Science.gov

Sample records for grade decay heat

  1. Localized corrosion studies on materials proposed for a safety-grade sodium-to- air decay-heat removal system for fast breeder reactors

    NASA Astrophysics Data System (ADS)

    Kamachi Mudali, U.; Khatak, H. S.; Dayal, R. K.; Gnanamoorthy, J. B.

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800,9Cr-lMo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-lMo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  2. Localized corrosion studies on materials proposed for a safety-grade sodium-to-air decay-heat removal system for fast breeder reactors

    SciTech Connect

    Mudali, U.K.; Khatak, H.S.; Dayal, R.K.; Gnanamoorthy, J.B. )

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800, 9Cr-1 Mo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-1Mo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  3. Decay heat uncertainty quantification of MYRRHA

    NASA Astrophysics Data System (ADS)

    Fiorito, Luca; Buss, Oliver; Hoefer, Axel; Stankovskiy, Alexey; Eynde, Gert Van den

    2017-09-01

    MYRRHA is a lead-bismuth cooled MOX-fueled accelerator driven system (ADS) currently in the design phase at SCK·CEN in Belgium. The correct evaluation of the decay heat and of its uncertainty level is very important for the safety demonstration of the reactor. In the first part of this work we assessed the decay heat released by the MYRRHA core using the ALEPH-2 burnup code. The second part of the study focused on the nuclear data uncertainty and covariance propagation to the MYRRHA decay heat. Radioactive decay data, independent fission yield and cross section uncertainties/covariances were propagated using two nuclear data sampling codes, namely NUDUNA and SANDY. According to the results, 238U cross sections and fission yield data are the largest contributors to the MYRRHA decay heat uncertainty. The calculated uncertainty values are deemed acceptable from the safety point of view as they are well within the available regulatory limits.

  4. Decay Heat Removal from a GFR Core by Natural Convection

    SciTech Connect

    Williams, Wesley C.; Hejzlar, Pavel; Driscoll, Michael J.

    2004-07-01

    One of the primary challenges for Gas-cooled Fast Reactors (GFR) is decay heat removal after a loss of coolant accident (LOCA). Due to the fact that thermal gas cooled reactors currently under design rely on passive mechanisms to dissipate decay heat, there is a strong motivation to accomplish GFR core cooling through natural phenomena. This work investigates the potential of post-LOCA decay heat removal from a GFR core to a heat sink using an external convection loop. A model was developed in the form of the LOCA-COLA (Loss of Coolant Accident - Convection Loop Analysis) computer code as a means for 1D steady state convective heat transfer loop analysis. The results show that decay heat removal by means of gas cooled natural circulation is feasible under elevated post-LOCA containment pressure conditions. (authors)

  5. Review of new integral determinations of decay heat

    SciTech Connect

    Dickens, J.K.

    1987-01-01

    Over a decade ago, concern over possible serious consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support in several countries of several experiments designed specifically to measure the decay heat of beta-ray and gamma-ray emanations from fission products for thermal reactors. In 1979, a new standard for use in computing decay heat in real reactor environs (for example, for regulatory requirements) was approved by the American Nuclear Society. Since then there have been additional experimental measurements, in particular for fission-induced by fast neutrons. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident. The efficacy of the 1979 ANS standard has been a subject of study with generally positive results. However, a specific problem, namely, the consequences for decay heat of fission-product neutron capture merits further experimental study.

  6. Plasma protein denaturation with graded heat exposure.

    PubMed

    Vazquez, R; Larson, D F

    2013-11-01

    During cardiopulmonary bypass (CPB), perfusion at tepid temperatures (33-35 °C) is recommended to avoid high temperature cerebral hyperthermia during and after the operation. However, the ideal temperature for uncomplicated adult cardiac surgery is an unsettled question. Typically, the heat exchanger maximum temperature is monitored between 40-42 °C to prevent denaturation of plasma proteins, but studies have not been performed to make these conclusions. Therefore, our hypothesis was to determine the temperature in which blood plasma protein degradation occurs after 2 hours of heat exposure. As a result, blood plasma proteins were exposed to heat in the 37-50 °C range for 2 hours. Plasma protein samples were loaded onto an 8-12% gradient gel for SDS-PAGE and low molecular weight plasma protein degradation was detected with graded heat exposure. Protein degradation was first detected between 43-45 °C of heat exposure. This study supports the practice of monitoring the heat exchanger between 40-42 °C to prevent denaturation of plasma proteins.

  7. Decay heat removal in HTGRs by Natural Circulation

    SciTech Connect

    Tzoref, J.; Saphier, D.

    1990-01-01

    The coolability of a conceptual 1000-MW(thermal) high-temperature gas-cooled reactor (HTGR) with complete loss of forced circulation is investigated. Similar design concepts have been proposed by several designers. The important question is whether, for the given geometrical configuration and power density, natural circulation can be developed within a sufficiently short period so that passive cooling devices can be used to remove the decay heat. From the present study, it was concluded that if the reactor remains pressurized during the accident, and if passage near a passive cooling device with a minimum 0.3% nominal heat removal capacity of the reactor nominal decay power can be established, then the maximum fuel temperature will always stay below the 1600{degree}C limit, which is the limit for the beginning of fission product release. The generated decay heat under such conditions is partly removed by the developed natural circulation to the passive heat sink, whereas the rest is absorbed by the system large heat capacity. At the beginning of the accident, most of the decay heat is absorbed by the graphite in the thermal shield structure metal. In the course of the accident, the relative part of the heat dominant. The study was performed by using the DSNP modular simulation language. A dynamic model was developed for the natural circulation flow in the primary loop of a medium-size HTGR during loss of forced circulation.

  8. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  9. Microscopic beta and gamma data for decay-heat needs

    SciTech Connect

    Dickens, J.K.

    1983-01-01

    Microscopic beta and gamma data for decay-heat needs are defined as absolute-intensity spectral distributions of beta and gamma rays following radioactive decay of radionuclides created by, or following, the fission process. Four well-known evaluated data files, namely the US ENDF/B-V, the UK UKFPDD-2, the French BDN (for fission products), and the Japanese JNDC Nuclear Data Library, are reviewed. Comments regarding the analyses of experimental data (particularly gamma-ray data) are given; the need for complete beta-ray spectral measurements is emphasized. Suggestions on goals for near-term future experimental measurements are presented. 34 references.

  10. Current status of decay heat measurements, evaluations, and needs

    SciTech Connect

    Dickens, J.K.

    1986-07-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been: (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs., 4 figs., 1 tab.

  11. Current status of decay heat measurements, evaluations, and needs

    SciTech Connect

    Dickens, J.K.

    1986-01-01

    Over a decade ago serious concern over possible consequences of a loss-of-coolant accident in a commercial light-water reactor prompted support of several experiments designed specifically to measure the latent energy of beta-ray and gamma-ray emanations from fission products for thermal reactors. This latent energy was termed Decay Heat. At about the same time the American Nuclear Society convened a working group to develop a standard for use in computing decay heat in real reactor environs primarily for regulatory requirements. This working group combined the new experimental results and best evaluated data into a standard which was approved by the ANS and by the ANSI. The primary work since then has been (a) on improvements to computational efforts and (b) experimental measurements for fast reactors. In addition, the need for decay-heat data has been extended well beyond the time regime of a loss-of-coolant accident; new concerns involve, for example, away-from-reactor shipments and storage. The efficacy of the ANS standard for these longer time regimes has been a subject of study with generally positive results. However, a specific problem, namely, the consequences of fission-product neutron capture, remains contentious. Satisfactory resolution of this problem merits a high priority. 31 refs.

  12. Desalination using low grade heat sources

    NASA Astrophysics Data System (ADS)

    Gude, Veera Gnaneswar

    A new, low temperature, energy-efficient and sustainable desalination system has been developed in this research. This system operates under near-vacuum conditions created by exploiting natural means of gravity and barometric pressure head. The system can be driven by low grade heat sources such as solar energy or waste heat streams. Both theoretical and experimental studies were conducted under this research to evaluate and demonstrate the feasibility of the proposed process. Theoretical studies included thermodynamic analysis and process modeling to evaluate the performance of the process using the following alternate energy sources for driving the process: solar thermal energy, solar photovoltaic/thermal energy, geothermal energy, and process waste heat emissions. Experimental studies included prototype scale demonstration of the process using grid power as well as solar photovoltaic/thermal sources. Finally, the feasibility of the process in reclaiming potable-quality water from the effluent of the city wastewater treatment plant was studied. The following results have been obtained from theoretical analysis and modeling: (1) The proposed process can produce up to 8 L/d of freshwater for 1 m2 area of solar collector and evaporation chamber respectively with a specific energy requirement of 3122 kJ for 1 kg of freshwater production. (2) Photovoltaic/thermal (PV/T) energy can produce up to 200 L/d of freshwater with a 25 m2 PV/T module which meets the electricity needs of 21 kWh/d of a typical household as well. This configuration requires a specific energy of 3122 kJ for 1 kg of freshwater production. (3) 100 kg/hr of geothermal water at 60°C as heat source can produce up to 60 L/d of freshwater with a specific energy requirement of 3078 kJ for 1 kg of freshwater production. (4) Waste heat released from an air conditioning system rated at 3.25 kW cooling, can produce up to 125 L/d of freshwater. This configuration requires an additional energy of 208 kJ/kg of

  13. Development of optimized, graded-permeability axial groove heat pipes

    NASA Technical Reports Server (NTRS)

    Kapolnek, Michael R.; Holmes, H. Rolland

    1988-01-01

    Heat pipe performance can usually be improved by uniformly varying or grading wick permeability from end to end. A unique and cost effective method for grading the permeability of an axial groove heat pipe is described - selective chemical etching of the pipe casing. This method was developed and demonstrated on a proof-of-concept test article. The process improved the test article's performance by 50 percent. Further improvement is possible through the use of optimally etched grooves.

  14. Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

    1986-12-01

    This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

  15. PANDA asymmetric-configuration passive decay heat removal test results

    SciTech Connect

    Fischer, O.; Dreier, J.; Aubert, C.

    1997-12-01

    PANDA is a large-scale, low-pressure test facility for investigating passive decay heat removal systems for the next generation of LWRs. In the first series of experiments, PANDA was used to examine the long-term LOCA response of the Passive Containment Cooling System (PCCS) for the General Electric (GE) Simplified Boiling Water Reactor (SBWR). The test objectives include concept demonstration and extension of the database available for qualification of containment codes. Also included is the study of the effects of nonuniform distributions of steam and noncondensable gases in the Dry-well (DW) and in the Suppression Chamber (SC). 3 refs., 9 figs.

  16. Gas-Cooled Fast Reactor (GFR) Decay Heat Removal Concepts

    SciTech Connect

    K. D. Weaver; L-Y. Cheng; H. Ludewig; J. Jo

    2005-09-01

    Current research and development on the Gas-Cooled Fast Reactor (GFR) has focused on the design of safety systems that will remove the decay heat during accident conditions, ion irradiations of candidate ceramic materials, joining studies of oxide dispersion strengthened alloys; and within the Advanced Fuel Cycle Initiative (AFCI) the fabrication of carbide fuels and ceramic fuel matrix materials, development of non-halide precursor low density and high density ceramic coatings, and neutron irradiation of candidate ceramic fuel matrix and metallic materials. The vast majority of this work has focused on the reference design for the GFR: a helium-cooled, direct power conversion system that will operate with an outlet temperature of 850ºC at 7 MPa. In addition to the work being performed in the United States, seven international partners under the Generation IV International Forum (GIF) have identified their interest in participating in research related to the development of the GFR. These are Euratom (European Commission), France, Japan, South Africa, South Korea, Switzerland, and the United Kingdom. Of these, Euratom (including the United Kingdom), France, and Japan have active research activities with respect to the GFR. The research includes GFR design and safety, and fuels/in-core materials/fuel cycle projects. This report is a compilation of work performed on decay heat removal systems for a 2400 MWt GFR during this fiscal year (FY05).

  17. Graded-porosity heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1976-01-01

    To maximize the capacity of a nonarterial heat pipe, a wick is considered whose porosity is allowed to vary axially along its length. At every axial location the porosity is set no lower than required to maintain the wick in a nearly saturated state under the maximum heat-transport rate. The result is a wick whose permeability is everywhere as high as possible. The differential equation that governs the optimum porosity variation is solved numerically between a condenser-end boundary condition that just prevents a liquid slug or puddle in the vapor spaces and an evaporator-end boundary condition that just prevents circumferential groove dry-up. Experimental performance measurements for an ammonia heat pipe are presented.

  18. Graded-porosity heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1976-01-01

    To maximize the capacity of a nonarterial heat pipe, a wick is considered whose porosity is allowed to vary axially along its length. At every axial location the porosity is set no lower than required to maintain the wick in a nearly saturated state under the maximum heat-transport rate. The result is a wick whose permeability is everywhere as high as possible. The differential equation that governs the optimum porosity variation is solved numerically between a condenser-end boundary condition that just prevents a liquid slug or puddle in the vapor spaces and an evaporator-end boundary condition that just prevents circumferential groove dry-up. Experimental performance measurements for an ammonia heat pipe are presented.

  19. Computer program grade for design and analysis of graded-porosity heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1974-01-01

    A computer program for numerical solution of differential equations that describe heat pipes with graded-porosity fibrous wicks is discussed. A mathematical problem is provided with a summary of the input and output steps used to solve it. The program is also applied to the analysis of a typical heat pipe.

  20. ICRF heating in reactor grade plasmas

    SciTech Connect

    Jacquinot, J.; Bhatnagar, V.P.; Bures, M.; Cottrell, G.A.; Eriksson, L.G.; Sack, C.H.; Start, D.F.H.; Taroni, A. ); Hellsten, T. ); Koch, R. ); Moreau, D. )

    1990-01-01

    Impurity influxes in JET discharges due to ICRH have been reduced to insignificant levels. This has allowed high quality H-modes to be produced with ICRH alone and has enhanced the density limit which is now the same as the NBI limit. Improvement in the deuterium fuel fraction has led to the generation of 100kW of non thermal {sup 3}He-D fusion power. Alpha-particle simulations using MeV ions created by ICRH show classical energy loss and suggest that {alpha}-heating in a reactor will be highly efficient. A clear demonstration of TTMP damping of the fast wave in high beta plasmas has been achieved. A broadband ICRH system is proposed for NET/ITER which will allow fast wave current drive and central ion heating for burn control and ignition. 10 refs., 6 figs.

  1. Hiemenz flow and heat transfer of a third grade fluid

    NASA Astrophysics Data System (ADS)

    Sahoo, Bikash

    2009-03-01

    The laminar flow and heat transfer of an incompressible, third grade, electrically conducting fluid impinging normal to a plane in the presence of a uniform magnetic field is investigated. The heat transfer analysis has been carried out for two heating processes, namely, (i) with prescribed surface temperature (PST-case) and (ii) prescribed surface heat flux (PHF-case). By means of the similarity transformation, the governing non-linear partial differential equations are reduced to a system of non-linear ordinary differential equations and are solved by a second-order numerical technique. Effects of various non-Newtonian fluid parameters, magnetic parameter, Prandtl number on the velocity and temperature fields have been investigated in detail and shown graphically. It is found that the velocity gradient at the wall decreases as the third grade fluid parameter increases.

  2. Grouping of light water reactors for evaluation of decay heat removal capability

    SciTech Connect

    Karol, R.; Fresco, A.; Perkins, K.R.

    1984-06-01

    This grouping report provides a compilation of decay heat removal systems (DHRS) data for operating commercial light water reactors. The reactors have been divided into 12 groups based on similarity of the DHRS and related systems as part of the NRC Task Action Plan on Shutdown Decay Heat Removal Requirements.

  3. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  4. Low-grade heat recuperation by the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Verneau, A.

    1980-11-01

    The use of an organic Rankine cycle engine in the conversion of low-grade industrial waste heat into mechanical energy is examined. The principles of a Rankine system using a vapor as the working fluid at operating temperatures from 100 to 500 C are presented, and the advantages of using organic vapors rather than water in the Rankine cycle are pointed out. Attention is then given to the Rankine cycle itself, the organic fluids employed, the multistage low-power turbines and the evaporator, which acts as a countercurrent heat exchanger. Economic aspects of the use of Rankine cycle systems for industrial waste heat recovery are then considered, and examples are presented of the calculation of power recovered and investment costs for the examples of heat recovery from diesel exhaust and from low-pressure steam.

  5. Probabilistic approach for decay heat uncertainty estimation using URANIE platform and MENDEL depletion code

    NASA Astrophysics Data System (ADS)

    Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.

    2014-06-01

    The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.

  6. Decay heat removal from a Particle Bed Reactor Nuclear Thermal Rocket engine

    NASA Astrophysics Data System (ADS)

    Gustafson, Eric

    1993-06-01

    Nuclear Thermal Rockets used in propulsion systems for planetary exploration will generate significant amounts of heat following normal engine shutdown due to the buildup of and decay of radioactive fission products. The amount of energy that is generated as decay heat is approximately 2-5 percent of the energy released during nominal operation. Various schemes are possible for removing this heat, including using primary coolant (hydrogen) to cool the reactor. Depending on the amount of coolant required, this may result in a large weight penalty for the mission. This paper quantifies the amount of decay heat that must be removed from the engine, shows the resulting impact on the vehicle design for particular missions, and examines possible approaches for reducing the amount of coolant required for decay heat removal. The costs and benefits of these schemes will be shown for several different missions. The missions that will be considered include both manned Mars missions and unmanned planetary exploration missions.

  7. Heat Transfer Analysis of Localized Heat-Treatment for Grade 91 Steel

    NASA Astrophysics Data System (ADS)

    Walker, Jacob D.

    Many of the projects utilizing Grade 91 steel are large in scale, therefore it is necessary to assemble on site. The assembly of the major pieces requires welding in the assembly; this drastically changes the superior mechanical properties of Grade 91 steel that it was specifically developed for. Therefore, because of the adverse effects of welding on the mechanical properties of Grade 91, it is necessary to do a localized post weld heat treatment. As with most metallic materials grade 91 steel requires a very specific heat treatment process. This process includes a specific temperature and duration at that temperature to achieve the heat treatment desired. Extensive research has been done to determine the proper temperatures and duration to provide the proper microstructure for the superior mechanical properties that are inherent to Grade 91 steel. The welded sections are typically large structures that require local heat treatments and cannot be placed in an oven. The locations of these structures vary from indoors in a controlled environment to outdoors with unpredictable environments. These environments can be controlled somewhat, however in large part the surrounding conditions are unchangeable. Therefore, there is a need to develop methods to accurately apply the surrounding conditions and geometries to a theoretical model in order to provide the proper requirements for the local heat treatment procedure. Within this requirement is the requirement to define unknowns used in the heat transfer equations so that accurate models can be produced and accurate results predicted. This study investigates experimentally and numerically the heat transfer and temperature fields of Grade 91 piping in a local heat treatment. The objective of this thesis research is to determine all of the needed heat transfer coefficients. The appropriate heat transfer coefficients are determined through the inverse heat conduction method utilizing a ceramic heat blanket. This will be done

  8. [The influence of oil heat treatment on wood decay resistance by Fourier infrared spectrum analysis].

    PubMed

    Wang, Ya-Mei; Ma, Shu-Ling; Feng, Li-Qun

    2014-03-01

    Wood preservative treatment can improve defects of plantation wood such as easy to corrupt and moth eaten. Among them heat-treatment is not only environmental and no pollution, also can improve the corrosion resistance and dimension stability of wood. In this test Poplar and Mongolian Seoteh Pine was treated by soybean oil as heat-conducting medium, and the heat treatment wood was studied for indoor decay resistance; wood chemical components before and after treatment, the effect of heat treatment on wood decay resistance performance and main mechanism of action were analysed by Fourier infrared spectrometric. Results showed that the mass loss rate of poplar fell from 19.37% to 5% and Mongolian Seoteh Pine's fell from 8.23% to 3.15%, so oil heat treatment can effectively improve the decay resistance. Infrared spectrum analysis shows that the heat treatment made wood's hydrophilic groups such as hydroxyl groups in largely reduced, absorbing capacity decreased and the moisture of wood rotting fungi necessary was reduced; during the heat treatment wood chemical components such as cellulose, hemicellu lose were degraded, and the nutrient source of wood rotting fungi growth necessary was reduced. Wood decay fungi can grow in the wood to discredit wood is because of that wood can provide better living conditions for wood decay fungi, such as nutrients, water, oxygen, and so on. The cellulose and hemicellulose in wood is the main nutrition source of wood decay fungi. So the oil heat-treatment can reduce the cellulose, hemicellulose nutrition source of wood decay fungi so as to improve the decay resistance of wood.

  9. Heat transfer in turbulent decaying swirl flow in a circular pipe

    NASA Astrophysics Data System (ADS)

    Algifri, A. H.; Bhardwaj, R. K.; Rao, Y. V. N.

    1988-08-01

    Heat transfer coefficients for air are measured along a heated pipe for decaying swirl flow, generated by radial blade cascade. The results are compared with an expression proposed for predicting the heat transfer coefficients in swirling flow. The theoretical predictions are in good agreement with the experimental data, with average and maximum deviations of 7 and 11 percent, respectively. The application of the theoretical approach to the experimental results obtained by other investigators for heat transfer in a decaying swirl flow generated by short-twisted tapes and tangential slots at inlet also give rise to encouraging agreement.

  10. MAGNETIC FIELD-DECAY-INDUCED ELECTRON CAPTURES: A STRONG HEAT SOURCE IN MAGNETAR CRUSTS

    SciTech Connect

    Cooper, Randall L.; Kaplan, David L. E-mail: dkaplan@kitp.ucsb.edu

    2010-01-10

    We propose a new heating mechanism in magnetar crusts. Magnetars' crustal magnetic fields are much stronger than their surface fields; therefore, magnetic pressure partially supports the crust against gravity. The crust loses magnetic pressure support as the field decays and must compensate by increasing the electron degeneracy pressure; the accompanying increase in the electron Fermi energy induces nonequilibrium, exothermic electron captures. The total heat released via field-decay electron captures is comparable to the total magnetic energy in the crust. Thus, field-decay electron captures are an important, if not the primary, mechanism powering magnetars' soft X-ray emission.

  11. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  12. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  13. Determination of the NPP Kr\\vsko spent fuel decay heat

    NASA Astrophysics Data System (ADS)

    Kromar, Marjan; Kurinčič, Bojan

    2017-07-01

    Nuclear fuel is designed to support fission process in a reactor core. Some of the isotopes, formed during the fission, decay and produce decay heat and radiation. Accurate knowledge of the nuclide inventory producing decay heat is important after reactor shut down, during the fuel storage and subsequent reprocessing or disposal. In this paper possibility to calculate the fuel isotopic composition and determination of the fuel decay heat with the Serpent code is investigated. Serpent is a well-known Monte Carlo code used primarily for the calculation of the neutron transport in a reactor. It has been validated for the burn-up calculations. In the calculation of the fuel decay heat different set of isotopes is important than in the neutron transport case. Comparison with the Origen code is performed to verify that the Serpent is taking into account all isotopes important to assess the fuel decay heat. After the code validation, a sensitivity study is carried out. Influence of several factors such as enrichment, fuel temperature, moderator temperature (density), soluble boron concentration, average power, burnable absorbers, and burnup is analyzed.

  14. Effect of Permissive Dehydration on Induction and Decay of Heat Acclimation, and Temperate Exercise Performance

    PubMed Central

    Neal, Rebecca A.; Massey, Heather C.; Tipton, Michael J.; Young, John S.; Corbett, Jo

    2016-01-01

    Purpose: It has been suggested that dehydration is an independent stimulus for heat acclimation (HA), possibly through influencing fluid-regulation mechanisms and increasing plasma volume (PV) expansion. There is also some evidence that HA may be ergogenic in temperate conditions and that this may be linked to PV expansion. We investigated: (i) the influence of dehydration on the time-course of acquisition and decay of HA; (ii) whether dehydration augmented any ergogenic benefits in temperate conditions, particularly those related to PV expansion. Methods: Eight males [VO2max: 56.9(7.2) mL·kg−1·min−1] undertook two HA programmes (balanced cross-over design), once drinking to maintain euhydration (HAEu) and once with restricted fluid-intake (HADe). Days 1, 6, 11, and 18 were 60 min exercise-heat stress tests [HST (40°C; 50% RH)], days 2–5 and 7–10 were 90 min, isothermal-strain (Tre ~ 38.5°C), exercise-heat sessions. Performance parameters [VO2max, lactate threshold, efficiency, peak power output (PPO)] were determined pre and post HA by graded exercise test (22°C; 55%RH). Results: During isothermal-strain sessions hypohydration was achieved in HADe and euhydration maintained in HAEu [average body mass loss −2.71(0.82)% vs. −0.56(0.73)%, P < 0.001], but aldosterone concentration, power output, and cardiovascular strain were unaffected by dehydration. HA was evident on day 6 {reduced end-exercise Tre [−0.30(0.27)°C] and exercise heart rate [−12(15) beats.min−1], increased PV [+7.2(6.4)%] and sweat-loss [+0.25(0.22) L.h−1], P < 0.05} with some further adaptations on day 11 {further reduced end-exercise Tre [−0.25(0.19)°C] and exercise heart rate [−3(9) beats.min−1], P < 0.05}. These adaptations were not notably affected by dehydration and were generally maintained 7-days post HA. Performance parameters were unchanged, apart from increased PPO (+16(20) W, irrespective of condition). Conclusions: When thermal-strain is matched

  15. Decay-phase cooling and inferred heating of M- and X-class solar flares

    SciTech Connect

    Ryan, Daniel F.; Gallagher, Peter T.; Chamberlin, Phillip C.; Milligan, Ryan O.

    2013-11-20

    In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared with the predictions of an analytical zero-dimensional hydrodynamic model. We find that the model does not fit the observations well, but does provide a well-defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay-phase heating necessary to account for the discrepancy is quantified and found be ∼50% of the total thermally radiated energy, as calculated with GOES. This decay-phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay-phase heating in small flares. However, in the most energetic flares the decay-phase heating inferred from the model can be several times greater than the peak thermal energy.

  16. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.

  17. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-06-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  18. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  19. The Gas-Cooled Fast Reactor: Report on Safety System Design for Decay Heat Removal

    SciTech Connect

    K. D. Weaver; T. Marshall; T. Y. C. Wei; E. E. Feldman; M. J. Driscoll; H. Ludewig

    2003-09-01

    The gas-cooled fast reactor (GFR) was chosen as one of the Generation IV nuclear reactor systems to be developed based on its excellent potential for sustainability through reduction of the volume and radiotoxicity of both its own fuel and other spent nuclear fuel, and for extending/utilizing uranium resources orders of magnitude beyond what the current open fuel cycle can realize. In addition, energy conversion at high thermal efficiency is possible with the current designs being considered, thus increasing the economic benefit of the GFR. However, research and development challenges include the ability to use passive decay heat removal systems during accident conditions, survivability of fuels and in-core materials under extreme temperatures and radiation, and economical and efficient fuel cycle processes. This report addresses/discusses the decay heat removal options available to the GFR, and the current solutions. While it is possible to design a GFR with complete passive safety (i.e., reliance solely on conductive and radiative heat transfer for decay heat removal), it has been shown that the low power density results in unacceptable fuel cycle costs for the GFR. However, increasing power density results in higher decay heat rates, and the attendant temperature increase in the fuel and core. Use of active movers, or blowers/fans, is possible during accident conditions, which only requires 3% of nominal flow to remove the decay heat. Unfortunately, this requires reliance on active systems. In order to incorporate passive systems, innovative designs have been studied, and a mix of passive and active systems appears to meet the requirements for decay heat removal during accident conditions.

  20. Method for utilizing decay heat from radioactive nuclear wastes

    DOEpatents

    Busey, H.M.

    1974-10-14

    Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.

  1. An analytical model for decaying swirl flow and heat transfer inside a tube

    SciTech Connect

    Wu, H.Y.; Cheng, H.E.; Shuai, R.J.; Zhou, Q.T.

    2000-02-01

    Decaying swirl flow can enhance the heat transfer inside a tube. For the decaying swirl flow of which maximum tangential velocity is located in the immediate vicinity of the wall, an analytical model based on the fluid theorem about the moment of momentum is proposed for the local maximum tangential velocity, local friction factor, and local Nusselt number in this paper. The analytical solutions compare favorably with the experimental data. Influences of the Reynolds number, wall roughness and initial tangential-to-axial velocity ratio on the decaying characteristics of the friction factor and Nusselt number have been analyzed. The analytical results show that the swirl flow decays more rapidly at the initial segment; for same conditions, the friction factor decays more severely than the Nusselt number; relative to the values of the nonswirl flow, the friction factor increases more intensely than the Nusselt number.

  2. Estimation of heat generation by radioactive decay of some phosphate rocks in Egypt.

    PubMed

    Din, Khaled Salahel

    2009-11-01

    Radiogenic heat production data for phosphate rocks outcropping on the three main areas Eastern Desert, Western Desert and Nile Valley are presented. They were derived from uranium, thorium and potassium concentration measurements of gamma radiation originating from the decay of (214)Bi ((238)U series), (208)Tl ((232)Th series) and the primary decay of (40)K. A low radioactive heat production rate (0.32+/-0.1 microWm(-3)) was found for Wadi Hegaza, whereas the highest value (19+/-4.1 microWm(-3)) was found for Gabel Anz, Eastern Desert of Egypt.

  3. Transient testing of the FFTF for decay-heat removal by natural convection

    SciTech Connect

    Beaver, T R; Johnson, H G; Stover, R L

    1982-06-01

    This paper reports on the series of transient tests performed in the FFTF as a major part of the pre-operations testing program. The structure of the transient test program was designed to verify the capability of the FFTF to safely remove decay heat by natural convection. The series culminated in a scram from full power to complete natural convection in the plant, simulating a loss of all electrical power. Test results and acceptance criteria related to the verification of safe decay heat removal are presented.

  4. Emergency Decay Heat Removal in a GEN-IV Gas-Cooled Fast Reactor

    SciTech Connect

    Cheng, Lap Y.; Ludewig, Hans; Jo, Jae

    2006-07-01

    A series of transient analyses using the system code RELAP5-3d has been performed to confirm the efficacy of a proposed hybrid active/passive combination approach to the decay heat removal for an advanced 2400 MWt GEN-IV gas-cooled fast reactor. The accident sequence of interest is a station blackout simultaneous with a small break (10 sq.inch/0.645 m{sup 2}) in the reactor vessel. The analyses cover the three phases of decay heat removal in a depressurization accident: (1) forced flow cooling by the power conversion unit (PCU) coast down, (2) active forced flow cooling by a battery powered blower, and (3) passive cooling by natural circulation. The blower is part of an emergency cooling system (ECS) that by design is to sustain passive decay heat removal via natural circulation cooling 24 hours after shutdown. The RELAP5 model includes the helium-cooled reactor, the ECS (primary and secondary side), the PCU with all the rotating machinery (turbine and compressors) and the heat transfer components (recuperator, pre-cooler and inter-cooler), and the guard containment that surrounds the reactor and the PCU. The transient analysis has demonstrated the effectiveness of passive decay heat removal by natural circulation cooling when the guard containment pressure is maintained at or above 800 kPa. (authors)

  5. Analysis of MERCI decay heat measurement for PWR UO{sub 2} fuel rod

    SciTech Connect

    Jaboulay, J.C.; Bourganel, S.

    2012-01-15

    Decay heat measurements, called the MERCI experiment, were conducted at Commissariat a l'Energie Atomique (CEA)/Saclay to characterize accurately residual power at short cooling time and verify its prediction by decay code and nuclear data. The MOSAIC calorimeter, developed and patented by CEA/Grenoble (DTN/SE2T), enables measurement of the decay heat released by a pressurized water reactor (PWR) fuel rod sample between 200 and 4 W within a precision of 1%. The MERCI experiment included three phases. At first, a UO{sub 2} fuel rod sample was irradiated in the CEA/Saclay experimental reactor OSIRIS. The burnup achieved at the end of irradiation was similar to 3.5 GWd/tonne. The second phase was the transfer of the fuel rod sample from its irradiation location to a hot cell, to be inserted inside the MOSAIC calorimeter. It took 26 min to carry out the transfer. Finally, decay heat released by the PWR sample was measured from 27 min to 42 days after shutdown. Post irradiation examinations were performed to measure concentrations of some heavy nuclei (U, Pu) and fission products (Cs, Nd). The decay heat was predicted using a calculation scheme based on the PEPIN2 depletion code, the TRIPOLI-4 Monte Carlo code, and the JEFF3.1.1 nuclear data file. The MERCI experiment analysis shows that the discrepancy between the calculated and the experimental decay heat values is included between -10% at 27 min and +6% at 12 h, 30 min otter shutdown. From 4 up to 42 days of cooling time, the difference between calculation and measurement is about ± 1%, i.e., experimental uncertainty. The MERCI experiment represents a significant contribution for code validation; the time range above 10{sup 5} s has not been validated previously. (authors)

  6. An investigation of natural circulation decay heat removal from an SP-100 reactor system for a lunar outpost

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    A transient thermal-hydraulic model of the decay heat removal from a 550 kWe SP-100 power system for a lunar outpost has been developed and used to assess the coolability of the system by natural circulation after reactor shutdown. Results show that natural circulation of lithium coolant is sufficient to ensure coolability of the reactor core after shutdown. Further improvement of the decay heat removal capability of the system could be achieved by increasing the dimensions of the decay heat exchanger duct. A radiator area of 10-15 m2 would be sufficient to maintain the reactor core safely coolable by natural circulation after shutdown. Increasing the area of the decay heat rejection radiator or the diameter of the heat pipes in the guard vessel wall insignificantly affects the decay heat removal capability of the system.

  7. Evaluation of spent fuel isotopics, radiation spectra and decay heat using the scale computational system

    SciTech Connect

    Parks, C.V.; Hermann, O.W.; Ryman, J.C.

    1986-01-01

    In order to be a self-sufficient system for transport/storage cask shielding and heat transfer analysis, the SCALE system developers included modules to evaluate spent fuel radiation spectra and decay heat. The primary module developed for these analyses is ORIGEN-S which is an updated verision of the original ORIGEN code. The COUPLE module was also developed to enable ORIGEN-S to easily utilize multigroup cross sections and neutron flux data during a depletion analysis. Finally, the SAS2 control module was developed for automating the depletion and decay via ORIGEN-S while using burnup-dependent neutronic data based on a user-specified fuel assembly and reactor history. The ORIGEN-S data libraries available for depletion and decay have also been significantly updated from that developed with the original ORIGEN code.

  8. Decay heat removal during SB LOCA with loss of all feedwater

    SciTech Connect

    Prosek, A.; Mavko, B.; Petelin, S.

    1994-12-31

    The aim of this research was to investigate decay heat removal during SB LOCA with simultaneous loss of all feedwater in a two loop PWR plant. Following a SB LOCA, the major concern is to keep the core covered assuring decay heat removal from the core thereby preventing cladding damage. Analysis was performed based on the data for Krsko NPP in Slovenia. The spectrum of break sizes in the cold leg was analyzed using the RELAP5/MOD2 code. The results indicate that when the break diameter is lower than 2.5 cm, the steam generators will dry out and the primary side bleed and feed procedure should be initiated. For break diameters between 2.5 cm to 5.1 cm the decay heat can be removed by the break flow and by relieving the steam through the steam generator relief valves. For break diameters greater than 5.1 cm the break flow is sufficient to remove all dissipated decay heat.

  9. Understanding decay resistance, dimensional stability and strength changes in heat treated and acetylated wood

    Treesearch

    Roger M. Rowell; Rebecca E. Ibach; James McSweeny; Thomas Nilsson

    2009-01-01

    Reductions in hygroscopicity, increased dimensional stability and decay resistance of heat-treated wood depend on decomposition of a large portion of the hemicelluloses in the wood cell wall. In theory, these hemicelluloses are converted to small organic molecules, water and volatile furan-type intermediates that can polymerize in the cell wall. Reductions in...

  10. Enhancement of low grade heat via the HYCSOS chemical heat pump

    NASA Astrophysics Data System (ADS)

    Gruen, D. M.; Sheft, I.; Lamich, G. J.

    The Argonne HYCSOS demonstration system is a thermally driven chemical heat pump based on two metal hydrides with different free energies of formation that functions in heating, cooling and energy conversion modes. Thermodynamics of hydrides are discussed, and it is shown that a continuous supply of high pressure hydrogen can be generated by the system for doing useful work in an expansion engine-dynamo unit supplying electricity and then be absorbed on the alloy at a lower temperature. The ability of the system to enhance low grade solar energy, obtained from inexpensive flat plate collectors to provide domestic hot water, is also discussed. Using the LaNi5 and CaNi5 currently in the HYCSOS system, 34 kcal of thermal energy raised the temperature of water from 39 to 66 C.

  11. DSC study of technical grade phase change heat storage materials for solar heating applications

    SciTech Connect

    Gibbs, B.M.; Hasnain, S.M.

    1995-11-01

    Differential scanning calorimetry (DSC) was used to investigate the behavior of storage materials that undergo solid-liquid phase transitions. Heating scans were used to measure the enthalpy that can be stored and cooling scans were used to estimate the magnitude of the enthalpy that may be recovered from the storage material. The automatic and rapid thermal cycling features of the DSC system were used to study thermal decomposition that may arise from the daily duty cycle of the storage medium. In this study, DSC methods were applied to technical grade paraffin wax, calcium chloride hexahydrate and disodium hydrogen phosphate dodecahydrate. In the case of inorganic salt hydrates, DSC measurements showed a decrease in heat of fusion; thermal cycling and thermograms revealed considerable super cooling. This would lead to a reduction in storage capacity. On the other hand paraffin wax did not supercool nor were there any indications that thermal cycling or contact with metal could degrade its thermal performance.

  12. Thermal Capacitance (Slug) Calorimeter Theory Including Heat Losses and Other Decaying Processes

    NASA Technical Reports Server (NTRS)

    Hightower, T. Mark; Olivares, Ricardo A.; Philippidis, Daniel

    2008-01-01

    A mathematical model, termed the Slug Loss Model, has been developed for describing thermal capacitance (slug) calorimeter behavior when heat losses and other decaying processes are not negligible. This model results in the temperature time slope taking the mathematical form of exponential decay. When data is found to fit well to this model, it allows a heat flux value to be calculated that corrects for the losses and may be a better estimate of the cold wall fully catalytic heat flux, as is desired in arc jet testing. The model was applied to the data from a copper slug calorimeter inserted during a particularly severe high heating rate arc jet run to illustrate its use. The Slug Loss Model gave a cold wall heat flux 15% higher than the value of 2,250 W/sq cm obtained from the conventional approach to processing the data (where no correction is made for losses). For comparison, a Finite Element Analysis (FEA) model was created and applied to the same data, where conduction heat losses from the slug were simulated. The heat flux determined by the FEA model was found to be in close agreement with the heat flux determined by the Slug Loss Model.

  13. Passive decay heat removal system for water-cooled nuclear reactors

    SciTech Connect

    Forseberg, C.W.

    1990-01-01

    This document describes passive decay-heat removal system for a water-cooled nuclear reactor which employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated evaporator located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  14. Analytic heating rate of neutron star merger ejecta derived from Fermi's theory of beta decay

    NASA Astrophysics Data System (ADS)

    Hotokezaka, Kenta; Sari, Re'em; Piran, Tsvi

    2017-06-01

    Macronovae (kilonovae) that arise in binary neutron star mergers are powered by radioactive beta decay of hundreds of r-process nuclides. We derive, using Fermi's theory of beta decay, an analytic estimate of the nuclear heating rate. We show that the heating rate evolves as a power law ranging between t-6/5 and t-4/3. The overall magnitude of the heating rate is determined by the mean values of nuclear quantities, e.g. the nuclear matrix elements of beta decay. These values are specified by using nuclear experimental data. We discuss the role of higher order beta transitions and the robustness of the power law. The robust and simple form of the heating rate suggests that observations of the late-time bolometric light curve ∝ t-4/3 would be direct evidence of a r-process driven macronova. Such observations could also enable us to estimate the total amount of r-process nuclei produced in the merger.

  15. Decay-phase Cooling and Inferred Heating of M- and X-class Solar Flares

    NASA Astrophysics Data System (ADS)

    Ryan, Daniel; Chamberlin, Phillip C.; Milligan, Ryan O.; Gallagher, Peter T

    2014-06-01

    Hydrodynamic modelling is a well established and important field in understanding the evolution of solar flares. However, in order to be of greatest use the results of such models must be compared to statistically significant samples of flare observations. In this talk we observationally investigate the hydrodynamic decay phase evolution of 72 M- and X-class flares using GOES/XRS, SDO/EVE and Hinode/XRT and quantify their cooling rates. The results are then compared to the predictions of an analytical zero-dimensional hydrodynamic model. We find that the model does not fit the observations well, but does provide a well-defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay-phase heating necessary to account for the discrepancy is quantified and found be ~50% of the total thermally radiated energy, as calculated with GOES/XRS. This suggests that the energy released during the decay phase may be as significant as that released during the rise phase.

