Science.gov

Sample records for grade uranium ores

  1. Radon emanation from low-grade uranium ore.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p < 0.001) between in situ(222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body.

  2. A preliminary report on the rapid fluorimetric determination of uranium in low-grade ores

    USGS Publications Warehouse

    Grimaldi, F.S.; Levine, Harry

    1950-01-01

    A simple and very rapid fluorimetric procedure is described for the determination of uranium in low-grade shale and phosphate ores. The best working range is from 0.001 to about 0.04 percent U. The procedure employs batch extraction of uranium nitrate by ethyl acetate, using aluminum nitrate as the salting agent, prior to the visual fluorimetric estimation. The procedure is especially designed to save reagents; only 9.5 g of aluminum nitrate and 10 ml of ethyl acetate being used for one analysis. The solution of the sample by means of a fusion with NaOH-NaNO3 flux is rapid. After fusion the sample is immediately extracted without removing silica and other hydrolytic precipitates. Aluminum nitrate very effectively ties up fluoride and phosphate, thus eliminating steps required for their removal.

  3. Solvent extraction of uranium from leach solutions obtained in processing of Polish low-grade ores.

    PubMed

    Kiegiel, Katarzyna; Abramowska, Anna; Biełuszka, Paweł; Zakrzewska-Kołtuniewicz, Grażyna; Wołkowicz, Stanisław

    2017-01-01

    Solvent extraction of uranium from acidic and alkaline post-leaching liquors that were obtained by leaching of Polish ores is reported in this paper. The stripping of uranium from organic to aqueous phase was also studied. The synergistic mixture of 2-diethylhexylphosphoric acid (D2EHPA) and tri-n-butylphosphate (0.2 M:0.2 M) was found as a good extracting agent for uranium. Recovery of uranium was reached even 98 %. The effect of such parameters like uranium concentration and concentration of reagents used in the experiments was evaluated in advance by using a model uranium solutions.

  4. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    SciTech Connect

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  5. Assessment of (222)Rn emanation from ore body and backfill tailings in low-grade underground uranium mine.

    PubMed

    Mishra, Devi Prasad; Sahu, Patitapaban; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2014-02-01

    This paper presents a comparative study of (222)Rn emanation from the ore and backfill tailings in an underground uranium mine located at Jaduguda, India. The effects of surface area, porosity, (226)Ra and moisture contents on (222)Rn emanation rate were examined. The study revealed that the bulk porosity of backfill tailings is more than two orders of magnitude than that of the ore. The geometric mean radon emanation rates from the ore body and backfill tailings were found to be 10.01 × 10(-3) and 1.03 Bq m(-2) s(-1), respectively. Significant positive linear correlations between (222)Rn emanation rate and the (226)Ra content of ore and tailings were observed. For normalised (226)Ra content, the (222)Rn emanation rate from tailings was found to be 283 times higher than the ore due to higher bulk porosity and surface area. The relative radon emanation from the tailings with moisture fraction of 0.14 was found to be 2.4 times higher than the oven-dried tailings. The study suggested that the mill tailings used as a backfill material significantly contributes to radon emanation as compared to the ore body itself and the (226)Ra content and bulk porosity are the dominant factors for radon emanation into the mine atmosphere.

  6. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOEpatents

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  7. Method for extraction of uranium from ores

    SciTech Connect

    Bings, H.; Fischer, P.; Kampf, F.; Pietsch, H.; Thome, R.; Turke, W.; Wargalla, G.; Winkhaus, G.

    1982-11-30

    A method for continuously extracting uranium from ores comprises the steps of: forming a slurry of ore in a leaching solution; heating the slurry while pumping it through a tube reactor at high turbulences characterized by Reynolds numbers in excess of 50,000; supplying gaseous oxygen at high pressures into the tube reactor such that the uranium is substantially completely oxidized in a soluble form but impurities in the slurry are substantially kept from becoming soluble; recovering the uranium oxide solute which is substantially free of impurities.

  8. Experimental design and optimization of leaching process for recovery of valuable chemical elements (U, La, V, Mo, Yb and Th) from low-grade uranium ore.

    PubMed

    Zakrzewska-Koltuniewicz, Grażyna; Herdzik-Koniecko, Irena; Cojocaru, Corneliu; Chajduk, Ewelina

    2014-06-30

    The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P=5 bar, T=120 °C and t=90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th).

  9. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    NASA Astrophysics Data System (ADS)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    Variations in 238U/235U and 234U/238U ratios were measured in uranium minerals from a spectrum of uranium deposit types, as well as diagenetic phosphates in uranium-rich basins and peraluminous rhyolites and associated autunite mineralisation from Macusani Meseta, Peru. Mean δ238U values of uranium minerals relative to NBL CRM 112-A are 0.02‰ for metasomatic deposits, 0.16‰ for intrusive, 0.18‰ for calcrete, 0.18‰ for volcanic, 0.29‰ for quartz-pebble conglomerate, 0.29‰ for sandstone-hosted, 0.44‰ for unconformity-type, and 0.56‰ for vein, with a total range in δ238U values from -0.30‰ to 1.52‰. Uranium mineralisation associated with igneous systems, including low-temperature calcretes that are sourced from U-rich minerals in igneous systems, have low δ238U values of ca. 0.1‰, near those of their igneous sources, whereas uranium minerals in basin-hosted deposits have higher and more variable values. High-grade unconformity-related deposits have δ238U values around 0.2‰, whereas lower grade unconformity-type deposits in the Athabasca, Kombolgie and Otish basins have higher δ238U values. The δ234U values for most samples are around 0‰, in secular equilibrium, but some samples have δ234U values much lower or higher than 0‰ associated with addition or removal of 234U during the past 2.5 Ma. These δ238U and δ234U values suggest that there are at least two different mechanisms responsible for 238U/235U and 234U/238U variations. The 234U/238U disequilibria ratios indicate recent fluid interaction with the uranium minerals and preferential migration of 234U. Fractionation between 235U and 238U is a result of nuclear-field effects with enrichment of 238U in the reduced insoluble species (mostly UO2) and 235U in oxidised mobile species as uranyl ion, UO22+, and its complexes. Therefore, isotopic fractionation effects should be reflected in 238U/235U ratios in uranium ore minerals formed either by reduction of uranium to UO2 or chemical

  10. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  11. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  12. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  13. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C...

  14. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C are applicable...

  15. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C...

  16. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C are applicable...

  17. 40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment... DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the uranium, radium and vanadium ores subcategory. The provisions of this subpart C...

  18. PROCESS FOR THE RECOVERY OF URANIUM FROM PHOSPHATIC ORE

    DOEpatents

    Long, R.L.

    1959-04-14

    A proccss is described for the recovery of uranium from phosphatic products derived from phosphatic ores. It has been discovered that certain alkyl phosphatic, derivatives can be employed in a direct solvent extraction operation to recover uranium from solid products, such as superphosphates, without first dissolving such solids. The organic extractants found suitable include alkyl derivatives of phosphoric, pyrophosphoric, phosof the derivative contains from 4 to 7 carbon atoms. A diluent such as kerosene is also used.

  19. Safeguards on uranium ore concentrate? the impact of modern mining and milling process

    SciTech Connect

    Francis, Stephen

    2013-07-01

    Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.

  20. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo

    2007-07-01

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved

  1. Localization conditions and ore mineralogy of the Ulziit hydrogenic uranium deposit, Mongolia

    NASA Astrophysics Data System (ADS)

    Grechukhin, M. N.; Doinikova, O. A.; Ignatov, P. A.; Rassulov, V. A.

    2016-05-01

    Information on the speciation of uranium minerals in ore of the recently discovered Ulziit uranium deposit in Mongolia is given for the first time. The ore composition has been studied by analytical scanning electron microscopy and local laser luminescent spectroscopy. The ore formed as a result of epigenetic redox processes. Transition from permeable variegated fan sediments to poorly permeable gray-colored coalbearing lacustrine-boggy sediments is the main ore-controlling factor. High-tech uranium mining with borehole in-situ leaching is feasible.

  2. Laser-induced breakdown spectroscopy measurements of uranium and thorium powders and uranium ore

    NASA Astrophysics Data System (ADS)

    Judge, Elizabeth J.; Barefield, James E., II; Berg, John M.; Clegg, Samuel M.; Havrilla, George J.; Montoya, Velma M.; Le, Loan A.; Lopez, Leon N.

    2013-05-01

    Laser-induced breakdown spectroscopy (LIBS) was used to analyze depleted uranium and thorium oxide powders and uranium ore as a potential rapid in situ analysis technique in nuclear production facilities, environmental sampling, and in-field forensic applications. Material such as pressed pellets and metals, has been extensively studied using LIBS due to the high density of the material and more stable laser-induced plasma formation. Powders, on the other hand, are difficult to analyze using LIBS since ejection and removal of the powder occur in the laser interaction region. The capability of analyzing powders is important in allowing for rapid analysis of suspicious materials, environmental samples, or trace contamination on surfaces since it most closely represents field samples (soil, small particles, debris etc.). The rapid, in situ analysis of samples, including nuclear materials, also reduces costs in sample collection, transportation, sample preparation, and analysis time. Here we demonstrate the detection of actinides in oxide powders and within a uranium ore sample as both pressed pellets and powders on carbon adhesive discs for spectral comparison. The acquired LIBS spectra for both forms of the samples differ in overall intensity but yield a similar distribution of atomic emission spectral lines.

  3. Process to improve the removal of suspended solids in leached uranium ore clarification

    SciTech Connect

    Mc Curdy, J.W.; Danyliw, B.H.

    1987-11-10

    A process to improve suspended solids removal from leached uranium ore by filtration on a filter cloth is described comprising (a) contacting, prior to contact with the leached uranium ore, the filter cloth with an effective amount of a polymer selected from the group consisting of homopolymers of acrylamide having a molecular weight of 3,000,000 to 8,000,000 and copolymers of acrylamide and dimethyl diallyl ammonium chloride having a molecular weight of 1,000,000 to 8,000,000, containing at least 50% acrylamide and less than 50% dimethyl diallyl ammonium chloride, by weight; and (b) passing the leached uranium ore through the filter cloth, wherein the leached uranium ore contains an effective amount of an acrylamide polymer as a filtration aid.

  4. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada; Informal report

    SciTech Connect

    Francis, A.J.; Joshi-Tope, G.; Gillow, J.B.; Dodge, C.J.

    1994-03-01

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique.

  5. AMS of natural 236U and 239Pu produced in uranium ores

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Barrows, T. T.; Fifield, L. K.; Tims, S. G.; Steier, P.

    2007-06-01

    The rare isotopes 236U and 239Pu are produced naturally by neutron capture in uranium ores. Here we measure 236U and 239Pu by accelerator mass spectrometry (AMS) in the same ore samples for the first time. To ensure efficient extraction of both elements and isotopic equilibrium between the 239Pu in the ore and a 242Pu spike, we developed a new sample preparation protocol. AMS has clear advantages over previous methods because it achieves better discrimination against molecular interferences with higher sensitivity and shorter counting times. Measurements of 236U and 239Pu hold considerable promise as proxy indicators of neutron flux and uranium concentration.

  6. RECOVERY OF URANIUM FROM LOW GRADE URANIUM BEARING ORES

    DOEpatents

    Rhodes, H.B.; Pesold, W.F.; Hirshon, J.M.

    1959-06-01

    Recovery of U, Fe, and Al from Chattanooga shale is described. Ground shale (-4 to +325 mesh) is roasted to remove organic and volatile matter. The heated shale is then reacted with a chlorinating agent (CCl/sub 4/, COCl/sub 2/, Cl, and SCl) at 600 to 1000 C. The metal chloride vapor is separated from entrained solids and then contacted with a liquid alkali metal chloride which removes U. The U is reeovered by cooling and dissolving the bath followed by acidification and solvent extraction. A condensed phase of Al, Fe, and K chlorides is treated to separate Al as alumina by passing through a Fe/sub 2/O/ sub 3/ bed. The remaining FeCl/sub 3/ is oxidized by O/sub 2/ at 1000 C to form Fe/sub 2/O/sub 3/ and Cl/sub 2/. Alternatively, vapor from the U separation step may be passed to a liquid KCl bath at 500 to 650 C. The resulting mixture is oxidized to form Cl/sub 2/ and Fe/sub 2/O/sub 3/ + Al/sub 2/O/sub 3/. The Al and Fe are separated by reaction with NaOH at high temperatures and pressures. (T.R.H.)

  7. Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany.

    PubMed

    Meinrath, A; Schneider, P; Meinrath, G

    2003-01-01

    The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.

  8. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  9. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    PubMed

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels.

  10. Mineralogy and uranium leaching of ores from Triassic Peribaltic sandstones.

    PubMed

    Gajda, Dorota; Kiegiel, Katarzyna; Zakrzewska-Koltuniewicz, Grazyna; Chajduk, Ewelina; Bartosiewicz, Iwona; Wolkowicz, Stanislaw

    The recovery of uranium and other valuable metals from Polish Peribaltic sandstones were examined. The solid-liquid extraction is the first stage of the technology of uranium production and it is crucial for the next stages of processing. In the laboratory experiments uranium was leached with efficiencies 71-100 % by acidic lixiviants. Satisfactory results were obtained for the alkaline leaching process. Almost 100 % of uranium was leached with alkaline carbonate solution. In post leaching solutions only uranium and small amounts of vanadium were present.

  11. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relative tomore » their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  12. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    SciTech Connect

    Balboni, Enrica; Jones, Nina; Spano, Tyler; Simonetti, Antonio; Burns, Peter C.

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relative to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.

  13. Explosion-assisted preparation of dispersed gold-bearing different-grade ore for selective mining

    NASA Astrophysics Data System (ADS)

    Trubachev, AI; Zykov, NV

    2017-02-01

    It is found that there are transient zones (between quality and off-quality ore areas) with the respective content of useful component in an ore body, and a variant of explosive treatment of such zones before the selective mining is put forward. Practicability of two processing technologies is evaluated: processing of high-grade and low-grade ore from the transient zones and heap leaching of metals from the low-grade and impoverished ore. Open mining technology is conventional truck-and-shovel scheme, with distributed ore flows to processing plant and (or) to heap leaching, which generally enhances the mine efficiency.

  14. Application of lead and strontium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Keegan, Elizabeth; Millet, Sylvain

    2009-10-15

    Lead and strontium isotope ratios were used for the origin assessment of uranium ore concentrates (yellow cakes) for nuclear forensic purposes. A simple and low-background sample preparation method was developed for the simultaneous separation of the analytes followed by the measurement of the isotope ratios by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). The lead isotopic composition of the ore concentrates suggests applicability for the verification of the source of the nuclear material and by the use of the radiogenic (207)Pb/(206)Pb ratio the age of the raw ore material can be calculated. However, during data interpretation, the relatively high variation of the lead isotopic composition within the mine site and the generally high contribution of natural lead as technological contamination have to be carefully taken into account. The (87)Sr/(86)Sr isotope ratio is less prone to the variation within one mine site and less affected by the production process, thus it was found to be a more purposeful indicator for the origin assessment and source verification than the lead. The lead and strontium isotope ratios measured and the methodology developed provide information on the initial raw uranium ore used, and thus they can be used for source attribution of the uranium ore concentrates.

  15. Culture-dependent and -independent molecular analysis of the bacterial community within uranium ore.

    PubMed

    Islam, Ekramul; Sar, Pinaki

    2011-08-01

    The bacterial community structure within a uranium ore was investigated using culture-dependent and -independent clone library analysis and denaturing gradient gel electrophoresis of 16S rRNA genes. The major aerobic heterotrophic bacteria were isolated and identified, and their resistance to uranium and other heavy metals was characterized. Together with near neutral pH, moderate organic carbon content, elevated U and other heavy metals (V, Ni, Mn, Cu, etc.), the ore showed high microbial counts and phylotype richness. The bacterial community mainly consisted of uncultured Proteobacteria, with the predominance of γ - over β - and α -subdivisions, along with Actinobacteria and Firmicutes. A phylogenetic study revealed that nearly one-third of the community was affiliated to as yet uncultured and unidentified bacteria having a closer relationship to Pseudomonas. Lineages of Burkholderiaceae and Moraxellaceae were relatively more abundant in the total community, while genera affiliated to Xanthomonadaceae and Microbacteriaceae and Exiguobacterium were detected in the culturable fraction. More than 50% of the bacterial isolates affiliated to Stenotrophomonas, Microbacterium, Acinetobacter, Pseudomonas and Enterobacter showed resistance to uranium and other heavy metals. The study showed for the first time that uranium ore harbors major bacterial groups related to organisms having a wide range of environmentally significant functional attributes, and the most abundant members are possibly new groups/taxa. These findings provide new insights into U-ore geomicrobiology that could be useful in biohydrometallurgy and bioremediation applications.

