limitations of GRACE-based TWS observations are related to their monthly temporal and coarse spatial resolution (around 330 km at the equator), and to the vertical integration of the water storage components. These challenges can be addressed through data assimilation. To date, it is still not obvious how best to assimilate GRACE-TWS observations into a land surface model, in order to improve hydrological variables, and many details have yet to be worked out. This presentation discusses specific recent features of the assimilation of gridded GRACE-TWS data into the NASA Goddard Earth Observing System (GEOS-5) Catchment land surface model to improve soil moisture and shallow groundwater estimates at the continental scale. The major recent advancements introduced by the presented work with respect to earlier systems include: 1) the assimilation of gridded GRACE-TWS data product with scaling factors that are specifically derived for data assimilation purposes only; 2) the assimilation is performed through a 3D assimilation scheme, in which reasonable spatial and temporal error standard deviations and correlations are exploited; 3) the analysis step uses an optimized calculation and application of the analysis increments; 4) a poor-man's adaptive estimation of a spatially variable measurement error. This work shows that even if they are characterized by a coarse spatial and temporal resolution, the observed column integrated GRACE-TWS data have potential for improving our understanding of soil moisture and shallow groundwater variations.
Satellite observations of ground water changes in New Mexico
USDA-ARS?s Scientific Manuscript database
In 2002 NASA launched the Gravity Recovery and Climate Experiment (GRACE) satellite mission. GRACE consists of two satellites with a separation of about 200 km. By accurately measuring the separation between the twin satellites, the differences in the gravity field can be determined. Monthly observ...
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2016-01-01
Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in Gravity Recovery and Climate Experiment (GRACE) but without a discernible coseismic gravity change. The gravity increase of ~4 μGal, observed consistently from various GRACE solutions around the epicentral area during 2007–2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25–35 km for the elastic thickness and ~1018 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.
Recent advancements in GRACE mascon regularization and uncertainty assessment
NASA Astrophysics Data System (ADS)
Loomis, B. D.; Luthcke, S. B.
2017-12-01
The latest release of the NASA Goddard Space Flight Center (GSFC) global time-variable gravity mascon product applies a new regularization strategy along with new methods for estimating noise and leakage uncertainties. The critical design component of mascon estimation is the construction of the applied regularization matrices, and different strategies exist between the different centers that produce mascon solutions. The new approach from GSFC directly applies the pre-fit Level 1B inter-satellite range-acceleration residuals in the design of time-dependent regularization matrices, which are recomputed at each step of our iterative solution method. We summarize this new approach, demonstrating the simultaneous increase in recovered time-variable gravity signal and reduction in the post-fit inter-satellite residual magnitudes, until solution convergence occurs. We also present our new approach for estimating mascon noise uncertainties, which are calibrated to the post-fit inter-satellite residuals. Lastly, we present a new technique for end users to quickly estimate the signal leakage errors for any selected grouping of mascons, and we test the viability of this leakage assessment procedure on the mascon solutions produced by other processing centers.
Gravity field error analysis for pendulum formations by a semi-analytical approach
NASA Astrophysics Data System (ADS)
Li, Huishu; Reubelt, Tilo; Antoni, Markus; Sneeuw, Nico
2017-03-01
Many geoscience disciplines push for ever higher requirements on accuracy, homogeneity and time- and space-resolution of the Earth's gravity field. Apart from better instruments or new observables, alternative satellite formations could improve the signal and error structure compared to Grace. One possibility to increase the sensitivity and isotropy by adding cross-track information is a pair of satellites flying in a pendulum formation. This formation contains two satellites which have different ascending nodes and arguments of latitude, but have the same orbital height and inclination. In this study, the semi-analytical approach for efficient pre-mission error assessment is presented, and the transfer coefficients of range, range-rate and range-acceleration gravitational perturbations are derived analytically for the pendulum formation considering a set of opening angles. The new challenge is the time variations of the opening angle and the range, leading to temporally variable transfer coefficients. This is solved by Fourier expansion of the sine/cosine of the opening angle and the central angle. The transfer coefficients are further applied to assess the error patterns which are caused by different orbital parameters. The simulation results indicate that a significant improvement in accuracy and isotropy is obtained for small and medium initial opening angles of single polar pendulums, compared to Grace. The optimal initial opening angles are 45° and 15° for accuracy and isotropy, respectively. For a Bender configuration, which is constituted by a polar Grace and an inclined pendulum in this paper, the behaviour of results is dependent on the inclination (prograde vs. retrograde) and on the relative baseline orientation (left or right leading). The simulation for a sun-synchronous orbit shows better results for the left leading case.
Impact of geophysical model error for recovering temporal gravity field model
NASA Astrophysics Data System (ADS)
Zhou, Hao; Luo, Zhicai; Wu, Yihao; Li, Qiong; Xu, Chuang
2016-07-01
The impact of geophysical model error on recovered temporal gravity field models with both real and simulated GRACE observations is assessed in this paper. With real GRACE observations, we build four temporal gravity field models, i.e., HUST08a, HUST11a, HUST04 and HUST05. HUST08a and HUST11a are derived from different ocean tide models (EOT08a and EOT11a), while HUST04 and HUST05 are derived from different non-tidal models (AOD RL04 and AOD RL05). The statistical result shows that the discrepancies of the annual mass variability amplitudes in six river basins between HUST08a and HUST11a models, HUST04 and HUST05 models are all smaller than 1 cm, which demonstrates that geophysical model error slightly affects the current GRACE solutions. The impact of geophysical model error for future missions with more accurate satellite ranging is also assessed by simulation. The simulation results indicate that for current mission with range rate accuracy of 2.5 × 10- 7 m/s, observation error is the main reason for stripe error. However, when the range rate accuracy improves to 5.0 × 10- 8 m/s in the future mission, geophysical model error will be the main source for stripe error, which will limit the accuracy and spatial resolution of temporal gravity model. Therefore, observation error should be the primary error source taken into account at current range rate accuracy level, while more attention should be paid to improving the accuracy of background geophysical models for the future mission.
The celestial mechanics approach: application to data of the GRACE mission
NASA Astrophysics Data System (ADS)
Beutler, Gerhard; Jäggi, Adrian; Mervart, Leoš; Meyer, Ulrich
2010-11-01
The celestial mechanics approach (CMA) has its roots in the Bernese GPS software and was extensively used for determining the orbits of high-orbiting satellites. The CMA was extended to determine the orbits of Low Earth Orbiting satellites (LEOs) equipped with GPS receivers and of constellations of LEOs equipped in addition with inter-satellite links. In recent years the CMA was further developed and used for gravity field determination. The CMA was developed by the Astronomical Institute of the University of Bern (AIUB). The CMA is presented from the theoretical perspective in (Beutler et al. 2010). The key elements of the CMA are illustrated here using data from 50 days of GPS, K-Band, and accelerometer observations gathered by the Gravity Recovery And Climate Experiment (GRACE) mission in 2007. We study in particular the impact of (1) analyzing different observables [Global Positioning System (GPS) observations only, inter-satellite measurements only], (2) analyzing a combination of observations of different types on the level of the normal equation systems (NEQs), (3) using accelerometer data, (4) different orbit parametrizations (short-arc, reduced-dynamic) by imposing different constraints on the stochastic orbit parameters, and (5) using either the inter-satellite ranges or their time derivatives. The so-called GRACE baseline, i.e., the achievable accuracy of the GRACE gravity field for a particular solution strategy, is established for the CMA.
Use of satellite gravimetry for estimating recent solid Earth changes
NASA Astrophysics Data System (ADS)
Ramillien, Guillaume
2014-05-01
Since its launch in March 2002, the Gravity Recovery & Climate Experiment (GRACE) satellite mission provides a global mapping of the time variations of the Earth's gravity field for the recent period. Official centers such as Center of Space Research (CSR) in Austin, TX, Jet Propulsion Laboratory (JPL) in Pasadena, CA and GeoForschungZentrum (GFZ) in Potsdam, Germany, provide 10-day and monthly solutions of Stokes coefficients (i.e., spherical harmonic coefficients of the geopotential) up to harmonic degree 50-60 (or, equivalently, a spatial resolution of 300-400 km) for the timespan 2002-2012. Tiny variations of the gravity measured by GRACE are mainly due to the total water storage change on continents. Therefore, these solutions of water mass can be used to correct other datasets, and then isolate the gravity signatures of large and sudden earthquakes, as well as of the continuous Post Glacial Rebound (PGR) rate. As these measured seasonal variations of continental hydrology represent the variations of water mass load, it is also possible to derive the deformation of the terrestrial surface associated to this varying load using Love numbers. These latter numbers are obtained by assuming an elastic Earth model. In the center of the Amazon basin, the seasonal displacements of the surface due to hydrology reach amplitudes of a few centimeters typically. Time-series of GRACE-based radial displacement of the surface can be analysed and compared with independent local GPS records for validation.
EGSIEM: Combination of GRACE monthly gravity models on normal equation level
NASA Astrophysics Data System (ADS)
Meyer, Ulrich; Jean, Yoomin; Jäggi, Adrian; Mayer-Gürr, Torsten; Neumayer, Hans; Lemoine, Jean-Michel
2016-04-01
One of the three geodetic services to be realized in the frame of the EGSIEM project is a scientific combination service. Each associated processing center (AC) will follow a set of common processing standards but will apply its own, independent analysis method. Therefore the quality, robustness and reliability of the combined monthly gravity fields is expected to improve significantly compared to the individual solutions. The Monthly GRACE gravity fields of all ACs are combined on normal equation level. The individual normal equations are weighted depending on pairwise comparisons of the individual gravity field solutions. To derive these weights and for quality control of the individual contributions first a combination of the monthly gravity fields on solution level is performed. The concept of weighting and of the combination on normal equation level is introduced and the formats used for normal equation exchange and gravity field solutions is described. First results of the combination on normal equation level are presented and compared to the corresponding combinations on solution level. EGSIEM has an open data policy and all processing centers of GRACE gravity fields are invited to participate in the combination.
Evaluation of recent GRACE monthly solution series with an ice sheet perspective
NASA Astrophysics Data System (ADS)
Horwath, Martin; Groh, Andreas
2016-04-01
GRACE monthly global gravity field solutions have undergone a remarkable evolution, leading to the latest (Release 5) series by CSR, GFZ, and JPL, to new series by other processing centers, such as ITSG and AIUB, as well as to efforts to derive combined solutions, particularly by the EGSIEM (European Gravity Service for Improved Emergency Management) project. For applications, such as GRACE inferences on ice sheet mass balance, the obvious question is on what GRACE solution series to base the assessment. Here we evaluate different GRACE solution series (including the ones listed above) in a unified framework. We concentrate on solutions expanded up to degree 90 or higher, since this is most appropriate for polar applications. We empirically assess the error levels in the spectral as well as in the spatial domain based on the month-to-month scatter in the high spherical harmonic degrees. We include empirical assessment of error correlations. We then apply all series to infer Antarctic and Greenland mass change time series and compare the results in terms of apparent signal content and noise level. We find that the ITSG solutions show lowest noise level in the high degrees (above 60). A preliminary combined solution from the EGSIEM project shows lowest noise in the degrees below 60. This virtue maps into the derived ice mass time series, where the EGSIEM-based results show the lowest noise in most cases. Meanwhile, there is no indication that any of the considered series systematically dampens actual geophysical signals.
Evaluation of GOCE-based Global Geoid Models in Finnish Territory
NASA Astrophysics Data System (ADS)
Saari, Timo; Bilker-Koivula, Mirjam
2015-04-01
The gravity satellite mission GOCE made its final observations in the fall of 2013. By then it had exceeded its expected lifespan of one year with more than three additional years. Thus, the mission collected more data from the Earth's gravitational field than expected, and more comprehensive global geoid models have been derived ever since. The GOCE High-level Processing Facility (HPF) by ESA has published GOCE global gravity field models annually. We compared all of the 12 HPF-models as well as 3 additional GOCE, 11 GRACE and 6 combined GOCE+GRACE models with GPS-levelling data and gravity observations in Finland. The most accurate models were compared against high resolution global geoid models EGM96 and EGM2008. The models were evaluated up to three different degrees and order: 150 (the common maximum for the GRACE models), 240 (the common maximum for the GOCE models) and maximum. When coefficients up to degree and order 150 are used, the results of the GOCE models are comparable with the results of the latest GRACE models. Generally, all of the latest GOCE and GOCE+GRACE models give standard deviations of the height anomaly differences of around 15 cm and of gravity anomaly differences of around 10 mgal over Finland. The best solutions were not always achieved with the highest maximum degree and order of the satellite gravity field models, since the highest coefficients (above 240) may be less accurately determined. Over Finland, the latest GOCE and GOCE+GRACE models give similar results as the high resolution models EGM96 and EGM2008 when coefficients up to degree and order 240 are used. This is mainly due to the high resolution terrestrial data available in the area of Finland, which was used in the high resolution models.
NASA Astrophysics Data System (ADS)
Nastula, J.; Kolaczek, B.; Salstein, D. A.
2008-04-01
Understanding changes in the global balance of the Earths angular momentum due to the mass redistribution of geophysical fluids is needed to explain the observed polar motion. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation (hydrological angular momentum-HAM), is still inadequately known. Although estimates of HAM have been made from several models of global hydrology based upon the observed distribution of surface water, snow, and soil moisture, the relatively sparse observation network and the presence of errors in the data and the geophysical fluid models preclude a full understanding of the HAM influence on polar motion variations. Recently the GRACE mission monitoring Earths time variable gravity field has allowed us to determine the mass term of polar motion excitation functions and compare them with the mass term derivable as a residual from the geodetic excitation functions and geophysical fluid motion terms on seasonal time scales. Differences between these mass terms in the years 2004 - 2005.5 are still on the order of 20 mas. Besides the overall mass excitation of polar motion comparisons with GRACE (RL04-release), we also intercompare the non-atmospheric, non-oceanic signals in the mass term of geodetic polar motion excitation with hydrological excitation of polar motion.
GRACE RL03-v2 monthly time series of solutions from CNES/GRGS
NASA Astrophysics Data System (ADS)
Lemoine, Jean-Michel; Bourgogne, Stéphane; Bruinsma, Sean; Gégout, Pascal; Reinquin, Franck; Biancale, Richard
2015-04-01
Based on GRACE GPS and KBR Level-1B.v2 data, as well as on LAGEOS-1/2 SLR data, CNES/GRGS has published in 2014 the third full re-iteration of its GRACE gravity field solutions. This monthly time series of solutions, named RL03-v1, complete to spherical harmonics degree/order 80, has displayed interesting performances in terms of spatial resolution and signal amplitude compared to JPL/GFZ/CSR RL05. This is due to a careful selection of the background models (FES2014 ocean tides, ECMWF ERA-interim (atmosphere) and TUGO (non IB-ocean) "dealiasing" models every 3 hours) and to the choice of an original method for gravity field inversion : truncated SVD. Identically to the previous CNES/GRGS releases, no additional filtering of the solutions is necessary before using them. Some problems have however been identified in CNES/GRGS RL03-v1: - an erroneous mass signal located in two small circular rings close to the Earth's poles, leading to the recommendation not to use RL03-v1 above 82° latitudes North and South; - a weakness in the sectorials due to an excessive downweighting of the GRACE GPS observations. These two problems have been understood and addressed, leading to the computation of a corrected time series of solutions, RL03-v2. The corrective steps have been: - to strengthen the determination of the very low degrees by adding Starlette and Stella SLR data to the normal equations; - to increase the weight of the GRACE GPS observations; - to adopt a two steps approach for the computation of the solutions: first a Choleski inversion for the low degrees, followed by a truncated SVD solution. The identification of these problems will be discussed and the performance of the new time series evaluated.
Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains
NASA Astrophysics Data System (ADS)
Harig, Christopher; Simons, Frederik J.
2015-04-01
While multiple data sources have confirmed that Antarctica is losing ice at an accelerating rate, different measurement techniques estimate the details of its geographically highly variable mass balance with different levels of accuracy, spatio-temporal resolution, and coverage. Some scope remains for methodological improvements using a single data type. In this study we report our progress in increasing the accuracy and spatial resolution of time-variable gravimetry from the Gravity Recovery and Climate Experiment (GRACE). We determine the geographic pattern of ice mass change in Antarctica between January 2003 and June 2014, accounting for glacio-isostatic adjustment (GIA) using the IJ05_R2 model. Expressing the unknown signal in a sparse Slepian basis constructed by optimization to prevent leakage out of the regions of interest, we use robust signal processing and statistical estimation methods. Applying those to the latest time series of monthly GRACE solutions we map Antarctica's mass loss in space and time as well as can be recovered from satellite gravity alone. Ignoring GIA model uncertainty, over the period 2003-2014, West Antarctica has been losing ice mass at a rate of - 121 ± 8 Gt /yr and has experienced large acceleration of ice mass losses along the Amundsen Sea coast of - 18 ± 5 Gt /yr2, doubling the mass loss rate in the past six years. The Antarctic Peninsula shows slightly accelerating ice mass loss, with larger accelerated losses in the southern half of the Peninsula. Ice mass gains due to snowfall in Dronning Maud Land have continued to add about half the amount of West Antarctica's loss back onto the continent over the last decade. We estimate the overall mass losses from Antarctica since January 2003 at - 92 ± 10 Gt /yr.
GRACE L1b inversion through a self-consistent modified radial basis function approach
NASA Astrophysics Data System (ADS)
Yang, Fan; Kusche, Juergen; Rietbroek, Roelof; Eicker, Annette
2016-04-01
Implementing a regional geopotential representation such as mascons or, more general, RBFs (radial basis functions) has been widely accepted as an efficient and flexible approach to recover the gravity field from GRACE (Gravity Recovery and Climate Experiment), especially at higher latitude region like Greenland. This is since RBFs allow for regionally specific regularizations over areas which have sufficient and dense GRACE observations. Although existing RBF solutions show a better resolution than classical spherical harmonic solutions, the applied regularizations cause spatial leakage which should be carefully dealt with. It has been shown that leakage is a main error source which leads to an evident underestimation of yearly trend of ice-melting over Greenland. Unlike some popular post-processing techniques to mitigate leakage signals, this study, for the first time, attempts to reduce the leakage directly in the GRACE L1b inversion by constructing an innovative modified (MRBF) basis in place of the standard RBFs to retrieve a more realistic temporal gravity signal along the coastline. Our point of departure is that the surface mass loading associated with standard RBF is smooth but disregards physical consistency between continental mass and passive ocean response. In this contribution, based on earlier work by Clarke et al.(2007), a physically self-consistent MRBF representation is constructed from standard RBFs, with the help of the sea level equation: for a given standard RBF basis, the corresponding MRBF basis is first obtained by keeping the surface load over the continent unchanged, but imposing global mass conservation and equilibrium response of the oceans. Then, the updated set of MRBFs as well as standard RBFs are individually employed as the basis function to determine the temporal gravity field from GRACE L1b data. In this way, in the MRBF GRACE solution, the passive (e.g. ice melting and land hydrology response) sea level is automatically separated from ocean dynamic effects, and our hypothesis is that in this way we improve the partitioning of the GRACE signals into land and ocean contributions along the coastline. In particular, we inspect the ice-melting over Greenland from real GRACE data, and we evaluate the ability of the MRBF approach to recover true mass variations along the coastline. Finally, using independent measurements from multiple techniques including GPS vertical motion and altimetry, a validation will be presented to quantify to what extent it is possible to reduce the leakage through the MRBF approach.
NASA Technical Reports Server (NTRS)
Shin-Chan, Han; Sauber, Jeanne; Pollitz, Fred
2016-01-01
Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of approximately 4 micro-Gal, observed consistently from various GRACE solutions around the epicentral area during 2007-2015, is interpreted as resulting from gradual seafloor uplift by (is) approximately 6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25-35 km for the elastic thickness and approximately 10(exp 18) Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2016-04-16
Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 M w 8.3 thrust and 2007 M w 8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of ~4 µGal, observed consistently from various GRACE solutions around the epicentral area during 2007-2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25-35 km for the elastic thickness and ~10 18 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone.
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2016-01-01
Large earthquakes often trigger viscoelastic adjustment for years to decades depending on the rheological properties and the nature and spatial extent of coseismic stress. The 2006 Mw8.3 thrust and 2007 Mw8.1 normal fault earthquakes of the central Kuril Islands resulted in significant postseismic gravity change in GRACE but without a discernible coseismic gravity change. The gravity increase of ~4 µGal, observed consistently from various GRACE solutions around the epicentral area during 2007–2015, is interpreted as resulting from gradual seafloor uplift by ~6 cm produced by postseismic relaxation. The GRACE data are best fit with a model of 25–35 km for the elastic thickness and ~1018 Pa s for the Maxwell viscosity of the asthenosphere. The large measurable postseismic gravity change (greater than coseismic change) emphasizes the importance of viscoelastic relaxation in understanding tectonic deformation and fault-locking scenarios in the Kuril subduction zone. PMID:27642200
Simulation study on combination of GRACE monthly gravity field solutions
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2016-04-01
The GRACE monthly gravity fields from different processing centers are combined in the frame of the project EGSIEM. This combination is done on solution level first to define weights which will be used for a combination on normal equation level. The applied weights are based on the deviation of the individual gravity fields from the arithmetic mean of all involved gravity fields. This kind of weighting scheme relies on the assumption that the true gravity field is close to the arithmetic mean of the involved individual gravity fields. However, the arithmetic mean can be affected by systematic errors in individual gravity fields, which consequently results in inappropriate weights. For the future operational scientific combination service of GRACE monthly gravity fields, it is necessary to examine the validity of the weighting scheme also in possible extreme cases. To investigate this, we make a simulation study on the combination of gravity fields. Firstly, we show how a deviated gravity field can affect the combined solution in terms of signal and noise in the spatial domain. We also show the impact of systematic errors in individual gravity fields on the resulting combined solution. Then, we investigate whether the weighting scheme still works in the presence of outliers. The result of this simulation study will be useful to understand and validate the weighting scheme applied to the combination of the monthly gravity fields.
NASA Astrophysics Data System (ADS)
Wińska, Małgorzata; Nastula, Jolanta
2017-04-01
Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.
Time-Variable Gravity from Space: Quarter Century of Observations, Mysteries, and Prospects
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Boy, John-Paul
2003-01-01
Any large mass transport in the Earth system produces changes in the gravity field. Via the space geodetic technique of satellite-laser ranging in the last quarter century, the Earth's dynamic oblateness J2 (the lowest-degree harmonic component of the gravity field) has been observed to undergo a slight decrease -- until around 1998, when it switched quite suddenly to an increase trend which has continued to 2001 before sharply turning back to the value which it is "supposed to be"!. The secular decrease in J2 has long been attributed primarily to the post-glacial rebound in the mantle; the present increase signifies an even larger change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound, at least over interannual timescales. Intriguing evidences have been found in the ocean water distribution, especially in the extratropical Pacific basins, that may be responsible for this J2 change. New techniques based on satellite-to-satellite tracking will yield greatly improved observations for time-variable gravity, with much higher precision and spatial resolution (i.e., much higher harmonic degrees). The most important example is the GRACE mission launched in March 2002, following the success of the CHAMP mission. Such observations are becoming a new and powerful tool for remote sensing of geophysical fluid processes that involve larger-scale mass transports.
The Improved Hydrological Gravity Model for Moxa Observatory, Germany
NASA Astrophysics Data System (ADS)
Weise, A.; Jahr, Th.
2017-04-01
The gravity variations observed by the superconducting gravimeter (SG) CD-034 at Moxa Geodynamic Observatory/Germany were compared with the GRACE results some years ago. The combination of a local hydrological model of a catchment area with a 3D-gravimetric model had been applied successfully for correcting the SG record of Moxa which is especially necessary due to the strong topography nearest to the SG location. Now, the models have been corrected and improved considerably by inserting several details in the very near surrounding. Mainly these are: the observatory building is inserted with the roof covered by a soil layer above the gravity sensor where humidity is varying, snow is placed on top of the roof and on topography (steep slope), and ground water is taken into account, additionally. The result is that the comparison of the corrected gravity residuals with gravity variations of the satellite mission GRACE, now using RL5 data, shows higher agreement, not only in amplitude but also the formerly apparent phase shift is obviously not realistic. The agreement between terrestrial gravity variations (SG) and the GRACE data is improved considerably which is discussed widely.
The Improved Hydrological Gravity Model for Moxa Observatory, Germany
NASA Astrophysics Data System (ADS)
Weise, A.; Jahr, Th.
2018-05-01
The gravity variations observed by the superconducting gravimeter (SG) CD-034 at Moxa Geodynamic Observatory/Germany were compared with the GRACE results some years ago. The combination of a local hydrological model of a catchment area with a 3D-gravimetric model had been applied successfully for correcting the SG record of Moxa which is especially necessary due to the strong topography nearest to the SG location. Now, the models have been corrected and improved considerably by inserting several details in the very near surrounding. Mainly these are: the observatory building is inserted with the roof covered by a soil layer above the gravity sensor where humidity is varying, snow is placed on top of the roof and on topography (steep slope), and ground water is taken into account, additionally. The result is that the comparison of the corrected gravity residuals with gravity variations of the satellite mission GRACE, now using RL5 data, shows higher agreement, not only in amplitude but also the formerly apparent phase shift is obviously not realistic. The agreement between terrestrial gravity variations (SG) and the GRACE data is improved considerably which is discussed widely.
Benefits and Pitfalls of GRACE Terrestrial Water Storage Data Assimilation
NASA Technical Reports Server (NTRS)
Girotto, Manuela
2018-01-01
Satellite observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) mission have a coarse resolution in time (monthly) and space (roughly 150,000 sq km at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Nonetheless, data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This presentation illustrates some of the benefits and drawbacks of assimilating TWS observations from GRACE into a land surface model over the continental United States and India. The assimilation scheme yields improved skill metrics for groundwater compared to the no-assimilation simulations. A smaller impact is seen for surface and root-zone soil moisture. Further, GRACE observes TWS depletion associated with anthropogenic groundwater extraction. Results from the assimilation emphasize the importance of representing anthropogenic processes in land surface modeling and data assimilation systems.
First results of the EGSIEM Near Real-Time Service
NASA Astrophysics Data System (ADS)
Kvas, Andreas; Gruber, Christian; Gouweleeuw, Ben; Chen, Qiang; Poropat, Lea; Flechtner, Frank; Mayer-Gürr, Torsten; Güntner, Andreas
2017-04-01
To enable the use of GRACE and GRACE-FO earth observation data for rapid monitoring applications, the Horizon2020 funded EGSIEM (European Gravity Service for Improved Emergency Management) project has established a demonstrator for a near real-time (NRT) gravity field service. The service aims to increase the temporal resolution of mass transport products from one month to one day and to reduce the latency from currently two months to five days. This allows the monitoring of hydrological extreme events as they occur, in contrast to a 'confirmation after occurrence' as is the situation today. The service will be jointly run by GFZ (German Research Centre for Geosciences) and Graz University of Technology, with each analysis center providing an independent solution. On-line validation will be performed by the University of Luxembourg using GNSS loading. A six-month long operational test run of the service starting in April 2017 is planned, in case GRACE Quick-Look data (provided by JPL) is still available. Within this time period, daily gravity field solutions serve as input to the EGSIEM Hydrological Service, which derives flood and drought indicators to be used within DLR's Center for Satellite Based Crisis Information and the Global Flood Awareness System (GloFAS). This contribution highlights the current status of the NRT service and the results of the preparation phase. The performance of the NRT mass transport products will be shown by comparison with independent GNSS loading and ocean bottom pressure data as well as as catchment aggregated values for hydrological extreme events.
NASA Astrophysics Data System (ADS)
Guo, J. Y.; Shang, K.; Jekeli, C.; Shum, C. K.
2015-04-01
Two approaches have been formulated to compute the gravitational potential difference using low-low satellite-to-satellite tracking data based on energy integral: one in the geocentric inertial reference system, and the other in the terrestrial reference system. The focus of this work is on the approach in the geocentric inertial reference system, where a potential rotation term appears in addition to the potential term. In former formulations, the contribution of the time-variable components of the gravitational potential to the potential term was included, but their contribution to the potential rotation term was neglected. In this work, an improvement to the former formulations is made by reformulating the potential rotation term to include the contribution of the time-variable components of the gravitational potential. A simulation shows that our more accurate formulation of the potential rotation term is necessary to achieve the accuracy for recovering the temporal variation of the Earth's gravity field, such as for use to the Gravity Recovery And Climate Experiment GRACE observation data based on this approach.
European Gravity Service for Improved Emergency Management - Status and project highlights
NASA Astrophysics Data System (ADS)
Mayer-Guerr, Torsten; Adrian, Jäggi; Meyer, Ulrich; Jean, Yoomin; Susnik, Andreja; Weigelt, Matthias; van Dam, Tonie; Flechtner, Frank; Gruber, Christian; Güntner, Andreas; Gouweleeuw, Ben; Kvas, Andreas; Klinger, Beate; Flury, Jakob; Bruinsma, Sean; Lemoine, Jean-Michel; Zwenzner, Hendrik; Bourgogne, Stephane; Bandikova, Tamara
2016-04-01
The European Gravity Service for Improved Emergency Management (EGSIEM) is a project of the Horizon 2020 Framework Programme for Research and Innovation of the European Commission. EGSIEM shall demonstrate that observations of the redistribution of water and ice mass derived from the current GRACE mission, the future GRACE-FO mission, and additional data provide critical and complementary information to more traditional Earth Observation products and open the door for innovative approaches to flood and drought monitoring and forecasting. In the frame of EGSIEM three key services should established: 1) a scientific combination service to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community, 2) a near real-time and regional service to reduce the latency and increase the temporal resolution of the mass redistribution products, and 3) a hydrological and early warning service to develop gravity-based indicators for extreme hydrological events and to demonstrate their value for flood and drought forecasting and monitoring services. All of these services shall be tailored to the various needs of the respective communities. Significant efforts shall also be devoted to transform the service products into user-friendly and easy-to-interpret data sets and the development of visualization tools. In this talk the status of the ongoing project is presented and selected results are discussed.
Groundwater storage variations in the North China Plain using multiple space geodetic observations
NASA Astrophysics Data System (ADS)
Feng, W.; Longuevergne, L.; Kusche, J.; Liang, S.; Zhang, Y.; Scanlon, B. R.; Shum, C. K.; Yeh, P. J. F.; Long, D.; Cao, G.; Zhong, M.; Xu, H.; Xia, J.
2017-12-01
Water storage and pressure variations in the subsurface generate measurable gravity changes and surface displacements. This study presents the joint interpretation of GRACE and GPS/InSAR observations to better understand shallow and deep groundwater storage (GWS) variations associated with unsustainable pumping and impact of climate variability in the North China Plain (NCP). On seasonal timescales, GRACE-derived GWS variations are well explained by the combined effect of groundwater abstraction due to anthropogenic irrigation activities and groundwater recharge from natural precipitation. Interannual GWS variations in the NCP detected by GRACE is consistent with precipitation anomalies. During the drought years (e.g., 2002 and 2014), significant GWS depletion is detected by GRACE satellites. The GRACE-derived GWS variation rate is -8.0 ± 1.5 km3/yr during 2002-2014, which is significantly larger than the estimate from phreatic monitoring well observations. The difference between them indicates the significant GWS depletion in the confined deep aquifers of the NCP, generating large subsidence rates, which has been largely underestimated up to now. The GWS variation rate in deep aquifers estimated from GPS/InSAR observations can explain the difference between the GWS depletion rate from GRACE and that from well observations. Both GRACE and surface displacement offer significant potential to better understand water redistribution in shallow and deep aquifer systems of the NCP.
GRACE gravity field recovery using refined acceleration approach
NASA Astrophysics Data System (ADS)
Li, Zhao; van Dam, Tonie; Weigelt, Matthias
2017-04-01
Since 2002, the GRACE mission has yielded monthly gravity field solutions with such a high level of quality that we have been able to observe so many changes to the Earth mass system. Based on GRACE L1B observations, a number of official monthly gravity field models have been developed and published using different methods, e.g. the CSR RL05, JPL RL05, and GFZ RL05 are being computed by a dynamic approach, the ITSG and Tongji GRACE are generated using what is known as the short-arc approach, the AIUB models are computed using celestial mechanics approach, and the DMT-1 model is calculated by means of an acceleration approach. Different from the DMT-1 model, which links the gravity field parameters directly to the bias-corrected range measurements at three adjacent epochs, in this work we present an alternative acceleration approach which connects range accelerations and velocity differences to the gradient of the gravitational potential. Due to the fact that GPS derived velocity difference is provided at a lower precision, we must reduce this approach to residual quantities using an a priori gravity field which allows us to subsequently neglect the residual velocity difference term. We find that this assumption would cause a problem in the low-degree gravity field coefficient, particularly for degree 2 and also from degree 16 to 26. To solve this problem, we present a new way of handling the residual velocity difference term, that is to treat this residual velocity difference term as unknown but estimable quantity, as it depends on the unknown residual gravity field parameters and initial conditions. In other word, we regard the kinematic orbit position vectors as pseudo observations, and the corrections of orbits are estimated together with both the geopotential coefficients and the accelerometer scale/bias by using a weighted least square adjustment. The new approach is therefore a refinement of the existing approach but offers a better approximation to reality. This result is especially important in view of the upcoming GRACE Follow-On mission, which will be equipped with a laser ranging instrument offering a higher precision. Our validation results show that this refined acceleration approach could produce monthly GRACE gravity solutions at the same level of precision as the other approaches.
Hydrological Variations in Australia Recovered by GRACE High-Resolution Mascons Solutions
NASA Technical Reports Server (NTRS)
Carabajal, Claudia C.; Boy, Jean-Paul; Sabaka, Terence J.; Lemoine, Frank G.; Rowlands. David; Luthcke, Scott B.; Brown, M. Y.
2011-01-01
Australia represents a challenging region in which to study hydrological variations as recovered by the GRACE (Gravity Recovery And Climate Experiment) mission data. Much of Australia is characterized by relatively small hydrological signals, with large precipitation gradients between the North and the South. These signals are better recovered using innovative GRACE processing techniques such as high-resolution mascon solutions, which may help overcome the deficiencies in the standard GRACE data processing and filtering methods. We will show the power of using regional and global mas con solutions to recover hydrological variations from 2003 to 2011, as well as the oceanic mass variations in the surrounding regions. We will compare the GRACE signals with state of the art hydrology and ocean general circulation models, precipitation, soil moisture and groundwater data sets. We especially emphasize the gravity signatures observed during the decadal drought in the Murray-Darling river basin and the early 2011 floods in North-Western Australia.
NASA Astrophysics Data System (ADS)
Winska, M.
2016-12-01
The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.
Yi, Hang; Wen, Lianxing
2016-01-27
We use satellite gravity measurements in the Gravity Recovery and Climate Experiment (GRACE) to estimate terrestrial water storage (TWS) change in the continental United States (US) from 2003 to 2012, and establish a GRACE-based Hydrological Drought Index (GHDI) for drought monitoring. GRACE-inferred TWS exhibits opposite patterns between north and south of the continental US from 2003 to 2012, with the equivalent water thickness increasing from -4.0 to 9.4 cm in the north and decreasing from 4.1 to -6.7 cm in the south. The equivalent water thickness also decreases by -5.1 cm in the middle south in 2006. GHDI is established to represent the extent of GRACE-inferred TWS anomaly departing from its historical average and is calibrated to resemble traditional Palmer Hydrological Drought Index (PHDI) in the continental US. GHDI exhibits good correlations with PHDI in the continental US, indicating its feasibility for drought monitoring. Since GHDI is GRACE-based and has minimal dependence of hydrological parameters on the ground, it can be extended for global drought monitoring, particularly useful for the countries that lack sufficient hydrological monitoring infrastructures on the ground.
California Drought Recovery Assessment Using GRACE Satellite Gravimetry Information
NASA Astrophysics Data System (ADS)
Love, C. A.; Aghakouchak, A.; Madadgar, S.; Tourian, M. J.
2015-12-01
California has been experiencing its most extreme drought in recent history due to a combination of record high temperatures and exceptionally low precipitation. An estimate for when the drought can be expected to end is needed for risk mitigation and water management. A crucial component of drought recovery assessments is the estimation of terrestrial water storage (TWS) deficit. Previous studies on drought recovery have been limited to surface water hydrology (precipitation and/or runoff) for estimating changes in TWS, neglecting the contribution of groundwater deficits to the recovery time of the system. Groundwater requires more time to recover than surface water storage; therefore, the inclusion of groundwater storage in drought recovery assessments is essential for understanding the long-term vulnerability of a region. Here we assess the probability, for varying timescales, of California's current TWS deficit returning to its long-term historical mean. Our method consists of deriving the region's fluctuations in TWS from changes in the gravity field observed by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites. We estimate the probability that meteorological inputs, precipitation minus evaporation and runoff, over different timespans will balance the current GRACE-derived TWS deficit (e.g. in 3, 6, 12 months). This method improves upon previous techniques as the GRACE-derived water deficit comprises all hydrologic sources, including surface water, groundwater, and snow cover. With this empirical probability assessment we expect to improve current estimates of California's drought recovery time, thereby improving risk mitigation.
NASA Technical Reports Server (NTRS)
Han, Shin-Chan; Riva, Ricccardo; Sauber, Jeanne; Okal, Emile
2013-01-01
We quantify gravity changes after great earthquakes present within the 10 year long time series of monthly Gravity Recovery and Climate Experiment (GRACE) gravity fields. Using spherical harmonic normal-mode formulation, the respective source parameters of moment tensor and double-couple were estimated. For the 2004 Sumatra-Andaman earthquake, the gravity data indicate a composite moment of 1.2x10(exp 23)Nm with a dip of 10deg, in agreement with the estimate obtained at ultralong seismic periods. For the 2010 Maule earthquake, the GRACE solutions range from 2.0 to 2.7x10(exp 22)Nm for dips of 12deg-24deg and centroid depths within the lower crust. For the 2011 Tohoku-Oki earthquake, the estimated scalar moments range from 4.1 to 6.1x10(exp 22)Nm, with dips of 9deg-19deg and centroid depths within the lower crust. For the 2012 Indian Ocean strike-slip earthquakes, the gravity data delineate a composite moment of 1.9x10(exp 22)Nm regardless of the centroid depth, comparing favorably with the total moment of the main ruptures and aftershocks. The smallest event we successfully analyzed with GRACE was the 2007 Bengkulu earthquake with M(sub 0) approx. 5.0x10(exp 21)Nm. We found that the gravity data constrain the focal mechanism with the centroid only within the upper and lower crustal layers for thrust events. Deeper sources (i.e., in the upper mantle) could not reproduce the gravity observation as the larger rigidity and bulk modulus at mantle depths inhibit the interior from changing its volume, thus reducing the negative gravity component. Focal mechanisms and seismic moments obtained in this study represent the behavior of the sources on temporal and spatial scales exceeding the seismic and geodetic spectrum.
2018-04-30
Frank Webb, GRACE-FO project scientist at JPL, discusses the upcoming launch of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, Monday, April 30, 2018 at NASA Headquarters in Washington. The twin GRACE-FO spacecraft will measure and monitor monthly changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Joel Kowsky)
GRACE Follow-On Satellites (Artist's Concept)
2018-04-30
Illustration of the twin spacecraft of the NASA/German Research Centre for Geosciences (GFZ) Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. GRACE-FO will continue tracking the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22445
GRACE Follow-On Satellites (Artist's Concept)
2018-04-30
Illustration of the twin spacecraft of the NASA/German Research Centre for Geosciences (GFZ) Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. GRACE-FO will continue tracking the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22446
GRACE Follow-On Satellites (Artist's Concept)
2018-04-30
Illustration of the twin spacecraft of the NASA/German Research Centre for Geosciences (GFZ) Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. GRACE-FO will continue tracking the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22440
GRACE Follow-On Satellites (Artist's Concept)
2018-04-30
Illustration of the twin spacecraft of the NASA/German Research Centre for Geosciences (GFZ) Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. GRACE-FO will continue tracking the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22441
GRACE-FO Spacecraft (Artist's Rendering)
2018-04-25
Artist's rendering of the twin spacecraft of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, scheduled to launch in May, 2018. GRACE-FO will track the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22431
High-frequency signal and noise estimates of CSR GRACE RL04
NASA Astrophysics Data System (ADS)
Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.