  16. Fission yields data generation and benchmarks of decay heat estimation of a nuclear fuel

    NASA Astrophysics Data System (ADS)

    Gil, Choong-Sup; Kim, Do Heon; Yoo, Jae Kwon; Lee, Jounghwa

    2017-09-01

    Fission yields data with the ENDF-6 format of 235U, 239Pu, and several actinides dependent on incident neutron energies have been generated using the GEF code. In addition, fission yields data libraries of ORIGEN-S, -ARP modules in the SCALE code, have been generated with the new data. The decay heats by ORIGEN-S using the new fission yields data have been calculated and compared with the measured data for validation in this study. The fission yields data ORIGEN-S libraries based on ENDF/B-VII.1, JEFF-3.1.1, and JENDL/FPY-2011 have also been generated, and decay heats were calculated using the ORIGEN-S libraries for analyses and comparisons.

  17. PLASMA HEATING IN THE VERY EARLY AND DECAY PHASES OF SOLAR FLARES

    SciTech Connect

    Falewicz, R.; Rudawy, P.; Siarkowski, M. E-mail: rudawy@astro.uni.wroc.pl

    2011-05-20

    In this paper, we analyze the energy budgets of two single-loop solar flares under the assumption that non-thermal electrons (NTEs) are the only source of plasma heating during all phases of both events. The flares were observed by RHESSI and GOES on 2002 September 20 and 2002 March 17, respectively. For both investigated flares we derived the energy fluxes contained in NTE beams from the RHESSI observational data constrained by observed GOES light curves. We showed that energy delivered by NTEs was fully sufficient to fulfill the energy budgets of the plasma during the pre-heating and impulsive phases of both flares as well as during the decay phase of one of them. We concluded that in the case of the investigated flares there was no need to use any additional ad hoc heating mechanisms other than heating by NTEs.

  18. Heat as a tracer for examining depth-decaying permeability in gravel deposits.

    PubMed

    Sakata, Yoshitaka

    2015-04-01

    Depth dependence of permeability can appear in any geologic setting; however, vertical trends in alluvial gravel deposits are poorly understood because of the high variability of hydraulic conductivity K in monotonic sequences. This paper examines the sensitivity of depth-decaying permeability through heat transport simulation around a river's losing reach in the Toyohira River alluvial fan, Japan. Observed variations in groundwater temperature indicate that heat fluxes are dominant in the shallow zone, despite a vertical hydraulic gradient. In eight cases with different conditions (presence or absence of exponential decay trend, large or small variogram range, and cell isotropy or anisotropy) 1000 K realizations are stochastically generated throughout a cross-sectional model. The groundwater flow and heat transport are transiently calculated, and the averaged root mean square error RMSE‾ is used for sensitivity comparison. The variance of RMSE‾ shows that small RMSE‾ realizations are effectively reproduced with vertical trend assumed. Plausible realizations of RMSE‾ below a given threshold were obtained only when a vertical trend was assumed. The most plausible realization almost completely matched the observations. However, the number of plausible realizations per case was ≤10 and the median RMSE‾ were insensitive to all the conditions. Statistical testing suggested that these plausible realizations may be statistically significant, aiding in generating a connected K zone for high heat flows. The cell anisotropy condition had the smallest effect on the simulation. Thus, effective modeling of the vertical trend contributes to heat transport; however, the model's efficiency is low without detailed information about the sedimentary structure.

  19. Decay Heat Calculations for PWR and BWR Assemblies Fueled with Uranium and Plutonium Mixed Oxide Fuel using SCALE

    SciTech Connect

    Ade, Brian J; Gauld, Ian C

    2011-10-01

    in MOX fuel is generally obtained from reprocessed irradiated nuclear fuel, whereas weapons-grade plutonium is obtained from decommissioned nuclear weapons material and thus has a different plutonium (and other actinides) concentration. Using MOX fuel instead of UOX fuel has potential impacts on the neutronic performance of the nuclear fuel and the design of the nuclear fuel must take these differences into account. Each of the plutonium sources (RG and WG) has different implications on the neutronic behavior of the fuel because each contains a different blend of plutonium nuclides. The amount of heat and the number of neutrons produced from fission of plutonium nuclides is different from fission of {sup 235}U. These differences in UOX and MOX do not end at discharge of the fuel from the reactor core - the short- and long-term storage of MOX fuel may have different requirements than UOX fuel because of the different discharged fuel decay heat characteristics. The research documented in this report compares MOX and UOX fuel during storage and disposal of the fuel by comparing decay heat rates for typical pressurized water reactor (PWR) and boiling water reactor (BWR) fuel assemblies with and without weapons-grade (WG) and reactor-grade (RG) MOX fuel.

  20. Heat Energy. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide the first of a series of six, contains teacher and student materials for a unit on heat energy prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for students in grades 8-10…

  1. Complete β -decay pattern for the high-priority decay-heat isotopes 137I and 137Xe determined using total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rasco, B. C.; Rykaczewski, K. P.; Fijałkowska, A.; Karny, M.; Wolińska-Cichocka, M.; Grzywacz, R. K.; Gross, C. J.; Stracener, D. W.; Zganjar, E. F.; Blackmon, J. C.; Brewer, N. T.; Goetz, K. C.; Johnson, J. W.; Jost, C. U.; Hamilton, J. H.; Miernik, K.; Madurga, M.; Miller, D.; Padgett, S.; Paulauskas, S. V.; Ramayya, A. V.; Spejewski, E. H.

    2017-05-01

    Background: An assessment done under the auspices of the Nuclear Energy Agency in 2007 suggested that the β decays of abundant fission products in nuclear reactors may be incomplete. Many of the nuclei are potentially affected by the so called pandemonium effect and their β -γ decay heat should be restudied using the total absorption technique. The fission products 137I and 137Xe were assigned highest priority for restudy due to their large cumulative fission branching fractions. In addition, measuring β -delayed neutron emission probabilities is challenging and any new technique for measuring the β -neutron spectrum and the β -delayed neutron emission probabilities is an important addition to nuclear physics experimental techniques. Purpose: To obtain the complete β -decay pattern of 137I and 137Xe and determine their consequences for reactor decay heat and ν¯e emission. Complete β -decay feeding includes ground state to ground state β feeding with no associated γ rays, ground state to excited states β transitions followed by γ transitions to the daughter nucleus ground state, and β -delayed neutron emission from the daughter nucleus in the case of 137I. Method: We measured the complete β -decay intensities of 137I and 137Xe with the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory. We describe a technique for measuring the β -delayed neutron energy spectrum, which also provides a measurement of the β -neutron branching ratio, Pn. Results: We validate the current Evaluated Nuclear Structure Data File (ENSDF) evaluation of 137Xeβ decay. We find that major changes to the current ENSDF assessment of 137Iβ -decay intensity are required. The average γ energy per β decay for 137Iβ decaydecay heat) increases by 19%, from 1050-1250 keV, which increases the average γ energy per 235U fission by 0.11 % . We measure a β -delayed neutron branching fraction for 137Iβ decay of 7.9 ±0.2 (fit )±0.4 (sys )% and we provide a

  2. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-12-31

    This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

  3. Collection of low-grade waste heat for enhanced energy harvesting

    SciTech Connect

    Dede, Ercan M. Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-05-15

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  4. Collection of low-grade waste heat for enhanced energy harvesting

    NASA Astrophysics Data System (ADS)

    Dede, Ercan M.; Schmalenberg, Paul; Wang, Chi-Ming; Zhou, Feng; Nomura, Tsuyoshi

    2016-05-01

    Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device with optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.

  5. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    SciTech Connect

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki; Kazuhiro Ohyama

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heat removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)

  6. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    SciTech Connect

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 s after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.

  7. Mechanisms of heat transfer enhancement and slow decay of swirl in tubes using tangential injection

    NASA Astrophysics Data System (ADS)

    Chang, F.; Dhir, V. K.

    1995-04-01

    The turbulent flowfield in a tube heated uniformly from the wall has been experimentally studied when fluid is injected tangentially. The experiments were conducted by injecting air through injectors placed on the periphery of a 88.9-mm inside diameter and 2.5-m long acrylic tube. Six injectors of 22.23-mm inside diameter were used and tangential to total momentum flux ratio of 2.67 was obtained in the experiments. Temperature profiles were measured with a resistance thermometer probe. Profiles for mean velocities in the axial and tangential directions, as well as the Reynolds stresses were obtained using a single rotated straight hot wire and a single rotated slanted hot wire anemometer. No significant difference in mean velocities and Reynolds stresses were found between the adiabatic experiments and diabatic ones. Two major mechanisms for enhancement of heat transfer are identified: (1) high maximum axial velocity near the wall produces higher heat flux from the wall; and (2) high turbulence level in the middle region of the tube improves mixing and, thus, rate of heat transfer. Furthermore, it is observed that both the kinetic energy of the mean flow and the turbulence level decrease as swirl decays. However, during the decay process, the high turbulence-energy-production from Reynolds stresses is necessary to transfer the kinetic energy of the mean flow to the turbulence energy. This high turbulence-production, in turn, slows down the rate of decrease of the turbulence level. As a result, the swirl and the heat transfer enhancement are preserved for a long distance.

  8. Modeling Coronal Response in Decaying Active Regions with Magnetic Flux Transport and Steady Heating

    NASA Astrophysics Data System (ADS)

    Ugarte-Urra, Ignacio; Warren, Harry P.; Upton, Lisa A.; Young, Peter R.

    2017-09-01

    We present new measurements of the dependence of the extreme ultraviolet (EUV) radiance on the total magnetic flux in active regions as obtained from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. Using observations of nine active regions tracked along different stages of evolution, we extend the known radiance—magnetic flux power-law relationship (I\\propto {{{Φ }}}α ) to the AIA 335 Å passband, and the Fe xviii 93.93 Å spectral line in the 94 Å passband. We find that the total unsigned magnetic flux divided by the polarity separation ({{Φ }}/D) is a better indicator of radiance for the Fe xviii line with a slope of α =3.22+/- 0.03. We then use these results to test our current understanding of magnetic flux evolution and coronal heating. We use magnetograms from the simulated decay of these active regions produced by the Advective Flux Transport model as boundary conditions for potential extrapolations of the magnetic field in the corona. We then model the hydrodynamics of each individual field line with the Enthalpy-based Thermal Evolution of Loops model with steady heating scaled as the ratio of the average field strength and the length (\\bar{B}/L) and render the Fe xviii and 335 Å emission. We find that steady heating is able to partially reproduce the magnitudes and slopes of the EUV radiance—magnetic flux relationships and discuss how impulsive heating can help reconcile the discrepancies. This study demonstrates that combined models of magnetic flux transport, magnetic topology, and heating can yield realistic estimates for the decay of active region radiances with time.

  9. Passive decay heat removal by natural air convection after severe accidents

    SciTech Connect

    Erbacher, F.J.; Neitzel, H.J.; Cheng, X.

    1995-09-01

    The composite containment proposed by the Research Center Karlsruhe and the Technical University Karlsruhe is to cope with severe accidents. It pursues the goal to restrict the consequences of core meltdown accidents to the reactor plant. One essential of this new containment concept is its potential to remove the decay heat by natural air convection and thermal radiation in a passive way. To investigate the coolability of such a passive cooling system and the physical phenomena involved, experimental investigations are carried out at the PASCO test facility. Additionally, numerical calculations are performed by using different codes. A satisfying agreement between experimental data and numerical results is obtained.

  10. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    SciTech Connect

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups.

  11. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ϕ{sub 1} for ZT{sub e}/T{sub i}≲20, beyond which the instability is shown to scale with a higher power of ϕ{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  12. Development of the Single Graded Groove high-performance heat pipe

    NASA Technical Reports Server (NTRS)

    Ambrose, J. H.; Holmes, H. R.

    1991-01-01

    This paper describes the development of a new nonarterial heat pipe with a nominal transport capability of 100,000 W in. Data are presented for one-g transport capability as a function of tilt and working fluid quantity. The transport capability agrees well with theoretical predictions. The LMSC Graded Groove Heat Pipe exhibits the high throughput and excellent heat transfer characteristics of earlier arterial designs such as the LMSC Tapered Artery Heat Pipe. At the same time, it suffers none of the priming difficulties associated with the arterial designs.

  13. [Studies on heat generation by drills of various abrasion grade].

    PubMed

    Fibig, K H

    1975-01-01

    By means of our own measuring method, drilling tests were performed at a test block made of silicate cement using rose-head and fissure burs as well as diamond-stones with different feed. The temperature increases only within a limited range of wear and tear, it does not increase rectilinearly but stepwise, mainly influenced by two heat values, the shearing and the friction heat. Having reached the temperature maximum, further drilling or further wear and tear only prolong drilling time. The danger of damaging the pulp is primarily dependent on the feed and less on wear and tear, as was shown by the tests with the rose head burs. Only when the feed is rising, the worn-out driller further increases a rise in temperature.

  14. Some problems of burning low-grade fuels at heating and power plants

    SciTech Connect

    Dakhov, A.I.; Mikhailovskii, Yu.M.

    1983-03-01

    The combustion of low-grade coal in the heat and power plants in the USSR is discussed. The use of these coals in the power industry has increased while their quality has steadily decreased, especially during the last 2-3 five-year plans. This is especially true for coals produced by open pit mining. Suggestions are given to increase the efficiency of power plant boilers burning low-grade coals.

  15. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOEpatents

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  16. Production of food grade (culinary) steam with geothermal (geo-heat) for industrial use

    SciTech Connect

    Wehlage, E.F.

    1980-09-01

    It may be assumed that geothermal steam (dry or flashed) will be sterile but not necessarily clean enough for direct incorporation into foods, beverages, and pharmaceuticals. The use of a purification by unfired geo-heat steam generators can produce a food grade or culinary steam supply for critical use even when combined with fossil fuel used as a booster. Low conductivity, i.e., pure food grade steam requires careful water conditioning outside the generator.

  17. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE PAGES

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  18. The Testing of Recent JEF(F) Decay Data and Fission Product Yields Files for Irradiated Nuclear Fuel Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Mills, R. W.; Parker, D. R.

    2005-05-01

    The heat generated by irradiated nuclear fuel is one of the important considerations for its safe storage, transport and possible recycling. One method to calculate the decay heat of irradiated fuel is from an inventory code such as FISPIN or ORIGEN-S. These codes were part of a code comparison that showed that if using the same nuclear data their results for a set of testcases differed by less than 1 part in 103. This paper compares FISPIN decay heat calculations with a selection of fission pulse experiments (U235, U238, Pu239 and Pu241) and UOX PWR assembly calorimetric measurements. The calculations were performed using libraries based upon JEF-1 (1986), JEF-2.2 (1993) and a preliminary JEFF-3 file that includes a UK fission product yield file (UKFY3.5). The results show that both JEF-2.2 and the preliminary JEFF-3 data predict the decay heat to a similar accuracy and generally within 5%.

  19. Los Alamos PWR decay-heat-removal studies. Summary results and conclusions

    SciTech Connect

    Boyack, B E; Henninger, R J; Horley, E; Lime, J F; Nassersharif, B; Smith, R

    1986-03-01

    The adequacy of shutdown-decay-heat removal in pressurized water reactors (PWRs) is currently under investigation by the Nuclear Regulatory Commission. One part of this effort is the review of feed-and-bleed procedures that could be used if the normal cooling mode through the steam generators were unavailable. Feed-and-bleed cooling is effected by manually activating the high-pressure injection (HPI) system and opening the power-operated relief valves (PORVs) to release the core decay energy. The feasibility of the feed-and-bleed concept as a diverse mode of heat removal has been evaluated at the Los Alamos National Laboratory. The TRAC-PF1 code has been used to predict the expected performance of the Oconee-1 and Calvert Cliffs-1 reactors of Bobcock and Wilcox and Combustion Engineering, respectively, and the Zion-1 and H.B. Robinson-2 plants of Westinghouse. Feed and bleed was successfully applied in each of the four plants studied, provided it was initiated no later than the time of loss of secondary heat sink. Feed and bleed was successfully applied in two of the plants, Oconee-1 and Zion-1, provided it was initiated no later than the time of primary system saturation. Feed and bleed in Calvert Cliffs-1 when initiated at the time of primary system saturation did result in core dryout; however, the core heatup was eventually terminated by coolant injection. Feed-and-bleed initiation at primary system saturation was not studied for H.B. Robinson-2. Insights developed during the analyses of specific plant transients have been identified and documented. 33 refs., 107 figs., 26 tabs.

  20. Thermal hydraulic design and decay heat removal of a solid target for a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Takenaka, N.; Nio, D.; Kiyanagi, Y.; Mishima, K.; Kawai, M.; Furusaka, M.

    2005-08-01

    Thermal hydraulic design and thermal stress calculations were conducted for a water-cooled solid target irradiated by a MW-class proton beam for a spallation neutron source. Plate type and rod bundle type targets were examined. The thickness of the plate and the diameter of the rod were determined based on the maximum and the wall surface temperature. The thermal stress distributions were calculated by a finite element method (FEM). The neutronics performance of the target is roughly proportional to its average density. The averaged densities of the designed targets were calculated for tungsten plates, tantalum clad tungsten plates, tungsten rods sheathed by tantalum and Zircaloy and they were compared with mercury density. It was shown that the averaged density was highest for the tungsten plates and was high for the tantalum cladding tungsten plates, the tungsten rods sheathed by tantalum and Zircaloy in order. They were higher than or equal to that of mercury for the 1 2 MW proton beams. Tungsten target without the cladding or the sheath is not practical due to corrosion by water under irradiation condition. Therefore, the tantalum cladding tungsten plate already made successfully by HIP and the sheathed tungsten rod are the candidate of high performance solid targets. The decay heat of each target was calculated. It was low enough low compared to that of ISIS for the target without tantalum but was about four times as high as that of ISIS when the thickness of the tantalum cladding was 0.5 mm. Heat removal methods of the decay heat with tantalum were examined. It was shown that a special cooling system was required for the target exchange when tantalum was used for the target. It was concluded that the tungsten rod target sheathed with stainless steel or Zircaloy was the most reliable from the safety considerations and had similar neutronics performance to that of mercury.

  1. Heat recovery and pollutant cleanup from low grade fuels

    SciTech Connect

    Ellison, W.; Butcher, T.A.; Carbonara, J.C.; Heaphy, J.P.

    1994-06-01

    Technical development efforts and field testing have pointed to outstanding economy and environmental benefits contemplated in revamping of fueling for reduced cost of power generation. Flue gas cleaning technologies detailed herein are expected to vitally support this objective and strongly contribute to long-term efforts for regional ozone compliance within the favorable economic framework made possible by avoidance of clean, high-cost, steam boiler fuels otherwise necessary in meeting environmental goals. With adequate control of emissions, abundance and attractive price of high-sulfur residium or coal provides the realistic basis for cost-effective power generation in decades ahead. A key element is the design of by-product yielding, wet flue gas desulfurization processes. The choice is among those using lime, ammonia, or sodium alkali reagents, or limestone in highly oxygen-inhibited process operation, with SO{sub 2} removal efficiency of 98+% as a result of dissolved sulfite alkalinity. Integrated use of condensing heat exchangers provides low-level heat recovery and water-condensing-mode scrubbing. SO{sub 3} gas & PM-10 particulates including trace metals are effectively removed in conjunction with optimal, ultra-efficient, simultaneous multi-pollutant reduction. DeNO{sub x} may be accomplished by combining advantageous recirculation of highly-cooled, low-humidity, clean flue gas to burner windboxes with conventional selective non-catalytic reduction. Stack NO{sub x} at 18 to 30 ppM, (60% O{sub 2} basis), i.e. 0.03 to 0.05 lb NO{sub 2}-equivalent/MM Btu, may be achieved by injection of methanol in dilute solution or highly air-diluted, into the rear boiler cavity upstream of the economizer, converting flue-gas NO to NO{sub 2}, thereafter efficiently absorbed and chemically reduced to N{sub 2} by the dissolved-sulfite scrubbing agent to gain colorless discharge with NO{sub 2} concentration less than 15 ppM, i.e. 0.025 lb/MM Btu.

  2. Reactor Decay Heat in {sup 239}Pu: Solving the {gamma} Discrepancy in the 4-3000-s Cooling Period

    SciTech Connect

    Algora, A.; Jordan, D.; Tain, J. L.; Rubio, B.; Agramunt, J.; Perez-Cerdan, A. B.; Molina, F.; Caballero, L.; Nacher, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyas, J.; Vitez, A.; Csatlos, M.; Csige, L.; Aeysto, J.; Penttilae, H.; Moore, I. D.; Eronen, T.; Jokinen, A.

    2010-11-12

    The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

  3. Reactor decay heat in 239Pu: solving the γ discrepancy in the 4-3000-s cooling period.

    PubMed

    Algora, A; Jordan, D; Taín, J L; Rubio, B; Agramunt, J; Perez-Cerdan, A B; Molina, F; Caballero, L; Nácher, E; Krasznahorkay, A; Hunyadi, M D; Gulyás, J; Vitéz, A; Csatlós, M; Csige, L; Aysto, J; Penttilä, H; Moore, I D; Eronen, T; Jokinen, A; Nieminen, A; Hakala, J; Karvonen, P; Kankainen, A; Saastamoinen, A; Rissanen, J; Kessler, T; Weber, C; Ronkainen, J; Rahaman, S; Elomaa, V; Rinta-Antila, S; Hager, U; Sonoda, T; Burkard, K; Hüller, W; Batist, L; Gelletly, W; Nichols, A L; Yoshida, T; Sonzogni, A A; Peräjärvi, K

    2010-11-12

    The β feeding probability of (102,104,105,106,107)Tc, 105Mo, and 101Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the γ component of the decay heat for 239Pu in the 4-3000 s range.

  4. Reactor Decay Heat in 239Pu: Solving the Gamma Discrepancy in the 4–3000-s Cooling Period

    SciTech Connect

    Algora, A.; Sonzogni, A.; Algora,A.; Jordan,D.; Tain,J.L.; Rubio,B.; Agramunt,J.; Perez-Cerdan,A.B.; Molina,F; Caballero,L.; Nacher,E.; Krasznahorkay,A.; Hunyadi,M.D.; Gulyas,J; Vitez,A.; Csatlos,M.; Csige,L.; Aysto,J.; Penttila,H.; Moore,I.D.; Eronen,T.; Jokinen,A.; Nieminen,A.; Hakala,J.; Karvonen,P.; Kankainen,A.; Saastamoinen,A.; Rissanen,J.; Kessler,T.; Weber,C.; Ronkainen,J.; Rahaman,S.; Elomaa,V.; Rinta-Antila,S.; Hager,U.; Sonoda,T.; Burkard,K.; Huller,W.; Batist,L.; Gelletly,W.; Nichols,A.L.; Yoshida,T.; Sonzogni,A.A.; Perajarvi,K.

    2010-11-08

    The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

  5. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Straub, Anthony P.; Yip, Ngai Yin; Lin, Shihong; Lee, Jongho; Elimelech, Menachem

    2016-07-01

    Low-grade heat from sources below 100 ∘C offers a vast quantity of energy. The ability to extract this energy, however, is limited with existing technologies as they are not well-suited to harvest energy from sources with variable heat output or with a small temperature difference between the source and the environment. Here, we present a process for extracting energy from low-grade heat sources utilizing hydrophobic, nanoporous membranes that trap air within their pores when submerged in a liquid. By driving a thermo-osmotic vapour flux across the membrane from a hot reservoir to a pressurized cold reservoir, heat energy can be converted to mechanical work. We demonstrate operation of air-trapping membranes under hydraulic pressures up to 13 bar, show that power densities as high as 3.53 ± 0.29 W m-2 are achievable with a 60 ∘C heat source and a 20 ∘C heat sink, and estimate the efficiency of a full-scale system. The results demonstrate a promising process to harvest energy from low-temperature differences (<40 ∘C) and fluctuating heat sources.

  6. Modeling the decay of energy containing eddies: A source of solar wind heating

    NASA Technical Reports Server (NTRS)

    Hossain, M.; Gray, P. C.; Pontius, D. H.; Matthaeus, W. H.; Oughton, S.

    1995-01-01

    To understand the solar wind heating and acceleration mechanisms one needs to understand the decay of energy containing eddies. With this goal in mind, attempts have been made to extend the fluid dynamic phenomenology of large scale quasi-equilibrium to the case of magnetohydrodynamics. Matthaeus et al. have proposed a model for the inhomogeneous transport and decay of five mean variables, namely, two mean square Elsasser variables z(exp 2) (sub +/-) their correlation lengths, and the difference between the kinetic and magnetic energies. We test the validity of this model in the simplified case of homogeneous turbulence simulated in a periodic box. We propose a class of models and show that they may fit the simulation satisfactorily. Analytic solutions of this class of model reveal their inherent properties and demonstrate the difficulties associated with finite cross helicity. It is noted that adjustments are required to make the simplest models, which are based upon isotropic turbulence, scale properly with respect to the strength of the mean magnetic field. This can be interpreted as due to anisotropic turbulence, which can be modelled by simple parameterization in the phenomenology.

  7. Modeling the decay of energy containing eddies: A source of solar wind heating

    NASA Technical Reports Server (NTRS)

    Hossain, M.; Gray, P. C.; Pontius, D. H.; Matthaeus, W. H.; Oughton, S.

    1995-01-01

    To understand the solar wind heating and acceleration mechanisms one needs to understand the decay of energy containing eddies. With this goal in mind, attempts have been made to extend the fluid dynamic phenomenology of large scale quasi-equilibrium to the case of magnetohydrodynamics. Matthaeus et al. have proposed a model for the inhomogeneous transport and decay of five mean variables, namely, two mean square Elsasser variables z(exp 2) (sub +/-) their correlation lengths, and the difference between the kinetic and magnetic energies. We test the validity of this model in the simplified case of homogeneous turbulence simulated in a periodic box. We propose a class of models and show that they may fit the simulation satisfactorily. Analytic solutions of this class of model reveal their inherent properties and demonstrate the difficulties associated with finite cross helicity. It is noted that adjustments are required to make the simplest models, which are based upon isotropic turbulence, scale properly with respect to the strength of the mean magnetic field. This can be interpreted as due to anisotropic turbulence, which can be modelled by simple parameterization in the phenomenology.

  8. Variation of Mechanical Properties of High RRR And Reactor Grade Niobium With Heat Treatments

    SciTech Connect

    Ganapati Myneni; H. Umezawa

    2003-06-01

    Superconducting rf cavities used as accelerating structures in particle accelerators are made from high purity niobium with residual resistance ratios greater than 250. Reactor grade niobium is also used to make wave-guide and/or end group components for these accelerating structures. The major impurities in this type of niobium are interstitially dissolved gases such as hydrogen, nitrogen, and oxygen in addition to carbon. After fabricating the niobium accelerating structures, they are subjected to heat treatments for several hours in vacuum at temperatures of up to 900 C for degassing hydrogen or up to 1400 C for improving the thermal conductivity of niobium considerably. These heat treatments are affecting the mechanical properties of niobium drastically. In this paper the variation of the mechanical properties of high purity and reactor grade niobium with heat treatments in a vacuum of {approx} 10{sup -6} Torr and temperatures from 600 C to 1250 C for periods of 10 to 6 hours are presented.

  9. Activation, decay heat, and waste classification studies of the European DEMO concept

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Eade, T.; Bachmann, C.; Fischer, U.; Taylor, N. P.

    2017-04-01

    Inventory calculations have a key role to play in designing future fusion power plants because, for a given irradiation field and material, they can predict the time evolution in chemical composition, activation, decay heat, gamma-dose, gas production, and even damage (dpa) dose. For conceptual designs of the European DEMO fusion reactor such calculations provide information about the neutron shielding requirements, maintenance schedules, and waste disposal prospects; thereby guiding future development. Extensive neutron-transport and inventory calculations have been performed for a reference DEMO reactor model with four different tritium-breeding blanket concepts. The results have been used to chart the post-operation variation in activity and decay heat from different vessel components, demonstrating that the shielding performance of the different blanket concepts—for a given blanket thickness—varies significantly. Detailed analyses of the simulated nuclide inventories for the vacuum vessel (VV) and divertor highlight the most dominant radionuclides, potentially suggesting how changes in material composition could help to reduce activity. Minor impurities in the raw composition of W used in divertor tiles, for example, are shown to produce undesirable long-lived radionuclides. Finally, waste classifications, based on UK regulations, and a recycling potential limit, have been applied to estimate the time-evolution in waste masses for both the entire vessel (including blanket modules, VV, divertor, and some ex-vessel components) and individual components, and also to suggest when a particular component might be suitable for recycling. The results indicate that the large mass of the VV will not be classifiable as low level waste on the 100 year timescale, but the majority of the divertor will be, and that both components will be potentially recyclable within that time.

  10. Membrane-based osmotic heat engine with organic solvent for enhanced power generation from low-grade heat.

    PubMed

    Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.

  11. Membrane-Based Osmotic Heat Engine with Organic Solvent for Enhanced Power Generation from Low-Grade Heat

    SciTech Connect

    Shaulsky, E; Boo, C; Lin, SH; Elimelech, M

    2015-05-05

    We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.

  12. BWR spent fuel storage cask performance test. Volume 2. Pre- and post-test decay heat, heat transfer, and shielding analyses

    SciTech Connect

    Wiles, L.E.; Lombardo, N.J.; Heeb, C.M.; Jenquin, U.P.; Michener, T.E.; Wheeler, C.L.; Creer, J.M.; McCann, R.A.

    1986-06-01

    This report describes the decay heat, heat transfer, and shielding analyses conducted in support of performance testing of a Ridhihalgh, Eggers and Associates REA 2033 boiling water reactor (BWR) spent fuel storage cask. The cask testing program was conducted for the US Department of Energy (DOE) Commercial Spent Fuel Management Program by the Pacific Northwest Laboratory (PNL) and by General Electric at the latters' Morris Operation (GE-MO) as reported in Volume I. The analyses effort consisted of performing pretest calculations to (1) select spent fuel for the test; (2) symmetrically load the spent fuel assemblies in the cask to ensure lateral symmetry of decay heat generation rates; (3) optimally locate temperature and dose rate instrumentation in the cask and spent fuel assemblies; and (4) evaluate the ORIGEN2 (decay heat), HYDRA and COBRA-SFS (heat transfer), and QAD and DOT (shielding) computer codes. The emphasis of this second volume is on the comparison of code predictions to experimental test data in support of the code evaluation process. Code evaluations were accomplished by comparing pretest (actually pre-look, since some predictions were not completed until testing was in progress) predictions with experimental cask testing data reported in Volume I. No attempt was made in this study to compare the two heat transfer codes because results of other evaluations have not been completed, and a comparison based on one data set may lead to erroneous conclusions.

  13. Von Kármán energy decay and heating of protons and electrons in a kinetic turbulent plasma.

    PubMed

    Wu, P; Wan, M; Matthaeus, W H; Shay, M A; Swisdak, M

    2013-09-20

    Decay in time of undriven weakly collisional kinetic plasma turbulence in systems large compared to the ion kinetic scales is investigated using fully electromagnetic particle-in-cell simulations initiated with transverse flow and magnetic disturbances, constant density, and a strong guide field. The observed energy decay is consistent with the von Kármán hypothesis of similarity decay, in a formulation adapted to magnetohydrodyamics. Kinetic dissipation occurs at small scales, but the overall rate is apparently controlled by large scale dynamics. At small turbulence amplitudes the electrons are preferentially heated. At larger amplitudes proton heating is the dominant effect. In the solar wind and corona the protons are typically hotter, suggesting that these natural systems are in the large amplitude turbulence regime.

  14. Novel measurement method of heat and light detection for neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Kim, G. B.; Choi, J. H.; Jo, H. S.; Kang, C. S.; Kim, H. L.; Kim, I.; Kim, S. R.; Kim, Y. H.; Lee, C.; Lee, H. J.; Lee, M. K.; Li, J.; Oh, S. Y.; So, J. H.

    2017-05-01

    We developed a cryogenic phonon-scintillation detector to search for 0νββ decay of 100Mo. The detector module, a proto-type setup of the AMoRE experiment, has a scintillating 40Ca100MoO4 absorber composed of 100Mo-enriched and 48Ca-depleted elements. This new detection method employs metallic magnetic calorimeters (MMCs) as the sensor technology for simultaneous detection of heat and light signals. It is designed to have high energy and timing resolutions to increase sensitivity to probe the rare event. The detector, which is composed of a 200 g 40Ca100MoO4 crystal and phonon/photon sensors, showed an energy resolution of 8.7 keV FWHM at 2.6 MeV, with a weak temperature dependence in the range of 10-40 mK. Using rise-time and mean-time parameters and light/heat ratios, the proposed method showed a strong capability of rejecting alpha-induced events from electron events with as good as 20σ separation. Moreover, we discussed how the signal rise-time improves the rejection efficiency for random coincidence signals.

  15. The heating of nova ejecta by radioactive decays of the beta-unstable nuclei

    NASA Technical Reports Server (NTRS)

    Pistinner, Shlomi; Shaviv, Giora; Starrfield, Sumner

    1994-01-01

    Recent nucleosynthesis and hydrodynamic calculations of the consequences of accretion onto massive ONeMg white dwarf stars show that under certain circumstances significant amounts of the beta-unstable nuclei can be produced and ejected by the resulting explosion. We use these calculations as a guide in order to obtain the conditions under which the heating of the ejected material by the nonthermal electrons and positrons produced by the decays of the beta-unstable nuclei is sufficient to overcome the cooling from adiabatic expansion and lead to the production of X-ray-emitting coronal gas. These conditions are as follows: (1) a mass fraction for Na-22 of the order of 10(exp -3) or greater, (2) an expansion velocity in the range approximately 10(exp 2) - 10(exp 3) km/s, (3) a photospheric radius of approximately 10(exp 14) cm, (4) if the density distribution in the atmosphere satisfies a power law, then the exponent must be less than 3 for heating to overcome adiabatic cooling. Both the simulations of the outburst and the model atmosphere fits to the observed energy distributions, however, imply that the exponent is greater than or = 3 during the early phases of the outburst. Nevertheless, for a value of the exponent of 2, we predict the time when hot coronal gas can form during the expansion phases of the envelope.

  16. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2016-10-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (<100°C) from solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  17. Experimental Analysis of Thermoelectric Heat Exchanger for Power Generation from Salinity Gradient Solar Pond Using Low-Grade Heat

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Baharin, Nuraida `Aadilia; Remeli, Muhammad Fairuz; Oberoi, Amandeep; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-05-01

    Salinity gradient solar ponds act as an integrated thermal solar energy collector and storage system. The temperature difference between the upper convective zone and the lower convective zone of a salinity gradient solar pond can be in the range of 40-60°C. The temperature at the bottom of the pond can reach up to 90°C. Low-grade heat (<100°C) from solar ponds is currently converted into electricity by organic Rankine cycle engines. Thermoelectric generators can operate at very low temperature differences and can be a good candidate to replace organic Rankine cycle engines for power generation from salinity gradient solar ponds. The temperature difference in a solar pond can be used to power thermoelectric generators for electricity production. This paper presents an experimental investigation of a thermoelectric generators heat exchanger system designed to be powered by the hot water from the lower convective zone of a solar pond, and cold water from the upper convective zone of a solar pond. The results obtained have indicated significant prospects of such a system to generate power from low-grade heat for remote area power supply systems.

  18. Computer program grade 2 for the design and analysis of heat-pipe wicks

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.; Edwards, D. K.

    1976-01-01

    This user's manual describes the revised version of the computer program GRADE(1), which designs and analyzes heat pipes with graded porosity fibrous slab wicks. The revisions are: (1) automatic calculation of the minimum condenser-end stress that will not result in an excess-liquid puddle or a liquid slug in the vapor space; (2) numerical solution of the equations describing flow in the circumferential grooves to assess the burnout criterion; (3) calculation of the contribution of excess liquid in fillets and puddles to the heat-transport; (4) calculation of the effect of partial saturation on the wick performance; and (5) calculation of the effect of vapor flow, which includes viscousinertial interactions.

  19. Identification and Characterization of Intercritical Heat-Affected Zone in As-Welded Grade 91 Weldment

    NASA Astrophysics Data System (ADS)

    Wang, Yiyu; Kannan, Rangasayee; Li, Leijun

    2016-12-01

    A metallurgical method is proposed for locating the intercritical heat-affected zone in the as-welded Grade 91 steel. New austenitic grains, preferentially formed along the original prior austenite grain boundaries, are characterized to contain finer M23C6 carbides and higher strain levels than the original prior austenite grains. Kurdjumov-Sachs Group 1 variant pairs, with a low misorientation of 7 deg within a martensitic block, are identified as the dominant variants in the new PAGs.

  20. Influence of Steel Grade on Surface Cooling Rates and Heat Flux during Quenching

    NASA Astrophysics Data System (ADS)

    Prasanna Kumar, T. S.

    2013-07-01

    Immersion quenching is one of the most widely used processes for achieving martensitic and bainitic steels. The efficiency and quality of quenching are generally tested using standard quench probes for obtaining the cooling curves. A host of parameters like quenchant type, steel grade, bath agitation, section thickness, etc., affect the cooling curves. Cooling curve analyses covered under ASTM standards cannot be used to assess the performance of a quenchant for different grades of steel, as they use a common material for the probe. This article reports the development of equipment, which, in conjunction with mathematical models, can be used for obtaining cooling curves for a specific steel/quenchant combination. The mathematical models couple nonlinear transient inverse heat transfer with phase transformation, resulting in cooling curves specific to the steel grade-quenchant combination. The austenite decomposition models were based on an approach consistent with both the TTT diagram of the steel and Fe-C equilibrium phase diagrams. The TTT diagrams for the specific chemistry of the specimens and the thermophysical properties of the individual phases as functions of temperature were obtained using JMatPro software. Experiments were conducted in the laboratory for computing surface temperature and heat flux at the mid-section of a 25-mm diameter by 100-mm-long cylindrical specimen of two types of steels in two different quenchants. A low alloy steel (EN19) and a plain carbon steel (C45) were used for bringing out the influence of austenite transformation on surface cooling rates and heat flux. Two types of industrial quenchants (i) a mineral oil, and (ii) an aqueous solution of polymer were used. The results showed that the cooling curves, cooling rate curves, and the surface heat flux depended on the steel grade with the quenchant remaining the same.

  1. Thermalhydraulic aspects of decay heat removal by natural circulation in fast reactor systems

    SciTech Connect

    Roy, C.M.; Hetsroni, G.; Banerjee, S.

    1990-01-01

    Natural convection in enclosures have been studied numerically to provide insight into the scaling laws existing for removal of decay heat in Liquid Metal Fast Reactors (LMFR). Specifically, 3-D simulations have been carried out for natural circulation in a cylinder with small aspect ratio (of the order of 0.5). These results have been compared to the results of an experiment conducted by UCSB, in collaboration with GE, to provide benchmark data for code validation. Parametric studies have been conducted to establish the validity of a 3-D Finite difference code that uses body-fitted grids for simulations of complex geometries. Further, numerical simulations have been carried out to demonstrate the importance of 3-D computer codes as tools in the design and scale-up of prototype LMFRs. It has been shown that the geometry of the passive safety systems is key to safe operation of LMFRs under shutdown conditions. The key phenomena that occur in such situations have bee studied and the available experimental studies have been identified. The future direction for modeling of natural convection recirculating flows in confined enclosures has been proposed. 31 refs.

  2. Thermalhydraulic aspects of decay heat removal by natural circulation in fast reactor systems. Final report

    SciTech Connect

    Roy, C.M.; Hetsroni, G.; Banerjee, S.

    1990-12-31

    Natural convection in enclosures have been studied numerically to provide insight into the scaling laws existing for removal of decay heat in Liquid Metal Fast Reactors (LMFR). Specifically, 3-D simulations have been carried out for natural circulation in a cylinder with small aspect ratio (of the order of 0.5). These results have been compared to the results of an experiment conducted by UCSB, in collaboration with GE, to provide benchmark data for code validation. Parametric studies have been conducted to establish the validity of a 3-D Finite difference code that uses body-fitted grids for simulations of complex geometries. Further, numerical simulations have been carried out to demonstrate the importance of 3-D computer codes as tools in the design and scale-up of prototype LMFRs. It has been shown that the geometry of the passive safety systems is key to safe operation of LMFRs under shutdown conditions. The key phenomena that occur in such situations have bee studied and the available experimental studies have been identified. The future direction for modeling of natural convection recirculating flows in confined enclosures has been proposed. 31 refs.