  16. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore.

  17. Investigation of sulphur isotope variation due to different processes applied during uranium ore concentrate production.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy

    The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n((34)S)/n((32)S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n((34)S)/n((32)S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.

  18. Leaching of molybdenum and arsenic from uranium ore and mill tailings

    USGS Publications Warehouse

    Landa, E.R.

    1984-01-01

    A sequential, selective extraction procedure was used to assess the effects of sulfuric acid milling on the geochemical associations of molybdenum and arsenic in a uranium ore blend, and the tailings derived therefrom. The milling process removed about 21% of the molybdenum and 53% of the arsenic initially present in the ore. While about one-half of the molybdenum in the ore was water soluble, only about 14% existed in this form in the tailings. The major portion of the extractable molybdenum in the tailings appears to be associated with hydrous oxides of iron, and with alkaline earth sulfate precipitates. In contrast with the pattern seen for molybdenum, the partitioning of arsenic into the various extractable fractions differs little between the ore and the tailings. ?? 1984.

  19. Histopathologic, morphometric, and physiologic investigation of lungs of dogs exposed to uranium-ore dust

    SciTech Connect

    Cross, F.T.; Filipy, R.E.; Loscutoff, S.M.; Mihalko, P.J.; Palmer, R.F.; Busch, R.H.

    1981-01-01

    The most consistent pulmonary-function change attributed to carnotite uranium-ore-dust exposure (at 15 mg/m/sup 3/, for 4 h/day, 5 days/week) is an increased slope of the single-breath N/sub 2/ washout curve, suggesting an uneven distribution of ventilation. This change was observed in dogs exposed for less than 1 year and continued through 4 years of exposure. Measurements of pulmonary resistance, after 27, 40 and 47 months exposure, showed slight age-related changes and increasing differences between control and exposed animals with duration of exposure. These two changes are suggestive of a bronchitic response, similar to the industrial bronchitis of mine workers. The most notable pulmonary lesions observed in dogs exposed for up to 4 years are: vesicular emphysema, peribronchiolitis and focal pneumoconiosis. Lesions of the major airways and upper respiratory tract, when present, were minimal in severity. Pulmonary vesicular emphysema was present in all but one of the examined dogs. The emphysema was dose-related, in that it was present only to a slight degree in dogs exposed for less than 3 years and, thereafter, increased in severity. Morphometric measurement data confirmed the value of the histopathologic grading system for the degree of emphysema. These data correlated best with the dynamic pulmonary compliance measurements.

  20. Petrographic-geochemical characteristics of granitoids and their epigenetic alteration products in paleovalley fields (Vitim uranium-ore site)

    NASA Astrophysics Data System (ADS)

    Kuznetsova, E. S.; Domarenko, V. A.; Matveenko, I. A.

    2016-09-01

    The study describes the results of the mineral and element composition of granitoids in basement and weathering crust of Khiagdinsk ore field in Vitim uranium ore site. It has been stated that granitoids in basement consist of leucocratic biotite granite of subalkaline group. The major rock-forming, accessory (apatite, zircon, sphene (titanite), magnetite, monazite, xenotime), and uranium-bearing minerals have been determined. Weathering crust is composed of unlithified or weakly lithified sediments, among which sandy and sandy medium gravel deposits have been distinguished in terms of mineralogical and granulometric texture. High radioactivity of granitoids was revealed in thorium-uranium basement and natural uranium. The combination of the specified factors presupposes that granitoids of Vitim uranium ore site may be a source of uranium in the fields of the paleovalley type.

  1. Analysis of Concentrated Uranium Ores Using Stable Isotopes and Elemental Concentrations

    NASA Astrophysics Data System (ADS)

    Miller, D. L.; Riciputi, L. R.; Buerger, S.; Horita, J.; Bostick, D.

    2006-12-01

    The illicit trafficking of nuclear materials presents a continuing threat to national and international security. Various geochemical characteristics of yellowcake (concentrated uranium ore) could potentially provide information on the geologic, geographic, and processing origin of the ore. We have been focusing on investigating the potential of stable isotope analyses, namely carbon, nitrogen, and oxygen, to provide "forensic" information about ore environment and artificial processing methods used to concentrate the uranium ore. Stable isotope analysis of carbon and nitrogen was performed using a Costech elemental analyzer (EA) attached to a Finnigan Mat 252 mass spectrometer. Carbon and nitrogen isotopes can be characteristic of the processing agents used to concentrate the uranium ore. Oxygen analysis was performed using a ThermoFinnigan thermal conversion elemental analyzer (TCEA) attached to a Finnigan Mat 252 mass spectrometer at ORNL. In addition to the stable isotope analyses, elemental concentrations were analyzed using time-of-flight ICP-MS, and uranium isotope composition measured using MC-ICP-MS. Results from a number of yellowcake samples will be presented, illustrating the potential of geochemical characteristics to distinguish among different types of samples. Research sponsored by the Office of Nonproliferation and International Security (NA-24), National Nuclear Security Administration (NNSA), U.S. Department of Energy, under contract DE-AC05-00OR22725 with Oak Ridge National Laboratory, managed and operated by UT-Battelle, LLC. The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

  2. Leaching of radionuclides from uranium ore and mill tailings ( Ra- 226, Tn-230).

    USGS Publications Warehouse

    Landa, E.R.

    1982-01-01

    The major part of the extractable uranium is associated with a readily acid-soluble fraction in both ore and tailings. The major part of the extractable 226Ra was associated with an iron, manganese hydrous-oxide fraction in the ore and tailings. Thorium-230 was the least leachable of the radionuclides studied. The major portion of the extractable 230Th was associated with alkaline-earth sulphate precipitates, organic matter, or both. The specific effects of milling on each of the nuclides are discussed.-Author

  3. Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Kalashnyk, Anna

    2015-04-01

    During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45

  4. The selective leaching of uranium, vanadium and phosphorus from phosphate ore with hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Clements, J. L.; Prisbrey, K. A.; Taylor, P. R.

    1980-06-01

    The selective leaching of uranium, vanadium, and phosphorus from phosphate ore may be useful in by-product recovery. Experimental results have shown that it is possible to preferentially remove uranium from phosphate ore using dilute HCl (0.05 M). 93 pct of the uranium is leached within 90 min, leaving 94 pct of the phosphorus and 82 pct of the vanadium unattacked. Phosphorus may then be removed by increasing the pH. The apparent activation energies and orders for the leaching reactions were found. For uranium, the apparent order with respect to H+ is 1.05 and the apparent activation energy is 7750 J. The apparent order for the leaching of the vanadium minerals with respect to H+ is 1.93 and the apparent activation energy is 12800 J. The phosphorus reaction has an apparent order, with respect to H+, of 1.98 and an apparent activation energy of 10200 J. The uranium readsorbs at longer times. The readsorption reaction is a function of temperature, particle size, and H+ concentration. Two methods of selectivity analysis were used in the analysis of the data-end point analysis and initial rate analysis.

  5. An Overview of Process Monitoring Related to the Production of Uranium Ore Concentrate

    SciTech Connect

    McGinnis, Brent

    2014-04-01

    Uranium ore concentrate (UOC) in various chemical forms, is a high-value commodity in the commercial nuclear market, is a potential target for illicit acquisition, by both State and non-State actors. With the global expansion of uranium production capacity, control of UOC is emerging as a potentially weak link in the nuclear supply chain. Its protection, control and management thus pose a key challenge for the international community, including States, regulatory authorities and industry. This report evaluates current process monitoring practice and makes recommendations for utilization of existing or new techniques for managing the inventory and tracking this material.

  6. BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL

    SciTech Connect

    Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

    2003-02-27

    Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source

  7. LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.

    1961-07-18

    A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.

  8. Imaging of unconformity related uranium ore zones by crosshole ERT

    NASA Astrophysics Data System (ADS)

    Yi, M.; Kim, C.; Son, J.

    2011-12-01

    For the exploration of unconformity type uranium deposits in the Athabasca basin, Canada, electrical resistiivty survey is commonly used to define graphtic conductors in the basement. The method, however, can not provide enough resolution since the exploration target is seated in depth greater than 300 m while the width is less than 50 m. To overcome this inherent problem and introduce new exploration technology, we applied the crosshole ERT(Electrical Resistivity Tomography) technology in the Athabasca basin. Since the drillholes are not vertical and randomly oriented, 3D ERT inversion algorithm, accommodating arbitray electrode locations, was used to reconstruct 2D surbsurface resistivity image. For the 2D inversion in 3D inversion code, subsurface was assumed to be two-dimensional. We also applied the full 3D inversion to the field data set from several drillholes. In the ERT images, we could observe the graphitic pelite zone with very low resistivity which is our exploration target. By defining the accurate location of graphtic conductor, we could understand the basic setting of the site. Moreover, in the 3D ERT image, we could define anomalous zone in 3D space which can be related to the uranium target. By this introductory ERT survey, we could show that ERT can be used as a new geophysical exploration method in the Athabasca basin. In the current exploration procedure, barren drillholes are abandoned and further geophysical surveys using thes holes are rare in most cases. Since ERT technique can provide very high resolution image of the subsurface, we can have more detailed information to design the drilling program and this can lead to the cost reduction of exploration program. We expect crosshole ERT will become a standard geophysical methods in the exploration projects in the Athabasca basin.

  9. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    PubMed

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes.

  10. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics.

    PubMed

    Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P

    2015-12-01

    Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns.

  11. View looking northwest toward HIghGrade Ore Bin and Concentrate Bin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking northwest toward HIgh-Grade Ore Bin and Concentrate Bin - Kennecott Copper Corporation, Concentration Mill, On Copper River & Northwestern Railroad, Kennicott, Valdez-Cordova Census Area, AK

  12. Enhanced Uranium Ore Concentrate Analysis by Handheld Raman Sensor: FY15 Status Report

    SciTech Connect

    Bryan, Samuel A.; Johnson, Timothy J.; Orton, Christopher R.

    2015-11-11

    High-purity uranium ore concentrates (UOC) represent a potential proliferation concern. A cost-effective, “point and shoot” in-field analysis capability to identify ore types, phases of materials present, and impurities, as well as estimate the overall purity would be prudent. Handheld, Raman-based sensor systems are capable of identifying chemical properties of liquid and solid materials. While handheld Raman systems have been extensively applied to many other applications, they have not been broadly studied for application to UOC, nor have they been optimized for this class of chemical compounds. PNNL was tasked in Fiscal Year 2015 by the Office of International Safeguards (NA-241) to explore the use of Raman for UOC analysis and characterization. This report summarizes the activities in FY15 related to this project.

  13. Environmental impact of uranium mining and ore processing in the Lagoa Real District, Bahia, Brazil.

    PubMed

    Carvalho, Ilson G; Cidu, Rosa; Fanfani, Luca; Pitsch, Helmut; Beaucaire, Catherine; Zuddas, Pierpaolo

    2005-11-15

    Uranium mining and processing at Lagoa Real (Bahia, Brazil) started in 2000. Hydrogeochemical monitoring carried out from 1999 to 2001 revealed generally good quality of the water resources outside and inside the mineralized area. No chemical contamination in waters for domestic uses was observed. Hydrochemical characteristics did not vary significantly after 1 year of U exploitation, as compared to premining conditions. Due to the short time of mining, the results cannot exclude future variations in water quality. Leaching experiments helped to describe processes of ore and waste degradation. Sulfate was identified as an indicator for different types of contamination. Potential hazards related to local climate (hot rainy season) were identified. They indicate that tailings derived from the ore processing, destabilized by sulfuric acid attack, may induce acidification and salinization in the surrounding environment. Another potential source of environmental impact could be linked to local radium-rich mineralization, originating radon emission.

  14. Age of uranium ores at Ranger and Jabiluka unconformity vein deposits, Northern Territory, Australia

    SciTech Connect

    Ludwig, K.R.; Grauch, R.I.; Nutt, C.J.; Frishman, D.; Nash, J.T.; Simmons, K.R.

    1985-01-01

    The Ranger and Jabiluka uranium deposits are the largest in the Alligator Rivers Uranium Field (ARUF), which contains at least 20% of the world's low-cost uranium reserves. Ore occurs in early Proterozoic metasediments, below an unconformity with sandstones of the 1.65 Ga Kombolgie Formation. This study uses U-Pb isotope data from over 60 whole-rock drill core samples that contained a variety of mineral assemblages and textures. Data for Ranger samples indicate a well-defined age of 1.74 +/-.02 Ga. This 1.74 Ga age is distinctly pre-Kombolgie, so the Ranger deposit cannot have been formed by processes requiring its presence. This Ranger age is consistent, however, with mineralization related to heating associated with either the emplacement of early post-metamorphic granites, or possibly with intrusion of the nearby Oenpelli Dolerite. In contrast, data for the least-altered Jabiluka ores yield a concordia-intercept age of 1.44 +/-.02 Ga--significantly younger than the Ranger age, and also younger than the Komobolgie. This age may correspond to a regional thermal event, as indicated both by mafic dikes of roughly this age and a zircon lower-intercept age from a nearby granite-gneiss. Thus, together with the well-defined approx.900 Ma age of ores at the Nabarlek deposit, there are at least 3 distinct periods of major U-mineralization in the ARUF. Data for both Ranger and Jabiluka indicate the same, profound isotopic disturbance at some time in the interval of 0.4-0.6 Ga. Possibly this time corresponds to the development of basins and associated basalt flows to the W and SW, a suggested by Crick et. al. (1980).

  15. Nucleogenic 36Cl, 236U and 239Pu in uranium ores

    NASA Astrophysics Data System (ADS)

    Wilcken, K. M.; Fifield, L. K.; Barrows, T. T.; Tims, S. G.; Gladkis, L. G.

    2008-08-01

    The nucleogenic isotopes 36Cl, 236U and 239Pu are produced naturally in subsurface environments via neutron capture of thermal and epithermal neutrons. Concentrations are, however, very low and accelerator mass spectrometry (AMS) is required for quantitative measurements. A particular challenge is presented by the measurement of 236U/ 238U ratios down to the level of 10 -13 that is expected from rocks with low uranium concentration. Here, we present the AMS methodology that has been developed at the ANU for measuring 236U/ 238U ratios at this level. The more established methodologies for 36Cl and 239Pu measurements are also summarised. These capabilities are then used to characterize the 36Cl, 236U and 239Pu concentrations in a range of uranium ores. A simple model of the neutron production and capture processes in subsurface environments has been developed and is presented. It is shown that nucleogenic 36Cl, 236U and 239Pu can be used to determine both thermal and epithermal neutron fluxes in subsurface environments. Potential applications include uranium exploration and monitoring of the environmental impact of uranium mining.

  16. Formation conditions of high-grade gold-silver ore of epithermal Tikhoe deposit, Russian Northeast

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Kolova, E. E.; Savva, N. E.; Sidorov, A. A.; Prokof'ev, V. Yu.; Ali, A. A.

    2016-09-01

    The Tikhoe epithermal deposit is located in the Okhotsk-Chukotka volcanic belt (OChVB) 250 km northeast of Magadan. Like other deposits belonging to the Ivan'insky volcanic-plutonic depression (VTD), the Tikhoe deposit is characterized by high-grade Au-Ag ore with an average Au grade of 23.13 gpt Au and Au/Ag ratio varying from 1: 1 to 1: 10. The detailed explored Tikhoe-1 orebody is accompanied by a thick (20 m) aureole of argillic alteration. Pyrite is predominant among ore minerals; galena, arsenopyrite, sphalerite, Ag sulfosalts, fahlore, electrum, and küstelite are less abundant. The ore is characterized by abundant Sebearing minerals. Cu-As geochemical specialization is noted for silver minerals. Elevated Se and Fe molar fractions of the main ore minerals are caused by their formation in the near-surface argillic alteration zone. The veins and veinlets of the Tikhoe-1 ore zone formed stepwise at a temperature of 230 to 105°C from Nachloride solution enriched in Mg and Ca cations with increasing salinity. The parameters of the ore-forming fluid correspond to those of epithermal low-sulfidation deposits and assume the formation of high-grade ore under a screening unit of volcanic rocks. In general, the composition of the ore-forming fluid fits the mineralogy and geochemistry of ore at this deposit. The similarity of the ore composition and parameters of the ore-forming fluid between the Tikhoe and Julietta deposits is noteworthy. Meanwhile, differences are mainly related to the lower temperature and fluid salinity at the Julietta deposit with respect to the Tikhoe deposit. The fluid at the Julietta deposit is depleted in most components compared with that at the Tikhoe deposit except for Sb, Cd, and Ag. The results testify to a different erosion level at the deposits as derivatives of the same ore-forming system. The large scale of the latter allows us to predict the discovery of new high-grade objects, including hidden mineralization, which is not exposed at

  17. Uranium ore treatment. January 1970-May 1981 (citations from the Engineering Index Data Base). Report for Jan 70-May 81

    SciTech Connect

    Not Available

    1981-05-01

    The treatment of uranium ores is presented with emphasis placed on acid leaching as the primary step in the process. Tailing disposal and proper handling of radioactive materials, including environmental monitoring is emphasized. Primary treatment procedures include ion exchange, sulfuric acid leaching, solvent extraction and sedimentation. (Contains 300 citations fully indexed and including a title list.)