2012-12-01
A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.
Reconciling GRACE and GPS estimates of long-term load deformation in southern Greenland
NASA Astrophysics Data System (ADS)
Wang, Song-Yun; Chen, J. L.; Wilson, Clark R.; Li, Jin; Hu, Xiaogong
2018-02-01
We examine vertical load deformation at four continuous Global Positioning System (GPS) sites in southern Greenland relative to Gravity Recovery and Climate Experiment (GRACE) predictions of vertical deformation over the period 2002-2016. With limited spatial resolution, GRACE predictions require adjustment before they can be compared with GPS height time series. Without adjustment, both GRACE spherical harmonic (SH) and mascon solutions predict significant vertical displacement rate differences relative to GPS. We use a scaling factor method to adjust GRACE results, based on a long-term mass rate model derived from GRACE measurements, glacial geography, and ice flow data. Adjusted GRACE estimates show significantly improved agreement with GPS, both in terms of long-term rates and interannual variations. A deceleration of mass loss is observed in southern Greenland since early 2013. The success at reconciling GPS and GRACE observations with a more detailed mass rate model demonstrates the high sensitivity to load distribution in regions surrounding GPS stations. Conversely, the value of GPS observations in constraining mass changes in surrounding regions is also demonstrated. In addition, our results are consistent with recent estimates of GIA uplift (˜4.4 mm yr-1) at the KULU site.
Comparisons Between TIME-GCM/MERRA Simulations and LEO Satellite Observations
NASA Astrophysics Data System (ADS)
Hagan, M. E.; Haeusler, K.; Forbes, J. M.; Zhang, X.; Doornbos, E.; Bruinsma, S.; Lu, G.
2014-12-01
We report on yearlong National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM) simulations where we utilize the recently developed lower boundary condition based on 3-hourly MERRA (Modern-Era Retrospective Analysis for Research and Application) reanalysis data to account for tropospheric waves and tides propagating upward into the model domain. The solar and geomagnetic forcing is based on prevailing geophysical conditions. The simulations show a strong day-to-day variability in the upper thermospheric neutral temperature tidal fields, which is smoothed out quickly when averaging is applied over several days, e.g. up to 50% DE3 amplitude reduction for a 10-day average. This is an important result with respect to tidal diagnostics from satellite observations where averaging over multiple days is inevitable. In order to assess TIME-GCM performance we compare the simulations with measurements from the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE) satellites.
NASA Technical Reports Server (NTRS)
Wu, Xiao-Ping
1999-01-01
The response of the Greenland ice sheet to climate change could significantly alter sea level. The ice sheet was much thicker at the last glacial maximum. To gain insight into the global change process and the future trend, it is important to evaluate the ice mass variation as a function of time and space. The Gravity Recovery and Climate Experiment (GRACE) mission to fly in 2001 for 5 years will measure gravity changes associated with the current ice variation and the solid earth's response to past variations. Our objective is to assess the separability of different change sources, accuracy and resolution in the mass variation determination by the new gravity data and possible Global Positioning System (GPS) bedrock uplift measurements. We use a reference parameter state that follows a dynamic ice model for current mass variation and a variant of the Tushingham and Peltier ICE-3G deglaciation model for historical deglaciation. The current linear trend is also assumed to have started 5 kyr ago. The Earth model is fixed as preliminary reference Earth model (PREM) with four viscoelastic layers. A discrete Bayesian inverse algorithm is developed employing an isotropic Gaussian a priori covariance function over the ice sheet and time. We use data noise predicted by the University of Texas and JPL for major GRACE error sources. A 2 mm/yr uplift uncertainty is assumed for GPS occupation time of 5 years. We then carry out covariance analysis and inverse simulation using GRACE geoid coefficients up to degree 180 in conjunction with a number of GPS uplift rates. Present-day ice mass variation and historical deglaciation are solved simultaneously over 146 grids of roughly 110 km x 110 km and with 6 time increments of 3 kyr each, along with a common starting epoch of the current trend. For present-day ice thickness change, the covariance analysis using GRACE geoid data alone results in a root mean square (RMS) posterior root variance of 2.6 cm/yr, with fairly large a priori uncertainties in the parameters and a Gaussian correlation length of 350 km. Simulated inverse can successfully recover most features in the reference present-day change. The RMS difference between them over the grids is 2.8 cm/yr. The RMS difference becomes 1.1 cm/yr when both are averaged with a half Gaussian wavelength of 150 km. With a fixed Earth model, GRACE alone can separate the geoid signals due to past and current load fairly well. Shown are the reference geoid signatures of direct and elastic effects of the current trend, the viscoelastic effect of the same trend starting from 5 kyr ago, the Post Glacial Rebound (PGR), and the predicted GRACE geoid error. The difference between the reference and inverse modeled total viscoelastic signatures is also shown. Although past and current ice mass variations are allowed the same spatial scale, their geoid signals have different spatial patterns. GPS data can contribute to the ice mass determination as well. Additional information is contained in the original.
NASA Astrophysics Data System (ADS)
A, Geruo; Velicogna, Isabella; Kimball, John S.; Du, Jinyang; Kim, Youngwook; Colliander, Andreas; Njoku, Eni
2017-05-01
We combine soil moisture (SM) data from AMSR-E and AMSR-2, and changes in terrestrial water storage (TWS) from time-variable gravity data from GRACE to delineate and characterize the evolution of drought and its impact on vegetation growth. GRACE-derived TWS provides spatially continuous observations of changes in overall water supply and regional drought extent, persistence and severity, while satellite-derived SM provides enhanced delineation of shallow-depth soil water supply. Together these data provide complementary metrics quantifying available plant water supply. We use these data to investigate the supply changes from water components at different depths in relation to satellite-based enhanced vegetation index (EVI) and gross primary productivity (GPP) from MODIS and solar-induced fluorescence (SIF) from GOME-2, during and following major drought events observed in the state of Texas, USA and its surrounding semiarid area for the past decade. We find that in normal years the spatial pattern of the vegetation-moisture relationship follows the gradient in mean annual precipitation. However since the 2011 hydrological drought, vegetation growth shows enhanced sensitivity to surface SM variations in the grassland area located in central Texas, implying that the grassland, although susceptible to drought, has the capacity for a speedy recovery. Vegetation dependency on TWS weakens in the shrub-dominated west and strengthens in the grassland and forest area spanning from central to eastern Texas, consistent with changes in water supply pattern. We find that in normal years GRACE TWS shows strong coupling and similar characteristic time scale to surface SM, while in drier years GRACE TWS manifests stronger persistence, implying longer recovery time and prolonged water supply constraint on vegetation growth. The synergistic combination of GRACE TWS and surface SM, along with remote-sensing vegetation observations provides new insights into drought impact on vegetation-moisture relationship, and unique information regarding vegetation resilience and the recovery of hydrological drought.
NGS’ GRAV-D Project: Current update and future prospects
NASA Astrophysics Data System (ADS)
Childers, V. A.; Smith, D. A.; Roman, D. R.; Diehl, T. M.; Eckl, M. C.
2009-12-01
NOAA’s National Geodetic Survey (NGS) is tasked with establishing and maintaining the National Spatial Reference System, the vertical portion of which is called the North American Vertical Datum of 1988 (NAVD88). Although errors were known to exist in NAVD88, recent comparison with Gravity Recovery and Climate Experiment (GRACE) satellite gravity data demonstrated that the error was significant: 50 cm average with a 1 m tilt across the country. Instead of re-leveling the country to repair the datum, NGS has decided instead to establish a new vertical datum through the creation of a gravimetric geoid accurate to 2 cm. At this time, NGS's gravity holdings are of insufficient quality and density to allow for a geoid to be created at this level of accuracy. NGS has launched the Gravity for the Re-definition of the American Vertical Datum (GRAV-D) Project to both sufficiently densify our gravity holdings and to monitor and incorporate temporal changes to the geoid. GRAV-D will perform airborne gravity measurement of all of the US and its holdings in the next 10 years to provide a uniformly measured recovery of the gravity field at about a 20 km resolution. In addition, areas of most rapid change will be monitored through absolute and relative gravity measurements, the GRACE time-varying gravity field, and GPS/CORS networks. In FY09, GRAV-D performed a number of surveys in the Gulf of Mexico, Puerto Rico/US Virgin Islands, and Alaska. We discuss these surveys and a vision of the future given likely Congressional funding in FY10 and onward.
Combination of monthly gravity field solutions from different processing centers
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2015-04-01
Currently, the official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. Combinations are well-established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI), where regular comparisons and combinations of space-geodetic products have tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. In the frame of the recently started Horizon 2020 project European Gravity Service for Improved Emergency Management (EGSIEM), a scientific combination service shall therefore be established to deliver the best gravity products for applications in Earth and environmental science research based on the unified knowledge of the European GRACE community. In a first step the large variety of available monthly GRACE gravity field solutions shall be mutually compared spatially and spectrally. We assess the noise of the raw as well as filtered solutions and compare the secular and seasonal periodic variations fitted to the monthly solutions. In a second step we will explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community.
Assimilation of gridded terrestrial water storage observations from GRACE into a land surface model
NASA Astrophysics Data System (ADS)
Girotto, Manuela; De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.; Rodell, Matthew
2016-05-01
Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km2 at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.
Assimilation of Gridded Terrestrial Water Storage Observations from GRACE into a Land Surface Model
NASA Technical Reports Server (NTRS)
Girotto, Manuela; De Lannoy, Gabrielle J. M.; Reichle, Rolf H.; Rodell, Matthew
2016-01-01
Observations of terrestrial water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission have a coarse resolution in time (monthly) and space (roughly 150,000 km(sup 2) at midlatitudes) and vertically integrate all water storage components over land, including soil moisture and groundwater. Data assimilation can be used to horizontally downscale and vertically partition GRACE-TWS observations. This work proposes a variant of existing ensemble-based GRACE-TWS data assimilation schemes. The new algorithm differs in how the analysis increments are computed and applied. Existing schemes correlate the uncertainty in the modeled monthly TWS estimates with errors in the soil moisture profile state variables at a single instant in the month and then apply the increment either at the end of the month or gradually throughout the month. The proposed new scheme first computes increments for each day of the month and then applies the average of those increments at the beginning of the month. The new scheme therefore better reflects submonthly variations in TWS errors. The new and existing schemes are investigated here using gridded GRACE-TWS observations. The assimilation results are validated at the monthly time scale, using in situ measurements of groundwater depth and soil moisture across the U.S. The new assimilation scheme yields improved (although not in a statistically significant sense) skill metrics for groundwater compared to the open-loop (no assimilation) simulations and compared to the existing assimilation schemes. A smaller impact is seen for surface and root-zone soil moisture, which have a shorter memory and receive smaller increments from TWS assimilation than groundwater. These results motivate future efforts to combine GRACE-TWS observations with observations that are more sensitive to surface soil moisture, such as L-band brightness temperature observations from Soil Moisture Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Finally, we demonstrate that the scaling parameters that are applied to the GRACE observations prior to assimilation should be consistent with the land surface model that is used within the assimilation system.
NASA Astrophysics Data System (ADS)
Materna, K.; Feng, L.; Lindsey, E. O.; Hill, E.; Burgmann, R.
2017-12-01
The elastic response of the lithosphere to surface mass redistributions produces significant deformation that can be observed in geodetic time series. This deformation is especially pronounced in Southeast Asia, where the annual monsoon produces large-amplitude hydrological loads. The MIBB network of 20 continuous GPS stations in Myanmar, India, Bangladesh, and Bhutan, operational since 2012, provides an opportunity to study the earth's response to these loads. In this study, we use GRACE gravity products as an estimate of surface water distribution, and input these estimates into an elastic loading calculation. We compare the predicted deformation with that observed with GPS. We find that elastic loading from the GRACE gravity field is able to explain the phase and the peak-to-peak amplitude (typically 2-3 cm) of the vertical GPS oscillations in northeast India and central Myanmar. GRACE-based corrections reduce the RMS scatter of the GPS data by 30%-45% in these regions. However, this approach does not capture all of the variation in central Bangladesh and southern Myanmar. Local hydrological effects, non-tidal ocean loads, poroelastic deformation, or differences in elastic properties may explain discrepancies between the GPS and GRACE signals in these places. The results of our calculations have practical implications for campaign GPS measurements in Myanmar, which make up the majority of geodetic measurements at this point. We may be able to reduce errors in campaign measurements and increase the accuracy of velocity estimates by correcting for hydrologic signals with GRACE data. The results also have potential implications for crustal rheology in Southeast Asia.
Optimal Geoid Modelling to determine the Mean Ocean Circulation - Project Overview and early Results
NASA Astrophysics Data System (ADS)
Fecher, Thomas; Knudsen, Per; Bettadpur, Srinivas; Gruber, Thomas; Maximenko, Nikolai; Pie, Nadege; Siegismund, Frank; Stammer, Detlef
2017-04-01
The ESA project GOCE-OGMOC (Optimal Geoid Modelling based on GOCE and GRACE third-party mission data and merging with altimetric sea surface data to optimally determine Ocean Circulation) examines the influence of the satellite missions GRACE and in particular GOCE in ocean modelling applications. The project goal is an improved processing of satellite and ground data for the preparation and combination of gravity and altimetry data on the way to an optimal MDT solution. Explicitly, the two main objectives are (i) to enhance the GRACE error modelling and optimally combine GOCE and GRACE [and optionally terrestrial/altimetric data] and (ii) to integrate the optimal Earth gravity field model with MSS and drifter information to derive a state-of-the art MDT including an error assessment. The main work packages referring to (i) are the characterization of geoid model errors, the identification of GRACE error sources, the revision of GRACE error models, the optimization of weighting schemes for the participating data sets and finally the estimation of an optimally combined gravity field model. In this context, also the leakage of terrestrial data into coastal regions shall be investigated, as leakage is not only a problem for the gravity field model itself, but is also mirrored in a derived MDT solution. Related to (ii) the tasks are the revision of MSS error covariances, the assessment of the mean circulation using drifter data sets and the computation of an optimal geodetic MDT as well as a so called state-of-the-art MDT, which combines the geodetic MDT with drifter mean circulation data. This paper presents an overview over the project results with focus on the geodetic results part.
NASA Astrophysics Data System (ADS)
Seyoum, Wondwosen M.; Milewski, Adam M.
2017-12-01
Investigating terrestrial water cycle dynamics is vital for understanding the recent climatic variability and human impacts in the hydrologic cycle. In this study, a downscaling approach was developed and tested, to improve the applicability of terrestrial water storage (TWS) anomaly data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for understanding local terrestrial water cycle dynamics in the Northern High Plains region. A non-parametric, artificial neural network (ANN)-based model, was utilized to downscale GRACE data by integrating it with hydrological variables (e.g. soil moisture) derived from satellite and land surface model data. The downscaling model, constructed through calibration and sensitivity analysis, was used to estimate TWS anomaly for watersheds ranging from 5000 to 20,000 km2 in the study area. The downscaled water storage anomaly data were evaluated using water storage data derived from an (1) integrated hydrologic model, (2) land surface model (e.g. Noah), and (3) storage anomalies calculated from in-situ groundwater level measurements. Results demonstrate the ANN predicts monthly TWS anomaly within the uncertainty (conservative error estimate = 34 mm) for most of the watersheds. Seasonal derived groundwater storage anomaly (GWSA) from the ANN correlated well (r = ∼0.85) with GWSAs calculated from in-situ groundwater level measurements for a watershed size as small as 6000 km2. ANN downscaled TWSA matches closely with Noah-based TWSA compared to standard GRACE extracted TWSA at a local scale. Moreover, the ANN-downscaled change in TWS replicated the water storage variability resulting from the combined effect of climatic and human impacts (e.g. abstraction). The implications of utilizing finer resolution GRACE data for improving local and regional water resources management decisions and applications are clear, particularly in areas lacking in-situ hydrologic monitoring networks.
The Effect of Seasonal and Long-Period Geopotential Variations on the GPS Orbits
NASA Technical Reports Server (NTRS)
Melachroinos, Stavros A.; Lemoine, Frank G.; Chinn, Douglas S.; Zelensky, Nikita P.; Nicholas, Joseph B.; Beckley, Brian D.
2013-01-01
We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 x 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 x 4 SLR-DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.
NASA Astrophysics Data System (ADS)
Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze
2014-05-01
An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.
NASA Astrophysics Data System (ADS)
Pan, Y.; Shen, W.; Hwang, C.
2015-12-01
As an elastic Earth, the surface vertical deformation is in response to hydrological mass change on or near Earth's surface. The continuous GPS (CGPS) records show surface vertical deformations which are significant information to estimate the variation of terrestrial water storage. We compute the loading deformations at GPS stations based on synthetic models of seasonal water load distribution and then invert the synthetic GPS data for surface mass distribution. We use GRACE gravity observations and hydrology models to evaluate seasonal water storage variability in Nepal and Himalayas. The coherence among GPS inversion results, GRACE and hydrology models indicate that GPS can provide quantitative estimates of terrestrial water storage variations by inverting the surface deformation observations. The annual peak-to-peak surface mass change derived from GPS and GRACE results reveal seasonal loads oscillations of water, snow and ice. Meanwhile, the present uplifting of Nepal and Himalayas indicates the hydrology mass loss. This study is supported by National 973 Project China (grant Nos. 2013CB733302 and 2013CB733305), NSFC (grant Nos. 41174011, 41429401, 41210006, 41128003, 41021061).
2018-04-30
Michael Watkins, GRACE-FO science lead and director of NASA's Jet Propulsion Laboratory, discusses the upcoming launch of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, Monday, April 30, 2018 at NASA Headquarters in Washington. The twin GRACE-FO spacecraft will measure and monitor monthly changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Joel Kowsky)
2018-05-21
Phil Morton, NASA GRACE-FO project manager at JPL, second from right, discusses the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission during a prelaunch media briefing, Monday, May 21, 2018, at Vandenberg Air Force Base in California. The twin GRACE-FO spacecraft will measure changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Bill Ingalls)
NASA Technical Reports Server (NTRS)
Crowley, John W.; Mitrovica, Jerry X.; Bailey, Richard C.; Tamisiea, Mark E.; Davis, James L.
2007-01-01
We combine satellite gravity data from the Gravity Recovery and Climate Experiment (GRACE) and precipitation measurements from the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center's (CPC) Merged Analysis of Precipitation (CMAP) and the Tropical Rainfall Measuring Mission (TRMM), over the period from mid-2002 to mid-2006, to investigate the relative importance of sink (runoff and evaporation) and source (precipitation) terms in the hydrological balance of the Amazon Basin. When linear and quadratic terms are removed, the time series of land water storage variations estimated from GRACE exhibits a dominant annual signal of 250 mm peak-to-peak, which is equivalent to a water volume change of approximately 1800 cubic kilometers. A comparison of this trend with accumulated (i.e., integrated) precipitation shows excellent agreement and no evidence of basin saturation. The agreement indicates that the net runoff and evaporation contributes significantly less than precipitation to the annual hydrological mass balance. Indeed, raw residuals between the detrended water storage and precipitation anomalies range from plus or minus 40 mm. This range is consistent with streamflow measurements from the region, although the latter are characterized by a stronger annual signal than ow residuals, suggesting that runoff and evaporation may act to partially cancel each other.
GRACE Follow-On Satellites Separating from Spacecraft (Artist's Concept)
2018-04-30
Illustration of the twin spacecraft of the NASA/German Research Centre for Geosciences (GFZ) Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. GRACE-FO will continue tracking the evolution of Earth's water cycle by monitoring changes in the distribution of mass on Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22447
JPL-20180430-GRACFOf-0001-Twin Satellites to Weigh in on Earths Changing Water
2018-04-30
GRACE Follow-On (GRACE-FO), successor to the 15-year GRACE mission (Gravity Recovery and Climate Experiment), will map the mass of water as it moves around Earth from month to month and measure the changing amount of water in the atmosphere. This is a video file.
EGSIEM combination service: combination of GRACE monthly K-band solutions on normal equation level
NASA Astrophysics Data System (ADS)
Meyer, Ulrich; Jean, Yoomin; Arnold, Daniel; Jäggi, Adrian
2017-04-01
The European Gravity Service for Improved Emergency Management (EGSIEM) project offers a scientific combination service, combining for the first time monthly GRACE gravity fields of different analysis centers (ACs) on normal equation (NEQ) level and thus taking all correlations between the gravity field coefficients and pre-eliminated orbit and instrument parameters correctly into account. Optimal weights for the individual NEQs are commonly derived by variance component estimation (VCE), as is the case for the products of the International VLBI Service (IVS) or the DTRF2008 reference frame realisation that are also derived by combination on NEQ-level. But variance factors are based on post-fit residuals and strongly depend on observation sampling and noise modeling, which both are very diverse in case of the individual EGSIEM ACs. These variance factors do not necessarily represent the true error levels of the estimated gravity field parameters that are still governed by analysis noise. We present a combination approach where weights are derived on solution level, thereby taking the analysis noise into account.
NASA Astrophysics Data System (ADS)
Chanard, Kristel; Fleitout, Luce; Calais, Eric; Rebischung, Paul; Avouac, Jean-Philippe
2018-04-01
We model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series.
Detection of co-seismic earthquake gravity field signals using GRACE-like mission simulations
NASA Astrophysics Data System (ADS)
Sharifi, Mohammad Ali; Shahamat, Abolfazl
2017-05-01
After launching the GRACE satellite mission in 2002, the earth's gravity field and its temporal variations are measured with a closer inspection. Although these variations are mainly because of the mass transfer of land water storage, they can also happen due to mass movements related to some natural phenomena including earthquakes, volcanic eruptions, melting of polar ice caps and glacial isostatic adjustment. Therefore this paper shows which parameters of an earthquake are more sensitive to GRACE-Like satellite missions. For this purpose, the parameters of the Maule earthquake that occurred in recent years and Alaska earthquake that occurred in 1964 have been chosen. Then we changed their several parameters to serve our purpose. The GRACE-Like sensitivity is observed by using the simulation of the earthquakes along with gravity changes they caused, as well as using dislocation theory under a half space earth. This observation affects the various faulting parameters which include fault length, width, depth and average slip. These changes were therefore evaluated and the result shows that the GRACE satellite missions tend to be more sensitive to Width among the Length and Width, the other parameter is Dip variations than other parameters. This article can be useful to the upcoming scenario designers and seismologists in their quest to study fault parameters.
NASA Astrophysics Data System (ADS)
Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.; Watkins, Michael M.; Box, Jason E.; Fettweis, Xavier; van den Broeke, Michiel R.
2016-09-01
Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at ˜ 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003-2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice-ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by the models while simultaneously having more pronounced trends; thus, discrepancies are likely controlled by a combination of missing processes and errors in both the SMB products and ISSM. At the margins, we find evidence of consistent intra-annual variations in regional MB that deviate distinctively from the SMB annual cycle. Ultimately, these monthly-scale variations, likely associated with hydrology or ice-ocean interaction, contribute to steeper negative mass trends observed by GRACE_JPL. Thus, models should consider such processes at relatively high (monthly-to-seasonal) temporal resolutions to achieve accurate estimates of Greenland MB.
Antarctic contribution to sea level rise observed by GRACE with improved GIA correction
NASA Astrophysics Data System (ADS)
Ivins, Erik R.; James, Thomas S.; Wahr, John; Schrama, Ernst J. O.; Landerer, Felix W.; Simon, Karen M.
2013-06-01
Antarctic volume changes during the past 21 thousand years are smaller than previously thought, and here we construct an ice sheet history that drives a forward model prediction of the glacial isostatic adjustment (GIA) gravity signal. The new model, in turn, should give predictions that are constrained with recent uplift data. The impact of the GIA signal on a Gravity Recovery and Climate Experiment (GRACE) Antarctic mass balance estimate depends on the specific GRACE analysis method used. For the method described in this paper, the GIA contribution to the apparent surface mass change is re-evaluated to be +55±13 Gt/yr by considering a revised ice history model and a parameter search for vertical motion predictions that best fit the GPS observations at 18 high-quality stations. Although the GIA model spans a range of possible Earth rheological structure values, the data are not yet sufficient for solving for a preferred value of upper and lower mantle viscosity nor for a preferred lithospheric thickness. GRACE monthly solutions from the Center for Space Research Release 04 (CSR-RL04) release time series from January 2003 to the beginning of January 2012, uncorrected for GIA, yield an ice mass rate of +2.9± 29 Gt/yr. The new GIA correction increases the solved-for ice mass imbalance of Antarctica to -57±34 Gt/yr. The revised GIA correction is smaller than past GRACE estimates by about 50 to 90 Gt/yr. The new upper bound to the sea level rise from the Antarctic ice sheet, averaged over the time span 2003.0-2012.0, is about 0.16±0.09 mm/yr.
Improvements in GRACE Gravity Field Determination through Stochastic Observation Modeling
NASA Astrophysics Data System (ADS)
McCullough, C.; Bettadpur, S. V.
2016-12-01
Current unconstrained Release 05 GRACE gravity field solutions from the Center for Space Research (CSR RL05) assume random observation errors following an independent multivariate Gaussian distribution. This modeling of observations, a simplifying assumption, fails to account for long period, correlated errors arising from inadequacies in the background force models. Fully modeling the errors inherent in the observation equations, through the use of a full observation covariance (modeling colored noise), enables optimal combination of GPS and inter-satellite range-rate data and obviates the need for estimating kinematic empirical parameters during the solution process. Most importantly, fully modeling the observation errors drastically improves formal error estimates of the spherical harmonic coefficients, potentially enabling improved uncertainty quantification of scientific results derived from GRACE and optimizing combinations of GRACE with independent data sets and a priori constraints.
2018-04-30
Karen Fox, of NASA's Office of Communications, introduces Michael Watkins, GRACE-FO science lead and director of NASA's Jet Propulsion Laboratory and Frank Webb, GRACE-FO project scientist at JPL, during a briefing on the upcoming launch of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission, Monday, April 30, 2018 at NASA Headquarters in Washington. The twin GRACE-FO spacecraft will measure and monitor monthly changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Joel Kowsky)
2018-04-30
Karen Fox, of NASA's Office of Communications, right, discusses the upcoming launch of the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission with Michael Watkins, GRACE-FO science lead and director of NASA's Jet Propulsion Laboratory, left, and Frank Webb, GRACE-FO project scientist at JPL, Monday, April 30, 2018 at NASA Headquarters in Washington. The twin GRACE-FO spacecraft will measure and monitor monthly changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Joel Kowsky)
Study of seasonal and long-term vertical deformation in Nepal based on GPS and GRACE observations
NASA Astrophysics Data System (ADS)
Zhang, Tengxu; Shen, WenBin; Pan, Yuanjin; Luan, Wei
2018-02-01
Lithospheric deformation signal can be detected by combining data from continuous global positioning system (CGPS) and satellite observations from the Gravity Recovery and Climate Experiment (GRACE). In this paper, we use 2.5- to 19-year-long time series from 35 CGPS stations to estimate vertical deformation rates in Nepal, which is located in the southern side of the Himalaya. GPS results were compared with GRACE observations. Principal component analysis was conducted to decompose the time series into three-dimensional principal components (PCs) and spatial eigenvectors. The top three high-order PCs were calculated to correct common mode errors. Both GPS and GRACE observations showed significant seasonal variations. The observed seasonal GPS vertical variations are in good agreement with those from the GRACE-derived results, particularly for changes in surface pressure, non-tidal oceanic mass loading, and hydrologic loading. The GPS-observed rates of vertical deformation obtained for the region suggest both tectonic impact and mass decrease. The rates of vertical crustal deformation were estimated by removing the GRACE-derived hydrological vertical rates from the GPS measurements. Most of the sites located in the southern part of the Main Himalayan Thrust subsided, whereas the northern part mostly showed an uplift. These results may contribute to the understanding of secular vertical crustal deformation in Nepal.
Implications of GRACE Satellite Gravity Measurements for Diverse Hydrological Applications
NASA Astrophysics Data System (ADS)
Yirdaw-Zeleke, Sitotaw
Soil moisture plays a major role in the hydrologic water balance and is the basis for most hydrological models. It influences the partitioning of energy and moisture inputs at the land surface. Because of its importance, it has been used as a key variable for many hydrological studies such as flood forecasting, drought studies and the determination of groundwater recharge. Therefore, spatially distributed soil moisture with reasonable temporal resolution is considered a valuable source of information for hydrological model parameterization and validation. Unfortunately, soil moisture is difficult to measure and remains essentially unmeasured over spatial and temporal scales needed for a number of hydrological model applications. In 2002, the Gravity Recovery And Climate Experiment (GRACE) satellite platform was launched to measure, among other things, the gravitational field of the earth. Over its life span, these orbiting satellites have produced time series of mass changes of the earth-atmosphere system. The subsequent outcome of this, after integration over a number of years, is a time series of highly refined images of the earth's mass distribution. In addition to quantifying the static distribution of mass, the month-to-month variation in the earth's gravitational field are indicative of the integrated value of the subsurface total water storage for specific catchments. Utilization of these natural changes in the earth's gravitational field entails the transformation of the derived GRACE geopotential spherical harmonic coefficients into spatially varying time series estimates of total water storage. These remotely sensed basin total water storage estimates can be routinely validated against independent estimates of total water storage from an atmospheric-based water balance approach or from well calibrated macroscale hydrologic models. The hydrological relevance and implications of remotely estimated GRACE total water storage over poorly gauged, wetland-dominated watershed as well as over a deltaic region underlain by a thick sand aquifer in Western Canada are the focus of this thesis. The domain of the first case study was the Mackenzie River Basin wherein the GRACE total water storage estimates were successfully inter-compared and validated with the atmospheric based water balance. These were then used to assess the WAT-CLASS hydrological model estimates of total water storage. The outcome of this inter-comparison revealed the potential application of the GRACE-based approach for the closure of the hydrological water balance of the Mackenzie River Basin as well as a dependable source of data for the calibration of traditional hydrological models. The Mackenzie River Basin result led to a second case study where the GRACE-based total water storage was validated using storage estimated from the atmospheric-based water balance P--E computations in conjunction with the measured streamflow records for the Saskatchewan River Basin at its Grand Rapids outlet in Manitoba. The fallout from this comparison was then applied to the characterization of the Prairie-wide 2002/2003 drought enabling the development of a new drought index now known as the Total Storage Deficit Index (TSDI). This study demonstrated the potential application of the GRACE-based technique as a tool for drought characterization in the Canadian Prairies. Finally, the hydroinformatic approach based on the artificial neural network (ANN) enabled the downscaling of the groundwater component from the total water storage estimate from the remote sensing satellite, GRACE. This was subsequently explored as an alternate source of calibration and validation for a hydrological modeling application over the Assiniboine Delta Aquifer in Manitoba. Interestingly, a high correlation exists between the simulated groundwater storage from the coupled hydrological model, CLM-PF and the downscaled groundwater time series storage from the remote sensing satellite GRACE over this 4,000 km2 deltaic basin in Canada.
Assimilation of Terrestrial Water Storage from GRACE in a Snow-Dominated Basin
NASA Technical Reports Server (NTRS)
Forman, Barton A.; Reichle, R. H.; Rodell, M.
2011-01-01
Terrestrial water storage (TWS) information derived from Gravity Recovery and Climate Experiment (GRACE) measurements is assimilated into a land surface model over the Mackenzie River basin located in northwest Canada. Assimilation is conducted using an ensemble Kalman smoother (EnKS). Model estimates with and without assimilation are compared against independent observational data sets of snow water equivalent (SWE) and runoff. For SWE, modest improvements in mean difference (MD) and root mean squared difference (RMSD) are achieved as a result of the assimilation. No significant differences in temporal correlations of SWE resulted. Runoff statistics of MD remain relatively unchanged while RMSD statistics, in general, are improved in most of the sub-basins. Temporal correlations are degraded within the most upstream sub-basin, but are, in general, improved at the downstream locations, which are more representative of an integrated basin response. GRACE assimilation using an EnKS offers improvements in hydrologic state/flux estimation, though comparisons with observed runoff would be enhanced by the use of river routing and lake storage routines within the prognostic land surface model. Further, GRACE hydrology products would benefit from the inclusion of better constrained models of post-glacial rebound, which significantly affects GRACE estimates of interannual hydrologic variability in the Mackenzie River basin.
Analysis of Seasonal Variability in Gulf of Alaska Glacier Mass Balance using GRACE
NASA Astrophysics Data System (ADS)
Arendt, A. A.; Luthcke, S. B.; Oneel, S.; Gardner, A. S.; Hill, D. F.
2011-12-01
Mass variations of glaciers in Alaska/northwestern Canada must be quantified in order to assess impacts on ecosystems, human infrastructure, and global sea level. Here we combine Gravity Recovery and Climate Experiment (GRACE) observations with a wide range of satellite and field data to investigate drivers of these recent changes, with a focus on seasonal variations. Our central focus will be the exceptionally high mass losses of 2009, which do not correlate with weather station temperature and precipitation data, but may be linked to ash fall from the March 31, 2009 eruption of Mt. Redoubt. The eruption resulted in a significant decrease in MODIS-derived surface albedo over many Alaska glacier regions, and likely contributed to some of the 2009 anomalous mass loss observed by GRACE. We also focus on the Juneau and Stikine Icefield regions that are far from the volcanic eruption but experienced the largest mass losses of any region in 2009. Although rapid drawdown of tidewater glaciers was occurring in southeast Alaska during 2009, we show these changes were probably not sufficiently widespread to explain all of the GRACE signal in those regions. We examine additional field and satellite datasets to quantify potential errors in the climate and GRACE fields that could result in the observed discrepancy.
NASA Technical Reports Server (NTRS)
Nastula, J.; Ponte, R. M.; Salstein, D. A.
2007-01-01
Three sets of degree-2, order-1 harmonics of the gravity field, derived from the Gravity Recovery and Climate Experiment (GRACE) data processed at the Center for Space Research (CSR), Jet Propulsion Laboratory (JPL) and GeoforschungsZentrum (GFZ), are used to compute polar motion excitation functions X1 and X2. The GFZ and JPL excitations and the CSR X2, excitation compare generally well with geodetically observed excitation after removal of effects of oceanic currents and atmospheric winds. The agreement considerably exceeds that from previous GRACE data releases. For the JPL series, levels of correlation with the geodetic observations and the variance explained are comparable to, but still lower than, those obtained independently from available models and analyses of the atmosphere, ocean, and land hydrology. Improvements in data quality of gravity missions are still needed to deliver even tighter constraints on mass-related excitation of polar motion.
NASA Astrophysics Data System (ADS)
Nastula, J.; Ponte, R. M.; Salstein, D. A.
2007-06-01
Three sets of degree-2, order-1 harmonics of the gravity field, derived from the Gravity Recovery and Climate Experiment (GRACE) data processed at the Center for Space Research (CSR), Jet Propulsion Laboratory (JPL) and GeoforschungsZentrum (GFZ), are used to compute polar motion excitation functions χ 1 and χ 2. The GFZ and JPL excitations and the CSR χ 2 excitation compare generally well with geodetically observed excitation after removal of effects of oceanic currents and atmospheric winds. The agreement considerably exceeds that from previous GRACE data releases. For the JPL series, levels of correlation with the geodetic observations and the variance explained are comparable to, but still lower than, those obtained independently from available models and analyses of the atmosphere, ocean, and land hydrology. Improvements in data quality of gravity missions are still needed to deliver even tighter constraints on mass-related excitation of polar motion.
NASA Astrophysics Data System (ADS)
Felfelani, F.; Pokhrel, Y. N.
2016-12-01
Hydrological models and data derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) change; however, both have disadvantages that necessitate the integrated use of them. While GRACE doesn't disintegrate the vertical storage into its components, most models do not account for human activities. Here we use two Land Surface Models (LSMs), i.e., HiGW-MAT and PCRGLOBWB that fully couple natural and human drivers of changes in water cycle, explicitly simulating the changes in various TWS compartments. We first evaluate the models performance with GRACE observations. Then, we quantify the human footprint over global river basins located in different geographic and climate regions. To quantify human impacts, a new framework is proposed based on the GRACE observations (representing both climate variability and human activities) together with the natural simulation of LSMs using water budget equation (P-ET-R; P for precipitation, ET for evapotranspiration, and R for runoff). Finally, we examine the uncertainty in TWS simulations arising from the uncertainties in forcing data. Results indicate that, in snow-dominated regions, PCRGLOBWB generally fails to reproduce neither the interannual variability of observed TWS nor the seasonal cycle, while HiGW-MAT model shows significantly better results. In basins with human signatures, PCRGLOBWB generally shows better agreement with GRACE compared to HiGW-MAT. It is found that HiGW-MAT tends to overestimate groundwater depletion in basins with human impacts (e.g., Amudarya, Colorado, Euphrates and Indus), which results in larger negative interannual TWS trend compared to GRACE. Euphrates and Ganges river basins experience the highest human-induced TWS deficit rates (2.08 cm/yr and 1.94 cm/yr, respectively) during the simulation period of 2002-2010. Uncertainty analysis of results from the same model but with different forcing data suggests a high standard deviation in the order of 10 cm/yr.
GRACE-Assimilated Drought Indicators for the U.S. Drought Monitor
NASA Technical Reports Server (NTRS)
Rui, Hualan; Vollmer, Bruce; Teng, Bill; Loeser, Carlee; Beaudoing, Hiroko; Rodell, Matt
2018-01-01
The Gravity Recovery and Climate Experiment (GRACE) mission detects changes in Earth's gravity field by precisely monitoring the changes in distance between two satellites orbiting the Earth in tandem. Scientists at NASA's Goddard Space Flight Center generate GRACE-assimilated groundwater and soil moisture drought indicators each week, for drought monitor-related studies and applications. The GRACE-assimilated Drought Indicator Version 2.0 data product (GRACE-DA-DM V2.0) is archived at, and distributed by, the NASA GES DISC (Goddard Earth Sciences Data and Information Services Center). More information about the data and data access is available on the data product landing page at https://disc.gsfc.nasa.gov/datasets /GRACEDADM_CLSM0125US_7D_2.0/summary. The GRACE-DA-DM V2.0 data product contains three drought indicators: Groundwater Percentile, Root Zone Soil Moisture Percentile, and Surface Soil Moisture Percentile. The drought indicators are of wet or dry conditions, expressed as a percentile, indicating the probability of occurrence within the period of record from 1948 to 2012. These GRACE-assimilated drought indicators, with improved spatial and temporal resolutions, should provide a more comprehensive and objective identification of drought conditions. This presentation describes the basic characteristics of the data and data services at NASA GES DISC and collaborative organizations, and uses a few examples to demonstrate the simple ways to explore the GRACE-assimilated drought indicator data.
Drought Analysis of the Haihe River Basin Based on GRACE Terrestrial Water Storage
Wang, Jianhua; Jiang, Dong; Huang, Yaohuan; Wang, Hao
2014-01-01
The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS) data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis. Our observations showed that the GRACE-TWS was more suitable for detecting prolonged and severe droughts in the HRB because it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than 5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of 2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human activities played an important role in the extent of drought hazards in the HRB. PMID:25202732
Drought analysis of the Haihe river basin based on GRACE terrestrial water storage.
Wang, Jianhua; Jiang, Dong; Huang, Yaohuan; Wang, Hao
2014-01-01
The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS) data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis. Our observations showed that the GRACE-TWS was more suitable for detecting prolonged and severe droughts in the HRB because it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than 5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of 2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human activities played an important role in the extent of drought hazards in the HRB.
Acceleration Noise Considerations for Drag-free Satellite Geodesy Missions
NASA Astrophysics Data System (ADS)
Hong, S. H.; Conklin, J. W.