  3. Development of a water boil-off spent-fuel calorimeter system. [To measure decay heat generation rate

    SciTech Connect

    Creer, J.M.; Shupe, J.W. Jr.

    1981-05-01

    A calorimeter system was developed to measure decay heat generation rates of unmodified spent fuel assemblies from commercial nuclear reactors. The system was designed, fabricated, and successfully tested using the following specifications: capacity of one BWR or PWR spent fuel assembly; decay heat generation range 0.1 to 2.5 kW; measurement time of < 12 h; and an accuracy of +-10% or better. The system was acceptance tested using a dc reference heater to simulate spent fuel assembly heat generation rates. Results of these tests indicated that the system could be used to measure heat generation rates between 0.5 and 2.5 kW within +- 5%. Measurements of heat generation rates of approx. 0.1 kW were obtained within +- 15%. The calorimeter system has the potential to permit measurements of heat generation rates of spent fuel assemblies and other devices in the 12- to 14-kW range. Results of calorimetry of a Turkey Point spent fuel assembly indicated that the assembly was generating approx. 1.55 kW.

  4. Axisymmetric flow and heat transfer to modified second grade fluid over a radially stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Rahman, Masood ur; Manzur, Mehwish

    In the present work, an analysis is made to the two-dimensional axisymmetric flow and heat transfer of a modified second grade fluid over an isothermal non-linear radially stretching sheet. The momentum and energy equations are modelled and the boundary layer equations are derived. The governing equations for velocity and temperature are turned down into a system of ordinary differential equations by invoking appropriate transformations which are then solved numerically via fourth and fifth order Runge-Kutta Fehlberg method. Moreover, the influence of the pertinent parameters namely the generalized second grade parameter, stretching parameter, the power-law index and the generalized Prandtl number is graphically portrayed. It is inferred that the generalized second grade parameter uplifted the momentum boundary layer while lessened the thermal boundary layer. Furthermore, the impact of stretching parameter is more pronounced for the second grade fluid (m = 0) in contrast with the power-law fluid (k = 0). For some special cases, comparisons are made with previously reported results and an excellent agreement is established.

  5. Contrast Therapy and Heat Therapy in Subacute Stage of Grade I and II Lateral Ankle Sprains.

    PubMed

    Weerasekara, R M I M; Tennakoon, S U B; Suraweera, H J

    2016-08-01

    Objective This study was conducted to determine the most effective thermal modality; heat or contrast therapy-in reducing pain, reducing swelling, and increasing range of movement (ROM) of the grade I and II lateral ankle sprain in the prechronic stage of the subacute phase. Design Randomized control trail. Methods One hundred and fifteen participants of both genders who were diagnosed as having grade I or II lateral ankle sprain were randomly assigned to the study on the fifth day of injury. Pain, volume, and ROM were recorded before and after treatment continuously for 3 days. Results Effects were evaluated as "Immediately after application" and "3 days after continuous application." Immediately after application, there was no difference between the 2 modalities on ankle ROM; heat reduced pain over contrast therapy, and both modalities increased swelling. When considering the effects after continuous application for 3 days, no difference was found between the 2 modalities on ROM and the reduction of pain. Contrast therapy reduced swelling while heat caused increased swelling even after 3 days. Conclusion The use of different thermal modalities during the transition from the acute to chronic phase of injury can be suggested as effective treatment options according to the objectives of injury management: pain reduction, improve ROM, and swelling management. Therapeutic, Level II: Randomized clinical trial. © 2016 The Author(s).

  6. Structure formation in grade 20 steel during equal-channel angular pressing and subsequent heating

    NASA Astrophysics Data System (ADS)

    Dobatkin, S. V.; Odesskii, P. D.; Raab, G. I.; Tyutin, M. R.; Rybalchenko, O. V.

    2016-11-01

    The structure formation and the mechanical properties of quenched and tempered grade 20 steel after equal-channel angular pressing (ECAP) at various true strains and 400°C are studied. Electron microscopy analysis after ECAP shows a partially submicrocrystalline and partially subgrain structure with a structural element size of 340-375 nm. The structural element size depends on the region in which the elements are formed (polyhedral ferrite, needle-shaped ferrite, tempered martensite, and pearlite). Heating of the steel after ECAP at 400 and 450°C increases the fraction of high-angle boundaries and the structural ferrite element size to 360-450 nm. The fragmentation and spheroidization of cementite lamellae of pearlite and subgrain coalescence in the regions of needle-shaped ferrite and tempered martensite take place at a high ECAP true strain and heating temperature. Structural refinement ensures considerable strengthening, namely, UTS 742-871 MPa at EL 11-15.3%. The strength slightly increases, whereas the plasticity slightly decreases when the true strain increases during ECAP. After ECAP and heating, the strength and plastic properties of the grade 20 steel remain almost the same.

  7. Flow and heat transfer to modified second grade fluid over a non-linear stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Masood; Rahman, Masood ur

    2015-08-01

    The objective of the present work is to analyze the two-dimensional boundary layer flow and heat transfer of a modified second grade fluid over a non-linear stretching sheet of constant surface temperature. The modelled momentum and energy equations are deduced to a system of ordinary differential equations by employing suitable transformations in boundary layer region and integrated numerically by fourth and fifth order Runge-Kutta Fehlberg method. Additionally, the analytic solutions of the governing problem are presented for some special cases. The secured results make it clear that the power-law index reduces both the momentum and thermal boundary layers. While the incremented values of the generalized second grade parameter leads to an increase in the momentum boundary layer and a decrease in the thermal boundary layer. To see the validity of the present results we have made a comparison with the previously published results as a special case with an outstanding compatibility.

  8. Low loss graded index polymer optical fiber with high stability under damp heat conditions.

    PubMed

    Makino, Kenji; Kado, Takahiro; Inoue, Azusa; Koike, Yasuhiro

    2012-06-04

    A low loss graded index polymer optical fiber (GI POF) with a wide wavelength range around 650 nm is fabricated using a copolymer of methyl methacrylate and pentafluorophenyl methacrylate as a polymer matrix. Dopant hydrophobicity similar to that of the polymer matrix is an important factor in maintaining the low loss of the GI POF. No loss increment is observed under damp heat conditions of 75°C and 85% relative humidity when using 9-bromo phenanthrene as the high refractive index dopant required to form the GI profile. The copolymer based GI POF can provide an inexpensive premise network with long-term stability.

  9. Thermomagnetic conversion of low-grade waste heat into electrical power

    NASA Astrophysics Data System (ADS)

    El Achkar, G.; Dianoux, A.; Kheiri, A.; Maillet, D.; Mazet, T.; Colasson, S.; Feidt, M.; Rado, C.; Servant, F.; Paul-Boncour, V.

    2016-09-01

    A theoretical study relying on the thermal modelling of a Curie wheel, used for the conversion of low-grade waste heat into electrical power, is presented in this paper. It allows understanding the thermal behaviour of a Curie wheel operating in steady state in order to optimise its design. To this end, a stationary one-dimensional analytical thermal model, based on a Lagrangian approach, was developed. It allows determining the local distribution over time of the temperature in the magnetocaloric material exposed to a periodic sinusoidal heat source. Thanks to this model, the effects of different parameters (nature of the magnetocaloric material, nature and temperature of the fluid) were highlighted and studied.

  10. Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν¯e flux calculation

    NASA Astrophysics Data System (ADS)

    Fijałkowska, A.; Karny, M.; Rykaczewski, K. P.; Rasco, B. C.; Grzywacz, R.; Gross, C. J.; Wolińska-Cichocka, M.; Goetz, K. C.; Stracener, D. W.; Bielewski, W.; Goans, R.; Hamilton, J. H.; Johnson, J. W.; Jost, C.; Madurga, M.; Miernik, K.; Miller, D.; Padgett, S. W.; Paulauskas, S. V.; Ramayya, A. V.; Zganjar, E. F.

    2017-08-01

    We report the results of a β -decay study of fission products Br 86 , Kr 89 , Rb 89 , Rb 90 g s , Rbm90 , Kr 90 , Rb 92 , Xe 139 , and Cs 142 performed with the Modular Total Absorption Spectrometer (MTAS) and on-line mass-separated ion beams. These radioactivities were assessed by the Nuclear Energy Agency as having high priority for decay heat analysis during a nuclear fuel cycle. We observe a substantial increase in β feeding to high excited states in all daughter isotopes in comparison to earlier data. This increases the average γ -ray energy emitted by the decay of fission fragments during the first 10 000 s after fission of U 235 and Pu 239 by approximately 2% and 1%, respectively, improving agreement between results of calculations and direct observations. New MTAS results reduce the reference reactor ν¯e flux used to analyze reactor ν¯e interaction with detector matter. The reduction determined by the ab initio method for the four nuclear fuel components, U 235 , U 238 , Pu 239 , and Pu 241 , amounts to 0.976, 0.986, 0.983, and 0.984, respectively.

  11. The Study of Peristaltic Motion of Third Grade Fluid under the Effects of Hall Current and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Vafai, Kambiz; Khan, Ambreen Afsar; Sajjad, Saba; Ellahi, Rahmat

    2015-04-01

    This article is concerned with the peristaltic pumping of an incompressible, electrically conducting third grade fluid in a uniform channel. The Hall effect under the influence of wall properties and heat transfer is taken into account. Mathematical modelling is based upon continuity, momentum, and energy equations. Closed form solutions for velocity, temperature, concentration, and heat transfer coefficient are obtained. Effects of pertinent parameters, such as third grade parameter Γ, Hall parameter M, amplitude ratio ɛ, Brickman number Br, Soret number Sc, wall tension E1 and elasticity parameters E2 and E3 on the velocity u, temperature θ, concentration φ, and heat transfer coefficient Z, are discussed through graphs.

  12. Decay heat of sodium fast reactor: Comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package

    SciTech Connect

    Benoit, J. C.; Bourdot, P.; Eschbach, R.; Boucher, L.; Pascal, V.; Fontaine, B.; Martin, L.; Serot, O.

    2012-07-01

    A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)

  13. Advanced Energy and Water Recovery Technology from Low Grade Waste Heat

    SciTech Connect

    Dexin Wang

    2011-12-19

    The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performance of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer

  14. In-situ Phase transformation study in fine grained heat affected zone of Grade 91 steels

    SciTech Connect

    Babu, Sudarsanam Suresh; Yamamoto, Yukinori; Santella, Michael L; Yu, Xinghua; Komizo, Prof. Y; Terasaki, Prof. H

    2014-01-01

    Creep strength-enhanced ferritic (CSEF) steels such as the 9 Cr steel [ASTM A387 Grade 91] are widely used as tubing and piping in the new generation of fossil fired power plants. Microstructures in the fine-grained heat affected zone (FGHAZ) may significantly reduce creep strength leading Type IV failures. Current research suggest that reducing pre-weld tempering temperature from 760 C (HTT) to 650 C (LTT) has the potential to double the creep life of these welds. To understand this improvement, time-resolved X-ray diffraction (TRXRD) measurement with synchrotron radiation was used to characterize the microstructure evolution during fine grained heat-affected zone (HAZ) thermal cycling of grade 91 steel. The measurements showed both M23C6 (M=Fe, Cr) and MX (M=Nb, V; X=C,N) are present in the sample after the HTT condition. Near equilibrium fraction of M23C6 was measured in high temperature tempering condition (HTT, 760 C). However, the amount of M23C6 in LTT condition was very low since the diffraction peaks are close to the background. During simulated FGHAZ thermal cycling, the M23C6 partially dissolved in HTT sample. Interestingly, MX did not dissolve in both LTT and HTT samples. Hypothesis for correlation of M23C6 carbide distribution and pre-mature creep failure in FGHAZ will be made.

  15. Experimental observation of microwave absorption and electron heating due to the two plasmon decay instability and resonance absorption

    SciTech Connect

    Rasmussen, D.A.

    1981-01-01

    The interaction of intense microwaves with an inhomogeneous plasma is studied in two experimental devices. In the first device an investigation was made of microwave absorption and electron heating due to the parametric decay of microwaves into electron plasma waves (Two Plasmon Decay instability, TPDI), modeling a process which can occur near the quarter critical surface in laser driven pellets. P-polarized microwave (f = 1.2 GHz, P/sub 0/ less than or equal to 12 kW) are applied to an essentially collisionless, inhomogeneous plasma, in an oversized waveguide, in the U.C. Davis Prometheus III device. The initial density scale length near the quarter critical surface is quite long (L/lambda/sub De/ approx. = 3000 or k/sub 0/L approx. = 15). The observed threshold power for the TPDI is quite low (P/sub T/approx. = 0.1 kW or v/sub os//v/sub e/ approx. = 0.1). Near the threshold the decay waves only occur near the quarter critical surface. As the incident power is increased above threshold, the decay waves spread to lower densities, and for P/sub 0/ greater than or equal to lkW, (v/sub os//v/sub e/ greater than or equal to 0.3) suprathermal electron heating is strong for high powers (T/sub H/ less than or equal to 12 T/sub e/ for P/sub 0/ less than or equal to 8 kW or v/sub os//v/sub e/ less than or equal to 0.9).

  16. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    SciTech Connect

    Benafan, O. E-mail: raj@ucf.edu; Vaidyanathan, R. E-mail: raj@ucf.edu; Chen, S.-Y.; Kar, A.

    2015-12-15

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell’s equations and heat conduction.

  17. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Chen, S.-Y.; Kar, A.; Vaidyanathan, R.

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  18. Laser surface modification of medical grade alloys for reduced heating in a magnetic resonance imaging environment.

    PubMed

    Benafan, O; Chen, S-Y; Kar, A; Vaidyanathan, R

    2015-12-01

    Nanoscale surface modification of medical grade metallic alloys was conducted using a neodymium-doped yttrium aluminum garnet laser-based dopant diffusion technique. The objective of this approach was to minimize the induction heating by reducing the absorbed radio frequency field. Such an approach is advantageous in that the dopant is diffused into the alloy and is not susceptible to detachment or spallation as would an externally applied coating, and is expected to not deteriorate the mechanical and electrical properties of the base alloy or device. Experiments were conducted using a controlled environment laser system with the ability to control laser properties (i.e., laser power, spot size, and irradiation time) and dopant characteristics (i.e., temperature, concentration, and pressure). The reflective and transmissive properties of both the doped and untreated samples were measured in a radio frequency (63.86 MHz) magnetic field using a system comprising a high power signal generator, a localized magnetic field source and sensor, and a signal analyzer. The results indicate an increase in the reflectivity of the laser-treated samples compared to untreated samples. The effect of reflectivity on the heating of the alloys is investigated through a mathematical model incorporating Maxwell's equations and heat conduction.

  19. Evaluation of heat generation by radioactive decay of sedimentary rocks in Eastern Desert and Nile Valley, Egypt.

    PubMed

    Abbady, Adel G E

    2010-10-01

    Radioactive heat-production (RHP) data of sedimentary outcrops in Gebel Anz (Eastern Desert) and Gebel Sarai (Nile Valley) are presented. A total of 103 rock samples were investigated, covering all major rock types of the areas. RHP were derived from uranium, thorium and potassium concentrations measured from gamma-radiation originating from the decay of (214)Bi ((238)U series), (208)Tl ((232)Th series) and the primary decay of (40)K, obtained with a NaI (Tl) detector. The heat-production rate of Gebel Anz ranges from 0.94 (Nubai Sandstone ) to 5.22 microW m(-3) (Duwi Formation). In Gebel Sarai it varies from 0.82 (Esna Shale) to 7 microW m(-3) (Duwi Formation). The contribution due to U is about 62%, from Th is 34% and 4% from K in Gebel Anz. The corresponding values in Gebel Sarai are 69.6%, 26.9% and 3.5%, respectively. These data can be used to discuss the effects of the lateral variation of the RHP rate on the heat flux and the temperature fields in the upper crust. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Effect of Joule Heating and Thermal Radiation in Flow of Third Grade Fluid over Radiative Surface

    PubMed Central

    Hayat, Tasawar; Shafiq, Anum; Alsaedi, Ahmed

    2014-01-01

    This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number. PMID:24454694

  1. Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface.

    PubMed

    Hayat, Tasawar; Shafiq, Anum; Alsaedi, Ahmed

    2014-01-01

    This article addresses the boundary layer flow and heat transfer in third grade fluid over an unsteady permeable stretching sheet. The transverse magnetic and electric fields in the momentum equations are considered. Thermal boundary layer equation includes both viscous and Ohmic dissipations. The related nonlinear partial differential system is reduced first into ordinary differential system and then solved for the series solutions. The dependence of velocity and temperature profiles on the various parameters are shown and discussed by sketching graphs. Expressions of skin friction coefficient and local Nusselt number are calculated and analyzed. Numerical values of skin friction coefficient and Nusselt number are tabulated and examined. It is observed that both velocity and temperature increases in presence of electric field. Further the temperature is increased due to the radiation parameter. Thermal boundary layer thickness increases by increasing Eckert number.

  2. COMBINED ACTIVE/PASSIVE DECAY HEAT REMOVAL APPROACH FOR THE 24 MWt GAS-COOLED FAST REACTOR

    SciTech Connect

    CHENG,L.Y.; LUDEWIG, H.

    2007-06-01

    Decay heat removal at depressurized shutdown conditions has been regarded as one of the key areas where significant improvement in passive response was targeted for the GEN IV GFR over the GCFR designs of thirty years ago. It has been recognized that the poor heat transfer characteristics of gas coolant at lower pressures needed to be accommodated in the GEN IV design. The design envelope has therefore been extended to include a station blackout sequence simultaneous with a small break/leak. After an exploratory phase of scoping analysis in this project, together with CEA of France, it was decided that natural convection would be selected as the passive decay heat removal approach of preference. Furthermore, a double vessel/containment option, similar to the double vessel/guard vessel approach of the SFR, was selected as the means of design implementation to reduce the PRA risks of the depressurization accident. However additional calculations in conjunction with CEA showed that there was an economic penalty in terms of decay heat removal system heat exchanger size, elevation heights for thermal centers, and most of all in guard containment back pressure for complete reliance on natural convection only. The back pressure ranges complicated the design requirements for the guard containment. Recognizing that the definition of a loss-of-coolant-accident in the GFR is a misnomer, since gas coolant will always be present, and the availability of some driven blower would reduce fuel temperature transients significantly; it was decided instead to aim for a hybrid active/passive combination approach to the selected BDBA. Complete natural convection only would still be relied on for decay heat removal but only after the first twenty four hours after the initiation of the accident. During the first twenty four hour period an actively powered blower would be relied on to provide the emergency decay power removal. However the power requirements of the active blower

  3. A dynamic model for the optimization of oscillatory low grade heat engines

    SciTech Connect

    Markides, Christos N.; Smith, Thomas C. B.

    2015-01-22

    The efficiency of a thermodynamic system is a key quantity on which its usefulness and wider application relies. This is especially true for a device that operates with marginal energy sources and close to ambient temperatures. Various definitions of efficiency are available, each of which reveals a certain performance characteristic of a device. Of these, some consider only the thermodynamic cycle undergone by the working fluid, whereas others contain additional information, including relevant internal components of the device that are not part of the thermodynamic cycle. Yet others attempt to factor out the conditions of the surroundings with which the device is interfacing thermally during operation. In this paper we present a simple approach for the modeling of complex oscillatory thermal-fluid systems capable of converting low grade heat into useful work. We apply the approach to the NIFTE, a novel low temperature difference heat utilization technology currently under development. We use the results from the model to calculate various efficiencies and comment on the usefulness of the different definitions in revealing performance characteristics. We show that the approach can be applied to make design optimization decisions, and suggest features for optimal efficiency of the NIFTE.

  4. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    SciTech Connect

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; Potirniche, Gabriel; Glazoff, Michael

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with the differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.

  5. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery

    NASA Astrophysics Data System (ADS)

    Rahimi, Mohammad; D'Angelo, Adriana; Gorski, Christopher A.; Scialdone, Onofrio; Logan, Bruce E.

    2017-05-01

    Thermally regenerative ammonia-based batteries (TRABs) have been developed to harvest low-grade waste heat as electricity. To improve the power production and anodic coulombic efficiency, the use of ethylenediamine as an alternative ligand to ammonia was explored here. The power density of the ethylenediamine-based battery (TRENB) was 85 ± 3 W m-2-electrode area with 2 M ethylenediamine, and 119 ± 4 W m-2 with 3 M ethylenediamine. This power density was 68% higher than that of TRAB. The energy density was 478 Wh m-3-anolyte, which was ∼50% higher than that produced by TRAB. The anodic coulombic efficiency of the TRENB was 77 ± 2%, which was more than twice that obtained using ammonia in a TRAB (35%). The higher anodic efficiency reduced the difference between the anode dissolution and cathode deposition rates, resulting in a process more suitable for closed loop operation. The thermal-electric efficiency based on ethylenediamine separation using waste heat was estimated to be 0.52%, which was lower than that of TRAB (0.86%), mainly due to the more complex separation process. However, this energy recovery could likely be improved through optimization of the ethylenediamine separation process.

  6. Effect of heat treatment on microstructure and hardness of Grade 91 steel

    DOE PAGES

    Shrestha, Triratna; Alsagabi, Sultan; Charit, Indrajit; ...

    2015-01-21

    The modified 9Cr-1Mo steel (Grade 91) is a material of choice in fossil-fuel-fired power plants with increased efficiency, service life, and reduction in emission of greenhouse gases. It is also considered a prospective material for the Next Generation Nuclear Power Plant for application in reactor pressure vessels at temperatures up to 650°C. In this paper, heat treatment of the modified 9Cr-1Mo steel was studied by normalizing and tempering the steel at various temperatures and times, with the ultimate goal of improving its creep resistance and optimizing material hardness. The microstructural evolution of the heat treated steels was correlated with themore » differential scanning calorimetric results. Optical microscopy, scanning and transmission electron microscopy in conjunction with microhardness profiles and calorimetric plots were used to understand the evolution of microstructure including precipitate structures in modified 9Cr-1Mo steel and relate it to the mechanical behavior of the steel. Thermo-CalcTM calculations were used to support experimental work and provide guidance in terms of the precipitate stability and microstructural evolution. Furthermore, the carbon isopleth and temperature dependencies of the volume fraction of different precipitates were constructed. The predicted and experimentally observed results were found to be in good agreement.« less

  7. Thermal Energy Consumption in the Heat-Technology Production of Solid Composite Fuel From Low-Grade Raw Materials

    NASA Astrophysics Data System (ADS)

    Tabakaev, Roman; Astafev, Alexander; Kazakov, Alexander; Zavorin, Alexander

    2016-02-01

    An evaluation is made of the thermal energy consumed in the heat-technology production of solid composite fuel from low-grade organic raw materials. It is shown that the heat of decomposition of the organic mass and the combustion of the by-products of heat-technology may be sufficient to cover all the energy needs for processing peat, brown coal and wood chips. Producing solid composite fuel from sapropel requires external resources to compensate for part of the heat consumed. Calculations show that it is possible for the thermal processing of raw materials to proceed autothermally due to the heat of decomposition when the moisture content at the reactor inlet is limited: for peat it should be no more than 35%, 54% for brown coal, and 37% for wood chips. The low heat of decomposition of the sapropel organic mass means that its thermal processing cannot proceed autothermally.

  8. Control of reactor coolant flow path during reactor decay heat removal

    DOEpatents

    Hunsbedt, Anstein N.

    1988-01-01

    An improved reactor vessel auxiliary cooling system for a sodium cooled nuclear reactor is disclosed. The sodium cooled nuclear reactor is of the type having a reactor vessel liner separating the reactor hot pool on the upstream side of an intermediate heat exchanger and the reactor cold pool on the downstream side of the intermediate heat exchanger. The improvement includes a flow path across the reactor vessel liner flow gap which dissipates core heat across the reactor vessel and containment vessel responsive to a casualty including the loss of normal heat removal paths and associated shutdown of the main coolant liquid sodium pumps. In normal operation, the reactor vessel cold pool is inlet to the suction side of coolant liquid sodium pumps, these pumps being of the electromagnetic variety. The pumps discharge through the core into the reactor hot pool and then through an intermediate heat exchanger where the heat generated in the reactor core is discharged. Upon outlet from the heat exchanger, the sodium is returned to the reactor cold pool. The improvement includes placing a jet pump across the reactor vessel liner flow gap, pumping a small flow of liquid sodium from the lower pressure cold pool into the hot pool. The jet pump has a small high pressure driving stream diverted from the high pressure side of the reactor pumps. During normal operation, the jet pumps supplement the normal reactor pressure differential from the lower pressure cold pool to the hot pool. Upon the occurrence of a casualty involving loss of coolant pump pressure, and immediate cooling circuit is established by the back flow of sodium through the jet pumps from the reactor vessel hot pool to the reactor vessel cold pool. The cooling circuit includes flow into the reactor vessel liner flow gap immediate the reactor vessel wall and containment vessel where optimum and immediate discharge of residual reactor heat occurs.

  9. [Urban heat island intensity and its grading in Liaoning Province of Northeast China].

    PubMed

    Li, Li-Guang; Wang, Hong-Bo; Jia, Qing-Yu; Lü, Guo-Hong; Wang, Xiao-Ying; Zhang, Yu-Shu; Ai, Jing-Feng

    2012-05-01

    According to the recorded air temperature data and their continuity of each weather station, the location of each weather station, the numbers of and the distances among the weather stations, and the records on the weather stations migration, several weather stations in Liaoning Province were selected as the urban and rural representative stations to study the characteristics of urban heat island (UHI) intensity in the province. Based on the annual and monthly air temperature data of the representative stations, the ranges and amplitudes of the UHI intensity were analyzed, and the grades of the UHI intensity were classified. The Tieling station, Dalian station, Anshan station, Chaoyang station, Dandong station, and Jinzhou station and the 18 stations including Tai' an station were selected as the representative urban and rural weather stations, respectively. In 1980-2009, the changes of the annual UHI intensity in the 6 representative cities differed. The annual UHI intensity in Tieling was in a decreasing trend, while that in the other five cities was in an increasing trend. The UHI intensity was strong in Tieling but weak in Dalian. The changes of the monthly UHI intensity in the 6 representative cities also differed. The distribution of the monthly UHI intensity in Dandong, Jinzhou and Tieling took a "U" shape, with the maximum and minimum appeared in January and in May-August, respectively, indicating that the monthly UHI intensity was strong in winter and weak in summer. The ranges of the annual and monthly UHI intensity in the 6 cities were 0.57-2.15 degrees C and -0.70-4.60 degrees C, and the ranges of 0.5-2.0 degrees C accounted for 97.8% and 72.3%, respectively. The UHI intensity in the province could be classified into 4 grades, i. e., weak, strong, stronger and strongest.

  10. Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat.

    PubMed

    Straub, Anthony P; Elimelech, Menachem

    2017-10-12

    Low-grade heat energy from sources below 100 C is available in massive quantities around the world, but cannot be converted to electricity effectively using existing technologies due to variability in the heat output and the small temperature difference between the source and environment. The recently developed thermo-osmotic energy conversion (TOEC) process has the potential to harvest energy from low-grade heat sources by using a temperature difference to create a pressurized liquid flux across a membrane, which can be converted to mechanical work via a turbine. In this study, we perform the first analysis of energy efficiency and the expected performance of the TOEC technology, focusing on systems utilizing hydrophobic porous vapor-gap membranes and water as a working fluid. We begin by developing a framework to analyze realistic mass and heat transport in the process, probing the impact of various membrane parameters and system operating conditions. Our analysis reveals that an optimized system can achieve heat-to-electricity energy conversion efficiencies up to 4.1% (34% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and an operating pressure of 5 MPa (50 bar). Lower energy efficiencies, however, will occur in systems operating with high power densities (>5 W m(-2)) and with finite-sized heat exchangers. We identify that the most important membrane properties for achieving high performance are an asymmetric pore structure, high pressure resistance, a high porosity, and a thickness of 30 to 100 µm. We also quantify the benefits in performance from utilizing deaerated water streams, strong hydrodynamic mixing in the membrane module, and high heat exchanger efficiencies. Overall, our study demonstrates the promise of full-scale TOEC systems to extract energy from low-grade heat and identifies key factors for performance optimization moving forward.

  11. Evidence for heating of neutron stars by magnetic-field decay.

    PubMed

    Pons, José A; Link, Bennett; Miralles, Juan A; Geppert, Ulrich

    2007-02-16

    We show the existence of a strong trend between neutron star (NS) surface temperature and the dipolar component of the magnetic field extending through three orders of field magnitude, a range that includes magnetars, radio-quiet isolated neutron stars, and many ordinary radio pulsars. We suggest that this trend can be explained by the decay of currents in the crust over a time scale of approximately 10(6) yr. We estimate the minimum temperature that a NS with a given magnetic field can reach in this interpretation.

  12. Comparison of deterministic and stochastic approaches for isotopic concentration and decay heat uncertainty quantification on elementary fission pulse

    NASA Astrophysics Data System (ADS)

    Lahaye, S.; Huynh, T. D.; Tsilanizara, A.

    2016-03-01

    Uncertainty quantification of interest outputs in nuclear fuel cycle is an important issue for nuclear safety, from nuclear facilities to long term deposits. Most of those outputs are functions of the isotopic vector density which is estimated by fuel cycle codes, such as DARWIN/PEPIN2, MENDEL, ORIGEN or FISPACT. CEA code systems DARWIN/PEPIN2 and MENDEL propagate by two different methods the uncertainty from nuclear data inputs to isotopic concentrations and decay heat. This paper shows comparisons between those two codes on a Uranium-235 thermal fission pulse. Effects of nuclear data evaluation's choice (ENDF/B-VII.1, JEFF-3.1.1 and JENDL-2011) is inspected in this paper. All results show good agreement between both codes and methods, ensuring the reliability of both approaches for a given evaluation.

  13. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  14. Heat transfer analysis of fractional second-grade fluid subject to Newtonian heating with Caputo and Caputo-Fabrizio fractional derivatives: A comparison

    NASA Astrophysics Data System (ADS)

    Asjad, Muhammad Imran; Shah, Nehad Ali; Aleem, Maryam; Khan, Ilyas

    2017-08-01

    The present study is a comparative analysis of unsteady flows of a second-grade fluid with Newtonian heating and time-fractional derivatives, namely, the Caputo fractional derivative (singular kernel) and the Caputo-Fabrizio fractional derivative (non-singular kernel). A physical model for second-grade fluids is developed with fractional derivatives. The expressions for temperature and velocity fields in dimensionless form as well as rates of heat transfer are determined by means of the Laplace transform technique. Solutions for ordinary cases corresponding to integer order derivatives are also obtained. Numerical computations for a comparison between the solutions of the problem with the Caputo time-fractional derivative, problem with Caputo-Fabrizio time-fractional derivative and of the ordinary fluid problem were made. The influence of some flow parameters and fractional parameter α on temperature field as well as velocity field was presented graphically and in tabular forms.

  15. Modeling of heat transfer and fluid flow for decaying swirl flow in a circular pipe

    SciTech Connect

    Bali, T.

    1998-04-01

    The economic benefits of energy and material savings have prompted and received greatest attention in order to increase convective heat transfer rates in the process equipment. In the present study, a propeller type swirl generator was developed, and its effects on heat transfer and fluid flow were investigated numerically and experimentally for air flow in a pipe. In the numerical study, for axisymmetrically, incompressible turbulent swirl flows, the Navier-Stokes equations were solved using the {kappa}-{var_epsilon} turbulent model. So that a computer program in Fortran was constructed using the SIMPLEC Algorithm. In experimental work, axial and tangential velocity distributions behind the swirl generator were measured by using hot-wire anemometry. Experimental and numerical axial and tangential velocity distributions along the pipe were compared, and good agreement was found. Axial velocity profile showed a decrement in the central portion of the pipe and an increased axial velocity was seen in near the wall. Tangential velocity profiles had a maximum value and its location moved in radially with distance. The effects of swirl flow on the heat transfer and pressure drop were also investigated experimentally.

  16. Study on natural convection capability of liquid gallium for passive decay heat removal system (PDHRS)

    SciTech Connect

    Kang, S.; Ha, K. S.; Lee, S. W.; Park, S. D.; Kim, S. M.; Seo, H.; Kim, J. H.; Bang, I. C.

    2012-07-01

    The safety issues of the SFRs are important due to the fact that it uses sodium as a nuclear coolant, reacting vigorously with water and air. For that reason, there are efforts to seek for alternative candidates of liquid metal coolants having excellent heat transfer property and to adopt improved safety features to the SFR concepts. This study considers gallium as alternative liquid metal coolant applicable to safety features in terms of chemical activity issue of the sodium and aims to experimentally investigate the natural convection capability of gallium as a feasibility study for the development of gallium-based passive safety features in SFRs. In this paper, the design and construction of the liquid gallium natural convection loop were carried out. The experimental results of heat transfer coefficient of liquid gallium resulting in heat removal {approx}2.53 kW were compared with existing correlations and they were much lower than the correlations. To comparison of the experimental data with computer code analysis, gallium property code was developed for employing MARS-LMR (Korea version of RELAP) based on liquid gallium as working fluid. (authors)

  17. Decay heat power of spent nuclear fuel of power reactors with high burnup at long-term storage

    NASA Astrophysics Data System (ADS)

    Ternovykh, Mikhail; Tikhomirov, Georgy; Saldikov, Ivan; Gerasimov, Alexander

    2017-09-01

    Decay heat power of actinides and fission products from spent nuclear fuel of power VVER-1000 type reactors at long-term storage is calculated. Two modes of storage are considered: mode in which single portion of actinides or fission products is loaded in storage facility, and mode in which actinides or fission products from spent fuel of one VVER reactor are added every year in storage facility during 30 years and then accumulated nuclides are stored without addition new nuclides. Two values of fuel burnup 40 and 70 MW·d/kg are considered for the mode of storage of single fuel unloading. For the mode of accumulation of spent fuel with subsequent storage, one value of burnup of 70 MW·d/kg is considered. Very long time of storage 105 years accepted in calculations allows to simulate final geological disposal of radioactive wastes. Heat power of fission products decreases quickly after 50-100 years of storage. The power of actinides decreases very slow. In passing from 40 to 70 MW·d/kg, power of actinides increases due to accumulation of higher fraction of 244Cm. These data are important in the back end of fuel cycle when improved cooling system of the storage facility will be required along with stronger radiation protection during storage, transportation and processing.

  18. Heating and melting of small icy satellites by the decay of Al-26

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina; Bar-Nun, Akiva

    1990-01-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26. The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass).

  19. Heating and melting of small icy satellites by the decay of Al-26

    NASA Technical Reports Server (NTRS)

    Prialnik, Dina; Bar-Nun, Akiva

    1990-01-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26. The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass).

  20. Heating and melting of small icy satellites by the decay of Al-26

    NASA Astrophysics Data System (ADS)

    Prialnik, Dina; Bar-Nun, Akiva

    1990-05-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26. The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass).

  1. Heating and melting of small icy satellites by the decay of Al-26

    SciTech Connect

    Prialnik, D.; Bar-Nun, A. )

    1990-05-01

    The effect of radiogenic heating due to Al-26 on the thermal evolution of small icy satellites is studied. The object is to find the extent of internal melting as a function of the satellite radius and of the initial Al-26 abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of about 10 to the 6th yr (comparable with the lifetime of Al-26). The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of K-40, Th-232, U-235, and U-238, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10 to the 9th yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. The main conclusion is that the initial Al-26 abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, about 7 x 10 to the -7th by mass). 34 refs.

  2. Generation of large scale field-aligned density irregularities in ionospheric heating experiments. [electromagnetic wave decay

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.

    1974-01-01

    Threshold and growth rate for stimulated Brillouin scattering are calculated for a uniform magnetoplasma. These are then compared with the threshold and growth rate of a new thermal instability in which the nonlinear Lorentz force felt by the electrons at the beat frequency of the two electromagnetic waves is replaced by a pressure force due to differential heating in the interference pattern of the pump wave and the generated electromagnetic wave. This thermal instability, which is still essentially stimulated Brillouin scattering, has a threshold which is especially low when the propagation vector of the beat wave is almost normal to the magnetic field. The threshold is then considerably lower than the threshold for normal stimulated Brillouin scattering and therefore this new instability is probably responsible for the generation of large scale field aligned irregularities and ionospheric spread F.

  3. Heating and melting of small icy satellites by the decay of 26Al.

    PubMed

    Prialnik, D; Bar-Nun, A

    1990-05-20

    We study the effect of radiogenic heating due to 26Al on the thermal evolution of small icy satellites. Our object is to find the extent of internal melting as a function of the satellite radius and of the initial 26Al abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of approximately 10(6) yr (comparable with the lifetime of 26Al). The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of 40K, 232Th, 235U, 238U, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10(9) yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. Our main conclusion is that the initial 26Al abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, approximately 7 x 10(-7) by mass). We find, for example, that an initial 26Al mass fraction of approximately 4 x 10(-8) is sufficient for melting almost completely icy spheres with radii of 800 km, typical of the larger icy planetary satellites. We also find that for any given 26Al abundance, there is a narrow range of radii below which only marginal melting occurs and above which most of the ice melts (and refreezes later). Since extensive melting may have important consequences, such as differentiation, gas release, and volcanic activity, the effect of 26Al should be included in future studies of satellite interiors.

  4. Heating and melting of small icy satellites by the decay of 26Al

    NASA Technical Reports Server (NTRS)

    Prialnik, D.; Bar-Nun, A.; Owen, T. (Principal Investigator)

    1990-01-01

    We study the effect of radiogenic heating due to 26Al on the thermal evolution of small icy satellites. Our object is to find the extent of internal melting as a function of the satellite radius and of the initial 26Al abundance. The implicit assumption, based on observations of young stars, is that planet and satellite accretion occurred on a time scale of approximately 10(6) yr (comparable with the lifetime of 26Al). The icy satellites are modeled as spheres of initially amorphous ice, with chondritic abundances of 40K, 232Th, 235U, 238U, corresponding to an ice/dust mass ratio of 1. Evolutionary calculations are carried out, spanning 4.5 x 10(9) yr, for different combinations of the two free parameters. Heat transfer by subsolidus convection is neglected for these small satellites. Our main conclusion is that the initial 26Al abundance capable of melting icy bodies of satellite size to a significant extent is more than 10 times lower than that prevailing in the interstellar medium (or that inferred from the Ca-Al rich inclusions of the Allende meteorite, approximately 7 x 10(-7) by mass). We find, for example, that an initial 26Al mass fraction of approximately 4 x 10(-8) is sufficient for melting almost completely icy spheres with radii of 800 km, typical of the larger icy planetary satellites. We also find that for any given 26Al abundance, there is a narrow range of radii below which only marginal melting occurs and above which most of the ice melts (and refreezes later). Since extensive melting may have important consequences, such as differentiation, gas release, and volcanic activity, the effect of 26Al should be included in future studies of satellite interiors.

  5. Mechanical and Metallurgical Properties of Grade X70 Steel Linepipe Produced by Non-conventional Heat Treatment

    NASA Astrophysics Data System (ADS)

    Natividad, C.; García, R.; López, V. H.; Falcón, L. A.; Salazar, M.

    A nonconventional heat treatment in API X70 steel samples was carried out by heating the steel up to 1050 °C and holding for 30 min at this temperature. Subsequently, the samples were cooled in water and air. There has been recently a growing demand for higher-grade linepipes that can help to reduce the total cost of long linepipes. The application of high-strength linepipes such as API X70 and X80 grades has been increasing in recent years. The use of high-strength linepipe steels improves the efficiency of transportation by enabling large volumes under high internal pressure. Increasing yield strength and therefore thinner wall thickness enable the industry to reduce the costs of all components through the limitation of string weight. In this work, an API X70 has been developed through nonconventional heat treatment to create the suitable microstructure (acicular ferrite) which provides good toughness and sour service properties due to the bainite obtained in the microstructure. To assess the effect of the heat treatment, mechanical properties were evaluated. These results were related with the microstructures and precipitate distribution in the steel.

  6. Hot-electron production and suprathermal heat flux scaling with laser intensity from the two-plasmon-decay instability

    SciTech Connect

    Vu, H. X.; DuBois, D. F.; Myatt, J. F.; Russell, D. A.