  18. Selective Removal of Iron from Low-Grade Ti Ore by Reacting with Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2017-02-01

    Recently, titanium metal production by molten salt electrolysis using CaCl2 as molten salt and TiO2 or rutile (94 to 96 pct TiO2) as feedstock has been drawing attention. However, when a low-grade Ti ore (mainly FeTiO3) is used as feedstock, removal of iron (Fe) from the ore is indispensable. In this study, the influence of reaction temperature, reaction time, particle size of the ore, and source country for the ore on the removal of iron by selective chlorination using CaCl2 was assessed. Experimental results showed that the mass percent of iron in the ore decreased from 49.7 to 1.79 pct under certain conditions by selective removal of iron as FeCl2. As a result, high-grade CaTiO3 was produced when the ore particles smaller than 74 µm reacted with CaCl2 at 1240 K (967 °C) for 8 to 10 hours. Therefore, this study demonstrates that the removal of iron from the ore is feasible through the selective chlorination process using CaCl2 by optimizing the variables.

  19. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.

    PubMed

    Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta

    2011-10-01

    Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.

  20. Effect of basicity on ferromanganese production from beneficiated low-grade manganese ore

    NASA Astrophysics Data System (ADS)

    Suharno, Bambang; Noegroho, Adi; Ferdian, Deni; Nurjaman, Fajar

    2017-01-01

    Indonesia is known to have a large low-grade manganese ore reserve. Nevertheless, it could not be used optimally in producing ferromanganese due to their low Mn/Fe ratio. In this present study, the beneficiation process had been applied to the low-grade manganese ore. Reduction roasting was conducted to this manganese ore at 700°C for an hour and then continued with low-intensity magnetic separation. This process had improved the Mn/Fe ratio from 1.39 to 6.11. The effect of basicity on ferromanganese production from this beneficiated low-grade manganese ore had been investigated clearly in this experiment by using mini submerged arc furnace (SAF). Several basicities for 0.7 and 1.0, was used and it was controlled by the addition of limestone in this smelting process. From this experiment, the ferromanganese containing 60% Mn was obtained from smelting the beneficiated low-grade manganese ore with the optimum basicity 0.7.

  1. The Mechanism on Biomass Reduction of Low-Grade Manganese Dioxide Ore

    NASA Astrophysics Data System (ADS)

    Zhang, Honglei; Zhu, Guocai; Yan, Hong; Li, Tiancheng; Zhao, Yuna

    2013-08-01

    The mechanism on biomass reduction of low-grade manganese dioxide ore was studied by investigating influence factors on manganese recovery degree, such as the reaction temperature, time, biomass/ore ratio, compositions of biomass, nitrogen flow rate, and particle size of raw materials, and it was further identified through analysis of gas composition in the outlet gas, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) for the reduced sample. The results show that the reduction process involved mainly two steps: (1) The biomass was first pyrolyzed to release reductive volatiles and (2) manganese oxide ore was reacted with the reductive volatiles. By an analysis of gas composition in the outlet gas, it was also found that the ratio of biomass/ore had an important effect on the reduction mechanism. With a low biomass/ore ratio of 0.5:10, the reducing reaction of the reductive volatiles with manganese dioxide ore proceeded mainly in two stages: (1) The condensable volatiles (tar) released from biomass pyrolysis reacted with manganese oxide ore to produce reductive noncondensable gases such as hydrogen, carbon monoxide, and some light hydrocarbons; and (2) the small molecule gases further participated in the reduction. XRD pattern analysis on the reduced manganese dioxide ore revealed that the process of biomass reduction of manganese ore underwent in phases (MnO2 → Mn3O4 → MnO). The kinetics study showed the reduction process was controlled by a gas-solid reaction between biomass volatiles and manganese oxide ore with activation energy E of 53.64 kJ mol-1 and frequency factor A of 5.45 × 103 minutes-1.

  2. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    DOE PAGES

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; ...

    2014-04-13

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less

  3. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia

    SciTech Connect

    Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark; Hutcheon, Ian

    2014-04-13

    In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.

  4. Nuclear forensic analysis of an unknown uranium ore concentrate sample seized in a criminal investigation in Australia.

    PubMed

    Keegan, Elizabeth; Kristo, Michael J; Colella, Michael; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark; Hutcheon, Ian

    2014-07-01

    Early in 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. During the search of the laboratory, a small glass jar labelled "Gamma Source" and containing a green powder was discovered. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterise and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.

  5. Detailed mineral and chemical relations in two uranium-vanadium ores

    USGS Publications Warehouse

    Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.

    1956-01-01

    Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the

  6. Multivariate approach to the chemical mapping of uranium in sandstone-hosted uranium ores analyzed using double pulse Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Klus, Jakub; Mikysek, Petr; Prochazka, David; Pořízka, Pavel; Prochazková, Petra; Novotný, Jan; Trojek, Tomáš; Novotný, Karel; Slobodník, Marek; Kaiser, Jozef

    2016-09-01

    The goal of this work is to provide high resolution mapping of uranium in sandstone-hosted uranium ores using Laser-Induced Breakdown Spectroscopy (LIBS) technique. In order to obtain chemical image with highest possible spatial resolution, LIBS system in orthogonal double pulse (DP LIBS) arrangement was employed. Owing to this experimental arrangement the spot size of 50 μm in diameter resulting in lateral resolution of 100 μm was reached. Despite the increase in signal intensity in DP LIBS modification, the detection of uranium is challenging. The main cause is the high density of uranium spectral lines, which together with broadening of LIBS spectral lines overreaches the resolution of commonly used spectrometers. It results in increased overall background radiation with only few distinguishable uranium lines. Three different approaches in the LIBS data treatment for the uranium detection were utilized: i) spectral line intensity, ii) region of apparent background and iii) multivariate data analysis. By utilizing multivariate statistical methods, a specific specimen features (in our case uranium content) were revealed by processing complete spectral information obtained from broadband echelle spectrograph. Our results are in a good agreement with conventional approaches such as line fitting and show new possibilities of processing spectral data in mapping. As a reference technique to LIBS was employed X-ray Fluorescence (XRF). The XRF chemical images used in this paper have lower resolution (approximately 1-2 mm per image point), nevertheless the elemental distribution is apparent and corresponds to presented LIBS experiments.

  7. Studies of Recovery Processes for Western Uranium Bearing Ores: III. The Recovery of Uranium and Vanadium from Acid Leach Liquid Liquors of Carnotite Ores,

    DTIC Science & Technology

    2007-11-02

    Tests are reported on hydrolytic precipitation of uranium and precipitation of uranyl, arsenate, and vanadate; uranium peroxide; uranous fluoride, oxalate, and p-toluenesulfinate; and ferrous, ferric, and lead vanadates.

  8. URANIUM RECOVERY PROCESS

    DOEpatents

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  9. Removal of hazardous radionuclides from uranium ore and/or mill tailings. Progress report, October 1, 1978-September 30, 1979

    SciTech Connect

    Scheitlin, F.M.; Bond, W.D.

    1980-01-01

    The leaching of uranium ore and mill tailings to remove radium was studied. A few scouting tests were performed to obtain data on the recovery of radium, thorium, and uranium from leach liquors and on the recycle of leaching agents. Nitric acid, hydrochloric acid, ethylenediaminetetraacetic acid (EDTA), and diethylenetriaminepentaacetic acid (DTPA) were evaluated as leachants using one sample of a western US ore and two samples of tailings obtained from different uranium mills that employ the sulfuric acid leach process. Leached solids with radium contents approaching 10 pCi/g (98% radium removal) were obtained after six stages of batch, crosscurrent leaching with 3 M HNO/sub 3/ at 33% concentration of solids and a temperature of 60/sup 0/C. On the basis of two-stage tests on mill tailings, 0.5 M EDTA solutions at pH values of 8.2 to 11.6 were found to be more effective, while hydrochloric acid in two- or three-stage tests was less effective than nitric acid. Solutions of 0.3 M EDTA and 0.05 M DTPA were ineffective. No important differences were observed in the leaching behavior of ore and of mill tailings derived from the same ore. The residue remaining after six stages of nitric acid leaching was relatively intractable to radium leaching with water or additional nitric acid leaching. Tests indicated that the recycle of nitric acid is chemically feasible by evaporating the leach liquors to recover unused acid and then thermally decomposing the metal salts to recover consumed acid. Radium recoveries of 99+% by carrying on barium sulfate were shown to be chemically feasible in a series of experiments with leach liquors, but processing applications would probably require methods for barium recycle and barium-radium separation. Recovery of /sup 230/Th and uranium from nitrate leach liquors by tri-n-butyl phosphate extraction appears promising in initial tests.

  10. A REAL-TIME COAL CONTENT/ORE GRADE (C2OC) SENSOR

    SciTech Connect

    Rand Swanson

    2005-04-01

    This is the final report of a three year DOE funded project titled ''A real-time coal content/ore grade (C{sub 2}OG) sensor''. The sensor, which is based on hyperspectral imaging technology, was designed to give a machine vision assay of ore or coal. Sensors were designed and built at Resonon, Inc., and then deployed at the Stillwater Mining Company core room in southcentral Montana for analyzing platinum/palladium ore and at the Montana Tech Spectroscopy Lab for analyzing coal and other materials. The Stillwater sensor imaged 91' of core and analyzed this data for surface sulfides which are considered to be pathfinder minerals for platinum/palladium at this mine. Our results indicate that the sensor could deliver a relative ore grade provided tool markings and iron oxidation were kept to a minimum. Coal, talc, and titanium sponge samples were also imaged and analyzed for content and grade with promising results. This research has led directly to a DOE SBIR Phase II award for Resonon to develop a down-hole imaging spectrometer based on the same imaging technology used in the Stillwater core room C{sub 2}OG sensor. The Stillwater Mining Company has estimated that this type of imaging system could lead to a 10% reduction in waste rock from their mine and provide a $650,000 benefit per year. The proposed system may also lead to an additional 10% of ore tonnage, which would provide a total economic benefit of more than $3.1 million per year. If this benefit could be realized on other metal ores for which the proposed technology is suitable, the possible economic benefits to U.S. mines is over $70 million per year. In addition to these currently lost economic benefits, there are also major energy losses from mining waste rock and environmental impacts from mining, processing, and disposing of waste rock.

  11. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

    SciTech Connect

    Dr. Rand Swanson

    2002-01-31

    The overall approach of this effort is to spectrally image ore or coal, and then use the spectral content (i.e., the particular colors of the ore or coal) to differentiate between the ore or coal grades. Currently, experts with practiced eyes do just this to identify the grade of platinum/palladium ore from the Stillwater Mine in south-central Montana. Additionally, trained eyes can identify high-sulfur and high-ash coal visually. The premise of this effort is that machine vision can accomplish this same differentiation. During the first quarter, machine vision results using a digital color camera did not correlate as well with assay results for platinum/palladium ore as would be required for a commercial device. One of the possible reasons for this is that the digital camera did not provide enough spectral information to obtain good differentiation between the sulfides associated with high-grade platinum/palladium ore and background interference, most notably yellow grease that contaminates some of the sample and green colored rock. The second quarter efforts have largely been devoted to implementing an imaging spectrometer for machine vision. In brief, modifying an imaging spectrometer that was designed for remote sensing from a Remotely Controlled (RC) airplane has done this. The imaging spectrometer provides 320 spectral channels, allowing for much better spectral resolution that can be obtained with a digital color camera, which provides 3 spectral channels. Preliminary results, as discussed below in more detail, are encouraging. The technical portion of the report below is organized into subsections as dictated by the DoE contract for this effort. These sections are: Experimental Apparatus, Experimental and Operating Data, Data Reduction, and Hypothesis and Conclusions. Partners in this effort are: Montana Tech of the University of Montana, Stillwater Mining Co., Western Syncoal, and the Montana Board of Research and Commercialization.

  12. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  13. Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: A comparative study.

    PubMed

    Islam, Ekramul; Dhal, Paltu K; Kazy, Sufia K; Sar, Pinaki

    2011-01-01

    Bacterial community structure of heavy metal rich- uranium ores and surrounding soils was explored using 16S rRNA gene based clone library analysis and denaturing gradient gel electrophoresis (DGGE) to provide baseline microbial diversity data on autochthonous communities. Sequence analysis of major ribotypes and/or DGGE bands revealed Proteobacteria and Acidobacteria as the two most frequently present bacterial phyla across the samples, although relative abundance of each phyla and identity of their members at lower taxonomic level showed marked difference. Gammaproteobacteria (Pseudomonas and Escherichia) was most abundant in U-ore samples along with the lineages of β-Proteobacteria (Burkholderia and Janthinobacterium), α-Proteobacteria (Brevundimonas), Bacteroidetes (Spingobacterium), Firmicutes (Peptoniphilus), Actinobacteria (Corynebacterium), uncultured -Acidobacteria, -Chloroflexi and -Cyanobacterium. In contrast to this soil communities were represented by mixed populations predominated by uncultured Acidobacteria along with Gammaproteobacteria (Succinivibrio, Cellovibrio and Legionella), β-Proteobacteria (Rhodocyclus), α-Proteobacteria (Methylocystis and Phenylobacterium), δ-Proteobacteria, unclassified bacteria, uncultured Bacteroidetes, Firmicutes (Bacillus), Cyanobacteria (Scytonema), Actinobacteria (Actinomadura) and candidate division TM7. Principle Component Analyis (PCA) of geochemical data and UPGMA cluster analysis of DGGE profiles were in close agreement showing characteristic relatedness of samples obtained from either ores or soils. Our analysis indicated that soils surrounding the ore deposit bear specific geochemical as well as microbiologial characteristics distinct from the ore deposit and therefore these data obtained at the onset of mining could serve as a baseline of information to gauge the subsequent environmnetal impact of U-mining.

  14. Estimation of intermediate grade uranium resources. Final report. [0. 01 to 0. 05% U/sub 3/0/sub 8/

    SciTech Connect

    Lambie, F W; Kendall, G R; Klahn, L J; Davis, J C; Harbaugh, J W

    1980-12-01

    The purpose of this project is to analyze the technique currently used by DOE to estimate intermediate grade uranium (0.01 to 0.05% U/sub 3/O/sub 8/) and, if possible, suggest alternatives to improve the accuracy and precision of the estimate. There are three principal conclusions resulting from this study. They relate to the quantity, distribution and sampling of intermediate grade uranium. While the results of this study must be validated further, they indicate that DOE may be underestimating intermediate level reserves by 20 to 30%. Plots of grade of U/sub 3/O/sub 8/ versus tonnage of ore and tonnage U/sub 3/O/sub 8/ indicate grade-tonnage relationships that are essentially log-linear, at least down to 0.01% U/sub 3/O/sub 8/. Though this is not an unexpected finding, it may provide a technique for reducing the uncertainty of intermediate grade endowment. The results of this study indicate that a much lower drill hole density is necessary for DOE to estimate uranium resources than for a mining company to calculate ore resources. Though errors in local estimates will occur, they will tend to cancel over the entire deposit.

  15. Cesium and strontium tolerant Arthrobacter sp. strain KMSZP6 isolated from a pristine uranium ore deposit.

    PubMed

    Swer, Pynskhem Bok; Joshi, Santa Ram; Acharya, Celin

    2016-12-01

    Arthrobacter sp. KMSZP6 isolated from a pristine uranium ore deposit at Domiasiat located in North-East India exhibited noteworthy tolerance for cesium (Cs) and strontium (Sr). The strain displayed a high minimum inhibitory concentration (MIC) of 400 mM for CsCl and for SrCl2. Flow cytometric analysis employing membrane integrity indicators like propidium iodide (PI) and thiazole orange (TO) indicated a greater sensitivity of Arthrobacter cells to cesium than to strontium. On being challenged with 75 mM of Cs, the cells sequestered 9612 mg Cs g(-1) dry weight of cells in 12 h. On being challenged with 75 mM of Sr, the cells sequestered 9989 mg Sr g(-1) dry weight of cells in 18 h. Heat killed cells exhibited limited Cs and Sr binding as compared to live cells highlighting the importance of cell viability for optimal binding. The association of the metals with Arthrobacter sp. KMSZP6 was further substantiated by Field Emission-Scanning Electron Microscopy (FE-SEM) coupled with Energy dispersive X-ray (EDX) spectroscopy. This organism tolerated up to 1 kGy (60)Co-gamma rays without loss of survival. The present report highlights the superior tolerance and binding capacity of the KMSZP6 strain for cesium and strontium over other earlier reported strains and reveals its potential for bioremediation of nuclear waste.