2016-12-01
The GRACE mission, which launched in 2002, opened a new era of satellite geodesy by providing monthly mass variation solutions with spatial resolution of less than 200 km. GRACE proved the usefulness of a low-low satellite-to-satellite tracking formation. Analysis of the GRACE data showed that the K-Band ranging system, which is used to measure the range between the two satellites, is the limiting factor for the precision of the solution. Consequently, the GRACE-FO mission, schedule for launch in 2017, will continue the work of GRACE, but will also test a new, higher precision laser ranging interferometer compared with the K-Band ranging system. Beyond GRACE-FO, drag-free systems are being considered for satellite geodesy missions. GOCE tested a drag-free attitude control system with a gravity gradiometer and showed improvements in the acceleration noise compensation compared to the electrostatic accelerometers used in GRACE. However, a full drag-free control system with a gravitational reference sensor has not yet been applied to satellite geodesy missions. More recently, this type of drag-free system was used in LISA Pathfinder, launched in 2016, with an acceleration noise performance two orders of magnitude better than that of GOCE. We explore the effects of drag-free performance in satellite geodesy missions similar to GRACE-FO by applying three different residual acceleration noises from actual space missions: GRACE, GOCE and LISA Pathfinder. Our solutions are limited to degree 60 spherical harmonic coefficients with biweekly time resolution. Our analysis shows that a drag-free system with acceleration noise performance comparable to GOCE and LISA-Pathfinder would greatly improve the accuracy of gravity solutions. In addition to these results, we also present the covariance shaping process used in the estimation. In the future, we plan to use actual acceleration noise data measured using the UF torsion pendulum. This apparatus is a ground facility at University of Florida used to test the performance of precision inertial sensors. We also plan to evaluate the importance of acceleration noise when a second inclined pair of satellites is included in the analysis, following the work of Weise in 2012, which showed that two satellite pairs decreased aliasing errors.
A Record-High Ocean Bottom Pressure in the South Pacific Observed by GRACE
NASA Technical Reports Server (NTRS)
Boening, Carmen; Lee, Tong; Zlotnicki, Victor
2011-01-01
In late 2009 to early 2010, the Gravity Recovery and Climate Experiment (GRACE) satellite pair observed a record increase in ocean bottom pressure (OBP) over a large mid-latitude region of the South East Pacific. Its magnitude is substantially larger than other oceanic events in the Southern Hemisphere found in the entire GRACE data records (2003-2010) on multi-month time scales. The OBP data help to understand the nature of a similar signal in sea surface height (SSH) anomaly observed by altimetry: the SSH increase is mainly due to mass convergence. Analysis of the barotropic vorticity equation using scatterometer data, atmospheric reanalysis product, and GRACE and altimeter an atmospheric reanalysis product observations suggests that the observed OBP/SSH signal was primarily caused by wind stress curl associated with a strong and persistent anticyclone in late 2009 in combination with effects of planetary vorticity gradient, bottom topography, and friction
He, Meilin; Shen, Wenbin; Chen, Ruizhi; Ding, Hao; Guo, Guangyi
2017-01-01
The solid Earth deforms elastically in response to variations of surface atmosphere, hydrology, and ice/glacier mass loads. Continuous geodetic observations by Global Positioning System (CGPS) stations and Gravity Recovery and Climate Experiment (GRACE) record such deformations to estimate seasonal and secular mass changes. In this paper, we present the seasonal variation of the surface mass changes and the crustal vertical deformation in the South China Block (SCB) identified by GPS and GRACE observations with records spanning from 1999 to 2016. We used 33 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs) in SCB. The average weighted root-mean-square (WRMS) reduction is 38% when we subtract GRACE-modeled vertical displacements from GPS time series. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution in and around the South China Block. The correlation between GRACE and GPS time series is analyzed which provides a reference for further improvement of the seasonal variation of CGPS time series. The results of the GRACE observations inversion are the surface deformations caused by the surface mass change load at a rate of about −0.4 to −0.8 mm/year, which is used to improve the long-term trend of non-tectonic loads of the GPS vertical velocity field to further explain the crustal tectonic movement in the SCB and surroundings. PMID:29301236
NASA Astrophysics Data System (ADS)
Khaki, M.; Hoteit, I.; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A. I. J. M.; Schumacher, M.; Pattiaratchi, C.
2017-09-01
The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively, improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.
NASA Technical Reports Server (NTRS)
Sabaka, T. J.; Rowlands, D. D.; Luthcke, S. B.; Boy, J.-P.
2010-01-01
We describe Earth's mass flux from April 2003 through November 2008 by deriving a time series of mas cons on a global 2deg x 2deg equal-area grid at 10 day intervals. We estimate the mass flux directly from K band range rate (KBRR) data provided by the Gravity Recovery and Climate Experiment (GRACE) mission. Using regularized least squares, we take into account the underlying process dynamics through continuous space and time-correlated constraints. In addition, we place the mascon approach in the context of other filtering techniques, showing its equivalence to anisotropic, nonsymmetric filtering, least squares collocation, and Kalman smoothing. We produce mascon time series from KBRR data that have and have not been corrected (forward modeled) for hydrological processes and fmd that the former produce superior results in oceanic areas by minimizing signal leakage from strong sources on land. By exploiting the structure of the spatiotemporal constraints, we are able to use a much more efficient (in storage and computation) inversion algorithm based upon the conjugate gradient method. This allows us to apply continuous rather than piecewise continuous time-correlated constraints, which we show via global maps and comparisons with ocean-bottom pressure gauges, to produce time series with reduced random variance and full systematic signal. Finally, we present a preferred global model, a hybrid whose oceanic portions are derived using forward modeling of hydrology but whose land portions are not, and thus represent a pure GRACE-derived signal.
NASA Astrophysics Data System (ADS)
Slobbe, D. C.; Ditmar, P.; Lindenbergh, R. C.
2009-01-01
The focus of this paper is on the quantification of ongoing mass and volume changes over the Greenland ice sheet. For that purpose, we used elevation changes derived from the Ice, Cloud, and land Elevation Satellite (ICESat) laser altimetry mission and monthly variations of the Earth's gravity field as observed by the Gravity Recovery and Climate Experiment (GRACE) mission. Based on a stand alone processing scheme of ICESat data, the most probable estimate of the mass change rate from 2003 February to 2007 April equals -139 +/- 68 Gtonyr-1. Here, we used a density of 600+/-300 kgm-3 to convert the estimated elevation change rate in the region above 2000m into a mass change rate. For the region below 2000m, we used a density of 900+/-300 kgm-3. Based on GRACE gravity models from half 2002 to half 2007 as processed by CNES, CSR, DEOS and GFZ, the estimated mass change rate for the whole of Greenland ranges between -128 and -218Gtonyr-1. Most GRACE solutions show much stronger mass losses as obtained with ICESat, which might be related to a local undersampling of the mass loss by ICESat and uncertainties in the used snow/ice densities. To solve the problem of uncertainties in the snow and ice densities, two independent joint inversion concepts are proposed to profit from both GRACE and ICESat observations simultaneously. The first concept, developed to reduce the uncertainty of the mass change rate, estimates this rate in combination with an effective snow/ice density. However, it turns out that the uncertainties are not reduced, which is probably caused by the unrealistic assumption that the effective density is constant in space and time. The second concept is designed to convert GRACE and ICESat data into two totally new products: variations of ice volume and variations of snow volume separately. Such an approach is expected to lead to new insights in ongoing mass change processes over the Greenland ice sheet. Our results show for different GRACE solutions a snow volume change of -11 to 155km3yr-1 and an ice loss with a rate of -136 to -292km3yr-1.
NASA Astrophysics Data System (ADS)
Zhou, H.; Luo, Z.; Li, Q.; Zhong, B.
2016-12-01
The monthly gravity field model can be used to compute the information about the mass variation within the system Earth, i.e., the relationship between mass variation in the oceans, land hydrology, and ice sheets. For more than ten years, GRACE has provided valuable information for recovering monthly gravity field model. In this study, a new time series of GRACE monthly solution, which is truncated to degree and order 60, is computed by the modified dynamic approach. Compared with the traditional dynamic approach, the major difference of our modified approach is the way to process the nuisance parameters. This type of parameters is mainly used to absorb low-frequency errors in KBRR data. One way is to remove the nuisance parameters before estimating the geo-potential coefficients, called Pure Predetermined Strategy (PPS). The other way is to determine the nuisance parameters and geo-potential coefficients simultaneously, called Pure Simultaneous Strategy (PSS). It is convenient to detect the gross error by PPS, while there is also obvious signal loss compared with the solutions derived from PSS. After comparing the difference of practical calculation formulas between PPS and PSS, we create the Filter Predetermine Strategy (FPS), which can combine the advantages of PPS and PSS efficiently. With FPS, a new monthly gravity field model entitled HUST-Grace2016s is developed. The comparisons of geoid degree powers and mass change signals in the Amazon basin, the Greenland and the Antarctic demonstrate that our model is comparable with the other published models, e.g., the CSR RL05, JPL RL05 and GFZ RL05 models. Acknowledgements: This work is supported by China Postdoctoral Science Foundation (Grant No.2016M592337), the National Natural Science Foundation of China (Grant Nos. 41131067, 41504014), the Open Research Fund Program of the State Key Laboratory of Geodesy and Earth's Dynamics (Grant No. SKLGED2015-1-3-E).
2018-05-21
NASA Headquarters Public Affairs Officer Steve Cole moderates a Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission prelaunch media briefing, Monday, May 21, 2018, at Vandenberg Air Force Base in California. The twin GRACE-FO spacecraft will measure changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Bill Ingalls)
Estimating Antarctica land topography from GRACE gravity and ICESat altimetry data
NASA Astrophysics Data System (ADS)
Wu, I.; Chao, B. F.; Chen, Y.
2009-12-01
We propose a new method combining GRACE (Gravity Recovery and Climate Experiment) gravity and ICESat (Ice, Cloud, and land Elevation Satellite) altimetry data to estimate the land topography for Antarctica. Antarctica is the fifth-largest continent in the world and about 98% of Antarctica is covered by ice, where in-situ measurements are difficult. Some experimental airborne radar and ground-based radar data have revealed very limited land topography beneath heavy ice sheet. To estimate the land topography for the full coverage of Antarctica, we combine GRACE data that indicate the mass distribution, with data of ICESat laser altimetry that provide high-resolution mapping of ice topography. Our approach is actually based on some geological constraints: assuming uniform densities of the land and ice considering the Airy-type isostasy. In the beginning we construct an initial model for the ice thickness and land topography based on the BEDMAP ice thickness and ICESat data. Thereafter we forward compute the model’s gravity field and compare with the GRACE observed data. Our initial model undergoes the adjustments to improve the fit between modeled results and the observed data. Final examination is done by comparing our results with previous but sparse observations of ice thickness to reconfirm the reliability of our results. As the gravitational inversion problem is non-unique, our estimating result is just one of all possibilities constrained by available data in optimal way.
Tone-assisted time delay interferometry on GRACE Follow-On
NASA Astrophysics Data System (ADS)
Francis, Samuel P.; Shaddock, Daniel A.; Sutton, Andrew J.; de Vine, Glenn; Ware, Brent; Spero, Robert E.; Klipstein, William M.; McKenzie, Kirk
2015-07-01
We have demonstrated the viability of using the Laser Ranging Interferometer on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) space mission to test key aspects of the interspacecraft interferometry proposed for detecting gravitational waves. The Laser Ranging Interferometer on GRACE-FO will be the first demonstration of interspacecraft interferometry. GRACE-FO shares many similarities with proposed space-based gravitational wave detectors based on the Laser Interferometer Space Antenna (LISA) concept. Given these similarities, GRACE-FO provides a unique opportunity to test novel interspacecraft interferometry techniques that a LISA-like mission will use. The LISA Experience from GRACE-FO Optical Payload (LEGOP) is a project developing tests of arm locking and time delay interferometry (TDI), two frequency stabilization techniques, that could be performed on GRACE-FO. In the proposed LEGOP TDI demonstration one GRACE-FO spacecraft will have a free-running laser while the laser on the other spacecraft will be locked to a cavity. It is proposed that two one-way interspacecraft phase measurements will be combined with an appropriate delay in order to produce a round-trip, dual one-way ranging (DOWR) measurement independent of the frequency noise of the free-running laser. This paper describes simulated and experimental tests of a tone-assisted TDI ranging (TDIR) technique that uses a least-squares fitting algorithm and fractional-delay interpolation to find and implement the delays needed to form the DOWR TDI combination. The simulation verifies tone-assisted TDIR works under GRACE-FO conditions. Using simulated GRACE-FO signals the tone-assisted TDIR algorithm estimates the time-varying interspacecraft range with a rms error of ±0.2 m , suppressing the free-running laser frequency noise by 8 orders of magnitude. The experimental results demonstrate the practicability of the technique, measuring the delay at the 6 ns level in the presence of a significant displacement signal.
Panet, I.; Mikhailov, V.; Diament, M.; Pollitz, F.; King, G.; de Viron, O.; Holschneider, M.; Biancale, R.; Lemoine, J.-M.
2007-01-01
The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (Mw = 9.2) and 2005 March (Mw = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
NASA Astrophysics Data System (ADS)
Panet, Isabelle; Mikhailov, Valentin; Diament, Michel; Pollitz, Fred; King, Geoffrey; de Viron, Olivier; Holschneider, Matthias; Biancale, Richard; Lemoine, Jean-Michel
2007-10-01
The GRACE satellite mission has been measuring the Earth's gravity field and its temporal variations since 2002 April. Although these variations are mainly due to mass transfer within the geofluid envelops, they also result from mass displacements associated with phenomena including glacial isostatic adjustment and earthquakes. However, these last contributions are difficult to isolate because of the presence of noise and of geofluid signals, and because of GRACE's coarse spatial resolution (>400 km half-wavelength). In this paper, we show that a wavelet analysis on the sphere helps to retrieve earthquake signatures from GRACE geoid products. Using a wavelet analysis of GRACE geoids products, we show that the geoid variations caused by the 2004 December (Mw = 9.2) and 2005 March (Mw = 8.7) Sumatra earthquakes can be detected. At GRACE resolution, the 2004 December earthquake produced a strong coseismic decrease of the gravity field in the Andaman Sea, followed by relaxation in the area affected by both the Andaman 2004 and the Nias 2005 earthquakes. We find two characteristic timescales for the relaxation, with a fast variation occurring in the vicinity of the Central Andaman ridge. We discuss our coseismic observations in terms of density changes of crustal and upper-mantle rocks, and of the vertical displacements in the Andaman Sea. We interpret the post-seismic signal in terms of the viscoelastic response of the Earth's mantle. The transient component of the relaxation may indicate the presence of hot, viscous material beneath the active Central Andaman Basin.
Stress Variation Caused by the Terrestrial Water Storage Inferred from GRACE Data
NASA Astrophysics Data System (ADS)
Yi, H.; Wen, L.
2014-12-01
We estimate stress variation caused by the terrestrial water storage (TWS) change from 2003 to 2013. We first infer the TWS change from the monthly gravity field change in the Gravity Recovery and Climate Experiment (GRACE). We then estimate the stress change at the Earth's surface caused by elastic loading of mass change associated with the inferred TWS change.The monthly spherical harmonics of the GRACE gravity solutions are processed using a decorrelation filter and Gaussian smoothing, to suppress the noise in high degree and order, following the approach of Swenson and Wahr [2006] and Chen et al. [2007]. The gravity variation associated with the glacial isostatic adjustment (GIA) is further removed from the GRACE solutions based on a geodynamical model by Paulson et al. [2007]. The inferred TWS changes exhibit a trend of increase from 2003 to 2013 in Amazon basin, southern Africa, the northern United State America (USA) and Queen Maud Land of Antarctica, and a trend of decrease in the same period in central Argentina, southern Chile, northern India, northern Iran, Alaska of the USA, Greenland and Marie Byrd Land of Antarctica.Surface stress variation due to the TWS loading is calculated, assuming an incompressible and self-gravitating Earth, with an elastic crust and a viscoelastic mantle overlying an inviscid core based on PREM model. We will present the geographical distribution of the stress variation caused by the TWS loading and discuss its possible implications. Chen, J. L., C. R. Wilson, B. D. Tapley, and S. Grand (2007), GRACE detects coseismic and postseismic deformation from the Sumatra-Andaman earthquake, Geophys Res Lett, 34(13), doi:10.1029/2007GL030356. Paulson, A., S. J. Zhong, and J. Wahr (2007), Inference of mantle viscosity from GRACE and relative sea level data, Geophys J Int, 171(2), 497-508, doi:10.1111/j.1365-246X.2007.03556.x. Swenson, S., and J. Wahr (2006), Post-processing removal of correlated errors in GRACE data, Geophys Res Lett, 33(8), doi:10.1029/2005GL025285.
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Cheng, Haowen; Liu, Lin
2012-11-01
The Gravity Recovery And Climate Experiment (GRACE) mission has been providing high quality observations since its launch in 2002. Over the years, fruitful achievements have been obtained and the temporal gravity field has revealed the ongoing geophysical, hydrological and other processes. These discoveries help the scientists better understand various aspects of the Earth. However, errors exist in high degree and order spherical harmonics, which need to be processed before use. Filtering is one of the most commonly used techniques to smooth errors, yet it attenuates signals and also causes leakage of gravity signal into surrounding areas. This paper reports a new method to estimate the true mass change on the grid (expressed in equivalent water height or surface density). The mass change over the grid can be integrated to estimate regional or global mass change. This method assumes the GRACE-observed apparent mass change is only caused by the mass change on land. By comparing the computed and observed apparent mass change, the true mass change can be iteratively adjusted and estimated. The problem is solved with nonlinear programming (NLP) and yields solutions which are in good agreement with other GRACE-based estimates.
Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013
NASA Astrophysics Data System (ADS)
Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung
2015-05-01
Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr2. Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr2. Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr2.
NASA Astrophysics Data System (ADS)
Vogler, K.; McNeil, C.; Bond, M.; Getraer, B.; Huxley-Reicher, B.; McNamara, G.; Reinhardt-Ertman, T.; Silverwood, J.; Kienholz, C.; Beedle, M. J.
2017-12-01
Glacier-wide annual mass balances (Ba) have been calculated for Taku (726 km2) and Lemon Creek glaciers (10.2 km2) since 1946 and 1953 respectively. These are the longest mass balance records in North America, and the only Ba time-series available for Southeast Alaska, making them particularly valuable for the global glacier mass balance monitoring network. We compared Ba time-series from Taku and Lemon Creek glaciers to Gravity Recovery and Climate Experiment (GRACE) mascon solutions (1352 and 1353) during the 2004-2015 period to assess how well these gravimetric solutions reflect individual glaciological records. Lemon Creek Glacier is a challenging candidate for this comparison because it is small compared to the 12,100 km2 GRACE mascon solutions. Taku Glacier is equally challenging because its mass balance is stable compared to the negative balances dominating its neighboring glaciers. Challenges notwithstanding, a high correlation between the glaciological and gravimetrically-derived Ba for Taku and Lemon Creek glaciers encourage future use of GRACE to measure glacier mass balance. Additionally, we employed high frequency ground penetrating radar (GPR) to measure the variability of accumulation around glaciological sites to assess uncertainty in our glaciological measurements, and the resulting impact to Ba. Finally, we synthesize this comparison of glaciological and gravimetric mass balance solutions with a discussion of potential sources of error in both methods and their combined utility for measuring regional glacier change during the 21st century.
NASA Astrophysics Data System (ADS)
Stampoulis, D.; Reager, J. T., II; David, C. H.; Famiglietti, J. S.; Andreadis, K.
2017-12-01
Despite the numerous advances in hydrologic modeling and improvements in Land Surface Models, an accurate representation of the water table depth (WTD) still does not exist. Data assimilation of observations of the joint NASA and DLR mission, Gravity Recovery and Climate Experiment (GRACE) leads to statistically significant improvements in the accuracy of hydrologic models, ultimately resulting in more reliable estimates of water storage. However, the usually shallow groundwater compartment of the models presents a problem with GRACE assimilation techniques, as these satellite observations account for much deeper aquifers. To improve the accuracy of groundwater estimates and allow the representation of the WTD at fine spatial scales we implemented a novel approach that enables a large-scale data integration system to assimilate GRACE data. This was achieved by augmenting the Variable Infiltration Capacity (VIC) hydrologic model, which is the core component of the Regional Hydrologic Extremes Assessment System (RHEAS), a high-resolution modeling framework developed at the Jet Propulsion Laboratory (JPL) for hydrologic modeling and data assimilation. The model has insufficient subsurface characterization and therefore, to reproduce groundwater variability not only in shallow depths but also in deep aquifers, as well as to allow GRACE assimilation, a fourth soil layer of varying depth ( 1000 meters) was added in VIC as the bottom layer. To initialize a water table in the model we used gridded global WTD data at 1 km resolution which were spatially aggregated to match the model's resolution. Simulations were then performed to test the augmented model's ability to capture seasonal and inter-annual trends of groundwater. The 4-layer version of VIC was run with and without assimilating GRACE Total Water Storage anomalies (TWSA) over the Central Valley in California. This is the first-ever assimilation of GRACE TWSA for the determination of realistic water table depths, at fine scales that are required for local water management. In addition, Open Loop and GRACE-assimilation simulations of water table depth were compared to in-situ data over the state of California, derived from observation wells operated/maintained by the U.S. Geological Service.
Pan, Yuanjin; Shen, Wen-Bin; Hwang, Cheinway; Liao, Chaoming; Zhang, Tengxu; Zhang, Guoqing
2016-01-01
Surface vertical deformation includes the Earth’s elastic response to mass loading on or near the surface. Continuous Global Positioning System (CGPS) stations record such deformations to estimate seasonal and secular mass changes. We used 41 CGPS stations to construct a time series of coordinate changes, which are decomposed by empirical orthogonal functions (EOFs), in northeastern Tibet. The first common mode shows clear seasonal changes, indicating seasonal surface mass re-distribution around northeastern Tibet. The GPS-derived result is then assessed in terms of the mass changes observed in northeastern Tibet. The GPS-derived common mode vertical change and the stacked Gravity Recovery and Climate Experiment (GRACE) mass change are consistent, suggesting that the seasonal surface mass variation is caused by changes in the hydrological, atmospheric and non-tidal ocean loads. The annual peak-to-peak surface mass changes derived from GPS and GRACE results show seasonal oscillations in mass loads, and the corresponding amplitudes are between 3 and 35 mm/year. There is an apparent gradually increasing gravity between 0.1 and 0.9 μGal/year in northeast Tibet. Crustal vertical deformation is determined after eliminating the surface load effects from GRACE, without considering Glacial Isostatic Adjustment (GIA) contribution. It reveals crustal uplift around northeastern Tibet from the corrected GPS vertical velocity. The unusual uplift of the Longmen Shan fault indicates tectonically sophisticated processes in northeastern Tibet. PMID:27490550
Inter-comparison of GRACE data over India
NASA Astrophysics Data System (ADS)
Banerjee, Chandan; Kumar, D. Nagesh
2016-05-01
The advent of satellite remote sensing and its use in hydrology has facilitated a huge leap in the understanding of the various water resources, its interaction with ecological systems and anthropogenic creations. Recently, NASA and German Aerospace Research Agency-DLR launched the Gravity Recovery and Climate Experiment (GRACE) satellite mission consisting of two satellites. They measure the time varying gravity which gives changes in the distribution of mass on the surface of the earth which after removing atmospheric and oceanic effects is majorly caused by changes in Terrestrial Water Storage (TWS) changes. GRACE data is generally available as spherical harmonic coefficients, which is difficult for hydrologists to understand and interpret. JPL's TELLUS website is now providing gridded global data set in the form of mass anomaly derived from the Level-2 data sets of spherical harmonic coefficients of 3 sources, viz. CSR, GFZ and JPL. Before using these data sets for solving hydrological problems, it is important to understand the differences and similarities between these data sets as direct calibration of GRACE data is not possible. In this study we do an inter-comparison of the Level-3 Release 05 data sets over India. We compare the data sets using Pearson, Spearman and Kendall correlation. CSR and GFZ data sets appear to be closest to each other whereas JPL and GFZ data sets are most different from each other.
NASA Astrophysics Data System (ADS)
Bonin, J. A.; Chambers, D. P.
2015-09-01
Mass change over Greenland can be caused by either changes in the glacial dynamic mass balance (DMB) or the surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate cumulative SMB from DMB with GRACE, using a least squares inversion technique with knowledge of the location of the glaciers. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from DMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 10 at a resolution of 90 × 90 would provide the accuracy needed for the interannual cumulative SMB and DMB to be accurately separated.
NASA Astrophysics Data System (ADS)
Bonin, J. A.; Chambers, D. P.
2015-02-01
Mass change over Greenland can be caused by either changes in the glacial mass balance (GMB) or the precipitation-based surface mass balance (SMB). The GRACE satellite gravity mission cannot directly separate the two physical causes because it measures the sum of the entire mass column with limited spatial resolution. We demonstrate one theoretical way to indirectly separate SMB from GMB with GRACE, using a least squares inversion technique with knowledge of the location of the glacier. However, we find that the limited 60 × 60 spherical harmonic representation of current GRACE data does not provide sufficient resolution to adequately accomplish the task. We determine that at a maximum degree/order of 90 × 90 or above, a noise-free gravity measurement could theoretically separate the SMB from GMB signals. However, current GRACE satellite errors are too large at present to separate the signals. A noise reduction of a factor of 9 at a resolution of 90 × 90 would provide the accuracy needed for the interannual SMB and GMB to be accurately separated.
NASA Astrophysics Data System (ADS)
Schnitzer, S.; Seitz, F.; Eicker, A.; Güntner, A.; Wattenbach, M.; Menzel, A.
2013-06-01
For the estimation of soil loss by erosion in the strongly affected Chinese Loess Plateau we applied the Universal Soil Loss Equation (USLE) using a number of input data sets (monthly precipitation, soil types, digital elevation model, land cover and soil conservation measures). Calculations were performed in ArcGIS and SAGA. The large-scale soil erosion in the Loess Plateau results in a strong non-hydrological mass change. In order to investigate whether the resulting mass change from USLE may be validated by the gravity field satellite mission GRACE (Gravity Recovery and Climate Experiment), we processed different GRACE level-2 products (ITG, GFZ and CSR). The mass variations estimated in the GRACE trend were relatively close to the observed sediment yield data of the Yellow River. However, the soil losses resulting from two USLE parameterizations were comparatively high since USLE does not consider the sediment delivery ratio. Most eroded soil stays in the study area and only a fraction is exported by the Yellow River. Thus, the resultant mass loss appears to be too small to be resolved by GRACE.
NASA Astrophysics Data System (ADS)
Karasu, İ. G.; Yilmaz, K. K.; Yilmaz, M. T.
2017-12-01
Estimation of the groundwater storage change and its interannual variability is critical over Konya Closed Basin which has excessive agricultural production. The annual total precipitation falling over the region is not sufficient to compensate the agricultural irrigation needs of the region. This leds many to use groundwater as the primary water resource, which resulted in significant drop in the groundwater levels. Accordingly, monitoring of the groundwater change is critical for sustainable water resources management. Gravity Recovery and Climate Experiment (GRACE) observations and Global Land Data Assimilation System (GLDAS) have been succesfully used over many locations to monitor the change in the groundwater storages. In this study, GRACE-derived terrestrial water storage estimates and GLDAS model soil moisture, canopy water, snow water equivalent and surface runoff simulations are used to retrieve the change in the groundwater storage over Konya Closed Basin streching over 50,000 km2 area. Initial comparisons show the declining trend in GRACE and GLDAS combined groundwater storage change estimates between 2002 and 2016 are consistent with the actual groundwater level change observed at ground stations. Even though many studies recommend GRACE observations to be used over regions larger than 100,000 km2 - 200,000 km2 area, results show GRACE remote sensing and GLDAS modeled groundwater change information are skillful to monitor the large mass changes occured as a result of the excessive groundwater exploitation over Konya Closed Basin with 50,000 km2 area.
The European 2015 drought from a groundwater perspective
NASA Astrophysics Data System (ADS)
Van Loon, Anne; Kumar, Rohini; Mishra, Vimal
2017-04-01
In 2015 central and eastern Europe were affected by severe drought. Impacts of the drought were felt across many sectors, incl. agriculture, drinking water supply, electricity production, navigation, fisheries, and recreation. This drought event has recently been studied from meteorological and streamflow perspective, but no analysis of the groundwater drought has been performed. This is not surprising because real-time groundwater level observations often are not available. In this study we use previously established spatially-explicit relationships between meteorological drought and groundwater drought to quantify the 2015 groundwater drought over two regions in southern Germany and eastern Netherlands. We also tested the applicability of the Gravity Recovery Climate Experiment (GRACE) Terrestrial Water Storage (TWS) and GRACE-based groundwater anomalies to capture the spatial variability of the 2003 and 2015 drought events. We use the monthly groundwater observations from 2040 wells to establish the spatially varying optimal accumulation period between the Standardized Groundwater Index (SGI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at a 0.250 gridded scale. The resulting optimal accumulation periods range between 1 and more than 24 months, indicating strong spatial differences in groundwater response time to meteorological input over the region. Based on these optimal accumulation periods, we found that in Germany a uniform severe groundwater drought persisted for several months (i.e. SGI below the drought threshold of 20th percentile for almost all grid cells in August, September and October 2015), whereas the Netherlands appeared to have relatively high groundwater levels (never below the drought threshold of 20th percentile). The differences between this event and the European 2003 benchmark drought are striking. The 2003 groundwater drought was less uniformly pronounced, both in the Netherlands and Germany, with the regional averaged SGI above the 50th percentile. This is because slowly responding wells still were above average from the wet year of 2002-2003, which experienced severe flooding in central Europe. GRACE-TWS does show that both 2003 and 2015 were relatively dry, but the difference between Germany and the Netherlands in 2015 and the spatially-variable groundwater drought pattern in 2003 were not captured. This could be associated to the coarse spatial scale of GRACE. The simulated groundwater anomalies based on GRACE-TWS deviated considerably from the GRACE-TWS signal and from observed groundwater anomalies. These are therefore not suitable for use in real-time groundwater drought monitoring in our case study regions. Our study shows that the relationship between meteorological drought and groundwater drought can be used to quantify groundwater drought and that the 2015 groundwater drought in southern Germany was more severe than the 2003 drought, because of preconditions in slowly responding groundwater wells. For sustainable groundwater drought management strategies the use of groundwater level monitoring is needed to study the spatial variability of local groundwater drought, which mostly coincides with drought impacts.
Assessing uncertainties of GRACE-derived terrestrial water-storage fields
NASA Astrophysics Data System (ADS)
Fereria, Vagner; Montecino, Henry
2017-04-01
Space-borne sensors are producing many remotely sensed data and, consequently, different measurements of the same field are available to end users. Furthermore, different satellite processing centres are producing extensive products based on the data of only one mission. This is exactly the case with the Gravity Recovery and Climate Experiment (GRACE) mission, which has been monitoring terrestrial water storage (TWS) since April 2002, while the Centre for Space Research (CSR), the Jet Propulsion Laboratory (JPL), the GeoForschungsZentrum (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), among others, provide individual monthly solutions in the form of Stokes's coefficients. The inverted TWS maps from Stokes's coefficients are being used in many applications and, therefore, as no ground truth data exist, the uncertainties are unknown. An assessment of the uncertainties associated with these different products is mandatory in order to guide data producers and support the users to choose the best dataset. However, the estimation of uncertainties of space-borne products often relies on ground truth data, and in the absence of such data, an assessment of their qualities is a challenge. A recent study (Ferreira et al. 2016) evaluates the quality of each processing centre (CSR, JPL, GFZ, and GRGS) by estimating their individual uncertainties using a generalised formulation of the three-cornered hat (TCH) method. It was found that the TCH results for the study period of August 2002 to June 2014 indicate that on a global scale, the CSR, GFZ, GRGS, and JPL present uncertainties of 9.4, 13.7, 14.8, and 13.2 mm, respectively. On a basin scale, the overall good performance of the CSR is observed at 91 river basins. The TCH-based results are confirmed by a comparison with an ensemble solution from the four GRACE processing centres. Reference Ferreira VG, Montecino HDC, Yakubu CI and Heck B (2016) Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. Journal of Applied Remote Sensing, 10(1), pp 015015-(1-20). doi: 10.1117/1.JRS.10.015015
NASA Astrophysics Data System (ADS)
Alexander, Patrick M.; Tedesco, Marco; Schlegel, Nicole-Jeanne; Luthcke, Scott B.; Fettweis, Xavier; Larour, Eric
2016-06-01
Improving the ability of regional climate models (RCMs) and ice sheet models (ISMs) to simulate spatiotemporal variations in the mass of the Greenland Ice Sheet (GrIS) is crucial for prediction of future sea level rise. While several studies have examined recent trends in GrIS mass loss, studies focusing on mass variations at sub-annual and sub-basin-wide scales are still lacking. At these scales, processes responsible for mass change are less well understood and modeled, and could potentially play an important role in future GrIS mass change. Here, we examine spatiotemporal variations in mass over the GrIS derived from the Gravity Recovery and Climate Experiment (GRACE) satellites for the January 2003-December 2012 period using a "mascon" approach, with a nominal spatial resolution of 100 km, and a temporal resolution of 10 days. We compare GRACE-estimated mass variations against those simulated by the Modèle Atmosphérique Régionale (MAR) RCM and the Ice Sheet System Model (ISSM). In order to properly compare spatial and temporal variations in GrIS mass from GRACE with model outputs, we find it necessary to spatially and temporally filter model results to reproduce leakage of mass inherent in the GRACE solution. Both modeled and satellite-derived results point to a decline (of -178.9 ± 4.4 and -239.4 ± 7.7 Gt yr-1 respectively) in GrIS mass over the period examined, but the models appear to underestimate the rate of mass loss, especially in areas below 2000 m in elevation, where the majority of recent GrIS mass loss is occurring. On an ice-sheet-wide scale, the timing of the modeled seasonal cycle of cumulative mass (driven by summer mass loss) agrees with the GRACE-derived seasonal cycle, within limits of uncertainty from the GRACE solution. However, on sub-ice-sheet-wide scales, some areas exhibit significant differences in the timing of peaks in the annual cycle of mass change. At these scales, model biases, or processes not accounted for by models related to ice dynamics or hydrology, may lead to the observed differences. This highlights the need for further evaluation of modeled processes at regional and seasonal scales, and further study of ice sheet processes not accounted for, such as the role of subglacial hydrology in variations in glacial flow.
GRACE Mass Flux Measurements of Inland and Marginal Seas from Mascons: Analysis and Validation
NASA Astrophysics Data System (ADS)
Loomis, B.; Luthcke, S. B.; Sabaka, T. J.
2015-12-01
The latest GRACE time-variable gravity mascon solution from the NASA Goddard Space Flight Center (GSFC) applies an optimized set of models and constraints towards the direct measurement of 1-arc-degree global mass flux parameters each month. Separate mascon spatial constraint regions have been defined for the largest inland and marginal seas: Mediterranean Sea, Black Sea, Caspian Sea, Red Sea, and Hudson Bay. The mascon estimation approach, when applied with well-designed constraints, minimizes signal leakage across regional boundaries and eliminates the need for post-processing strategies. These post-processing techniques (e.g. smoothed averaging kernels) are necessary for computing regional mass change from the unconstrained spherical harmonics provided by the GRACE project to reduce the effect of noisy high degree and order terms, but introduce signal leakage into and out of the considered region. These mass signals are also difficult to obtain from altimetry measurements due to the comparatively sparse temperature and salinity data in these regions, which is needed to compute and remove the steric component of sea level variations. We provide new GSFC mascon measurements of these inland and marginal seas and compare to results obtained from kernel-averaged spherical harmonic solutions and steric-corrected altimetry measurements. The relative accuracy of the various solutions is determined by incorporating their output into the set of forward models applied in our processing of the GRACE Level-1B data and analyzing the effect on the inter-satellite range-rate residuals, where a reduction in residuals is a direct validation of improved solution quality.
Simultaneous Observations of TADs in GOCE, CHAMP and GRACE Density Data Compared with CTIPe
NASA Astrophysics Data System (ADS)
Bruinsma, S. L.; Fedrizzi, M.
2012-12-01
The accelerometers on the CHAMP and GRACE satellites have made it possible to accumulate near-continuous records of thermosphere density between about 300 and 490 km since May 2001, and July 2002, respectively. Since November 2009, a third gravity field satellite mission, ESA's GOCE, is in a very low and near heliosynchronous dawn-dusk orbit at about 270 km. The spacecraft is actively maintained at that constant altitude using an ion propulsion engine that compensates the aerodynamic drag in the flight direction. The thrust level, combined with accelerometer and satellite attitude data, is used to compute atmospheric densities and cross-track winds. The response of the thermosphere to geomagnetic disturbances, i.e., space weather, has been extensively studied using the exceptional datasets of CHAMP and GRACE. Thanks to GOCE we now have a third excellent data set for these studies. In this presentation we will show the observed density and its variability for the geomagnetic storm of 5 April 2010, and compare it with predictions along the orbits obtained from a self-consistent physics-based coupled model of the thermosphere, ionosphere, plasmasphere and electrodynamics (CTIPe). For this storm, the CHAMP and GOCE orbit planes were perpendicular (12/24 Local Solar Time, and 6/18 LST, respectively) and the altitude difference was only approximately 30 km. The GRACE densities are at a much higher altitude of about 475 km. Wave-like features are revealed or enhanced after filtering of the densities and calculation of relative density variations. Traveling Atmospheric Disturbances are observed in the data, and the model's fidelity in reproducing the waves is evaluated.
NASA Astrophysics Data System (ADS)
Zhou, H.; Luo, Z.; Tangdamrongsub, N.; He, L.
2017-12-01
Accurate TWS estimation is important to evaluate the situation of the water resource over the Yangtze River basin. This study exploits the TWS observation from the new gravity model, HUST-Grace06, which is developed by a new low-frequency noise processing strategy. A novel GRACE post-processing approach is proposed to enhance the quality of the TWS estimate, and the improved TWS is used to characterize the hydrological activities over the Yangtze River basin. The approach includes the effective noise reduction and the leakage error mitigation based on forward modeling. The HUST-Grace06 derived TWS presents good agreement with the CSR mascon solution as well as the PCR-GLOBWB hydrological model. Particularly, our solution provides remarkable performance in identifying the extreme climate events e.g., flood and drought over the Yangtze River basin. In addition, for the first time, the NCEP/NCAR reanalysis data is incorporated with GRACE in the exploration of the climate induced hydrological activities. The comparison between GRACE and the MODIS-derived NDVI data is also conducted to investigate their connection regarding temporal and spatial distribution. The analysis suggests that the terrestrial reflectance data can be used to represent the TWS information. Importantly, such information can be used to fill the missing data in case of the early termination of GRACE or during the prelaunch of the GRACE Follow-On mission.
NASA Astrophysics Data System (ADS)
Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.
2007-12-01
In an approach termed the P-E-R (or simply PER) method, we apply the basin water budget equation to diagnose the long-term variability of the total terrestrial water storage (TWS). The key input variables are observed precipitation (P) and runoff (R), and estimated evaporation (E). Unlike typical offline land-surface model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the PER method imposes an important constraint on the diagnosed TWS. Although there lack basin-scale observations of evaporation, the tendency of E to have significantly less variability than the difference between precipitation and runoff (P-R) minimizes the uncertainties originating from estimated evaporation. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R (MCR method), the use of observed precipitation in PER method is expected to lead to general improvement, especially in regions atmospheric radiosonde data are too sparse to constrain the atmospheric model analyzed MC such as in the remote tropics. TWS was diagnosed using the PER method for the Amazon (1970-2006) and the Mississippi Basin (1928-2006), and compared with MCR method, land-surface model and reanalyses, and NASA's GRACE satellite gravity data. The seasonal cycle of diagnosed TWS over the Amazon is about 300 mm. The interannual TWS variability in these two basins are 100-200 mm, but multi-dacadal changes can be as large as 600-800 mm. Major droughts such as the Dust Bowl period had large impact with water storage depleted by 500 mm over a decade. Within the short period 2003-2006 when GRACE data was available, PER and GRACE show good agreement both for seasonal cycle and interannual variability, providing potential to cross-validate each other. In contrast, land-surface model results are significantly smaller than PER and GRACE, especially towards longer timescales. While we currently lack independent means to verify these long-term changes, simple error analysis using 3 precipitation datasets and 3 evaporation estimates suggest that the multi-decadal amplitude can be uncertain up to a factor of 2, while the agreement is high on interannual timescales. The large TWS variability implies the remarkable capacity of land-surface in storing and taking up water that may be under-represented in models. The results also suggest the existence of water storage memories on multi-year time scales, significantly longer than typically assumed seasonal timescales associated with surface soil moisture.