    2012-10-15

    The fully kinetic reduced-description particle-in-cell (RPIC) method has been applied to simulations of two-plasmon-decay (TPD) instability, driven by crossed laser beams, in an inhomogeneous plasma for parameters consistent with recent direct-drive experiments related to laser-driven inertial fusion. The nonlinear saturated state is characterized by very spiky electric fields, with Langmuir cavitation occurring preferentially inside density channels produced by the ponderomotive beating of the crossed laser beams and the primary TPD Langmuir waves (LWs). The heated electron distribution function is, in all cases, bi-Maxwellian, with instantaneous hot-electron temperatures in the range 60-100 keV. The net hot-electron energy flux out of the system is a small fraction ({approx}1% to 2%) of the input laser intensity in these simulations. Scalings of the hot-electron temperature and suprathermal heat flux as functions of the laser intensity are obtained numerically from RPIC simulations. These simulations lead to the preliminary conclusion that Langmuir cavitation and collapse provide dissipation by producing suprathermal electrons, which stabilize the system in saturation and drive the LW spectrum to the small dissipation scales at the Landau cutoff. The Langmuir turbulence originates at an electron density 0.241 Multiplication-Sign the laser's critical density, where the crossed laser beams excite a 'triad' mode-a common forward LW plus a pair of backward LWs. Remnants of this 'triad' evolve in k-space and dominate the time-averaged energy spectrum. At times exceeding 10 ps, the excited Langmuir turbulence spreads toward lower densities. Comparisons of RPIC simulations with the extended Zakharov model are presented in appropriate regimes, and the necessary requirements for the validity of a quasi-linear Zakharov model (where the spatially averaged electron-velocity distribution is evolved) are verified by RPIC simulation results.

  7. Complete ? -decay pattern for the high-priority decay-heat isotopes I137 and Xe137 determined using total absorption spectroscopy

    DOE PAGES

    Rasco, B. C.; Rykaczewski, K. P.; Fijalkowska, A.; ...

    2017-05-31

    We measured the complete -decay intensities of 137I and 137Xe with the Modular Total Absorption Spectrometer at Oak Ridge National Laboratory. We describe a novel technique for measuring the -delayed neutron energy spectrum, which also provides a measurement of the -neutron branching ratio, Pn.

  8. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  9. Techniques for Controlling Heat Transfer in the Mould-Strand Gap in Order to Use Fluoride Free Mould Powder for Continuous Casting of Peritectic Steel Grades

    NASA Astrophysics Data System (ADS)

    Hunt, Adam; Stewart, Bridget

    When casting peritectic steel grades, control of heat transfer from the steel shell is critical for minimising surface defects. Cuspidine (3CaO.2SiO2.CaF2) is the preferred crystal phase to control horizontal heat flux, due to its high crystallisation temperature and low incubation time. However, the presence of fluoride creates environmental and operational problems. Research into fluoride-free mould powder for peritectic steel grades has still to yield a fully effective substitute.

  10. Phase coherence of parametric-decay modes during high-harmonic fast-wave heating in the National Spherical Torus Experiment

    SciTech Connect

    Carlsson, J. A.; Wilson, J. R.; Hosea, J. C.; Greenough, N. L.; Perkins, R. J.

    2016-06-15

    Third-order spectral analysis, in particular, the auto bicoherence, was applied to probe signals from high-harmonic fast-wave heating experiments in the National Spherical Torus Experiment. Strong evidence was found for parametric decay of the 30 MHz radio-frequency (RF) pump wave, with a low-frequency daughter wave at 2.7 MHz, the local majority-ion cyclotron frequency. The primary decay modes have auto bicoherence values around 0.85, very close to the theoretical value of one, which corresponds to total phase coherence with the pump wave. The threshold RF pump power for onset of parametric decay was found to be between 200 kW and 400 kW.

  11. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1975-01-01

    A recently developed, potentially high-performance nonarterial wick has been extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 K and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: (1) maximum heat pipe performance as a function of fluid inventory, (2) maximum performance as a function of operating temperature, (3) maximum performance as a function of evaporator elevation, and (4) influence of slab wick orientation on performance. The experimental data was compared with theoretical predictions obtained with the computer program GRADE.

  12. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  13. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  14. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Cantaloups 1 Definitions § 51.490 Decay. Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays...

  15. Melting heat transfer in the MHD flow of a third-grade fluid over a variable-thickness surface

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Kiran, Asmara; Imtiaz, Maria; Alsaedi, Ahmed; Ayub, M.

    2017-06-01

    The present study addresses the magnetohydrodynamic (MHD) flow of a third-grade fluid over a nonlinear stretched surface with variable thickness. The heat transfer phenomenon is discussed through melting. The system of nonlinear ordinary differential equations is attained by considering proper transformations. Convergent series solutions of velocity and temperature are developed. Fluid flow, temperature, skin friction coefficient and Nusselt number are examined through graphs for different parameters. It is noted that velocity and temperature decrease with decreasing the wall thickness parameter. It is also revealed that the temperature distribution enhances for increasing values of the Prandtl number. Here the velocity field reduces for increasing values of the melting parameter.

  16. Simulation of Rocket-Grade Kerosene Flowing in an Electrically Heated Experimental Apparatus

    DTIC Science & Technology

    2015-07-01

    limitation on cooling performance is the thermal stability limit of the fuel, the temperature above which the fuel will undergo significant pyrolysis and...through an electrically heated tube with pressures and heat fluxes simulative of rocket engine coolant channels. The thermal stability limit is...used to control the supplied current so that a desired electric power level delivered to the tube is maintained. The back pressure offered by the

  17. Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten

    NASA Astrophysics Data System (ADS)

    Huber, A.; Arakcheev, A.; Sergienko, G.; Steudel, I.; Wirtz, M.; Burdakov, A. V.; Coenen, J. W.; Kreter, A.; Linke, J.; Mertens, Ph; Philipps, V.; Pintsuk, G.; Reinhart, M.; Samm, U.; Shoshin, A.; Schweer, B.; Unterberg, B.; Zlobinski, M.

    2014-04-01

    Cracking thresholds and crack patterns in tungsten targets after repetitive ITER-like edge localized mode (ELM) pulses have been studied in recent simulation experiments by laser irradiation. The tungsten specimens were tested under selected conditions to quantify the thermal shock response. A Nd:YAG laser capable of delivering up to 32 J of energy per pulse with a duration of 1 ms at the fundamental wavelength λ = 1064 nm has been used to irradiate ITER-grade tungsten samples with repetitive heat loads. The laser exposures were performed for targets at room temperature (RT) as well as for targets preheated to 400 °C to measure the effects of the ELM-like loading conditions on the formation and development of cracks. The magnitude of the heat loads was 0.19, 0.38, 0.76 and 0.90 MJ m-2 (below the melting threshold) with a pulse duration of 1 ms. The tungsten surface was analysed after 100 and 1000 laser pulses to investigate the influence of material modification by plasma exposures on the cracking threshold. The observed damage threshold for ITER-grade W lies between 0.38 and 0.76 GW m-2. Continued cycling up to 1000 pulses at RT results in enhanced erosion of crack edges and crack edge melting. At the base temperature of 400 °C, the formation of cracks is suppressed.

  18. Organic Fluids and Passive Cooling in a Supercritical Rankine Cycle for Power Generation from Low Grade Heat Sources

    NASA Astrophysics Data System (ADS)

    Vidhi, Rachana

    Low grade heat sources have a large amount of thermal energy content. Due to low temperature, the conventional power generation technologies result in lower efficiency and hence cannot be used. In order to efficiently generate power, alternate methods need to be used. In this study, a supercritical organic Rankine cycle was used for heat source temperatures varying from 125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures were selected as working fluid for this study while the cooling water temperature was changed from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of the thermodynamic cycle have been obtained as a function of heat source temperature. Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At areas where water cooling is not available and ambient air temperature is high, efficient power generation from low grade heat sources may be a challenge. Use of passive cooling systems coupled with the condenser was studied, so that lower sink temperatures could be obtained. Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger (EAHE) through which hot ambient air was passed. It was observed that the air temperature could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount of water lost was calculated and was found to be approximately 0.1% over 10 days. The different passive cooling systems were studied separately and their effects on the efficiency of the thermodynamic cycle were investigated. They were

  19. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  20. Effect of low-grade conductive heating on vascular compliance during in vitro balloon angioplasty.

    PubMed

    Mitchel, J F; Fram, D B; Aretz, T A; Gillam, L D; Woronick, C; Waters, D D; McKay, R G

    1994-07-01

    Radiofrequency-powered, thermal balloon angioplasty is a new technique that enhances luminal dilatation with less dissection than conventional angioplasty. The purpose of this study was to assess the effect of radiofrequency heating of balloon fluid on the pressure-volume mechanics of in vitro balloon angioplasty and to determine the histologic basis for thermal-induced compliance changes. In vitro, radiofrequency-powered, thermal balloon angioplasty was performed on 46 paired iliac segments freshly harvested from 23 nonatherosclerotic pigs. Balloon inflations at 60 degrees C were compared to room temperature inflations in paired arterial segments. Intraballoon pressure and volume were recorded during each inflation as volume infusion increased pressure over a 0 to 10 atm range. Pressure-volume compliance curves were plotted for all dilatations. Six segments were stained to assess the histologic abnormalities associated with thermal compliance changes. Radiofrequency heating acutely shifted the pressure-volume curves rightward in 20 of 23 iliac segments compared to nonheated controls. This increase in compliance persisted after heating and exceeded the maximum compliance shift caused by multiple nonheated inflations in a subset of arterial segments. Histologically, heated segments showed increased thinning and compression of the arterial wall, increased medial cell necrosis and altered elastic tissue fibers compared to nonheated specimens. In conclusion, radiofrequency heating of intraballoon fluid to 60 degrees C acutely increases vascular compliance during in vitro balloon angioplasty of nonatherosclerotic iliac arteries. The increased compliance persists after heating and can be greater than the compliance shifts induced by multiple conventional dilatations. Arterial wall thinning and irreversible alteration of elastic tissue fibers probably account for thermal compliance changes.

  1. Nano-Pervaporation Membrane with Heat Exchanger Generates Medical-Grade Water

    NASA Technical Reports Server (NTRS)

    Tsai, Chung-Yi; Alexander, Jerry

    2009-01-01

    A nanoporous membrane is used for the pervaporation process in which potable water is maintained, at atmospheric pressure, on the feed side of the membrane. The water enters the non-pervaporation (NPV) membrane device where it is separated into two streams -- retentate water and permeated water. The permeated pure water is removed by applying low vapor pressure on the permeate side to create water vapor before condensation. This permeated water vapor is subsequently condensed by coming in contact with the cool surface of a heat exchanger with heat being recovered through transfer to the feed water stream.

  2. Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms Related to Transport and Interim Storage of High-Burnup LWR Fuel

    SciTech Connect

    Gauld, I. C.; Ryman, J. C.

    2000-12-11

    This report investigates trends in the radiological decay properties and changes in relative nuclide importance associated with increasing enrichments and burnup for spent LWR fuel as they affect the areas of criticality safety, thermal analysis (decay heat), and shielding analysis of spent fuel transport and storage casks. To facilitate identifying the changes in the spent fuel compositions that most directly impact these application areas, the dominant nuclides in each area have been identified and ranked by importance. The importance is investigated as a function of increasing burnup to assist in identifying the key changes in spent fuel characteristics between conventional- and extended-burnup regimes. Studies involving both pressurized water-reactor (PWR) fuel assemblies and boiling-water-reactor (BWR) assemblies are included. This study is seen to be a necessary first step in identifying the high-burnup spent fuel characteristics that may adversely affect the accuracy of current computational methods and data, assess the potential impact on previous guidance on isotopic source terms and decay-heat values, and thus help identify areas for methods and data improvement. Finally, several recommendations on the direction of possible future code validation efforts for high-burnup spent fuel predictions are presented.

  3. Calorimetry of the PD-D{sub 2}O system: The drive towards high levels of low grade heat

    SciTech Connect

    Fleischmann, M.; Pons, S.

    1995-12-01

    We review some of the factors which prompted our search for anomalously fast nuclear reactions of D{sup +} electrochemically compressed into Pd (and Pd-alloy) host lattices using calorimetry as a principal means of investigation. The most surprising results are that the high levels of excess heat generated are riot accompanied by the expected levels of tritium and neutrons (low but significant levels of these {open_quotes}nuclear ashes{close_quotes} are detected). It has been found that excess heat generation is dependent on the protocol of the experiments mainly because of positive feedback. A rationale for such positive feedback is presented; this also leads to oscillation in the system properties which must be minimised so as to reach high levels of excess enthalpy generation at intermediate temperatures ({approximately}100{degrees}C i.e. low grade heat). We illustrate the progressive development by the achievement of specific rates of {approximately}20Wcm{sup -3}, {approximately}100Wcm{sup -3} and 4kWcm{sup -3} corresponding to those of gas cooled, pressurised water and fast breeder reactors. The highest levels require restrictions of the engineering of the systems which we will outline.

  4. Parametric and exergetic analysis of a two-stage transcritical combined organic Rankine cycle used for multiple grades waste heat recovery of diesel engine

    NASA Astrophysics Data System (ADS)

    Tian, H.; Zhang, J.; Xu, X. F.; Shu, G. Q.; Wei, H. Q.

    2013-12-01

    Diesel engine has multiple grades of waste heat with different ratios of combustion heat, exhaust is 400 °C with the ratio of 21% and coolant is 90 °C with 19%. Few previous publications investigate the recovery of multiple grades waste heat together. In this paper, a two-stage transcritical combined organic rankine cycle (CORC) is presented and analyzed. In the combined system, the high and low temperature stages transcritical cycle recover the high grades waste heat, and medium to low grades waste heat respectively, and being combined efficiently. Meanwhile, the suitable working fluids for high stage are chosen and analyzed. The cycle parameters, including thermal efficiency (ηth), net power output (Pnet), energy efficiency (ηexg) and global thermal efficiency of DE-CORC(ηglo) have also been analyzed and optimized. The results indicate that this combined system could recover all the waste heat with a high recovery ratio (above 90%) and obtain a maximum power output of 37kW for a DE of 243kW. The global thermal efficiency of DE-CORC can get a max value of 46.2% compared with 40% for single DE. The results also indicate that all the energy conversion process have a high exergy efficiency.

  5. A two-site chlorine decay model for the combined effects of pH, water distribution temperature and in-home heating profiles using differential evolution.

    PubMed

    Liu, Boning; Reckhow, David A; Li, Yun

    2014-04-15

    A general framework for modeling the bulk chlorine decay that accommodates effects of pH, temperature in water distribution system and in-home heating profiles is developed. With a single set of readily interpreted parameters, and various fictive concentrations of reactive constituents in the water, chlorine decay for the different water systems could be simultaneously modeled. Differential Evolution is employed to estimate the parameters stochastically. By using Bayesian Information Criterion, it is shown that a model consisting of two reactive species is preferred over models that consist of one or three reactive species. The flexibility and power of the framework is demonstrated with a case study of both types of effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Do Different Colors Absorb Heat Better? Grades PreK-2.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    In this activity, students test whether the color of a material affects how much heat it absorbs. An ice cube is placed in a box made of colored paper (one box per color; white, yellow, red, and black) which is then placed in the sun. Students predict which color will melt the ice cube first and record the order and time required for the ice cubes…

  7. Thermal and mechanical properties of infiltrated W/CuCrZr composite materials for functionally graded heat sink application

    NASA Astrophysics Data System (ADS)

    You, J.-H.; Brendel, A.; Nawka, S.; Schubert, T.; Kieback, B.

    2013-07-01

    Functionally graded tungsten/copper composite materials are considered as interlayer material for the water-cooled divertor target of fusion reactors consisting of a tungsten base armor and a copper alloy heat sink. The W/Cu composite interlayer is supposed to reduce the thermal expansion mismatch and to strengthen the heat sink. A critical drawback of this composite is loss of strength at elevated temperatures owing to the softening of the copper matrix. To solve this problem, we developed a novel tungsten/copper composite using precipitation-hardened Cu1CrZr alloy instead of pure copper. To this end, a fabrication route based on melt infiltration into a tungsten skeleton was established. Comprehensive characterizations and tests were performed on the specimens of three compositions (30, 50 and 70 vol.% of tungsten) at temperatures of 20, 300 and 550 °C. In this paper, extensive data of thermal and mechanical properties are presented. It turned out that the composites possess a strongly enhanced strength compared to the W/Cu composites and unreinforced alloy. The tensile behavior exhibits a significant hardening effect even for small W content while the rupture strain is decreased as well. Nevertheless, the composites show a still acceptable ductility for W content up to 50 vol.%. The composite of higher W content becomes fully brittle. Graded composites were also produced. Metallographic analysis confirms a good bonding between the layers. The thermal conductivity and thermal expansion data exhibit a typical rule-of-mixture behavior indicating a high quality of the materials.

  8. Magnetohydrodynamic Three-Dimensional Flowof a Second-Grade Fluid with Heat Transfer

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Nawaz, Muhammad

    2010-09-01

    An analysis has been carried out for the heat transfer on steady boundary layer flow of a secondgrade fluid bounded by a stretching sheet. The magnetohydrodynamic nature of the fluid is considered in the presence of Hall and ion-slip currents. The nonlinear mathematical problem is computed by a powerful tool, namely, the homotopy analysis method (HAM). A comparative study between the present and existing limiting results is carefully made. Convergence regarding the obtained solution is discussed. Skin friction coefficients and Nusselt number are analyzed. Effects of embedded parameters on the dimensionless velocities and temperature are examined

  9. Quantitative nondestructive electronic and magnetic property assessment of heat treated grade p91 steel

    NASA Astrophysics Data System (ADS)

    Meir, Shai Shmuel

    Structural steels experience aging from fatigue, creep and corrosion. Prolonged high temperature service accelerates creep and stress-corrosion cracking. Microstructural degradation of structural steels is a serious problem that limits the integrity of high-temperature parts in power plants. Some power plants that utilize fossil fuels have experienced lifecycle issues with heat-treated steel alloys that have experienced progressive damage over time. A nondestructive technique for the evaluation of the microstructure of key structural materials and the prediction of lifecycle has been the focus of extensive research for many years. Advanced nondestructive wave assessment techniques are being developed using electronic and magnetic perturbation analysis. These methods are applied to ferrous materials to determine whether a designed heat-treatment provides an acceptable microstructure offering specific set of required properties for the full service life of the component. The methods used in this research include impedance spectroscopy and hysteresis measurement as preliminary assessment methods and hysteresis frequency analysis and Barkhausen noise measurement as secondary assessment methods.

  10. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  11. Creep Deformation, Rupture Analysis, Heat Treatment and Residual Stress Measurement of Monolithic and Welded Grade 91 Steel for Power Plant Components

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna

    Modified 9Cr-1 Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR), and in fossil-fuel fired power plants at higher temperatures and stresses. The tensile creep behavior of Grade 91 steel was studied in the temperature range of 600°C to 750°C and stresses between 35 MPa and 350 MPa. Heat treatment of Grade 91 steel was studied by normalizing and tempering the steel at various temperatures and times. Moreover, Thermo-Ca1c(TM) calculation was used to predict the precipitate stability and their evolution, and construct carbon isopleths of Grade 91 steel. Residual stress distribution across gas tungsten arc welds (GTAW) in Grade 91 steel was measured by the time-of-flight neutron diffraction using the Spectrometer for Materials Research at Temperature and Stress (SMARTS) diffractometer at Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, NM, USA. Analysis of creep results yielded stress exponents of ˜9-11 in the higher stress regime and ˜1 in the lower stress regime. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate-controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep. Creep rupture data were analyzed in terms of Monkman-Grant relation and Larson-Miller parameter. Creep damage tolerance factor and stress exponent were used to identify the cause of creep damage. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy to elucidate the failure mechanisms. Fracture mechanism map for Grade 91 steel was developed based on the available material parameters and experimental observations. The microstructural

  12. Fire Safety: Stop the Heat. Fourth Grade. Fire Safety for Texans: Fire and Burn Prevention Curriculum Guide.

    ERIC Educational Resources Information Center

    Texas State Commission on Fire Protection, Austin.

    This booklet comprises the fourth grade component of a series of curriculum guides on fire and burn prevention. Designed to meet the age-specific needs of fourth grade students, its objectives include: (1) understanding principles of extinguishing fires, (2) investigating issues of peer pressure related to fire setting, (3) developing…

  13. Functionally Graded High-Alloy CrMnNi TRIP Steel Produced by Local Heat Treatment Using High-Energy Electron Beam

    NASA Astrophysics Data System (ADS)

    Heinze, D.; Buchwalder, A.; Jung, A.; Weidner, A.; Segel, C.; Müller, A.; Zenker, R.; Biermann, H.

    2016-01-01

    Cold-rolled, high-alloy CrMnNi TRIP steel was heat treated by electron beam (EB) treatment. After cold rolling to a deformation degree of 70 pct, the microstructure was mainly martensitic with residual austenite. The aim of the subsequent EB treatment was to improve mechanical properties regarding strength and ductility by grain refinement. The process is influenced by EB-specific parameters, resulting in different temperature-time regimes due to different heating and cooling rates. Grain size gradients over the cross section could not be completely suppressed, but minimized. Investigations included optical microscopy, scanning electron microscopy, hardness measurements, quasi static tensile tests, digital image correlation, and thermography for functionally graded tensile specimens. The local heat treatment was used to set specific tailored properties.

  14. Influence of frequency, grade, moisture and temperature on Green River oil shale dielectric properties and electromagnetic heating processes

    SciTech Connect

    Hakala, J. Alexandra; Stanchina, William; Soong, Yee; Hedges, Sheila

    2011-01-01

    Development of in situ electromagnetic (EM) retorting technologies and design of specific EM well logging tools requires an understanding of various process parameters (applied frequency, mineral phases present, water content, organic content and temperature) on oil shale dielectric properties. In this literature review on oil shale dielectric properties, we found that at low temperatures (<200° C) and constant oil shale grade, both the relative dielectric constant (ε') and imaginary permittivity (ε'') decrease with increased frequency and remain constant at higher frequencies. At low temperature and constant frequency, ε' decreases or remains constant with oil shale grade, while ε'' increases or shows no trend with oil shale grade. At higher temperatures (>200º C) and constant frequency, epsilon' generally increases with temperature regardless of grade while ε'' fluctuates. At these temperatures, maximum values for both ε' and ε'' differ based upon oil shale grade. Formation fluids, mineral-bound water, and oil shale varve geometry also affect measured dielectric properties. This review presents and synthesizes prior work on the influence of applied frequency, oil shale grade, water, and temperature on the dielectric properties of oil shales that can aid in the future development of frequency- and temperature-specific in situ retorting technologies and oil shale grade assay tools.

  15. 7 CFR 51.2962 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2962 Section 51.2962 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2962 Decay. Decay means that any portion of...

  16. 7 CFR 51.2087 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2087 Section 51.2087 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2087 Decay. Decay means that part or all of...

  17. 7 CFR 51.2120 - Decay.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Decay. 51.2120 Section 51.2120 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2120 Decay. Decay means that part or all of the...

  18. 7 CFR 51.2962 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2962 Section 51.2962 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Walnuts in the Shell Definitions § 51.2962 Decay. Decay means that any portion of...

  19. 7 CFR 51.2120 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2120 Section 51.2120 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Shelled Almonds Definitions § 51.2120 Decay. Decay means that part or all of the...

  20. 7 CFR 51.2087 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.2087 Section 51.2087 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Almonds in the Shell Definitions § 51.2087 Decay. Decay means that part or all of...

  1. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  2. An efficient heat-spreader design: First demonstration on InGaP/graded InGaAs base/GaAs collector-up HBTs

    NASA Astrophysics Data System (ADS)

    Tseng, Hsien-Cheng; Chu, Wen-Jen

    2013-01-01

    An efficient heat-spreader design, demonstrated on n-p-n InGaP/graded InGaAs base/GaAs collector-up heterojunction bipolar transistors (HBTs) for the first time, is proposed to achieve high speed and thermal dissipation performances. The collector-up HBT, with a graded InGaAs base, has been successfully fabricated using a three-stage selective-area-regrowth technique. A unity-gain cutoff frequency fT = 55 GHz and a maximum frequency of oscillation fmax = 74 GHz were obtained from prototype devices with a large collector area of 3.5 × 40 μm2. Moreover, through proper thinning process, the maximum junction temperature and thermal coupling within the transistors were effectively decreased. It is shown that the thermal management for power amplifiers, based on the developed HBT, used in next-generation cellular phones can be enhanced.

  3. Radioactive Decay

    EPA Pesticide Factsheets

    Radioactive decay is the emission of energy in the form of ionizing radiation. Example decay chains illustrate how radioactive atoms can go through many transformations as they become stable and no longer radioactive.

  4. Tooth Decay

    MedlinePlus

    You call it a cavity. Your dentist calls it tooth decay or dental caries. They're all names for a hole in your tooth. The cause of tooth decay is plaque, a sticky substance in your mouth made up mostly of germs. Tooth decay starts in the outer layer, called the enamel. Without ...

  5. Trunk decays

    Treesearch

    Alex L. Shigo

    1989-01-01

    Trunk decays are major causes of low quality wood-wood with little or no economic value. As a forest practitioner you should be able to recognize trees at high risk for decay and remove them if timber production is your primary objective. Remember, however, that decayed trees often develop into den trees or nesting sites and provide essential habitat for wildlife....

  6. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    SciTech Connect

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  7. Effect of post weld heat treatment on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel weldments

    NASA Astrophysics Data System (ADS)

    Xin, Jijun; Fang, Chao; Song, Yuntao; Wei, Jing; Xu, Shen; Wu, Jiefeng

    2017-04-01

    The effect of postweld heat treatment (PWHT) on the microstructure and mechanical properties of ITER-grade 316LN austenitic stainless steel joints with ER316LMn filler material was investigated. PWHT aging was performed for 1 h at four different temperatures of 600 °C, 760 °C, 870 °C and 920 °C, respectively. The microstructure revealed the sigma phase precipitation occurred in the weld metals heat-treated at the temperature of 870 °C and 920 °C. The PWHT temperatures have the less effect on the tensile strength, and the maximum tensile strength of the joints is about 630 MPa, reaching the 95% of the base metal, whereas the elongation is enhanced with the rise of PWHT temperatures. Meanwhile, the sigma phase precipitation in the weld metals reduces the impact toughness.

  8. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency.

    PubMed

    Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance

  9. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    SciTech Connect

    Lin, SH; Yip, NY; Cath, TY; Osuji, CO; Elimelech, M

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for

  10. Beta and gamma decay heat measurements between 0.1s--50,000s for neutron fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Final report, June 1, 1992--December 31, 1996

    SciTech Connect

    Schier, W. A.; Couchell, G. P.

    1996-01-01

    This is a final reporting on the composition of separate beta and gamma decay heat measurements following neutron fission of {sup 235}U and {sup 238}U and {sup 239}Pu and on cumulative and independent yield measurements of fission products of {sup 235}U and {sup 238}U. What made these studies unique was the very short time of 0.1 s after fission that could be achieved by incorporating the helium jet and tape transport system as the technique for transporting fission fragments from the neutron environment of the fission chamber to the low-background environment of the counting area. This capability allowed for the first time decay heat measurements to extend nearly two decades lower on the logarithmic delay time scale, a region where no comprehensive aggregate decay heat measurements had extended to. This short delay time capability also allowed the measurement of individual fission products with half lives as short as 0.2s. The purpose of such studies was to provide tests both at the aggregate level and at the individual nuclide level of the nation`s evaluated nuclear data file associated with fission, ENDF/B-VI. The results of these tests are in general quite encouraging indicating this data base generally predicts correctly the aggregate beta and aggregate gamma decay heat as a function of delay time for {sup 235}U, {sup 238}U and {sup 239}Pu. Agreement with the measured individual nuclide cumulative and independent yields for fission products of {sup 235}U and {sup 238}U was also quite good although the present measurements suggest needed improvements in several individual cases.

  11. Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink

    SciTech Connect

    Hayat, T.; Muhammad, Taseer; Shehzad, S. A.; Alsaedi, A.

    2015-01-15

    Development of human society greatly depends upon solar energy. Heat, electricity and water from nature can be obtained through solar power. Sustainable energy generation at present is a critical issue in human society development. Solar energy is regarded one of the best sources of renewable energy. Hence the purpose of present study is to construct a model for radiative effects in three-dimensional of nanofluid. Flow of second grade fluid by an exponentially stretching surface is considered. Thermophoresis and Brownian motion effects are taken into account in presence of heat source/sink and chemical reaction. Results are derived for the dimensionless velocities, temperature and concentration. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration. Numerical computations are presented to examine the values of skin-friction coefficients, Nusselt and Sherwood numbers. It is observed that the values of skin-friction coefficients are more for larger values of second grade parameter. Moreover the radiative effects on the temperature and concentration are quite reverse.

  12. Measurement accuracy of heart rate and respiratory rate during graded exercise and sustained exercise in the heat using the Zephyr BioHarness.

    PubMed

    Kim, J-H; Roberge, R; Powell, J B; Shafer, A B; Jon Williams, W

    2013-06-01

    The Zephyr BioHarness was tested to determine the accuracy of heart rate (HR) and respiratory rate (RR) measurements during 2 exercise protocols in conjunction with either a laboratory metabolic cart (Vmax) or a previously validated portable metabolic system (K4b2). In one protocol, HR and RR were measured using the BioHarness and Vmax during a graded exercise up to V˙O2max (n=12). In another protocol, HR and RR were measured using the BH and K4b2 during sustained exercise (30% and 50% V˙O2max for 20 min each) in a hot environment (30 °C, 50% relative humidity) (n=6). During the graded exercise, HR but not RR, obtained from the BioHarness was higher compared to the Vmax at baseline and 30% V˙O2max (p<0.05), but showed no significant difference at other stages with high correlation coefficients for both HR (r=0.87-0.96) and RR (r=0.90-0.99 above 30% V˙O2max). During the exercise in the heat, there were no significant differences between the BioHarness and K4b2 system. Correlation coefficients between the methods were low for HR but moderately to highly correlated (0.49-0.99) for RR. In conclusion, the BioHarness is comparable to Vmax and K4b2 over a wide range of V˙O2 during graded exercise and sustained exercise in the heat.

  13. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Apparently Negative Electric Polarization in Shaped Graded Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Gao, Yin-Hao; Gao, Yong; Huang, Ji-Ping

    2010-05-01

    By using a first-principles approach, we investigate the pathway of electric displacement fields in shaped graded dielectric materials existing in the form of cloaks with various shapes. We reveal a type of apparently negative electric polarization (ANEP), which is due to a symmetric oscillation of the paired electric permittivities, satisfying a sum rule. The ANEP does not occur for a spherical cloak, but appears up to maximum as a/b (the ratio between the long and short principal axis of the spheroidal cloak) is about 5/2, and eventually disappears as a/b becomes large enough corresponding to a rod-like shape. Further, the cloaking efficiency is calculated for different geometrical shapes and demonstrated to closely relate to the ANEP. The possibility of experiments is discussed. This work has relevance to dielectric shielding based on shaped graded dielectric materials.

  14. Radioactive decay.

    PubMed

    Groch, M W

    1998-01-01

    When a parent radionuclide decays to its daughter radionuclide by means of alpha, beta, or isomeric transition, the decay follows an exponential form, which is characterized by the decay constant lambda. The decay constant represents the probability per unit time that a single radioatom will decay. The decay equation can be used to provide a useful expression for radionuclide decay, the half-life, the time when 50% of the radioatoms present will have decayed. Radiotracer half-life has direct implications in nuclear imaging, radiation therapy, and radiation safety because radionuclide half-life affects the ability to evaluate tracer kinetics and create appropriate nuclear images and also affects organ, tumor, and whole-body radiation dose. The number of radioatoms present in a sample is equal to the activity, defined as the number of transitions per unit time, divided by the decay constant; the mass of radioatoms present in a sample can be calculated to determine the specific activity (activity per unit mass). The dynamic relationship between the number of parent and daughter atoms present over time may lead to radioactive equilibrium, which takes two forms--secular and transient--and has direct relevance to generator-produced radionuclides.

  15. Primary-Grade Students' Knowledge and Thinking about the Supply of Utilities (Water, Heat, and Light) to Modern Homes.

    ERIC Educational Resources Information Center

    Brophy, Jere; Alleman, Janet

    2003-01-01

    This interview study gathered information about the prior knowledge and thinking of kindergarten to third- graders regarding the supply of water, heat, and light to modern homes. Findings indicated that students possessed only limited and spotty knowledge about utilities in modern homes. Within general trends, there was evidence of growth in…

  16. Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet

    NASA Astrophysics Data System (ADS)

    Khan, Noor Saeed; Gul, Taza; Islam, Saeed; Khan, Waris

    2017-01-01

    The influences of thermophoresis and thermal radiation of a magnetohydrodynamic two-dimensional thin-film second-grade fluid with heat and mass transfer flow in the presence of viscous dissipation past a stretching sheet are analyzed. The main focus of the study is to discuss the significant roll of the fluid variable properties like thermal conductivity and viscosity under the variation of the thin film. The thermal conductivity varies directly as a linear function of temperature showing the property that expresses the ability of a material to transfer heat, and the viscosity is assumed to vary inversely as a linear function of temperature showing that viscous forces become weak at increasing temperature. Thermophoresis occurs to discuss the mass deposition at the surface of the stretching sheet while thermal radiation occurs, especially, at high temperature. The basic governing equations for the velocity, temperature and concentration of the fluid flow have been transformed to high nonlinear coupled differential equations with physical conditions by invoking suitable similarity transformations. The solution of the problem has been obtained by using HAM (Homotopy Analysis Method). The heat and mass transfer flow behaviors are affected significantly by the thin film. The physical influences of thin film parameter and all other parameters have been studied graphically and illustrated. The residual graphs and residual error table elucidate the authentication of the present work.

  17. XPS study of bioactive graded layer in Ti-In-Nb-Ta alloy prepared by alkali and heat treatments.

    PubMed

    Lee, Baek-Hee; Kim, Young Do; Lee, Kyu Hwan

    2003-06-01

    Ti and Ti-based alloys have been widely used for the biomedical applications due to their superiorities of biocompatibility, mechanical properties and corrosion resistance. However, there has been the limiting factor for these metals to show the low affinity to the living bone. Most of commercially used Ti alloys have harmful alloying elements such as Al, V, etc. The purposes of this study are design of new Ti alloy having the good mechanical properties and corrosion resistivity without harmful alloying elements and to improve the bone-bonding ability between Ti-based alloy and living bone through the chemically activated process (alkali treatment) and thermally activated one (heat treatment). Mechanical properties of the Ti-In-Nb-Ta alloy were observed by tensile test (Instron model 8511). Corrosion potential and corrosion rate were investigated using a Potentiostate machine (EG&G, Princeton Applied Model 273, Boston, USA) with saline solution (9% NaCl) without dissolved oxygen at 37 degrees C. After alkali and heat treatments, the effects of the pre-treatments on the bonding property were evaluated by in vitro test. In this study, the surface changing behavior, which is apatite formation, of newly designed Ti-In-Nb-Ta alloy without harmful alloying elements was investigated through analyzing its surface by using X-ray photoelectron spectroscopy after surface activation treatments (alkali and heat treatments) and after subsequent soaking in the simulated body fluid.

  18. Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Chung, Jae Dong; Lu, Dian Chen; Farooq, Umer

    2017-09-01

    A mathematical model has been established to study the magnetohydrodynamic second grade nanofluid flow past a bidirectional stretched surface. The flow is induced by Cattaneo-Christov thermal and concentration diffusion fluxes. Novel characteristics of Brownian motion and thermophoresis are accompanied by temperature dependent thermal conductivity and convective heat and mass boundary conditions. Apposite transformations are betrothed to transform a system of nonlinear partial differential equations to nonlinear ordinary differential equations. Analytic solutions of the obtained nonlinear system are obtained via a convergent method. Graphs are plotted to examine how velocity, temperature, and concentration distributions are affected by varied physical involved parameters. Effects of skin friction coefficients along the x- and y-direction versus various parameters are also shown through graphs and are well debated. Our findings show that velocities along both the x and y axes exhibit a decreasing trend for the Hartmann number. Moreover, temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

  19. Heat and Mass Transfer on MHD Free convective flow of Second grade fluid through Porous medium over an infinite vertical plate

    NASA Astrophysics Data System (ADS)

    Dastagiri Babu, D.; Venkateswarlu, S.; Keshava Reddy, E.

    2017-08-01

    In this paper, we have considered the unsteady free convective two dimensional flow of a viscous incompressible electrically conducting second grade fluid over an infinite vertical porous plate under the influence of uniform transverse magnetic field with time dependent permeability, oscillatory suction. The governing equations of the flow field are solved by a regular perturbation method for small amplitude of the permeability. The closed form solutions for the velocity, temperature and concentration have been derived analytically and also its behavior is computationally discussed with reference to different flow parameters with the help of profiles. The skin fiction on the boundary, the heat flux in terms of the Nusselt number and rate of mass transfer in terms of Sherwood number are also obtained and their behavior computationally discussed.

  20. Heat Transfer Analysis of MHD Thin Film Flow of an Unsteady Second Grade Fluid Past a Vertical Oscillating Belt

    PubMed Central

    Gul, Taza; Islam, Saeed; Shah, Rehan Ali; Khan, Ilyas; Khalid, Asma; Shafie, Sharidan

    2014-01-01

    This article aims to study the thin film layer flowing on a vertical oscillating belt. The flow is considered to satisfy the constitutive equation of unsteady second grade fluid. The governing equation for velocity and temperature fields with subjected initial and boundary conditions are solved by two analytical techniques namely Adomian Decomposition Method (ADM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of ADM and OHAM solutions for velocity and temperature fields are shown numerically and graphically for both the lift and drainage problems. It is found that both these solutions are identical. In order to understand the physical behavior of the embedded parameters such as Stock number, frequency parameter, magnetic parameter, Brinkman number and Prandtl number, the analytical results are plotted graphically and discussed. PMID:25383797

  1. Association between small heat shock protein B11 and the prognostic value of MGMT promoter methylation in patients with high-grade glioma.

    PubMed

    Cheng, Wen; Li, Mingyang; Jiang, Yang; Zhang, Chuanbao; Cai, Jinquan; Wang, Kuanyu; Wu, Anhua

    2016-07-01

    OBJECT This study investigated the role and prognostic value of heat shock proteins (HSPs) in glioma. METHODS Data from 3 large databases of glioma samples (Chinese Glioma Genome Atlas, Repository for Molecular Brain Neoplasia Data, and GSE16011), which contained whole-genome messenger RNA microarray expression data and patients' clinical data, were analyzed. Immunohistochemical analysis was performed to validate protein expression in another set of 50 glioma specimens. RESULTS Of 28 HSPs, 11 were overexpressed in high-grade glioma (HGG) compared with low-grade glioma. A univariate Cox analysis revealed that HSPB11 has significant prognostic value for each glioma grade, which was validated by a Kaplan-Meier survival analysis. HSPB11 expression was associated with poor prognosis and was independently correlated with overall survival (OS) in HGG. This study further explored the combined role of HSPB11 and other molecular markers in HGG, such as isocitrate dehydrogenase 1 (IDH1) mutation and O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. HSPB11 expression was able to refine the prognostic value of IDH1 mutation in patients with HGG. However, when combined with MGMT promoter methylation status, among patients with a methylated MGMT promoter, those with lower levels of HSPB11 expression had longer OS and progression-free survival than patients with higher levels of HSPB11 expression or with an unmethylated MGMT promoter. Moreover, within the MGMT promoter methylation group, patients with low levels of HSPB11 expression were more sensitive to combined radiochemotherapy than those with high levels of HSPB11 expression, which may explain why some patients with HGG with a methylated MGMT promoter show tolerance to radiochemotherapy. CONCLUSIONS HSPB11 was identified as a novel prognostic marker in patients with HGG. Together with MGMT promoter methylation status, HSPB11 expression can predict outcome for patients with HGG and identify those who

  2. Construction of sequences of exact analytical solutions for heat diffusion in graded heterogeneous materials by the Darboux transformation method. Examples for half-space

    NASA Astrophysics Data System (ADS)

    Krapez, J.-C.

    2016-09-01

    The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).

  3. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70.

    PubMed

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is YTS = -285.521 + 15.706X1 + 2.514X2 - 0.004X1(2) - 0.001X2(2) - 0.029X1X2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld.

  4. Application of Response Surface Methodology for Modeling of Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70

    PubMed Central

    Peasura, Prachya

    2015-01-01

    This research studied the application of the response surface methodology (RSM) and central composite design (CCD) experiment in mathematical model and optimizes postweld heat treatment (PWHT). The material of study is a pressure vessel steel ASTM A516 grade 70 that is used for gas metal arc welding. PWHT parameters examined in this study included PWHT temperatures and time. The resulting materials were examined using CCD experiment and the RSM to determine the resulting material tensile strength test, observed with optical microscopy and scanning electron microscopy. The experimental results show that using a full quadratic model with the proposed mathematical model is Y TS = −285.521 + 15.706X 1 + 2.514X 2 − 0.004X 1 2 − 0.001X 2 2 − 0.029X 1 X 2. Tensile strength parameters of PWHT were optimized PWHT time of 5.00 hr and PWHT temperature of 645.75°C. The results show that the PWHT time is the dominant mechanism used to modify the tensile strength compared to the PWHT temperatures. This phenomenon could be explained by the fact that pearlite can contribute to higher tensile strength. Pearlite has an intensity, which results in increased material tensile strength. The research described here can be used as material data on PWHT parameters for an ASTM A516 grade 70 weld. PMID:26550602

  5. Thermal-hydraulic simulation of natural convection decay heat removal in the High Flux Isotope Reactor (HFIR) using RELAP5 and TEMPEST: Part 2, Interpretation and validation of results

    SciTech Connect

    Ruggles, A.E.; Morris, D.G.