  16. Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.

    PubMed

    Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J

    2012-12-04

    In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions.

  17. Characterization and Beneficiation Studies of a Low Grade Bauxite Ore

    NASA Astrophysics Data System (ADS)

    Rao, D. S.; Das, B.

    2014-10-01

    A low grade bauxite sample of central India was thoroughly characterized with the help of stereomicroscope, reflected light microscope and electron microscope using QEMSCAN. A few hand picked samples were collected from different places of the mine and were subjected to geochemical characterization studies. The geochemical studies indicated that most of the samples contain high silica and low alumina, except a few which are high grade. Mineralogically the samples consist of bauxite (gibbsite and boehmite), ferruginous mineral phases (goethite and hematite), clay and silicate (quartz), and titanium bearing minerals like rutile and ilmenite. Majority of the gibbsite, boehmite and gibbsitic oolites contain clay, quartz and iron and titanium mineral phases within the sample as inclusions. The sample on an average contains 39.1 % Al2O3 and 12.3 % SiO2, and 20.08 % of Fe2O3. Beneficiation techniques like size classification, sorting, scrubbing, hydrocyclone and magnetic separation were employed to reduce the silica content suitable for Bayer process. The studies indicated that, 50 % by weight with 41 % Al2O3 containing less than 5 % SiO2 could be achieved. The finer sized sample after physical beneficiation still contains high silica due to complex mineralogical associations.

  18. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    NASA Astrophysics Data System (ADS)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief

    2016-06-01

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 - 600 °C and catalyst weight between 0 - 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H2 productivity increased and calorimetric value of bio-oil increased.

  19. The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael

    2014-05-01

    Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and

  20. Measurement of uranium series radionuclides in rock and groundwater at the Koongarra ore deposit, Australia, by gamma spectrometry

    SciTech Connect

    Yanase, Nobuyuki; Sekine, Keiichi

    1995-12-31

    Gamma spectrometry without any self-absorption correction was developed to measure low energy gamma rays emitted by uranium and actinium series radionuclides in rock samples and groundwater residues collected at the Koongarra ore deposit, Australia. Thin samples were prepared to minimize the self-absorption by uranium in the samples. The present method gave standard deviations of 0.9 to 18% for the measurements of concentrations of uranium and actinium series radionuclides. The concentrations of {sup 238}U, {sup 230}Th and {sup 235}U measured by gamma spectrometry were compared with those by alpha spectrometry that requires a complicated chemical separation procedure. The results obtained by both methods were in fairly good agreement, and it was found that the gamma spectrometry is applicable to rock and groundwater samples having uranium content sup to 8.1% (10{sup 3} B1/g) and 3 Bq/l of {sup 238}U, respectively. The detection limits were calculated to be of the order of 10{sup {minus}2} Bq/g for rock samples and 10{sup {minus}1} Bq/l for groundwater samples. The concentrations of uranium and actinium series radionuclides can be determined precisely in these samples using gamma spectrometry without any self-absorption correction.

  1. Radon and radioactivity at a town overlying Uranium ores in northern Greece.

    PubMed

    Kourtidis, K; Georgoulias, A K; Vlahopoulou, M; Tsirliganis, N; Kastelis, N; Ouzounis, K; Kazakis, N

    2015-12-01

    Extensive measurements of (222)Rn in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m(-3). A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m(-3) while 11% of the houses had radon levels above 400 Bq m(-3). Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th-early 20th century. Measurements of (238)U and (232)Th content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor (222)Rn was found with temperature (r(2) = 0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r(2) = 0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere (222)Rn flux should be in the range 150-250 Bq m(-2) h(-1), which is in the upper 10% of flux values for Europe.

  2. Radon and radioactivity at a town overlying Uranium ores in northern Greece

    NASA Astrophysics Data System (ADS)

    Kourtidis, Konstantinos; Georgoulias, Aristeidis; Tsirliganis, Nestor

    2016-04-01

    Extensive measurements of Rn-222 in the town of Xanthi in N Greece show that the part of the town overlying granite deposits and the outcrop of a uranium ore has exceptionally high indoor radon levels, with monthly means up to 1500 Bq m-3. A large number of houses (40%) in this part of the town exhibit radon levels above 200 Bq m-3 while 11% of the houses had radon levels above 400 Bq/m3. Substantial interannual variability as well as the highest in Europe winter/summer ratios (up to 12) were observed in this part of the town, which consist of traditional stone masonry buildings of the late 19th- early 20th century. Measurements of U-238 and Th-232 content of building materials from these houses as well as radionuclide measurements in different floors show that the high levels of indoor radon measured in these buildings are not due to high radon emanation rates from the building materials themselves but rather due to high radon flux from the soil because of the underlying geology, high radon penetration rates into the buildings from underground due to the lack of solid concrete foundations in these buildings, or a combination thereof. From the meteorological variables studied, highest correlation with indoor Rn-222 was found with temperature (r2=0.65). An indoor radon prognostic regression model using temperature, pressure and precipitation as input was developed, that reproduced indoor radon with r2=0.69. Hence, meteorology is the main driving factor of indoor radon, with temperature being the most important determinant. Preliminary flux measurements indicate that the soil-atmosphere Rn-222 flux should be in the range 150-250 Bq m-2 hr-1, which is in the upper 10% of flux values for Europe.

  3. Technical Report on the Behavior of Trace Elements, Stable Isotopes, and Radiogenic Isotopes During the Processing of Uranium Ore to Uranium Ore Concentrate

    SciTech Connect

    Marks, N. E.; Borg, L. E.; Eppich, G. R.; Gaffney, A. M.; Genneti, V. G.; Hutcheon, I. D.; Kristo, M. J.; Lindvall, R. E.; Ramon, C.; Robel, M.; Roberts, S. K.; Schorzman, K. C.; Sharp, M. A.; Singleton, M. J.; Williams, R. W.

    2015-07-09

    The goals of this SP-1 effort were to understand how isotopic and elemental signatures behave during mining, milling, and concentration and to identify analytes that might preserve geologic signatures of the protolith ores. The impurities that are preserved through the concentration process could provide useful forensic signatures and perhaps prove diagnostic of sample origin.

  4. Chemical data and statistical interpretations for rocks and ores from the Ranger uranium mine, Northern Territory, Australia

    USGS Publications Warehouse

    Nash, J. Thomas; Frishman, David

    1983-01-01

    Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.

  5. Banana peel reductant for leaching medium grade manganese ore in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Aripin, H.; Joni, I. Made; Busaeri, Nundang; Usrah, Ifkar; Sudiana, I. Nyoman; Sabchevski, Svilen

    2017-03-01

    In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The effects of weighed amount of banana peels on the structural and leaching properties have been studied. The material's properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transforms infrared (FTIR) spectroscopy. It has been found that an increase of the weighed amount of banana peels up to 4 g leads to an increase of the leaching efficiency of manganese from manganese ore. Above 4 g, however, the leaching efficiency does not change significantly. The analysis based on the interpretation of both XRD patterns and FTIR spectrum allows one to explain the increase in the leaching efficiencies of manganese by the reduction of MnO2 minerals and by the removal of hemicelluloses groups of banana peel in the samples.

  6. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Emsbo, P.; Hofstra, A.H.; Lauha, E.A.; Griffin, G.L.; Hutchinson, R.W.

    2003-01-01

    The Meikle mine exploits one of the world's highest grade Carlin-type gold deposits with reserves of ca. 220 t gold at an average grade of 24.7 g/t. Locally, gold grades exceed 400 g/t. Several geologic events converged at Meikle to create these spectacular gold grades. Prior to mineralization, a Devonian hydrothermal system altered the Bootstrap limestone to Fe-rich dolomite. Subsequently the rocks were brecciated by faulting and Late Jurassic intrusive activity. The resulting permeability focused flow of late Eocene Carlin-type ore fluids and allowed them to react with the Fe-rich dolomite. Fluid inclusion data and mineral assemblages indicate that these fluids were hot (ca. 220??C),of moderate salinity (400 g/t. Petrographic observations, geochemical data, and stable isotope results from the Meikle mine and other deposits at the Goldstrike mine place important constraints on genetic models for Meikle and other Carlin-type gold deposits on the northern Carlin trend. The ore fluids were meteoric water (??D = -135???, ??18O = -5???) that interacted with sedimentary rocks at a water/rock ratio of ca. 1 and temperatures of ca. 220??C. The absence of significant silicification suggests that there was little cooling of the ore fluids during mineralization. These two observations strongly suggest that ore fluids were not derived from deep sources but instead flowed parallel to isotherms. The gold was transported by H2S (??34S = 9???), which was derived from Paleozoic sedimentary rocks. The presence of auriferous sedimentary exhalative mineralization in the local stratigraphic sequence raises the possibility that preexisting concentrations of gold contributed to the Carlin-type deposits. Taken together our observations suggest that meteoric water evolved to become an ore fluid by shallow circulation through previously gold- and sulfur-enriched rocks. Carlin-type gold deposits formed where these fluids encountered permeable, reactive Fe-rich rocks.

  7. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

    SciTech Connect

    Dr. Rand Swanson

    2003-04-28

    This seventh quarterly technical report discusses the progress made on a machine vision technique for determining coal content and ore grades. Considerable progress has been made on coal analysis. Naval Research Laboratory (NRL) target recognition software has been tested and incorporated into the system. This software decreases analysis time considerably and is more intuitive to use. Work with board-level computers has proceeded well; ultimately this will make the technology more compact and fieldable. Work with talc will be delayed because the graduate student working on this project is leaving the program. Ongoing work is devoted to more detailed coal analysis, improving the software interface, and developing procedures and a users manual.

  8. Direct reduction of low grade nickel laterite ore to produce ferronickel using isothermal - temperature gradient

    NASA Astrophysics Data System (ADS)

    Zulhan, Zulfiadi; Gibranata, Ian

    2017-01-01

    In this study, low grade nickel laterite ore was processed by means of isothermal-temperature gradient method to produce ferronickel nugget. The ore and coal as reductant were ground to obtain the grain size of less than 0.25 mm and 0.425 mm, respectively. Both ground laterite ore and coal were mixed, agglomerated in the form of cylindrical pellet by using press machine and then reduced at temperature of 1000°C to 1400°C in a muffle furnace. The experiments were conducted at three stages each at different temperature profile: the first stage was isothermal at 1000°C; the second stage was temperature gradient at certain heating rate from 1000 to 1400°C; and the third stage was isothermal at 1400°C. The heating rate during temperature gradient stage was varied: 6.67, 8.33 and 10°C/minute. No fluxes were added in these experiments. By addition of 10 wt% of coal into the laterite nikel ore, product of ferronickel nugget was formed with the size varies from 1-2 mm. However, by increasing the coal content, the size of ferronickel nugget was decreased to less than 0.2 mm. The observation of the samples during the heating stage showed that ferronickel nugget grew and separated from the gangue during temperature gradient stage as it achieved the temperature of 1380°C. Furthermore, the experiment results indicated that the recovery of ferronickel can be increased at lower heating rate during temperature gradient stage and longer holding time for final isothermal stage. The highest nickel recovery was obtained at a heating rate of 6.67°C/minute.

  9. Mineralogical and Beneficiation Studies of a Low Grade Iron Ore Sample

    NASA Astrophysics Data System (ADS)

    Dwari, R. K.; Rao, D. S.; Reddy, P. S. R.

    2014-10-01

    Investigations were carried out, to establish its amenability for physical beneficiation on a low grade siliceous iron ore sample by magnetic separation. Mineralogical studies, with the help of microscope as well as XRD, SEM-EDS revealed that the sample consists of magnetite, hematite and goethite as major opaque oxide minerals where as quartz and kaolinite form the gangue minerals in the sample. Processes involving combination of classification, dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible. The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator. Dry beneficiation studies by Permaroll separator indicated that it is possible to get a product with 60.2 % Fe at 22 % weight recovery. It is possible to get an over all concentrate with 54 % Fe at 32.4 % weight recovery by combination of size reduction followed by LIMS and WHIMS.

  10. Molecular marker and stable carbon isotope analyses of carbonaceous Ambassador uranium ores of Mulga Rock in Western Australia

    NASA Astrophysics Data System (ADS)

    Jaraula, C.; Schwark, L.; Moreau, X.; Grice, K.; Bagas, L.

    2013-12-01

    Mulga Rock is a multi-element deposit containing uranium hosted by Eocene peats and lignites deposited in inset valleys incised into Permian rocks of the Gunbarrel Basin and Precambrian rocks of the Yilgarn Craton and Albany-Fraser Orogen. Uranium readily adsorbs onto minerals or phytoclasts to form organo-uranyl complexes. This is important in pre-concentrating uranium in this relatively young ore deposit with rare uraninite [UO2] and coffinite [U(SiO4)1-x(OH)4x], more commonly amorphous and sub-micron uranium-bearing particulates. Organic geochemical and compound-specific stable carbon isotope analyses were conducted to identify possible associations of molecular markers with uranium accumulation and to recognize effect(s) of ionizing radiation on molecular markers. Samples were collected from the Ambassador deposit containing low (<200 ppm) to high (>2000 ppm) uranium concentrations. The bulk rock C/N ratios of 82 to 153, Rock-Eval pyrolysis yields of 316 to 577 mg hydrocarbon/g TOC (Hydrogen Index, HI) and 70 to 102 mg CO2/g TOC (Oxygen Index, OI) are consistent with a terrigenous and predominantly vascular plant OM source deposited in a complex shallow water system, ranging from lacustrine to deltaic, swampy wetland and even shallow lake settings as proposed by previous workers. Organic solvent extracts were separated into saturated hydrocarbon, aromatic hydrocarbon, ketone, and a combined free fatty acid and alcohol fraction. The molecular profiles appear to vary with uranium concentration. In samples with relatively low uranium concentrations, long-chain n-alkanes, alcohols and fatty acids derived from epicuticular plant waxes dominate. The n-alkane distributions (C27 to C31) reveal an odd/even preference (Carbon Preference Index, CPI=1.5) indicative of extant lipids. Average δ13C of -27 to -29 ‰ for long-chain n-alkanes is consistent with a predominant C3 plant source. Samples with relatively higher uranium concentrations contain mostly intermediate

  11. Hypersaline fluids generated by high-grade metamorphism of evaporites: fluid inclusion study of uranium occurrences in the Western Zambian Copperbelt

    NASA Astrophysics Data System (ADS)

    Eglinger, Aurélien; Ferraina, Clément; Tarantola, Alexandre; André-Mayer, Anne-Sylvie; Vanderhaeghe, Olivier; Boiron, Marie-Christine; Dubessy, Jean; Richard, Antonin; Brouand, Marc

    2014-02-01

    In the Pan-African Lufilian belt (Western Zambian Copperbelt), uranium mineralizations, preferentially scattered in kyanite ± talc micaschists (metamorphosed evaporitic sediments) or concentrated along transposed quartz veins provide an opportunity to (1) understand the time/space relationship between the ore minerals and the deformation of the host rocks, (2) identify the different fluid events associated with specific stages of quartz deformation and (3) characterize the ore fluid geochemistry in terms of fluid origin and fluid/rock interactions. In the U occurrences studied in Lolwa and Mitukuluku (Domes region, Western Zambian Copperbelt), two mineralizing stages are described. The first generation of ore fluids (53-59 wt% CaCl2, 13-15 wt% NaCl; N2-H2 in the gas phase of fluid inclusions) circulated during the high-temperature quartz recrystallization, at 500-700 °C. This temperature is in agreement with the P- T conditions recorded during the crustal thickening related to continental collision at ca. 530 Ma. LA-ICPMS analyses show the presence of uranium within this fluid, with a concentration mode around 20 ppm. The second generation of ore fluid (21-32 wt% NaCl, 19-21 wt% CaCl2; CO2-CO in the gas phase of fluid inclusions) percolated at lower temperature conditions, at the brittle-ductile transition, between 200 and 300 °C. This temperature could be related to the exhumation of the high-grade metamorphic rocks at ca. 500 Ma. The formation of H2 and CO is interpreted as the result of radiolysis in the presence of dissolved uranium in the aqueous phase of these fluid inclusions. Finally, a late fluid (14-16 wt% NaClequiv) circulated in the brittle domain but seems unrelated to U (re-)mobilization event.

  12. (234)U/(238)U signatures associated with uranium ore bodies: part 3 Koongarra.