Regional ice-mass changes and glacial-isostatic adjustment in Antarctica from GRACE
NASA Astrophysics Data System (ADS)
Sasgen, Ingo; Martinec, Zdeněk; Fleming, Kevin
2007-12-01
We infer regional mass changes in Antarctica using ca. 4 years of Gravity Recovery and Climate Experiment (GRACE) level 2 data. We decompose the time series of the Stokes coefficients into their linear as well as annual and semi-annual components by a least-squares adjustment and apply a statistical reliability test to the Stokes potential-coefficients' linear temporal trends. Mass changes in three regions of Antarctica that display prominent geoid-height change are determined by adjusting predictions of glacier melting at the tip of the Antarctic Peninsula and in the Amundsen Sea Sector, and of the glacial-isostatic adjustment (GIA) over the Ronne Ice Shelf. We use the GFZ RL04, CNES RL01C, JPL RL04 and CSR RL04 potential-coefficient releases, and show that, although all data sets consistently reflect the prominent mass changes, differences in the mass-change estimates are considerably larger than the uncertainties estimated by the propagation of the GRACE errors. We then use the bootstrapping method based on the four releases and six time intervals, each with 3.5 years of data, to quantify the variability of the mean mass-change estimates. We find 95% of our estimates to lie within 0.08 and 0.09 mm/a equivalent sea-level (ESL) change for the Antarctic Peninsula and within 0.18 and 0.20 mm/a ESL for the Amundsen Sea Sector. Forward modelling of the GIA over the Ronne Ice Shelf region suggests that the Antarctic continent was covered by 8.4 to 9.4 m ESL of additional ice during the Last-Glacial Maximum (ca. 22 to 15 ka BP). With regards to the mantle-viscosity values and the glacial history used, this value is considered as a minimum estimate. The mass-change estimates derived from all GRACE releases and time intervals lie within ca. 20% (Amundsen Sea Sector), 30% (Antarctic Peninsula) and 50% (Ronne Ice Shelf region) of the bootstrap-estimated mean, demonstrating the reliability of results obtained using GRACE observations.
Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration
NASA Astrophysics Data System (ADS)
Bai, P.
2017-12-01
Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.
NASA Astrophysics Data System (ADS)
Li, Tanghua; Wu, Patrick; Wang, Hansheng; Jia, Lulu; Steffen, Holger
2018-03-01
The Gravity Recovery and Climate Experiment (GRACE) satellite mission measures the combined gravity signal of several overlapping processes. A common approach to separate the hydrological signal in previous ice-covered regions is to apply numerical models to simulate the glacial isostatic adjustment (GIA) signals related to the vanished ice load and then remove them from the observed GRACE data. However, the results of this method are strongly affected by the uncertainties of the ice and viscosity models of GIA. To avoid this, Wang et al. (Nat Geosci 6(1):38-42, 2013. https://doi.org/10.1038/NGEO1652; Geodesy Geodyn 6(4):267-273, 2015) followed the theory of Wahr et al. (Geophys Res Lett 22(8):977-980, 1995) and isolated water storage changes from GRACE in North America and Scandinavia with the help of Global Positioning System (GPS) data. Lambert et al. (Postglacial rebound and total water storage variations in the Nelson River drainage basin: a gravity GPS Study, Geological Survey of Canada Open File, 7317, 2013a, Geophys Res Lett 40(23):6118-6122, https://doi.org/10.1002/2013GL057973, 2013b) did a similar study for the Nelson River basin in North America but applying GPS and absolute gravity measurements. However, the results of the two studies in the Nelson River basin differ largely, especially for the magnitude of the hydrology signal which differs about 35%. Through detailed comparison and analysis of the input data, data post-processing techniques, methods and results of these two works, we find that the different GRACE data post-processing techniques may lead to this difference. Also the GRACE input has a larger effect on the hydrology signal amplitude than the GPS input in the Nelson River basin due to the relatively small uplift signal in this region. Meanwhile, the influence of the value of α , which represents the ratio between GIA-induced uplift rate and GIA-induced gravity-rate-of-change (before the correction for surface uplift), is more obvious in areas with high vertical uplift, but is smaller in the Nelson River basin. From Gaussian filtering of simulated data, we found that the magnitude of the peak gravity signal value can decrease significantly after Gaussian filtering with large average radius filter, but the effect in the Nelson River basin is rather small. More work is needed to understand the effect of amplitude restoration in the post-processing of GRACE g-dot signal. However, it is encouraging to find that both the methodologies of Wang et al. (2013, 2015) and Lambert et al. (2013a, b) can produce very similar results if their inputs are the same. This means that their methodologies can be applied to study the hydrology in other areas that are also affected by GIA provided that the effects of post-processing of their inputs are under control.
2018-05-21
NASA Headquarters Public Affairs Officer Steve Cole, left, moderates the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission prelaunch media briefing with David Jarrett, GRACE-FO program executive in the Earth Science Division at NASA Headquarters; Frank Webb, GRACE-FO project scientist at JPL; Frank Flechtner, GRACE-FO project manager for the German Research Centre for Geosciences (GFZ) in Potsdam, Germany; Phil Morton, NASA GRACE-FO project manager at JPL; and Capt. Jennifer Haden, weather officer, 30th Space Wing, Vandenberg Air Force Base, right, Monday, May 21, 2018, at Vandenberg Air Force Base in California. The twin GRACE-FO spacecraft will measure changes in how mass is redistributed within and among Earth's atmosphere, oceans, land and ice sheets, as well as within Earth itself. Photo Credit: (NASA/Bill Ingalls)
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2014-08-28
The analysis of GRACE gravity data revealed postseismic gravity increase by 6 μGal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40-50% of the coseismic gravity change. It originates mostly from changes in the isotropic component corresponding to the M rr moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The postseismic gravity variation is best modeled by the biviscous relaxation with a transient and steady state viscosity of 10 18 and 10 19 Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized postseismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying.
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2014-01-01
The analysis of GRACE gravity data revealed postseismic gravity increase by 6 μGal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40–50% of the coseismic gravity change. It originates mostly from changes in the isotropic component corresponding to the Mrr moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The postseismic gravity variation is best modeled by the biviscous relaxation with a transient and steady state viscosity of 1018 and 1019 Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized postseismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying. PMID:25821272
Local Hydrological effects in Membach, Belgium: influence on the long term gravity variation
NASA Astrophysics Data System (ADS)
van Camp, M.; Dassargues, A.; Vanneste, K.; Verbeeck, K.; Warnant, R.
2003-04-01
Absolute (AG) and superconducting (SG) gravity measurements have been performed since 1996 at the underground Membach Station (Ardenne, eastern Belgium). Two effects can be distinguished: one seasonal-like and a long-term geophysical trend. The first effect is a 5 µGal seasonal-like term due most probably and mainly to hydrological variations. To determine the thickness of the porous unconsolidated layer covering the fissured bed-rock (low-porosity argillaceous sandstone with quartzitic beds) through which the tunnel was excavated, geophysical prospecting has been undertaken above the Membach station. This shows that the thickness of the weathered zone covering the bedrock can be highly variable between zero and 10 meters (possibly due to palaeo mudflows linked to periglacial conditions in the area). This leads to highly variable (in space) saturation capacity of the subsoil above the gallery. The extensive geological researches will allow us to correct the gravity variations induced by the variable mass of water stored in the shallow partially saturated soil. This work can be essential to correct local effects that can mask regional effects such as changes in continental water storage. Local effects, indeed, could prevent the combination of satellite data (e.g. GRACE) with ground-based gravity measurements. On the other hand, studying the local seasonal variations also contributes to investigate the influence of the water storage variations in small river basins on the time dependent gravity field. The second effect is the detection of a very low geophysical trend in gravity of -0.5+/-0.1 µGal/year. The SG drift, the hydrological effects, and the origin of the low trend are discussed. In particular, we show a good correlation between the gravity measurements and the continuous GPS measurements being made since 1997 at 3 km from the station. Possible crustal deformations could be linked to active faults in the Ardenne and/or bordering the Roer Valley Graben, or perhaps linked to the Eifel plume.
NASA Astrophysics Data System (ADS)
Peltier, W. R.; Luthcke, Scott B.
2009-11-01
The theory previously developed to predict the impact on Earth's rotational state of the late Pleistocene glaciation cycle is extended. In particular, we examine the extent to which a departure of the infinite time asymptote of the viscoelastic tidal Love number of degree 2, "k2T," from the observed "fluid" Love number, "kf," impacts the theory. A number of tests of the influence of the difference in these Love numbers on theoretical predictions of the model of the glacial isostatic adjustment (GIA) process are explored. Relative sea level history predictions are shown not to be sensitive to the difference even though they are highly sensitive to the influence of the changing rotational state itself. We also explore in detail the accuracy with which the Gravity Recovery and Climate Experiment (GRACE) satellite system is able to observe the global GIA process including the time-dependent amplitude of the degree 2 and order 1 spherical harmonic components of the gravitational field, the only components that are significantly influenced by rotational effects. It is explicitly shown that the GRACE observation of these properties of the time-varying gravitational field is sufficiently accurate to rule out the values predicted by the ICE-5G (VM2) model of Peltier (2004). However, we also note that this model is constrained only by data from an epoch during which modern greenhouse gas induced melting of both the great polar ice-sheets and small ice sheets and glaciers was not occurring. Such modern loss of grounded continental ice strongly influences the evolving rotational state of the planet and thus the values of the degree 2 and order 1 Stokes coefficients as they are currently being measured by the GRACE satellite system. A series of sensitivity tests are employed to demonstrate this fact. We suggest that the accuracy of scenarios for modern land ice melting may be tested by ensuring that such scenarios conform to the GRACE observations of these crucial time-dependent Stokes coefficients.
Aerothermal Analysis and Design of the Gravity Recovery and Climate Experiment (GRACE) Spacecraft
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Kumar, Renjith R.; Qu, Min; Seywald, Hans
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
Broadband assessment of degree-2 gravitational changes from GRACE and other estimates, 2002-2015
NASA Astrophysics Data System (ADS)
Chen, J. L.; Wilson, C. R.; Ries, J. C.
2016-03-01
Space geodetic measurements, including the Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), and Earth rotation provide independent and increasingly accurate estimates of variations in Earth's gravity field Stokes coefficients ΔC21, ΔS21, and ΔC20. Mass redistribution predicted by climate models provides another independent estimate of air and water contributions to these degree-2 changes. SLR has been a successful technique in measuring these low-degree gravitational changes. Broadband comparisons of independent estimates of ΔC21, ΔS21, and ΔC20 from GRACE, SLR, Earth rotation, and climate models during the GRACE era from April 2002 to April 2015 show that the current GRACE release 5 solutions of ΔC21 and ΔS21 provided by the Center for Space Research (CSR) are greatly improved over earlier solutions and agree remarkably well with other estimates, especially on ΔS21 estimates. GRACE and Earth rotation ΔS21 agreement is exceptionally good across a very broad frequency band from intraseasonal, seasonal, to interannual and decadal periods. SLR ΔC20 estimates remain superior to GRACE and Earth rotation estimates, due to the large uncertainty in GRACE ΔC20 solutions and particularly high sensitivity of Earth rotation ΔC20 estimates to errors in the wind fields. With several estimates of ΔC21, ΔS21, and ΔC20 variations, it is possible to estimate broadband noise variance and noise power spectra in each, given reasonable assumptions about noise independence. The GRACE CSR release 5 solutions clearly outperform other estimates of ΔC21 and ΔS21 variations with the lowest noise levels over a broad band of frequencies.
NASA Astrophysics Data System (ADS)
Godah, Walyeldeen; Szelachowska, Małgorzata; Krynski, Jan
2017-12-01
The dedicated gravity satellite missions, in particular the GRACE (Gravity Recovery and Climate Experiment) mission launched in 2002, provide unique data for studying temporal variations of mass distribution in the Earth's system, and thereby, the geometry and the gravity fi eld changes of the Earth. The main objective of this contribution is to estimate physical height (e.g. the orthometric/normal height) changes over Central Europe using GRACE satellite mission data as well as to analyse them and model over the selected study area. Physical height changes were estimated from temporal variations of height anomalies and vertical displacements of the Earth surface being determined over the investigated area. The release 5 (RL05) GRACE-based global geopotential models as well as load Love numbers from the Preliminary Reference Earth Model (PREM) were used as input data. Analysis of the estimated physical height changes and their modelling were performed using two methods: the seasonal decomposition method and the PCA/ EOF (Principal Component Analysis/Empirical Orthogonal Function) method and the differences obtained were discussed. The main fi ndings reveal that physical height changes over the selected study area reach up to 22.8 mm. The obtained physical height changes can be modelled with an accuracy of 1.4 mm using the seasonal decomposition method.
NASA Technical Reports Server (NTRS)
2003-01-01
The objective of this investigation has been to examine the mass and momentum exchange between the atmosphere, oceans, solid Earth, hydrosphere, and cryosphere. The investigation has focused on changes in the Earth's gravity field, its rotation rate, atmospheric and oceanic circulation, global sea level change, ice sheet change, and global ground water circulation observed by contemporary sensors and models. The primary component of the mass exchange is water. The geodetic observables provided by these satellite sensors are used to study the transport of water mass in the hydrological cycle from one component of the Earth to another, and they are also used to evaluate the accuracy of models. As such, the investigation is concerned with the overall global water cycle. This report provides a description of scientific, educational and programmatic activities conducted during the period July 1, 1999 through June 30,2000. Research has continued into measurements of time-varying gravity and its relationship to Earth rotation. Variability of angular momentum and the related excitation of polar motion and Earth rotation have been examined for the atmosphere and oceans at time-scales of weeks to several years. To assess the performance of hydrologic models, we have compared geodetic signals derived from them with those observed by satellites. One key component is the interannual mass variability of the oceans obtained by direct observations from altimetry after removing steric signals. Further studies have been conducted on the steric model to quantify its accuracy at global and basin-scales. The results suggest a significant loss of water mass from the Oceans to the land on time-scales longer than 1-year. These signals are not reproduced in any of the models, which have poorly determined interannual fresh water fluxes. Output from a coupled atmosphere-ocean model testing long-term climate change hypotheses has been compared to simulated errors from the Gravity Recovery and Climate Experiment (GRACE) mission. Results indicate that GRACE will be able to observe seasonal signals at half-wavelengths ranging from 1000 to 10000 km, and may be able to observe secular trends at half- wavelengths of greater than 2000-3000 km for soil moisture and snow depth if they are as large as some of the climate experiments predict.
Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso
2016-11-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km 2 ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. © 2016, National Ground Water Association.
Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations
Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso
2016-01-01
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.
Laser ranging interferometer for GRACE follow-on
NASA Astrophysics Data System (ADS)
Heinzel, Gerhard; Sheard, Benjmin; Brause, Nils; Danzmann, Karsten; Dehne, Marina; Gerberding, Oliver; Mahrdt, Christoph; Müller, Vitali; Schütze, Daniel; Stede, Gunnar; Klipstein, William; Folkner, William; Spero, Robert; Nicklaus, Kolja; Gath, Peter; Shaddock, Daniel
2017-11-01
The Gravity Recovery and Climate Experiment (GRACE) has produced a wealth of data on Earth gravity, hydrology, glaciology and climate research. To continue that data after the imminent end of the GRACE mission, a follow-on mission is planned to be launched in 2017, as a joint USGerman project with a smaller Australian contribution. The satellites will be essentially rebuilt as they were for GRACE using microwave ranging as the primary instrument for measuring changes of the intersatellite distance. In addition and in contrast to the original GRACE mission, a Laser Ranging Interferometer (LRI, previously also called `Laser Ranging Instrument') will be included as a technology demonstrator, which will operate together with the microwave ranging and supply a complimentary set of ranging data with lower noise, and new data on the relative alignment between the spacecraft. The LRI aims for a noise level of 80 nm/√Hz over a distance of up to 270km and will be the first intersatellite laser ranging interferometer. It shares many technologies with LISA-like gravitational wave observatories. This paper describes the optical architecture including the mechanisms to handle pointing jitter, the main noise sources and their mitigation, and initial laboratory breadboard experiments at AEI Hannover.
Improvement of the GRACE star camera data based on the revision of the combination method
NASA Astrophysics Data System (ADS)
Bandikova, Tamara; Flury, Jakob
2014-11-01
The new release of the sensor and instrument data (Level-1B release 02) of the Gravity Recovery and Climate Experiment (GRACE) had a substantial impact on the improvement of the overall accuracy of the gravity field models. This has implied that improvements on the sensor data level can still significantly contribute to arriving closer to the GRACE baseline accuracy. The recent analysis of the GRACE star camera data (SCA1B RL02) revealed their unexpectedly higher noise. As the star camera (SCA) data are essential for the processing of the K-band ranging data and the accelerometer data, thorough investigation of the data set was needed. We fully reexamined the SCA data processing from Level-1A to Level-1B with focus on the combination method of the data delivered by the two SCA heads. In the first step, we produced and compared our own combined attitude solution by applying two different combination methods on the SCA Level-1A data. The first method introduces the information about the anisotropic accuracy of the star camera measurement in terms of a weighing matrix. This method was applied in the official processing as well. The alternative method merges only the well determined SCA boresight directions. This method was implemented on the GRACE SCA data for the first time. Both methods were expected to provide optimal solution characteristic by the full accuracy about all three axes, which was confirmed. In the second step, we analyzed the differences between the official SCA1B RL02 data generated by the Jet Propulsion Laboratory (JPL) and our solution. SCA1B RL02 contains systematically higher noise of about a factor 3-4. The data analysis revealed that the reason is the incorrect implementation of algorithms in the JPL processing routines. After correct implementation of the combination method, significant improvement within the whole spectrum was achieved. Based on these results, the official reprocessing of the SCA data is suggested, as the SCA attitude data are one of the key observations needed for the gravity field recovery.
NASA Technical Reports Server (NTRS)
Cox, Christopher M.; Chao, Benjamin F.; Au, Andrew Y.; Boy, J.-P.
2003-01-01
The oblateness of the Earth's gravity field, 52, has long been observed to undergo a slight decrease due to post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again. Presently, the time series appears to be returning to the value that would nominally have been reached had the anomaly not occurred. This anomaly signifies a large interannual change in global mass distribution whose J2 effect overshadows that of the post-glacial rebound over such timescales. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. The amount by which J2 returns to it's nominal value provides a valuable constraint on the separation of the causes, and will be considered. We will present our latest Satellite Laser Ranging and DORIS Doppler derived time series for J2, and various other low-degree harmonic terms, as well as our investigations into the causes. In addition, we will show the comparison of the J2 results with those derived from CHAMP, as computed at NASA GSFC, and the recently released GRACE gravity model.
Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.
Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung
2015-05-01
Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr 2 . Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr 2 . However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr 2 . Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr 2 .
NASA Astrophysics Data System (ADS)
Hardy, R. A.; Nerem, R. S.; Wiese, D. N.
2017-12-01
Gravity and surface elevation change data altimetry provide different perspectives on mass variability in Antarctica. In anticipation of the concurrent operation of the successors of GRACE and ICESat, GRACE Follow-On and ICESat-2, we approach the problem of combining these data for enhanced spatial resolution and disaggregation of Antarctica's major mass transport processes. Using elevation changes gathered from over 500 million overlapping ICESat laser shot pairs between 2003 and 2009, we construct gridded models of Antarctic elevation change for each ICESat operational period. Comparing these elevation grids with temporally registered JPL RL05M mascon solutions, we exploit the relationship between surface mass flux and elevation change to inform estimates of effective surface density. These density estimates enable solutions for glacial isostatic adjustment and monthly estimates of surface mass change. These are used alongside spatial statistics from both the data and models of surface mass balance to produce enhanced estimates of Antarctic mass balance. We validate our solutions by modeling the effects of elastic loading and GIA from these solutions on the vertical motion of Antarctica's GNSS sites.
Partitioning GRACE ice loss for the Juneau Icefield using modeling, airborne and ground observations
NASA Astrophysics Data System (ADS)
Young, J. C.; Arendt, A. A.; Pettit, E. C.
2017-12-01
Glaciers of Alaska and Northwestern Canada are losing mass at one of the highest rates of any mountain glacier system globally. High-precision measurements from NASA's Gravity Recovery and Climate Experiment (GRACE) satellites have revealed changes in the local gravitational field along the Gulf of Alaska due to changes in these ice masses since 2003. In previous studies on Alaska glaciers, mass change estimates derived from GRACE compare well to time series' of Gulf of Alaska runoff from mass balance modeling. However, these studies did not adequately partition glacier and terrestrial snow pack mass change signals due to limited modeling capabilities and lack of sufficient ground observations. Our study focuses on the Juneau Icefield, one of the best-monitored areas in Alaska in terms of glacier mass balance, as a case study for partitioning GRACE glacier mass changes from terrestrial water storage changes both seasonally and in long-term trends. We leverage the modeling tool SnowModel to generate a time series of mass changes using assimilated field observations and airborne laser altimetry, and we compare to an iterated mass concentration GRACE solution from the NASA Goddard Space Flight Center Geodesy Laboratory ( 30-day intervals and 12,390 km2 resolution). The GRACE solution forward-models all mass signals other than those due to terrestrial water storage and the cryosphere, therefore requiring additional analysis to partition glacier mass balance and water storage signals. Our approach is one of the first to analyze GRACE at the sub-mountain range scale, and to examine terrestrial water storage trends at a smaller scale than the full Gulf of Alaska. Ultimately, this study points to refinements in the forward-modeling of terrestrial water storage in the GRACE processing chain, and provides best estimates for the timing and magnitude of subannual and long-term changes of the Juneau Icefield from 2003 to present.
Dynamics of the Antarctic Circumpolar Current as seen by GRACE (Invited)
NASA Astrophysics Data System (ADS)
Thomas, M.; Dobslaw, H.; Bergmann, I.
2010-12-01
The Antarctic Circumpolar Current, being the strongest and longest ocean current on Earth, connects the three great ocean basins and contributes substantially to the global re-distribution of water masses, with a significant impact on global climate. Observational coverage from in-situ measurements is sparse due to the harsh environmental conditions, and satellite altimetry does not capture the full extent of the current due to seasonal sea-ice coverage. Ocean bottom pressure variations as sensed with the satellite gravity mission GRACE provide a promising way to broaden our observational basis. Besides monthly mean gravity fields that provide ocean bottom pressure variations averaged over 30 days, several alternative GRACE products with higher temporal resolution have been developed during the most recent years. These include 10-day solutions from GRGS Toulouse, weekly solutions from the GFZ Potsdam as well as constrained daily solutions from the University of Bonn which have been obtained by means of a Kalman filtering approach. In this presentation, ocean bottom pressure derived from these alternative GRACE releases will be contrasted against both in-situ observations and output from a numerical ocean model, highlighting the additional information contained in these GRACE solutions with respect to the standard monthly fields. By means of statistical analyses of ocean bottom pressure variations and barotropic transports it will be demonstrated how these new GRACE releases are contributing to our understanding of this highly dynamic great ocean conveyor.
Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions
NASA Astrophysics Data System (ADS)
McCullough, Christopher; Bettadpur, Srinivas
2015-04-01
In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.
Arm-Locking with the GRACE Follow-On Laser Ranging Instrument
NASA Technical Reports Server (NTRS)
Thorpe, James Ira; Mckenzie, Kirk
2016-01-01
Arm-locking is a technique for stabilizing the frequency of a laser in an inter-spacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA), arm-locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the Laser Ranging Instrument flying aboard the upcoming Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly two orders of magnitude around a Fourier frequency of 1Hz with conservative margins on the system's stability. We further demonstrate that `pulling' of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
Evaluating short-term hydro-meteorological fluxes using GRACE-derived water storage changes
NASA Astrophysics Data System (ADS)
Eicker, A.; Jensen, L.; Springer, A.; Kusche, J.
2017-12-01
Atmospheric and terrestrial water budgets, which represent important boundary conditions for both climate modeling and hydrological studies, are linked by evapotranspiration (E) and precipitation (P). These fields are provided by numerical weather prediction models and atmospheric reanalyses such as ERA-Interim and MERRA-Land; yet, in particular the quality of E is still not well evaluated. Via the terrestrial water budget equation, water storage changes derived from products of the Gravity Recovery and Climate Experiment (GRACE) mission, combined with runoff (R) data can be used to assess the realism of atmospheric models. In this contribution we will investigate the closure of the water balance for short-term fluxes, i.e. the agreement of GRACE water storage changes with P-E-R flux time series from different (global and regional) atmospheric reanalyses, land surface models, as well as observation-based data sets. Missing river runoff observations will be extrapolated using the calibrated rainfall-runoff model GR2M. We will perform a global analysis and will additionally focus on selected river basins in West Africa. The investigations will be carried out for various temporal scales, focusing on short-term fluxes down to daily variations to be detected in daily GRACE time series.
Arm locking with the GRACE follow-on laser ranging interferometer
NASA Astrophysics Data System (ADS)
Thorpe, James Ira; McKenzie, Kirk
2016-02-01
Arm locking is a technique for stabilizing the frequency of a laser in an interspacecraft interferometer by using the spacecraft separation as the frequency reference. A candidate technique for future space-based gravitational wave detectors such as the Laser Interferometer Space Antenna, arm locking has been extensive studied in this context through analytic models, time-domain simulations, and hardware-in-the-loop laboratory demonstrations. In this paper we show the laser ranging interferometer instrument flying aboard the upcoming Gravity Recovery and Climate Experiment follow-on (GRACE-FO) mission provides an appropriate platform for an on-orbit demonstration of the arm-locking technique. We describe an arm-locking controller design for the GRACE-FO system and a series of time-domain simulations that demonstrate its feasibility. We conclude that it is possible to achieve laser frequency noise suppression of roughly 2 orders of magnitude around a Fourier frequency of 1 Hz with conservative margins on the system's stability. We further demonstrate that "pulling" of the master laser frequency due to fluctuating Doppler shifts and lock acquisition transients is less than 100 MHz over several GRACE-FO orbits. These findings motivate further study of the implementation of such a demonstration.
NASA Technical Reports Server (NTRS)
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2014-01-01
The analysis of GRACE gravity data revealed post-seismic gravity increase by 6 micro-Gal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40-50% of the co-seismic gravity change. It originates mostly from changes in the isotropic component corresponding to the M(sub rr) moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The post-seismic gravity variation is best modeled by the bi-viscous relaxation with a transient and steady state viscosity of 10(exp 18) and 10(exp 19) Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized post-seismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying.
Evaluating Renewable Groundwater Stress with GRACE Data in Greece.
Gemitzi, Alexandra; Lakshmi, Venkat
2018-05-01
Groundwater is a resilient water source and its importance is even greater in periods of drought. Areas such as the Mediterranean where adverse climate change effects are expected are bell-weather locations for groundwater depletion and are of considerable interest. The present study evaluates renewable groundwater stress (RGS) as the ratio of groundwater use to groundwater availability, quantifying use as the trend in gravity recovery and climate experiment-derived (GRACE) subsurface anomalies (ΔGW trend ) and renewable groundwater availability as mean annual recharge. Estimates for mean annual recharge for the various regions in Greece have been derived using numerical models. Our results highlight two RGS regimes in Greece (variable stress and unstressed) of the four characteristic stress regimes, that is, overstressed, variable stress, human-dominated stress, and unstressed, defined as a function of the sign of use and the sign of groundwater availability (positive or negative). Variable stress areas are found in Central Greece (Thessaly region), where intensive agriculture results in negative ΔGW trend values combined with positive mean annual recharge rates. RGS values range from -0.05 to 0, indicating a low impact area. Within this region, adverse effects of groundwater overexploitation are already evident based on the negative GRACE anomalies; however, recharge is still positive, mitigating the effects of over-pumping. The rest of Greek aquifers fall within the unstressed category, with RGS values from 0.02 to 0.05, indicating that the rate of use is less than the natural recharge rate. © 2017, National Ground Water Association.
Snow mass and river flows modelled using GRACE total water storage observations
NASA Astrophysics Data System (ADS)
Wang, S.
2017-12-01
Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS and temperature data for river flow or flood forecasting. The model can be particularly useful for regions with spare observation networks, and can be used in combination with other available methods to help improve the accuracy in river flow and flood forecasting over cold regions.
NASA Astrophysics Data System (ADS)
Jutla, A.; Akanda, A. S.; Colwell, R. R.
2014-12-01
Prediction of conditions of an impending disease outbreak remains a challenge but is achievable if the associated and appropriate large scale hydroclimatic process can be estimated in advance. Outbreaks of diarrheal diseases such as cholera, are related to episodic seasonal variability in river discharge in the regions where water and sanitation infrastructure are inadequate and insufficient. However, forecasting river discharge, few months in advance, remains elusive where cholera outbreaks are frequent, probably due to non-availability of geophysical data as well as transboundary water stresses. Here, we show that satellite derived water storage from Gravity Recovery and Climate Experiment Forecasting (GRACE) sensors can provide reliable estimates on river discharge atleast two months in advance over regional scales. Bayesian regression models predicted flooding and drought conditions, a prerequisite for cholera outbreaks, in Bengal Delta with an overall accuracy of 70% for upto 60 days in advance without using any other ancillary ground based data. Forecasting of river discharge will have significant impacts on planning and designing intervention strategies for potential cholera outbreaks in the coastal regions where the disease remain endemic and often fatal.
NASA Astrophysics Data System (ADS)
Crossley, David; de Linage, Caroline; Hinderer, Jacques; Boy, Jean-Paul; Famiglietti, James
2012-05-01
We analyse data from seven superconducting gravimeter (SG) stations in Europe from 2002 to 2007 from the Global Geodynamics Project (GGP) and compare seasonal variations with data from GRACE and several global hydrological models - GLDAS, WGHM and ERA-Interim. Our technique is empirical orthogonal function (EOF) decomposition of the fields that allows for the inherent incompatibility of length scales between ground and satellite observations. GGP stations below the ground surface pose a problem because part of the attraction from soil moisture comes from above the gravimeter, and this gives rise to a complex (mixed) gravity response. The first principle component (PC) of the EOF decomposition is the main indicator for comparing the fields, although for some of the series it accounts for only about 50 per cent of the variance reduction. PCs for GRACE solutions RL04 from CSR and GFZ are filtered with a cosine taper (degrees 20-40) and a Gaussian window (350 km). Significant differences are evident between GRACE solutions from different groups and filters, though they all agree reasonably well with the global hydrological models for the predominantly seasonal signal. We estimate the first PC at 10-d sampling to be accurate to 1 μGal for GGP data, 1.5 μGal for GRACE data and 1 μGal between the three global hydrological models. Within these limits the CNES/GRGS solution and ground GGP data agree at the 79 per cent level, and better when the GGP solution is restricted to the three above-ground stations. The major limitation on the GGP side comes from the water mass distribution surrounding the underground instruments that leads to a complex gravity effect. To solve this we propose a method for correcting the SG residual gravity series for the effects of soil moisture above the station.
Cumulative Total South America Freshwater Losses as Seen by NASA GRACE, 2002-15
2015-12-08
Cumulative total freshwater losses in South America from 2002 to 2015 (in inches) observed by NASA's Gravity Recovery and Climate Experiment (GRACE) mission. Total water refers to all of the snow, surface water, soil water and groundwater combined. Much of the Amazon River basin experienced increasing total water storage during this time period, though the persistent Brazilian drought is apparent to the east. Groundwater depletion strongly impacted total water losses in the Guarani aquifer of Argentina and neighboring countries. Significant water losses due to the melting ice fields of Patagonia are also observed. http://photojournal.jpl.nasa.gov/catalog/PIA20205
Flicker Noise in GNSS Station Position Time Series: How much is due to Crustal Loading Deformations?
NASA Astrophysics Data System (ADS)
Rebischung, P.; Chanard, K.; Metivier, L.; Altamimi, Z.
2017-12-01
The presence of colored noise in GNSS station position time series was detected 20 years ago. It has been shown since then that the background spectrum of non-linear GNSS station position residuals closely follows a power-law process (known as flicker noise, 1/f noise or pink noise), with some white noise taking over at the highest frequencies. However, the origin of the flicker noise present in GNSS station position time series is still unclear. Flicker noise is often described as intrinsic to the GNSS system, i.e. due to errors in the GNSS observations or in their modeling, but no such error source has been identified so far that could explain the level of observed flicker noise, nor its spatial correlation.We investigate another possible contributor to the observed flicker noise, namely real crustal displacements driven by surface mass transports, i.e. non-tidal loading deformations. This study is motivated by the presence of power-law noise in the time series of low-degree (≤ 40) and low-order (≤ 12) Stokes coefficients observed by GRACE - power-law noise might also exist at higher degrees and orders, but obscured by GRACE observational noise. By comparing GNSS station position time series with loading deformation time series derived from GRACE gravity fields, both with their periodic components removed, we therefore assess whether GNSS and GRACE both plausibly observe the same flicker behavior of surface mass transports / loading deformations. Taking into account GRACE observability limitations, we also quantify the amount of flicker noise in GNSS station position time series that could be explained by such flicker loading deformations.
NASA Astrophysics Data System (ADS)
Rude, C. M.; Li, J. D.; Rongier, G.; Gowanlock, M.; Herring, T.; Pankratius, V.
2017-12-01
We introduce a data exploration and visualization tool to facilitate the discovery of correlations across geospatial data sets in a computer-aided discovery system. Our approach is based on adaptive Voronoi tessellation maps that can handle spotty data availability, varying sensor density, and resolution at different scales in the same visualization product. Successful applications exploring spatio-temporal relationships are demonstrated on data sets from the Gravity Recovery and Climate Experiment (GRACE), GPS time series from the Plate Boundary Observatory, and groundwater well depth data from USGS, with the objective of understanding the Earth's surface response to changes in terrestrial water storage. Our results reveal that vertical positions in the majority of GPS stations are negatively correlated with terrestrial water storage from GRACE. This is expected if the changes are due to terrestrial water loading deforming the ground. Our application also identifies outliers that warrant further investigation, such as sites with low correlation or positive correlation due to poroelastic expansion. Other analyses reveal that GRACE correlates positively with water levels from wells, but the removal of GRACE non-groundwater components (canopy water, soil moisture, and snow accumulation) using model data from the Global Land Data Assimilation System unexpectedly lowers the correlations, effects which may be related to modeling accuracy and measurement errors. We acknowledge support from NASA AISTNNX15AG84G (PI Pankratius) and NSF ACI1442997 (PI Pankratius).
Can GRACE detect winter snows in Japan?
NASA Astrophysics Data System (ADS)
Heki, Kosuke
2010-05-01
Current spatial resolution of the GRACE (Gravity Recovery and Climate Experiment) satellites is 300-400 km, and so its hydrological applications have been limited to continents and large islands. The Japanese Islands have width slightly smaller than this spatial resolution, but are known to show large amplitude seasonal changes in surface masses due mainly to winter snow. Such loads are responsible for seasonal crustal deformation observed with GEONET, a dense array of GPS (Global Positioning System) receivers in Japan (Heki, 2001). There is also a dense network of surface meteorological sensors for, e.g. snow depths, atmospheric pressures, etc. Heki (2004) showed that combined effects of surface loads, i.e. snow (predominant), atmosphere, soil moisture, dam impoundment, can explain seasonal crustal deformation observed by GPS to a large extent. The total weight of the winter snow in the Japanese Islands in its peak season may reach ~50 Gt. This is comparable to the annual loss of mountain glaciers in the Asian high mountains (Matsuo & Heki, 2010), and is above the detection level of GRACE. In this study, I use GRACE Level-2 Release-4 data from CSR, Univ. Texas, up to 2009 November, and evaluated seasonal changes in surface loads in and around the Japanese Islands. After applying a 350 km Gaussian filter and a de-striping filter, the peak-to-peak change of the water depth becomes ~4 cm in northern Japan. The maximum value is achieved in February-March. The region of large winter load spans from Hokkaido, Japan, to northeastern Honshu, which roughly coincides with the region of deep snow in Japan. Next I compiled snow depth data from surface meteorological observations, and converted them to loads using time-dependent snow density due to compaction. By applying the same spatial filter as the GRACE data, its spatial pattern becomes similar to the GRACE results. The present study suggests that GRACE is capable of detecting seasonal mass changes in an island arc not wider than a few hundreds of kilometers. References: Heki, K., Seasonal modulation of interseismic strain buildup in Northeastern Japan driven by snow loads, Science, 293, 89-92, 2001. Heki, K., Dense GPS array as a new sensor of seasonal changes of surface loads, AGU Monograph, 150, 177-196, 2004. Matsuo, K. and K. Heki, Time-variable ice loss in Asian high mountains from satellite gravimetry, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2009.11.053, 2010.
Attention, Asceticism, and Grace: Simone Weil and Higher Education
ERIC Educational Resources Information Center
Roberts, Peter
2011-01-01
The work of the French thinker Simone Weil has exerted an important influence on scholars in a wide range of fields. To date, however, her writings have attracted comparatively little interest from educationists. This article discusses some of the key concepts in Weil's philosophy--gravity, grace, decreation, and attention--and assesses their…
NASA Technical Reports Server (NTRS)
Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred
2015-01-01
The 2012 Indian Ocean earthquake sequence (M(sub w) 8.6, 8.2) is a rare example of great strike slip earthquakes in an intra-oceanic setting. With over a decade of GRACE data, we were able to measure and model the unanticipated large co-, and post-seismic gravity changes of these events. Using the approach of normal mode decomposition and spatial localization, we computed the gravity changes corresponding to five moment tensor components. Our analysis revealed that the gravity changes are produced predominantly by coseismic compression and dilatation within the oceanic crust and upper mantle and by post-seismic vertical motion. Our results suggest that the post-seismic positive gravity and the post-seismic uplift measured with GPS within the coseismic compressional quadrant are best fit by ongoing uplift associated with viscoelastic mantle relaxation. Our study demonstrates that the GRACE data are suitable for analyzing strike-slip earthquakes as small as M(sub w) 8.2 with the noise characteristics of this region.
Seismic rate changes associated with seasonal, annual, and decadal changes in the cryosphere
NASA Astrophysics Data System (ADS)
Sauber, J. M.; Luthcke, S. B.; Hall, D. K.
2012-12-01
Near the Bering Glacier Global Fiducial Program (GFP) in southern Alaska large cryospheric fluctuations occur in a region of upper crustal faulting and folding associated with collision and accretion of the Yakutat terrane. In this study we report constraints on seasonal, annual and decadal cryospheric changes estimated over the last decade from field, aircraft and satellite measurements and we evaluate the influence of cryospheric changes on the background seismic rate. Multi-year images from the Bering Glacier GFP are available since mid-2003 to constrain changes in extent of the Bering Glacier and to discern feature changes in the glacial surface. Starting around the same time, satellite gravimetric measurements from the Gravity Recovery and Climate experiment (GRACE) commenced. Large spatial-scale mass change calculated from the GRACE mascon solution of Luthcke et al. [2012] indicate a general trend of annual ice mass loss for southern Alaska but with large, variable seasonal mass fluctuations. Since 2007 the station position of a continuous GPS site near Cape Yakataga (Alaska EarthScope PBO site, AB35) has been available as well. In addition to changes in the geodetic position due to tectonic motion, this GPS station shows large seasonal excursions in the detrended vertical and horizontal position components consistent with snow loading in the fall and winter and melt onset/mass decrease in the spring/summer. To better understand the timing of processes responsible for the onset of cryospheric mass loss documented in the GRACE data, we examined changes in the snow cover extent and the onset of melt in the spring. We calculated the elastic displacements of the solid Earth and theoretical earthquake failure criteria associated with these annual and seasonal ice and snow changes. Additionally, we compared the seismic rate (M>1.8) from a reference background time period against other time periods with variable ice or tectonic change characteristics to test the significance of seismic rate changes. Our earlier results suggest statistically significant changes in the background seismic rate associated with large seasonal mass changes.