    1989-01-01

    The RELAP5/MOD2 code was used to predict the thermal-hydraulic behavior of the HFIR core during decay heat removal through boiling natural circulation. The low system pressure and low mass flux values associated with boiling natural circulation are far from conditions for which RELAP5 is well exercised. Therefore, some simple hand calculations are used herein to establish the physics of the results. The interpretation and validation effort is divided between the time average flow conditions and the time varying flow conditions. The time average flow conditions are evaluated using a lumped parameter model and heat balance. The Martinelli-Nelson correlations are used to model the two-phase pressure drop and void fraction vs flow quality relationship within the core region. Systems of parallel channels are susceptible to both density wave oscillations and pressure drop oscillations. Periodic variations in the mass flux and exit flow quality of individual core channels are predicted by RELAP5. These oscillations are consistent with those observed experimentally and are of the density wave type. The impact of the time varying flow properties on local wall superheat is bounded herein. The conditions necessary for Ledinegg flow excursions are identified. These conditions do not fall within the envelope of decay heat levels relevant to HFIR in boiling natural circulation. 14 refs., 5 figs., 1 tab.

  6. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  7. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet

    PubMed Central

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-01-01

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable. PMID:27091085

  8. Unsteady stagnation-point flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet.

    PubMed

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2016-04-19

    In this paper, the unsteady stagnation-point boundary layer flow and heat transfer of a special third grade fluid past a permeable stretching/shrinking sheet has been studied. Similarity transformation is used to transform the system of boundary layer equations which is in the form of partial differential equations into a system of ordinary differential equations. The system of similarity equations is then reduced to a system of first order differential equations and has been solved numerically by using the bvp4c function in Matlab. The numerical solutions for the skin friction coefficient and heat transfer coefficient as well as the velocity and temperature profiles are presented in the forms of tables and graphs. Dual solutions exist for both cases of stretching and shrinking sheet. Stability analysis is performed to determine which solution is stable and valid physically. Results from the stability analysis depict that the first solution (upper branch) is stable and physically realizable, while the second solution (lower branch) is unstable.

  9. Runge-Kutta ray tracing technique for solving radiative heat transfer in a two-dimensional graded-index medium

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Shi, Guo-Dong; Zhu, Ke-Yong

    2016-06-01

    This paper adopts the Runge-Kutta ray tracing method to obtain the ray-trajectory numerical solution in a two-dimensional gradient index medium. The emitting, absorbing and scattering processes are simulated by the Monte Carlo method. The temperature field and ray trajectory in the medium are obtained by the three methods, the Runge-Kutta ray tracing method, the ray tracing method with the cell model and the discrete curved ray tracing method with the linear refractive index cell model. Comparing the results of the three methods, it is found that the results by the Monte Carlo Runge-Kutta ray tracing method are of the highest accuracy. To improve the computational speed, the variable step-size Runge-Kutta ray tracing method is proposed, and the maximum relative error between the temperature field in the nonscattering medium by this method and the benchmark solution is less than 0.5%. The results also suggest that the Runge-Kutta ray tracing method would make the radiative transfer solution in the three-dimensional graded index media much easier.

  10. Performance Assessment of Sodium to Air Finned Heat Exchanger for FBR

    SciTech Connect

    Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.; Vinod, V.; Suresh Kumar, V.A.

    2006-07-01

    In pool type Fast Breeder Reactors (FBR) a passive Safety Grade Decay Heat Removal (SGDHR) system removes decay heat produced in the core when normal heat removal path through steam water system is not available. This is essential to maintain the core temperatures within limits. A Decay Heat Exchanger (DHX) picks the heat from the pool and transfers the heat to atmosphere through sodium to Air Heat Exchanger (AHX) situated at high elevation. Due to the temperature differences existent in the system density differences are generated causing a buoyant convective heat transfer. The system is completely passive as primary sodium, secondary sodium and air flows under natural convection. DHX is a sodium to sodium counter flow heat exchanger with primary sodium on shell side and secondary sodium on tube side. AHX is a cross flow heat exchanger with sodium on tube side and air flows in cross flow across the finned tubes. Capacity of a single loop of SGDHR is 8 MW. Four such loops are available for the decay heat removal. It has been seen that the decay heat removal to a large extent depends on the AHX performance. AHX tested have shown reduced heat removal capacity much as 30 to 40%, essentially due to the bypassing of the finned tubes by the air. It was felt that a geometrically similar AHX be tested in sodium. Towards this a 2 MW Sodium to air heat exchanger (AHX) was tested in the Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Center for Atomic Research (IGCAR), Kalpakkam. The casing arrangement of the AHX was designed to minimise bypassing of air. (authors)

  11. Sufficient conditions for thermal rectification in general graded materials.

    PubMed

    Pereira, Emmanuel

    2011-03-01

    We address a fundamental problem for the advance of phononics: the search of a feasible thermal diode. We establish sufficient conditions for the existence of thermal rectification in general graded materials. By starting from simple assumptions satisfied by the usual anharmonic models that describe heat conduction in solids, we derive an expression for the rectification. The analytical formula shows how to increase the rectification, and the conditions to avoid its decay with the system size, a problem present in the recurrent model of diodes given by the sequential coupling of two or three different parts. Moreover, for these graded systems, we show that the regimes of nondecaying rectification and of normal conductivity do not overlap. Our results indicate the graded systems as optimal materials for a thermal diode, the basic component of several devices of phononics.

  12. Low-threshold absolute two-plasmon decay instability in the second harmonic electron cyclotron resonance heating experiments in toroidal devices

    NASA Astrophysics Data System (ADS)

    Popov, A. Yu; Gusakov, E. Z.

    2015-02-01

    The effect of the X-mode parametric decay into two short wavelength upper hybrid (UH) plasmons propagating in opposite directions is analyzed. Due to the huge convective power loss of both the UH plasmons along the inhomogeneity direction, the power threshold of the convective parametric decay instability (PDI), which can be excited in the presence of a monotonous density profile is derived to exceed the gyrotron power range currently available. In the presence of the magnetic island possessing the local density maximum at its O-point the daughter UH plasmons can be trapped in the radial direction that suppresses their energy loss from the decay layer in full and makes the power threshold of the convective two-plasmon PDI drastically (three orders of magnitude) lower than in the previous case. The possibility of the absolute PDI being due to the finite size of the pump beam spot is demonstrated as well. The power threshold of the absolute instability is shown to be more than two orders of magnitude lower than the threshold of the convective instability at the monotonous density profile.

  13. Application of the shsp Gene, Encoding a Small Heat Shock Protein, as a Food-Grade Selection Marker for Lactic Acid Bacteria

    PubMed Central

    El Demerdash, Hassan A. M.; Heller, Knut J.; Geis, Arnold

    2003-01-01

    Plasmid pSt04 of Streptococcus thermophilus contains a gene encoding a protein with homology to small heat shock proteins (A. Geis, H. A. M. El Demerdash, and K. J. Heller, Plasmid 50:53-69, 2003). Strains cured from the shsp plasmids showed significantly reduced heat and acid resistance and a lower maximal growth temperature. Transformation of the cloned shsp gene into S. thermophilus St11 lacking a plasmid encoding shsp resulted in increased resistance to incubation at 60°C or pH 3.5 and in the ability to grow at 52°C. A food-grade cloning system for S. thermophilus, based on the plasmid-encoded shsp gene as a selection marker, was developed. This approach allowed selection after transfer of native and recombinant shsp plasmids into different S. thermophilus and Lactococcus lactis strains. Using a recombinant plasmid carrying an erythromycin resistance (Emr) gene in addition to shsp, we demonstrated that both markers are equally efficient in selecting for plasmid-bearing cells. The average transformation rates in S. thermophilus (when we were selecting for heat resistance) were determined to be 2.4 × 104 and 1.0 × 104 CFU/0.5 μg of DNA, with standard deviations of 0.54 × 104 and 0.32 × 104, for shsp and Emr selection, respectively. When we selected for pH resistance, the average transformation rates were determined to be 2.25 × 104 and 3.8 × 103 CFU/0.5 μg of DNA, with standard deviations of 0.63 × 104 and 3.48 × 103, for shsp and Emr selection, respectively. The applicability of shsp as a selection marker was further demonstrated by constructing S. thermophilus plasmid pHRM1 carrying the shsp gene as a selection marker and the restriction-modification genes of another S. thermophilus plasmid as a functional trait. PMID:12902223

  14. Grade Span.

    ERIC Educational Resources Information Center

    Renchler, Ron

    2000-01-01

    This issue reviews grade span, or grade configuration. Catherine Paglin and Jennifer Fager's "Grade Configuration: Who Goes Where?" provides an overview of issues and concerns related to grade spans and supplies profiles of eight Northwest schools with varying grade spans. David F. Wihry, Theodore Coladarci, and Curtis Meadow's…

  15. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    SciTech Connect

    Mosley, W.C.

    1990-12-31

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium.

  16. Rapid heating tensile tests of high-energy-rate-forged 316L stainless steel containing internal helium from radioactive decay of absorbed tritium

    SciTech Connect

    Mosley, W.C.

    1990-01-01

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. This austenitic stainless steel is frequently used in the high-energy-rate-forged (HERF) metallurgical condition to take advantage of increased strength produced by cold work introduced by this process. Proper design of tritium-handling equipment will require an understanding of how helium-3, the product of radioactive decay of tritium, affects mechanical properties. This report describes results of elevated-temperature tensile testing of HERF 316L stainless steel specimens containing helium concentrations of 171 (calculated) atomic parts per million (appm). Results are compared with those reported previously for specimens containing 0 and 94 (measured) appm helium.

  17. Development of a Field Demonstration for Cost-Effective Low-Grade Heat Recovery and Use Technology Designed to Improve Efficiency and Reduce Water Usage Rates for a Coal-Fired Power Plant

    SciTech Connect

    Noble, Russell; Dombrowski, K.; Bernau, M.; Morett, D.; Maxson, A.; Hume, S.

    2016-06-30

    Coal-based power generation systems provide reliable, low-cost power to the domestic energy sector. These systems consume large amounts of fuel and water to produce electricity and are the target of pending regulations that may require reductions in water use and improvements in thermal efficiency. While efficiency of coal-based generation has improved over time, coal power plants often do not utilize the low-grade heat contained in the flue gas and require large volumes of water for the steam cycle make-up, environmental controls, and for process cooling and heating. Low-grade heat recovery is particularly challenging for coal-fired applications, due in large part to the condensation of acid as the flue gas cools and the resulting potential corrosion of the heat recovery materials. Such systems have also not been of significant interest as recent investments on coal power plants have primarily been for environmental controls due to more stringent regulations. Also, in many regions, fuel cost is still a pass-through to the consumer, reducing the motivation for efficiency improvements. Therefore, a commercial system combining low-grade heat-recovery technologies and associated end uses to cost effectively improve efficiency and/or reduce water consumption has not yet been widely applied. However, pressures from potential new regulations and from water shortages may drive new interest, particularly in the U.S. In an effort to address this issue, the U.S. Department of Energy (DOE) has sought to identify and promote technologies to achieve this goal.

  18. Heat transfer characteristics of decaying swirl flow through a circular tube with co/counter dual twisted-tape swirl generators

    NASA Astrophysics Data System (ADS)

    Changcharoen, W.; Samruaisin, P.; Eiamsa-ard, P.; Eiamsa-ard, S.

    2016-07-01

    The influence of co/counter dual-twisted tapes (CoT/CT) on heat transfer rate in a circular tube has been investigated experimentally. In the experiment, the dual-twisted tapes are placed at the entry of the test tube in two arrangements: (1) each of dual twisted tape was twisted in the same direction that can produce co-swirl flow at the entry and (2) each of dual twisted tape was twisted in the opposite direction that can produce counter-swirl flow. Dual tapes were twisted in three different twist ratios ( y/w = 3, 4, and 5) for generating different swirl intensities at the entry of the test section while the single twisted tape (ST) was also the test for comparison. The aim at using the dual twisted tapes is to create co/counter-rotating swirl flows having a significant influence on the flow turbulence intensity at the entry section leading to higher heat transfer enhancement. Average Nusselt numbers of CoT/CT are determined and also compared with those obtained from other similar cases, i.e., ST. The experimental results on the heat transfer rates indicated that the tubes with the dual twisted tapes (CoT/CT) are higher than those with the single tape at the entry section ( x/D = 0 to 10). The heat transfer rates at longer distance became lower due to high interaction of each swirl. In addition, the mean Nusselt number and friction factor for the swirl generator created by the CT is nearly similar to CoT results.

  19. Residue levels and effectiveness of pyrimethanil vs imazalil when using heated postharvest dip treatments for control of Penicillium decay on citrus fruit.

    PubMed

    D'Aquino, Salvatore; Schirra, Mario; Palma, Amedeo; Angioni, Alberto; Cabras, Paolo; Migheli, Quirico

    2006-06-28

    The influence of fungicide concentration and treatment temperature on residue levels of pyrimethanil (PYR) in comparison with the commonly used fungicide imazalil (IMZ) was investigated in orange fruits following postharvest dip treatments. The dissipation rate of PYR residues was recorded as a function of storage conditions. The fungicide efficacy against green and blue molds caused by Penicillium digitatum and Penicillium italicum, respectively, was evaluated on different citrus varieties following the fungicide application at 20 or 50 degrees C. Residue levels of PYR in Salustiana oranges were significantly correlated with the fungicide dosage, but residue concentrations were notably higher (ca. 13-19-fold) after treatment at 50 degrees C as compared to treatments at 20 degrees C. After treatment at temperatures ranging from 20 to 60 degrees C, PYR and IMZ residues in Salustiana oranges were significantly correlated with dip temperatures. Dissipation rates of PYR during storage were negligible in both Salustiana and Tarocco oranges. Results obtained on wounded, noninoculated Miho satsumas revealed that when treatments were performed at 50 degrees C, PYR or IMZ concentrations needed to achieve the complete control of decay were 8- and 16-fold less than by treatment at 20 degrees C. When fruits were inoculated with either P. digitatum or P. italicum, the application of 400 mg L(-1) PYR at 20 degrees C or 100 mg L(-1) PYR at 50 degrees C similarly reduced green and blue mold development. These results were corroborated by storage trials on Marsh grapefruits and Tarocco oranges. The lowest concentration of PYR required to achieve almost total protection of the fruit against decay accounted for 100 mg L(-1) at 50 degrees C and 400 mg L(-1) at 20 degrees C, respectively. Treatments did not affect fruit external appearance, flavor, and taste. It is concluded that postharvest PYR treatment represents an effective option to control green and blue mold in citrus fruit and

  20. α-decay under pressure

    NASA Astrophysics Data System (ADS)

    Nissim, N.

    2016-12-01

    The physical phenomenon of α-decay is a key feature in several geophysical models describing the structure and formation of Earth and our galaxy. Two of the most prominent characteristics of Earth determined from the α-decay phenomenon are 1) the Earth's age, determined by the relative abundance of α-decaying elements such as Th and U in meteorites and on Earth, and 2) the Earth's source of heat, with roughly 70% of the radioactive heat production attributed to α-decay of U and Th. Textbooks on nuclear phenomenon proclaim that the α-decay lifetime of elements is a constant of nature; however, if it is affected by environmental conditions, the models mentioned above must be refined. In this work [1] we suggest that a change in the lifetime of the α-decay process in 241Am may be detected at high pressures achievable in the laboratory [2], essentially, due to the extraordinary high compression of Am at megabar pressures. The Thomas-Fermi model [3] was used to calculate the effect of pressure on the atomic electron density, and the corresponding change in the atomic potential of 241Am. It was found that at pressures of about 0.5 Mbar the relative change in the lifetime of 241Am is about -2 × 10-4. Detailed experimental procedures to measure this effect by compressing the 241Am metal in a diamond-anvil cell are presented, with diagnostics based on counting the 60-keV γ rays accompanying α decay and/or mass spectrometry on the 237Np/241Am isotope ratio of samples recovered after compression for an extended period of time. [1] N. Nissim, F. Belloni, S. Eliezer, D. Delle Side, J. M. Martinez Val, "Toward a measurement of α-decay lifetime change at high pressure: The case of 241Am", Phys. Rev. C., 94, 014601 (2016).[2] S. Eliezer, J.M. Martinez Val, M. Piera, "Alpha decay perturbations by atomic effects at extreme conditions", Phys. Lett. B, 672, 372(2009).[3] F. Belloni," Alpha decay in electron environments of increasing density: From the bare nucleus to

  1. Beta and gamma decay heat measurements between 0.1s - 50,000s for neturon fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Progress report, June 1, 1992--December 31, 1994

    SciTech Connect

    Schier, W.A.; Couchell, G.P.

    1997-05-01

    In the investigations reported here, a helium-jet/tape-transport system was used for the rapid transfer of fission products to a low-background environment where their aggregate beta and gamma-ray spectra were measured as a function of delay time after neutron induced fission of {sup 235}U, {sup 238}U and {sup 239}Pu. Beta and gamma-ray energy distributions have been deduced for delay times as short as 0.2 s and extending out to 100,000s. Instrumentation development during the initial phase of the project included: (1) assembly and characterization of a NaI(Tl) spectrometer for determining aggregate gamma-ray energy distributions, (2) development and characterization of a beta spectrometer (having excellent gamma-ray rejection) for measuring aggregate beta-particle energy distributions, (3) assembly and characterization of a Compton-suppressed HPGe spectrometer for determining gamma-ray intensities of individual fission products to deduce fission-product yields. Spectral decomposition and analysis codes were developed for deducing energy distributions from measured aggregate beta and gamma spectra. The aggregate measurements in the time interval 0.2 - 20s after fission are of special importance since in this region data from many short-lived nuclei are missing and summation calculations in this region rely on model calculations for a large fraction of their predicted beta and gamma decay heat energy spectra. Comparison with ENDF/B-VI fission product data was performed in parallel with the measurements through a close collaboration with Dr. T. England at LANL, assisted by one of our graduate students. Such aggregate measurements provide tests of the Gross Theory of beta decay used to calculated missing contributions to this data base. Fission-product yields deduced from the HPGe studies will check the accuracy of the semi-empirical Gaussian dispersion model used presently by evaluators in the absence of measured yields.

  2. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  3. A Semi-Analytical Model for Heat and Mass Transfer in Geothermal Reservoirs to Estimate Fracture Surface-Area-to-Volume Ratios and Thermal Breakthrough using Thermally-Decaying and Diffusing Tracers

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.

    2010-12-01

    A semi-analytical model was developed to conduct rapid scoping calculations of responses of thermally degrading and diffusing tracers in multi-well tracer tests in enhanced geothermal systems (EGS). The model is based on an existing Laplace transform inversion model for solute transport in dual-porosity media. The heat- and mass-transfer calculations are decoupled and conducted sequentially, taking advantage of the fact that heat transfer between fractures and the rock matrix is much more rapid than mass transfer and therefore mass transfer will effectively occur in a locally isothermal system (although the system will be nonisothermal along fracture flow pathways, which is accounted for by discretizing the flow pathways into multiple segments that have different temperature histories). The model takes advantage of the analogies between heat and mass transfer, solving the same governing equations with km/(ρCp)w being substituted for Dm in the equation for fracture transport and km/(ρCp)m being substituting for phi*Dm in the equation for matrix transport; where k = thermal conductivity (cal/cm-s-K), ρ = density (g/cm3), Cp = heat capacity (at constant pressure) (cal/g-K), phi = matrix porosity, and D = tracer diffusion coefficient (cm2/s), with the subscripts w and m referring to water and matrix, respectively. A significant advantage of the model is that it executes in a fraction of second on a single-CPU personal computer, making it very amenable for parameter estimation algorithms that involve repeated runs to find global minima. The combined thermal-mass transport model was used to evaluate the ability to estimate when thermal breakthrough would occur in a multi-well EGS configuration using thermally degrading tracers. Calculations were conducted to evaluate the range of values of Arrhenius parameters, A and Ea (pre-exponential factor, 1/s, and activation energy, cal/mol) required to obtain interpretable responses of thermally-degrading tracers that decay

  4. A semi-analytical model for heat and mass transfer in geothermal reservoirs to estimate fracture surface-are-to-volume ratios and thermal breakthrough using thermally-decaying and diffusing tracers

    SciTech Connect

    Reimus, Paul W

    2010-12-08

    A semi-analytical model was developed to conduct rapid scoping calculations of responses of thermally degrading and diffusing tracers in multi-well tracer tests in enhanced geothermal systems (EGS). The model is based on an existing Laplace transform inversion model for solute transport in dual-porosity media. The heat- and mass-transfer calculations are decoupled and conducted sequentially, taking advantage of the fact that heat transfer between fractures and the rock matrix is much more rapid than mass transfer and therefore mass transfer will effectively occur in a locally isothermal system (although the system will be nonisothermal along fracture flow pathways, which is accounted for by discretizing the flow pathways into multiple segments that have different temperature histories). The model takes advantage of the analogies between heat and mass transfer, solving the same governing equations with k{sub m}/({rho}C{sub p}){sub w} being substituted for {phi}D{sub m} in the equation for fracture transport and k{sub m}/({rho}C{sub p}){sub m} being subsituted for D{sub m} in the equation for matrix transport; where k = thermal conductivity (cal/cm-s-K), {rho} = density (g/cm{sup 3}), C{sub p} = heat capacity (at constant pressure) (cal/g-K), {phi} = matrix porosity, and D = tracer diffusion coefficient (cm{sup 2}/s), with the subscripts w and m referring to water and matrix, respectively. A significant advantage of the model is that it executes in a fraction of second on a single-CPU personal computer, making it very amenable for parameter estimation algorithms that involve repeated runs to find global minima. The combined thermal-mass transport model was used to evaluate the ability to estimate when thermal breakthrough would occur in a multi-well EGS configuration using thermally degrading tracers. Calculations were conducted to evaluate the range of values of Arrhenius parameters, A and E{sub {alpha}} (pre-exponential factor, 1/s, and activation energy, cal

  5. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  6. Precursor decay in several aluminas

    NASA Astrophysics Data System (ADS)

    Murray, N. H.; Bourne, N. K.; Rosenberg, Z.

    1996-05-01

    Plate impact experiments were performed on three ceramics with alumina content varying from 88 to 99.9% using a 50 mm single stage gas gun. Tiles of ceramic with thicknesses varying from 2 to 12 mm were impacted above their Hugoniot Elastic Limits (HELs) and the rate dependent strength was investigated by monitoring the variation in amplitude of the elastic precursor with propagation distance. Stress levels in the target were recorded using manganin stress transducers and a 1 GS s-1 storage oscilloscope. All grades of alumina were found to exhibit some elastic precursor decay indicating strain rate sensitivity.

  7. Messenger RNA Decay.

    PubMed

    Kushner, Sidney R

    2007-04-01

    This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.

  8. Effect of microwave heating on the migration of dioctyladipate and acetyltributylcitrate plasticizers from food-grade PVC and PVDC/PVC films into olive oil and water.

    PubMed

    Badeka, A B; Kontominas, M G

    1996-04-01

    Migration of dioctyladipate (DOA) and acetyltributylcitrate (ATBC) plasticizers from plasticized polyvinylchloride (PVC) and polyvinylidene chloride (PVDC)/PVC (Saran) films into both olive oil and distilled water during microwave heating has been studied. The plasticizer migrating into olive oil and water was determined using an indirect GC method after saponification of the ester-type plasticizer (DOA or ATBC) and subsequent collection of the alcohol component of the ester, namely: 2-ethyl-1-hexanol and 1-butanol, respectively. Migration was dependent on heating time, microwave power setting, the nature of the food simulant and the initial concentration of the plasticizer in the film. Migration of DOA into olive oil reached equilibrium after heating for 10 min at full power (604.6 mg DOA/l). Migration into distilled water was 74.1 mg/l after 8 min of microwave cooking at full power. The amount of ATBC migrating into olive oil reached equilibrium after heating for 10 min at full power (73.9 mg ATBC/l). Migration into distilled water was 4.1 mg/l after heating at full power for 8 min. Control samples containing olive oil gave DOA migration values which were significantly higher than the upper limit for global migration (60 mg/l) set by the European Community. It is proposed that PVC should not be used in direct contact with food in the microwave oven, while Saran may be used with caution in microwave heating and reheating applications, avoiding its direct contact with high fat foodstuffs.

  9. Effects of Variations in Heat Treatment on the Mechanical Properties and Microstructure of ASTM A710 Grade A Class 3 Steel.

    DTIC Science & Technology

    1983-05-01

    Aa p7 - r %,. - 4k~- Figure~~ ~ ~ ~ ~ ~ 4. Mirsrutr of th lt’ ufc thge anfctos 4~~~. Th ulapaac iti h ert oldpsil edet I the...34 ’ ’""" ." " , ’’ ." ; ." " " ." ’’’ ’" " ’ ’"" . . ."- "" -’," - ’-" " " -" ’’ " ’ " ’" - APPENDIX A. TITLE: Small Angle Neutron Scattering (SANS) Study of Aging of ASTh A710 Grade A, Class 3 Steel SUBMITTED TO: Dr. Richard...efficiency aa - solid angle

  10. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  11. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., of the dried prunes may be affected by mold, dirt, foreign material, insect infestation, or decay.... End cracks. Skin or flesh Foreign material. Skin or flesh damage. 2 damage. 2 Fermentation. Insect infestation.Decay. Fermentation. Scars. Scars. Heat damage. Heat damage. Insect injury. Insect injury....

  12. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., of the dried prunes may be affected by mold, dirt, foreign material, insect infestation, or decay.... End cracks. Skin or flesh Foreign material. Skin or flesh damage. 2 damage. 2 Fermentation. Insect infestation.Decay. Fermentation. Scars. Scars. Heat damage. Heat damage. Insect injury. Insect injury....

  13. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., dirt, foreign material, insect infestation, or decay: Provided, That not more than 1 percent, by weight... flesh damage. 2 damage. 2 Fermentation. Insect infestation.Decay. Fermentation. Scars. Scars. Heat damage. Heat damage. Insect injury. Insect injury. Other means. Other means. Mold. Mold. Dirt....

  14. Tumor Grade

    MedlinePlus

    ... Other Funding Find NCI funding for small business innovation, technology transfer, and contracts Training Cancer Training at ... much of the tumor tissue has normal breast (milk) duct structures Nuclear grade : an evaluation of the ...

  15. Grading Meningioma

    PubMed Central

    Okuchi, Sachi; Okada, Tomohisa; Yamamoto, Akira; Kanagaki, Mitsunori; Fushimi, Yasutaka; Okada, Tsutomu; Yamauchi, Moritaka; Kataoka, Masako; Arakawa, Yoshiki; Takahashi, Jun C.; Minamiguchi, Sachiko; Miyamoto, Susumu; Togashi, Kaori

    2015-01-01

    Abstract The purpose was to compare capability of fluorine-18 fluorodeoxyglucose (FDG)-PET and thallium-201 (Tl)-SPECT for grading meningioma. This retrospective study was conducted as a case-control study under approval by the institutional review board. In the hospital information system, 67 patients (22 men and 45 women) who had both FDG-PET and Tl-SPECT preoperative examinations were found with histopathologic diagnosis of meningioma. The maximum FDG uptake values of the tumors were measured, and they were standardized to the whole body (SUVmax) and normalized as gray matter ratio (SUVRmax). Mean and maximum Tl uptake ratios (TURmean and TURmax, respectively) of the tumors were measured and normalized as ratios to those of the contralateral normal brain. Receiver-operating characteristic curve analyses of the 4 indexes were conducted for differentiation between low- and high-grade meningiomas, and areas under the curves (AUCs) were compared. Correlation coefficients were calculated between these indexes and Ki-67. Fifty-six meningiomas were classified as grade I (low grade), and 11 were grade II or III (high grade). In all 4 indexes, a significant difference was observed between low- and high-grade meningiomas (P < 0.05). AUCs were 0.817 (SUVmax), 0.781 (SUVRmax), 0.810 (TURmean), and 0.831 (TURmax), and no significant difference was observed among the indexes. Their sensitivity and specificity were 72.7% to 90.9% and 71.4% to 87.5%, respectively. Correlation of the 4 indexes to Ki-67 was statistically significant, but coefficients were relatively low (0.273–0.355). Tl-SPECT, which can be used at hospitals without a cyclotron or an FDG distribution network, has high diagnostic capability of meningioma grades comparable to FDG-PET. PMID:25674763

  16. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  17. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  18. Heat transfer in microwave heating

    NASA Astrophysics Data System (ADS)

    Peng, Zhiwei

    Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite

  19. Radiative decays at LHCb

    NASA Astrophysics Data System (ADS)

    Giubega, L. E.

    2016-12-01

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B 0 → K *0 γ and B s → ϕ γ, the direct CP asymmetry in B 0 → K *0 γ decay channel and the observation of the photon polarization in the B ± → K ±π∓π± γ decay, are included. The first two measurements were performed in 1 fb-1 of pp collisions data and the third one in 3 fb-1 of data, respectively.

  20. Is decay constant?

    PubMed

    Pommé, S; Stroh, H; Altzitzoglou, T; Paepen, J; Van Ammel, R; Kossert, K; Nähle, O; Keightley, J D; Ferreira, K M; Verheyen, L; Bruggeman, M

    2017-09-07

    Some authors have raised doubt about the invariability of decay constants, which would invalidate the exponential-decay law and the foundation on which the common measurement system for radioactivity is based. Claims were made about a new interaction - the fifth force - by which neutrinos could affect decay constants, thus predicting changes in decay rates in correlation with the variations of the solar neutrino flux. Their argument is based on the observation of permille-sized annual modulations in particular decay rate measurements, as well as transient oscillations at frequencies near 11 year(-1) and 12.7 year(-1) which they speculatively associate with dynamics of the solar interior. In this work, 12 data sets of precise long-term decay rate measurements have been investigated for the presence of systematic modulations at frequencies between 0.08 and 20 year(-1). Besides small annual effects, no common oscillations could be observed among α, β(-), β(+) or EC decaying nuclides. The amplitudes of fitted oscillations to residuals from exponential decay do not exceed 3 times their standard uncertainty, which varies from 0.00023 % to 0.023 %. This contradicts the assertion that 'neutrino-induced' beta decay provides information about the deep solar interior. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Simulation Analysis of the NH3-H2O Two-Stage Desorption Type Absorption Refrigerator Driven by Low Grade Waste Heat

    NASA Astrophysics Data System (ADS)

    Takei, Toshitaka; Kimijima, Shinji; Saito, Kiyoshi; Kawai, Sunao

    Recently, from a view point of the environmental protection, NH3-H2O absorption refrigerator attracts attention in the field of the refrigeration and the air conditioning. Since NH3-H2O absorption refrigerators can produce below zero degree products, this type of refrigerators have many usages in the refrigeration. This paper describes the two-stage desorption type absorption refrigerator driven by waste heat of co-generation system. There are two absorption cycles which are operated under the condition of the different pressure and the solution concentration in this absorption refrigerator. It becomes essential to clarify the characteristics of this absorption refrigerator since the operating conditions are changed through out the year in the co-generation system. Particularly, in this paper, we investigate the effects of evaporating temperature of ammonia and cooling water temperature for the performance of this absorption refrigerator by simulation analysis. Through out the research, it is shown that COP can be improved when evaporating temperature is higher or cooling water temperature is lower. In addition to this, it is obtained that the necessary temperature of hot water becomes lower in such condition. As a result, the effectiveness of using this absorption refrigerator under the operating condition of which hot watertemperatureis90∼100[°C] and evaporating temperature is -10∼- 20 [°C] is clarified

  2. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  3. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  4. Chapter 3: Wood Decay

    Treesearch

    Dan Cullen

    2014-01-01

    A significant portion of global carbon is sequestered in forest systems. Specialized fungi have evolved to efficiently deconstruct woody plant cell walls. These important decay processes generate litter, soil bound humic substances, or carbon dioxide and water. This chapter reviews the enzymology and molecular genetics of wood decay fungi, most of which are members of...

  5. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  6. Practical heat treating

    SciTech Connect

    Boyer, H.E.

    1984-01-01

    This book presents the heat treating technology. Fundamental information is provided by first explaining briefly the principles of the heat treatment of steel and the concepts of hardness and hardenability. Next, consideration is given to furnaces and related equipment. The major portion of the book, however, is devoted to a discussion of the commonly used heat treatments for carbon and alloy steels, tool steels, stainless steels and cast irons. Sample treatments are given in detail for many of the commercially important and commonly specified grades. Chapters on case hardening procedures, flame and induction heating and the heat treating of non-ferrous alloys complete the book.

  7. Combinedatomic–nuclear decay

    SciTech Connect

    Dzyublik, A. Ya.

    2016-05-15

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2{sup +} level of {sub 63}{sup 153}Eu and K hole, formed in the K capture by {sup 153}Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10{sup −13}, that is much less than the recent experimental findings.

  8. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  9. Charmless B Decays

    SciTech Connect

    Gradl, Wolfgang; /Edinburgh U.

    2007-03-06

    Rare charmless hadronic B decays are a good testing ground for the standard model. The dominant amplitudes contributing to this class of B decays are CKM suppressed tree diagrams and b {yields} s or b {yields} d loop diagrams (''penguins''). These decays can be used to study interfering standard model (SM) amplitudes and CP violation. They are sensitive to the presence of new particles in the loops, and they provide valuable information to constrain theoretical models of B decays. The B factories BABAR at SLAC and Belle at KEK produce B mesons in the reaction e{sup +}e{sup -} {yields} {Upsilon}(4S) {yields} B{bar B}. So far they have collected integrated luminosities of about 406 fb{sup -1} and 600 fb{sup -1}, respectively. The results presented here are based on subsets of about 200-500 fb{sup -1} and are preliminary unless a journal reference is given.

  10. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  11. Radiative decays at LHCb

    SciTech Connect

    Giubega, L. E.; Collaboration: LHCb Collaboration

    2016-12-15

    Precise measurements on rare radiative B decays are performed with the LHCb experiment at LHC. The LHCb results regarding the ratio of branching fractions for two radiative decays, B{sup 0} → K{sup *0}γ and B{sub s} → ϕγ, the direct CP asymmetry in B{sup 0} → K{sup *0}γ decay channel and the observation of the photon polarization in the B{sup ±} → K{sup ±}π{sup ∓}π{sup ±}γ decay, are included. The first two measurements were performed in 1 fb{sup –1} of pp collisions data and the third one in 3 fb{sup –1} of data, respectively.

  12. Decaying Neutrinos and Structure Formation

    NASA Astrophysics Data System (ADS)

    Maloney, Philip; Giroux, Mark

    1993-05-01

    We examine the Hogan-Rees photoionization instability (Hogan 1992, Nature 359, 40) in the context of an Omega =1 universe dominated by massive (m_nu ~ 30 eV) decaying neutrinos. In a medium with a smoothly distributed source of ionizing radiation, the photoionization and heating rates on scales larger than the photon mean free path are independent of the local gas density. Thus, underdense regions receive more energy per particle and heat up faster; this nonadiabatic temperature change produces a pressure term which drives the growth of fluctuations. Hogan (1992) showed that in a static medium this instability produces exponential growth, with growth rates which can be much larger than the expansion rate in the expanding universe. We have found that on small scales (comoving wavenumber k > k_m, where k_m corresponds to lambda ~ 10(-2) Mpc present-day), the growth remains exponential in an expanding universe. The instability growth rate is independent of scale for k > k_m, and declines rapidly with increasing scale, so the characteristic mass produced by the instability will correspond to k ~ k_m. For a neutrino energy above the Lyman limit Delta E (~ m_nu /2-13.6 eV) of a few eV and a decay lifetime T ~ 10(24) seconds, fluctuations at the Poisson level on the scale k_m can grow to non-linearity between z ~ 70 (when Compton cooling inhibits the instability) and z ~ 20 (when the intergalactic medium becomes ionized).

  13. Improving Grading Consistency through Grade Lift Reporting

    ERIC Educational Resources Information Center

    Millet, Ido

    2010-01-01

    We define Grade Lift as the difference between average class grade and average cumulative class GPA. This metric provides an assessment of how lenient the grading was for a given course. In 2006, we started providing faculty members individualized Grade Lift reports reflecting their position relative to an anonymously plotted school-wide…

  14. Strength loss in decayed wood

    Treesearch

    Rebecca E. Ibach; Patricia K. Lebow

    2014-01-01

    Wood is a durable engineering material when used in an appropriate manner, but it is susceptible to biological decay when a log, sawn product, or final product is not stored, handled, or designed properly. Even before the biological decay of wood becomes visually apparent, the decay can cause the wood to become structurally unsound. The progression of decay to that...

  15. Total absorption spectroscopy study of the β decay of 86Br and 91Rb

    NASA Astrophysics Data System (ADS)

    Rice, S.; Algora, A.; Tain, J. L.; Valencia, E.; Agramunt, J.; Rubio, B.; Gelletly, W.; Regan, P. H.; Zakari-Issoufou, A.-A.; Fallot, M.; Porta, A.; Rissanen, J.; Eronen, T.; ńystö, J.; Batist, L.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Elomaa, V.-V.; Estevez, E.; Farrelly, G. F.; Garcia, A. R.; Gomez-Hornillos, B.; Gorlychev, V.; Hakala, J.; Jordan, M. D.; Jokinen, A.; Kolhinen, V. S.; Kondev, F. G.; Martínez, T.; Mason, P.; Mendoza, E.; Moore, I.; Penttilä, H.; Podolyák, Zs.; Reponen, M.; Sonnenschein, V.; Sonzogni, A. A.; Sarriguren, P.

    2017-07-01

    The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the Ion Guide Isotope Separator On-Line facility in Jyväskylä and further purified using the JYFLTRAP. 86Br and 91Rb are considered to be major contributors to the decay heat in reactors. In addition, 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results show that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized. The relative impact of the studied decays in the prediction of the decay heat and antineutrino spectrum from reactors has been evaluated.

  16. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  17. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  18. Exotic Higgs decays

    NASA Astrophysics Data System (ADS)

    Kling, Felix

    Many models of physics beyond the Standard Model include an extended Higgs sector, responsible for electroweak symmetry breaking, and predict the existence of additional Higgs bosons. The Type II Two-Higgs-Doublet Model (2HDM) is a particularly well motivated scenario and a suitable framework for phenomenological studies of extended Higgs sectors. Its low energy spectrum includes two CP-even Higgses h and H, one CP-odd Higgs A, and a pair of charged Higgses H +/-. We study the implication of the LHC Higgs search re- sults on the Type II 2HDM and identify regions of parameter space which are consistent with all experimental and theoretical constraints and can accommo- date the observed 125 GeV Higgs signal. This includes parameter space with a distinctive mass hierarchy which permit a sizable mass splitting between the undiscovered non-Standard Model Higgs states. If this mass splitting is large enough, exotic Higgs decay channels into either a Higgs plus a Standard Model gauge boson or two lighter Higgses open up. This can significantly weaken the reach of the conventional Higgs decay channels into Standard Model particles but also provide the additional opportunity to search for exotic Higgs decay channels. We provide benchmark planes to explore exotic Higgs decay scenar- ios and perform detailed collider analyses to study the exotic decay channels H/A → AZ/HZ and H+/- → AW/HW. We find that these exotic decays offer complementary discovery channels to the conventional modes for both neutral and charged Higgs searches and permit exclusion and discovery in large regions of parameter space.

  19. Flavor changing nucleon decay

    NASA Astrophysics Data System (ADS)

    Maekawa, Nobuhiro; Muramatsu, Yu

    2017-04-01

    Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.

  20. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  1. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  2. Heat-Powered Pump for Liquid Metals

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Proposed thermoelectromagnetic pump for liquid metal powered by waste heat; needs no battery, generator, or other external energy source. Pump turns part of heat in liquid metal into pumping energy. In combination with primary pump or on its own, thermoelectric pump circulates coolant between reactor and radiator. As long as there is decay heat to be removed, unit performs function.