    PubMed

    Lowson, Richard T

    2013-04-01

    The Koongarra ore body is an early Proterozoic U ore body in the Alligator Rivers U province, Northern Territory, Australia. It has surface expression with a redox front located ∼30 m below the surface. The (234)U/(238)U activity ratios (AR) for the ground water and the amorphous phase of the solid have been analysed for the ore zone and dispersion halo as a function of depth. The results display a (234)U/(238)U AR signature with depth which may be common to all U ore bodies. The (234)U/(238)U AR is depressed below secular equilibrium in the weathered material above the redox front; rises significantly above secular equilibrium in the vicinity of the redox front; and is followed by a gradual decrease with depth below the redox front. The amplitude of the profile is a function of local conditions. A model is proposed for the signature in which oxidising waters preferentially leach the (234)U sites at the redox front due to preconditioning of the (234)U sites by α recoil during the decay of (23)(8)U to (23)(4)U. Mass balance requires the solid material left behind the redox front to have a (234)U/(238)U AR reduced below 1. Local second order effects may be superimposed on the signature. The signature may have application to calibrating scenarios for nuclear waste repositories, assisting in understanding historical climates, economic evaluation of U ore bodies and U exploration.

  13. (234)U/(238)U signatures associated with uranium ore bodies: part 2 Manyingee.

    PubMed

    Lowson, Richard T; McIntyre, Mark G

    2013-04-01

    The Manyingee ore body is a roll-front U ore body located at depth in the Cretaceous sandstone sediments of a Proterozoic palaeo valley. It is located in a confined aquifer. The aquifer is recharged 4 km upstream by the Ashburton River. Groundwater samples were collected at and up to 4.7 km downstream of the ore body. The ground water (234)U/(238)U activity ratios (AR) were elevated to 1.86 in the vicinity of the ore body and then declined to 1.06 over the 4.7 km transect. The elevated (234)U/(238)U ARs are attributed to selective leaching of (234)U sites by oxidising waters, with α recoil as a necessary precursor to produce activated (234)U sites. Direct ejection into another phase following α recoil is considered to be a minor contributor to (234)U -(238)U disequilibrium in this environment. The profile is considered to be typical of the (234)U/(238)U AR profile at and down gradient of the redox front of a U ore body.

  14. (234)U/(238)U signatures associated with uranium ore bodies: part 1 Ranger 3.

    PubMed

    Lowson, Richard T; McIntyre, Mark G

    2013-04-01

    The Ranger 3 ore body is an early Proterozoic U ore body in the Alligator Rivers U province, Northern Territory, Australia. It has surface expression with a redox front located between 30 and 50 m below the surface. The ground water U concentration and (234)U/(238)U AR signature in the top 10 m of the weathered zone are reported for 357 samples collected over 4 wet seasons, at 5 depths, along a transect in-line with the hydraulic gradient and along the centre line of the ore body and its associated dispersion halo. The results show that the weathered zone displays a general U isotope feature for this type of ore body with the (234)U/(238)U AR for the ground water and amorphous phase of the solid matrix being less than 1. The ground water (234)U/(238)U AR is independent of the annual monsoonal climate and depth within the range surface to 10 m. In the vicinity of the U ore body the ground water (234)U/(238)U AR is 0.75 and is very similar to the (234)U/(238)U AR of the amorphous phase of the solid (0.76). The (234)U/(238)U ARs of the amorphous phase and ground water rise and separate to values of 0.88 and 1.02 at the end of the transect. The rise and separation in (234)U/(238)U AR are interpreted as evidence that the source of the U in the ground water is from the water-soluble sub-phase of the amorphous phase and that the ground water flow is too fast to allow the processes occurring across the solid-water interface to reach chemical equilibrium. The data set is a robust characterisation of the coarse and fine detail of the (234)U/(238)U AR signature in the weathered zone of U ore bodies.

  15. Uptake of uranyl ions from uranium ores and sludges by means of Spirulina platensis, Porphyridium cruentum and Nostok linckia alga.

    PubMed

    Cecal, Alexandru; Humelnicu, Doina; Rudic, Valeriu; Cepoi, Liliana; Ganju, Dumitru; Cojocari, Angela

    2012-08-01

    In this paper was studied the uranyl ions biosorption on three types of alga: Nostok linckia, Porphyridium cruentum and Spirulina platensis. These ions were supplied either from a pure solution of uranyl nitrate, or after leaching process of uranium ore, or from the sludge resulting in the output of pure UO(2) technology. It was investigated the retention degree versus contact time and afterwards the Langmuir and Freundlich biosorption isotherms of uranyl ions on the three alga types. The retention of UO(2)(2+) ions on alga was proved through FTIR spectra plotted before and after biosorption processes. From the experimental data it was found that regardless of origin of uranyl ions, the retention degree on alga decreased in the series. Spirulina platensis > Porphyridium cruentum ≥ Nostok linckia.

  16. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

    SciTech Connect

    Dr. Rand Swanson

    2002-07-19

    This fourth quarterly technical report discusses the progress made on a machine vision technique for determining coal content and ore grades. Work done this quarter has been primarily devoted to improving the apparatus and data collection system. This includes a totally new optical setup, continued development of a new imaging spectrometer, and software improvements. Additionally, interest from other mining operations has arisen and sample of titanium and talc have now been obtained for preliminary analysis. Work is ongoing with coal samples, although it appears a more diverse sampling may be required. With the improvements now being made in the system, much faster and more user-friendly data collection and analysis will result in faster and better turn-around for sample analysis.

  17. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

    SciTech Connect

    Dr. Rand Swanson

    2002-10-24

    This fifth quarterly technical report discusses the progress made on a machine vision technique for determining coal content and ore grades. Recent work has been devoted to implementing new hardware and examining defects in titanium sponge, a new application for the machine vision system. With the improvements in hardware and software, the data collection is much improved. Early results from data taken on titanium sponge defects indicate that some defects will be relatively easy to identify, but others will be much more difficult. Consequently, additional work is required with software algorithms for target recognition. Ongoing work will be divided into several fronts, which include data collection and analysis, improving the target recognition capabilities, and improving the electronic interface.

  18. Beneficiation of two different low-grade Indonesian manganese ores to improve the Mn/Fe ratio

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Amarela, S.; Noegroho, A.; Ferdian, D.; Suharno, B.

    2017-03-01

    The beneficiation of two different low-grade manganese ores had been done by gravity separation and reduction-roasting process followed by the magnetic separation to improve their Mn/Fe ratio. The effect of particle size and temperature of reduction-roasting in this beneficiation process had been investigated clearly. XRF and XRD analyzer were used to characterize the as-received and beneficiated of these low-grade manganese ores. From the result, the manganese oxide in the form of pyrolusite (MnO2) was easier to beneficiate for enhancing the Mn/Fe ratio than in the form of pyroxmangite (MnSiO3) and grossular manganoan (Ca1.3Mg0.1Mn0.8Fe0.8 Al2 (SiO4)3. The optimum beneficiation resulted from the reduction-roasting process of low-grade manganese ore in -40+60 mesh at temperature 700°C followed by the magnetic separation process. It had improved the Mn/Fe ratio of this low-grade manganese ore from 1.39 into 4.0.

  19. Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: Implications for selected organic-rich deposits

    SciTech Connect

    Mossman, D.J.; Nagy, B.; Davis, D.W.

    1993-07-01

    Organic matter in the uraniferous Matinenda Formation, Elliot Lake, is preserved in the forms of syngenetic kerogen and solid bitumen as it is in many of the Oklo uranium deposits and in the Witwatersrand gold-uranium ores. The Elliot Lake kerogen is a vitrinite-like material considered to be remnants of the Precambrian cyanobacterial mats. The kerogen at Elliot Lake has reflectances (in oil) ranging from 2.63-7.31% RO{sub max}, high aromaticity, relatively low (0.41-0.60) atomic H/C ratios, and it contains cryptocrystalline graphite. Bitumen, present primarily as dispersed globules (up to 0.5 mm dia.), has reflectances from 0.72-1.32% RO{sub max}, atomic H/C ratios of 0.71-0.81, and is somewhat less aromatic than the kerogen. Overall similarity in molecular compositions indicates that liquid bitumen was derived from kerogen by processes similar to hydrous pyrolysis. The carbon isotopic composition of kerogen ({minus}15.62 to {minus}24.72%), and the now solid bitumen ({minus}25.91 to {minus}33.00%) are compatible with these processes. Despite having been subjected to several thermal episodes, ca. 2.45 Ga old kerogen of microbiological origin here survived as testimony of the antiquity of life on Earth. U-Pb isotopic data from discrete kerogen grains at Elliot Lake form a scattered array intersecting concordia at 2130 {+-} 100 Ma, correspond to the Nipissing event. U-Pb systems were totally reset by this event. Uranium and lead show subsequently partial mobility, the average of which is indicated by the lower concordia intersect of 550 {+-} 260 Ma. The migrated bitumen contains virtually no uranium and thorium but has a large excess of {sup 206}Pb, which indicates that the once liquid bitumen must have acted as a sink for mobile intermediate decay products of {sup 238}U. Emplacement of the Nipissing diabase may have been responsible for producing the bitumen and, indirectly, for its enrichment in {sup 206}Pb as a result of outgassing of {sup 222}Rn.

  20. Standardless EDXRF application for quantification of thorium (Th), uranium (U) and rare earth elements (REEs) in various Malaysian rare earth ores

    NASA Astrophysics Data System (ADS)

    Ruf, Mohd Izzat Fahmi Mohd; Bahri, Che Nor Aniza Che Zainul; AL-Areqi, Wadeeah M.; Majid, Amran Ab.

    2016-11-01

    Our local rare earth ores contained substantial amount of Thorium and Uranium which the level exceed permissible limit adopted by Malaysia and many importing nation. X-ray fluorescence technique has been applied for determination of thorium (Th), uranium (U) and rare earth elements (REEs) in Malaysian rare earth ores as it's recognized as viable tool. XRF has been widely used in detecting elemental composition of unknown materials both qualitative and quantitatively because of its wide range of element detection alongside the non-destructive analytical technique with great accuracy and precision. Four types of minerals sample which is monazite, xenotime, ilmenite and zircon were collected from `amang' factory located in famous city of mining, Ipoh and analyzed using EDXRF.

  1. Distribution of uranium in the Bisbee district, Cochise County, Arizona

    USGS Publications Warehouse

    Wallace, Stewart R.

    1956-01-01

    The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.

  2. Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI

    SciTech Connect

    Aji, Indarta Kuncoro; Waris, A.

    2014-09-30

    Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4} with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.

  3. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    NASA Astrophysics Data System (ADS)

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  4. Kinetic studies on the reduction of iron ore nuggets by devolatilization of lean-grade coal

    NASA Astrophysics Data System (ADS)

    Biswas, Chanchal; Gupta, Prithviraj; De, Arnab; Chaudhuri, Mahua Ghosh; Dey, Rajib

    2016-12-01

    An isothermal kinetic study of a novel technique for reducing agglomerated iron ore by volatiles released by pyrolysis of lean-grade non-coking coal was carried out at temperature from 1050 to 1200°C for 10-120 min. The reduced samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and chemical analysis. A good degree of metallization and reduction was achieved. Gas diffusion through the solid was identified as the reaction-rate-controlling resistance; however, during the initial period, particularly at lower temperatures, resistance to interfacial chemical reaction was also significant, though not dominant. The apparent rate constant was observed to increase marginally with decreasing size of the particles constituting the nuggets. The apparent activation energy of reduction was estimated to be in the range from 49.640 to 51.220 kJ/mol and was not observed to be affected by the particle size. The sulfur and carbon contents in the reduced samples were also determined.

  5. Kinetics of chemical leaching of chalcopyrite from low grade copper ore: behavior of different size fractions

    NASA Astrophysics Data System (ADS)

    Naderi, H.; Abdollahy, M.; Mostoufi, N.; Koleini, M. J.; Shojaosadati, S. A.; Manafi, Z.

    2011-12-01

    The kinetics of the chemical leaching of copper from low grade ore in ferric sulfate media was investigated using the constrained least square optimization technique. The experiments were carried out for different particle sizes in both the reactor and column at constant oxidation-reduction potential ( E h), pH values, and temperature. The main copper mineral was chalcopyrite. About 40% of Cu recovery is obtained after 7 d of reactor leaching at 85°C using -0.5 mm size fraction, while the same recovery is obtained at 75°C after 24 d. Also, about 23% of Cu recovery is obtained after 60 d of column leaching for +4--8 mm size fraction whereas the Cu recovery is as low as about 15% for +8--12.7 and +12.7--25 mm size fractions. A 4-stage model for chalcopyrite dissolution was used to explain the observed dissolution behaviors. The results show that thick over-layers of sulphur components cause the parabolic behavior of chalcopyrite dissolution and the precipitation of Fe3+ plays the main role in chalcopyrite passivation. In the case of coarse particles, transformation from one stage to another takes a longer time, thus only two stages including the initial reaction on fresh surfaces and S0 deposition are observed.

  6. Effect of moisture content on radon emanation from uranium ore and tailings.

    PubMed

    Strong, K P; Levins, D M

    1982-01-01

    A study was made of the effect of moisture on the emanation coefficient and radon flux from uranium mill tailings. A sharp rise in emanation coefficient occurred as the moisture content was increased from the absolutely dry state to 2% water by weight. The emanation coefficients from water-saturated tailings were about four times those from absolutely dry materials. Radon flux was measured from columns of dry, moist and water-saturated tailings. The highest flux came from the column filled with moist tailings. This can be explained by the effect of moisture content on the emanation coefficient. Water-saturated tailings gave the lowest flux because of the much lower diffusion coefficient of radon through water.

  7. Determination of elemental impurities and U and O isotopic compositions with a view to identify the geographical and industrial origins of uranium ore concentrates

    NASA Astrophysics Data System (ADS)

    Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.

    2012-12-01

    First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.

  8. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.

  9. Effects of Sodium Citrate on the Ammonium Sulfate Recycled Leaching of Low-Grade Zinc Oxide Ores

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Li, Shi-wei; Zhang, Li-bo; Peng, Jin-hui; Ma, Ai-yuan; Wang, Bao-bao

    2016-03-01

    The effects of sodium citrate on ammonium sulfate recycled leaching of low-grade zinc oxide ores were studied. By applying various kinds of detection and analysis techniques such as chemical composition analysis, chemical phase method, scanning electron microscopy and energy dispersive spectrum (SEM/EDS), X-ray diffraction (XRD) and Fourier-transforming infrared spectrum (FT-IR), zinc raw ore, its leaching slag and the functional mechanism of sodium citrate were investigated. Based on a comprehensive analysis, it can be concluded that in contrast to hemimorphite (Zn4Si2O7(OH)2 · H2O), amorphous smithsonite (ZnCO3) and zinc silicate (Zn2SiO4) prove to be refractory phases under ammonium sulfate leaching, while sodium citrate has a better chelating action with the refractory phases, resulting in a higher zinc leaching rate. Under conditions of [NH3]/[NH3]T molar ratio being 0.5, [NH3]T being 7.5 mol/L, [Na3C6H5O7] being 0.2 mol/L, S/L ratio being 1:5, temperature being 303 K, holding time being 1 h in each of the two stages, and stirring rate being 300 rpm, the leaching rate of zinc reached 93.4%. In this article, sulfate ammonium recycled technology also reveals its unique advantage in processing low-grade zinc oxide ores accompanied by high silicon and high alkaline gangue.

  10. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system

    USGS Publications Warehouse

    Morey, G.B.

    1999-01-01

    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  11. Thermogravimetric Analysis and Kinetics on Reducing Low-Grade Manganese Dioxide Ore by Biomass

    NASA Astrophysics Data System (ADS)

    Zhang, Honglei; Zhu, Guocai; Yan, Hong; Li, Tiancheng; Feng, Xiujuan

    2013-08-01

    Nonisothermal thermogravimetric analysis (TGA) was applied to evaluate rice straw, sawdust, wheat stalk, maize straw, and bamboo to explore their potential for reduction of manganese dioxide ore. Results from the biomass pyrolysis experiments showed that wood-based biomass materials, such as sawdust and bamboo, could produce more reductive agents, while herb-based biomass materials, such as rice straw, wheat stalk, and maize straw, had lower reaction temperatures. The peak temperatures for biomass reduction tests were 20 K to 50 K (20 °C to 50 °C) higher compared with the pyrolysis tests, and a clear shoulder at around 523 K (250 °C) could be observed. The effects of heating rate, biomass/manganese dioxide ore ratio, and different components of biomass were also investigated. An independent parallel first-order reaction kinetic model was used to calculate the values of activation energy and frequency factor for biomass pyrolysis and reduction of manganese dioxide ore. For better understanding the reduction process, kinetic parameters of independent behavior of manganese dioxide ore were also calculated by simple mathematical treatment. Finally, the isokinetic temperature T i and the rate constant k 0 for reduction of manganese oxide ore by reductive volatiles of biomass were derived according to the Arrhenius equation, which were determined to be 603 K (330 °C) and 108.99 min-1, respectively.