Seismic Rate Changes Associated with Seasonal, Annual, and Decadal Changes in the Cryosphere
NASA Technical Reports Server (NTRS)
Sauber-Rosenberg, Jeanne
2012-01-01
Near the Bering Glacier Global Fiducial site in southern Alaska large cryospheric fluctuations occur in a region of upper crustal faulting and folding associated with collision and accretion of the Yakutat terrane. In this study we report constraints on seasonal, annual and decadal cryospheric changes estimated over the last decade from field, aircraft and satellite measurements, and we evaluate the influence of cryospheric changes on the background seismic rate. Multi-year images from the Bering Glacier global fiducial site are available since mid-2003 to constrain changes in extent of the Bering Glacier and to discern feature changes in the glacial surface. Starting around the same time, satellite gravimetric measurements from the Gravity Recovery and Climate experiment (GRACE) commenced. Large spatial-scale mass change calculated from the GRACE 1deg x 1deg mascon solution of Luthcke et al. [2012] indicate a general trend of annual ice mass loss for southern Alaska but with large, variable seasonal mass fluctuations. Since 2007, the station position of a continuous GPS site near Cape Yakataga (Alaska EarthScope PBO site, AB35) has been available as well. In addition to changes in the geodetic position due to tectonic motion, this GPS station shows large seasonal excursions in the detrended vertical and horizontal position components consistent with snow loading in the fall and winter and melt onset/mass decrease in the spring/summer. To better understand the timing of processes responsible for the onset of cryospheric mass loss documented in the GRACE data, we examined changes in the snow cover extent and the onset of melt in the spring. We calculated the surface displacements of the solid Earth and theoretical earthquake failure criteria associated with these annual and seasonal ice and snow changes using layered elastic half-space. Additionally, we compared the seismic rate (M>1.8) from a reference background time period against other time periods with variable ice or tectonic change characteristics to test the significance of seismic rate changes. Our earlier results suggest statistically significant changes in the background seismic rate associated with large seasonal mass changes. INDEX
Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing
NASA Astrophysics Data System (ADS)
Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia
2015-04-01
Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.
Temperature corrected-calibration of GRACE's accelerometer
NASA Astrophysics Data System (ADS)
Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.
2017-12-01
Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.
NASA Astrophysics Data System (ADS)
Aierken, A.; Lee, H.; Hossain, F.; Bui, D. D.; Nguyen, L. D.
2016-12-01
The Mekong Delta, home to almost 20 million inhabitants, is considered one of the most important region for Vietnam as it is the agricultural and industrial production base of the nation. However, in recent decades, the region is seriously threatened by variety of environmental hazards, such as floods, saline water intrusion, arsenic contamination, and land subsidence, which raise its vulnerability to sea level rise due to global climate change. All these hazards are related to groundwater depletion, which is the result of dramatically increased over-exploitation. Therefore, monitoring groundwater is critical to sustainable development and most importantly, to people's life in the region. In most countries, groundwater is monitored using well observations. However, because of its spatial and temporal gaps and cost, it is typically difficult to obtain large scale, continuous observations. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry mission has delivered freely available Earth's gravity variation data, which can be used to obtain terrestrial water storage (TWS) changes. In this study, the TWS anomalies over the Mekong Delta, which are the integrated sum of anomalies of soil moisture storage (SMS), surface water storage (SWS), canopy water storage (CWS), groundwater storage (GWS), have been obtained using GRACE CSR RL05 data. The leakage error occurred due to GRACE signal processing has been corrected using several different approaches. The groundwater storage anomalies were then derived from TWS anomalies by removing SMS, and CWS anomalies simulated by the four land surface models (NOAH, CLM, VIC and MOSAIC) in the Global Land Data Assimilation System (GLDAS), as well as SWS anomalies estimated using ENVISAT satellite altimetry and MODIS imagery. Then, the optimal GRACE signal restoration method for the Mekong Delta is determined with available in-situ well data. The estimated GWS anomalies revealed continuously decreasing trend, and the flood and drought occurred in 2004 and 2012, respectively. Our study reveals the ability of GRACE to monitor groundwater depletion as well as flood and drought in regional scale.
Assessment of Surface Water Storage trends for increasing groundwater areas in India
NASA Astrophysics Data System (ADS)
Banerjee, Chandan; Kumar, D. Nagesh
2018-07-01
Recent studies based on Gravity Recovery and Climate Experiment (GRACE) satellite mission suggested that groundwater has increased in central and southern parts of India. However, surface water, which is an equally important source of water in these semi-arid areas has not been studied yet. In the present study, the study areas were outlined based on trends in GRACE data followed by trend identification in surface water storages and checking the hypothesis of causality. Surface Water Extent (SWE) and Surface Soil Moisture (SSM) derived from Moderate-resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) respectively, are selected as proxies of surface water storage (SWS). Besides SWE and SSM, trend test was performed for GRACE derived terrestrial water storage (TWS) for the study areas named as R1, R2, GOR1 and KOR1. Granger-causality test is used to test the hypothesis that rainfall is a causal factor of the inter-annual variability of SWE, SSM and TWS. Positive trends were observed in TWS for R1, R2 and GOR1 whereas SWE and SSM show increasing trends for all the study regions. Results suggest that rainfall is the granger-causal of all the storage variables for R1 and R2, the regions exhibiting the most significant positive trends in TWS.
Tidal Models In A New Era of Satellite Gravimetry
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Rowlings, David D.; Edbert, G. D.; Chao, Benjamin F. (Technical Monitor)
2002-01-01
The high precision gravity measurements to be made by recently launched (and recently approved) satellites place new demands on models of Earth, atmospheric, and oceanic tides. The latter is the most problematic. The ocean tides induce variations in the Earth's geoid by amounts that far exceed the new satellite sensitivities, and tidal models must be used to correct for this. Two methods are used here to determine the standard errors in current ocean tide models. At long wavelengths these errors exceed the sensitivity of the GRACE mission. Tidal errors will not prevent the new satellite missions from improving our knowledge of the geopotential by orders of magnitude, but the errors may well contaminate GRACE estimates of temporal variations in gravity. Solar tides are especially problematic because of their long alias periods. The satellite data may be used to improve tidal models once a sufficiently long time series is obtained. Improvements in the long-wavelength components of lunar tides are especially promising.
NASA Astrophysics Data System (ADS)
Bernknopf, R.; Kuwayama, Y.; Brookshire, D.; Macauley, M.; Zaitchik, B.; Pesko, S.; Vail, P.
2014-12-01
Determining how much to invest in earth observation technology depends in part on the value of information (VOI) that can be derived from the observations. We design a framework and then evaluate the value-in-use of the NASA Gravity Research and Climate Experiment (GRACE) for regional water use and reliability in the presence of drought. As a technology that allows measurement of water storage, the GRACE Data Assimilation System (DAS) provides information that is qualitatively different from that generated by other water data sources. It provides a global, reproducible grid of changes in surface and subsurface water resources on a frequent and regular basis. Major damages from recent events such as the 2012 Midwest drought and the ongoing drought in California motivate the need to understand the VOI from remotely sensed data such as that derived from GRACE DAS. Our conceptual framework models a dynamic risk management problem in agriculture. We base the framework on information from stakeholders and subject experts. The economic case for GRACE DAS involves providing better water availability information. In the model, individuals have a "willingness to pay" (wtp) for GRACE DAS - essentially, wtp is an expression of savings in reduced agricultural input costs and for costs that are influenced by regional policy decisions. Our hypothesis is that improvements in decision making can be achieved with GRACE DAS measurements of water storage relative to data collected from groundwater monitoring wells and soil moisture monitors that would be relied on in the absence of GRACE DAS. The VOI is estimated as a comparison of outcomes. The California wine grape industry has features that allow it to be a good case study and a basis for extrapolation to other economic sectors. We model water use in this sector as a sequential decision highlighting the attributes of GRACE DAS input as information for within-season production decisions as well as for longer-term water reliability.
Separation of GRACE geoid time-variations using Independent Component Analysis
NASA Astrophysics Data System (ADS)
Frappart, F.; Ramillien, G.; Maisongrande, P.; Bonnet, M.
2009-12-01
Independent Component Analysis (ICA) is a blind separation method based on the simple assumptions of the independence of the sources and the non-Gaussianity of the observations. An approach based on this numerical method is used here to extract hydrological signals over land and oceans from the polluting striping noise due to orbit repetitiveness and present in the GRACE global mass anomalies. We took advantage of the availability of monthly Level-2 solutions from three official providers (i.e., CSR, JPL and GFZ) that can be considered as different observations of the same phenomenon. The efficiency of the methodology is first demonstrated on a synthetic case. Applied to one month of GRACE solutions, it allows to clearly separate the total water storage change from the meridional-oriented spurious gravity signals on the continents but not on the oceans. This technique gives results equivalent as the destriping method for continental water storage for the hydrological patterns with less smoothing. This methodology is then used to filter the complete series of the 2002-2009 GRACE solutions.
NASA Technical Reports Server (NTRS)
Reager, John T.; Thomas, Alys C.; Sproles, Eric A.; Rodell, Matthew; Beaudoing, Hiroko K.; Li, Bailing; Famiglietti, James S.
2015-01-01
We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA's Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of GRACE's coarse spatial resolution; and (3) state disaggregation of the vertically-integrated TWSA. We select the 2011 flood event in the Missouri river basin as a case study, and find that assimilation generally made the model wetter in the months preceding flood. We compare model outputs with observations from 14 USGS groundwater wells to assess improvements after assimilation. Finally, we examine disaggregated water storage information to improve the mechanistic understanding of event generation. Validation establishes that assimilation improved the model skill substantially, increasing regional groundwater anomaly correlation from 0.58 to 0.86. For the 2011 flood event in the Missouri river basin, results show that groundwater and snow water equivalent were contributors to pre-event flood potential, providing spatially-distributed early warning information.
NASA Astrophysics Data System (ADS)
Yao, C.; Luo, Z.; Lo, M. H.; Li, Q.
2016-12-01
This study assesses spatio-temporal variability of terrestrial water storage (TWS) over the world's largest karst aquifer with continuous coverage in Southwest China (SWC) from Gravity Recovery and Climate Experiment (GRACE), along with hydrological model outputs, precipitation and reservoir water level data. GRACE shows karst water increases for the period 2003/01-2014/06 with a total volume ranging from 29.0 to 49.1 km3, and observes an extremely wet condition in 2008/2009 caused by the increase in precipitation and Longtan Reservoir (LTR) storage. The subsequent two droughts in 2009/2010 and 2011 have resulted in significant aquifer water depletion, with abnormal karst water losses of 180.2±43.3 km3 and 269.8±34.6 km3 respectively. In particular, the sustained reduction in peaks of the LTR storage is associated with the long-term dry condition over the upper Pearl River. Nonseasonal karst TWS variations are considerably impacted by LTR impoundment in the post-dam period, especially for the impounding episode of autumn and the dry season of winter, with correlations of 0.71 and 0.93 between TWS and reservoir volume variations respectively. Additionally, the nonseasonal GRACE TWS deficit provides an alternative and valuable drought indicator for the study karst region since large differences exist in modeled soil moisture and drought indices. This study demonstrates that the combination of GRACE and other hydrological variables could be beneficial for studying karst hydrologic dynamics. Acknowledgments: This work was supported by the National Natural Science Foundation of China (Grant Nos. 41174020, 41131067, 41174021), the National Basic Research Program of China (973 Program) (Grant No. 2013CB733302), the Fundamental Research Funds for the Central Universities (Grant No. 2014214020203), the open fund of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education (Grant No. 14-02-011), the open fund of Guangxi Key Laboratory of Spatial Information and Geomatics (Grant No. 14-045-24-17) and the MOST 103-2111-M-002-006 to National Taiwan University.
SLR in the framework of the EGSIEM project
NASA Astrophysics Data System (ADS)
Maier, Andrea; Sušnik, Andreja; Meyer, Ulrich; Arnold, Daniel; Dach, Rolf; Jäggi, Adrian; Sośnica, Krzysztof; Thaller, Daniela
2016-04-01
This contribution describes the three roles Satellite Laser Ranging (SLR) is playing within the European Gravity Service for the Improved Emergency Management (EGSIEM). The purpose of this Horizon 2020 project is to combine monthly gravity field solutions from the Gravity Recovery and Climate Experiment (GRACE) mission that are derived by different institutions. The combined gravity field product will provide complementary information to traditional products for flood and drought monitoring and forecasting. First, SLR is used to validate Global Navigational Satellite System (GNSS) orbits, which are computed at the Astronomical Institute of the University of Bern. To ensure a consistent set of GNSS products (orbits, Earth rotation parameters, and clocks) a reprocessing campaign was initiated. The reprocessed products are based on the new Empirical CODE Orbit Model, which is used for all orbit products generated at the Center for Orbit Determination in Europe (CODE) from January 4, 2015 onwards. Since the kinematic orbits of GRACE will be based on these orbits, we present an in-depth validation of the GNSS orbits using SLR. Second, SLR to geodetic satellites is crucial for the estimation of the dynamical Earth's flattening term (C20) since this coefficient is degraded by aliasing when derived from GRACE data. We will compare the temporal variation of C20 with external solutions and demonstrate the benefit of involving a larger number of geodetic satellites. The third aspect is based on the fact that the gravity field product delivered by EGSIEM will include GRACE and SLR data. It is thus desirable to establish a reference frame based on both GNSS data and SLR observations. For this purpose it is planned to analyze SLR measurements to GNSS satellites equipped with a retroreflector array and to estimate common parameters such as station coordinates and geocenter coordinates from a combined set of SLR and GNSS data. We will present a workflow how to derive a common reference frame.
GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base
2018-03-12
One of the two Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) satellites and its turntable fixture at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22339
GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base
2018-03-12
The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, attached to turntable fixtures, at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22341
GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base
2018-03-12
The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, attached to turntable fixtures, at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22338
GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base
2018-03-12
The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, attached to turntable fixtures, at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22340
NASA Technical Reports Server (NTRS)
Yeh, Pat J.-F.; Swenson, S. C.; Famiglietti, J. S.; Rodell, M.
2007-01-01
Regional groundwater storage changes in Illinois are estimated from monthly GRACE total water storage change (TWSC) data and in situ measurements of soil moisture for the period 2002-2005. Groundwater storage change estimates are compared to those derived from the soil moisture and available well level data. The seasonal pattern and amplitude of GRACE-estimated groundwater storage changes track those of the in situ measurements reasonably well, although substantial differences exist in month-to-month variations. The seasonal cycle of GRACE TWSC agrees well with observations (correlation coefficient = 0.83), while the seasonal cycle of GRACE-based estimates of groundwater storage changes beneath 2 m depth agrees with observations with a correlation coefficient of 0.63. We conclude that the GRACE-based method of estimating monthly to seasonal groundwater storage changes performs reasonably well at the 200,000 sq km scale of Illinois.
NASA Astrophysics Data System (ADS)
Diehl, T. M.; Holt, J. W.; Blankenship, D. D.; Richter, T. G.; Filina, I. Y.
2005-12-01
The West Antarctic Ice Sheet is a marine ice sheet of which 75% is resting on bedrock below sea level. This situation is highly unstable and as the climate warms, the potential for rapid discharge of the ice sheet grows. Examining the areas of the ice sheet that are most likely to react to changing climate is essential. The Amundsen Sea Embayment contains two of the most important outlet glaciers in West Antarctica: Thwaites and Pine Island Glaciers. These two glaciers have among the highest discharge velocities in West Antarctica and they lack large protective ice shelves, making them susceptible to warming ocean waters. The area is currently a target of interest for both GRACE and GLAS, as well as future land- and air-based surveys. To date, we have conducted the only large-scale geophysical survey over the catchment of Thwaites Glacier: an airborne survey completed during the austral summer 2004-2005. Over 43,500 line-kilometers of data were collected with a geophysical platform that included ice-penetrating radar, gravity, magnetics, laser and pressure altimetry, and GPS. Free-air gravity, in conjunction with magnetics and radar-derived subglacial topography, is capable of delineating microplate and rift boundaries as well as basin and volcano locations. A free-air gravity map of these structures helps ascertain the contribution of subglacial geology to the ice sheet's decay in the Thwaites Glacier catchment. The acquisition, reduction, and initial results of the airborne gravity survey will be presented and then compared to GRACE gravity anomalies. Extreme relief in ice surface elevation across the survey area necessitated short, smooth vertical altitude changes at survey block boundaries to maintain adequate flight altitude for the onboard ice-penetrating radar systems. Weather conditions sometimes required additional elevation changes or course corrections, producing significant aircraft motion during data acquisition. The impacts of these aircraft motions on the gravity data are discussed. The combination of GPS-derived horizontal accelerations with meter-mounted accelerometer measurements allows for the direct calculation of platform leveling errors, including leakage of the horizontal accelerations into the measured vertical gravity. We examine the magnitude and significance of platform leveling errors in relation to the overall survey resolution. Power spectral analysis of the gravity illuminates differences in the anomaly detection threshold over thick ice like that near Byrd Subglacial Basin versus over thin ice like that near the Thwaites Glacier grounding line. Filtering requirements for this situation are discussed. A preliminary free-air gravity map for the Thwaites Glacier catchment is presented along with error analysis and initial structural interpretations. The interpretations of the airborne regional gravity will be compared to GRACE static gravity anomalies over the same area of the catchment.
Flight-Like Optical Reference Cavity for GRACE Follow-On Laser Frequency Stabilization
NASA Technical Reports Server (NTRS)
Folkner, W. M.; deVine, G.; Klipstein, W. M.; McKenzie, K.; Spero, R.; Thompson, R.; Yu, N.; Stephens, M.; Leitch, J.; Pierce, R.;
2011-01-01
We describe a prototype optical cavity and associated optics that has been developed to provide a stable frequency reference for a future space-based laser ranging system. This instrument is being considered for inclusion as a technology demonstration on the recently announced GRACE follow-on mission, which will monitor variations in the Earth's gravity field.
The Value of Information from a GRACE-Enhanced Drought Severity Index
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Bernknopf, R.; Brookshire, D.; Macauley, M.; Zaitchik, B. F.; Rodell, M.; Vail, P.; Thompson, A.
2015-12-01
In this project, we develop a framework to estimate the economic value of information from the Gravity and Climate Experiment (GRACE) for drought monitoring and to understand how the GRACE Data Assimilation (GRACE-DA) system can inform decision making to improve regional economic outcomes. Specifically, we consider the potential societal value of further incorporating GRACE-DA information into the U.S. Drought Monitor mapmaking process. Research activities include (a) a literature review, (b) a series of listening sessions with experts and stakeholders, (c) the development of a conceptual economic framework based on a Bayesian updating procedure, and (d) an econometric analysis and retrospective case study to understand the GRACE-DA contribution to agricultural policy and production decisions. Taken together, the results from these research activities support our conclusion that GRACE-DA has the potential to lower the variance associated with our understanding of drought and that this improved understanding has the potential to change policy decisions that lead to tangible societal benefits.
Impact of tracking loop settings of the Swarm GPS receiver on gravity field recovery
NASA Astrophysics Data System (ADS)
Dahle, C.; Arnold, D.; Jäggi, A.
2017-06-01
The Swarm mission consists of three identical satellites equipped with GPS receivers and orbiting in near-polar low Earth orbits. Thus, they can be used to determine the Earth's gravity field by means of high-low satellite-to-satellite tracking (hl-SST). However, first results by several groups have revealed systematic errors both in precise science orbits and resulting gravity field solutions which are caused by ionospheric disturbances affecting the quality of Swarm GPS observations. Looking at gravity field solutions, the errors lead to systematic artefacts located in two bands north and south of the geomagnetic equator. In order to reduce these artefacts, erroneous GPS observations can be identified and rejected before orbit and gravity field processing, but this may also lead to slight degradations of orbit and low degree gravity field coefficient quality. Since the problems were believed to be receiver-specific, the GPS tracking loop bandwidths onboard Swarm have been widened several times starting in May 2015. The influence of these tracking loop updates on Swarm orbits and, particularly, gravity field solutions is investigated in this work. The main findings are that the first updates increasing the bandwidth from 0.25 Hz to 0.5 Hz help to significantly improve the quality of Swarm gravity fields and that the improvements are even larger than those achieved by GPS data rejection. It is also shown that these improvements are indeed due to an improved quality of GPS observations around the geomagnetic equator, and not due to missing observations in these regions. As the ionospheric activity is rather low in the most recent months, the effect of the tracking loop updates in summer 2016 cannot be properly assessed yet. Nevertheless, the quality of Swarm gravity field solutions has already improved after the first updates which is especially beneficial in view of filling the upcoming gap between the GRACE and GRACE Follow-on missions with hl-SST gravity products.
NASA Astrophysics Data System (ADS)
Srivastava, S.
2015-12-01
Gravity Recovery and Climate Experiment (GRACE) data are widely used for the hydrological studies for large scale basins (≥100,000 sq km). GRACE data (Stokes Coefficients or Equivalent Water Height) used for hydrological studies are not direct observations but result from high level processing of raw data from the GRACE mission. Different partner agencies like CSR, GFZ and JPL implement their own methodology and their processing methods are independent from each other. The primary source of errors in GRACE data are due to measurement and modeling errors and the processing strategy of these agencies. Because of different processing methods, the final data from all the partner agencies are inconsistent with each other at some epoch. GRACE data provide spatio-temporal variations in Earth's gravity which is mainly attributed to the seasonal fluctuations in water level on Earth surfaces and subsurface. During the quantification of error/uncertainties, several high positive and negative peaks were observed which do not correspond to any hydrological processes but may emanate from a combination of primary error sources, or some other geophysical processes (e.g. Earthquakes, landslide, etc.) resulting in redistribution of earth's mass. Such peaks can be considered as outliers for hydrological studies. In this work, an algorithm has been designed to extract outliers from the GRACE data for Indo-Gangetic plain, which considers the seasonal variations and the trend in data. Different outlier detection methods have been used such as Z-score, modified Z-score and adjusted boxplot. For verification, assimilated hydrological (GLDAS) and hydro-meteorological data are used as the reference. The results have shown that the consistency amongst all data sets improved significantly after the removal of outliers.
Arctic Ocean Tides from GRACE Satellite Accelerations
NASA Astrophysics Data System (ADS)
Killett, B.; Wahr, J. M.; Desai, S. D.; Yuan, D.; Watkins, M. M.
2010-12-01
Because missions such as TOPEX/POSEIDON don't extend to high latitudes, Arctic ocean tidal solutions aren't constrained by altimetry data. The resulting errors in tidal models alias into monthly GRACE gravity field solutions at all latitudes. Fortunately, GRACE inter-satellite ranging data can be used to solve for these tides directly. Seven years of GRACE inter-satellite acceleration data are inverted using a mascon approach to solve for residual amplitudes and phases of major solar and lunar tides in the Arctic ocean relative to FES 2004. Simulations are performed to test the inversion algorithm's performance, and uncertainty estimates are derived from the tidal signal over land. Truncation error magnitudes and patterns are compared to the residual tidal signals.
GRACE Gravity Data Target Possible Mega-impact in North Central Wilkes Land, Antarctica
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Wells, Stuart B.; Potts. Laramie V.; Gaya-Pique, Luis R.; Golynsky, Alexander V.; Hernandez, Orlando; Kim, Jeong Woo; Kim, Hyung Rae; Hwang, Jong Sun; Taylor, Patrick T.
2005-01-01
A prominent positive GRACE satellite-measured free-air gravity anomaly over regionally depressed subglacial topography may identify a mascon centered on (70 deg S, 120 deg E) between the Gamburtsev and Transantarctic Mountains of East Antarctica. Being more than twice the size of the Chicxulub crater, the inferred Wilkes Land impact crater is a strong candidate for a Gondwana source of the greatest extinction of life at the end of the Permian. Its ring structure intersects the coastline and thus may have strongly influenced the Cenozoic rifting of East Antarctica from Australia that resulted in the enigmatic lack of crustal thinning on the conjugate Australian block.
High stability laser for next generation gravity missions
NASA Astrophysics Data System (ADS)
Nicklaus, K.; Herding, M.; Wang, X.; Beller, N.; Fitzau, O.; Giesberts, M.; Herper, M.; Barwood, G. P.; Williams, R. A.; Gill, P.; Koegel, H.; Webster, S. A.; Gohlke, M.
2017-11-01
With GRACE (launched 2002) and GOCE (launched 2009) two very successful missions to measure earth's gravity field have been in orbit, both leading to a large number of publications. For a potential Next Generation Gravity Mission (NGGM) from ESA a satellite-to-satellite tracking (SST) scheme, similar to GRACE is under discussion, with a laser ranging interferometer instead of a Ka-Band link to enable much lower measurement noise. Of key importance for such a laser interferometer is a single frequency laser source with a linewidth <10 kHz and extremely low frequency noise down to 40 Hz / √Hz in the measurement frequency band of 0.1 mHz to 1 Hz, which is about one order of magnitude more demanding than LISA. On GRACE FO a laser ranging interferometer (LRI) will fly as a demonstrator. The LRI is a joint development between USA (JPL,NASA) and Germany(GFZ,DLR). In this collaboration the JPL contributions are the instrument electronics, the reference cavity and the single frequency laser, while STI as the German industry prime is responsible for the optical bench and the retroreflector. In preparation of NGGM an all European instrument development is the goal.
Glacier melt buffers river runoff in the Pamir Mountains
NASA Astrophysics Data System (ADS)
Pohl, Eric; Gloaguen, Richard; Andermann, Christoff; Knoche, Malte
2017-03-01
Newly developed approaches based on satellite altimetry and gravity measurements provide promising results on glacier dynamics in the Pamir-Himalaya but cannot resolve short-term natural variability at regional and finer scale. We contribute to the ongoing debate by upscaling a hydrological model that we calibrated for the central Pamir. The model resolves the spatiotemporal variability in runoff over the entire catchment domain with high efficiency. We provide relevant information about individual components of the hydrological cycle and quantify short-term hydrological variability. For validation, we compare the modeled total water storages (TWS) with GRACE (Gravity Recovery and Climate Experiment) data with a very good agreement where GRACE uncertainties are low. The approach exemplifies the potential of GRACE for validating even regional scale hydrological applications in remote and hard to access mountain regions. We use modeled time series of individual hydrological components to characterize the effect of climate variability on the hydrological cycle. We demonstrate that glaciers play a twofold role by providing roughly 35% of the annual runoff of the Panj River basin and by effectively buffering runoff both during very wet and very dry years. The modeled glacier mass balance (GMB) of -0.52 m w.e. yr-1 (2002-2013) for the entire catchment suggests significant reduction of most Pamiri glaciers by the end of this century. The loss of glaciers and their buffer functionality in wet and dry years could not only result in reduced water availability and increase the regional instability, but also increase flood and drought hazards.
Estimation of Greenland's Ice Sheet Mass Balance Using ICESat and GRACE Data
NASA Astrophysics Data System (ADS)
Slobbe, D.; Ditmar, P.; Lindenbergh, R.
2007-12-01
Data of the GRACE gravity mission and the ICESat laser altimetry mission are used to create two independent estimates of Greenland's ice sheet mass balance over the full measurement period. For ICESat data, a processing strategy is developed using the elevation differences of geometrically overlapping footprints of both crossing and repeated tracks. The dataset is cleaned using quality flags defined by the GLAS science team. The cleaned dataset reveals some strong, spatially correlated signals that are shown to be related to physical phenomena. Different processing strategies are used to convert the observed temporal height differences to mass changes for 6 different drainage systems, further divided into a region above and below 2000 meter elevation. The results are compared with other altimetry based mass balance estimates. In general, the obtained results confirm trends discovered by others, but we also show that the choice of processing strategy strongly influences our results, especially for the areas below 2000 meter. Furthermore, GRACE based monthly variations of the Earth's gravity field as processed by CNES, CSR, GFZ and DEOS are used to estimate the mass balance change for North and South Greenland. It is shown that our results are comparable with recently published GRACE estimates (mascon solutions). On the other hand, the estimates based on GRACE data are only partly confirmed by the ICESat estimates. Possible explanations for the obvious differences will be discussed.
Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C; Koenig, Rolf; Ries, John; Gurzadyan, Vahe; Matzner, Richard; Penrose, Roger; Sindoni, Giampiero; Paris, Claudio; Khachatryan, Harutyun; Mirzoyan, Sergey
2016-01-01
We present a test of general relativity, the measurement of the Earth's dragging of inertial frames. Our result is obtained using about 3.5 years of laser-ranged observations of the LARES, LAGEOS, and LAGEOS 2 laser-ranged satellites together with the Earth gravity field model GGM05S produced by the space geodesy mission GRACE. We measure [Formula: see text], where [Formula: see text] is the Earth's dragging of inertial frames normalized to its general relativity value, 0.002 is the 1-sigma formal error and 0.05 is our preliminary estimate of systematic error mainly due to the uncertainties in the Earth gravity model GGM05S. Our result is in agreement with the prediction of general relativity.
Groundwater and Terrestrial Water Storage
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.
2014-01-01
Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.
Groundwater and Terrestrial Water Storage
NASA Technical Reports Server (NTRS)
Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.
2012-01-01
Groundwater is a vital resource and also a dynamic component of the water cycle. Unconfined aquifer storage is less responsive to short term weather conditions than the near surface terrestrial water storage (TWS) components (soil moisture, surface water, and snow). However, save for the permanently frozen regions, it typically exhibits a larger range of variability over multi-annual periods than the other components. Groundwater is poorly monitored at the global scale, but terrestrial water storage (TWS) change data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are a reasonable proxy for unconfined groundwater at climatic scales.
Mass change distribution inverted from space-borne gravimetric data using a Monte Carlo method
NASA Astrophysics Data System (ADS)
Zhou, X.; Sun, X.; Wu, Y.; Sun, W.
2017-12-01
Mass estimate plays a key role in using temporally satellite gravimetric data to quantify the terrestrial water storage change. GRACE (Gravity Recovery and Climate Experiment) only observes the low degree gravity field changes, which can be used to estimate the total surface density or equivalent water height (EWH) variation, with a limited spatial resolution of 300 km. There are several methods to estimate the mass variation in an arbitrary region, such as averaging kernel, forward modelling and mass concentration (mascon). Mascon method can isolate the local mass from the gravity change at a large scale through solving the observation equation (objective function) which represents the relationship between unknown masses and the measurements. To avoid the unreasonable local mass inverted from smoothed gravity change map, regularization has to be used in the inversion. We herein give a Markov chain Monte Carlo (MCMC) method to objectively determine the regularization parameter for the non-negative mass inversion problem. We first apply this approach to the mass inversion from synthetic data. Result show MCMC can effectively reproduce the local mass variation taking GRACE measurement error into consideration. We then use MCMC to estimate the ground water change rate of North China Plain from GRACE gravity change rate from 2003 to 2014 under a supposition of the continuous ground water loss in this region. Inversion result show that the ground water loss rate in North China Plain is 7.6±0.2Gt/yr during past 12 years which is coincident with that from previous researches.
Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models
NASA Astrophysics Data System (ADS)
Yi, Shuang; Sun, Wenke
2014-03-01
In this paper, 10 years of time-variable gravity data from the Gravity Recovery and Climate Experiment Release 05 have been used to evaluate the glacier melting rate in high-mountain Asia (HMA) using a new computing scheme, i.e., the Space Domain Inverse method. We find that in HMA area, there are three different kinds of signal sources that should be treated together. The two generally accepted sources, glacier melting and India underground water depletion, are estimated to change at the rate of -35.0 ± 5.8 Gt/yr (0.09 mm/yr sea level rising) and -30.6 ± 5.0 Gt/yr, respectively. The third source is the remarkable positive signal (+30 Gt/yr) in the inner Tibetan Plateau, which is challenging to explain. Further, we have found that there is a 5 year undulation in Pamir and Karakoram, which can explain the controversies of the previous studies on the glacier melting rate here. This 5 year signal can be explained by the influence of Arctic Oscillation and El Niño-Southern Oscillation.
NASA Astrophysics Data System (ADS)
Mitsui, Yuta; Yamada, Kyohei
2017-12-01
The Gravity Recovery and Climate Experiment (GRACE) has monitored global gravity changes since 2002. Gravity changes are considered to represent hydrological water mass movements around the surface of the globe, although fault slip of a large earthquake also causes perturbation of gravity. Since surface water movements are expected to affect earthquake occurrences via elastic surface load or pore-fluid pressure increase, correlation between gravity changes and occurrences of small (not large) earthquakes may reflect the effects of surface water movements. In the present study, we focus on earthquakes smaller than magnitude 7.5 and examine the relation between annual gravity changes and earthquake occurrences at worldwide subduction zones. First, we extract amplitudes of annual gravity changes from GRACE data for land. Next, we estimate background seismicity rates in the epidemic-type aftershock sequence model from shallow seismicity data having magnitudes of over 4.5. Then, we perform correlation analysis of the amplitudes of the annual gravity changes and the shallow background seismicity rates, excluding source areas of large earthquakes, and find moderate positive correlation. It implies that annual water movements can activate shallow earthquakes, although the surface load elastostatic stress changes are on the order of or below 1 kPa, as small as a regional case in a previous study. We speculate that periodic stress perturbation is amplified through nonlinear responses of frictional faults.[Figure not available: see fulltext.
Migrating pattern of deformation prior to the Tohoku-Oki earthquake revealed by GRACE data
NASA Astrophysics Data System (ADS)
Panet, Isabelle; Bonvalot, Sylvain; Narteau, Clément; Remy, Dominique; Lemoine, Jean-Michel
2018-05-01
Understanding how and when far-field continuous motions lead to giant subduction earthquakes remains a challenge. An important limitation comes from an incomplete description of aseismic mass fluxes at depth along plate boundaries. Here we analyse Earth's gravity field variations derived from GRACE satellite data in a wide space-time domain surrounding the Mw 9.0 2011 Tohoku-Oki earthquake. We show that this earthquake is the extreme expression of initially silent deformation migrating from depth to the surface across the entire subduction system. Our analysis indeed reveals large-scale gravity and mass changes throughout three tectonic plates and connected slabs, starting a few months before March 2011. Before the Tohoku-Oki earthquake rupture, the gravity variations can be explained by aseismic extension of the Pacific plate slab at mid-upper mantle depth, concomitant with increasing seismicity in the shallower slab. For more than two years after the rupture, the deformation propagated far into the Pacific and Philippine Sea plate interiors, suggesting that subduction accelerated along 2,000 km of the plate boundaries in March 2011. This gravitational image of the earthquake's long-term dynamics provides unique information on deep and crustal processes over intermediate timescales, which could be used in seismic hazard assessment.
Quantifying renewable groundwater stress with GRACE
NASA Astrophysics Data System (ADS)
Richey, Alexandra S.; Thomas, Brian F.; Lo, Min-Hui; Reager, John T.; Famiglietti, James S.; Voss, Katalyn; Swenson, Sean; Rodell, Matthew
2015-07-01
Groundwater is an increasingly important water supply source globally. Understanding the amount of groundwater used versus the volume available is crucial to evaluate future water availability. We present a groundwater stress assessment to quantify the relationship between groundwater use and availability in the world's 37 largest aquifer systems. We quantify stress according to a ratio of groundwater use to availability, which we call the Renewable Groundwater Stress ratio. The impact of quantifying groundwater use based on nationally reported groundwater withdrawal statistics is compared to a novel approach to quantify use based on remote sensing observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. Four characteristic stress regimes are defined: Overstressed, Variable Stress, Human-dominated Stress, and Unstressed. The regimes are a function of the sign of use (positive or negative) and the sign of groundwater availability, defined as mean annual recharge. The ability to mitigate and adapt to stressed conditions, where use exceeds sustainable water availability, is a function of economic capacity and land use patterns. Therefore, we qualitatively explore the relationship between stress and anthropogenic biomes. We find that estimates of groundwater stress based on withdrawal statistics are unable to capture the range of characteristic stress regimes, especially in regions dominated by sparsely populated biome types with limited cropland. GRACE-based estimates of use and stress can holistically quantify the impact of groundwater use on stress, resulting in both greater magnitudes of stress and more variability of stress between regions.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-08-01
Using data from the Gravity Recovery And Climate Experiment (GRACE) mission, we derive statistically robust "hot spot" regions of high probability of peak anomalous—i.e., with respect to the seasonal cycle—water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/month). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hot spot regions to GRACE results and that most exceptions are located in the tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020, it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e., combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE Follow-On (GRACE-FO) mission.
NASA Astrophysics Data System (ADS)
Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan
2017-04-01
Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7±21.1 mm/yr), considerably higher than GLDAS ET (461.7±29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.
NASA Astrophysics Data System (ADS)
Pan, Yun; Zhang, Chong; Gong, Huili; Yeh, Pat J.-F.; Shen, Yanjun; Guo, Ying; Huang, Zhiyong; Li, Xiaojuan
2017-01-01
Regional evapotranspiration (ET) can be enhanced by human activities such as irrigation or reservoir impoundment. Here the potential of using Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage data in water budget calculations to detect human-induced ET change is investigated over the Haihe River basin of China. Comparison between GRACE-based monthly ET estimate (2005-2012) and Global Land Data Assimilation System (GLDAS)-modeled ET indicates that human-induced ET due to intensive groundwater irrigation from March to May can only be detected by GRACE. GRACE-based ET (521.7 ± 21.1 mm/yr), considerably higher than GLDAS ET (461.7 ± 29.8 mm/yr), agrees well with existing estimates found in the literature and indicates that human activities contribute to a 12% increase in ET. The double-peak seasonal pattern of ET (in May and August) as reported in published studies is well reproduced by GRACE-based ET estimate. This study highlights the unique capability of GRACE in detecting anthropogenic signals over regions with large groundwater consumption.
NASA Astrophysics Data System (ADS)
Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean
2014-05-01
Seasonal variability of sea surface height and mass within the Red Sea, occurs mostly through the exchange of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water exchange through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red Sea during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red Sea is warmer near the surface due to higher air temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red Sea experiences warming by air-sea exchange only. The temperature profile affects the water density, which impacts the sea surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of sea surface height, and steric sea surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red Sea, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red Sea through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer sea surface warming.
NASA Astrophysics Data System (ADS)
Nie, W.; Zaitchik, B. F.; Kumar, S.; Rodell, M.
2017-12-01
Advanced Land Surface Models (LSM) offer a powerful tool for studying and monitoring hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use, if the process is represented at all. GRACE, meanwhile, detects the total change in water storage, including change due to human activities, but does not resolve the source of these changes. Here we examine recent groundwater declines in the US High Plains Aquifer (HPA), a region that is heavily utilized for irrigation and that is also affected by episodic drought. To understand observed decline in groundwater (well observation) and terrestrial water storage (GRACE) during a recent multi-year drought, we modify the Noah-MP LSM to include a groundwater pumping irrigation scheme. To account for seasonal and interannual variability in active irrigated area we apply a monthly time-varying greenness vegetation fraction (GVF) dataset to the model. A set of five experiments were performed to study the impact of irrigation with groundwater withdrawal on the simulated hydrological cycle of the HPA and to assess the importance of time-varying GVF when simulating drought conditions. The results show that including the groundwater pumping irrigation scheme in Noah-MP improves model agreement with GRACE mascon solutions for TWS and well observations of groundwater anomaly in the southern HPA, including Texas and Kansas, and that accounting for time-varying GVF is important for model realism under drought. Results for the HPA in Nebraska are mixed, likely due to misrepresentation of the recharge process. This presentation will highlight the value of the GRACE constraint for model development, present estimates of the relative contribution of climate variability and irrigation to declining TWS in the HPA under drought, and identify opportunities to integrate GRACE-FO with models for water resource monitoring in heavily irrigated regions.
Are GRACE-era terrestrial water trends driven by anthropogenic climate change?
Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.
2016-01-01
To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less
Are GRACE-era terrestrial water trends driven by anthropogenic climate change?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.
To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less
NASA Astrophysics Data System (ADS)
Blank, B.; van der Wal, W.; Pappa, F.; Ebbing, J.