  3. Teachers' Grading Decision Making

    ERIC Educational Resources Information Center

    Isnawati, Ida; Saukah, Ali

    2017-01-01

    This study investigated teachers' grading decision making, focusing on their beliefs underlying their grading decision making, their grading practices and assessment types, and factors they considered in grading decision making. Two teachers from two junior high schools applying different curriculum policies in grade reporting in Indonesian…

  4. Heat pipe array heat exchanger

    DOEpatents

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  5. Neutrinoless Double Beta Decay:

    NASA Astrophysics Data System (ADS)

    Miramonti, Lino

    0ν2β decay is a very powerful tool for probing the physics beyond the particle Standard Model. After the recent discovery of neutrino flavor oscillation, we know that neutrinos must have a mass (at least two of them). The 0ν2β decay discovery could fix the neutrino mass scale and its nature (Majorana particle). The unique characteristics of the Borexino detector and its Counting Test Facility (CTF) can be employed for high sensitivity studies of 116Cd 0ν2β decay: the CAMEO project. A first step foresees 24 enriched 116CdWO4 crystals for a total mass of 65 kg in the Counting Test Facility; then, 370 enriched 116CdWO4 crystals, for a total mass of 1 ton in the Borexino detector. Measurements of 116CdWO4 crystals and Monte Carlo simulations have shown that the CAMEO experiment sensitivity will be T1/20ν > 1026 y, for the 65 kg phase, and T1/20ν > 1027 y for the 1 ton phase; consequently the limit on the effective neutrino mass will be ≤ 60 meV, and ≤ 20 meV, respectively. This work is based upon the experiments performed by the INR (Kiev) (and from 1998 also by the University of Florence) at the Solotvina Underground Laboratory (Ukraine). The current status of 0ν2β, and future projects of 0ν2β decay research are also briefly reviewed.

  6. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  7. Discoloration & decay in oak

    Treesearch

    Alex L. Shigo

    1971-01-01

    Diseases that result in discoloration and decay of wood are major problems affecting all species of oak. Wounds often start the processes that can lead to these diseases. The type and severity of the wound, the vigor of the tree, the environment, and the aggressiveness of microorganisms that infect are some of the most important factors that determine the nature of the...

  8. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  9. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  10. Symmetry relations in nucleon decay

    NASA Astrophysics Data System (ADS)

    Hurlbert, Anya; Wilczek, Frank

    1980-05-01

    Some experimental consequences of the structure of the effective hamiltonian for nucleon decay are presented. New results concern relations among inclusive decay rates, a striking test of the kinship hypothesis involving μ+ polarization, and soft π theorems.

  11. Observational consequences of dark energy decay

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Zhang, Pengjie

    2014-03-01

    We consider the generic scenario of dark energy that arises through the latent heat of a hidden sector first-order cosmological phase transition. This field could account for the extra radiation degree of freedom suggested by the CMB. We present the bubble nucleation solution for the viscous limit. The decay rate of the field is constrained by published kSZ data. This model may provide an explanation of current excess ISW correlations. Cross correlation of current and future surveys can further constrain or test the parameter space. The decay model is plausibly in the observable range and avoids anthropic problems. This class of models is not well constrained by the popular dark energy figure of merit.

  12. Biomass recycling heat technology and energy products

    NASA Astrophysics Data System (ADS)

    Tabakaev, R. B.; Gergelizhiu, P. S.; Kazakov, A. V.; Zavorin, A. S.

    2014-10-01

    Relevance is determined by necessity of utilizing of local low-grade fuels by energy equpment. Most widespread Tomsk oblast (Russian Federation region) low-grade fuels are described and listed. Capability of utilizing is analysed. Mass balances of heat-technology conversion materials and derived products are described. As a result, recycling capability of low-grade fuels in briquette fuel is appraised.

  13. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  14. Theory of weak hypernuclear decay

    SciTech Connect

    Dubach, J.F.; Feldman, G.B.; Holstein, B.R. |; de la Torre, L.

    1996-07-01

    The weak nomesonic decay of {Lambda}-hypernuclei is studied in the context of a one-meson-exchange model. Predictions are made for the decay rate, the {ital p}/{ital n} stimulation ratio and the asymmetry in polarized hypernuclear decay. Copyright {copyright} 1996 Academic Press, Inc.

  15. Protecting log cabins from decay

    Treesearch

    R. M. Rowell; J. M. Black; L. R. Gjovik; W. C. Feist

    1977-01-01

    This report answers the questions most often asked of the Forest Service on the protection of log cabins from decay, and on practices for the exterior finishing and maintenance of existing cabins. Causes of stain and decay are discussed, as are some basic techniques for building a cabin that will minimize decay. Selection and handling of logs, their preservative...

  16. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  17. Superallowed Fermi beta decay

    SciTech Connect

    Hardy, J. C.; Towner, I. S.

    1998-12-21

    Superallowed 0{sup +}{yields}0{sup +} nuclear beta decay provides a direct measure of the weak vector coupling constant, G{sub V}. We survey current world data on the nine accurately determined transitions of this type, which range from the decay of {sup 10}C to that of {sup 54}Co, and demonstrate that the results confirm conservation of the weak vector current (CVC) but differ at the 98% confidence level from the unitarity condition for the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We examine the reliability of the small calculated corrections that have been applied to the data, and assess the likelihood of even higher quality nuclear data becoming available to confirm or deny the discrepancy. Some of the required experiments depend upon the availability of intense radioactive beams. Others are possible today.

  18. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  19. What Is Heat? Inquiry regarding the Science of Heat

    ERIC Educational Resources Information Center

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  20. What Is Heat? Inquiry regarding the Science of Heat

    ERIC Educational Resources Information Center

    Rascoe, Barbara

    2010-01-01

    This lab activity uses inquiry to help students define heat. It is generic in that it can be used to introduce a plethora of science content across middle and high school grade levels and across science disciplines that include biology, Earth and space science, and physical science. Even though heat is a universal science phenomenon that is…

  1. Radioactive decay data tables

    SciTech Connect

    Kocher, D.C.

    1981-01-01

    The estimation of radiation dose to man from either external or internal exposure to radionuclides requires a knowledge of the energies and intensities of the atomic and nuclear radiations emitted during the radioactive decay process. The availability of evaluated decay data for the large number of radionuclides of interest is thus of fundamental importance for radiation dosimetry. This handbook contains a compilation of decay data for approximately 500 radionuclides. These data constitute an evaluated data file constructed for use in the radiological assessment activities of the Technology Assessments Section of the Health and Safety Research Division at Oak Ridge National Laboratory. The radionuclides selected for this handbook include those occurring naturally in the environment, those of potential importance in routine or accidental releases from the nuclear fuel cycle, those of current interest in nuclear medicine and fusion reactor technology, and some of those of interest to Committee 2 of the International Commission on Radiological Protection for the estimation of annual limits on intake via inhalation and ingestion for occupationally exposed individuals.

  2. Non-resonant parametric decay of lower-hybrid waves in the ACT-1 toroidal device

    SciTech Connect

    Wong, K.L.; Ono, M.

    1981-02-01

    Non-resonant parametric decay of lower-hybrid waves, observed in a number of high-power tokamak rf heating experiments, is positively identified as a decay into ion-cyclotron quasi-modes. The decay-wave spectrum, wavelength and amplitude profile are measured inside a toroidal plasma with pump frequency f/sub 0/ approx. 3.5 f/sub ..pi../ approx. 25 f/sub ci/.

  3. Properties of textile grade ceramic fibers

    NASA Technical Reports Server (NTRS)

    Pudnos, Eric

    1992-01-01

    The availability of textile grade ceramic fibers has sparked great interest for applications in composite reinforcement and high temperature insulation. This paper summarizes the properties of various small diameter textile grade ceramic fibers currently available. Room temperature mechanical and electrical properties of the fibers are discussed for three cases: ambient conditions, after heat aging in argon, and after heat aging in wet air. Dow Corning (R) HPZ Ceramic Fiber, a silicon nitride type fiber, is shown to have improved retention of mechanical and electrical properties above 1200 C.

  4. Coalescence Of 2, 3, Or More, Of Approx. 15 Heat Sources (Sustained By Radioactive Decay) Migrating Over Earth's Solid Inner Core Boundary, When Located Near Rotation Axis, In N- Or S-Hemisphere, Engenders Geomagnetic Field Reversals.

    NASA Astrophysics Data System (ADS)

    McDonald, Keith L.

    2004-11-01

    Several years ago we establishedfootnote K.L. McDonald, On The Planetary Dynamo Theory, ESSA Tech. Report 64-ESL 3 (Govt. Printing Office, 1968)footnote K.L. McDonald, Computations in Theoretical Physics..., Univ. Utah Expt. Sta. Bull.138, Feb. 1, 1966, pp.117-8 that both principal magnetic modes Plc0 and T2c0 are destroyed by fluid motions of convective outflow at higher latitudes (polar caps) with subsidence in equatorial regions for both direction senses of B-field; a reversed fluid motion augments these modes and displaces heat sources Si towards equator. Readers should verify these statements by applying concepts of motional electromotive force, force/unit charge, namely, E = (1/c) v x B, and Lorentz force, learned in college sophomore year. The beginning phase of reversals occurs in only one of the two hemispheres and then is transferred by generated meridional motions to other hemisphere, they being interconnected by an incremental latitude region Z centered about Earth's equatorial plane and lying radially between inner core, r V 1240 km, and mantle. A more rapid meridional motion in N. Hemisphere, being guided by dipole magnetic field lines, speeds up that of S. Hemisphere, and conversely, to equatorial plane where fluid descends to flow over solid inner core thereby reducing pre-ponderance of heat sources at equator until nullity of polidal dipole, in 2-3 x 103 yr, while retraining a constant obliquity angle of 11.49 . In absence of dipole guidance, equatorial subsidence is lost and heat sources again migrate, randomly, towards equator thereby, on occasion, repelling axial up-welling fluid motions and eventually destroying coalesced heat sources, thereby restoring regeneration after another 2-3 thousand years. With a regeneration time of same duration, whole reversal process would be 6-9 x 103 yr, T104 yr. K.L. McDonald and D.E. Watson, Constant Obliquity Angle Between Geomagnetic and Geographic Axes, The Astronomical Journal, 73, No. 10, Part II

  5. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  6. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  7. Asterisk Grade Study Report.

    ERIC Educational Resources Information Center

    Kokorsky, Eileen A.

    A study was conducted at Passaic County Community College (PCCC) to investigate the operation of a grading system which utilized an asterisk (*) grade to indicate progress in a course until a letter grade was assigned. The study sought to determine the persistence of students receiving the "*" grade, the incidence of cases of students receiving…

  8. Cleaning of boiler heating surfaces

    SciTech Connect

    Maidanik, M. N.; Vasil'ev, V. V.

    2006-09-15

    Basic methods and facilities for the external cleaning of the heating surfaces of boilers designed for the combustion of low-grade solid fuels are discussed. Water and steam blastings, which are the basic means of cleaning furnace shields, and semi-radiative and convective heating surfaces have the greatest range of application.

  9. Study of the $\\beta $ Decay of Fission Products with the DTAS Detector

    SciTech Connect

    Guadilla, V.; Algora, A.; Tain, J. L.; Agramunt, J.; Aysto, J.; Briz, J. A.; Cucoanes, A.; Eronen, T.; Estienne, M.; Fallot, M.; Fraile, L. M.; Ganioglu, E.; Gelletly, W.; Gorelov, D.; Hakala, J.; Jokinen, A.; Jordan, D.; Kankainen, A.; Kolhinen, V.; Koponen, J.; Lebois, M.; Martinez, T.; Monserrate, M.; Montaner-Piza, A.; Moore, I.; Nacher, E.; Orrigo, S. E. A.; Penttila, H.; Pohjalainen, I.; Porta, A.; Reinikainen, J.; Reponen, M.; Rinta-Antila, S.; Rubio, B.; Rytkonen, K.; Shiba, T.; Sonnenschein, V.; Sonzogni, A. A.; Valencia, E.; Vedia, V.; Voss, A.; Wilson, J. N.; Zakari-Issoufou, A. -A.

    2017-01-01

    Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. Furthermore, the analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors.

  10. NEANDC specialists meeting on yields and decay data of fission product nuclides

    SciTech Connect

    Chrien, R.E.; Burrows, T.W.

    1983-01-01

    Separate abstracts were prepared for the 29 papers presented. Workshop reports on decay heat, fission yields, beta- and gamma-ray spectroscopy, and delayed neutrons are included. An appendix contains a survey of the most recent compilations and evaluations containing fission product yield, fission product decay data, and delayed neutron yield information. (WHK)

  11. Study of the $$\\beta $$ Decay of Fission Products with the DTAS Detector

    DOE PAGES

    Guadilla, V.; Algora, A.; Tain, J. L.; ...

    2017-01-01

    Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. Furthermore, the analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors.

  12. Is radioactive decay really exponential?

    NASA Astrophysics Data System (ADS)

    Aston, P. J.

    2012-03-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3000 years are in error, which is generally attributed to past variation in atmospheric levels of 14C. We note that predicted atmospheric variation (assuming exponential decay) does not agree with results from modelling, and that theoretical quantum mechanics does not predict exact exponential decay. We give mathematical arguments that non-exponential decay should be expected for slowly decaying isotopes and explore the consequences of non-exponential decay. We propose an experimental test of this prediction of non-exponential decay for 14C. If confirmed, a foundation stone of current dating methods will have been removed, requiring a radical reappraisal both of radioisotope dating methods and of currently predicted dates obtained using these methods.

  13. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  14. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  15. The observation of decay

    NASA Astrophysics Data System (ADS)

    Sudbery, A.

    1984-10-01

    It is argued that the usual formulation of quantum mechanics does not satisfactorily describe physical change: the standard formula for a transition probability does not follow from the postulates. Instead, these yield the paradox that a watched pot never bolls (sometimes called "Zeno's paradox"). The paradox is reviewed and the possibility of avoiding it is discussed. A simple model of a decaying system is analysed; the system is then considered in continuous interaction with an apparatus designed to observe the time development of the system. In the light of this analysis, the possibility is considered of replacing the usual (diserete) projection postulate by a continuous projection postulate.

  16. Rare decays and CP asymmetries in charged B decays

    SciTech Connect

    Deshpande, N.G.

    1991-01-01

    The theory of loop induced rare decays and the rate asymmetry due to CP violation in charged B Decays in reviewed. After considering b {yields} s{gamma} and b {yields} se{sup +}e{sup {minus}} decays, the asymmetries for pure penguin process are estimated first. A larger asymmetry can result in those modes where a tree diagram and a penguin diagram interfere, however these estimates are necessarily model dependent. Estimates of Cabbibo suppressed penguins are also considered.

  17. Virus decay and its causes in coastal waters.

    PubMed

    Noble, R T; Fuhrman, J A

    1997-01-01

    Recent evidence suggests that viruses play an influential role within the marine microbial food web. To understand this role, it is important to determine rates and mechanisms of virus removal and degradation. We used plaque assays to examine the decay of infectivity in lab-grown viruses seeded into natural seawater. The rates of loss of infectivity of native viruses from Santa Monica Bay and of nonnative viruses from the North Sea in the coastal seawater of Santa Monica Bay were determined. Viruses were seeded into fresh seawater that had been pretreated in various ways: filtration with a 0.2-(mu)m-pore-size filter to remove organisms, heat to denature enzymes, and dissolved organic matter enrichment to reconstitute enzyme activity. Seawater samples were then incubated in full sunlight, in the dark, or under glass to allow partitioning of causative agents of virus decay. Solar radiation always resulted in increased rates of loss of virus infectivity. Virus isolates which are native to Santa Monica Bay consistently degraded more slowly in full sunlight in untreated seawater (decay ranged from 4.1 to 7.2% h(sup-1)) than nonnative marine bacteriophages which were isolated from the North Sea (decay ranged from 6.6 to 11.1% h(sup-1)). All phages demonstrated susceptibility to degradation by heat-labile substances, as heat treatment reduced the decay rates to about 0.5 to 2.0% h(sup-1) in the dark. Filtration reduced decay rates by various amounts, averaging 20%. Heat-labile, high-molecular-weight dissolved material (>30 kDa, probably enzymes) appeared responsible for about 1/5 of the maximal decay. Solar radiation was responsible for about 1/3 to 2/3 of the maximal decay of nonnative viruses and about 1/4 to 1/3 of that of the native viruses, suggesting evolutionary adaptation to local light levels. Our results suggest that sunlight is an important contributing factor to virus decay but also point to the significance of particles and dissolved substances in seawater.

  18. Validity Decay in STEM and Non-STEM Fields of Study. ACT Working Paper Series. WP-2014-05

    ERIC Educational Resources Information Center

    Westrick, Paul A.

    2014-01-01

    The purpose of this study was to determine if validity coefficients for ACT scores and high school grade point average (HSGPA) decayed or held stable over eight semesters of undergraduate study in science, technology, engineering, and mathematics (STEM) fields at civilian four-year institutions, and whether the decay patterns differed from those…

  19. Grading for Understanding--Standards-Based Grading

    ERIC Educational Resources Information Center

    Zimmerman, Todd

    2017-01-01

    Standards-based grading (SBG), sometimes called learning objectives-based assessment (LOBA), is an assessment model that relies on students demonstrating mastery of learning objectives (sometimes referred to as standards). The goal of this grading system is to focus students on mastering learning objectives rather than on accumulating points. I…

  20. Grading for Understanding--Standards-Based Grading

    ERIC Educational Resources Information Center

    Zimmerman, Todd

    2017-01-01

    Standards-based grading (SBG), sometimes called learning objectives-based assessment (LOBA), is an assessment model that relies on students demonstrating mastery of learning objectives (sometimes referred to as standards). The goal of this grading system is to focus students on mastering learning objectives rather than on accumulating points. I…

  1. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  2. Heat Islands

    EPA Pesticide Factsheets

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  3. Search for rare B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutyin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1995-02-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we have searched for decays b → sgluon through full reconstruction of a whole event. Two B overlineB decays were found with one of B meson decaying into a final state without charmed particles. We also obtained an upper limit of Br(B + → τ+ντ) of 1.04% at 90% CL.

  4. Rare beauty and charm decays

    NASA Astrophysics Data System (ADS)

    Blake, T.; LHCb Collaboration

    2017-07-01

    Rare beauty and charm decays can provide powerful probes of physics beyond the Standard Model. These proceedings summarise the latest measurements of rare beauty and charm decays from the LHCb experiment at the end of Run 1 of the LHC. Whilst the majority of the measurements are consistent with SM predictions, small differences are seen in the rate and angular distribution of ℓ- decay processes.

  5. Westside Outdoor Teacher's Guide, Grades K-6.

    ERIC Educational Resources Information Center

    Brainard, Lynn; And Others

    This illustrated guide includes activities in Creative Arts, Language Arts, Math, Science, and Social Studies. Activities progress from an animal rhyme quiz for lower grades, to projects for upper level students on soil testing, relative humidity, and solar heat collection. The guide emphasizes activities selected to motivate students to…

  6. Westside Outdoor Teacher's Guide, Grades K-6.

    ERIC Educational Resources Information Center

    Brainard, Lynn; And Others

    This illustrated guide includes activities in Creative Arts, Language Arts, Math, Science, and Social Studies. Activities progress from an animal rhyme quiz for lower grades, to projects for upper level students on soil testing, relative humidity, and solar heat collection. The guide emphasizes activities selected to motivate students to…

  7. Rare B Decays at Babar

    SciTech Connect

    Palombo, Fernando; Collaboration, for the BABAR

    2009-01-12

    The author presents some of the most recent BABAR measurements for rare B decays. These include rate asymmetries in the B decays to K{sup (*)}l{sup +}l{sup -} and K{sup +}{pi}{sup -} and branching fractions in the B decays to l{sup +}{nu}{sub l}, K{sub 1}(1270){sup +}{pi}{sup -} and K{sub 1}(1400){sup +}{pi}{sup -}. The author also reports a search for the B{sup +} decay to K{sub S}{sup 0}K{sub S}{sup 0}{pi}{sup +}.

  8. Long-term strength and allowable stresses of grade 10Kh9MFB and X10CrMoVNb9-1 (T91/P91) chromium heat-resistant steels

    NASA Astrophysics Data System (ADS)

    Skorobogatykh, V. N.; Danyushevskiy, I. A.; Schenkova, I. A.; Prudnikov, D. A.

    2015-04-01

    Currently, grade X10CrMoVNb9-1 (T91, P91) and 10Kh9MFB (10Kh9MFB-Sh) chromium steels are widely applied in equipment manufacturing for thermal power plants in Russia and abroad. Compilation and comparison of tensile, impact, and long-term strength tests results accumulated for many years of investigations of foreign grade X10CrMoVNb9-1, T91, P91, and domestic grade 10Kh9MFB (10Kh9MFB-Sh) steels is carried out. The property identity of metals investigated is established. High strength and plastic properties of steels, from which pipes and other products are made, for operation under creep conditions are confirmed. Design characteristics of long-term strength on the basis of tests with more than one million of hour-samples are determined ( and at temperatures of 500-650°C). The table of recommended allowable stresses for grade 10Kh9MFB, 10Kh9MFB-SH, X10CrMoVNb9-1, T91, and P91 steels is developed. The long-time properties of pipe welded joints of grade 10Kh9MFB+10Kh9MFB, 10Kh9MFB-Sh+10Kh9MFB-Sh, X10CrMoVNb9-1+X10CrMoVNb9-1, P91+P91, T91+T91, 10Kh9MFB (10Kh9MFB-Sh)+X10CrMoVNb9-1(T/P91) steels is researched. The welded joint reduction factor is experimentally determined.

  9. Heat pump concepts for industrial use of waste heat

    SciTech Connect

    Blanco, H.P.

    1981-05-01

    Heat pump systems for recovering waste heat are considered. To compare different cycles on a consistent basis, a definition of performance based on the Second Law of Thermodynamics is presented. A high-grade heat-actuated cycle that uses a steam ejector is analyzed, but no substantial development effort is anticipated for implementing heat pumps of this type. Three residual-heat-actuated-heat pumps are analyzed. A turbine-compressor heat pump is presented that can attain relatively high delivery temperatures (approximately 120 to 130/sup 0/C from a source at 60/sup 0/C. The other two residual-heat-actuated concepts presented are absorption heat pumps. One operates on a closed cycle and the other on an open cycle. Delivery temperatures on the order of 115 10 130/sup 0/C with a 60/sup 0/C source are possible, provided that advanced heat/mass transfer configurations are developed. The open-cycle concept is an interesting possibility for heat recovery. It can, in principle, operate with lower waste heat temperatures than a closed cycle, and during the heating season it may provide both process and space heat.

  10. Cluster decay in the superallowed α decay region

    NASA Astrophysics Data System (ADS)

    Bhagwat, A.; Liotta, R. J.

    2017-09-01

    The emissions of α particles and protons are the dominant decay channels in the neutron-deficient nuclei corresponding to the s d g major shell. The possibility of cluster emission is explored here. It is shown that the cluster decay mode has a small yet sizable branching ratio.

  11. CP violation in K decays and rare decays

    SciTech Connect

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs.

  12. Accelerated Decay of Radioisotopes

    DTIC Science & Technology

    2013-01-01

    00-01 -2013 Technical June20 l l-June 2012 4 . TITLE AND SUBTITLE Sa. CONTRACT NUMBER DTRA MIPR 11-2362M Accelerated Decay of Radioisotopes Sb...268 x E +2 4.788 026 x E -2 6.894 757 4.535 924 x E -1 4.214 011 x E -2 1.601 846 x E +1 1.000 000 x E -2 2.579 760 x E - 4 1.000 000 x E -8...c a y o f R a d i o i s o t o p e s " P r o p o s a l # B R C A L L 0 7 - N - 2 - 0 0 4 7 I l l u s t r a t i o n o f \\ P F R P a s p o

  13. Double beta decay: Calorimeters

    NASA Astrophysics Data System (ADS)

    Brofferio, Chiara

    2008-11-01

    Calorimeters or, with a more specific definition, low temperature detectors, have been used by now for more than 15 years in Double Beta Decay (DBD) searches, with excellent results: they compete with Ge diodes for the rank of detectors with the highest sensitivity to the effective neutrino mass, which is defined as a linear combination of the neutrino mass eigenvalues. After a brief introduction to the argument, with some notes on DBD and on bolometers, an update on the now closed experiment CUORICINO and on its successor, CUORE, is given. The fundamental role of background is then revealed and commented, introducing in this way the importance of the specific experiment now under construction, CUORE-0, that will precede CUORE to help optimizing the struggle against surface background. The possible future of this technique is then commented, quoting important R&D studies that are going on, for active shielding bolometers and for scintillating bolometers coupled with light detecting bolometers.

  14. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2007-06-01

    The recent results showing the presence of neutrino oscillations clearly indicate that the difference between the squared mass of neutrinos of different flavors is different from zero, but are unable to determine the nature and the absolute value of the neutrino mass. Neutrinoless double beta decay (DBD) is at present the most powerful tool to ascertain if the neutrino is a Majorana particle and to determine under this condition the absolute value of its mass. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is Dirac or Majorana particle.

  15. Self-Similar Decay of Enstrophy in an Electron Plasma

    NASA Astrophysics Data System (ADS)

    Rodgers, Douglas; Servidio, Sergio; Matthaeus, William; Mitchell, Travis

    2009-11-01

    The similarity solution for energy decay in 3D hydrodynamic turbulence, due to Taylor and von Karman [1], based on the self preservation hypothesis for the shape of the two point correlation, implies that the energy E decays as dE/dt = - a Z^3/L, where a is a constant, Z is the turbulence amplitude and L is a similarity length scale. Extensions of this idea to MHD [2] have been of great utility in solar wind and coronal heating studies. While the hydrodynamic case is well studied experimentally, we are not aware that similarity decay has been examined in a laboratory plasma. Here we conduct an experimental study of this idea in the context of two dimensional electron plasma turbulence. Specifically, we propose an expression for the decay of enstrophy of a single-signed-vorticity fluid which is analogous to the von Karman decay of energy in 3D turbulence, and compare this to the dynamical relaxation of a pure electron plasma in a Malmberg-Penning (MP) trap [3]. Results show good agreement between the proposed decay law and the MP experiments. [1] G. I. Taylor, Proc. Roy. Soc. Lon. A, 151:421, 1935; T. de Karman and L. Howarth, Proc. Roy. Soc. Lon. A, 164:192, 1938. [2] W. H. Matthaeus, G. P. Zank and S. Oughton. J. Plas. Phys., 56:659, 1996. [3] D. J. Rodgers et al, Phys. Rev. Lett., 102(24):244501, 2009.

  16. The Meaning of Grades.

    ERIC Educational Resources Information Center

    Teixeira, Serna E.

    1996-01-01

    Asserts that students see grades as an indicator of effort unconnected to the content of the course while teachers regard grades as a measure of achievement within a discipline. Discusses some of the current controversies and approaches concerning grades and how they relate to school reform. (MJP)

  17. [Grading of prostate cancer].

    PubMed

    Kristiansen, G; Roth, W; Helpap, B

    2016-07-01

    The current grading of prostate cancer is based on the classification system of the International Society of Urological Pathology (ISUP) following a consensus conference in Chicago in 2014. The foundations are based on the frequently modified grading system of Gleason. This article presents a brief description of the development to the current ISUP grading system.

  18. General Graded Response Model.

    ERIC Educational Resources Information Center

    Samejima, Fumiko

    This paper describes the graded response model. The graded response model represents a family of mathematical models that deal with ordered polytomous categories, such as: (1) letter grading; (2) an attitude survey with "strongly disagree, disagree, agree, and strongly agree" choices; (3) partial credit given in accord with an…

  19. Conversations about Grading

    ERIC Educational Resources Information Center

    Gullen, Kristine; Gullen, James; Erickson-Guy, Nickolas

    2012-01-01

    Grades often are determined by the unspoken values and beliefs of an autonomous teacher, but technology is making grading practices more transparent to parents, students, and educators. The ability to view the grade books of teachers who are teaching the same course in the same district is increasingly raising questions and challenges to what were…

  20. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  1. Decay of oscillating universes

    NASA Astrophysics Data System (ADS)

    Mithani, Audrey Todhunter

    2016-08-01

    It has been suggested by Ellis et al that the universe could be eternal in the past, without beginning. In their model, the "emergent universe'' exists forever in the past, in an "eternal'' phase before inflation begins. We will show that in general, such an "eternal'' phase is not possible, because of an instability due to quantum tunneling. One candidate model, the "simple harmonic universe'' has been shown by Graham et al to be perturbatively stable; we find that it is unstable with respect to quantum tunneling. We also investigate the stability of a distinct oscillating model in loop quantum cosmology with respect to small perturbations and to quantum collapse. We find that the model has perturbatively stable and unstable solutions, with both types of solutions occupying significant regions of the parameter space. All solutions are unstable with respect to collapse by quantum tunneling to zero size. In addition, we investigate the effect of vacuum corrections, due to the trace anomaly and the Casimir effect, on the stability of an oscillating universe with respect to decay by tunneling to the singularity. We find that these corrections do not generally stabilize an oscillating universe. Finally, we determine the decay rate of the oscillating universe. Although the wave function of the universe lacks explicit time dependence in canonical quantum cosmology, time evolution may be present implicitly through the semiclassical superspace variables, which themselves depend on time in classical dynamics. Here, we apply this approach to the simple harmonic universe, by extending the model to include a massless, minimally coupled scalar field φ which has little effect on the dynamics but can play the role of a "clock''.

  2. Correspondence between exact Boltzmann transport coefficients and nonexponential time decays.

    NASA Astrophysics Data System (ADS)

    Waltimyer, David R.; Lawrence, Walter E.

    1997-03-01

    We derive an identity relating exact steady-state transport distribution functions to the exact temporal decay of unforced distribution functions obeying particular initial conditions. In consequence, exact transport coefficients obey Drude-like (or relaxation time) formulae in which the relaxationtime has a precise micuoscopic definition characterizing a physical decay process. These identities hold in a variational sense as well, and this provides an approximation method for the time dependence. The exact and approximate time dependences are illustrated for the case of a heated degenerate electron gas coming to equilibrium with a phonon bath, for both strong and weak electron-electron scattering.

  3. Update and evaluation of decay data for spent nuclear fuel analyses

    NASA Astrophysics Data System (ADS)

    Simeonov, Teodosi; Wemple, Charles

    2017-09-01

    Studsvik's approach to spent nuclear fuel analyses combines isotopic concentrations and multi-group cross-sections, calculated by the CASMO5 or HELIOS2 lattice transport codes, with core irradiation history data from the SIMULATE5 reactor core simulator and tabulated isotopic decay data. These data sources are used and processed by the code SNF to predict spent nuclear fuel characteristics. Recent advances in the generation procedure for the SNF decay data are presented. The SNF decay data includes basic data, such as decay constants, atomic masses and nuclide transmutation chains; radiation emission spectra for photons from radioactive decay, alpha-n reactions, bremsstrahlung, and spontaneous fission, electrons and alpha particles from radioactive decay, and neutrons from radioactive decay, spontaneous fission, and alpha-n reactions; decay heat production; and electro-atomic interaction data for bremsstrahlung production. These data are compiled from fundamental (ENDF, ENSDF, TENDL) and processed (ESTAR) sources for nearly 3700 nuclides. A rigorous evaluation procedure of internal consistency checks and comparisons to measurements and benchmarks, and code-to-code verifications is performed at the individual isotope level and using integral characteristics on a fuel assembly level (e.g., decay heat, radioactivity, neutron and gamma sources). Significant challenges are presented by the scope and complexity of the data processing, a dearth of relevant detailed measurements, and reliance on theoretical models for some data.

  4. Project ACE Activity Sets. Book I: Grades 3, 4, and 5.

    ERIC Educational Resources Information Center

    Eden City Schools, NC.

    Eleven activity sets suitable for supplementing social studies units in grades 3, 4, and 5 are presented. Each set lists appropriate resources, concepts, general objectives and instructional objectives for each activity within the set. Grade 3 sets are "You Can Help Conserve Our Natural Resources,""Urban Decay and Urban…

  5. Particle decay in inflationary cosmology

    SciTech Connect

    Boyanovsky, D.; Vega, H.J. de

    2004-09-15

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form {eta}{sup {gamma}{sub 1}} with {eta} being conformal time and we give an explicit expression for {gamma}{sub 1} to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is <decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/{pi}M. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C({eta}) the scale factor and {alpha} determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  6. Tree Decay - An Expanded Concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to wounding and infection-compartmentalization-and the orderly infection of wounds by many microorganisms-successions. The heartrot concept must be abandoned because it deals only with decay-causing fungi and it...

  7. Tree decay an expanded concept

    Treesearch

    Alex L. Shigo

    1979-01-01

    This publication is the final one in a series on tree decay developed in cooperation with Harold G. Marx, Research Application Staff Assistant, U.S. Department of Agriculture, Forest Service, Washington, D.C. The purpose of this publication is to clarify further the tree decay concept that expands the classical concept to include the orderly response of the tree to...

  8. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  9. Soudan 2 nucleon decay experiment

    SciTech Connect

    Thron, J.L.

    1986-01-01

    The Soudan 2 nucleon decay experiment consists of a 1.1 Kton fine grained iron tracking calorimeter. It has a very isotropic detection structure which along with its flexible trigger will allow detection of multiparticle and neutrino proton decay modes. The detector has now entered its construction stage.

  10. Particle decay in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.

    2004-09-01

    We investigate the relaxation and decay of a particle during inflation by implementing the dynamical renormalization group. This investigation allows us to give a meaningful definition for the decay rate in an expanding universe. As a prelude to a more general scenario, the method is applied here to study the decay of a particle in de Sitter inflation via a trilinear coupling to massless conformally coupled particles, both for wavelengths much larger and much smaller than the Hubble radius. For superhorizon modes we find that the decay is of the form ηΓ1 with η being conformal time and we give an explicit expression for Γ1 to leading order in the coupling which has a noteworthy interpretation in terms of the Hawking temperature of de Sitter space-time. We show that if the mass M of the decaying field is ≪H then the decay rate during inflation is enhanced over the Minkowski space-time result by a factor 2H/πM. For wavelengths much smaller than the Hubble radius we find that the decay law is e with C(η) the scale factor and α determined by the strength of the trilinear coupling. In all cases we find a substantial enhancement in the decay law as compared to Minkowski space-time. These results suggest potential implications for the spectrum of scalar density fluctuations as well as non-Gaussianities.

  11. Assessment: How Do I "Grade" without Grades?

    ERIC Educational Resources Information Center

    Glazer, Susan Mandel

    1993-01-01

    Examines the A through F system of letter grades used in most schools, suggesting reasons why this framework is inadequate. Proposes a new assessment model which has children demonstrate that they can accomplish a given task on their own. (MDM)

  12. Duality for Graded Manifolds

    NASA Astrophysics Data System (ADS)

    Grabowski, Janusz; Jóźwikowski, Michał; Rotkiewicz, Mikołaj

    2017-08-01

    We study the notion of duality in the context of graded manifolds. For graded bundles, somehow like in the case of Gelfand representation and the duality: points vs. functions, we obtain natural dual objects which belong to a different category than the initial ones, namely graded polynomial (co)algebra bundles and free graded Weil (co)algebra bundles. Our results are then applied to obtain elegant characterizations of double vector bundles and graded bundles of degree 2. All these results have their supergeometric counterparts. For instance, we give a simple proof of a nice characterisation of N-manifolds of degree 2, announced in the literature.

  13. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    NASA Astrophysics Data System (ADS)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  14. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  15. Charm and bottom semileptonic decays

    NASA Astrophysics Data System (ADS)

    O'donnell, Patrick J.; Turan, Gürsevil

    1997-07-01

    We review the present status of theoretical attempts to calculate the semileptonic charm and bottom decays and then present a calculation of these decays in the light-front frame at the kinematic point q2=0. This allows us to evaluate the form factors at the same value of q2, even though the allowed kinematic ranges for charm and bottom decays are very different. Also, at this kinematic point the decay is given in terms of only one form factor A0(0). For the ratio of the decay rates given by the E653 collaboration we show that the determination of the ratio of the Cabibbo-Kobayashi-Maskawa matrix elements is consistent with that obtained from the unitarity constraint, though a new measurement by the E687 Collaboration is about two standard deviations too high. At present, though, the unitarity method still has greater accuracy. Since comparisons of the semileptonic decays into ρ and either electrons or muons will be available soon from the E791 Fermilab experiment, we also look at the massive muon case. We show that for a range of q2 the SU(3)F symmetry breaking is small even though the contributions of the various helicity amplitudes becomes more complicated. For B decays, the decay B-->K*ll¯ at q2=0 involves an extra form factor coming from the photon contribution and so is not amenable to the same kind of analysis, leaving only the decay B-->K*νν¯ as a possibility. As the mass of the decaying particle increases we note that the SU(3) symmetry becomes badly broken at q2=0.

  16. Heat pumps

    NASA Astrophysics Data System (ADS)

    Gilli, P. V.

    1982-11-01

    Heat pumps for residential/commercial space heating and hot tap water make use of free energy of direct or indirect solar heat and save from about 40 to about 70 percent of energy if compared to a conventional heating system with the same energy basis. In addition, the electrically driven compressor heat pump is able to substitute between 40% (bivalent alternative operation) to 100% (monovalent operation) of the fuel oil of an oilfired heating furnace. For average Central European conditions, solar space heating systems with high solar coverage factor show the following sequence of increasing cost effectiveness: pure solar systems (without heat pumps); heat pump assisted solar systems; solar assisted heat pump systems; subsoil/water heat pumps; air/water heat pumps; air/air heat pumps.

  17. Human heat adaptation.

    PubMed

    Taylor, Nigel A S

    2014-01-01

    In this overview, human morphological and functional adaptations during naturally and artificially induced heat adaptation are explored. Through discussions of adaptation theory and practice, a theoretical basis is constructed for evaluating heat adaptation. It will be argued that some adaptations are specific to the treatment used, while others are generalized. Regarding ethnic differences in heat tolerance, the case is put that reported differences in heat tolerance are not due to natural selection, but can be explained on the basis of variations in adaptation opportunity. These concepts are expanded to illustrate how traditional heat adaptation and acclimatization represent forms of habituation, and thermal clamping (controlled hyperthermia) is proposed as a superior model for mechanistic research. Indeed, this technique has led to questioning the perceived wisdom of body-fluid changes, such as the expansion and subsequent decay of plasma volume, and sudomotor function, including sweat habituation and redistribution. Throughout, this contribution was aimed at taking another step toward understanding the phenomenon of heat adaptation and stimulating future research. In this regard, research questions are posed concerning the influence that variations in morphological configuration may exert upon adaptation, the determinants of postexercise plasma volume recovery, and the physiological mechanisms that modify the cholinergic sensitivity of sweat glands, and changes in basal metabolic rate and body core temperature following adaptation. © 2014 American Physiological Society.

  18. Heat Without Heat

    NASA Astrophysics Data System (ADS)

    Lubkin, Elihu

    1997-04-01

    Logic of the Second Law of Thermodynamics demands acquisition of naked entropy. Accordingly, the leanest liaison between systems is not a diathermic membrane, it is a purely informational tickler, leaking no appreciable energy. The subsystem here is a thermodynamic universe, which gets `heated' entropically, yet without gaining calories. Quantum Mechanics graciously supports that(Lubkin, E. and Lubkin, T., International Journal of Theoretical Physics,32), 933-943 (1993) (at a cost of about 1 bit) through entanglement---across this least permeable of membranes---with what is beyond that universe. Heat without heat(Also v. forthcoming Proceedings of the 4th Drexel University Conference of September 1994) is the aspirin for Boltzmann's headache, conserving entropy in mechanical isolation, even while increasing entropy in thermodynamic isolation.

  19. Semileptonic and leptonic B decays, circa 2016

    NASA Astrophysics Data System (ADS)

    Ricciardi, Giulia

    2017-02-01

    We summarize the status of semileptonic and leptonic B decays, including |Vcb| and |Vub| exclusive and inclusive determinations, decays to excited states of the charm meson spectrum and decays into τ leptons.

  20. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  1. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  2. The Chemical Heat Pump Program. An overview

    NASA Astrophysics Data System (ADS)

    Mezzina, A.

    1982-03-01

    A brief overview of the Chemical Heat Pump Program is presented. Program background, rationale, technology description, and research and development needs are addressed. Chemical heat pumps comprise reversible reactions which can be driven by low grade heat. Thermal energy is absorbed in one direction and librated in the reverse direction: thus, serving as a basis for system designs applicable to space conditioning or process heat management and offering the capability for high density energy storage as an integral part of the system.

  3. Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Fiorini, Ettore

    2010-12-01

    Almost exactly seventy years ago and only one year before his tragic disappearance the ingenious idea of Ettore Majorana is becoming one of the most important step in the development of fundamental physics. The problem of the nature of the neutrino, namely if it is a massless Dirac particle different from its antineutrino or a Majorana particle with finite mass, is discussed. In fact the recent results showing the presence of neutrino oscillations clearly indicates that the difference between the squared mass of neutrinos of different flavours is finite. Neutrinoless double beta decay (DBD) is at present the most powerful tool to determine the effective value of the mass of a Majorana neutrino. The results already obtained in this lepton violating process will be reported and the two presently running DBD experiments briefly discussed. The future second generation experiments will be reviewed with special emphasis to those already at least partially approved. In conclusion the peculiar and interdisciplinary nature of these searches will be stressed in their exciting aim to discover if neutrino is indeed a Majorana particle.