  12. Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite.

    PubMed

    Ilyas, Sadia; Chi, Ruan; Bhatti, H N; Bhatti, I A; Ghauri, M A

    2012-03-01

    Present work describes the bioleaching potential of metals from low-grade mining ore containing smithsonite, sphaerocobaltite, azurite and talc as main gangue minerals with adapted consortium of Sulfobacillus thermosulfidooxidans strain-RDB and Thermoplasma acidophilum. Bioleaching potential improved markedly by added energy source, acid preleaching and adaptation of microbial consortium with mixed metal ions. During whole leaching period including acid preleaching stage of 960 h and bioleaching stage of 212 days about 76% Co, 70% Zn, 84% Cu, 72% Ni and 63% Fe leached out.

  13. Comprehensive recovery of gold and base-metal sulfide minerals from a low-grade refractory ore

    NASA Astrophysics Data System (ADS)

    Li, Wen-juan; Liu, Shuang; Song, Yong-sheng; Wen, Jian-kang; Zhou, Gui-ying; Chen, Yong

    2016-12-01

    The comprehensive recovery of small amounts of valuable minerals such as gold and base-metal sulfide minerals from a low-grade refractory ore was investigated. The following treatment strategy was applied to a sample of this ore: gold flotation-gold concentrate leaching-lead and zinc flotation from the gold concentrate leaching residue. Closed-circuit trials of gold flotation yielded a gold concentrate that assayed at 40.23 g·t-1 Au with a recovery of 86.25%. The gold concentrate leaching rate was 98.76%. Two variants of lead-zinc flotation from the residue—preferential flotation of lead and zinc and bulk flotation of lead and zinc—were tested using the middling processing method. Foam from the reflotation was returned to the lead rougher flotation or lead-zinc bulk flotation, whereas middlings from reflotation were discarded. Sulfur concentrate was a byproduct. The combined strategy of flotation, leaching, and flotation is recommended for the treatment of this kind of ore.

  14. Occurrence of copper, gold, silver,uranium, tungsten, tin ore deposits in the Late Proterozoic aulacogen mobile melt of southeast China

    SciTech Connect

    Ma, X.H.

    1985-01-01

    In the early period of the late Proterozoic Era (1100 m.y. +/-) an aulacogen mobile belt was formed in the southeast of China. It extends about 1000 km crossing the Yantze Platform and Jiangnan Foldbelt in NNE-NE direction and adjoins the south China geosyncline basement. This belt shows some features of geology and mineralization similar to the Adelaide geosyncline and the Zambia-Zaire Copper-uranium belt. Within the belt, there are about 9000 to 12,000 m polystratotype strata and continuous sediments of the Late Proterozoic Erathem, including alkaline and meta-alkaline volcanic products of 4 epochs of mainly marine facies. A great number of ore-forming elements, such as Cu, U, Pb, Zn, Au, Ag, Fe, Co, Ni, Mn, P, and W, Sn, TR etc., were deposited and enriched in the whole volcano-sedimentary sequency at various times and in various places. A few of them have become syngenetic deposits, but most of them have been transformed into large-scale ore deposits or mineralization fields or areas of copper and gold, lead-zinc and silver, uranium, tungsten, tin, and other metals.

  15. In-situ leaching of south Texas uranium ores--part 2: Oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  16. In-situ leaching of south Texas uranium ores--part 2: oxidative removal of adsorbed ammonium ions with sodium hypochlorite

    SciTech Connect

    Paul, J.M.; Fletcher, A.; Johnson, W.F.; Venuto, P.B.

    1983-04-01

    This paper reports a laboratory study of the oxidative destruction by sodium hypochlorite (NaOCl) of ammonium ions adsorbed on relatively reduced south Texas uranium ore. Included are an assessment of reaction stoichiometry, determination of some major reaction pathways and side reactions, and identification of several intermediates. Adsorbed ammonium ions were completely removed by 0.5% NaOCl, with the concentration of NH/sub 3/ in the effluent falling to a very low value after 10 to 15 PV NaOCl oxidant. A small fraction (5 to 10%) of NaOCl was utilized in reacting with NH/sub 3/. After the NH/sub 3/ was nearly depleted, mono-, di-, and trichloramines, the expected intermediates in NaOCl oxidation of NH/sub 3/, were observed. Chloramine decomposition studies showed that all three decomposed completely within 12 days. Since the ore was relatively highly reducing, the major part of the NaOCl was, not unexpectedly, consumed in side reactions. Substantial quantities of sulfate, reflecting oxidation of sulfide minerals such as pyrite, were formed, large amounts of uranium were leached out, and substantial amounts of calcium and magnesium ions were also produced during the presaturation with NH/sub 4/HCO/sub 3/ preceding the oxidation stage.

  17. Estimate of rock mass stability in surface–borehole mining of high-grade iron ore

    NASA Astrophysics Data System (ADS)

    Sammal, AS; Antsiferov, SV; Deev, PV; Sergeev, SV

    2017-02-01

    Under consideration is the estimate of rock mass stability around underground openings generated as a result of hydraulic borehole mining of iron ore. The authors use analytical solutions of two plane elasticity problems on stress state of infinite media with the zone of weakening in the form of one or two circular holes, given initial stresses are set in the study domains.

  18. Uranium-233 purification and conversion to stabilized ceramic grade urania for LWBR fuel fabrication (LWBR Development Program)

    SciTech Connect

    Lloyd, R.

    1980-10-01

    High purity ceramic grade urania (/sup 233/UO/sub 2/) used in manufacturing the fuel for the Light Water Breeder Reactor (LWBR) core was made from uranium-233 that was obtained by irradiating thoria under special conditions to result in not more than 10 ppM of uranium-232 in the recovered uranium-233 product. A developmental study established the operating parameters of the conversion process for transforming the uranium-233 into urania powder with the appropriate chemical and physical attributes for use in fabricating the LWBR core fuel. This developmental study included the following: (a) design of an ion exchange purification process for removing the gamma-emitting alpha-decay daughters of uranium-232, to reduce the gamma-radiation field of the uranium-233 during LWBR fuel manufacture; (b) definition of the parameters for precipitating the uranium-233 as ammonium uranate (ADU) and for reducing the ADU with hydrogen to yield a urania conversion product of the proper particle size, surface area and sinterability for use in manufacturing the LWBR fuel; (c) establishment of parameters and design of equipment for stabilizing the urania conversion product to prevent it from undergoing excessive oxidation on exposure to the air during LWBR fuel manufacturing operations; and (d) development of a procedure and a facility to reprocess the unirradiated thoria-urania fuel scrap from the LWBR core manufacturing operations to recover the uranium-233 and convert it into high purity ceramic grade urania for LWBR core fabrication.

  19. Degradation problems with the solvent extraction organic at Roessing uranium

    SciTech Connect

    Munyungano, Brodrick; Feather, Angus; Virnig, Michael

    2008-07-01

    Roessing Uranium Ltd recovers uranium from a low-grade ore in Namibia. Uranium is recovered and purified from an ion-exchange eluate in a solvent-extraction plant. The solvent-extraction plant uses Alamine 336 as the extractant for uranium, with isodecanol used as a phase modifier in Sasol SSX 210, an aliphatic hydrocarbon diluent. Since the plant started in the mid 1970's, there have been a few episodes where the tertiary amine has been quickly and severely degraded when the plant was operated outside certain operating parameters. The Rossing experience is discussed in more detail in this paper. (authors)

  20. Proliferation dangers associated with nuclear medicine: getting weapons-grade uranium out of radiopharmaceutical production.

    PubMed

    Williams, Bill; Ruff, Tilman A

    2007-01-01

    Abolishing the threat of nuclear war requires the outlawing of nuclear weapons and dismantling current nuclear weapon stockpiles, but also depends on eliminating access to fissile material (nuclear weapon fuel). The near-universal use of weapons-grade, highly enriched uranium (HEU) to produce radiopharmaceuticals is a significant proliferation hazard. Health professionals have a strategic opportunity and obligation to progress the elimination of medically-related commerce in HEU, closing one of the most vulnerable pathways to the much-feared 'terrorist bomb'.

  1. URANIUM COMPOSITIONS

    DOEpatents

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  2. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Xun; Ma, Chang-Qian; Lai, Zhong-Xin; Marks, Michael A. W.; Zhang, Chao; Zhong, Yu-Fang

    2015-12-01

    A comprehensive study on zircon U-Pb age dating, whole-rock geochemistry and Sr-Nd isotope data has been conducted on the mafic rocks of the Xiazhuang uranium ore district and adjacent regions in South China. Based on field work and petrographic features, three rock types (the Kuzhukeng gabbro, the WNW-trending dolerite dykes and the NNE-trending lamprophyre dykes) are distinguished. Early Jurassic SHRIMP and LA-ICPMS ages of zircon for the Kuzhukeng gabbro (198 ± 1 Ma) and WNW-trending dolerite dykes (193 ± 4 Ma) have been obtained, which are 50 Ma older than previously thought (being Cretaceous). These geochronologic data provide new evidence for the rarely identified Early Jurassic magmatisms in South China. Whole-rock geochemical data for the Kuzhukeng gabbro and WNW-trending dolerite dykes are similar, both of which being higher in FeO and TiO2 but lower in SiO2 and K2O than the NNE-trending lamprophyre dykes. Trace element characteristics and Sr-Nd isotope data indicate arc-like signatures similar to the Cretaceous southeast coast basalts of China for the lamprophyre dykes, but an OIB-like geochemical affinity for the high-TiO2 mafic rocks similar to the Permo/Triassic Emeishan flood basalts and the Middle Jurassic Ningyuan alkaline basalts. We propose that the lamprophyre dykes formed in an arc volcanic system driven by the subduction of the paleo-Pacific plate. In contrast, the Kuzhukeng gabbro and associated dolerite dykes record the post-orogenic (Indosinian) extension event in the Tethyan tectonic regime. This further implies that the Indosinian extension may have lasted until the Early Jurassic, and therefore, the subduction of the paleo-Pacific plate in south China was probably later than this period. Most U deposits of the Xiazhuang area are located at the intersection between the WNW-trending dolerite dykes and the NNE-trending faults within the Triassic granites of eastern Guidong complex, South China. Previous metallogenesis studies assumed that

  3. Key parameters for low-grade fine-grained iron ore valorization: lower environmental impact through reduced waste.

    NASA Astrophysics Data System (ADS)

    Wagner, Christiane; Orberger, Beate; Tudryn, Alina; Baptiste, Benoît; Wirth, Richard; Morgan, Rachel; Miska, Serge

    2016-04-01

    In low-grade banded iron formations (BIFs), a large part of the iron is related to micro- and nano- metric iron-bearing inclusions within quartz and/or carbonates, mainly dolomite (~ 20 to 50 μm). Low-grade fine grained iron ore present two types of environmental risks: a) they are often stocked as tailings. For example, the recent disaster (5th of November 2015) in the Minas Gerais district, Brazil, was caused by the collapse of the Fundão tailings dam at an open cast mine; b) during beneficiation significant amounts of dust are generated also leading to metal loss. A laminated BIF studied from a drill core at Àguas Claras Mine, Quadrilátero Ferrífero, Brazil, contains 26.71 wt. % total iron, 0.2 wt. % SiO2, 0.32 wt.% MnO, 15.46 wt. % MgO, 22.32 wt.% CaO, 0.09 wt. % P2O5, < 0.05 wt. % Al2O3, 0.15 wt. % H2O and 34.08 wt. % CO2. Environmental hazardous elements are present as traces (As: 3-20 ppm, Cd: 0-0.7 ppm; Cr: 0.05-60 ppm, Pb: up to 55 ppm; U: up to 8 ppm). Dolomite and quartz bands alternate with hematite bands. Raman spectroscopy, X-ray diffraction and FIB-TEM analyses reveal that the micro- and nano- metric inclusions in dolomite are hematite and minor goethite, partly occurring as clusters in voids. Curie Balance analyses were carried out at different heating steps and temperatures on whole rock samples and a synthetic mix of decarbonated sample and pure dolomite. X-ray diffraction on the products of the heating experiments shows that that hematite is stable and new phases: magnesioferrite (MgFe2O4), lime (CaO), periclase (MgO), portlandite (Ca(OH)2) and srebrodoskite (Ca2Fe2O5) were formed between 680 °C and 920 °C. These findings promote the economic use of low grade ores rather than their stockpiling as tailings. The presence of OH-bearing goethite reduces the sintering temperature. After having separated coarse hematite from barren dolomite and quartz, a low temperature sintering of the inclusion-bearing dolomite/quartz leads to transformations

  4. Characterisation and classification of solid wastes coming from reductive acid leaching of low-grade manganiferous ore.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco

    2009-03-15

    The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.

  5. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

    SciTech Connect

    Dr. Rand Swanson

    2003-07-21

    This eighth quarterly technical report discusses the progress made on a machine vision technique for determining coal content and preparations for Year-3 system deployment. Classification maps for coal have been generated and shown to two coal-mining executives. An application for licensing high-speed hyperspectral data analysis software from the Naval Research Laboratory (NRL) has been made. Both Western Energy and Stillwater Mining Company have offered platforms for Year-3 deployment. Barretts Minerals has expressed renewed interest in using Resonon's machine vision system for identifying dolomite in their talc ore and have agreed to provide samples to the Montana Tech team.

  6. Stratification Studies with Sub Grade Iron Ore from Deposit No. 10 and 11A, Bacheli Complex, Bailadila, Chhattisgarh, India

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, Gottumukkala; Markandeya, Ravvala; Sharma, Satish Kumar

    2017-04-01

    Experiments were carried out with two different sizes of (-30 + 6 and -6 + 1 mm) sub grade iron ore sample from Deposit No. 10 and 11A, Bacheli Complex, Bailadila, India to study the stratification behaviour at optimised parameters in a under bed air pulsed jig at 1, 2, 5, 10, 15 and 20 minutes residence time. This paper deals with the rate at which stratification takes place and determines the optimum stratification time (residence time) for above two size fractions. Average apparent density along with Jig Stratification Index (JSI) of both the size fractions was calculated. It was observed that the stratification rate is high for fines (-6 + 1 mm) and stratification index was higher for lump (-30 + 6 mm) when compared with the other size fraction. The maximum JSI observed was 0.35 for lump (-30 + 6 mm) and 0.30 for fines (-6 + 1 mm).

  7. Uranium*

    NASA Astrophysics Data System (ADS)

    Grenthe, Ingmar; Drożdżyński, Janusz; Fujino, Takeo; Buck, Edgar C.; Albrecht-Schmitt, Thomas E.; Wolf, Stephen F.

    Uranium compounds have been used as colorants since Roman times (Caley, 1948). Uranium was discovered as a chemical element in a pitchblende specimen by Martin Heinrich Klaproth, who published the results of his work in 1789. Pitchblende is an impure uranium oxide, consisting partly of the most reduced oxide uraninite (UO2) and partly of U3O8. Earlier mineralogists had considered this mineral to be a complex oxide of iron and tungsten or of iron and zinc, but Klaproth showed by dissolving it partially in strong acid that the solutions yielded precipitates that were different from those of known elements. Therefore he concluded that it contained a new element (Mellor, 1932); he named it after the planet Uranus, which had been discovered in 1781 by William Herschel, who named it after the ancient Greek deity of the Heavens.

  8. A REAL TIME COAL CONTENT ORE GRADE (C2OG) SENSOR

    SciTech Connect

    Rand Swanson

    2004-10-22

    This thirteenth quarterly technical report describes data collection at the Stillwater Mine and an additional improvement to the lighting system. The data collection system was returned to the Stillwater Mine during this reporting period and a large amount of data was collected. The data will be analyzed and correlated with fire assays in the next reporting period. The majority of work done this quarter has been devoted to collecting data from cores scanned in the Stillwater Mining Company core room. This work is somewhat tedious and tiresome, but essential to: (1) obtain enough data to reliably determine the correlation between assay results and spectral imaging results; (2) find bugs and glitches in the system that arise only periodically or after long periods of use; and (3) obtain data on the natural (and man-made) variations in the Stillwater ore that may confuse the machine vision algorithms.