2017-12-01
B. Blank1, H. Hu1, W. van der Wal1, F Pappa2, J. Ebbing21Delft University of Technology 2Christian-Albrechts-University of KielSince the beginning of the 2000's time-variable gravity data from GRACE has proved to be an effective method for mapping ice mass loss in Antarctica. However, Glacial Isostatic Adjustment (GIA) models are required to correct for GIA induced mass changes. While most GIA models have adopted an Earth model that only varies radially in parameters, it has long been clear that the Earth structure also varies with longitude and latitude. For this study a new global 3D GIA model has been developed within the finite element software package ABAQUS, which can be modified to operate on a spatial resolution down to 50 km locally. The model is being benchmarked against normal model models for surface loading. It will be used to investigate the effects of a 3D varying lithosphere and upper asthenosphere in Antarctica. Viscosity which will be computed from temperature estimates with laboratory based flow laws. A new 3D temperature map of the Antarctic lithosphere has been developed within ESA's GOCE+ project based on seismic data as well as on GOCE and GRACE inferred gravity gradients. Output from the GIA model with this new temperature estimates will be compared to that of 1D viscosity profiles and other recent 3D viscosity models based on seismic data. From these side to side comparisons we want to investigate the influence of the viscosity map on uplift rates and horizontal movement. Finally the results can be compared to GPS measurement to investigate the validity of all models.
NASA Astrophysics Data System (ADS)
Ahmed, M. E.; Sultan, M.; Wahr, J. M.; Yan, E.; Bonin, J. A.; Chouinard, K.
2012-12-01
It is common practice for researchers engaged in research related to climate change to examine the temporal variations in relevant climatic parameters (e.g., temperature, precipitation) and to extract and examine drought indices reproduced from one or more such parameters. Drought indices (meteorological, agricultural and hydrological) define departures from normal conditions and are used as proxies for monitoring water availability. Many of these indices exclude significant controlling factor(s), do not work well in specific settings and regions, and often require long (≥50 yr) calibration time periods and substantial meteorological data, limiting their application in areas lacking adequate observational networks. Additional uncertainties are introduced by the models used in computing model-dependent indices. Aside from these uncertainties, none of these indices measure the variability in terrestrial water storage (TWS), a term that refers to the total vertically integrated water content in an area regardless of the reservoir in which it resides. Inter-annual trends in TWS were extracted from monthly Gravity Recovery and Climate Experiment (GRACE) data acquired (04/2002 to 08/2011) over Africa and correlated (in a GIS environment) with relevant temporal remote sensing, geologic, hydrologic, climatic, and topographic datasets. Findings include the following: (1) large sectors of Africa are undergoing statistically significant variations (+36 mm/yr to -16 mm/yr) due to natural and man-made causes; (2) warming of the tropical Atlantic ocean apparently intensified Atlantic monsoons and increased precipitation and TWS over western and central Africa's coastal plains, proximal mountainous source areas, and inland areas as far as central Chad; (3) warming in the central Indian Ocean decreased precipitation and TWS over eastern and southern Africa; (4) the high frequency of negative phases of the North Atlantic Oscillation (NAO) increased precipitation and TWS over northwest Africa; (5) deforestation in the Congo Basin and southern Tanzania decreased TWS and (6) the construction of dams (e.g., Merowe High Dam, Tekezé, Amerti-Neshi, Beles, Gilgel Gibe I, Gilgel Gibe II, and Karadobi) throughout the GRACE period increased TWS in upstream Nile Valley countries. Given the 10-year monthly GRACE record of water availability data (represented by GRACE TWS) acquired on the sub-basin scale across the globe, and the plans underway for deployment of a GRACE follow-up (2016-2026), consideration should be given to using GRACE TWS data as an alternative, viable drought index, and for monitoring the impacts of human interventions on hydrologic systems.
Towards combined global monthly gravity field solutions
NASA Astrophysics Data System (ADS)
Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean
2014-05-01
Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing requirements to be met by each analysis centre to enable a meaningful combination (either performed on the solution level or, preferably, on the normal equation level).
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Wu, Patrick; Sideris, Michael G.; Shum, C. K.
2008-10-01
Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity. It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate. The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is important to include realistic uncertainty estimates for hydrology models and land ice melting in addition to the effects of lateral heterogeneity.
NASA Astrophysics Data System (ADS)
Yang, C.-C.; Wu, Y.-H.; Chao, B. F.; Yu, S.-B.
2009-04-01
Present-day GPS network have been extensively used to monitor crustal deformation due to various geodynamic mechanisms. Situated among the Pacific Ring of Fire on the suture zone of Eurasian and Philippine Sea Plates, the island of Taiwan with a dense continuous GPS network since ~1996 and now over 300 stations sees plenty of geophysical phenomena including particularly prominent crustal motions. We assessed daily solution of each station's coordinate time series, and made the routine corrections, such as orbital, EOP, atmospheric and tidal corrections, using GAMIT/GLOBK software (with ITRF05). We then employ the Quasi-Observation Combination Analysis (QOCA) package to obtain the variability and trend after removing occasional earthquake "disruptions". Preliminary results show strong seasonal variations. We then utilize the numerical method of Empirical Orthogonal Function (EOF) to analysis the geophysical signals from the continuous and dense GPS vertical crustal motion observations. We wish to be able to characterize both the seasonal and non-seasonal variability in the vertical crustal motion, in terms of the EOF modes in the spatial domain over Taiwan (plus a few offshore islets) with time evolution spanning the entire period of time. Corraborating with time-variable gravity data from the geodetic satellite mission GRACE, we can further obtain vertical components of both mass-induced loading with respect to the precipitation minus evaporation and the crustal motion caused by the active tectonic processes on Taiwan.
NASA Astrophysics Data System (ADS)
Scanlon, B. R.; Zhang, Z.; Reitz, M.; Rodell, M.; Sanford, W. E.; Save, H.; Wiese, D. N.; Croteau, M. J.; McGuire, V. L.; Pool, D. R.; Faunt, C. C.; Zell, W.
2017-12-01
Groundwater storage depletion is a critical issue for many of the major aquifers in the U.S., particularly during intense droughts. GRACE (Gravity Recovery and Climate Experiment) satellite-based estimates of groundwater storage changes have attracted considerable media attention in the U.S. and globally and interest in GRACE products continues to increase. For this reason, a Powell Research Group was formed to: (1) Assess variations in groundwater storage using a variety of GRACE products and other storage components (snow, surface water, and soil moisture) for major aquifers in the U.S., (2) Quantify long-term trends in groundwater storage from ground-based monitoring and regional and national modeling, and (3) Use ground-based monitoring and modeling to interpret GRACE water storage changes within the context of extreme droughts and over-exploitation of groundwater. The group now has preliminary estimates from long-term trends and seasonal fluctuations in water storage using different GRACE solutions, including CSR, JPL and GSFC. Approaches to quantifying uncertainties in GRACE data are included. This work also shows how GRACE sees groundwater depletion in unconfined versus confined aquifers, and plans for future work will link GRACE data to regional groundwater models. The wealth of ground-based observations for the U.S. provides a unique opportunity to assess the reliability of GRACE-based estimates of groundwater storage changes.
Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models
NASA Astrophysics Data System (ADS)
Jin, S. G.; Hassan, A. A.; Feng, G. P.
2012-12-01
The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.
NASA Astrophysics Data System (ADS)
Allen, D. M.; Henry, C.; Demon, H.; Kirste, D. M.; Huang, J.
2011-12-01
Sustainable management of groundwater resources, particularly in water stressed regions, requires estimates of groundwater recharge. This study in southern Mali, Africa compares approaches for estimating groundwater recharge and understanding recharge processes using a variety of methods encompassing groundwater level-climate data analysis, GRACE satellite data analysis, and recharge modelling for current and future climate conditions. Time series data for GRACE (2002-2006) and observed groundwater level data (1982-2001) do not overlap. To overcome this problem, GRACE time series data were appended to the observed historical time series data, and the records compared. Terrestrial water storage anomalies from GRACE were corrected for soil moisture (SM) using the Global Land Data Assimilation System (GLDAS) to obtain monthly groundwater storage anomalies (GRACE-SM), and monthly recharge estimates. Historical groundwater storage anomalies and recharge were determined using the water table fluctuation method using observation data from 15 wells. Historical annual recharge averaged 145.0 mm (or 15.9% of annual rainfall) and compared favourably with the GRACE-SM estimate of 149.7 mm (or 14.8% of annual rainfall). Both records show lows and peaks in May and September, respectively; however, the peak for the GRACE-SM data is shifted later in the year to November, suggesting that the GLDAS may poorly predict the timing of soil water storage in this region. Recharge simulation results show good agreement between the timing and magnitude of the mean monthly simulated recharge and the regional mean monthly storage anomaly hydrograph generated from all monitoring wells. Under future climate conditions, annual recharge is projected to decrease by 8% for areas with luvisols and by 11% for areas with nitosols. Given this potential reduction in groundwater recharge, there may be added stress placed on an already stressed resource.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Christophe, Bruno; Foulon, Bernard; Boulanger, Damien; Liorzou, Françoise; Lebat, Vincent
2013-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after substracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing and manufacturing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation. To reach this stability, the sensor unit is enclosed in a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure mechanical excitation especially due to launching vibrations. As the measure must be accurate, no displacements or sliding must appear during excitations. The electrode cage is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. Specific analysis on this part is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to win in performance, in particular the thermal sensitivity of the measurements.
Global Gravity Field Determination by Combination of terrestrial and Satellite Gravity Data
NASA Astrophysics Data System (ADS)
Fecher, T.; Pail, R.; Gruber, T.
2011-12-01
A multitude of impressive results document the success of the satellite gravity field mission GOCE with a wide field of applications in geodesy, geophysics and oceanography. The high performance of GOCE gravity field models can be further improved by combination with GRACE data, which is contributing the long wavelength signal content of the gravity field with very high accuracy. An example for such a consistent combination of satellite gravity data are the satellite-only models GOCO01S and GOCO02S. However, only the further combination with terrestrial and altimetric gravity data enables to expand gravity field models up to very high spherical harmonic degrees and thus to achieve a spatial resolution down to 20-30 km. First numerical studies for high-resolution global gravity field models combining GOCE, GRACE and terrestrial/altimetric data on basis of the DTU10 model have already been presented. Computations up to degree/order 600 based on full normal equations systems to preserve the full variance-covariance information, which results mainly from different weights of individual terrestrial/altimetric data sets, have been successfully performed. We could show that such large normal equations systems (degree/order 600 corresponds to a memory demand of almost 1TByte), representing an immense computational challenge as computation time and memory requirements put high demand on computational resources, can be handled. The DTU10 model includes gravity anomalies computed from the global model EGM08 in continental areas. Therefore, the main focus of this presentation lies on the computation of high-resolution combined gravity field models based on real terrestrial gravity anomaly data sets. This is a challenge due to the inconsistency of these data sets, including also systematic error components, but a further step to a real independent gravity field model. This contribution will present our recent developments and progress by using independent data sets at certain land areas, which are combined with DTU10 in the ocean areas, as well as satellite gravity data. Investigations have been made concerning the preparation and optimum weighting of the different data sources. The results, which should be a major step towards a GOCO-C model, will be validated using external gravity field data and by applying different validation methods.
Terrestrial Waters and Sea Level Variations on Interannual Time Scale
NASA Technical Reports Server (NTRS)
Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.
2011-01-01
On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.
NASA Astrophysics Data System (ADS)
De Linage, C.; Famiglietti, J. S.; Randerson, J. T.
2013-12-01
Floods and droughts frequently affect the Amazon River basin, impacting the transportation, river navigation, agriculture, economy and the carbon balance and biodiversity of several South American countries. The present study aims to find the main variables controlling the natural interannual variability of terrestrial water storage in the Amazon region and to propose a modeling framework for flood and drought forecasting. We propose three simple empirical models using a linear combination of lagged spatial averages of central Pacific (Niño 4 index) and tropical North Atlantic (TNAI index) sea surface temperatures (SST) to predict a decade-long record of 3°, monthly terrestrial water storage anomalies (TWSA) observed by the Gravity Recovery And Climate Experiment (GRACE) mission. In addition to a SST forcing term, the models included a relaxation term to simulate the memory of water storage anomalies in response to external variability in forcing. Model parameters were spatially-variable and individually optimized for each 3° grid cell. We also investigated the evolution of the predictive capability of our models with increasing minimum lead times for TWSA forecasts. TNAI was the primary external forcing for the central and western regions of the southern Amazon (35% of variance explained with a 3-month forecast), whereas Niño 4 was dominant in the northeastern part of the basin (61% of variance explained with a 3-month forecast). Forcing the model with a combination of the two indices improved the fit significantly (p<0.05) for at least 64% of the grid cells, compared to models forced solely with Niño 4 or TNAI. The combined model was able to explain 43% of the variance in the Amazon basin as a whole with a 3-month lead time. While 66% of the observed variance was explained in the northeastern Amazon, only 39% of the variance was captured by the combined model in the central and western regions, suggesting that other, more local, forcing sources were important in these regions. The predictive capability of the combined model was monotonically degraded with increasing lead times. Degradation was smaller in the northeastern Amazon (where 49% of the variance was explained using a 8-month lead time versus 69% for a 1 month lead time) compared to the western and central regions of southern Amazon (where 22% of the variance was explained at 8 months versus 43% at 1 month). Our model may provide early warning information about flooding in the northeastern region of the Amazon basin, where floodplain areas are extensive and the sensitivity of floods to external SST forcing was shown to be high. This work also strengthens our understanding of the mechanisms regulating interannual variability in Amazon fires, as TWSA deficits may subsequently lead to atmospheric water vapor deficits and reduced cloudiness via water-limited evapotranspiration. Finally, this work helps to bridge the gap between the current GRACE mission and the follow-on gravity mission.
Regionally Optimized GRACE Processing and Inter-comparison on the Antarctic Ice Sheet
NASA Astrophysics Data System (ADS)
Mohajerani, Y.; Velicogna, I.; Sutterley, T. C.; Rignot, E. J.
2017-12-01
The Antarctic ice sheet is losing mass at an accelerating rate, with a sea level contribution that changed from 0.08mm/yr from 1992 to 2001 to 0.4mm/yr from 2002 to 2011. While most of this contribution comes from West Antarctica, Totten Glacier has the largest discharge of ice in East Antarctica, with a sea level rise potential of 3.9 m. Furthermore, the drainage basin of Totten Glacier, along the neighboring Moscow University Glacier are below sea level, extending hundreds of kilometers inland. Therefore, obtaining regional estimates of both western and eastern Antarctic basins are of critical importance. The GRACE (Gravity Recovery and Climate Experiment) satellite has been providing mass balance time-series from geoid changes since 2002. Several mascon and harmonic GRACE solutions are available from different processing centers. Here, we evaluate the various solutions across the ice sheet and a new set of regionally optimized mascons to study the mass balance of Totten and Moscow University glaciers. We obtain a trend of -16.5±4.1Gt/yr with an acceleration of -2.0±1.8Gt/yr2 for the two glaciers for the period April 2002 to December 2016 using the Ivins et al (2013) GIA model (errors include leakage, GIA, and regression errors). We compare the results with the Mass Budget Method that combines ice discharge (D) and surface mass balance (SMB) from two models: 1) RACMO2.3, and 2) MAR3.6.4. MBM/RACMO2.3 shows the best agreement with the GRACE estimates. Within the common period from April 2002 to December 2015, the MBM/RACMO2.3 and MAR3.6.4 results are -15.6±1.8Gt/yr and -6.7±1.5Gt/yr respectively, while the GRACE time-series has a trend of -14.8±2.7 Gt/yr. We extend the study to the Getz Ice Shelf, the third largest ice shelf in West Antarctica after Ronne and Ross West ice shelves. We compare our gravity-derived mass estimates, the mass budget estimates, and the volume changes from altimetry data to compare the estimates and obtain a multi-sensor assessment of ice sheet mass balance.
NASA Astrophysics Data System (ADS)
Rogister, Yves; Hothem, Larry; Nielsen, J. Emil; Bernard, Jean-Daniel; Hinderer, Jacques; Forsberg, René; Wilson, Terry; Capra, Alessandro; Zanutta, Antonio; Winefield, Rachelle; Collett, Dave
2013-04-01
A campaign of absolute gravity (AG) measurements was conducted with both FG5 and A10 meters on Ross Island and in Terra Nova Bay in November and December 2011. It resulted from a collaboration between Danish, French, Italian, New Zealand and US agencies and institutes, under the POLENET program. For the second time in 2 years, AG was measured at McMurdo Station and Scott Base. For the fifth time in 21 years, it was measured at Mario Zucchelli Station. Moreover, AG field observations were initiated at various GPS stations of the A-NET network. We will report on the very last campaign, show the gravity trends at McMurdo Station, Scott Base and Mario Zucchelli Station, and describe how they compare to estimates of the gravity variation derived from space measurements by the GRACE twin satellites.
NASA Technical Reports Server (NTRS)
Beckley, B. D.; Lemoine, F. G.; Zelensky, N. P.; Yang, X.; Holmes, S.; Ray, R. D.; Mitchum, G. T.; Desai, S.; Brown, S.; Haines, B.
2011-01-01
Recent developments in Precise Orbit Determinations (POD) due to in particular to revisions to the terrestrial reference frame realization and the time variable gravity (TVG) continues to provide improvements to the accuracy and stability of the PO directly affecting mean sea level (MSL) estimates. Long-term credible MSL estimates require the development and continued maintenance of a stable reference frame, along with vigilant monitoring of the performance of the independent tracking systems used to calculate the orbits for altimeter spacecrafts. The stringent MSL accuracy requirements of a few tenths of an mm/yr are particularly essential for mass budget closure analysis over the relative short time period of Jason-l &2, GRACE, and Argo coincident measurements. In an effort to adhere to cross mission consistency, we have generated a full time series of experimental orbits (GSFC stdlllO) for TOPEX/Poseidon (TP), Jason-I, and OSTM based on an improved terrestrial reference frame (TRF) realization (ITRF2008), revised static (GGM03s), and time variable gravity field (Eigen6s). In this presentation we assess the impact of the revised precision orbits on inter-mission bias estimates, and resultant global and regional MSL trends. Tide gauge verification results are shown to assess the current stability of the Jason-2 sea surface height time series that suggests a possible discontinuity initiated in early 2010. Although the Jason-2 time series is relatively short (approximately 3 years), a thorough review of the entire suite of geophysical and environmental range corrections is warranted and is underway to maintain the fidelity of the record.
Status and Assessments of CSR GRACE Level-2 Data Products
NASA Astrophysics Data System (ADS)
Bettadpur, Srinivas; Kang, Zhigui; Nagel, Peter; Pastor, Rick; Poole, Steve; Ries, John; Save, Himanshu
2015-04-01
The joint NASA/DLR GRACE mission has successfully operated for more than 13 years, and has provided a remarkable record of global mass flux due to a large variety of geophysical and climate processes at various spatio-temporal scales. The University of Texas Center for Space Research (CSR) hosts the mission PI, and is responsible for delivery of operational (presently denoted as Release-05 or RL05) gravity field data products. In addition, CSR generates and distributes a variety of other gravity field data products, including products generated from the use of satellite laser ranging data. This poster will provide an overview of all these data products, their relative quality, potential applications, and future plans for their development and delivery.
NASA Astrophysics Data System (ADS)
Devaraju, B.; Weigelt, M.; Mueller, J.
2017-12-01
In order to suppress the impact of aliasing errors on the standard monthly GRACE gravity-field solutions, co-estimating sub-monthly (daily/two-day) low-degree solutions has been suggested as a solution. The maximum degree of the low-degree solutions is chosen via the Colombo-Nyquist rule of thumb. However, it is now established that the sampling of satellites puts a restriction on the maximum estimable order and not the degree - modified Colombo-Nyquist rule. Therefore, in this contribution, we co-estimate low-order sub-monthly solutions, and compare and contrast them with the low-degree sub-monthly solutions. We also investigate their efficacies in dealing with aliasing errors.
Emerging trends in global freshwater availability.
Rodell, M; Famiglietti, J S; Wiese, D N; Reager, J T; Beaudoing, H K; Landerer, F W; Lo, M-H
2018-05-01
Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.
Cumulative Total U.S. Freshwater Losses as Seen by NASA GRACE, 2002-15
2015-12-08
Cumulative total freshwater losses in the United States from 2002 to 2015 (in inches) observed by NASA's Gravity Recovery and Climate Experiment (GRACE) mission. Total water refers to all of the snow, surface water, soil water and groundwater combined. Much of the northern half of the country experienced increasing total water storage during this time period, while total water storage in the southern half decline. Areas where groundwater depletion strongly impacted total water losses include California's Central Valley, and the southern High Plains aquifer beneath the Texas and Oklahoma panhandles. Total water storage in the Upper Missouri River basin increased signficantly and contributed to considerable flooding during the 2002-15 time period. Image updated from Famiglietti and Rodell, 2013. Citation of Record: Famiglietti, J. S., and M. Rodell, Water in the Balance, Science, 340, 1300-1301. http://photojournal.jpl.nasa.gov/catalog/PIA20204
Observing anomalies in the deglaciation of Greenland by GRACE and GNET GPS
NASA Astrophysics Data System (ADS)
Knudsen, Per; Khan, Shfaqat Abbas
2017-04-01
Between the start of 2003 and the middle 2013, the total mass of ice in Greenland declined at an accelerating rate, and this rate increases nearly constantly of about 24 Gt per year. Then, a dramatic reversal occurred, and almost no additional ice mass was lost in the subsequent two years. In 2015 the melting had resumed reducing the ice mass in Greenland. We use observations from the Gravity Recovery and Climate Experiment (GRACE) and a network of Global Positioning System (GPS) receivers to study both the decade of accelerating ice loss, and the subsequent 'pause', focusing on the space-time structure of changes in ice mass. We use a spatial basis set of spherical Legendre polynomials, and assume that the temporal variation in mass can be expressed using a 4-term Fourier series (i.e. an annual cycle) superimposed on a polynomial in time (i.e. a trend). We show that the spatial pattern of the sustained, decade-long acceleration and of the mass anomaly associated with the melt anomalies are very similar, and so manifest the footprint of the ice sheet's sensitivity to climate change at the wavelengths resolved by GRACE.
Observing the 2013 and other anomalies in the deglaciation of Greenland by GRACE and GNET GPS.
NASA Astrophysics Data System (ADS)
Knudsen, P.; Madsen, F. B.; Bevis, M. G.; Khan, S. A.
2016-12-01
Between the start of 2003 and the middle 2013, the total mass of ice in Greenland declined at an accelerating rate, and this rate increases nearly constantly of about 24 Gt per year. Then, a dramatic reversal occurred, and almost no additional ice mass was lost in the subsequent two years. In 2015 the melting had resumed reducing the ice mass in Greenland. We use observations from the Gravity Recovery and Climate Experiment (GRACE) and a network of Global Positioning System (GPS) receivers to study both the decade of accelerating ice loss, and the subsequent `pause', focusing on the space-time structure of changes in ice mass. We use a spatial basis set of spherical Legendre polynomials, and assume that the temporal variation in mass can be expressed using a 4-term Fourier series (i.e. an annual cycle) superimposed on a polynomial in time (i.e. a trend). We show that the spatial pattern of the sustained, decade-long acceleration and of the mass anomaly associated with the melt anomalies are very similar, and so manifest the footprint of the ice sheet's sensitivity to climate change at the wavelengths resolved by GRACE.
NASA Astrophysics Data System (ADS)
Guo, Jinyun; Li, Wudong; Chang, Xiaotao; Zhu, Guangbin; Liu, Xin; Guo, Bin
2018-04-01
Water resource management is crucial for the economic and social development of Xinjiang, an arid area located in the Northwest China. In this paper, the time variations of gravity recovery and climate experiment (GRACE)-derived monthly gravity field models from 2003 January to 2013 December are analysed to study the terrestrial water storage (TWS) changes in Xinjiang using the multichannel singular spectrum analysis (MSSA) with a Gaussian smoothing radius of 400 km. As an extended singular spectrum analysis (SSA), MSSA is more flexible to deal with multivariate time-series in terms of estimating periodic components and trend, reducing noise and identifying patterns of similar spatiotemporal behaviour thanks to the data-adaptive nature of the base functions. Combining MSSA and Gaussian filter can not only obviously remove the north-south striping errors in the GRACE solutions but also reduce the leakage errors, which can increase the signal-to-noise ratio by comparing with the traditional procedure, that is, empirical decorrelation method followed with the Gaussian filtering. The spatiotemporal characteristics of TWS changes in Xinjiang were validated against the Global Land Dynamics Assimilation System, the Climate Prediction Center and in-situ precipitation data. The water storage in Xinjiang shows the relatively large fluctuation from 2003 January to 2013 December, with a drop from 2006 January to 2008 December due to the drought event and an obvious rise from 2009 January to 2010 December because of the high precipitation. Spatially, the TWS has been increasing in the south Xinjiang, but decreasing in the north Xinjiang. The minimum rate of water storage change is -4.4 mm yr-1 occurring in the central Tianshan Mountain.
Constraining precipitation amount and distribution over cold regions using GRACE
NASA Astrophysics Data System (ADS)
Behrangi, A.; Reager, J. T., II; Gardner, A. S.; Fisher, J.
2017-12-01
Current quantitative knowledge on the amount and distribution of precipitation in high-elevation and high latitude regions is limited due to instrumental and retrieval shortcomings. Here we demonstrate how that satellite gravimetry (Gravity Recovery and Climate Experiment, GRACE) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger error. We also observed that as near surface temperature decreases products tend to underestimate accumulated precipitation retrieved from GRACE. The analysis performed using various products such as GPCP, GPCC, TRMM, and gridded station data over vast regions in high latitudes and two large endorheic basins in High Mountain Asia. Based on the analysis over High Mountain Asia it was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, GPCP showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basin.
Sensitivity of GRACE-derived estimates of groundwater-level changes in southern Ontario, Canada
NASA Astrophysics Data System (ADS)
Hachborn, Ellen; Berg, Aaron; Levison, Jana; Ambadan, Jaison Thomas
2017-12-01
Amidst changing climates, understanding the world's water resources is of increasing importance. In Ontario, Canada, low water conditions are currently assessed using only precipitation and watershed-based stream gauges by the Conservation Authorities in Ontario and the Ministry of Natural Resources and Forestry. Regional groundwater-storage changes in Ontario are not currently measured using satellite data by research institutes. In this study, contributions from the Gravity Recovery and Climate Experiment (GRACE) data are compared to a hydrogeological database covering southern Ontario from 2003 to 2013, to determine the suitability of GRACE total water storage estimates for monitoring groundwater storage in this location. Terrestrial water storage data from GRACE were used to determine monthly groundwater storage (GWS) anomaly values. GWS values were also determined by multiplying groundwater-level elevations (from the Provincial Groundwater Monitoring Network wells) by specific yield. Comparisons of GRACE-derived GWS to well-based GWS data determined that GRACE is sufficiently sensitive to obtain a meaningful signal in southern Ontario. Results show that GWS values produced by GRACE are useful for identifying regional changes in groundwater storage in areas with limited available hydrogeological characterization data. Results also indicate that GRACE may have an ability to forecast changes in groundwater storage, which will become useful when monitoring climate shifts in the near future.
Inter-satellite links: A versatile tool for geodesy and planetary and interplanetary navigation
NASA Astrophysics Data System (ADS)
Schlicht, Anja; Hugentobler, Urs; Hauk, Markus; Murböck, Michael; Pail, Roland
2016-07-01
With the use of low-low satellite-to-satellite tracking gravity field recovery made a big step forward. Based on this technique the Gravity Recovery And Climate Experiment (GRACE) mission delivers monthly gravity field with high precision, allowing to measure effects in Earth water storage basins and variations in ice mass in Greenland and Antarctica from space. GRACE is using a Ka-band inter-satellite ranging technique, GRACE Follow-On will in addition test optical ranging. In fundamental physics high-precision optical inter-satellite tracking will be used to detect gravitational waves in space, as a first step LISA Pathfinder was launched recently. Inter-satellite links are not only used for ranging, also data transfer in space is based on such links. ESA's European Data Relay System will be established in up-coming years to collect data from the low orbiting Sentinel satellites and transfer the high data rate to ground. The same link may be used for ranging, data transfer and time transfer, a functionality that is discussed for next generation Galileo satellites. But to exploit this synergy a common concept for all three tasks has to be developed. In this paper we show that with inter-satellite ranging techniques with µm accuracy the limited accuracy of GNSS based orbit determination of low Earth orbiters (LEO), which is due to the limitations of one-way microwave tracking (unsynchronized clocks, phase center variations and offsets of the sending and receiving antennas) can be overcome. In the ESA study GETRIS the following question is answered: How can a highly accurate and precise GEO-based two-way ranging method support GNSS tracking? The reduction of systematic errors in LEO precise orbit determination (POD) by exploiting the synergy between ranging, data- and time-transfer is assessed in a concept consisting of precise two-way GEO-LEO tracking (as used for data transfer) and an ultra-stable oscillator on-board of the geostationary satellite (GEO) synchronized from ground. We now want to get a step further and design a versatile concept for the use of this synergy in a satellite constellation based on existing and future planned ESA infrastructure and highlight the benefits in different disciplines from geodesy to interplanetary ranging, with emphasis on gravity field recovery.
Land water storage from space and the geodetic infrastructure
NASA Astrophysics Data System (ADS)
Cazenave, A.; Larson, K.; Wahr, J.
2009-04-01
In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.
Progress towards daily "swath" solutions from GRACE
NASA Astrophysics Data System (ADS)
Save, H.; Bettadpur, S. V.; Sakumura, C.
2015-12-01
The GRACE mission has provided invaluable and the only data of its kind that measures the total water column in the Earth System over the past 13 years. The GRACE solutions available from the project have been monthly average solutions. There have been attempts by several groups to produce shorter time-window solutions with different techniques. There is also an experimental quick-look GRACE solution available from CSR that implements a sliding window approach while applying variable daily data weights. All of these GRACE solutions require special handling for data assimilation. This study explores the possibility of generating a true daily GRACE solution by computing a daily "swath" total water storage (TWS) estimate from GRACE using the Tikhonov regularization and high resolution monthly mascon estimation implemented at CSR. This paper discusses the techniques for computing such a solution and discusses the error and uncertainty characterization. We perform comparisons with official RL05 GRACE solutions and with alternate mascon solutions from CSR to understand the impact on the science results. We evaluate these solutions with emphasis on the temporal characteristics of the signal content and validate them against multiple models and in-situ data sets.
NASA Astrophysics Data System (ADS)
Ndehedehe, Christopher E.; Awange, Joseph L.; Agutu, Nathan O.; Okwuashi, Onuwa
2018-03-01
The role of global sea surface temperature (SST) anomalies in modulating rainfall in the African region has been widely studied and is now less debated. However, their impacts and links to terrestrial water storage (TWS) in general, have not been studied. This study presents the pioneer results of canonical correlation analysis (CCA) of TWS derived from both global reanalysis data (1980-2015) and GRACE (Gravity Recovery and Climate Experiment) (2002-2014) with SST fields. The main issues discussed include, (i) oceanic hot spots that impact on TWS over tropical West Africa (TWA) based on CCA, (ii) long term changes in model and global reanalysis data (soil moisture, TWS, and groundwater) and the influence of climate variability on these hydrological indicators, and (iii) the hydrological characteristics of the Equatorial region of Africa (i.e., the Congo basin) based on GRACE-derived TWS, river discharge, and precipitation. Results of the CCA diagnostics show that El-Niño Southern Oscillation related equatorial Pacific SST fluctuations is a major index of climate variability identified in the main portion of the CCA procedure that indicates a significant association with long term TWS reanalysis data over TWA (r = 0.50, ρ < 0.05). Based on Mann-Kendall's statistics, the study found fairly large long term declines (ρ < 0.05) in TWS and soil moisture (1982 - 2015), mostly over the Congo basin, which coincided with warming of the land surface and the surrounding oceans. Meanwhile, some parts of the Sahel show significant wetting (rainfall, soil moisture, groundwater, and TWS) trends during the same period (1982-2015) and aligns with the ongoing narratives of rainfall recovery in the region. Results of singular spectral analysis and regression confirm that multi-annual changes in the Congo River discharge explained a considerable proportion of variability in GRACE-hydrological signal over the Congo basin (r = 0.86 and R2 = 0.70, ρ < 0.05). Finally, leading orthogonal modes of MERRA and GRACE-TWS over TWA show significant association with global SST anomalies.
NASA Astrophysics Data System (ADS)
Lopez, T.; Ramillien, G.; Antoine, R.; Darrozes, J.; Rabinowicz, M.
2017-12-01
Since its launch in 2002, the Gravity Recovery And Climate Experiment (GRACE) has been measured the tiny variations of the gravity field due to redistributions of water mass in the surface envelops of Earth. At a spatial resolution of 400 km, these satellite data offer a unique perspective to understand the evolution of continental water storage at regional and global scales, and therefore they enable the monitoring of the hydrological systems such as river basins. It is well known that seasonal cycle, droughts, vegetation and human extractions are the main contributors of the hydrology signals sensed by GRACE. However, the coupling between land surface and the atmosphere is important in semi-arid and arid regions, in particular in West Africa [1]. We propose to quantify the surface water fluxes in the Lake Chad region by using the 10-day water mass solutions of the GRACE mission in the context of the regular West African monsoon. Alternation of the evaporation/condensation cycles during the recent period are interpreted in terms of surface vertical permeability changes that control the thermal evolution in this region [2]. GRACE solutions reveal an interannual increase of surface water mass at the beginning of the dry seasons, especially between 2005 and 2008. We propose that this gain of surface water mass is caused by a seasonal cycle of clay fracturing that controls the evaporation/condensation cycle. [1] Koster et al. (2004). Science, 305, 1138-1140. [2] Lopez et al. (2016). Surv. Geophys., 37 (2), 471-502.
NASA Astrophysics Data System (ADS)
Mukherjee, Amritendu; Ramachandran, Parthasarathy
2018-03-01
Prediction of Ground Water Level (GWL) is extremely important for sustainable use and management of ground water resource. The motivations for this work is to understand the relationship between Gravity Recovery and Climate Experiment (GRACE) derived terrestrial water change (ΔTWS) data and GWL, so that ΔTWS could be used as a proxy measurement for GWL. In our study, we have selected five observation wells from different geographic regions in India. The datasets are unevenly spaced time series data which restricts us from applying standard time series methodologies and therefore in order to model and predict GWL with the help of ΔTWS, we have built Linear Regression Model (LRM), Support Vector Regression (SVR) and Artificial Neural Network (ANN). Comparative performances of LRM, SVR and ANN have been evaluated with the help of correlation coefficient (ρ) and Root Mean Square Error (RMSE) between the actual and fitted (for training dataset) or predicted (for test dataset) values of GWL. It has been observed in our study that ΔTWS is highly significant variable to model GWL and the amount of total variations in GWL that could be explained with the help of ΔTWS varies from 36.48% to 74.28% (0.3648 ⩽R2 ⩽ 0.7428) . We have found that for the model GWL ∼ Δ TWS, for both training and test dataset, performances of SVR and ANN are better than that of LRM in terms of ρ and RMSE. It also has been found in our study that with the inclusion of meteorological variables along with ΔTWS as input parameters to model GWL, the performance of SVR improves and it performs better than ANN. These results imply that for modelling irregular time series GWL data, ΔTWS could be very useful.
A New Unified Approach to Determine Geocenter Motion Using Space Geodesy and GRACE Gravity Data
NASA Astrophysics Data System (ADS)
Wu, X.; Kusche, J.; Landerer, F. W.
2016-12-01
Spherical harmonic expansions of Earth's surface mass variations start from three degree-1 terms. These longest-wavelength terms induce geocenter motion between the center-of-mass of the total Earth system (CM) and the center-of-figure of the solid Earth surface (CF), and a degree-1 surface deformation field. For complete spectral coverage and robust assessment of geographic mass budget using GRACE data, very accurate knowledge of geocenter motion between CM and CF is required with precision goals of 0.2 mm in annual amplitude and 0.2 mm/yr leading to equivalent degree-1 coefficients. However, GRACE's K-band ranging data system is not sensitive to these variation modes. Although satellite laser ranging (SLR) system is thought to have the most reliable sensitivity to CM, its surface network is very sparse and can only deliver motion between CM and the center of a changing network (CN) of roughly 20 unevenly distributed stations. Recently, the network has been extended to include 82 stations with their geocentric displacements derived by transferring SLR's CM sensitivity to other technique networks through local tie and co-motion constraints. The CM-CN motion of this network has a better agreement with the geocenter motion result from a global inversion of relative GPS, GRACE, and the ECCO ocean bottom pressure (OBP) model. Still, there is no guarantee that such a CM-CN motion is the same as the CM-CF motion. Also, the global inversion result is subject to the impact of unknown errors in the OBP model. To improve reliability of geocenter motion determination, we use a new unified approach to geocenter motion determination by combining geocentric displacements of ground stations with GRACE gravity data. Both translational and deformational signatures will be exploited for retrieval of the degree-1 surface mass variation coefficients. Higher degree terms are estimated simultaneously using GRACE gravity data, which further improves CF knowledge and reduces aliasing effects. Such a data combination also uses full covariance matrices of all data types to facilitate a reliable variance component estimation. High-precision results for non-linear geocenter motion have been achieved and will be reported. We will also discuss challenges and strategies for improving geocenter velocity determination.
Sun, Zhangli; Zhu, Xiufang; Pan, Yaozhong; Zhang, Jinshui; Liu, Xianfeng
2018-09-01
Droughts are some of the worst natural disasters that bring significant water shortages, economic losses, and adverse social consequences. Gravity Recovery and Climate Experiment (GRACE) satellite data are widely used to characterize and evaluate droughts. In this work, we evaluate drought situations in the Yangtze River Basin (YRB) using the GRACE Texas Center for Space Research (CSR) mascon (mass concentration) data from 2003 to 2015. Drought events are identified by water storage deficits (WSDs) derived from GRACE data, while the drought severity evaluation is based on the water storage deficit index (WSDI), standardized WSD time series, and total water storage deficit (TWSD). The WSDI is subsequently compared with the Palmer drought severity index (PDSI), standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), and standardized runoff index (SRI). The results indicate the YRB experienced increased wetness during the study period, with WSD values increasing at a rate of 5.20mm/year. Eight drought events are identified, and three major droughts occurred in 2004, 2006, and 2011, with WSDIs of -2.05, -2.38, and -1.30 and TWSDs of -620.96mm, -616.81mm, and -192.44mm, respectively. Our findings suggest that GRACE CSR mascon data can be used effectively to assess drought features in the YRB and that the WSDI facilitates robust and reliable characterization of droughts over large-scale areas. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kusche, J.; Forootan, E.; Eicker, A.; Hoffmann-Dobrev, H.
2012-04-01
West-African countries have been exposed to changes in rainfall patterns over the last decades, including a significant negative trend. This causes adverse effects on water resources, for instance reduced freshwater availability, and changes in the frequency, duration and magnitude of droughts and floods. Extracting the main patterns of water storage change in West Africa from remote sensing and linking them to climate variability, is therefore an essential step to understand the hydrological aspects of the region. In this study, the higher order statistical method of Independent Component Analysis (ICA) is employed to extract statistically independent water storage patterns from monthly Gravity Recovery And Climate Experiment (GRACE), from the WaterGAP Global Hydrology Model (WGHM) and from Tropical Rainfall Measuring Mission (TRMM) products over West Africa, for the period 2002-2012. Then, to reveal the influences of climatic teleconnections on the individual patterns, these results were correlated to the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) indices. To study the predictability of water storage changes, advanced statistical methods were applied on the main independent Sea Surface Temperature (SST) patterns over the Atlantic and Indian Oceans for the period 2002-2012 and the ICA results. Our results show a water storage decrease over the coastal regions of West Africa (including Sierra Leone, Liberia, Togo and Nigeria), associated with rainfall decrease. The comparison between GRACE estimations and WGHM results indicates some inconsistencies that underline the importance of forcing data for hydrological modeling of West Africa. Keywords: West Africa; GRACE-derived water storage; ICA; ENSO; IOD
NASA Astrophysics Data System (ADS)
Wang, J.; Xue, Y.; Forman, B. A.; Girotto, M.; Reichle, R. H.