  4. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  5. Nonleptonic Bc→VV decays

    NASA Astrophysics Data System (ADS)

    Kar, Susmita; Dash, P. C.; Priyadarsini, M.; Naimuddin, Sk.; Barik, N.

    2013-11-01

    We study the exclusive nonleptonic Bc→VV decays, within the factorization approximation, in the framework of the relativistic independent quark model, based on a confining potential in the scalar-vector harmonic form. The weak form factors are extracted from the overlap integral of meson wave functions derived in the relativistic independent quark model. The predicted branching ratios for different Bc-meson decays are obtained in a wide range, from a tiny value of O(10-6) for Bc→D*D(s)* to a large value of 24.32% for Bc→Bs*ρ-, in general agreement with other dynamical-quark-model predictions. The decay modes Bc→Bs*ρ- and Bc→B*ρ- with high branching ratios of 24.32% and 1.73%, respectively, obtained in this model should be detectable at the LHC and Tevatron in the near future. The b→c, u induced decays are predicted predominantly in the longitudinal mode, whereas the c¯→s¯, d¯ induced decays are obtained in a slightly higher transverse mode. The CP-odd fractions (R⊥) for different decay modes are predicted and those for color-favored Bc→D*D*, D*Ds* decays indicate significant CP violation in this sector.

  6. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  7. Decay of Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Choudhary, Debi Prasad

    2005-01-01

    We examine the record of sunspot group areas observed over a period of 100 years to determine the rate of decay of solar active regions. We exclude observations of groups when they are more than 60deg in longitude from the central meridian and only include data when at least three days of observations are available following the date of maximum area for a spot group's disk passage. This leaves data for some 24,000 observations of active region decay. We find that the decay rate is a constant 20 microHem/day for spots smaller than about 200 microHem (about the size of a supergranule). This decay rate increases linearly to about 90 microHem/day for spots with areas of 1000 microHem. We find no evidence for significant variations in active region decay from one solar cycle to another. However, we do find that the decay rate is slower at lower latitudes. This gives a slower decay rate during the declining phase of sunspot cycles.

  8. Heat Pipes

    ERIC Educational Resources Information Center

    Lewis, J.

    1975-01-01

    Describes the construction, function, and applications of heat pipes. Suggests using the heat pipe to teach principles related to heat transfer and gives sources for obtaining instructional kits for this purpose. (GS)

  9. Heat Stress

    MedlinePlus

    ... Work in the Heat: Why Acclimatization Matters The natural adaptation to the heat takes time, and from a management perspective, it may require careful planning. NIOSH Science Blog: Extreme Heat – Are you prepared for summer ...

  10. A Simple Alternative to Grading

    ERIC Educational Resources Information Center

    Potts, Glenda

    2010-01-01

    In this article, the author investigates whether an alternative grading system (contract grading) would yield the same final grades as traditional grading (letter grading), and whether or not it would be accepted by students. The author states that this study demonstrated that contract grading was widely, and for the most part, enthusiastically…

  11. (Higgs) vacuum decay during inflation

    NASA Astrophysics Data System (ADS)

    Joti, Aris; Katsis, Aris; Loupas, Dimitris; Salvio, Alberto; Strumia, Alessandro; Tetradis, Nikolaos; Urbano, Alfredo

    2017-07-01

    We develop the formalism for computing gravitational corrections to vacuum decay from de Sitter space as a sub-Planckian perturbative expansion. Non-minimal coupling to gravity can be encoded in an effective potential. The Coleman bounce continuously deforms into the Hawking-Moss bounce, until they coincide for a critical value of the Hubble constant. As an application, we reconsider the decay of the electroweak Higgs vacuum during inflation. Our vacuum decay computation reproduces and improves bounds on the maximal inflationary Hubble scale previously computed through statistical techniques.

  12. Decays of the b quark

    NASA Astrophysics Data System (ADS)

    Thorndike, Edward H.; Poling, Ronald A.

    1988-01-01

    Recent experimental results on the decay of b-flavored hadrons are reviewed. Substantial progress has been made in the study of exclusive and inclusive B-meson decays, as well as in the theoretical understanding of these processes. The two most prominent developments are the continuing failure to observe evidence of decays of the b quark to a u quark rather than a c quark, and the surprisingly high level of B 0- overlineB0 mi xing which has recently been reported by the ARGUS collaboration. Notwithstanding these results, we conclude that the health of the Standard Model is excellent.

  13. Tensor interactions and τ decays

    NASA Astrophysics Data System (ADS)

    Godina Nava, J. J.; López Castro, G.

    1995-09-01

    We study the effects of charged tensor weak currents on the strangeness-changing decays of the τ lepton. First, we use the available information on the K+e3 form factors to obtain B(τ--->K-π0ντ)~10-4 when the Kπ system is produced in an antisymmetric tensor configuration. Then we propose a mechanism for the direct production of the K*2(1430) in τ decays. Using the current upper limit on this decay we set a bound on the symmetric tensor interactions.

  14. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  15. Effects of proliferation on the decay of thermotolerance in Chinese hamster cells.

    PubMed

    Armour, E P; Li, G C; Hahn, G M

    1985-09-01

    Development and decay of thermotolerance were observed in Chinese hamster HA-1 cells. The thermotolerance kinetics of exponentially growing and fed plateau-phase cells were compared. Following a 10-min heat exposure at 45 degrees C, cells in both growth states had similar rates of development of tolerance to a subsequent 45-min exposure at 45 degrees C. This thermotolerant state started to decay between 12 and 24 hr after the initial heat exposure. The decay appeared to initiate slightly sooner in the exponentially growing cells when compared to the fed plateau-phase cells. During the decay phase, the rate of thermotolerance decay was similar in the two growth conditions. In other experiments, cells were induced to divide at a slower rate by chronic growth (3 months) in a low concentration of fetal calf serum. Under these low serum conditions cells became more sensitive to heat and the rate of decay of thermotolerance remained the same for exponentially growing cells. Plateau-phase cells were also more sensitive, but thermotolerance decayed more rapidly in these cells. Although dramatic cell cycle perturbations were seen in the exponentially growing cells, these changes appeared not to be related to thermotolerance kinetics.

  16. Obesity and dental decay: inference on the role of dietary sugar.

    PubMed

    Goodson, J Max; Tavares, Mary; Wang, Xiaoshan; Niederman, Richard; Cugini, Maryann; Hasturk, Hatice; Barake, Roula; Alsmadi, Osama; Al-Mutawa, Sabiha; Ariga, Jitendra; Soparkar, Pramod; Behbehani, Jawad; Behbehani, Kazem

    2013-01-01

    To evaluate the relationship of children's obesity and dental decay. We measured parameters related to obesity and dental decay in 8,275 4(th) and 5(th) grade Kuwaiti children (average age = 11.36 years) in a cross-sectional study. First to determine body weight, height, age for computation of BMI . Second, to determine numbers of teeth, numbers of fillings and numbers of untreated decayed teeth to determine extent and severity of dental disease. From these measurements, we computed measures of dental decay in children from four body weight categories; obese, overweight, normal healthy weight and underweight children. The percentage of children with decayed or filled teeth varied inversely with the body weight category. The percentage of decayed or filled teeth decreased from 15.61% (n=193) in underweight children, to 13.03% (n=4,094) in normal healthy weight children, to 9.73% (n=1,786) in overweight children to 7.87% (n=2,202) in obese children. Differences between all groups were statistically significant. Male children in this population had more dental decay than female children but the reduction of tooth decay as a function of BMI was greater in male children. The finding of an inverse obesity-dental decay relationship contradicts the obesity-sugar and the obesity-dental decay relationship hypotheses. Sugar is well recognized as necessary and sufficient for dental decay. Sugar is also hypothesized to be a leading co-factor in obesity. If the later hypothesis is true, one would expect dental decay to increase with obesity. This was not found. The reasons for this inverse relationship are not currently clear.

  17. RARE DECAYS INCLUDING PENGUINS

    SciTech Connect

    Eigen, G

    2003-12-04

    The authors present a preliminary measurement of the exclusive charmless semileptonic B decays, B {yields} {rho}{ell}{nu}, and the extraction of the CKM parameters V{sub ub}. IN a data sample of 55 x 10{sup 6} B{bar B} events they measure a branching fraction of {Beta}(B {yields} {rho}{ell}{nu}) = (3.39 {+-} 0.44{sub stat} {+-} 0.52{sub sys} {+-} 0.60{sub th}) x 10{sup -4} yielding |V{sub ub}| = (3.69 {+-} 0.23{sub stat} {+-} 0.27{sub sys -0.59th}{sup +0.40}) x 10{sup -3}. Next, they report on a preliminary study of the radiative penguin modes B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -}. In a data sample of 84 x 10{sup 6} B{bar B} events they observe a significant signal (4.4{sigma}) in B {yields} K{ell}{sup +}{ell}{sup -}, yielding a branching fraction of {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) = (0.78{sub -0.20-0.18}{sup +0.24+0.11}) x 10{sup -6}. In B {yields} K*{ell}{sup +}{ell}{sup -} the observed yield is not yet significant (2.8{sigma}), yielding an upper limit of the branching fraction of {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) 3.0 x 10{sup -6} {at} 90% confidence level. Finally, they summarize preliminary results of searches for B {yields} {rho}({omega}){gamma}, B{sup +} {yields} K{sup +} {nu}{bar {nu}} and B{sup 0} {yields} {ell}{sup +}{ell}{sup -}.

  18. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  19. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, S.B.

    1986-04-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

  20. Graded pitch electromagnetic pump for thin strip metal casting systems

    DOEpatents

    Kuznetsov, Stephen B.

    1986-01-01

    A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel.

  1. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  2. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  3. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  4. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  5. Decoherence delays false vacuum decay

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.

    2013-05-01

    We show that gravitational interactions between massless thermal modes and a nucleating Coleman-de Luccia bubble may lead to efficient decoherence and strongly suppress metastable vacuum decay for bubbles that are small compared to the Hubble radius. The vacuum decay rate including gravity and thermal photon interactions has the exponential scaling \\Gamma \\sim \\Gamma _{CDL}^{2}, where ΓCDL is the Coleman-de Luccia decay rate neglecting photon interactions. For the lowest metastable initial state an efficient quantum Zeno effect occurs due to thermal radiation of temperatures as low as the de Sitter temperature. This strong decoherence effect is a consequence of gravitational interactions with light external mode. We argue that efficient decoherence does not occur for the case of Hawking-Moss decay. This observation is consistent with requirements set by Poincaré recurrence in de Sitter space.

  6. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  7. CP violation in sbottom decays

    NASA Astrophysics Data System (ADS)

    Deppisch, Frank F.; Kittel, Olaf

    2010-06-01

    We study CP asymmetries in two-body decays of bottom squarks into charginos and top quarks. These asymmetries probe the SUSY CP phases of the sbottom and the chargino sector in the Minimal Supersymmetric Standard Model (MSSM). We identify the MSSM parameter space where the CP asymmetries are sizeable. As a result, potentially detectable CP asymmetries in sbottom decays are found, which motivates further detailed experimental studies for probing the SUSY CP phases at the LHC.

  8. Observations of HF backscatter decay rates from HAARP generated FAI

    NASA Astrophysics Data System (ADS)

    Bristow, William; Hysell, David

    2016-07-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  9. Recent advances in β-decay spectroscopy at CARIBU

    NASA Astrophysics Data System (ADS)

    Mitchell, A. J.; Copp, P.; Savard, G.; Lister, C. J.; Lane, G. J.; Carpenter, M. P.; Clark, J. A.; Zhu, S.; Ayangeakaa, A. D.; Bottoni, S.; Brown, T. B.; Chowdhury, P.; Chillery, T. W.; David, H. M.; Hartley, D. J.; Heckmaier, E.; Janssens, R. V. F.; Kolos, K.; Kondev, F. G.; Lauritsen, T.; McCutchan, E. A.; Norman, E. B.; Padgett, S.; Scielzo, N. D.; Seweryniak, D.; Smith, M. L.; Wilson, G. L.

    2016-09-01

    β-decay spectroscopy of nuclei far from stability can provide powerful insight into a broad variety of topics in nuclear science, ranging from exotic nuclear structure phenomena, stellar nucleosynthesis processes, and applied topics such as quantifying "decay heat" discrepancies for advanced nuclear fuel cycles. Neutronrich nuclei approaching the drip-line are difficult to access experimentally, leaving many key examples largely under studied. The CARIBU radioactive beam facility at Argonne National Laboratory exploits spontaneous fission of 252Cf in production of such beams. The X-Array and SATURN decay station have been commissioned to perform detailed decay spectroscopy of low-energy CARIBU beams. An extended science campaign was started during 2015; with projects investigating nuclear shape changes, collective octupole vibrations, β-delayed neutron emission, and decay-scheme properties which could explain the reactor antineutrino puzzle. In this article we review the current status of the setup, update on the first results and recent hardware upgrades, and look forward to future possibilities.

  10. Observations of HF backscatter decay rates from HAARP generated FAI

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Hysell, D. L.

    2016-12-01

    Suitable experiments at the High-frequency Active Auroral Research Program (HAARP) facilities in Gakona, Alaska, create a region of ionospheric Field-Aligned Irregularities (FAI) that produces strong radar backscatter observed by the SuperDARN radar on Kodiak Island, Alaska. Creation of FAI in HF ionospheric modification experiments has been studied by a number of authors who have developed a rich theoretical background. The decay of the irregularities, however, has not been so widely studied yet it has the potential for providing estimates of the parameters of natural irregularity diffusion, which are difficult measure by other means. Hysell, et al. [1996] demonstrated using the decay of radar scatter above the Sura heating facility to estimate irregularity diffusion. A large database of radar backscatter from HAARP generated FAI has been collected over the years. Experiments often cycled the heater power on and off in a way that allowed estimates of the FAI decay rate. The database has been examined to extract decay time estimates and diffusion rates over a range of ionospheric conditions. This presentation will summarize the database and the estimated diffusion rates, and will discuss the potential for targeted experiments for aeronomy measurements. Hysell, D. L., M. C. Kelley, Y. M. Yampolski, V. S. Beley, A. V. Koloskov, P. V. Ponomarenko, and O. F. Tyrnov, HF radar observations of decaying artificial field aligned irregularities, J. Geophys. Res. , 101, 26,981, 1996.

  11. Laser initiation and decay processes in an organic vapor plasma

    NASA Astrophysics Data System (ADS)

    Ding, Guowen

    A large volume organic molecular plasma (hundreds of cm3) is created by a 193 nm laser ionizing an organic molecule, Tetrakis-(dimethylamino)-ethylene (TMAE). The plasma is found to be characterized by high electron density (10 13-1011cm-3), low electron temperature (~0.1 eV), fast creation (~10 ns) and rapid decaying (electron-ion recombination coefficient ~10-6 cm3/s). Fast Langmuir probe (LP) techniques are developed for diagnosing this plasma, including a novel probe design and fabrication, a fast detection system, sampling, indirect probe heating, electro-magnetic shielding and dummy probe techniques. Plasma physical processes regarding fast LP diagnostics for different time scales (t> and <100 ns) are studied. A theory for the correction due to a rapidly decaying plasma to LP measurements is developed. The mechanisms responsible for the plasma decay are studied, and a delayed ionization process is found to be important in interpreting the decay processes. It is also found that nitrogen can enhance the delayed emission of a TMAE Rydberg state from the TMAE plasma. This result strongly suggests that a long-lifetime highly-excited state is important in the TMAE plasma decay process. This result supports the delayed ionization mechanism. A model combining electron-ion recombination and delayed ionization processes is developed to calculate the delayed ionization lifetime.

  12. Physical limits on steam generation by radioactive decay heat

    SciTech Connect

    Chesnut, D.A.

    1991-12-01

    This report briefly discusses the possibilities that flood water contacting the hot radioactive waste and rock at Yucca Mountain could produce enough steam to lift the top of the mountain off the repository.

  13. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  14. Skill Schemes: Sixth Grade.

    ERIC Educational Resources Information Center

    Kempf, Jerry

    The sixth grade instructional unit, part of a field-tested grade school level career education series, is designed to assist learners in understanding how present experiences relate to past and future ones. Before the main body of the lessons is described, field testing results are reported and key items are presented: the concepts, the estimated…

  15. Earth Science, Grade 7.

    ERIC Educational Resources Information Center

    Buffalo Public Schools, NY.

    GRADES OR AGES: Grade 7. SUBJECT MATTER: Earth science. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory material suggests a time schedule for the major units and gives details of the reference materials referred to in the text. The main text is presented in four columns: topical outline, basic understandings, suggested activities and…

  16. Beef grading by ultrasound

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.

    1981-01-01

    Reflections in ultrasonic A-scan signatures of beef carcasses indicate USDA grade. Since reflections from within muscle are determined primarily by fat/muscle interface, richness of signals is direct indication of degree of marbling and quality. Method replaces subjective sight and feel tests by individual graders and is applicable to grade analysis of live cattle.

  17. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1985

    1985-01-01

    Presents a collection of computer-oriented teaching activities for the middle grades. They focus on Logo activities to sharpen visualization skills, use of spreadsheets, various uses of Apple microcomputer paddles, and writing a program from program output. All activities may be adapted for lower or higher grade levels. (JN)

  18. Science. Grades K-6.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh.

    GRADES OR AGES: Kindergarten--grade 6. SUBJECT MATTER: Science. ORGANIZATION AND PHYSICAL APPEARANCE: The introductory section deals with objectives, scope, sequences, and units. The main body of the guide deals with activities and lists materials, with illustrations. The guide is offset printed and bound with a soft cover. OBJECTIVES AND…

  19. Controlling Grade Inflation

    ERIC Educational Resources Information Center

    Stanoyevitch, Alexander

    2008-01-01

    In this article concerning grade inflation, the author restricts his attention to the college and university level, although many of the tools and ideas developed here should be useful for high schools as well. The author considers the relationships between grades instructors assign and scores they receive on end-of-the semester student…

  20. Third Grade Reading Policies

    ERIC Educational Resources Information Center

    Rose, Stephanie

    2012-01-01

    In 2012, 14 states passed legislation geared toward improving 3rd-grade literacy through identification, intervention, and/or retention initiatives. Today, a total of 32 states and the District of Columbia have policies in statute aimed at improving 3rd-grade reading proficiency. The majority of these states require early assessment and…

  1. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1985

    1985-01-01

    Presents a collection of computer-oriented teaching activities for the middle grades. They focus on Logo activities to sharpen visualization skills, use of spreadsheets, various uses of Apple microcomputer paddles, and writing a program from program output. All activities may be adapted for lower or higher grade levels. (JN)

  2. Beef grading by ultrasound

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.

    1981-01-01

    Reflections in ultrasonic A-scan signatures of beef carcasses indicate USDA grade. Since reflections from within muscle are determined primarily by fat/muscle interface, richness of signals is direct indication of degree of marbling and quality. Method replaces subjective sight and feel tests by individual graders and is applicable to grade analysis of live cattle.

  3. Grades out, Badges in

    ERIC Educational Resources Information Center

    Young, Jeffrey R.

    2012-01-01

    Grades are broken. Students grub for them, pick classes where good ones come easily, and otherwise hustle to win the highest scores for the least learning. As a result, college grades are inflated to the point of meaninglessness--especially to employers who want to know which diploma-holder is best qualified for their jobs. An alternative is to…

  4. Making Grades More Meaningful

    ERIC Educational Resources Information Center

    Hochbein, Craig; Pollio, Marty

    2016-01-01

    To expand and improve evidence of grading practices, we seized an opportunity presented by the implementation of standards-based grading practices at 11 high schools in Jefferson County Public Schools in Louisville, Ky. These high-needs schools faced substantial sanctions outlined by recently revised federal and state policies unless they made…

  5. The Grades Game

    ERIC Educational Resources Information Center

    Fleenor, Andy; Lamb, Sarah; Anton, Jennifer; Stinson, Todd; Donen, Tony

    2011-01-01

    It can be quite alarming (and eye-opening) to see exactly how many of the grades students receive are based on their behaviors rather than their learning. Students should be assessed on what they know and can use rather than on their behavior. The reality, unfortunately, is that the opposite is often the case. Grades for students who work hard are…

  6. Classroom: Efficient Grading

    ERIC Educational Resources Information Center

    Shaw, David D.; Pease, Leonard F., III.

    2014-01-01

    Grading can be accelerated to make time for more effective instruction. This article presents specific time management strategies selected to decrease administrative time required of faculty and teaching assistants, including a multiple answer multiple choice interface for exams, a three-tier grading system for open ended problem solving, and a…

  7. Grain Grading and Handling.

    ERIC Educational Resources Information Center

    Rendleman, Matt; Legacy, James

    This publication provides an introduction to grain grading and handling for adult students in vocational and technical education programs. Organized in five chapters, the booklet provides a brief overview of the jobs performed at a grain elevator and of the techniques used to grade grain. The first chapter introduces the grain industry and…

  8. Growing beyond Grades

    ERIC Educational Resources Information Center

    Perchemlides, Natalia; Coutant, Carolyn

    2004-01-01

    Once students are asked to assess their own writing progress, they will begin to do their best for writing great prose instead of just great grades. Teachers will have to create a grade-free zone, allow students to set their own writing goals, provide a common language such as the Six Traits Model, and provide evaluation and instructional models…

  9. Controlling Grade Inflation

    ERIC Educational Resources Information Center

    Stanoyevitch, Alexander

    2008-01-01

    In this article concerning grade inflation, the author restricts his attention to the college and university level, although many of the tools and ideas developed here should be useful for high schools as well. The author considers the relationships between grades instructors assign and scores they receive on end-of-the semester student…

  10. What Is Fifth Grade?

    ERIC Educational Resources Information Center

    O'Brien, Thomas C.; Wallach, Christine

    2006-01-01

    One of the most consistent regularities observers would see in schools is the grouping of children by grade. The authors' work with schoolchildren causes them to ask, what is a grade beyond a group of children at a particular age? In this article, the authors share a glimpse of an activity involving inference and logical necessity that they…

  11. Are Grades Undermining Motivation?

    ERIC Educational Resources Information Center

    Berliner, David; Casanova, Ursula

    1988-01-01

    A study of fifth and sixth grade public school students in Israel suggests that grades and other norm-referenced methods are less effective than task-involving evaluation methods in enhancing student performance, interest, and motivation. This article consists of two commentaries on the findings, with suggestions for implementing task-involving…

  12. Pallet part grading trainer

    Treesearch

    Deborah F. Cook; Philip A. Araman; Matthew F. Winn

    2000-01-01

    A computerized pallet grading training system was developed to facilitate the production of higher quality pallets. Higher quality pallets would be more durable and could be re-used many times, resulting in long-term savings. Schmoldt et al. (1993) evaluated the economic impact of grading and sorting pallet parts. They determined that higher quality pallets produced by...

  13. Classroom: Efficient Grading

    ERIC Educational Resources Information Center

    Shaw, David D.; Pease, Leonard F., III.

    2014-01-01

    Grading can be accelerated to make time for more effective instruction. This article presents specific time management strategies selected to decrease administrative time required of faculty and teaching assistants, including a multiple answer multiple choice interface for exams, a three-tier grading system for open ended problem solving, and a…

  14. Making Grades More Meaningful

    ERIC Educational Resources Information Center

    Hochbein, Craig; Pollio, Marty

    2016-01-01

    To expand and improve evidence of grading practices, we seized an opportunity presented by the implementation of standards-based grading practices at 11 high schools in Jefferson County Public Schools in Louisville, Ky. These high-needs schools faced substantial sanctions outlined by recently revised federal and state policies unless they made…

  15. Third Grade Reading Policies

    ERIC Educational Resources Information Center

    Rose, Stephanie

    2012-01-01

    In 2012, 14 states passed legislation geared toward improving 3rd-grade literacy through identification, intervention, and/or retention initiatives. Today, a total of 32 states and the District of Columbia have policies in statute aimed at improving 3rd-grade reading proficiency. The majority of these states require early assessment and…

  16. Upper Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1985

    1985-01-01

    Describes computer-oriented teaching activities for the upper grades. They focus on the use of databases in history classes, checking taxes, examining aspects of the joystick button on Atari microcomputers, printing control using Logo, and a Logo program that draws whirling squares. All activities can be adapted for lower grades. (JN)

  17. Teaching Middle Grades Science.

    ERIC Educational Resources Information Center

    Georgia State Dept. of Education, Atlanta. Office of Instructional Services.

    Background information and exemplary units for teaching science in Georgia's middle school grades are provided. Discussed in the first section are: (1) the rationale for including science in middle school grades, focusing on science/society/technology, science/social issues, scientific reasoning, and scientific literacy; (2) role of science…

  18. Pioneering Heat Pump Project

    SciTech Connect

    Aschliman, Dave; Lubbehusen, Mike

    2015-06-30

    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  19. Secondary Principals' Perceptions of Grading and Grade Reporting Practices

    ERIC Educational Resources Information Center

    Akins, Jeremie

    2016-01-01

    Effective grading practices in the classroom as well as reporting practices such as standards-based grading (SBG) is one way to report learning (Marzano, 2010). The focus of this particular study was to address alternative ways to tackle the issue of grading and grade reporting in comparison to the traditional grading methods. Specifically, this…

  20. Few body hypernuclear systems: Weak decays

    SciTech Connect

    Dover, C.B.

    1987-01-01

    The experimental and theoretical situation regarding mesonic and non-mesonic decays of light hypernuclei is reviewed. Although some models give reasonable results for pionic decays as well as the total weak decay rate, no existing approach explains, even qualitatively, the observed spin-isospin dependence of ..lambda..N ..-->.. NN non-mesonic weak decays. 31 refs., 2 figs.

  1. Triton's global heat budget

    NASA Technical Reports Server (NTRS)

    Brown, R. H.; Johnson, T. V.; Goguen, J. D.; Schubert, G.; Ross, M. N.

    1991-01-01

    Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 percent of the isolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance. These additional energy inputs can raise Triton's surface temperature between about 0.5 and 1.5 K above that possible with absorbed sunlight alone, resulting in an increase of about a factor of about 1.5 to 2.5 in Triton's basal atmospheric pressure. If Triton's internal heat flow is concentrated in some areas, as is likely, local effects such as enhanced sublimation with subsequent modification of albedo could be quite large. Furthermore, indications of recent global albedo change on Triton suggest that Triton's surface temperature and pressure may not now be in steady state, further suggesting that atmospheric pressure on Triton was as much as ten times higher in the recent past.

  2. Kaons in flavour tagged B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M. G.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Seeger, M.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Cronström, H. I.; Jönsson, L.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Snizhko, A.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.

    1994-09-01

    Using the ARGUS detector at the e + e - storage ring DORIS II, flavour-dependent kaon production in B meson decays has been studied. Using the leptons as flavour tags, it has been possible to separately measure the multiplicities of K +, K - and K {/s 0} in inclusive B decays and in semileptonic B decays. The kaon production in semileptonic B decays was further used to estimate the ratio of charmed decays over all decays, and thus also the fraction of charmless B decays.

  3. 7 CFR 52.3184 - Grades of dried prunes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... or U.S. Standard, but not more than 5 percent, by weight, of the dried prunes may be affected by mold... texture. Mold. Decay. Poor texture. End cracks. Dirt. End cracks. Skin or flesh Foreign material. Skin or... damage. Heat damage. Insect injury. Insect injury. Other means. Other means. Mold. Mold. Dirt....

  4. Five Obstacles to Grading Reform

    ERIC Educational Resources Information Center

    Guskey, Thomas R.

    2011-01-01

    Educators seeking to reform grading must combat five long-held traditions that stand as formidable obstacles to change: (1) Grades should provide the basis for differentiating students; (2) grade distributions should resemble a bell-shaped curve; (3) grades should be based on students' standing among classmates; (4) poor grades prompt students to…

  5. Paperless Grades and Faculty Development.

    ERIC Educational Resources Information Center

    Hardy, James C.; Jones, Dennis; Turner, Sandy

    2003-01-01

    Provides overview of process of switching from paper-based grade reporting to computer-based grading. Authors found that paperless grading decreased number of errors, made student access more immediate, and reduced costs incurred by purchasing and storing grade-scanning sheets. Authors also argue that direct entry grading encourages faculty to…

  6. Five Obstacles to Grading Reform

    ERIC Educational Resources Information Center

    Guskey, Thomas R.

    2011-01-01

    Educators seeking to reform grading must combat five long-held traditions that stand as formidable obstacles to change: (1) Grades should provide the basis for differentiating students; (2) grade distributions should resemble a bell-shaped curve; (3) grades should be based on students' standing among classmates; (4) poor grades prompt students to…

  7. View of Highway 120 at Priest Grade. Old Priest Grade ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Highway 120 at Priest Grade. Old Priest Grade seen at left distance. New Priest Grade at center and right distance. Looking west - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  8. Decay curve study in a standard electron capture decay

    SciTech Connect

    Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.

    2010-05-12

    We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.

  9. Photo induced three body decay

    NASA Astrophysics Data System (ADS)

    Maul, Christof; Gericke, Karl-Heinz

    The photo induced three body decay : ABC hnu A B C, where a molecule ABC decays into three fragments A, B and C upon irradiation, is reviewed. Various experimental and theoretical techniques for the investigation of this reaction and their application to a wide range of molecular species are discussed. Emphasis is laid on the distinction between concerted and stepwise processes, consisting of one single or two consecutive kinetic events, respectively. The concerted fragmentation scheme is further classified as being of either synchronous or asynchronous character, depending on whether or not the bond breaking processes take place in unison. The three body decays of acetone, azomethane and s-tetrazine are discussed in detail as prototypes for these mechanisms. A novel kinematic analysis approach, based on the evaluation of fragment kinetic energy distributions, is presented and applied to the ultraviolet photodissociation of phosgene. Competing pathways are found to be operative, dominated by the asynchronous concerted mechanism with preferential forward scattering of the carbon monoxide fragment. The synchronous concerted decay plays a minor role under significant excitation of the in-plane and out-of-plane bending modes of the parent molecule. Finally the power of the newly developed method for the analysis of the three body decay of a small polyatomic molecule is highlighted.

  10. Functionally graded boron carbide

    SciTech Connect

    Petrovic, J.J.; McClellan, K.J.; Kise, C.D.; Hoover, R.C.; Scarborough, W.K.

    1998-12-31

    Lightweight body armor is important for the protection of US soldiers in the field. Here, fabrication techniques were developed for producing graded porosity B{sub 4}C, and for producing aluminum-B{sub 4}C and epoxy-B{sub 4}C functionally graded materials. The key fabrication aspect was obtaining the graded porosity B{sub 4}C. The feasibility of producing graded porosity B{sub 4}C using a grading of carbon densification aid produced from a gradient of furfuryl alcohol carbon precursor was demonstrated. This approach is quite promising, but it was not optimized in the present investigation. Graded porosity B{sub 4}C materials were produced by a layering approach using different size distributions of B{sub 4}C powders in the green state, and then densifying the layered assembly by hot pressing at 1,900 C. The hardness of uninfiltrated graded B{sub 4}C, aluminum infiltrated B{sub 4}C, and epoxy infiltrated B{sub 4}C was observed to be similar.

  11. Grading for Understanding - Standards-Based Grading

    NASA Astrophysics Data System (ADS)

    Zimmerman, Todd

    2017-01-01

    Standards-based grading (SBG), sometimes called learning objectives-based assessment (LOBA), is an assessment model that relies on students demonstrating mastery of learning objectives (sometimes referred to as standards). The goal of this grading system is to focus students on mastering learning objectives rather than on accumulating points. I have used SBG in an introductory physics course for the past five years and worked with several physics faculty members to implement SBG in the first and second semester of algebra-based and calculus-based introductory physics courses at a primarily undergraduate comprehensive public university with class sizes of 48 students. In this article I will discuss methods for implementing SBG in a physics class.

  12. Homodyne monitoring of postselected decay

    NASA Astrophysics Data System (ADS)

    Tan, D.; Foroozani, N.; Naghiloo, M.; Kiilerich, A. H.; Mølmer, K.; Murch, K. W.

    2017-08-01

    We use homodyne detection to monitor the radiative decay of a superconducting qubit. According to the classical theory of conditional probabilities, the excited-state population differs from an exponential decay law if it is conditioned upon a later projective qubit measurement. Quantum trajectory theory accounts for the expectation values of general observables, and we use experimental data to show how a homodyne detection signal is conditioned upon both the initial state and the finally projected state of a decaying qubit. We observe, in particular, how anomalous weak values occur in continuous weak measurement for certain pre- and postselected states. Subject to homodyne detection, the density matrix evolves in a stochastic manner, but it is restricted to a specific surface in the Bloch sphere. We show that a similar restriction applies to the information associated with the postselection, and thus bounds the predictions of the theory.

  13. Decay of capillary wave turbulence.

    PubMed

    Deike, Luc; Berhanu, Michael; Falcon, Eric

    2012-06-01

    We report on the observation of freely decaying capillary wave turbulence on the surface of a fluid. The capillary wave turbulence spectrum decay is found to be self-similar in time with the same power law exponent as the one found in the stationary regime, in agreement with weak turbulence predictions. The amplitude of all Fourier modes are found to decrease exponentially with time at the same damping rate. The longest wavelengths involved in the system are shown to be damped by a viscous surface boundary layer. These long waves play the role of an energy source during the decay that sustains nonlinear interactions to keep capillary waves in a wave turbulent state.

  14. The decay of triple systems

    NASA Astrophysics Data System (ADS)

    Martynova, A. I.; Orlov, V. V.

    2014-10-01

    Numerical simulations have been carried out in the general three-body problem with equal masses with zero initial velocities, to investigate the distribution of the decay times T based on a representative sample of initial conditions. The distribution has a power-law character on long time scales, f( T) ∝ T - α , with α = 1.74. Over small times T < 30 T cr ( T cr is the mean crossing time for a component of the triple system), a series of local maxima separated by about 1.0 T cr is observed in the decay-time distribution. These local peaks correspond to zones of decay after one or a few triple encounters. Figures showing the arrangement of these zones in the domain of the initial conditions are presented.

  15. Heavy quark spectroscopy and decay

    SciTech Connect

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  16. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  17. Charmless B decays involving baryons

    NASA Astrophysics Data System (ADS)

    Gronau, Michael; Rosner, Jonathan L.

    1988-02-01

    Predictions are made for the fraction of B-meson decays involving specific final states of NN¯+nπ (n>=0), as functions of (a) decay dynamics, (b) models for multipion production, (c) the isospin of the final state, and (d) the ratio ||Vbu/Vbc|| of Kobayashi-Maskawa matrix elements. From recent observations of B+-->pp¯π+(+c.c.) and B0-->pp¯π+π- by the ARGUS Collaboration, it is concluded that ||Vbu/Vbc||>~0.08, similar to the ARGUS Collaboration's own estimate of 0.07. However, a more likely value for this ratio is near its present experimental upper limit. Predictions are made for further final states in NN¯+nπ and in other charmless B decays. We also comment briefly on prospects for observing CP violation in B-->NN¯+nπ.

  18. Lepton flavor violating quarkonium decays

    NASA Astrophysics Data System (ADS)

    Hazard, Derek E.; Petrov, Alexey A.

    2016-10-01

    We argue that lepton flavor violating (LFV) decays M →ℓ1ℓ¯ 2 of quarkonium states M with different quantum numbers could be used to put constraints on the Wilson coefficients of effective operators describing LFV interactions at low energy scales. We note that restricted kinematics of the two-body quarkonium decays allows us to select operators with particular quantum numbers, significantly reducing the reliance on the single operator dominance assumption that is prevalent in constraining parameters of the effective LFV Lagrangian. We shall also argue that studies of radiative lepton flavor violating M →γ ℓ1ℓ¯ 2 decays could provide important complementary access to those effective operators.

  19. Studies of Ion Acoustic Decay

    SciTech Connect

    Drake, R.P.; Bauer, B.S.; Baker, K.L. |

    1994-03-07

    In this project, we advanced knowledge of Ion Acoustic Decay on several fronts. In this project, we have developed and demonstrated the capability to perform experimental and theoretical studies of the Ion Acoustic Decay Instability. We have at the same time demonstrated an improved capability to do multichannel spectroscopy and Thomson scattering. We made the first observations of the time-resolved second harmonic emission at several angles simultaneously, and the first observations of the emission both parallel and perpendicular to the electric field of the laser light. We used Thomson scattering to make the first observations of the plasma waves driven by acoustic decay in a warm plasma with long density scale lengths. We also advanced both the linear and the nonlinear theory of this instability. We are thus prepared to perform experiments to address this mechanism as needed for applications.

  20. EC decay of 244Bk

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Pujari, P. K.; Palit, R.; Mukhopadhyay, S.

    2014-12-01

    Berkelium isotopes have been produced in 11B-induced reaction on 238U. The EC decay of 244Bk → 244Cm has been studied by carrying out the single and coincidence measurements of the γ-rays emitted during the de-excitation of the 244Cm levels. Radiochemical separations have been carried out to minimize the contribution from the fission products and target. The new half-life of 244Bk is obtained as 5.02 ± 0.03 h, which is close to the theoretically calculated value. The relative intensities of the decay γ-rays have been re-evaluated. Based on the coincidence measurements, a tentative partial level scheme for 244Bk → 244Cm decay has been proposed.

  1. Electronic decay through carbon chains

    NASA Astrophysics Data System (ADS)

    Kuleff, Alexander I.

    2017-01-01

    Using the multielectron wave-packet propagation method the electronic decay of O2s vacancy in fluorinated cumulenones, OCnF2 , containing a chain of up to five carbons is traced in time and space. It is shown that in all studied cases this state decays non-locally by emitting an electron from the remote fluorines. Even in the pentatetraenone case, where the oxygen and the flourines are more than 7 Å apart, this non-local decay is extremely efficient, with a time constant of about 5 fs. The process can be viewed as an ultrafast energy transfer through the carbon chain and thus our systematic study allows to shed some light on the dependence of the time scale of the electron-correlation driven energy transfer through a medium.

  2. Nebraska Science Standards: Grades K-12

    ERIC Educational Resources Information Center

    Nebraska Department of Education, 2010

    2010-01-01

    This publication presents the Nebraska Science Standards for Grades K-12. The standards are presented according to the following grades: (1) Grades K-2; (2) Grades 3-5; (3) Grades 6-8; and (4) Grades 9-12.

  3. General Purpose Heat Source Simulator

    NASA Technical Reports Server (NTRS)

    Emrich, William J., Jr.

    2008-01-01

    The General Purpose Heat Source (GPHS) project seeks to combine the development of an electrically heated, single GPHS module simulator with the evaluation of potential nuclear surface power systems. The simulator is designed to match the form, fit, and function of actual GPHS modules which normally generate heat through the radioactive decay of Pu238. The use of electrically heated modules rather than modules containing Pu238 facilitates the testing of the subsystems and systems without sacrificing the quantity and quality of the test data gathered. Current GPHS activities are centered on developing robust heater designs with sizes and weights which closely match those of actual Pu238 fueled GPHS blocks. Designs are being pursued which will allow operation up to 1100 C.

  4. Decays of the vector glueball

    NASA Astrophysics Data System (ADS)

    Giacosa, Francesco; Sammet, Julia; Janowski, Stanislaus

    2017-06-01

    We calculate two- and three-body decays of the (lightest) vector glueball into (pseudo)scalar, (axial-)vector, as well as pseudovector and excited vector mesons in the framework of a model of QCD. While absolute values of widths cannot be predicted because the corresponding coupling constants are unknown, some interesting branching ratios can be evaluated by setting the mass of the yet hypothetical vector glueball to 3.8 GeV as predicted by quenched lattice QCD. We find that the decay mode ω π π should be one of the largest (both through the decay chain O →b1π →ω π π and through the direct coupling O →ω π π ). Similarly, the (direct and indirect) decay into π K K*(892 ) is sizable. Moreover, the decays into ρ π and K*(892 )K are, although subleading, possible and could play a role in explaining the ρ π puzzle of the charmonium state ψ (2 S ) thanks to a (small) mixing with the vector glueball. The vector glueball can be directly formed at the ongoing BESIII experiment as well as at the future PANDA experiment at the FAIR facility. If the width is sufficiently small (≲100 MeV ) it should not escape future detection. It should be stressed that the employed model is based on some inputs and simplifying assumptions: the value of glueball mass (at present, the quenched lattice value is used), the lack of mixing of the glueball with other quarkonium states, and the use of few interaction terms. It then represents a first step toward the identification of the main decay channels of the vector glueball, but shall be improved when corresponding experimental candidates and/or new lattice results will be available.