  9. Estimation of trace impurities in reactor-grade uranium using ICP-AES.

    PubMed

    Malhotra, R K; Satyanarayana, K

    1999-10-01

    Estimation of impurities in reactor grade uranium is important from the point of view of neutron economy. For chemical separation, ion exchange and solvent extraction techniques have been employed although the latter is generally preferred. Amongst various extractants TBP (tri-n-butyl phosphate), TBP-TOPO (tri-n-octyl phosphine oxide), or TOPO only (in CCl(4), xylene, dodecane) is most often used. New reagents like Cyanex-923 (mixture of 4 tri-alkyl phosphine oxides)/TEHP (tri-ethylhexyl phosphoric acid) are also being used. This communication reports chemical separation of uranium by precipitation using 1,2-diaminocyclohexane NNN'N'-tetra acetic acid (CyDTA)/ammonium hydroxide in presence of 1,10-phenanthroline and estimation of impurities in the filtrate by ICP-AES. Quantitative separation of U, a high spectral interferent in plasma and recovery of impurities have been achieved. Recovery of Cd has been improved by using 1,10-phenanthroline. The method is accurate and precise, offering a relative standard deviation ranging from less than 4% (3.8% for Eu at the 10mug g(-1) level) to 12.9% (for Ce at the 2.5 mug g(-1) level) for all the elements studied.

  10. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    SciTech Connect

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasized and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.

  11. Why is weapons grade plutonium more hazardous to work with than highly enriched uranium?

    DOE PAGES

    Cournoyer, Michael E.; Costigan, Stephen A.; Schake, Bradley S.

    2015-08-01

    Highly Enriched Uranium and Weapons grade plutonium have assumed positions of dominant importance among the actinide elements because of their successful uses as explosive ingredients in nuclear weapons and the place they hold as key materials in the development of industrial use of nuclear power. While most chemists are familiar with the practical interest concerning HEU and WG Pu, fewer know the subtleties among their hazards. In this study, a primer is provided regarding the hazards associated with working with HEU and WG Pu metals and oxides. The care that must be taken to safely handle these materials is emphasizedmore » and the extent of the hazards is described. The controls needed to work with HEU and WG Pu metals and oxides are differentiated. Given the choice, one would rather work with HEU metal and oxides than WG Pu metal and oxides.« less

  12. Uranium content and leachable fraction of fluorspars

    USGS Publications Warehouse

    Landa, E.R.; Councell, T.B.

    2000-01-01

    Much attention in the radiological health community has recently focused on the management and regulation of naturally occurring radioactive materials. Although uranium-bearing minerals are present in a variety of fluorspar deposits, their potential consideration as naturally occurring radioactive materials has received only limited recognition. The uranium content of 28 samples of acid- and cryolite-grade (>97% CaF2) fluorspar from the National Defense Stockpile was found to range from 120 to 24,200 ??g kg-1, with a mean of 2,145 ??g kg-1. As a point of comparison, the average concentration of uranium in the upper crust of the earth is about 2,500 ??g kg-1. Leachability of this uranium was assessed by means of the Toxicity Characteristic Leaching Procedure (TCLP). The TCLP extractable fraction ranged from 1 to 98%, with a mean of 24% of the total uranium. The typically low concentrations of uranium seen in these materials probably reflects the removal of uranium-bearing mineral phases during the beneficiation of the crude fluorspar ore to achieve industrial specifications. Future NORM studies should examine crude fluorspar ores and flotation tailings.

  13. Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico

    USGS Publications Warehouse

    Granger, H.C.; Santos, E.S.

    1982-01-01

    The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and

  14. Uranium Mines and Mills Location Database

    EPA Pesticide Factsheets

    The Uranium Mines and Mills location database identifies and shows the location of active and inactive uranium mines and mills, as well as mines which principally produced other minerals, but were known to have uranium in the ore.

  15. Geologic controls of uranium mineralization in the Tallahassee Creek uranium district, Fremont County, Colorado.

    USGS Publications Warehouse

    Dickinson, K.A.

    1981-01-01

    Two important orebodies have been defined by drilling in the Tallahassee Creek uranium district, Fremont County, Colorado, namely the Hansen and the Picnic Tree. Host rocks are respectively the upper Eocene Echo park Alluvium, and the lower Oligocene Tallahassee Creek Conglomerate. Average ore grade is about 0.08% U3O8. The principal source rock is the lower Oligocene Wall Mountain Tuff. Leaching and transportation of the uranium occurred in alkaline oxidizing ground water that developed during alteration of the ash in a semi-arid environment. The uranium was transported in the groundwater and deposited in a reducing environment controlled by carbonaceous material and associated pyrite. Localization of the ore was controlled by groundwater flow conditions and by the distribution of organic matter in the host rock. -from Author

  16. Fluorite as an Sm-Nd geochronometer of hydrothermal processes: Dating of mineralization hosted in the Strel'tsovka uranium ore field, eastern Baikal region

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Aleshin, A. P.; Larionova, Yu. O.; Gol'tsman, Yu. V.

    2016-11-01

    The possibility of using hydrothermal fluorite as an Sm-Nd geochronometer is based on the results of an REE pattern study of this mineral (Chernyshev et al., 1986). As a result of REE fractionation, in many cases, the Sm/Nd ratio achieves a multifold increase compared with its level in terrestrial rocks, and the radiogenic shift of the 143Nd/144Nd isotope ratio reaches 10-20 ɛNd units over a short time interval (as soon as tens of Ma). This is a necessary prerequisite for Sm-Nd isochron dating of fluorite. Zonal polychrome fluorite from a vein referred to the final stage of large-scale uranium mineralization at the Sterl'tsovka deposit in the ore field of the same name located in the eastern Transbaikal region has been dated using the 143Nd/144Nd method. To optimize isochron construction, local probes with high and contrasting Sm/Nd ratios have been sampled from the polished surfaces of two samples, taking into account the REE pattern of zonal fluorite. Sm-Nd isochron dating has been carried out separately for each sample. The 147Sm/144Nd i 143Nd/144Nd ratios vary within the intervals 0.5359-2.037 and 0.512799-0.514105, respectively. Two isochrons, each based on six fluorite probes, have been obtained with the following parameters, which coincide within 2σ uncertainty limits: (1) t = 134.8 ± 1.3 Ma, (143Nd/144Nd)0 = 0.512310 ± 13, MWSD = 0.43 and (2) t = 135.8 ± 1.6 Ma, (143Nd/144Nd)0 = 0.512318 ± 10, MWSD = 1.5. The mean age of fluorite based on two isochron datings is 135.3 ± 1 Ma. Comparison of this value with the most precise dating of pitchblende related to the ore stage in the Strel'tsovka ore field (135.5 ± 1 Ma) shows that four mineralization stages, distinguished by geological and mineralogical data, that were completed with the formation of polychrome fluorite veins 135.3 ± 1 Ma ago, represent a single and indivisible hydrothermal process whose duration does not exceed 1 Ma.

  17. Geochemistry of sedimentary ore deposits

    SciTech Connect

    Maynard, J. B.

    1983-01-01

    A text providing a sedimentological treatment of a study on ore deposits, and especially as related to geochemistry. Excellently documented (about 5000 citations). Well indexed with the index of deposits and localities separated. Contents, Iron. Copper and silver. Aluminum and nickel. Manganese. Uranium. Lead and zinc. Volcanic-sedimentary ores. Appendix. Indexes.

  18. Geographical coincidence of high heat flow, high seismicity, and upwelling, with hydrocarbon deposits, phosphorites, evaporites, and uranium ores.

    PubMed

    Libby, L M; Libby, W F

    1974-10-01

    Oil deposits occur in deep sediments, and appear to be organic matter that has been transformed through the action of geothermal heat and pressure. Deep sediments, rich in biological remains, are created by ocean upwelling, caused in part by high geothermal heat flow through the sea bottom. Such regions correlate with enhanced seismic activity. We look for correlations of seismicity, high heat flux, petroleum, uranium, phosphates, and salts, deposited from abundant plant life. These may be useful in discovering more petroleum and coal. We estimate that the known world reserves of petroleum and coal are about 10(-4) of the total of buried biogenic carbon.

  19. URANIUM RECOVERY PROCESS

    DOEpatents

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  20. Mineralogy and trace-element geochemistry of the high-grade iron ores of the Águas Claras Mine and comparison with the Capão Xavier and Tamanduá iron ore deposits, Quadrilátero Ferrífero, Brazil

    NASA Astrophysics Data System (ADS)

    Spier, Carlos Alberto; de Oliveira, Sonia Maria Barros; Rosière, Carlos Alberto; Ardisson, José Domingos

    2008-02-01

    Several major iron deposits occur in the Quadrilátero Ferrífero (QF), southeastern region of Brazil, where metamorphosed and heterogeneously deformed banded iron formation (BIF) of the Cauê Formation, regionally called itabirite, was transformed into high- (Fe >64%) and low-grade (30% < Fe < 64%) hematite ores. Based on their mineralogical composition, three major types of itabirites occur in the QF: siliceous, dolomitic, and amphibolitic itabirite. Unlike other mines in the QF, the Águas Claras Mine contained mainly high-grade ores hosted within dolomitic itabirite. Two distinct types of high-grade ore occurred at the mine: soft and hard. The soft ore was the most abundant and represented more than 85% of the total ore mined until it was mined out in 2002. Soft and hard ores consist essentially of hematite, occurring as martite, anhedral to granular/tabular hematite and, locally, specularite. Gangue minerals are rare, consisting of dolomite, sericite, chlorite, and apatite in the hard and soft ores, and Mn-oxides and ferrihydrite in the soft ore where they are concentrated within porous bands. Chemical analyses show that hard and soft ores consist almost entirely of Fe2O3, with a higher amount of detrimental impurities, especially MnO, in the soft ore. Both hard and soft ores are depleted in trace elements. The high-grade ores at the Águas Claras Mine have at least a dual origin, involving hypogene and supergene processes. The occurrence of the hard, massive high-grade ore within “fresh” dolomitic itabirite is evidence of its hypogene origin. Despite the contention about the origin of the dolomitic itabirite (if this rock is a carbonate-rich facies of the Cauê Formation or a hematite-carbonate precursor of the soft high-grade ore), mineralogical and geochemical features of the soft high-grade ore indicate that it was formed by leaching of dolomite from the dolomitic itabirite by meteoric water. The comparison of the Águas Claras, Capão Xavier and

  1. Temporal variability of radon in a remediated tailing of uranium ore processing--the case of Urgeiriça (central Portugal).

    PubMed

    Barbosa, S M; Lopes, F; Correia, A D; Barbosa, S; Pereira, A C; Neves, L F

    2015-04-01

    Radon monitoring at different levels of the cover of the Urgeiriça tailings shows that the sealing is effective and performing as desired in terms of containing the strongly radioactive waste resulting from uranium ore processing. However, the analysis of the time series of radon concentration shows a very complex temporal structure, particularly at depth, including very large and fast variations from a few tens of kBq m(-3) to more than a million kBq m(-3) in less than one day. The diurnal variability is strongly asymmetric, peaking at 18 h/19 h and decreasing very fast around 21 h/22 h. The analysis is performed for summer and for a period with no rain in order to avoid the potential influence of precipitation and related environmental conditions on the radon variability. Analysis of ancillary measurements of temperature, relative humidity, wind speed and wind direction, as well as atmospheric pressure reanalysis data shows that the daily averaged radon concentration in the taillings material is anti-correlated with the atmospheric pressure and that the diurnal amplitude is associated with the magnitude of atmospheric pressure daily oscillations.

  2. Application of the angle measure technique as image texture analysis method for the identification of uranium ore concentrate samples: New perspective in nuclear forensics.

    PubMed

    Fongaro, Lorenzo; Ho, Doris Mer Lin; Kvaal, Knut; Mayer, Klaus; Rondinella, Vincenzo V

    2016-05-15

    The identification of interdicted nuclear or radioactive materials requires the application of dedicated techniques. In this work, a new approach for characterizing powder of uranium ore concentrates (UOCs) is presented. It is based on image texture analysis and multivariate data modelling. 26 different UOCs samples were evaluated applying the Angle Measure Technique (AMT) algorithm to extract textural features on samples images acquired at 250× and 1000× magnification by Scanning Electron Microscope (SEM). At both magnifications, this method proved effective to classify the different types of UOC powder based on the surface characteristics that depend on particle size, homogeneity, and graininess and are related to the composition and processes used in the production facilities. Using the outcome data from the application of the AMT algorithm, the total explained variance was higher than 90% with Principal Component Analysis (PCA), while partial least square discriminant analysis (PLS-DA) applied only on the 14 black colour UOCs powder samples, allowed their classification only on the basis of their surface texture features (sensitivity>0.6; specificity>0.6). This preliminary study shows that this method was able to distinguish samples with similar composition, but obtained from different facilities. The mean angle spectral data obtained by the image texture analysis using the AMT algorithm can be considered as a specific fingerprint or signature of UOCs and could be used for nuclear forensic investigation.

  3. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation.

    PubMed

    Vakylabad, Ali Behrad; Schaffie, Mahin; Naseri, Ali; Ranjbar, Mohammad; Manafi, Zahra

    2016-07-01

    In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system.

  4. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    PubMed

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals.

  5. Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington

    USGS Publications Warehouse

    Nash, J. Thomas; Ward, Frederick Norville

    1977-01-01

    The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.

  6. PREPARATION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.

    1959-10-01

    A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.

  7. Effect of mineral constituents in the bioleaching of uranium from uraniferous sedimentary rock samples, Southwestern Sinai, Egypt.

    PubMed

    Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A

    2014-08-01

    Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes.

  8. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  9. Cost-effective integrated strategy for the fabrication of hard-magnet barium hexaferrite powders from low-grade barite ore

    NASA Astrophysics Data System (ADS)

    Sanad, M. M. S.; Rashad, M. M.

    2016-09-01

    Ultrafine barium hexaferrite (BaFe12O19) powders were synthesized from the metallurgical extracts of low-grade Egyptian barite ore via a co-precipitation route. Hydrometallurgical treatment of barite ore was systematically studied to achieve the maximum dissolution efficiency of Fe (~99.7%) under the optimum conditions. The hexaferrite precursors were obtained by the co-precipitation of BaS produced by the reduction of barite ore with carbon at 1273 K and then dissolved in diluted HCl and FeCl3 solution at pH 10 using NaOH as a base; the product was then annealed at 1273 K in an open atmosphere. The effect of Fe3+/Ba2+ molar ratio and the addition of hydrogen peroxide (H2O2) on the phase structure, crystallite size, morphology, and magnetic properties were investigated by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometry. Single-phase BaFe12O19 powder was obtained at an Fe3+/Ba2+ molar ratio of 8.00. The formed powders exhibited a hexagonal platelet-like structure. Good maximum magnetization (48.3 A·m2·kg-1) was achieved in the material prepared at an Fe3+/Ba2+ molar ratio of 8.0 in the presence of 5% H2O2 as an oxidizer and at 1273 K because of the formation of a uniform, hexagonal-shaped structure.

  10. Genetic and grade and tonnage models for sandstone-hosted roll-type uranium deposits, Texas Coastal Plain, USA

    USGS Publications Warehouse

    Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark

    2017-01-01

    with either (1) organic-rich debris adjacent to large long-lived fluvial channels and barrier–bar sequences or (2) extrinsic reductants entrained in formation water or discrete gas that migrated into host units via faults and along the flanks of salt domes and shale diapirs. The southwestern portion of the region, the Rio Grande embayment, contains all the necessary factors required for roll-type uranium deposits. However, the eastern portion of the region, the Houston embayment, is challenged by a humid environment and a lack of source rock and transmissive units, which may combine to preclude the deposition of economic deposits. A grade and tonnage model for the Texas Coastal Plain shows that the Texas deposits represent a lower tonnage subset of roll-type deposits that occur around the world, and required aggregation of production centers into deposits based on geologic interpretation for the purpose of conducting a quantitative mineral resource assessment.

  11. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  12. Ore metals through geologic history.

    PubMed

    Meyer, C

    1985-03-22

    The ores of chromite, nickel, copper, and zinc show a wide distribution over geologic time, but those of iron, titanium, lead, uranium, gold, silver, molybdenum, tungsten, and tin are more restricted. Many of the limitations to specific time intervals are probably imposed by the evolving tectonic history of Earth interacting with the effects of the biomass on the evolution of the earth's s surface chemistry. Photosynthetic generation of free oxygen and "carbon" contributes significantlly to the diversity of redox potentials in both sedimentary and igneous-related processes of ore formation, influencing the selection of metals at the source, during transport, and at the site of ore deposition.

  13. Environmental control technology for mining and milling low-grade uranium resources

    SciTech Connect

    Weakley, S.A.; Blahnik, D.E.; Long, L.W.; Bloomster, C.H.

    1981-04-01

    This study examined the type and level of wastes that would be generated in the mining and milling of U/sub 3/O/sub 8/ from four potential domestic sources of uranium. The estimated costs of the technology to control these wastes to different degrees of stringency are presented.