2017-12-01
The Gravity and Recovery Climate Experiment (GRACE) has revolutionized large-scale remote sensing of the Earth's terrestrial hydrologic cycle and has provided an unprecedented observational constraint for global land surface models. However, the coarse-scale (in space and time), vertically-integrated measure of terrestrial water storage (TWS) limits GRACE's applicability to smaller scale hydrologic applications. In order to enhance model-based estimates of TWS while effectively adding resolution (in space and time) to the coarse-scale TWS retrievals, a multi-variate, multi-sensor data assimilation framework is presented here that simultaneously assimilates gravimetric retrievals of TWS in conjunction with passive microwave (PMW) brightness temperature (Tb) observations over snow-covered terrain. The framework uses the NASA Catchment Land Surface Model (Catchment) and an ensemble Kalman filter (EnKF). A synthetic assimilation experiment is presented for the Volga river basin in Russia. The skill of the output from the assimilation of synthetic observations is compared with that of model estimates generated without the benefit of assimilating the synthetic observations. It is shown that the EnKF framework improves modeled estimates of TWS, snow depth, and snow mass (a.k.a. snow water equivalent). The data assimilation routine produces a conditioned (updated) estimate that is more accurate and contains less uncertainty during both the snow accumulation phase of the snow season as well as during the snow ablation season.
NASA Astrophysics Data System (ADS)
Montecino, Henry D.; de Freitas, Silvio R. C.; Báez, Juan C.; Ferreira, Vagner G.
2017-12-01
The Maule Earthquake (Mw = 8.8) of February 27, 2010 is among the strongest earthquakes that occurred in recent years throughout the world. The crustal deformation caused by this earthquake has been widely studied using GNSS, InSAR and gravity observations. However, there is currently no estimation of the possible vertical deformations produced by co-seismic and post-seismic effects in segments of the Chilean Vertical Reference Frame (CHVRF). In this paper, we present an estimation of co-seismic and post-seismic deformations on the CHVRF using an indirect approach based on GNSS and Gravity Recovery and Climate Experiment (GRACE) data as well as by applying a trajectory model. GNSS time series were used from 10 continuous GNSS stations in the period from 2007 to 2015, as well as 28 GNSS temporary stations realized before and after the earthquake, and 34 vertical deformation vectors in the region most affected by the earthquake. We considered a set of 147 monthly solutions of spherical harmonic gravity field that were expanded up to degree, as well as order 96 of the GRACE mission provided by Center for Space Research, University of Texas at Austin (UT-CSR) process center. The magnitude of vertical deformation was estimated in part of the Chilean vertical network due to the co-seismic and post-seismic effects. Once we evaluated the hydrological effect, natural and artificial jumps, and the effect of glacial isostatic adjustment in GNSS and GRACE time series, the maximum values associated to co- and post-seismic deformations on orthometric height were found to be ∼-34 cm and 5 cm, respectively. Overall, the deformation caused by the Maule earthquake in orthometric heights is almost entirely explained by the variation in the ellipsoidal heights (over 85% in co-seismic jump); however, coseismic jump in the geoid reached -3.3 mm, and could influence the maintenance of a modern vertical reference network in a medium to long term. We evaluated the consistency for a segment of the CHVRF after the earthquake and recommended precautions for using the CHVRF in the region.
Water Storage Changes over the Tibetan Plateau Revealed by GRACE Mission
NASA Astrophysics Data System (ADS)
Guo, Jinyun; Mu, Dapeng; Liu, Xin; Yan, Haoming; Sun, Zhongchang; Guo, Bin
2016-04-01
We use GRACE gravity data released by the Center for Space Research (CSR) and the Groupe de Recherches en Geodesie Spatiale (GRGS) to detect the water storage changes over the Tibetan Plateau (TP). A combined filter strategy is put forward to process CSR RL05 data to remove the effect of striping errors. After the correction for GRACE by GLDAS and ICE-5G, we find that TP has been overall experiencing the water storage increase during 2003-2012. During the same time, the glacier over the Himalayas was sharply retreating. Interms of linear trends, CSR's results derived by the combined filter are close to GRGS RL03 with the Gaussian filter of 300-km window. The water storage increasing rates determined from CSR's RL05 products in the interior TP, Karakoram Mountain, Qaidam Basin, Hengduan Mountain, and middle Himalayas are 9.7, 6.2, 9.1,-18.6, and-20.2 mm/yr, respectively. These rates from GRGS's RL03 products are 8.6, 5.8, 10.5,-19.3 and-21.4 mm/yr, respectively.
Global Terrestrial Water Storage Changes and Connections to ENSO Events
NASA Astrophysics Data System (ADS)
Ni, Shengnan; Chen, Jianli; Wilson, Clark R.; Li, Jin; Hu, Xiaogong; Fu, Rong
2018-01-01
Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to 0.70, well above the 95% significance level ( 0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle-high latitudes shows the large-scale impact of ENSO on the global water cycle.
NASA Astrophysics Data System (ADS)
Harvey, Nate
2016-08-01
Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.
Global evaluation of new GRACE mascon products for hydrologic applications
NASA Astrophysics Data System (ADS)
Scanlon, Bridget R.; Zhang, Zizhan; Save, Himanshu; Wiese, David N.; Landerer, Felix W.; Long, Di; Longuevergne, Laurent; Chen, Jianli
2016-12-01
Recent developments in mascon (mass concentration) solutions for GRACE (Gravity Recovery and Climate Experiment) satellite data have significantly increased the spatial localization and amplitude of recovered terrestrial Total Water Storage anomalies (TWSA); however, land hydrology applications have been limited. Here we compare TWSA from April 2002 through March 2015 from (1) newly released GRACE mascons from the Center for Space Research (CSR-M) with (2) NASA JPL mascons (JPL-M), and with (3) CSR Tellus gridded spherical harmonics rescaled (sf) (CSRT-GSH.sf) in 176 river basins, ˜60% of the global land area. Time series in TWSA mascons (CSR-M and JPL-M) and spherical harmonics are highly correlated (rank correlation coefficients mostly >0.9). The signal from long-term trends (up to ±20 mm/yr) is much less than that from seasonal amplitudes (up to 250 mm). Net long-term trends, summed over all 176 basins, are similar for CSR and JPL mascons (66-69 km3/yr) but are lower for spherical harmonics (˜14 km3/yr). Long-term TWSA declines are found mostly in irrigated basins (-41 to -69 km3/yr). Seasonal amplitudes agree among GRACE solutions, increasing confidence in GRACE-based seasonal fluctuations. Rescaling spherical harmonics significantly increases agreement with mascons for seasonal fluctuations, but less for long-term trends. Mascons provide advantages relative to spherical harmonics, including (1) reduced leakage from land to ocean increasing signal amplitude, and (2) application of geophysical data constraints during processing with little empirical postprocessing requirements, making it easier for nongeodetic users. Results of this product intercomparison should allow hydrologists to better select suitable GRACE solutions for hydrologic applications.
NASA Astrophysics Data System (ADS)
Singh, Alka; Seitz, Florian; Schwatke, Christian; Guentner, Andreas
2013-04-01
Freshwater lakes and reservoirs account for 74.5% of continental water storage in surface water bodies and only 1.8% resides in rivers. Lakes and reservoirs are a key component of the continental hydrological cycle but in-situ monitoring networks are very limited either because of sparse spatial distribution of gauges or national data policy. Monitoring and predicting extreme events is very challenging in that case. In this study we demonstrate the use of optical remote sensing, satellite altimetry and the GRACE gravity field mission to monitor the lake water storage variations in the Aral Sea. Aral Sea is one of the most unfortunate examples of a large anthropogenic catastrophe. The 4th largest lake of 1960s has been decertified for more than 75% of its area due to the diversion of its primary rivers for irrigation purposes. Our study is focused on the time frame of the GRACE mission; therefore we consider changes from 2002 onwards. Continuous monthly time series of water masks from Landsat satellite data and water level from altimetry missions were derived. Monthly volumetric variations of the lake water storage were computed by intersecting a digital elevation model of the lake with respective water mask and altimetry water level. With this approach we obtained volume from two independent remote sensing methods to reduce the error in the estimated volume through least square adjustment. The resultant variations were then compared with mass variability observed by GRACE. In addition, GARCE estimates of water storage variations were compared with simulation results of the Water Gap Hydrology Model (WGHM). The different observations from all missions agree that the lake reached an absolute minimum in autumn 2009. A marked reversal of the negative trend occured in 2010 but water storage in the lake decreased again afterwards. The results reveal that water storage variations in the Aral Sea are indeed the principal, but not the only contributor to the GRACE signal of mass variations in this region; this is also verified by WGHM simulations. An important implication of this finding is the possibility of GRACE to analyses storage changes in other hydrological compartments (soil moisture, snow and groundwater) once the signal has been reduced for surface water storage changes. Therefore the congruent use of multi-sensor satellite data for hydrological studies proves to be a great source of information for assessing terrestrial water storage variations.
Using GRACE to constrain precipitation amount over cold mountainous basins
NASA Astrophysics Data System (ADS)
Behrangi, Ali; Gardner, Alex S.; Reager, John T.; Fisher, Joshua B.
2017-01-01
Despite the importance for hydrology and climate-change studies, current quantitative knowledge on the amount and distribution of precipitation in mountainous and high-elevation regions is limited due to instrumental and retrieval shortcomings. Here by focusing on two large endorheic basins in High Mountain Asia, we show that satellite gravimetry (Gravity Recovery and Climate Experiment (GRACE)) can be used to provide an independent estimate of monthly accumulated precipitation using mass balance equation. Results showed that the GRACE-based precipitation estimate has the highest agreement with most of the commonly used precipitation products in summer, but it deviates from them in cold months, when the other products are expected to have larger errors. It was found that most of the products capture about or less than 50% of the total precipitation estimated using GRACE in winter. Overall, Global Precipitation Climatology Project (GPCP) showed better agreement with GRACE estimate than other products. Yet on average GRACE showed 30% more annual precipitation than GPCP in the study basins. In basins of appropriate size with an absence of dense ground measurements, as is a typical case in cold mountainous regions, we find GRACE can be a viable alternative to constrain monthly and seasonal precipitation estimates from other remotely sensed precipitation products that show large bias.
NASA Astrophysics Data System (ADS)
Sauber, J. M.; Freymueller, J. T.; Han, S. C.; Davis, J. L.; Ruppert, N. A.
2016-12-01
In southern Alaska surface deformation and gravimetric change are associated with the seismic cycle as well as a strong seasonal cycle of snow accumulation and melt and a variable rate of glacier mass wastage. Numerical modeling of the solid Earth response to cryosphere change on a variety of temporal and spatial scales plays a critical role in supporting the interpretation of time-variable gravity and other geodetic data. In this study we calculate the surface displacements and stresses associated with variable spatial and temporal cryospheric loading and unloading in south-central coastal Alaska. A challenging aspect of estimating the response of the solid Earth to short-term (months to 102 years) regional cryospheric fluctuations is choosing the rock mechanics constitutive laws appropriate to this region. Here we report calculated differences in the predicted surface displacements and stresses during the GRACE time period (2002 to present). Broad-scale, GRACE-derived estimates of cryospheric mass change, along with independent snow melt onset/refreeze timing, snow depth and annual glacier wastage estimates from a variety of methods, were used to approximate the magnitude and timing of cryospheric load changes. We used the CIG finite element code PyLith to enable input of spatially complex surface loads. An as example of our evaluation of the influence of variable short-term surface loads, we calculated and contrasted the predicted surface displacements and stresses for a cooler than average and higher precipitation water year (WY12) versus a warmer than average year (WY05). Our calculation of these comparative stresses is motivated by our earlier empirical evaluation of the influence of short-term cryospheric fluctuations on the background seismic rate between 1988-2006 (Sauber and Ruppert, 2008). During the warmer than average years between 2002-2006 we found a stronger seasonal dependency in the frequency of small tectonic events in the Icy Bay region relative to cooler years. To date, we have focused our 3-D modeling on changes in the thickness of the primarily elastic layer and we also varied the Maxwell viscoelastic relaxation times for the lower crust and upper mantle. We anticipate exploring the influence of transient rheologies and testing alternate 3-D rheological structures.
Estimation and Validation of Oceanic Mass Circulation from the GRACE Mission
NASA Technical Reports Server (NTRS)
Boy, J.-P.; Rowlands, D. D.; Sabaka, T. J.; Luthcke, S. B.; Lemoine, F. G.
2011-01-01
Since the launch of the Gravity Recovery And Climate Experiment (GRACE) in March 2002, the Earth's surface mass variations have been monitored with unprecedented accuracy and resolution. Compared to the classical spherical harmonic solutions, global high-resolution mascon solutions allows the retrieval of mass variations with higher spatial and temporal sampling (2 degrees and 10 days). We present here the validation of the GRACE global mascon solutions by comparing mass estimates to a set of about 100 ocean bottom pressure (OSP) records, and show that the forward modelling of continental hydrology prior to the inversion of the K-band range rate data allows better estimates of ocean mass variations. We also validate our GRACE results to OSP variations modelled by different state-of-the-art ocean general circulation models, including ECCO (Estimating the Circulation and Climate of the Ocean) and operational and reanalysis from the MERCATOR project.
HYM-flation: Yang-Mills cosmology with Horndeski coupling
NASA Astrophysics Data System (ADS)
Davydov, E.; Gal'tsov, D.
2016-02-01
We propose new mechanism for inflation using classical SU (2) Yang-Mills (YM) homogeneous and isotropic field non-minimally coupled to gravity via Horndeski prescription. This is the unique generally and gauge covariant ghost-free YM theory with the curvature-dependent action leading to second-order gravity and Yang-Mills field equations. We show that its solution space contains de Sitter boundary to which the trajectories are attracted for some finite time, ensuring the robust inflation with a graceful exit. The theory can be generalized to include the Higgs field leading to two-steps inflationary scenario, in which the Planck-scale YM-generated inflation naturally prepares the desired initial conditions for the GUT-scale Higgs inflation.
Remote Monitoring of Groundwater Overdraft Using GRACE and InSAR
NASA Astrophysics Data System (ADS)
Scher, C.; Saah, D.
2017-12-01
Gravity Recovery and Climate Experiment (GRACE) data paired with radar-derived analyses of volumetric changes in aquifer storage capacity present a viable technique for remote monitoring of aquifer depletion. Interferometric Synthetic Aperture Radar (InSAR) analyses of ground level subsidence can account for a significant portion of mass loss observed in GRACE data and provide information on point-sources of overdraft. This study summed one water-year of GRACE monthly mass change grids and delineated regions with negative water storage anomalies for further InSAR analyses. Magnitude of water-storage anomalies observed by GRACE were compared to InSAR-derived minimum volumetric changes in aquifer storage capacity as a result of measurable compaction at the surface. Four major aquifers were selected within regions where GRACE observed a net decrease in water storage (Central Valley, California; Mekong Delta, Vietnam; West Bank, occupied Palestinian Territory; and the Indus Basin, South Asia). Interferogram imagery of the extent and magnitude of subsidence within study regions provided estimates for net minimum volume of groundwater extracted between image acquisitions. These volumetric estimates were compared to GRACE mass change grids to resolve a percent contribution of mass change observed by GRACE likely due to groundwater overdraft. Interferograms revealed characteristic cones of depression within regions of net mass loss observed by GRACE, suggesting point-source locations of groundwater overdraft and demonstrating forensic potential for the use of InSAR and GRACE data in remote monitoring of aquifer depletion. Paired GRACE and InSAR analyses offer a technique to increase the spatial and temporal resolution of remote applications for monitoring groundwater overdraft in addition to providing a novel parameter - measurable vertical deformation at the surface - to global groundwater models.
Evaluation of global equal-area mass grid solutions from GRACE
NASA Astrophysics Data System (ADS)
Save, Himanshu; Bettadpur, Srinivas; Tapley, Byron
2015-04-01
The Gravity Recovery and Climate Experiment (GRACE) range-rate data was inverted into global equal-area mass grid solutions at the Center for Space Research (CSR) using Tikhonov Regularization to stabilize the ill-posed inversion problem. These solutions are intended to be used for applications in Hydrology, Oceanography, Cryosphere etc without any need for post-processing. This paper evaluates these solutions with emphasis on spatial and temporal characteristics of the signal content. These solutions will be validated against multiple models and in-situ data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solander, Kurt C.; Reager, John T.; Wada, Yoshihide
Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. Themore » long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.« less
Solander, Kurt C.; Reager, John T.; Wada, Yoshihide; ...
2017-08-18
Changes in the climate and population growth will critically impact the future supply and demand of water, leading to large uncertainties for sustainable resource management. In the absence of on-the-ground measurements to provide spatially continuous, high-resolution information on water supplies, satellite observations can provide essential insight. Here, we develop a technique using observations from the Gravity Recovery and Climate Experiment (GRACE) satellite to evaluate the sustainability of surface water and groundwater use over the continental United States. We determine the annual total water availability for 2003–2015 using the annual variability in GRACE-derived total water storage for 18 major watersheds. Themore » long-term sustainable water quantity available to humans is calculated by subtracting an annual estimate of the water needed to maintain local ecosystems, and the resulting water volumes are compared to reported consumptive water use to determine a sustainability fraction. We find over-consumption is highest in the southwest US, where increasing stress trends were observed in all five basins and annual consumptive use exceeded 100% availability twice in the Lower Colorado basin during 2003–2015. By providing a coarse-scale evaluation of sustainable water use from satellite and ground observations, the established framework serves as a blueprint for future large-scale water resource monitoring.« less
NASA Astrophysics Data System (ADS)
Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.
2016-12-01
Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.
NASA Astrophysics Data System (ADS)
Velicogna, I.; Sutterley, T. C.; A, G.; van den Broeke, M. R.; Ivins, E. R.
2016-12-01
We use Gravity Recovery and Climate Experiment (GRACE) monthly gravity fields to determine the regional acceleration in ice mass loss in Antarctica for 2002-2016. We find that the total mass loss is controlled by only a few regions. In Antarctica, the Amundsen Sea (AS) sector and the Antarctic Peninsula account for 65% and 18%, respectively, of the total loss (186 ± 10 Gt/yr) mainly from ice dynamics. The AS sector contributes most of the acceleration in loss (9 ± 1 Gt/yr2 ), and Queen Maud Land, East Antarctica, is the only sector with a significant mass gain due to a local increase in SMB (57 ± 5 Gt/yr). We compare GRACE regional mass balance estimates with independent estimates from ICESat-1 and Operation IceBridge laser altimetry, CryoSat-2 radar altimetry, and surface mass balance outputs from RACMO2.3. In the Amundsen Sea Embayment of West Antarctica, an area experiencing rapid retreat and mass loss to the sea, we find good agreement between GRACE and altimetry estimates. Comparison of GRACE with these independent techniques in East Antarctic shows that GIA estimates from the new regional ice deglaciation models underestimate the GIA correction in the EAIS interior, which implies larger losses of the Antarctica ice sheet by about 70 Gt/yr. Sectors where we are observing the largest losses are closest to warm circumpolar water, and with polar constriction of the westerlies enhanced by climate warming, we expect these sectors to contribute more and more to sea level as the ice shelves that protect these glaciers will melt faster in contact with more heat from the surrounding oc
Estimating mass balances of the global water reservoirs by GRACE satellite gravimetry
NASA Astrophysics Data System (ADS)
Ramillien, G.; Lombard, A.; Cazenave, A.
2004-12-01
According to global hydrology models, the total water storage on the continents continuously decreases with time. In order to verify this scenario of a global and progressive transfer of water mass between the atmosphere, the oceans and the continents, we estimated and analysed the time-variations of the water mass in these water mass reservoirs for a recent period of time by space gravimetry. For this purpose, we used the monthly GRACE geoids recently released by CSR and GFZ (04/2002-05/2004). The spatial resolution of the GRACE solutions was unfortunately limited to degree 10-15 (around 2000 km) by the presence of noise for the higher harmonic degrees. The water mass changes were also analysed using Empirical Othogonal Functions (EOFs) decompositions for characterizing the main modes of mass variability for each water reservoirs at seasonal and inter-annual time scales.
NASA Astrophysics Data System (ADS)
Ahmad, Waqas; Kim, Soohyun; Kim, Dongkyun
2017-04-01
Land subsidence and crustal deformation associated with groundwater abstraction is a gradually instigating phenomenon. The exploitation of Interferometric Synthetic Aperture Radar (InSAR) for land subsidence velocity and the Gravity Recovery and Climate Experiment (GRACE) for change in groundwater storage have great potential besides other applications to address this problem. In this paper we used an integrated approach to combine InSAR and GRACE solutions to show that land subsidence velocity in a rapidly urbanizing and groundwater dependent basin in Pakistan is largely attributed to over exploitation of groundwater aquifer. We analyzed a total of 28 Sentinel-1 based interferograms generated for the period October 2014 to November 2016 to quantify the level of land subsidence in the study area. To increase the accuracy of our interferometry results we then applied a filter of Amplitude Dispersion Index (ADI) to confine the spatial extent of land subsidence to persistently scattering pixels. For the GRACE experiment we take the average of change in Total Water Storage (TWS) solutions provided by the Center for Space Research (CSR), the German Research Centre for Geosciences (GFZ), and the Jet Propulsion Laboratory (JPL) and validate this mean TWS for the study area using a network of observed time series groundwater levels. The validation result of GRACE TWS field shows that although the GRACE foot print is spatially larger than the extent of the study area but significant change in water storage can contribute to the overall trend of declining water storage. Finally we compared our results of InSAR land subsidence velocities and GRACE TWS change field. A strong dependence of the land subsidence on the temporal change in TWS suggests that most of the land subsidence could be attributed to the unchecked exploitation of groundwater aquifer.
Impact of GNSS orbit modeling on LEO orbit and gravity field determination
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian
2017-04-01
On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent
2014-05-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link, and optionally a laser link, measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The Preliminary Design Review was achieved successfully on November 2013. The FEEU Engineering Model is under test. Preliminary results on electronic unit will be compared with the expected performance. The integration of the SUM Engineering Model and the first ground levitation of the proof-mass will be presented. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. The post-processing needed to achieve the performance, in particular with regards to the temperature stability, will be explained.
NASA Astrophysics Data System (ADS)
Perrot, Eddy; Boulanger, Damien; Christophe, Bruno; Foulon, Bernard; Liorzou, Françoise; Lebat, Vincent; Huynh, Phuong-Anh
2015-04-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the first Flight Model has begun on December 2014 and will be achieved on January 2015. The results of the Engineering Model tests and the status of the Flight Models will be presented.
NASA Astrophysics Data System (ADS)
Perrot, E.; Boulanger, D.; Christophe, B.; Foulon, B.; Lebat, V.; Huynh, P. A.; Liorzou, F.
2015-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the output measurement of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Critical Design Review was achieved successfully on September 2014. The Engineering Model (EM) was integrated and tested successfully, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The integration of the two Flight Models was done on July 2015. The tests will be achieved from July to November 2015. The results of the Engineering Model and Flight Models tests will be presented.
Future missions for observing Earth's changing gravity field: a closed-loop simulation tool
NASA Astrophysics Data System (ADS)
Visser, P. N.
2008-12-01
The GRACE mission has successfully demonstrated the observation from space of the changing Earth's gravity field at length and time scales of typically 1000 km and 10-30 days, respectively. Many scientific communities strongly advertise the need for continuity of observing Earth's gravity field from space. Moreover, a strong interest is being expressed to have gravity missions that allow a more detailed sampling of the Earth's gravity field both in time and in space. Designing a gravity field mission for the future is a complicated process that involves making many trade-offs, such as trade-offs between spatial, temporal resolution and financial budget. Moreover, it involves the optimization of many parameters, such as orbital parameters (height, inclination), distinction between which gravity sources to observe or correct for (for example are gravity changes due to ocean currents a nuisance or a signal to be retrieved?), observation techniques (low-low satellite-to-satellite tracking, satellite gravity gradiometry, accelerometers), and satellite control systems (drag-free?). A comprehensive tool has been developed and implemented that allows the closed-loop simulation of gravity field retrievals for different satellite mission scenarios. This paper provides a description of this tool. Moreover, its capabilities are demonstrated by a few case studies. Acknowledgments. The research that is being done with the closed-loop simulation tool is partially funded by the European Space Agency (ESA). An important component of the tool is the GEODYN software, kindly provided by NASA Goddard Space Flight Center in Greenbelt, Maryland.
A space-time multiscale modelling of Earth's gravity field variations
NASA Astrophysics Data System (ADS)
Wang, Shuo; Panet, Isabelle; Ramillien, Guillaume; Guilloux, Frédéric
2017-04-01
The mass distribution within the Earth varies over a wide range of spatial and temporal scales, generating variations in the Earth's gravity field in space and time. These variations are monitored by satellites as the GRACE mission, with a 400 km spatial resolution and 10 days to 1 month temporal resolution. They are expressed in the form of gravity field models, often with a fixed spatial or temporal resolution. The analysis of these models allows us to study the mass transfers within the Earth system. Here, we have developed space-time multi-scale models of the gravity field, in order to optimize the estimation of gravity signals resulting from local processes at different spatial and temporal scales, and to adapt the time resolution of the model to its spatial resolution according to the satellites sampling. For that, we first build a 4D wavelet family combining spatial Poisson wavelets with temporal Haar wavelets. Then, we set-up a regularized inversion of inter-satellites gravity potential differences in a bayesian framework, to estimate the model parameters. To build the prior, we develop a spectral analysis, localized in time and space, of geophysical models of mass transport and associated gravity variations. Finally, we test our approach to the reconstruction of space-time variations of the gravity field due to hydrology. We first consider a global distribution of observations along the orbit, from a simplified synthetic hydrology signal comprising only annual variations at large spatial scales. Then, we consider a regional distribution of observations in Africa, and a larger number of spatial and temporal scales. We test the influence of an imperfect prior and discuss our results.
NASA Astrophysics Data System (ADS)
Uebbing, Bernd; Kusche, Jürgen; Rietbroek, Roelof; Shum, Ck
2015-04-01
Regional sea level change is influenced by contributions from mass sources, like melting of glaciers and the ice-sheets in Greenland and Antarctica, as well as steric contributions from changes in temperature and salinity of the oceans. Radar altimetry indicates a sea level trend in the Bay of Bengal of about 6 mm- yr over the time period of 2002-2014, which is significantly larger than the global mean trend. Here, we explain 80% of this rise by steric contributions and 20% by mass-related contributions. The increased rise of sea level in the Bay of Bengal threatens the coastal vulnerability of the surrounding countries like Bangladesh, where this effect is exacerbated in combination with land subsidence of the very low lying coastal areas. The BanD-AID (Bangladesh Delta: Assessment of the Causes of Sea-level Rise Hazards and Integrated Development of Predictive Modeling Towards Mitigation and Adaptation) project tries to assess the current and future sea level rise and its impacts on the people living in the threatened coastal areas. As a part of this, it is necessary to analyze the different mass and steric contributors to the total sea level rise to aid in the prediction of future risks. We use data from radar altimetry and the GRACE mission to separate the total sea level rise into contributions from mass sources and steric changes. In our approach, temporal GRACE gravity data and Jason-1 and -2 along track altimetry data are fitted to time invariant spatial patterns (fingerprints) to avoid problems with GRACE resolution, filtering, geocenter and related issues. Our results show that in the Bay of Bengal the steric component is influenced by annual and interannual phenomena and, at the same time, it is significantly larger compared to the individual mass contributions, which show a linear and relatively stable behavior over time. We validate the steric component of our inversion by comparing it to independent steric estimates from 4-D gridded temperature and salinity products from different ARGO processing facilities. We also compare to the classical approach of subtracting the mass component, estimated by GRACE, from the total sea level change, measured by altimetry. Furthermore, we assess the sensitivity of our inversion to the normalized steric fingerprints, which are either based on ARGO fields or derived from ocean modeling. While most steric changes are taking place in the upper 700 m of the ocean, our inversion also allows us to (indirectly) assess the influence from the deep ocean, which is not negligible for the total steric trend.
NASA GRACE Sees a Drying California
2014-10-01
This trio of images depicts satellite observations of declining water storage in California as seen by NASA Gravity Recovery and Climate Experiment satellites in June 2002 left, June 2008 center and June 2014 right.
Comparison of the hydrological excitation functions HAM of polar motion for the period 1980.0-2007.0
NASA Astrophysics Data System (ADS)
Nastula, J.; Pasnicka, M.; Kolaczek, B.
2011-10-01
In this study we compared contributions of polar motion excitation determined from hydrological models and harmonic coefficients of the Earth gravity field obtained from Gravity Recovery and Climate Experiment (GRACE). Hydrological excitation function (hydrological angular momentum - HAM) has been estimated from models of global hydrology, based on the observed distribution of surface water, snow, ice and soil moisture. All of them were compared with observed Geodetic Angular Momentum (GAM), excitations of polar motion. The spectra of these excitation functions of polar motion and residual geodetic excitation function G-A-O obtained from GAM by elimination of atmospheric and oceanic excitation functions were computed too. Phasor diagrams of the seasonal components of the polar motion excitation functions of all HAM excitation functions as well as of two GRACE solutions: CSR, CNES were determined and discussed.
NASA Astrophysics Data System (ADS)
Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara
2016-02-01
The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.
Mapping probabilities of extreme continental water storage changes from space gravimetry
NASA Astrophysics Data System (ADS)
Kusche, J.; Eicker, A.; Forootan, E.; Springer, A.; Longuevergne, L.
2016-12-01
Using data from the Gravity Recovery and Climate Experiment (GRACE) mission, we derive statistically robust 'hotspot' regions of high probability of peak anomalous - i.e. with respect to the seasonal cycle - water storage (of up to 0.7 m one-in-five-year return level) and flux (up to 0.14 m/mon). Analysis of, and comparison with, up to 32 years of ERA-Interim reanalysis fields reveals generally good agreement of these hotspot regions to GRACE results, and that most exceptions are located in the Tropics. However, a simulation experiment reveals that differences observed by GRACE are statistically significant, and further error analysis suggests that by around the year 2020 it will be possible to detect temporal changes in the frequency of extreme total fluxes (i.e. combined effects of mainly precipitation and floods) for at least 10-20% of the continental area, assuming that we have a continuation of GRACE by its follow-up GRACE-FO. J. Kusche et al. (2016): Mapping probabilities of extreme continental water storage changes from space gravimetry, Geophysical Research Letters, accepted online, doi:10.1002/2016GL069538
The Value of GRACE Data in Improving, Assessing and Evaluating Land Surface and Climate Models
NASA Astrophysics Data System (ADS)
Yang, Z.
2011-12-01
I will review how the Gravity Recovery and Climate Experiment (GRACE) satellite measurements have improved land surface models that are developed for weather, climate, and hydrological studies. GRACE-derived terrestrial water storage (TWS) changes have been successfully used to assess and evaluate the improved representations of land-surface hydrological processes such as groundwater-soil moisture interaction, frozen soil and infiltration, and the topographic control on runoff production, as evident in the simulations from the latest Noah-MP, the Community Land Model, and the Community Climate System Model. GRACE data sets have made it possible to estimate key terrestrial water storage components (snow mass, surface water, groundwater or water table depth), biomass, and surface water fluxes (evapotranspiration, solid precipitation, melt of snow/ice). Many of the examples will draw from my Land, Environment and Atmosphere Dynamics group's work on land surface model developments, snow mass retrieval, and multi-sensor snow data assimilation using the ensemble Karman filter and the ensemble Karman smoother. Finally, I will briefly outline some future directions in using GRACE in land surface modeling.
NASA Astrophysics Data System (ADS)
Mohamed, A.; Sultan, M.; Ahmed, M.; Yan, E.
2014-12-01
The Nubian Sandstone Aquifer System (NSAS) is shared by Egypt, Libya, Chad and Sudanand is one of the largest (area: ~ 2 × 106 km2) groundwater systems in the world. Despite its importance to the population of these countries, major hydrological parameters such as modern recharge and extraction rates remain poorly investigated given: (1) the large extent of the NSAS, (2) the absence of comprehensive monitoring networks, (3) the general inaccessibility of many of the NSAS regions, (4) difficulties in collecting background information, largely included in unpublished governmental reports, and (5) limited local funding to support the construction of monitoring networks and/or collection of field and background datasets. Data from monthly Gravity Recovery and Climate Experiment (GRACE) gravity solutions were processed (Gaussian smoothed: 100 km; rescaled) and used to quantify the modern recharge to the NSAS during the period from January 2003 to December 2012. To isolate the groundwater component in GRACE data, the soil moisture and river channel storages were removed using the outputs from the most recent Community Land Model version 4.5 (CLM4.5). GRACE-derived recharge calculations were performed over the southern NSAS outcrops (area: 835 × 103 km2) in Sudan and Chad that receive average annual precipitation of 65 km3 (77.5 mm). GRACE-derived recharge rates were estimated at 2.79 ± 0.98 km3/yr (3.34 ± 1.17 mm/yr). If we take into account the total annual extraction rates (~ 0.4 km3; CEDARE, 2002) from Chad and Sudan the average annual recharge rate for the NSAS could reach up to ~ 3.20 ± 1.18 km3/yr (3.84 ± 1.42 mm/yr). Our recharge rates estimates are similar to those calculated using (1) groundwater flow modelling in the Central Sudan Rift Basins (4-8 mm/yr; Abdalla, 2008), (2) WaterGAP global scale groundwater recharge model (< 5 mm/yr, Döll and Fiedler, 2008), and (3) chloride tracer in Sudan (3.05 mm/yr; Edmunds et al. 1988). Given the available global coverage of the temporal GRACE solutions for the past twelve years and plans are underway for the deployment of a GRACE follow-On and GRACE-II missions, we suggest that within the next few years, GRACE will probably become the most practical, informative, and cost-effective tool for monitoring the recharge of large aquifers across the globe.
NASA Astrophysics Data System (ADS)
Tian, Siyuan; Tregoning, Paul; Renzullo, Luigi J.; van Dijk, Albert I. J. M.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.; Allgeyer, Sébastien
2017-03-01
The accuracy of global water balance estimates is limited by the lack of observations at large scale and the uncertainties of model simulations. Global retrievals of terrestrial water storage (TWS) change and soil moisture (SM) from satellites provide an opportunity to improve model estimates through data assimilation. However, combining these two data sets is challenging due to the disparity in temporal and spatial resolution at both vertical and horizontal scale. For the first time, TWS observations from the Gravity Recovery and Climate Experiment (GRACE) and near-surface SM observations from the Soil Moisture and Ocean Salinity (SMOS) were jointly assimilated into a water balance model using the Ensemble Kalman Smoother from January 2010 to December 2013 for the Australian continent. The performance of joint assimilation was assessed against open-loop model simulations and the assimilation of either GRACE TWS anomalies or SMOS SM alone. The SMOS-only assimilation improved SM estimates but reduced the accuracy of groundwater and TWS estimates. The GRACE-only assimilation improved groundwater estimates but did not always produce accurate estimates of SM. The joint assimilation typically led to more accurate water storage profile estimates with improved surface SM, root-zone SM, and groundwater estimates against in situ observations. The assimilation successfully downscaled GRACE-derived integrated water storage horizontally and vertically into individual water stores at the same spatial scale as the model and SMOS, and partitioned monthly averaged TWS into daily estimates. These results demonstrate that satellite TWS and SM measurements can be jointly assimilated to produce improved water balance component estimates.
Assessing Aridity, Hydrological Drought, and Recovery Using GRACE and GLDAS: a Case Study in Iraq
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Almamalachy, Y. S.; Yan, H.; Ahmadalipour, A.; Irannezhad, M.
2016-12-01
Iraq has suffered from several drought events during the period of 2003-2012, which imposed substantial impacts on natural environment and socioeconomic sectors, e.g. lower discharge of Tigris and Euphrates, groundwater depletion and increase in its salinity, population migration, and agricultural degradation. To investigate the aridity and climatology of Iraq, Global Land Data Assimilation System (GLDAS) monthly datasets of precipitation, temperature, and evapotranspiration at 0.25 degree spatial resolution are used. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived monthly Terrestrial Water Storage (TWS) deficit is used as the hydrological drought indicator. The data is available globally at 1 degree spatial resolution. This study aims to monitor hydrological drought and assess drought recovery time for the period of August 2002 until December 2015. Two approaches are implemented to derive the GRACE-based TWS deficit. The first approach estimates the TWS deficit based on the difference from its own climatology, while the second approach directly calculates the deficit from TWS anomaly. Severity of drought events are calculated by integrating monthly water deficit over the drought period. The results indicate that both methods are capable of capturing the severe drought events in Iraq, while the second approach quantifies higher deficit and severity. In addition, two methods are employed to assess drought recovery time based on the estimated deficit. Both methods indicate similar drought recovery times, varying from less than a month to 9 months. The results demonstrate that the GRACE TWS is a reliable indicator for drought assessment over Iraq, and provides useful information to decision makers for developing drought adaptation and mitigation strategies over data-sparse regions.
NASA Astrophysics Data System (ADS)
Hauk, M.; Pail, R.; Gruber, T.; Purkhauser, A.
2017-12-01
The CHAMP and GRACE missions have demonstrated the tremendous potential for observing mass changes in the Earth system from space. In order to fulfil future user needs a monitoring of mass distribution and mass transport with higher spatial and temporal resolution is required. This can be achieved by a Bender-type Next Generation Gravity Mission (NGGM) consisting of a constellation of satellite pairs flying in (near-)polar and inclined orbits, respectively. For these satellite pairs the observation concept of the GRACE Follow-on mission with a laser-based low-low satellite-to-satellite tracking (ll-SST) system and more precise accelerometers and state-of-the-art star trackers is adopted. By choosing optimal orbit constellations for these satellite pairs high frequency mass variations will be observable and temporal aliasing errors from under-sampling will not be the limiting factor anymore. As part of the European Space Agency (ESA) study "ADDCON" (ADDitional CONstellation and Scientific Analysis Studies of the Next Generation Gravity Mission) a variety of mission design parameters for such constellations are investigated by full numerical simulations. These simulations aim at investigating the impact of several orbit design choices and at the mitigation of aliasing errors in the gravity field retrieval by co-parametrization for various constellations of Bender-type NGGMs. Choices for orbit design parameters such as altitude profiles during mission lifetime, length of retrieval period, value of sub-cycles and choice of prograde versus retrograde orbits are investigated as well. Results of these simulations are presented and optimal constellations for NGGM's are identified. Finally, a short outlook towards new geophysical applications like a near real time service for hydrology is given.
NASA Technical Reports Server (NTRS)
Li, Bailing; Rodell, Matthew; Zaitchik, Benjamin F.; Reichle, Rolf H.; Koster, Randal D.; van Dam, Tonie M.
2012-01-01
A land surface model s ability to simulate states (e.g., soil moisture) and fluxes (e.g., runoff) is limited by uncertainties in meteorological forcing and parameter inputs as well as inadequacies in model physics. In this study, anomalies of terrestrial water storage (TWS) observed by the Gravity Recovery and Climate Experiment (GRACE) satellite mission were assimilated into the NASA Catchment land surface model in western and central Europe for a 7-year period, using a previously developed ensemble Kalman smoother. GRACE data assimilation led to improved runoff correlations with gauge data in 17 out of 18 hydrological basins, even in basins smaller than the effective resolution of GRACE. Improvements in root zone soil moisture were less conclusive, partly due to the shortness of the in situ data record. In addition to improving temporal correlations, GRACE data assimilation also reduced increasing trends in simulated monthly TWS and runoff associated with increasing rates of precipitation. GRACE assimilated root zone soil moisture and TWS fields exhibited significant changes in their dryness rankings relative to those without data assimilation, suggesting that GRACE data assimilation could have a substantial impact on drought monitoring. Signals of drought in GRACE TWS correlated well with MODIS Normalized Difference Vegetation Index (NDVI) data in most areas. Although they detected the same droughts during warm seasons, drought signatures in GRACE derived TWS exhibited greater persistence than those in NDVI throughout all seasons, in part due to limitations associated with the seasonality of vegetation.
The use of gravimetric data from GRACE mission in the understanding of polar motion variations
NASA Astrophysics Data System (ADS)
Seoane, L.; Nastula, J.; Bizouard, C.; Gambis, D.