  5. Luminescence decay of porous silicon

    NASA Astrophysics Data System (ADS)

    Chen, X.; Uttamchandani, D.; Sander, D.; O'Donnell, K. P.

    1993-04-01

    The luminescence decay pattern of porous silicon samples prepared by electrochemical etching is characterised experimentally by a non-exponential profile, a strong dependence on temperature and an absence of spectral diffusion. We describe this luminescence as carrier-dopping-assisted recombination. Following the correlation function approach to non-dispersive transport developed by Scher and co-workers [Physics Today 41 (1991) 26], we suggest a simple derivation of analytical functions which accurately describes the anomalous luminescence decay of porous silicon, and show that this model includes exponential and Kohlrausch [Pogg. Ann. Phys. 119 (1863) 352] (stretched-exponential) relaxations as special cases.

  6. Rare B Decays in BABAR

    SciTech Connect

    Hicheur, A

    2004-08-25

    Measurements and searches for rare B decays have been performed with the BaBar detector at the PEP-II e{sup +}e{sup -} asymmetric B Factory, operating at the {Upsilon}(4S) resonance. The authors report some recent branching fraction measurements on hadronic and radiative B decays, occurring from b --> s/d and b --> u transitions. Most of the results presented here are based on a data sample corresponding to a luminosity of 81.9 fb{sup -1}.

  7. Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers.

    PubMed

    Trinter, F; Schöffler, M S; Kim, H-K; Sturm, F P; Cole, K; Neumann, N; Vredenborg, A; Williams, J; Bocharova, I; Guillemin, R; Simon, M; Belkacem, A; Landers, A L; Weber, Th; Schmidt-Böcking, H; Dörner, R; Jahnke, T

    2014-01-30

    In 1997, it was predicted that an electronically excited atom or molecule placed in a loosely bound chemical system (such as a hydrogen-bonded or van-der-Waals-bonded cluster) could efficiently decay by transferring its excess energy to a neighbouring species that would then emit a low-energy electron. This intermolecular Coulombic decay (ICD) process has since been shown to be a common phenomenon, raising questions about its role in DNA damage induced by ionizing radiation, in which low-energy electrons are known to play an important part. It was recently suggested that ICD can be triggered efficiently and site-selectively by resonantly core-exciting a target atom, which then transforms through Auger decay into an ionic species with sufficiently high excitation energy to permit ICD to occur. Here we show experimentally that resonant Auger decay can indeed trigger ICD in dimers of both molecular nitrogen and carbon monoxide. By using ion and electron momentum spectroscopy to measure simultaneously the charged species created in the resonant-Auger-driven ICD cascade, we find that ICD occurs in less time than the 20 femtoseconds it would take for individual molecules to undergo dissociation. Our experimental confirmation of this process and its efficiency may trigger renewed efforts to develop resonant X-ray excitation schemes for more localized and targeted cancer radiation therapy.

  8. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005.

  9. Assigning Grades More Fairly

    ERIC Educational Resources Information Center

    Cheshier, Stephen R.

    1975-01-01

    Describes a simplified method for converting raw scores to standard scores and transforming them to "T-scores" for easy comparison of performance. Obtaining letter grades from T-scores is discussed. A reading list is included. (GH)

  10. Gleason grading system

    MedlinePlus

    ... of Prostatic Neoplasia. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA, eds. Campbell-Walsh Urology . 11th ... nih.gov/pubmed/26956509 . Pierorazio PM, Walsh PC, Partin AW, Epstein JI. Prognostic Gleason grade grouping: data ...

  11. Heating of heavy ions on auroral field lines

    SciTech Connect

    Nishikawa, K.I.; Okuda, H., Hasegawa, A.

    1983-01-01

    Heating of heavy ions is studied in the presence of large amplitude hydrogen cyclotron waves. A three wave decay process, in which a large amplitude pump hydrogen cyclotron wave decays into a daughter hydrogen cyclotron wave and a low frequency oxygen cyclotron wave, is studied theoretically and by numerical simulations. The numerical simulations show a decay instability resulting in strong heating of both the oxygen ions and the hydrogen ions. In particular, the high energy tail of the oxygen ions is observed in the perpendicular distribution.

  12. Plasma Nitriding of CP Titanium Grade-2 and Ti-6Al-4V Grade-5

    NASA Astrophysics Data System (ADS)

    Deepak, J. R.; Bupesh Raja, V. K.; Senthil Kumar, J.; Thomas, Subin; Raju Vithaiyathil, Thomas

    2017-05-01

    Titanium metal is considered to be asset material due to its high tribological properties. Since these tribological properties like hardness, roughness, wear resistance etc. are influenced by the surface properties of the material, so obviously any changes in the surface of the material has direct impact on the tribological properties too. Nitriding is a heat-treating process that diffuses nitrogen into the surface of a metal to create a case hardened surface. The main objective is that to implement the plasma nitriding process to both CP Titanium grade-2 and Ti-6Al-4V grade-5 and to observe the improvements in the tribological properties with respect to the parent materials.

  13. 7 CFR 810.2204 - Grades and grade requirements for wheat.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... limits of: Defects: Damaged kernels Heat (part of total) 0.2 0.2 0.5 1.0 3.0 Total 2.0 4.0 7.0 10.0 15.0... filth 1 1 1 1 1 Castor beans 1 1 1 1 1 Crotalaria seeds 2 2 2 2 2 Glass 0 0 0 0 0 Stones 3 3 3 3 3... beans, crotalaria seeds, glass, stones, or unknown foreign substance. (b) Grades and grade...

  14. 7 CFR 810.2204 - Grades and grade requirements for wheat.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... limits of: Defects: Damaged kernels Heat (part of total) 0.2 0.2 0.5 1.0 3.0 Total 2.0 4.0 7.0 10.0 15.0... filth 1 1 1 1 1 Castor beans 1 1 1 1 1 Crotalaria seeds 2 2 2 2 2 Glass 0 0 0 0 0 Stones 3 3 3 3 3... beans, crotalaria seeds, glass, stones, or unknown foreign substance. (b) Grades and grade...

  15. 7 CFR 810.2204 - Grades and grade requirements for wheat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... limits of: Defects: Damaged kernels Heat (part of total) 0.2 0.2 0.5 1.0 3.0 Total 2.0 4.0 7.0 10.0 15.0... filth 1 1 1 1 1 Castor beans 1 1 1 1 1 Crotalaria seeds 2 2 2 2 2 Glass 0 0 0 0 0 Stones 3 3 3 3 3... beans, crotalaria seeds, glass, stones, or unknown foreign substance. (b) Grades and grade...

  16. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  17. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    NASA Astrophysics Data System (ADS)

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  18. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor.

    PubMed

    Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V

    2016-01-01

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  19. Design of the 1.5 MW, 30-96 MHz ultra-wideband 3 dB high power hybrid coupler for Ion Cyclotron Resonance Frequency (ICRF) heating in fusion grade reactor

    SciTech Connect

    Yadav, Rana Pratap Kumar, Sunil; Kulkarni, S. V.

    2016-01-15

    Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.

  20. Chemical heat pump program: An overview

    NASA Astrophysics Data System (ADS)

    Mezzina, A.

    Chemical heat pumps comprise reversible reactions which can be driven by low grade heat. Thermal energy is absorbed in one direction and liberated in the reverse direction; thus, serving as a basis for system designs applicable to space conditioning or process heat management and offering the capability for high density energy storage as an integral part of the system. The program background, rationale, technology, and research and development needs are described.

  1. Rare decays in quark flavour physics

    NASA Astrophysics Data System (ADS)

    Albrecht, Johannes; LHCb Collaboration

    2016-04-01

    Rare heavy-flavour decays are an ideal place to search for the effects of potential new particles that modify the decay rates or the Lorentz structure of the decay vertices. Recent results on Flavour Changing Neutral Current decays from the LHC are reviewed. An emphasis is put on the very rare decay Bs0 →μ+μ-, which was recently observed by the CMS and LHCb experiments, on a recent test of lepton universality in loop processes and on the analysis of the angular distributions of the B0 →K*0μ+μ- decays, both by the LHCb collaboration.

  2. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  3. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  4. Hadronic decays of $W$ bosons

    SciTech Connect

    Wilkinson, III, Richard Paul

    1997-01-01

    We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb -1 data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).

  5. Deconvolution method for fluorescence decays

    NASA Astrophysics Data System (ADS)

    Apanasovich, V. V.; Novikov, E. G.

    1990-09-01

    A new method for fluorescence decay deconvolution is offered. It has acceptable accuracy, high speed of deconvolution, and allows to estimate the number of exponentials. Some results of statistical experiments, using a simulation model of a pulsed fluorescence spectrometer, are introduced.

  6. Rare B decays at CDF

    SciTech Connect

    Farrington, Sinead M.; /Liverpool U.

    2006-10-01

    The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

  7. Detecting decay in wood components

    Treesearch

    R.J. Ross; X. Wang; B.K. Brashaw

    2005-01-01

    This chapter presents a summary of the Wood and Timber Condition Assessment Manual. It focuses on current inspection techniques for decay detection and provides guidelines on the use of various non-destructive evaluation (NDE) methods in locating and defining areas of deterioration in timber bridge components and other civil structures.

  8. Decay Studies of NEPTUNIUM-237.

    NASA Astrophysics Data System (ADS)

    Woods, S. A.

    Available from UMI in association with The British Library. Requires signed TDF. The decay of ^{237}Np (T_{1over2} = 2.14 times 10^6 years) has been investigated from singles and coincidence gamma-ray spectra acquired using Ge detectors and also from internal conversion electron spectra acquired using an iron-free, pi/2 double-focusing, beta-ray spectrometer. Such a long-lived nucleus has a very low specific activity which has previously made the determination of the internal conversion following its decay extremely difficult. In order to overcome this problem, the luminosity of the beta -ray spectrometer has been increased by utilising the multistrip source technique of Bergkvist in conjunction with a sixteen-element proportional counter. Twenty-four gamma-rays have been observed in the singles studies, with four additional gamma -rays observed in the coincidence studies alone, all of which have been placed in the level scheme of ^{233}Pa. The coincidence data also indicates the presence of two unobserved transitions of low energy. The absolute conversion coefficients and multipolarity of five gamma-ray transitions following the decay of ^{237} Np, together with those of seven gamma -ray transitions following the decay of the daughter nucleus, ^{233}Pa, have been determined and the levels of ^{233 }Pa assigned within the framework of the Nilsson Model.

  9. Review of tau lepton decays

    SciTech Connect

    Stoker, D.P.

    1991-07-01

    Measurements of the {tau} decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the 1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the {tau} lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs.

  10. Phomopsis seed decay of soybean

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most soybean-growing countries. The disease is caused primarily by the fungal pathogen Phomopsis longicolla along with other Phomopsis and Diaporthe spp. Infected seed range from symptomless to shriveled, elongated, ...

  11. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  12. Rare decays at the Tevatron

    SciTech Connect

    Farrington, S.M.; /Liverpool U.

    2006-01-01

    The confidence level limits of the CDF and D0 searches for the B{sub s}{sup 0}, B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and B{sub s}{sup 0} {yields} {mu}{sup +}{mu}{sup -}{phi} rare decays are presented.

  13. Family symmetries and proton decay

    SciTech Connect

    Murayama, Hitoshi |; Kaplan, D.B.

    1994-08-01

    The proton decay modes p {yields} K{sup 0}e{sup +} and p {yields} K{sup 0}{mu}{sup +} may be visible in certain supersymmetric theories, and if seen would provide evidence for new flavor physics at extremely short distances. These decay modes can arise from the dimension five operator (Q{sub 1}Q{sub 1}Q{sub 2}L{sub 1,2}), where Q{sub i} and L{sub i} are i{sup th} generation quark and lepton superfields respectively. Such an operator is not generated at observable levels due to gauge or Higgs boson exchange in a minimal GUT. However in theories that explain the fermion mass hierarchy, it may be generated at the Planck scale with a strength such that the decays p {yields} K{sup 0}{ell}{sup +} are both compatible with the proton lifetime and visible at Super-Kamiokande. Observable proton decay can even occur in theories without unification.

  14. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  15. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  16. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Phoenix Refrigeration Systems, Inc.'s heat pipe addition to the Phoenix 2000, a supermarket rooftop refrigeration/air conditioning system, resulted from the company's participation in a field test of heat pipes. Originally developed by NASA to control temperatures in space electronic systems, the heat pipe is a simple, effective, heat transfer system. It has been used successfully in candy storage facilities where it has provided significant energy savings. Additional data is expected to fully quantify the impact of the heat pipes on supermarket air conditioning systems.

  17. Experiments on deformation behaviour of functionally graded NiTi structures.

    PubMed

    Shariat, Bashir S; Meng, Qinglin; Mahmud, Abdus S; Wu, Zhigang; Bakhtiari, Reza; Zhang, Junsong; Motazedian, Fakhrodin; Yang, Hong; Rio, Gerard; Nam, Tae-Hyun; Liu, Yinong

    2017-08-01

    Functionally graded NiTi structures benefit from the combination of the smart properties of NiTi and those of functionally graded structures. This article provides experimental data for thermomechanical deformation behaviour of microstructurally graded, compositionally graded and geometrically graded NiTi alloy components, related to the research article entitled "Functionally graded shape memory alloys: design, fabrication and experimental evaluation" (Shariat et al., 2017) [1]. Stress-strain variation of microstructurally graded NiTi wires is presented at different heat treatment conditions and testing temperatures. The complex 4-way shape memory behaviour of a compositionally graded NiTi strip during one complete thermal cycle is demonstrated. The effects of geometrical design on pseudoelastic behaviour of geometrically graded NiTi plates over tensile loading cycles are presented on the stress-strain diagrams.

  18. How Consistent Are Course Grades? An Examination of Differential Grading

    ERIC Educational Resources Information Center

    Rauschenberg, Samuel

    2014-01-01

    Differential grading occurs when students in courses with the same content and curriculum receive inconsistent grades across teachers, schools, or districts. It may be due to many factors, including differences in teacher grading standards, district grading policies, student behavior, teacher stereotypes, teacher quality, and curriculum adherence.…

  19. Measuring grade inflation: a clinical grade discrepancy score.

    PubMed

    Paskausky, Anna L; Simonelli, M Colleen

    2014-08-01

    Grade inflation presents pedagogical and safety concerns for nursing educators and is defined as a "greater percentage of excellent scores than student performances warrant" (Speer et al., 2000, p. 112). This descriptive correlational study evaluated the relationship of licensure exam-style final written exams and faculty assigned clinical grades from undergraduate students (N = 281) for evidence of grade inflation at a private undergraduate nursing program in the Northeast of the United States and developed a new measurement of grade inflation, the clinical grade discrepancy score. This measurement can be used in programs where clinical competency is graded on a numeric scale. Evidence suggested grade inflation was present and the clinical grade discrepancy score was an indicator of the severity of grade inflation. The correlation between licensure-style final written exams and faculty assigned clinical grades was moderate to low at 0.357. The clinical grade discrepancy scores were 98% positive indicating likely grade inflation. Some 70% of clinical grade discrepancy scores indicated a difference of student licensure-style final written exams and faculty assigned clinical grades of at least one full letter grade (10 points out of 100). Use of this new measure as a tool in exploring the prevalence of grade inflation and implications for patient safety are discussed.

  20. Grading Leniency, Grade Discrepancy, and Student Ratings of Instruction

    ERIC Educational Resources Information Center

    Griffin, Bryan W.

    2004-01-01

    The purpose of this study was to examine how grading leniency and grade discrepancy (the difference between expected grades and deserved grades) were associated with various dimensions of student ratings of instruction. A sample of 754 undergraduate college students completed a student ratings of instruction instrument and provided responses to a…

  1. Tritium Decay Helium-3 Effects in Tungsten

    SciTech Connect

    Shimada, M.; Merrill, B. J.

    2016-06-01

    A critical challenge for long-term operation of ITER and beyond to a Demonstration reactor (DEMO) and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to steady-state/transient heat fluxes and intense neutral/ion particle fluxes under the extreme fusion nuclear environment, while at the same time minimizing in-vessel tritium inventories and permeation fluxes into the PFC’s coolant. Tritium will diffuse in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [1,2]. Tritium decay into helium-3 may also play a major role in microstructural evolution (e.g. helium embrittlement) in tungsten due to relatively low helium-4 production (e.g. He/dpa ratio of 0.4-0.7 appm [3]) in tungsten. Tritium-decay helium-3 effect on tungsten is hardly understood, and its database is very limited. Two tungsten samples (99.99 at. % purity from A.L.M.T. Co., Japan) were exposed to high flux (ion flux of 1.0x1022 m-2s-1 and ion fluence of 1.0x1026 m-2) 0.5%T2/D2 plasma at two different temperatures (200, and 500°C) in Tritium Plasma Experiment (TPE) at Idaho National Laboratory. Tritium implanted samples were stored at ambient temperature in air for more than 3 years to investigate tritium decay helium-3 effect in tungsten. The tritium distributions on plasma-exposed was monitored by a tritium imaging plate technique during storage period [4]. Thermal desorption spectroscopy was performed with a ramp rate of 10°C/min up to 900°C to outgas residual deuterium and tritium but keep helium-3 in tungsten. These helium-3 implanted samples were exposed to deuterium plasma in TPE to investigate helium-3 effect on deuterium behavior in tungsten. The results show that tritium surface concentration in 200°C sample decreased to 30 %, but tritium surface concentration in 500°C sample did not alter over the 3 years storage period, indicating possible tritium

  2. Contemporary Gleason grading and novel Grade Groups in clinical practice.

    PubMed

    Magi-Galluzzi, Cristina; Montironi, Rodolfo; Epstein, Jonathan I

    2016-09-01

    The Gleason grading system provides important information for guiding prostate cancer patients' management and prognostication. The grading system underwent significant modifications over the past decade. In 2005 and more recently in 2014, the International Society of Urological Pathology (ISUP) held two consensus conferences to update prostate cancer grading. Recently, five prognostic grade groups have been proposed to be used in parallel to the Gleason grading system. The purpose of this review is to highlight the key changes in the Gleason grading system and the utility of the grade groups to better reflect biologic behavior for both patients and clinicians. At the 2014 ISUP consensus conference, prostate cancer Gleason grading was updated and a previously proposed concept of five prognostic grade groups, from 1 to 5 was supported. The Grade Groups, used in parallel to the modified Gleason grading system, translate Gleason scores in five distinct risk categories where Grade Group 1 is defined as Gleason score 6 or less, Grade Group 2 as Gleason score 3 + 4 = 7, Grade Group 3 as Gleason score 4 + 3 = 7, Grade Group 4 as Gleason score 4 + 4 = 8, and Grade Group 5 as Gleason score 9/10. This 5-tiered grade group system better reflects biologic behavior and guides clinical care. The Grade Groups have been endorsed by the ISUP and the World Health Organization. The performance of the Grade Groups has been examined in several recent studies. This review summarizes developments over the last year in the use of grade groups and outlines their value in clinical practice.

  3. Graded-index magnonics

    NASA Astrophysics Data System (ADS)

    Davies, C. S.; Kruglyak, V. V.

    2015-10-01

    The wave solutions of the Landau-Lifshitz equation (spin waves) are characterized by some of the most complex and peculiar dispersion relations among all waves. For example, the spin-wave ("magnonic") dispersion can range from the parabolic law (typical for a quantum-mechanical electron) at short wavelengths to the nonanalytical linear type (typical for light and acoustic phonons) at long wavelengths. Moreover, the long-wavelength magnonic dispersion has a gap and is inherently anisotropic, being naturally negative for a range of relative orientations between the effective field and the spin-wave wave vector. Nonuniformities in the effective field and magnetization configurations enable the guiding and steering of spin waves in a deliberate manner and therefore represent landscapes of graded refractive index (graded magnonic index). By analogy to the fields of graded-index photonics and transformation optics, the studies of spin waves in graded magnonic landscapes can be united under the umbrella of the graded-index magnonics theme and are reviewed here with focus on the challenges and opportunities ahead of this exciting research direction.

  4. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays will only be scored when penetrating the rind and...

  5. 7 CFR 51.490 - Decay.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... Decay means breakdown, disintegration or fermentation of the flesh or rind of the cantaloup caused by bacteria or fungi; except that dry type decays will only be scored when penetrating the rind and...

  6. Lepton decay constants of light mesons

    SciTech Connect

    Simonov, Yu. A.

    2016-05-15

    A theory of lepton decay constants based on the path-integral formalism is given for chiral and vector mesons. Decay constants of the pseudoscalar and vector mesons are calculated and compared to other existing results.

  7. Neutron beta decay studies with Nab

    NASA Astrophysics Data System (ADS)

    Baeßler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barrón-Palos, L.; Bowman, J. D.; Bychkov, M. A.; Byrne, J.; Calarco, J. R.; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlež, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttilä, S. I.; Počanić, D.; Rykaczewski, K. P.; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-10-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  8. Arizona Academic Standards, Grade 2

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 2. The contents of this document include the following: (1) The Arts Standard 2006--Grade 2; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  9. Arizona Academic Standards, Grade 3

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 3. The contents of this document include the following: (1) The Arts Standard 2006--Grade 3; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  10. Arizona Academic Standards, Grade 1

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for Grade 1. The contents of this document include the following: (1) The Arts Standard 2006--Grade 1; (2) Comprehensive Health Education/Physical Activity Standards 1997--Foundations (Grades 1-3); (3) Foreign and Native Language Standards 1997--Foundations (Grades 1-3); (4)…

  11. Teachers' Experiences of Unfair Grading

    ERIC Educational Resources Information Center

    Alm, Fredrik; Colnerud, Gunnel

    2015-01-01

    Grading is often perceived as one of a teacher's most difficult tasks. Despite most teachers endeavoring to grade their students as objectively as possible, many students feel that they are subject to unfair grading. The aim of this study is to describe what it is about a teacher's grading that contributes to the perception of unfairness. This…

  12. Teachers' Experiences of Unfair Grading

    ERIC Educational Resources Information Center

    Alm, Fredrik; Colnerud, Gunnel

    2015-01-01

    Grading is often perceived as one of a teacher's most difficult tasks. Despite most teachers endeavoring to grade their students as objectively as possible, many students feel that they are subject to unfair grading. The aim of this study is to describe what it is about a teacher's grading that contributes to the perception of unfairness. This…

  13. Arizona Academic Standards: Grade 7

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This document contains the Arizona academic standards for Grade 7. The following 11 standards are reviewed: (1) The Arts Standard 2006 --Grade 7; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4) Reading Standard Articulated by…

  14. Arizona Academic Standards, Grade 4

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2007

    2007-01-01

    This publication contains Arizona public schools' academic standards for grade 4. The contents of this document include the following: (1) The Arts Standard 2006--Grade 4; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4)…

  15. Arizona Academic Standards, Grade 8

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains the updated academic standards of Arizona for Grade 8. The contents of this document include the following: (1) The Arts Standard 2006--Grade 8; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4) Reading…

  16. Arizona Academic Standards: Grade 4

    ERIC Educational Resources Information Center

    Arizona Department of Education, 2009

    2009-01-01

    This publication contains Arizona public schools' academic standards for grade 4. The contents of this document include the following: (1) The Arts Standard 2006--Grade 4; (2) Comprehensive Health Education/Physical Activity Standards 1997--Essentials (Grades 4-8); (3) Foreign and Native Language Standards 1997--Essentials (Grades 4-8); (4)…

  17. Eight Steps to Meaningful Grading

    ERIC Educational Resources Information Center

    Deddeh, Heather; Main, Erin; Fulkerson, Sharon Ratzlaff

    2010-01-01

    A group of teachers at Clifford Smart Middle School in Michigan's Walled Lake Consolidated School District have broken free from traditional grading in order to embrace a more meaningful grading practice. Using standards-based grading practices, they believe their grading now accurately communicates to students and parents the student's mastery…

  18. Eight Steps to Meaningful Grading

    ERIC Educational Resources Information Center

    Deddeh, Heather; Main, Erin; Fulkerson, Sharon Ratzlaff

    2010-01-01

    A group of teachers at Clifford Smart Middle School in Michigan's Walled Lake Consolidated School District have broken free from traditional grading in order to embrace a more meaningful grading practice. Using standards-based grading practices, they believe their grading now accurately communicates to students and parents the student's mastery…

  19. Mechanical grading of oak timbers

    Treesearch

    David E. Kretschmann; David W. Green

    1999-01-01

    For many wood species, the grading of timbers [>76 mm (>4-in.) thick] has not changed in decades. Most timbers are still visually graded by methods that originated in the 1930s. Mechanical grading procedures used to accurately grade 38-mm (2-in. nominal) dimension lumber have not been adapted for use with timbers. Furthermore, the only reliable timber test data...

  20. Serving Grades Over the Internet.

    ERIC Educational Resources Information Center

    Harris, James K.

    This paper demonstrates a grade server that allows college students to access their grades over the Internet from the instructor's home page. Using a CGI (common gateway interface) program written in Visual Basic, the grades are read directly from an Excel spreadsheet and presented to the requester after he/she enters a password. The grade for…

  1. Cheap Heat.

    ERIC Educational Resources Information Center

    Switzer, Terry G.

    1986-01-01

    Describes an activity from the ninth-grade physical science program at the Energy Management Center, the outdoor science and energy education center for students in Pasco County, Florida. The activity focuses on making an effective solar collector. (JN)

  2. Search for hadronic b-->u decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Gläser, R.; Harder, G.; Krüger, A.; Nilsson, A. W.; Nippe, A.; Oest, T.; Reidenbach, M.; Schäfer, M.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Sefkow, F.; Wurth, R.; Appuhn, R. D.; Drescher, A.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Scheck, H.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Volland, U.; Wegener, H.; Funk, W.; Stiewe, J.; Werner, S.; Ball, S.; Gabriel, J. C.; Geyer, C.; Hölscher, A.; Hofmann, W.; Holzer, B.; Khan, S.; Spengler, J.; Charlesworth, C. E. K.; Edwards, K. W.; Frisken, W. R.; Kapitza, H.; Krieger, P.; Kutschke, R.; Macfarlene, D. B.; McLean, K. W.; Orr, R. S.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seidel, S. C.; Swain, J. D.; Tsipolitis, G.; Tzamariudaki, K.; Yoon, T.-S.; Ruf, T.; Schael, S.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Boštjančič, B.; Kernel, G.; Križan, P.; Križnič, E.; Cronström, H. I.; Jönsson, L.; Babaev, A.; Danilo, M.; Fominykh, B.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Rostovtsev, A.; Semenov, A.; Semenov, S.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitsev, Yu.; Childers, R.; Darden, C. W.; Argus Collaboration

    1990-05-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we searched for b→u transitions in exclusive hadronic B meson decays. A systematic analysis of B decays into pions has been performed for decay modes with 2-7 pions in the final state. In none of the decays a positive signal was observed. The upper limits obtained on various branching ratios are consistent with the current model predictions.

  3. Polarisation of Graded Bundles

    NASA Astrophysics Data System (ADS)

    Bruce, Andrew James; Grabowski, Janusz; Rotkiewicz, Mikołaj

    2016-11-01

    We construct the full linearisation functor which takes a graded bundle of degree k (a particular kind of graded manifold) and produces a k-fold vector bundle. We fully characterise the image of the full linearisation functor and show that we obtain a subcategory of k-fold vector bundles consisting of symmetric k-fold vector bundles equipped with a family of morphisms indexed by the symmetric group S_k. Interestingly, for the degree 2 case this additional structure gives rise to the notion of a symplectical double vector bundle, which is the skew-symmetric analogue of a metric double vector bundle. We also discuss the related case of fully linearising N-manifolds, and how one can use the full linearisation functor to ''superise'' a graded bundle.

  4. Weak radiative baryonic decays of B mesons

    SciTech Connect

    Kohara, Yoji

    2004-11-01

    Weak radiative baryonic B decays B{yields}B{sub 1}B{sub 2}-bar{gamma} are studied under the assumption of the short-distance b{yields}s{gamma} electromagnetic penguin transition dominance. The relations among the decay rates of various decay modes are derived.

  5. Penguin and rare decays in BABAR

    NASA Astrophysics Data System (ADS)

    Akar, Simon; Babar Collaboration

    2014-11-01

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ-π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xsl+l- inclusive decays.

  6. Rare Z decays and new physics

    SciTech Connect

    Glover, E.W.N.

    1990-04-01

    Although the signatures for rare Z decays are often spectacular, the predicted standard model rates are usually extremely small. In many cases, however, rare decays are very sensitive to new phenomena and may lead to an observable rate. In this talk, I select some interesting rare decays and discuss how new physics might be identified. 25 refs., 4 figs., 2 tabs.

  7. Beauty baryon decays: a theoretical overview

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Ming

    2014-11-01

    I overview the theoretical status and recent progress on the calculations of beauty baryon decays focusing on the QCD aspects of the exclusive semi-leptonic Λb → plμ decay at large recoil and theoretical challenges of radiative and electro-weak penguin decays Λb → Λγ,Λl+l-.

  8. A comparative study of radiation effects in medical-grade polymers: UHMWPE, PCU and PEEK

    NASA Astrophysics Data System (ADS)

    Jahan, Muhammad S.; Walters, Benjamin M.; Riahinasab, Tayebeh; Gnawali, Rudra; Adhikari, Dipendra; Trieu, Hai

    2016-01-01

    In this study, three medical-grade polymers, ultra-high molecular weight polyethylene (UHMWPE), polycarbonate urethane (PCU) and poly (ether ether ketone) PEEK, were tested immediately after x-irradiation. The primary purpose of this study was to provide a qualitative comparison of the radiation-sensitivity of these polymers. To evaluate radiation-induced defects or trapped charges, radiation dosimetry method, known as thermally stimulated luminescence (TSL) or thermoluminescence (TL), was employed, and for free radical comparison, electron spin resonance (ESR) was used. When these polymers were x-irradiated at room temperature and subsequently heated, broad luminescence was detected as a function of temperature (known as a glow curve) in the temperature region of 75 °C to 250 °C. In particular, TSL of PCU exhibited glow peaks near 140 °C and 225 °C, that of PEEK near 100 °C and 150 °C, and of UHMWPE near 100 °C and 140 °C. In each case, totalTSL was found to increase as a function of x-ray exposure, suggesting the production of radiation-induced species in the respective polymer matrix. Compared to PCU or PEEK, UHMWPE was found to form more than one order of magnitude of free radicals per unit mass per unit x-ray exposure. In two hours in air at room temperature after irradiation, UHMWPE lost 42% of its initial radical concentration, while PCU lost 75%. X-ray induced PEEK radicals (peroxy/phenoxy) decayed in about one week. Unlike UHMWPE or PCU, non-irradiated (as-received) PEEK was found to contain residual radicals. In UHMWPE, primary radicals reportedly decay to oxygen-centered polyenyl radicals in about three months. In all the results did find significant radical formation via ESR and supporting radiation sensitivity measurements via TSL, warranting further investigation into the effects of radiation on PEEK and PCU.

  9. Quantitative evaluation of decay patterns on artificially weathered sandstone specimens

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard

    2017-04-01

    Natural stone affected by weathering processes exhibits development of specific weathering forms / patterns. These features are controlled by numerous factors; however, their extent is generally considered to be proportional to weathering grade. The recent study focused on possible quantitative evaluation of the decay patterns on artificially weathered sandstones and on correlation of the extent of decay forms with conventionally used parameters such as weight loss or porosity increase. Macroscopically visible decay patterns were recorded after completion of certain number of cycles of freezing/thawing and/or salt crystallization applied to several types of building sandstones. By using prismatic specimens, the preservation of (1) corners, (2) edges, and (3) flat surfaces plus overall integrity of specimens were captured by digital photography. Individual photos were processed by means of image analysis software to quantify % loss of original shape (i.e. rounding of corners and edges, material loss on flat surfaces, etc.), and formation of cracks. Obtained data were correlated with results of non-destructive measurements of selected physical properties such as porosity, ultrasonic velocity or weight loss.

  10. 7 CFR 868.315 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... colored by the parboiling process, it shall be considered “Parboiled Dark.” The color levels for...,” “Kernels damaged by heat,” and the “Color requirements” in §§ 868.310, 868.311, 868.312, and 868.313 are... milled,” and “reasonably well milled” rice (see § 868.306). Grades U.S. No. 1 and U.S. No. 2 shall...

  11. Sunset decay of the convective turbulence with Large-Eddy Simulation under realistic conditions

    NASA Astrophysics Data System (ADS)

    Rizza, U.; Miglietta, M. M.; Degrazia, G. A.; Acevedo, O. C.; Marques Filho, E. P.

    2013-10-01

    Large-Eddy Simulation is performed for a single day from the Cooperative Atmosphere-Surface Exchange Study (CASES-99) field program. This study investigates an observed case of evening transition boundary layer over land. Parameters of the ambient atmosphere in the LES-decay studies conducted so far were typically prescribed in an idealized form. To provide suitable data under the wide range of the PBL weather conditions, the LES should be able to adequately reproduce the PBL turbulence dynamics including-if possible-baroclinicity, radiation, large scale advection and not only be related to a decreasing surface heating. In addition LES-decay studies usually assume that the sensible heat flux decreases instantaneously or with a very short time scale. The main purpose of this investigation is to study the decay of boundary-layer average turbulent kinetic energy at sunset with Large-Eddy Simulation that is forced with realistic environment conditions. This allows investigating the Turbulent Kinetic Energy decay over the realistic time scale that is observed in the atmosphere. During the intermediate and last stage of decay of the boundary-layer average Turbulent Kinetic Energy the exponents of the decay power law t go from 2 to 6, as evidenced by experimental results and recent analytical modeling in the surface layer.

  12. Status of Pion Decay Experiments

    NASA Astrophysics Data System (ADS)

    Numao, T.

    2016-11-01

    The branching ratio of pion decays, {Re/}_μ = Γ ({{{π }}^ + } \\to {e^ + }ν + {e^ + }{{ν γ }})/Γ ({{{π }}^ + } \\to {{{μ }}^ + }ν + {{{μ }}^ + }ν {{γ }}), has provided a sensitive test of electron-muon universality in weak interactions. The uncertainty of the Standard Model prediction is at a 0.01% level. Although a recent measurement, Re /μ = (1.2344 ± 0.0023(stat) ± 0.0019(syst)) × 10-4, reduced the experimental uncertainty by a factor of two, there is room for improvement by more than an order of magnitude. The status of two {{{π }}^ + } \\to {e^ + }ν experiments at TRIUMF and PSI as well as related pion decay experiments is presented.

  13. Sequential Decays of the Υ''

    NASA Astrophysics Data System (ADS)

    Heintz, H.; Kaarsberg, T.; Lee-Franzini, J.; Lovelock, D. M. J.; Narain, M.; Schamberger, R. D.; Willins, J.; Yanagisawa, C.; Franzini, P.; Tuts, P. M.; Kanekal, S.; Wu, Q.-W.

    1991-03-01

    We have studied the decay chain Υ''-->χ'b(χb)γ-->Υ'(Υ)γγ-->μμ(ee)γγwith the CUSB II detector at the Cornell Electron Storage Ring. For a sample of 1.33×106 Υ'''s we find ~400 events. We measure branching ratios forχ'bJ-->Υ'(Υ)γ and, using calculated E1 rates, we derive total and hadronic widths of theχ'b states. From these widths we obtain values of as in the range between 0.13 and 0.21, in agreement with other determinations. We observe the suppressed decay Υ''-->χbγ. The measured branching ratio suggests that relativistic effects are important. We also determine the branching ratios for Υ''-->Υ'π0π0 to be (1.3+/-0.4+/-0.2)% andΥ''-->Υπ0π0 to be (1.8+/-0.3+/-0.2)%.

  14. International decay data evaluation project

    SciTech Connect

    Helmer, R.G.

    1996-10-01

    Basic concepts of, and information from, radionuclide decay are used in many applications. The author limits this discussion to the data needed for applied {gamma}-ray spectrometry; this includes applications such as nuclide identification and quantitative assay. Many of these applications require a knowledge of half-lives and radiation energies and emission probabilities. For over 50 years, people have compiled and evaluated measured data with the goal of obtaining the best values of these quantities. This has resulted in numerous sets of recommended values, many of which still have scientific, historical, or national reasons for existing. These sets show varying degrees of agreement and disagreement in the quoted values and varying time lags in incorporating new and improved experimental results. A new informational international group has been formed to carry out evaluations for radionuclides of importance in applications; it is expected that the results will become an authoritative and widely accepted set of decay data.

  15. Lyapunov decay in quantum irreversibility.

    PubMed

    García-Mata, Ignacio; Roncaglia, Augusto J; Wisniacki, Diego A

    2016-06-13

    The Loschmidt echo--also known as fidelity--is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime.

  16. Lyapunov decay in quantum irreversibility

    PubMed Central

    Roncaglia, Augusto J.; Wisniacki, Diego A.

    2016-01-01

    The Loschmidt echo—also known as fidelity—is a very useful tool to study irreversibility in quantum mechanics due to perturbations or imperfections. Many different regimes, as a function of time and strength of the perturbation, have been identified. For chaotic systems, there is a range of perturbation strengths where the decay of the Loschmidt echo is perturbation independent, and given by the classical Lyapunov exponent. But observation of the Lyapunov decay depends strongly on the type of initial state upon which an average is carried out. This dependence can be removed by averaging the fidelity over the Haar measure, and the Lyapunov regime is recovered, as has been shown for quantum maps. In this work, we introduce an analogous quantity for systems with infinite dimensional Hilbert space, in particular the quantum stadium billiard, and we show clearly the universality of the Lyapunov regime. PMID:27140966

  17. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  18. Heating apparatus

    SciTech Connect

    Woo, C.G.

    1991-07-30

    This patent describes a heating apparatus. It comprises a housing, means for introducing water to a plurality of water conduits of the housing, a fireplace compartment disposed within the housing, the fireplace compartment being provided with a burner, a fin coil member disposed in the upper portion of the housing and communicating with the room environment for heat emitting, the fin coil member containing a serpentine configured fin coils disposed therein for absorbing heat from the water disposed in the water conduits, a heat chamber containing the water conduits, the heat chamber connected at one end to the fireplace compartment and at the other end to a chimney disposed at the middle of the the fireplace compartment for circulating hot combustion gases therethrough and for heating the water disposed in the water conduits, the combustion gases being vented from the chimney, and at least four turbo fans communicating with the heat chamber for blowing air across the fin coil member so as to heat the air and discharge it to the room environment, and reduce noise pollution of the heating apparatus.

  19. Nuclear Decay Data: On-going Studies to Address and Improve Radionuclide Decay Characteristics

    NASA Astrophysics Data System (ADS)

    Nichols, Alan L.

    2005-05-01

    Representative decay data studies are described and reviewed, ranging from various measurement programmes to the maintenance of evaluated decay-data libraries. Gross beta-decay measurements are essential to address the decay-data requirements for short-lived fission products, well-defined half-lives are required in assessments of the storage of long-lived radionuclides in waste depositories, and improved decay data continue to be demanded in safeguards, to improve detector-calibration standards, and for medical and analytical applications. Such needs require the measurement of good quality decay data, along with multinational evaluations of decay schemes by means of agreed procedures.

  20. Theory of {tau} mesonic decays

    SciTech Connect

    Li, B.A.

    1997-02-01

    Studies of {tau} mesonic decays are presented. A mechanism for the axial-vector current at low energies is proposed. The VMD is used to treat the vector current. All the meson vertices of both normal parity and abnormal parity (Wess-Zumino-Witten anomaly) are obtained from an effective chiral theory of mesons. a{sub 1} dominance is found in the decay modes of the {tau} lepton: 3{pi}, f(1285){pi}. Both the {rho} and the a{sub 1} meson contribute to the decay {tau}{r_arrow}K{sup {asterisk}}K{nu}; it is found that the vector current is dominant. CVC is tested by studying e{sup +}e{sup {minus}}{r_arrow}{pi}{sup +}{pi}{sup {minus}}. The branching ratios of {tau}{r_arrow}{omega}{pi}{nu} and K{bar K}{nu} are calculated. In terms of a similar mechanism the {Delta}s=1 decay modes of the {tau} lepton are studied and K{sub a} dominance is found in {tau}{r_arrow}K{sup {asterisk}}{pi}{nu} and K{sup {asterisk}}{eta}{nu}. The suppression of {tau}{r_arrow}K{rho}{nu} is revealed. The branching ratio of {tau}{r_arrow}{eta}K{nu} is computed. As a test of this theory, the form factors of {pi}{r_arrow}e{gamma}{nu} and K{r_arrow}e{gamma}{nu} are determined. The theoretical results agree with data reasonably well. {copyright} {ital 1997} {ital The American Physical Society}