2009-08-01
Tesseral coefficients C21 and S21 derived from Gravity Recovery and Climate Experiment (GRACE) observations allow to compute the mass term of the polar-motion excitation function. This independent estimation can improve the geophysical models and, in addition, determine the unmodelled phenomena. In this paper, we intend to validate the polar motion excitation derived from GRACE's last release (GRACE Release 4) computed by different institutes: GeoForschungsZentrum (GFZ), Postdam, Germany; Center for Space Research (CSR), Austin, USA; Jet Propulsion Laboratory (JPL), Pasadena, USA, and the Groupe de Recherche en Géodésie Spatiale (GRGS), Toulouse, France. For this purpose, we compare these excitations functions first to the mass term obtained from observed Earth's rotation variations free of the motion term and, second, to the mass term estimated from geophysical fluids models. We confirm the large improvement of the CSR solution, and we show that the GRGS estimate is also well correlated with the geodetic observations. Significant discrepancies exist between the solutions of each centre. The source of these differences is probably related to the data processing strategy. We also consider residuals computed after removing the geophysical models or the gravimetric solutions from the geodetic mass term. We show that the residual excitation based on models is smoother than the gravimetric data, which are still noisy. Still, they are comparable for the χ2 component. It appears that χ2 residual signals using GFZ and JPL data have less variability. Finally, for assessing the impact of the geophysical fluids models choice on our results, we checked two different oceanic excitation series. We show the significant differences in the residuals correlations, especially for the χ1 more sensitive to the oceanic signals.
NASA Technical Reports Server (NTRS)
Song, Y. Tony; Colberg, Frank
2011-01-01
Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.
Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change
NASA Astrophysics Data System (ADS)
Gunter, B. C.; Didova, O.; Riva, R. E. M.; Ligtenberg, S. R. M.; Lenaerts, J. T. M.; King, M. A.; van den Broeke, M. R.; Urban, T.
2014-04-01
This study explores an approach that simultaneously estimates Antarctic mass balance and glacial isostatic adjustment (GIA) through the combination of satellite gravity and altimetry data sets. The results improve upon previous efforts by incorporating a firn densification model to account for firn compaction and surface processes as well as reprocessed data sets over a slightly longer period of time. A range of different Gravity Recovery and Climate Experiment (GRACE) gravity models were evaluated and a new Ice, Cloud, and Land Elevation Satellite (ICESat) surface height trend map computed using an overlapping footprint approach. When the GIA models created from the combination approach were compared to in situ GPS ground station displacements, the vertical rates estimated showed consistently better agreement than recent conventional GIA models. The new empirically derived GIA rates suggest the presence of strong uplift in the Amundsen Sea sector in West Antarctica (WA) and the Philippi/Denman sectors, as well as subsidence in large parts of East Antarctica (EA). The total GIA-related mass change estimates for the entire Antarctic ice sheet ranged from 53 to 103 Gt yr-1, depending on the GRACE solution used, with an estimated uncertainty of ±40 Gt yr-1. Over the time frame February 2003-October 2009, the corresponding ice mass change showed an average value of -100 ± 44 Gt yr-1 (EA: 5 ± 38, WA: -105 ± 22), consistent with other recent estimates in the literature, with regional mass loss mostly concentrated in WA. The refined approach presented in this study shows the contribution that such data combinations can make towards improving estimates of present-day GIA and ice mass change, particularly with respect to determining more reliable uncertainties.
Detecting seasonal and long-term vertical displacement in the North China Plain using GRACE and GPS
NASA Astrophysics Data System (ADS)
Wang, Linsong; Chen, Chao; Du, Jinsong; Wang, Tongqing
2017-06-01
In total, 29 continuous Global Positioning System (GPS) time series data together with data from Gravity Recovery and Climate Experiment (GRACE) are analysed to determine the seasonal displacements of surface loadings in the North China Plain (NCP). Results show significant seasonal variations and a strong correlation between GPS and GRACE results in the vertical displacement component; the average correlation and weighted root-mean-squares (WRMS) reduction between GPS and GRACE are 75.6 and 28.9 % respectively, when atmospheric and non-tidal ocean effects were removed, but the annual peak-to-peak amplitude of GPS (1.2-6.3 mm) is greater than the data (1.0-2.2 mm) derived from GRACE. We also calculate the trend rate as well as the seasonal signal caused by the mass load change from GRACE data; the rate of GRACE-derived terrestrial water storage (TWS) loss (after multiplying by the scaling factor) in the NCP was 3.39 cm yr-1 (equivalent to 12.42 km3 yr-1) from 2003 to 2009. For a 10-year time span (2003 to 2012), the rate loss of TWS was 2.57 cm yr-1 (equivalent to 9.41 km3 yr-1), which is consistent with the groundwater storage (GWS) depletion rate (the rate losses of GWS were 2.49 and 2.72 cm yr-1 during 2003-2009 and 2003-2012 respectively) estimated from GRACE-derived results after removing simulated soil moisture (SM) data from the Global Land Data Assimilation System (GLDAS)/Noah model. We also found that GRACE-derived GWS changes are in disagreement with the groundwater level changes from observations of shallow aquifers from 2003 to 2009, especially between 2010 and 2013. Although the shallow groundwater can be recharged from the annual climate-driven rainfall, the important facts indicate that GWS depletion is more serious in deep aquifers. The GRACE-derived result shows an overall uplift in the whole region at the 0.37-0.95 mm yr-1 level from 2004 to 2009, but the rate of change direction is inconsistent in different GPS stations at the -0.40-0.51 mm yr-1 level from 2010 to 2013. Then we removed the vertical rates, which are induced by TWS from GPS-derived data, to obtain the corrected vertical velocities caused by tectonic movement and human activities. The results show that there are uplift areas and subsidence areas in NCP. Almost the whole central and eastern region of NCP suffers serious ground subsidence caused by the anthropogenic-induced groundwater exploitation in the deep confined aquifers. In addition, the slight ground uplifts in the western region of NCP are mainly controlled by tectonic movement (e.g. Moho uplifting or mantle upwelling).
Climate-driven seasonal geocenter motion during the GRACE period
NASA Astrophysics Data System (ADS)
Zhang, Hongyue; Sun, Yu
2018-03-01
Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.
NASA Astrophysics Data System (ADS)
Panet, I.; Chambodut, A.; Diament, M.; Holschneider, M.; Jamet, O.
2006-09-01
In this paper, we discuss the origin of superswell volcanism on the basis of representation and analysis of recent gravity and magnetic satellite data with wavelets in spherical geometry. We computed a refined gravity field in the south central Pacific based on the GRACE satellite GGM02S global gravity field and the KMS02 altimetric grid, and a magnetic anomaly field based on CHAMP data. The magnetic anomalies are marked by the magnetic lineation of the seafloor spreading and by a strong anomaly in the Tuamotu region, which we interpret as evidence for crustal thickening. We interpret our gravity field through a continuous wavelet analysis that allows to get a first idea of the internal density distribution. We also compute the continuous wavelet analysis of the bathymetric contribution to discriminate between deep and superficial sources. According to the gravity signature of the different chains as revealed by our analysis, various processes are at the origin of the volcanism in French Polynesia. As evidence, we show a large-scale anomaly over the Society Islands that we interpret as the gravity signature of a deeply anchored mantle plume. The gravity signature of the Cook-Austral chain indicates a complex origin which may involve deep processes. Finally, we discuss the particular location of the Marquesas chain as suggesting that the origin of the volcanism may interfere with secondary convection rolls or may be controlled by lithospheric weakness due to the regional stress field, or else related to the presence of the nearby Tuamotu plateau.
Extreme Water Deficit in Brazil Detected from Space
NASA Technical Reports Server (NTRS)
Vieira Getirana
2016-01-01
Extreme droughts have caused significant socioeconomic and environmental damage worldwide. In Brazil, ineffective energy development and water management policies have magnified the impacts of recent severe droughts, which include massive agricultural losses, water supply restrictions, and energy rationing. Spaceborne remote sensing data advance our understanding of the spatiotemporal variability of large-scale droughts and enhance the detection and monitoring of extreme water-related events. In this study, data derived from the Gravity Recovery and Climate Experiment (GRACE) mission are used to detect and quantify an extended major drought over eastern Brazil and provide estimates of impacted areas and region-specific water deficits. Two structural breakpoint detection methods were applied to time series of GRACE-based terrestrial water storage anomalies (TWSA), determining when two abrupt changes occurred. One, in particular, defines the beginning of the current drought. Using TWSA, a water loss rate of 26.1 cmyr21 over southeastern Brazil was detected from 2012 to 2015. Based on analysis of Global Land Data Assimilation System(GLDAS) outputs, the extreme drought is mostly related to lower-than-usual precipitation rates, resulting in high soil moisture depletion and lower-than-usual rates of evapotranspiration. A reduction of 2023 of precipitation over an extended period of 3 years is enough to raise serious water scarcity conditions in the country. Correlations between monthly time series of both grid-based TWSA and ground-based water storage measurements at 16 reservoirs located within southeastern Brazil varied from 0.42 to 0.82. Differences are mainly explained by reservoir sizes and proximity to the drought nucleus.
NASA Astrophysics Data System (ADS)
Müller, Silvia; Brockmann, Jan Martin; Schuh, Wolf-Dieter
2015-04-01
The ocean's dynamic topography as the difference between the sea surface and the geoid reflects many characteristics of the general ocean circulation. Consequently, it provides valuable information for evaluating or tuning ocean circulation models. The sea surface is directly observed by satellite radar altimetry while the geoid cannot be observed directly. The satellite-based gravity field determination requires different measurement principles (satellite-to-satellite tracking (e.g. GRACE), satellite-gravity-gradiometry (GOCE)). In addition, hydrographic measurements (salinity, temperature and pressure; near-surface velocities) provide information on the dynamic topography. The observation types have different representations and spatial as well as temporal resolutions. Therefore, the determination of the dynamic topography is not straightforward. Furthermore, the integration of the dynamic topography into ocean circulation models requires not only the dynamic topography itself but also its inverse covariance matrix on the ocean model grid. We developed a rigorous combination method in which the dynamic topography is parameterized in space as well as in time. The altimetric sea surface heights are expressed as a sum of geoid heights represented in terms of spherical harmonics and the dynamic topography parameterized by a finite element method which can be directly related to the particular ocean model grid. Besides the difficult task of combining altimetry data with a gravity field model, a major aspect is the consistent combination of satellite data and in-situ observations. The particular characteristics and the signal content of the different observations must be adequately considered requiring the introduction of auxiliary parameters. Within our model the individual observation groups are combined in terms of normal equations considering their full covariance information; i.e. a rigorous variance/covariance propagation from the original measurements to the final product is accomplished. In conclusion, the developed integrated approach allows for estimating the dynamic topography and its inverse covariance matrix on arbitrary grids in space and time. The inverse covariance matrix contains the appropriate weights for model-data misfits in least-squares ocean model inversions. The focus of this study is on the North Atlantic Ocean. We will present the conceptual design and dynamic topography estimates based on time variable data from seven satellite altimeter missions (Jason-1, Jason-2, Topex/Poseidon, Envisat, ERS-2, GFO, Cryosat2) in combination with the latest GOCE gravity field model and in-situ data from the Argo floats and near-surface drifting buoys.
Progress toward Consensus Estimates of Regional Glacier Mass Balances for IPCC AR5
NASA Astrophysics Data System (ADS)
Arendt, A. A.; Gardner, A. S.; Cogley, J. G.
2011-12-01
Glaciers are potentially large contributors to rising sea level. Since the last IPCC report in 2007 (AR4), there has been a widespread increase in the use of geodetic observations from satellite and airborne platforms to complement field observations of glacier mass balance, as well as significant improvements in the global glacier inventory. Here we summarize our ongoing efforts to integrate data from multiple sources to arrive at a consensus estimate for each region, and to quantify uncertainties in those estimates. We will use examples from Alaska to illustrate methods for combining Gravity Recovery and Climate Experiment (GRACE), elevation differencing and field observations into a single time series with related uncertainty estimates. We will pay particular attention to reconciling discrepancies between GRACE estimates from multiple processing centers. We will also investigate the extent to which improvements in the glacier inventory affect the accuracy of our regional mass balances.
The Rotational and Gravitational Effect of Earthquakes
NASA Technical Reports Server (NTRS)
Gross, Richard
2000-01-01
The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.
Evolution and characterization of drought events from GRACE and other satellite and observation.
NASA Astrophysics Data System (ADS)
Zhao, M.; A, G.; Velicogna, I.; Kimball, J. S.
2015-12-01
We use GRACE Terrestrial Water Storage (TWS) changes to calculate a newly developed global drought severity index (GRACE-DSI) for monthly monitoring of water supply changes during 2002-2015. We compare GRACE-DSI with Palmer Drought Severity Index (PDSI) and other ancillary data to characterize drought timing, evolution and magnitude in the continental US since 2002. Overall GRACE-DSI and PDSI show an excellent correspondence in the US. However PDSI is very sensitive to atmospheric moisture stress, while GRACE-DSI only responds to changes in terrestrial water storage. We use the complementary nature of these two indices together with temperature and precipitation observations to characterize drought evolution and its nature. For instance, during the 2012 flash drought in the Great Plains, the PDSI decreases several months earlier than the GRACE-DSI in response to the enhanced atmosphere moisture demand caused by unusual early season warming. When the drought peaks later in the summer, the PDSI indicates exceptional drought, while the GRACE-DSI observes moderate drought conditions in the underlying total water supply, implying a meteorological drought in nature. GRACE-DSI is based solely on satellite observations; hence it has the advantage of not being affected by uncertainty associated with variable that are not well known at the global scale (e.g. precipitation estimates) and by biases associated to global climate model outputs. We find that GRACE-DSI captures major drought events in the globe occurring during 2002-2015, including those in sub-Sahara Africa, Australia, Amazon, Asia, North America and the Arctic.
NASA Astrophysics Data System (ADS)
Ramillien, Guillaume; Frappart, Frappart; Seoane, Lucia
2015-04-01
We propose a new method to produce time series of global maps of surface mass variations by progressive integration of daily geopotential variations measured by orbiting satellites. In the case of the GRACE mission (2002 - 2012), these geopotential variations can be determined from very accurate inter-satellite K-Band Range Rate (KBRR) measurements of 5-second daily orbits. In particular, the along-track gravity contribution of hydrology is extracted by removing de-aliasing models for static field, atmosphere, oceans mass variations (including periodical tides), as well as polar movements. Our determination of surface mass sources consists of two successive dependent Kalman filter stages. The first one consists of reducing the satellite-based potential anomalies by adjusting the longest spatial wavelengths (i.e., low-degree spherical harmonics less than 5-6). In the second stage, the residual potential anomalies from the previous stage are used to recover surface mass density changes - in terms of Equivalent-Water Height (EWH) - over a global network of juxtaposed triangular elements. These surface tiles of ~40,000 km x km are imposed to be identical and homogeneously-distributed over the terrestrial sphere, however they can be adapted to the local geometry of the surface mass. Our global approach was tested by inverting simulated hydrology-related geopotential data, and successfully applied to estimate time-varying surface mass densities from real GRACE-based residuals. This strategy of combined Kalman filter-type inversions can also be useful for exploring the possibility of reaching better time and space resolutions for hydrology, that would be hopefully brought by future low altitude geodetic missions.
Incorporation of GRACE Data into a Bayesian Model for Groundwater Drought Monitoring
NASA Astrophysics Data System (ADS)
Slinski, K.; Hogue, T. S.; McCray, J. E.; Porter, A.
2015-12-01
Groundwater drought, defined as the sustained occurrence of below average availability of groundwater, is marked by below average water levels in aquifers and reduced flows to groundwater-fed rivers and wetlands. The impact of groundwater drought on ecosystems, agriculture, municipal water supply, and the energy sector is an increasingly important global issue. However, current drought monitors heavily rely on precipitation and vegetative stress indices to characterize the timing, duration, and severity of drought events. The paucity of in situ observations of aquifer levels is a substantial obstacle to the development of systems to monitor groundwater drought in drought-prone areas, particularly in developing countries. Observations from the NASA/German Space Agency's Gravity Recovery and Climate Experiment (GRACE) have been used to estimate changes in groundwater storage over areas with sparse point measurements. This study incorporates GRACE total water storage observations into a Bayesian framework to assess the performance of a probabilistic model for monitoring groundwater drought based on remote sensing data. Overall, it is hoped that these methods will improve global drought preparedness and risk reduction by providing information on groundwater drought necessary to manage its impacts on ecosystems, as well as on the agricultural, municipal, and energy sectors.
NASA Astrophysics Data System (ADS)
Lebat, V.; Foulon, B.; Christophe, B.
2013-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, that will produce an accurate model of the Earth's gravity field variation providing global climatic data during five year at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Non-uniformities in the distribution of the Earth's mass cause the distance between the two satellites to vary. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics and the Front-End Electronic Unit) and the Interface Control Unit. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained in a center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench and with drops in ZARM catapult. Besides, a thermal stability is needed for the accelerometer core and front-end electronics to avoid bias and scale factor variation, and reached by a thermal box designed by Astrium, spacecraft manufacturer. The accelerometers are designed to endure the launch vibrations and the thermal environment at ground and in orbit. As the measure must be accurate, no sliding of the core must appear in regard of the accelerometer external reference. To ensure the thermal core stability, the electrode cage of the core is made of glass material (ULE), which is very critical, in particular due to the free motion of the proof-mass during the launch. To assess the design of the accelerometer in particular the critical parts of the core, specific analysis is realized to ensure mechanical behavior. The design of electrostatic accelerometer of the GRACE Follow-On mission benefits of the GRACE heritage, GOCE launched in 2009 and MICROSCOPE which will be launched in 2016, including some improvement to improve the performance, in particular the thermal sensitivity of the measurements. The Preliminary Design Review of electronics was achieved successfully on July 2013, and the PDR of the whole instrument is forecasted on November 2013. The integration of the Engineering Model will begin on October 2013 and its status will be presented.
The Value of Information from a GRACE-Enhanced Drought Severity Index
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Bernknopf, R.; Macauley, M.; Brookshire, D.; Zaitchik, B. F.; Rodell, M.
2013-12-01
Water storage anomalies derived from the Gravity Recovery and Climate Experiment Data Assimilation System (GRACE-DAS) have been used to enhance the information contained in drought indicators. The potential value of this information is to inform local and regional decisions to improve economic welfare in the face of drought. Based on a characterization of current drought evaluations, a modeling framework has been structured to analyze the contributed value of the Earth observations in the assessment of the onset and duration of droughts and their regional impacts. The analysis focuses on (1) characterizing how GRACE-DAS provides Earth observation information for a drought warning, (2) assessing how a GRACE-DAS-enhanced U.S. Drought Monitor would improve economic outcomes in a region, and (3) applying this enhancement process in a decision framework to illustrate the potential role of GRACE data products in a recent drought and response scenario for a value-of-information (VOI) analysis. The VOI analysis quantifies the relative contribution of enhanced understanding and communication of the societal benefits associated with GRACE Earth observation science. Our emphasis is to illustrate the role of an enhanced National Integrated Drought Information System outlook on three key societal outcomes: effects on particular economic sectors, changes in land management decisions, and reductions in damages to ecosystem services.
NASA Briefing New Mission to Weigh in on Earth's Changing Water
2018-04-30
At a NASA media briefing on April 30, scientists discussed an upcoming mission that will provide unique insights into Earth’s changing climate and have far-reaching benefits to society, such as improved water resource management. The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission will measure monthly changes in how mass is redistributed within and among Earth’s atmosphere, oceans, land and ice sheets. GRACE-FO’s pair of spacecraft are in final preparations for a California launch no earlier than Saturday, May 19.
GRACE Mission Design: Impact of Uncertainties in Disturbance Environment and Satellite Force Models
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Kumar, Renjith R.; Seywald, Hans; Qu, Min
2000-01-01
The Gravity Recovery and Climate Experiment (GRACE) primary mission will be performed by making measurements of the inter-satellite range change between two co-planar, low altitude, near-polar orbiting satellites. Understanding the uncertainties in the disturbance environment, particularly the aerodynamic drag and torques, is critical in several mission areas. These include an accurate estimate of the spacecraft orbital lifetime, evaluation of spacecraft attitude control requirements, and estimation of the orbital maintenance maneuver frequency necessitated by differences in the drag forces acting on both satellites. The FREEMOL simulation software has been developed and utilized to analyze and suggest design modifications to the GRACE spacecraft. Aerodynamic accommodation bounding analyses were performed and worst-case envelopes were obtained for the aerodynamic torques and the differential ballistic coefficients between the leading and trailing GRACE spacecraft. These analyses demonstrate how spacecraft aerodynamic design and analysis can benefit from a better understanding of spacecraft surface accommodation properties, and the implications for mission design constraints such as formation spacing control.
NASA Astrophysics Data System (ADS)
Lundgren, P.; Liu, Z.; Ali, S. T.; Farr, T.; Faunt, C. C.
2016-12-01
Anthropogenic perturbations to crustal loading due to groundwater pumping are increasingly recognized as causing changes in nearby fault stresses. We present preliminary analysis of crustal unloading in the Central Valley (CV), California, for the period 2006-2010 to infer Coulomb stress changes on the central San Andreas Fault (CSAF), lithospheric rheology, and system memory due to more than a century of groundwater withdrawal in the southern CV. We use data-driven unloading estimates to drive three-dimensional (3-D) finite element method models and compare model vertical surface deformation rates with observed GPS uplift rates outside the CV. Groundwater level changes are observed through well water elevation changes and through the resultant surface deformation (subsidence) by interferometric synthetic aperture radar (InSAR) and through broader scale changes in gravity from the GRACE satellite time variable gravity data [Famiglietti et al., 2011] that constrain the overall water volume changes. Combining InSAR with well-water data we are able to estimate the aquifer skeletal elastic and inelastic response and through a linear inversion derive the water volume (load) changes across the Central Valley and compare them with GRACE-inferred groundwater changes. Preliminary 3-D finite element method modeling that considers elastic and viscosity structure in the lithosphere gives three interesting results: 1) elastic models poorly fit the uplift rates near the SAF; 2) viscoelastic models that simulate different unloading histories show the past history of groundwater unloading has significant residual uplift rates and fault stress changes; 3) Coulomb stress change varies from inhibited on the locked (Carrizo) section to promoted on the creeping section of the SAF north of Parkfield. Thus, 3D models that account for lithosphere rheology, loading history viscous relaxation, have significant implications for longer-term time-dependent deformation, stress perturbation, and earthquake hazard on the nearby faults. Reference: Famiglietti, J. S., M. Lo, S. L. Ho, J. Bethune, K. J. Anderson, T. H. Syed, S. C. Swenson, C. R. de Linage, and M. Rodell, 2011, Satellites measure recent rates of groundwater depletion in California's Central Valley, Geophys. Res. Lett., 38, L03403, doi:10.1029/2010GL046442.
NASA Astrophysics Data System (ADS)
Yao, Chaolong; Luo, Zhicai
2015-12-01
The water resources crisis is intensifying in Southwest China (SWC), which includes the world's largest continuous coverage of karst landforms, due to recent severe drought events. However, because of the special properties of karstic water system, such as strong heterogeneity, monitoring the variation of karstic water resources at large scales remains still difficult. Satellite gravimetry has emerged as an effective tool for investigating the global and regional water cycles. In this study, we used GRACE (Gravity Recovery and Climate Experiment) data from January 2003 to January 2013 to investigate karstic water storage variability over the karst region of SWC. We assessed the impacts of the recent severe droughts on karst water resources, including two heavy droughts in September 2010 to May 2010 and August 2011 to January 2012. Results show a slightly water increase tend during the studied period, but these two severe droughts have resulted in significant water depletion in the studied karst region. The latter drought during 2011 and 2012 caused more water deficits than that of the drought in 2010. Strong correlation between the variations of GRACE-based total water storage and precipitation suggests that climate change is the main driving force for the significant water absent over the studied karst region. As the world's largest continuous coverage karst aquifer, the karst region of SWC offers an example of GRACE applications to a karst system incisively and will benefit for water management from a long-term perspective in karst systems throughout the world.
Airborne Sea-Surface Topography in an Absolute Reference Frame
NASA Astrophysics Data System (ADS)
Brozena, J. M.; Childers, V. A.; Jacobs, G.; Blaha, J.
2003-12-01
Highly dynamic coastal ocean processes occur at temporal and spatial scales that cannot be captured by the present generation of satellite altimeters. Space-borne gravity missions such as GRACE also provide time-varying gravity and a geoidal msl reference surface at resolution that is too coarse for many coastal applications. The Naval Research Laboratory and the Naval Oceanographic Office have been testing the application of airborne measurement techniques, gravity and altimetry, to determine sea-surface height and height anomaly at the short scales required for littoral regions. We have developed a precise local gravimetric geoid over a test region in the northern Gulf of Mexico from historical gravity data and recent airborne gravity surveys. The local geoid provides a msl reference surface with a resolution of about 10-15 km and provides a means to connect airborne, satellite and tide-gage observations in an absolute (WGS-84) framework. A series of altimetry reflights over the region with time scales of 1 day to 1 year reveal a highly dynamic environment with coherent and rapidly varying sea-surface height anomalies. AXBT data collected at the same time show apparent correlation with wave-like temperature anomalies propagating up the continental slope of the Desoto Canyon. We present animations of the temporal evolution of the surface topography and water column temperature structure down to the 800 m depth of the AXBT sensors.
Seasonal Mass Changes in the Red Sea Observed By GPS and Grace
NASA Astrophysics Data System (ADS)
Alothman, A. O.; Fing, W.; Fernandes, R. M. S.; Bos, M. S.; Elsaka, B.
2014-12-01
The Red Sea is a semi-enclosed basin and exchanges water with the Gulf of Aden through the strait of Bab-el-Mandeb at the southern part of the sea. Its circulation is affected by the Indian Monsoon through its connection via the Gulf of Aden. Two distinctive (in summer and in winter) seasonal signals represent the water exchange. To understand the seasonal mass changes in the Red Sea, estimates of the mass changes based on two geodetic techniques are presented: from the Gravity Recovery and Climate Experiment (GRACE) and from the Global Navigation Satellite System (GNSS). The GRACE solutions were truncated up to spherical harmonic degree and order degree 60 to estimate the average monthly mass change in the atmosphere and ocean from models (several hours). GNSS solution is based on observations from four stations along the Red Sea that have been acquired in continuous mode starting in 2007 (having at least 5 years' data-span). The time series analysis of the observed GNSS vertical deformation of these sites has been analyzed. The results revealed that the GNSS observed vertical loading agrees with the atmospheric loading (ATML) assuming that the hydrological signal along the costs of the Red sea is negligible. Computed values of daily vertical atmospheric loading using the NCEP surface pressure data (Inverted Barometer IB) for the 4 stations for 2003 until 2013 are provided. Comparison of the GRACE and GNSS solutions has shown significant annual mass variations in the Red Sea (about 15 cm annual amplitude). After removing the atmospheric effect (ATML), the ocean loading can be observed by GNSS and GRACE estimates in the Red Sea.
NASA Astrophysics Data System (ADS)
Chu, P. C.
2016-12-01
Mean dynamic topography (MDT, η) bridges the geoid and the mean sea surface (from satellite altimetry) and constrains large scale surface geostrophic circulations. It can be estimated from either satellite or underwater ocean temperature (T) and salinity (S) data. Satellite altimeter measures sea surface height (SSH) with high precision and unique resolution above a reference ellipsoid (not geoid). Two Gravity Recovery and Climate Experiment (GRACE) satellites launched in 2002, provide data to compute the marine geoid [called the GRACE Gravity Model (GGM)] (see website: http://www.csr.utexas.edu/grace/). The MDT is the difference of altimetry-derived mean SSH and the mean marine geoid (using GGM or pre-GRACE gravity model such as EGM96). A major difficulty arises that the spatial variations in mean SSH and marine geoid are approximately two orders of magnitude larger than the spatial variations in η.The second approach (using T, Sdata) is based on geostrophic balance, which is at the minimum energy state in the linear Boussinesq primitive equations with conservation of potential vorticity. In this paper, a new elliptic equation, -[∂x(gh/f2)∂xη+∂y(gh/f2)∂yη]+η = (g/f2)(∂C/∂x-∂B/∂y)is derived to determine MDT with H the water depth, g the gravitational acceleration, and coefficients (B, C) depend on 3D mean temperature (T) and salinity (S) data. Numerical approach transforms the elliptic equation into a set of well-posed linear algebraic equations of η at grid points. The solution for the North Atlantic Ocean (100oW-6oW, 7oN-72oN) on 1oX1ogrids with the coefficients (B, C) calculated from the three-dimensional (T, S) data of the NOAA National Centers for Environmental Information (NCEI) World Ocean Atlas 2013 version 2 (http://www.nodc.noaa.gov/OC5/woa13/woa13data.html) and H from the NOAA ETOPO5 (https://www.ngdc.noaa.gov/mgg/fliers/93mgg01.html), compares well with the difference (also considered as the MDT) between the time-averaged SSH and the geoid from the NASA/JPL (http://gracetellus.jpl.nasa.gov/data/dot/). Further application of this elliptic equation method on the high-precision altimetry measurements of SSH such as the Surface Water and Ocean Topography (SWOT) is also presented.
Basin mass dynamic changes in China from GRACE based on a multibasin inversion method
NASA Astrophysics Data System (ADS)
Yi, Shuang; Wang, Qiuyu; Sun, Wenke
2016-05-01
Complex landforms, miscellaneous climates, and enormous populations have influenced various geophysical phenomena in China, which range from water depletion in the underground to retreating glaciers on high mountains and have attracted abundant scientific interest. This paper, which utilizes gravity observations during 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to comprehensively estimate the mass status in 16 drainage basins in the region. We propose a multibasin inversion method that features resistance to stripe noise and an ability to alleviate signal attenuation from the truncation and smoothing of GRACE data. The results show both positive and negative trends. Tremendous mass accumulation has occurred from the Tibetan Plateau (12.1 ± 0.6 Gt/yr) to the Yangtze River (7.7 ± 1.3 Gt/yr) and southeastern coastal areas, which is suggested to involve an increase in the groundwater storage, lake and reservoir water volume, and the flow of materials from tectonic processes. Additionally, mass loss has occurred in the Huang-Huai-Hai-Liao River Basin (-10.2 ± 0.9 Gt/yr), the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 1.1 Gt/yr), and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), a result of groundwater pumping and glacier melting. Areas with groundwater depletion are consistent with the distribution of cities with land subsidence in North China. We find that intensified precipitation can alter the local water supply and that GRACE can adequately capture these dynamics, which could be instructive for China's South-to-North Water Diversion hydrologic project.
Predictive power of the grace score in population with diabetes.
Baeza-Román, Anna; de Miguel-Balsa, Eva; Latour-Pérez, Jaime; Carrillo-López, Andrés
2017-12-01
Current clinical practice guidelines recommend risk stratification in patients with acute coronary syndrome (ACS) upon admission to hospital. Diabetes mellitus (DM) is widely recognized as an independent predictor of mortality in these patients, although it is not included in the GRACE risk score. The objective of this study is to validate the GRACE risk score in a contemporary population and particularly in the subgroup of patients with diabetes, and to test the effects of including the DM variable in the model. Retrospective cohort study in patients included in the ARIAM-SEMICYUC registry, with a diagnosis of ACS and with available in-hospital mortality data. We tested the predictive power of the GRACE score, calculating the area under the ROC curve. We assessed the calibration of the score and the predictive ability based on type of ACS and the presence of DM. Finally, we evaluated the effect of including the DM variable in the model by calculating the net reclassification improvement. The GRACE score shows good predictive power for hospital mortality in the study population, with a moderate degree of calibration and no significant differences based on ACS type or the presence of DM. Including DM as a variable did not add any predictive value to the GRACE model. The GRACE score has an appropriate predictive power, with good calibration and clinical applicability in the subgroup of diabetic patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
The Use of GOCE/GRACE Information in the Latest NGS xGeoid15 Model for the USA
NASA Astrophysics Data System (ADS)
Holmes, S. A.; Li, X.; Youngman, M.
2015-12-01
The U.S. National Geodetic Survey [NGS], through its Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, is flying airborne gravity surveys over the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Towards this end, all available airborne data has been incorporated into a new NGS experimental geoid model - xGEOID15. The xGEOID15 model is the second in a series of annual experimental geoid models that incorporates NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques, to ultimately compute a geoid model that can support a national physical height system by 2022. Here, we focus on the combination of the latest GOCE/GRACE models with the terrestrial gravimetry (land/airborne) that was applied for xGeoid15. Comparisons against existing combination gravitational solutions, such as EGM2008 and EIGEN6C4, as well as recent geoid models, such as xGeoid14 and CGG2013, are interesting for what they reveal about the respective use of the GOCE/GRACE satgrav information.
NASA Astrophysics Data System (ADS)
Yin, G.; Forman, B. A.; Loomis, B. D.; Luthcke, S. B.
2017-12-01
Vertical deformation of the Earth's crust due to the movement and redistribution of terrestrial freshwater can be studied using satellite measurements, ground-based sensors, hydrologic models, or a combination thereof. This current study explores the relationship between vertical deformation estimates derived from mass concentrations (mascons) from the Gravity Recovery and Climate Experiment (GRACE), vertical deformation from ground-based Global Positioning System (GPS) observations collected from the Plate Boundary Observatory (PBO), and hydrologic loading estimates based on model output from the NASA Catchment Land Surface Model (Catchment). A particular focus is made to snow-dominated basins where mass accumulates during the snow season and subsequently runs off during the ablation season. The mean seasonal cycle and the effects of atmospheric loading, non-tidal ocean loading, and glacier isostatic adjustment (GIA) are removed from the GPS observations in order to derive the vertical displacement caused predominately by hydrological processes. A low-pass filter is applied to GPS observations to remove high frequency noise. Correlation coefficients between GRACE- and GPS-based estimates at all PBO sites are calculated. GRACE-derived and Catchment-derived displacements are subtracted from the GPS height variations, respectively, in order to compute the root mean square (RMS) reduction as a means of studying the consistency between the three different methods. Results show that in most sites, the three methods exhibit good agreement. Exceptions to this generalization include the Central Valley of California where extensive groundwater pumping is witnessed in the GRACE- and GPS-based estimates, but not in the Catchment-based estimates because anthropogenic groundwater pumping activities are not included in the Catchment model. The relatively good agreement between GPS- and GRACE-derived vertical crustal displacements suggests that ground-based GPS has tremendous potential for a Bayesian merger with GRACE-based estimates in order to provide a higher resolution (in space and time) of terrestrial water storage.
Mass change from GRACE: a simulated comparison of Level-1B analysis techniques
NASA Astrophysics Data System (ADS)
Andrews, Stuart B.; Moore, Philip; King, Matt. A.
2015-01-01
Spherical harmonic and mascon parameters have both been successfully applied in the recovery of time-varying gravity fields from Gravity Recovery and Climate Experiment (GRACE). However, direct comparison of any mass flux is difficult with solutions generated by different groups using different codes and algorithms. It is therefore opportune to compare these methodologies, within a common software base, to understand potential limitations associated with each technique. Here we use simulations to recover a known monthly surface mass distribution from GRACE KBRR data. The ability of spherical harmonic and mascon parameters to resolve basin-level mass change is quantified with an assessment of how the noise and errors, inherent in GRACE solutions, are handled. Recovery of a noise and error free GLDAS anomaly revealed no quantifiable difference between spherical harmonic and mascon parameters. Expansion of the GLDAS anomaly to degree and order 120 shows that both spherical harmonic and mascon parameters are affected by comparable omission errors. However, the inclusion of realistic KBRR noise and errors in the simulations reveals the advantage of the mascon parameters over spherical harmonics at reducing noise and errors in the higher degree and order harmonics with an rms (cm of EWH) to the GLDAS anomaly of 10.0 for the spherical harmonic solution and 8.8 (8.6) for the 4°(2°) mascon solutions. The introduction of a constraint matrix in the mascon solution based on parameters that share geophysical similarities is shown to further reduce the signal lost at all degrees. The recovery of a simulated Antarctic mass loss signal shows that the mascon methodology is superior to spherical harmonics for this region with an rms (cm of EWH) of 8.7 for the 2° mascon solution compared to 10.0 for the spherical harmonic solution. Investigating the noise and errors for a month when the satellites were in resonance revealed both the spherical harmonic and mascon methodologies are able to recover the GLDAS and Antarctic mass loss signal with either a comparable (spherical harmonic) or improved (mascon) rms compared to non-resonance periods.
Antarctic and Greenland ice sheet mass balance products from satellite gravimetry
NASA Astrophysics Data System (ADS)
Horwath, Martin; Groh, Andreas; Horvath, Alexander; Forsberg, René; Meister, Rakia; Barletta, Valentina R.; Shepherd, Andrew
2017-04-01
Because of their important role in the Earth's climate system, ESA's Climate Change Initiative (CCI) has identified both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS) as Essential Climate Variables (ECV). Since respondents of a user survey indicated that the ice sheet mass balance is one of the most important ECV data products needed to better understand climate change, the AIS_cci and the GIS_cci project provide Gravimetric Mass Balance (GMB) products based on satellite gravimetry data. The GMB products are derived from GRACE (Gravity Recovery and Climate Experiment) monthly solutions of release ITSG-Grace2016 produced at TU Graz. GMB basin products (i.e. time series of monthly mass changes for the entire ice sheets and selected drainage basins) and GMB gridded products (e.g. mass balance estimates with a formal resolution of about 50km, covering the entire ice sheets) are generated for the period from 2002 until present. The first GMB product was released in mid 2016. Here we present an extended and updated version of the ESA CCI GMB products, which are freely available through data portals hosted by the projects (https://data1.geo.tu-dresden.de/ais_gmb, http://products.esa-icesheets-cci.org/products/downloadlist/GMB). Since the initial product release, the applied processing strategies have been improved in order to further reduce GRACE errors and to enhance the separation of signals super-imposed to the ice mass changes. While a regional integration approach is used by the AIS_cci project, the GMB products of the GIS_cci project are derived using a point mass inversion. The differences between both approaches are investigated through the example of the GIS, where an alternative GMB product was generated using the regional integration approach implemented by the AIS_cci. Finally, we present the latest mass balance estimates for both ice sheets as well as their corresponding contributions to global sea level rise.
Iqbal, Naveed; Hossain, Faisal; Lee, Hyongki; Akhter, Gulraiz
2017-03-01
Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.
NASA Astrophysics Data System (ADS)
Lebat, V.; Boulanger, D.; Christophe, B.; Foulon, B.; Liorzou, F.; Perrot, E.; Huynh, P. A.
2014-12-01
The GRACE FO mission, led by the JPL (Jet Propulsion Laboratory), is an Earth-orbiting gravity mission, continuation of the GRACE mission, which will produce an accurate model of the Earth's gravity field variation providing global climatic data during five years at least. The mission involves two satellites in a loosely controlled tandem formation, with a micro-wave link measuring the inter-satellites distance variation. Earth's mass distribution non-uniformities cause variations of the inter-satellite distance. This variation is measured to recover gravity, after subtracting the non-gravitational contributors, as the residual drag. ONERA (the French Aerospace Lab) is developing, manufacturing and testing electrostatic accelerometers measuring this residual drag applied on the satellites. The accelerometer is composed of two main parts: the Sensor Unit (including the Sensor Unit Mechanics - SUM - and the Front-End Electronic Unit - FEEU) and the Interface Control Unit - ICU. In the Accelerometer Core, located in the Sensor Unit Mechanics, the proof mass is levitated and maintained at the center of an electrode cage by electrostatic forces. Thus, any drag acceleration applied on the satellite involves a variation on the servo-controlled electrostatic suspension of the mass. The voltage on the electrodes providing this electrostatic force is the measurement output of the accelerometer. The impact of the accelerometer defaults (geometry, electronic and parasitic forces) leads to bias, misalignment and scale factor error, non-linearity and noise. Some of these accelerometer defaults are characterized by tests with micro-gravity pendulum bench on ground and with drops in ZARM catapult. The Preliminary Design Review was achieved successfully on November 2013. The Engineering Model (EM) was integrated successfully and is under test, with ground levitation, drops, Electromagnetic Compatibility and thermal vacuum. The complete EM tests will be achieved on October 2014. The Critical Design Review is scheduled at the end of September 2014, and the integration of the first Flight Model will begin on October 2014. The results of the Engineering Model tests and the status of the Flight Models will be presented.