  14. Metals fact sheet - uranium

    SciTech Connect

    1996-04-01

    About 147 million pounds of this radioactive element are consumed annually by the worldwide nuclear power and weapons industries, as well as in the manufacture of ceramics and metal products. The heaviest naturally occurring element, uranium is typically found in intrusive granites, igneous and metamorphic veins, tabular sedimentary deposits, and unconformity-related structures. This article discusses the geology, exploitation, market, and applications of uranium and uranium ores.

  15. Iron ore: energy, labor, and capital changes with technology.

    PubMed

    Kakela, P J

    1978-12-15

    Resource gathering is depending on leaner crude ores. Iron ore mining typifies this trend. To make lean taconite iron ores useful required a technologic breakthrough-pelletization. The shift to iron ore pellets has the advantage that they require less energy and labor per ton of molten iron than high-grade naturally concentrated ores. Increased reliance on pellets causes a geographic shift of some jobs and environmental effects from blast furnaces to iron ore mines.

  16. National uranium resource evaluation: Dixon Entrance Quadrangle, Alaska

    SciTech Connect

    Anderson, J.R.; Krause, K.J.

    1982-04-01

    The Dixon Entrance Quadrangle (1:250,000 scale, Alaska-Canada Topographic series) includes southern islands of Southeast Alaska as well as the northern tip of the Queen Charlotte Islands of British Columbia. The Alaska portion of the quadrangle was evaluated to identify and delineate environments favorable for uranium deposits using criteria developed for the National Uranium Resource Evaluation program. The evaluation is based on data from aerial and ground radiometric surveys, geochemical sampling, published geologic reports, and helicopter-supported surface reconnaissance. Bed rock is mostly masked by surficial cover, and detailed geologic maps are available for only a small part of the quadrangle. Known uranium deposits are associated with the Bokan Mountain peralkaline granite stock of Devonian age from which uranium and thorium ore have been produced and which is considered favorable for autometasomatic uranium deposits. Orthomagmatic, pegmatitic, magmatic-hydrothermal, and contact-metasomatic environments related to the Bokan Mountain granite are considered unfavorable because they do not appear to meet grade or tonnage criteria. Additional uranium occurrences and uranium radiometric and geochemical anomalies were discovered away from the Bokan Mountain granite, but none appeared related to granitic complexes similar to Bokan Mountain. No other geologic environments that meet favorability criteria for the occurrence of uranium deposits were found by the reconnaissance-level field investigations conducted in the quadrangle. The Forrester Island US Wildlife Refuge was not evaluated.

  17. 10 CFR 40.23 - General license for carriers of transient shipments of natural uranium other than in the form of...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... natural uranium other than in the form of ore or ore residue. 40.23 Section 40.23 Energy NUCLEAR... carriers of transient shipments of natural uranium other than in the form of ore or ore residue. (a) A general license is hereby issued to any person to possess a transient shipment of natural uranium,...

  18. Uranium deposits in Grant County, New Mexico

    USGS Publications Warehouse

    Granger, Harry C.; Bauer, Herman L.; Lovering, Tom G.; Gillerman, Elliot

    1952-01-01

    The known uranium deposits of Grant county, N. Mex., are principally in the White Signal and Black Hawk districts. Both districts are within a northwesterly-trending belt of pre-Cambrian rocks, composed chiefly of granite with included gneisses, schists, and quartzites. Younger dikes and stocks intrude the pre-Cambrian complex. The White Signal district is on the southeast flanks of the Burro Mountains; the Black Hawk district is about 18 miles northwest of the town of White Signal. In the White Signal district the seconday uranium phosphates--autunite and torbernite--occur as fracture coatings and disseminations in oxidized parts of quartz-pyrite veins, and in the adjacent mafic dikes and granites; uraniferous limonite is common locally. Most of the known uraniferous deposits are less that 50 feet in their greatest dimension. The most promising deposits in the district are on the Merry Widow and Blue Jay claims. The richest sample taken from the Merry Widow mine contained more than 2 percent uranium and a sample from the Blue Jay property contained as much as 0.11 percent; samples from the other properties were of lower grade. In the Black Hawk district pitchblende is associated with nickel, silver, and cobalt minerals in fissure veins. The most promising properties in the Black Hawk district are the Black Hawk, Alhambra, and Rose mines. No uranium analyses from this district were available in 1951. There are no known minable reserves of uranium ore in either district, although there is some vein material at the Merry Widow mine of ore grade, if a market were available in the region.

  19. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  20. SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-17

    A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.

  1. Uranium immobilization and nuclear waste

    SciTech Connect

    Duffy, C.J.; Ogard, A.E.

    1982-02-01

    Considerable information useful in nuclear waste storage can be gained by studying the conditions of uranium ore deposit formation. Further information can be gained by comparing the chemistry of uranium to nuclear fission products and other radionuclides of concern to nuclear waste disposal. Redox state appears to be the most important variable in controlling uranium solubility, especially at near neutral pH, which is characteristic of most ground water. This is probably also true of neptunium, plutonium, and technetium. Further, redox conditions that immobilize uranium should immobilize these elements. The mechanisms that have produced uranium ore bodies in the Earth's crust are somewhat less clear. At the temperatures of hydrothermal uranium deposits, equilibrium models are probably adequate, aqueous uranium (VI) being reduced and precipitated by interaction with ferrous-iron-bearing oxides and silicates. In lower temperature roll-type uranium deposits, overall equilibrium may not have been achieved. The involvement of sulfate-reducing bacteria in ore-body formation has been postulated, but is uncertain. Reduced sulfur species do, however, appear to be involved in much of the low temperature uranium precipitation. Assessment of the possibility of uranium transport in natural ground water is complicated because the system is generally not in overall equilibrium. For this reason, Eh measurements are of limited value. If a ground water is to be capable of reducing uranium, it must contain ions capable of reducing uranium both thermodynamically and kinetically. At present, the best candidates are reduced sulfur species.

  2. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1954-01-01

    The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.

  3. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore.

    PubMed

    Biswas, Sujoy; Pathak, P N; Roy, S B

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision.

  4. National Uranium-Resource Evaluation: genesis of the Bokan Mountain, Alaska uranium-thorium deposits

    SciTech Connect

    Thompson, T.B.; Lyttle, T.; Pierson, J.R.

    1980-01-01

    The objective of this research project is to develop a model that can be used in evaluating peralkaline granitic-syenitic rocks for uranium potential. The deposits at Bokan Mountain (also known as Kendrick Bay) were studied to generate a specific model as to their mode of formation. To achieve the objective several types of data have been obtained: (1) Distinction by mapping and core logging of multiple intrusive phases within the Bokan Mountain Granite complex; (2) Detailed chemical and petrographic data on each igneous phase; (3) Extent of and mineralogical/chemical characteristics of the associated wallrock alteration; (4) Radiometric dates on magmatic and hydrothermal products; (5) Fluid inclusion analysis of quartz, calcite, and fluorite from mineralized rock; (6) Ore and sulfide mineralogy; (7) C, O, and S isotope analyses of minerals from mineralized rock; (8) Trace element dispersion with respect to mineralized zones; and (9) Structural data for interpretation of emplacement mechanisms as well as post-magmatic events important to ore localization. The U/Th mineralization is localized in shear zones as vein-like bodies or in irregular cylindrical bodies formed by concentrations of microfractures. The ore zones are localized within or on top of syenitic masses and have intense albitization and chloritization, with subordinate amounts of calcite, fluorite, quartz, sulfides, and tourmaline. Hematite occurs peripherally to the higher-grade ore zones. Uranothrorite and uraninite are the main ore minerals.

  5. Desilicification and iron activation-reprecipitation in the high-grade magnetite ores in BIFs of the Anshan-Benxi area, China: Evidence from geology, geochemistry and stable isotopic characteristics

    NASA Astrophysics Data System (ADS)

    Li, Hou-Min; Yang, Xiu-Qing; Li, Li-Xing; Zhang, Zhao-Chong; Liu, Ming-Jun; Yao, Tong; Chen, Jing

    2015-12-01

    The high-grade magnetite ores related to banded iron formations (BIFs) in the Anshan-Benxi area, Liaoning Province in China, have been widely interpreted as the product of replacement of protore by epigenetic hydrothermal fluids. The high-grade iron ore reserves in the mining area II (164 million tons) in the Gongchangling (G2) and Qidashan-Wangjiabuzi (QW) iron deposits (11.45 million tons) are the largest deposits in the Anshan-Benxi area. We present a detailed comparison of the geology, geochemical and stable isotopic compositions of the iron ores in the G2 with those in the QW to constrain the role of desilicification and iron activation-reprecipitation in converting the BIFs to high-grade magnetite ores. These two deposits show marked difference in wall-rock alteration, geochemical features, and oxygen and sulfur isotopic compositions. Wall-rock alteration in the G2 is characterized by garnetization, actinolitization, and chloritization, whereas the QW shows chloritization, biotitization and sericitization. The geochemistry of altered rocks in the G2 is characterized by slight REE fractionation, positive Eu and no significant Ce anomalies, whereas the QW is characterized by high ΣREE contents, strong REE fractionation, and the absence of significant Eu and Ce anomalies. High-grade iron ores in the G2 show similar δ18OV-SMOW values for magnetite, lower δ18OV-SMOW values for quartz and higher δ34SV-CDT values for pyrite when compared to the BIFs, whereas the QW shows lower δ18OV-SMOW values for magnetite, similar δ18OV-SMOW values for quartz and similar δ34SV-CDT values for pyrite. These features indicate that desilicification process by hypogene alkaline-rich hydrothermal fluids were possibly responsible for the formation of high-grade iron ores in the G2 whereas iron activation-reprecipitation process by migmatitic-hydrothermal fluids generated the high-grade iron orebodies in QW.

  6. EXTRACTION OF URANIUM

    DOEpatents

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  7. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  8. Acid-base properties and surface complexation modeling of phosphate anion adsorption by wasted low grade iron ore with high phosphorus.

    PubMed

    Yuan, Xiaoli; Bai, Chenguang; Xia, Wentang; An, Juan

    2014-08-15

    The adsorption phenomena and specific reaction processes of phosphate onto wasted low grade iron ore with high phosphorus (WLGIOWHP) were studied in this work. Zeta potential and Fourier transform infrared spectroscopy (FTIR) analyses were used to elucidate the interaction mechanism between WLGIOWHP and aqueous solution. The results implied that the main adsorption mechanism was the replacement of surface hydroxyl groups by phosphate via the formation of inner-sphere complex. The adsorption process was characterized by chemical adsorption onto WLGIOWHP. The non-electrostatic model (NEM) was used to simulate the surface adsorption of phosphate onto WLGIOWHP. The total surface site density and protonation constants for NEM (N(T)=1.6×10(-4) mol/g, K(a1)=2.2×10(-4), K(a2)=6.82×10(-9)) were obtained by non-linear data fitting of acid-base titrations. In addition, the NEM was used to establish the surface adsorption complexation modeling of phosphate onto WLGIOWHP. The model successfully predicted the adsorption of phosphate onto WLGIOWHP from municipal wastewater.

  9. Utilization of non-weapons-grade plutonium and highly enriched uranium with breeding of the {sup 233}U isotope in the VVER reactors using thorium and heavy water

    SciTech Connect

    Marshalkin, V. E. Povyshev, V. M.

    2015-12-15

    A method for joint utilization of non-weapons-grade plutonium and highly enriched uranium in the thorium–uranium—plutonium oxide fuel of a water-moderated reactor with a varying water composition (D{sub 2}O, H{sub 2}O) is proposed. The method is characterized by efficient breeding of the {sup 233}U isotope and safe reactor operation and is comparatively simple to implement.

  10. Geology and ore deposits of the Monument Valley area, Apache and Navajo counties, Arizona: Part II

    USGS Publications Warehouse

    Witkind, I.J.; Thaden, R.E.

    1958-01-01

    In 1951 and 1952, the U.S. Geological Survey conducted a program of uranium investigations and geologic mapping in the Monument Valley area, Apache and Navajo Counties, Ariz. About 700 square miles were mapped on the Navajo Indian Reservation. A resource appraisal of the area was an inherent part of the program, and is detailed in this report. Production of vanadium and uranium is from two areas, the Monument No. 1 mine area in Navajo County, and the Monument No. 2 mine area in Apache County. In the period 1942-53 about 200,300 tons of ore was produced from these two areas. This ore yielded about 1,700,000 pounds of U3O8 and about 6,500,000 pounds of V2O5. The grade ranged from 0.15 percent U3O8 to 0.60 percent U3O8, and from 0.38 percent V2O5 to 3.02 percent V2O5. The vanadium-uranium ratio is about 4:1. The ore deposits are composed principally of the hydrous calcium-uranium vanadate tyuyamunite in basal channel sediments of the Shinarump member off the Chinle formation. Four types of ore bodies are present: (1) rods, (2) tabular ore bodies, (3) corvusite-type ore bodies, and (4) rolls. The reserves of uranium- and vanadium-bearing material are classed as measured, indicated, inferred, and potential. The reserves are further divided into three grade classes for material 1 foot or more thick: (1) 0.10 percent U3O8 and 1.00 percent V2O5 and above; (2) 0.05 percent U3O8 and 0.50 percent V2O5 and less than 0.10 percent U3O8 and 1.00 percent V2O5; and (3) 0.01 percent U3O8 and 0.10 percent V2O5 and less than 0.05 percent U3O8 and 0.05 percent V2O5. Measured reserves as of June 1953, in the Monument Valley area, Arizona, (all in the Monument No. 2 mine) total about 36,000 tons. Indicated reserves in the first grade class amount to about 62,000 tons. In this same grade class inferred reserves total about 3,000,000 tons. In the second grade class indicated and inferred reserves amount to about 2,000,000 tons. Inferred reserves in the third grade class total about 345

  11. Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Dargent, Maxime; Truche, Laurent; Dubessy, Jean; Bessaque, Gilles; Marmier, Hervé

    2015-10-01

    The formation of hydrothermal uranium ore deposits involves the reduction of dissolved U(VI)(aq) to uraninite. However, the nature of the reducing agent and the kinetics of such a process are currently unknown. These questions are addressed through dedicated experiments performed under conditions relevant for the genesis of unconformity-related uranium (URU) deposits. We tested the efficiency of the following potential reductants supposed to be involved in the reaction: H2, CH4, C-graphite and dissolved Fe(II). Results demonstrate the great efficiency of H2, CH4 and C-graphite to reduce U(VI)(aq) into uraninite in acidic chloride brines, unlike dissolved Fe(II). Times needed for H2 (1.4 bar), CH4 (2.4 bar) and C-graphite (water/carbon mass ratio = 10) to reduce 1 mM of U(VI)(aq) in an acidic brine (1 m LiCl, pH ≈ 1 fixed by HCl) to uraninite at 200 °C are 12 h, 3 days and 4 months, respectively. The effects of temperature (T) between 100 °C and 200 °C, H2 partial pressure (0.14, 1.4, and 5.4 bar), salinity (0.1, 1 and 3.2 m LiCl) and pH at 25 °C (0.8 and 3.3) on the reduction rate were also investigated. Results show that increasing temperature and H2 partial pressure increase the reaction rate, whereas increasing salinity or pH have the reverse effect. The reduction of uranyl to uraninite follows an apparent zero-order with respect to time, whatever the considered electron donor. From the measured rate constants, the following values of activation energy (Ea), depending on the nature of the electron donor, have been derived: EaC-graphite = 155 ± 3 kJ mol-1, EaCH4 = 143 ± 6 kJ mol-1, and EaH2 = 124 ± 15 kJ mol-1 at T < 150 °C and 32 ± 6 kJ mol-1 at T > 150 °C. An empirical relationship between the reaction rate, the hydrogen partial pressure, the uranyl speciation, and the temperature is also proposed. This allows an estimation of the time of formation of a giant U ore deposit such as McArthur River (Canada). The duration of the mineralizing event is

  12. Spectral discrimination of uranium-mineralized breccia pipes in northwestern Arizona

    SciTech Connect

    Kwarteng, A.Y.; Goodell, P.C.; Pingitore, N.E. Jr.; Wenich, K.J.

    1989-03-01

    The price of uranium is currently the lowest in more than a decade. The only type of uranium deposit that is economically viable in the depressed uranium market is such high-grade ore as the unconformity type found in Canada and Australia. Exploration for uranium-bearing breccia pipes in northwestern Arizona by both domestic and foreign companies is currently active because of the relatively high-grade ore they contain and their tendency to be polymetallic. In the US, uranium-mineralized breccia pipes are one of the few deposits that can compete in the current market. A stepwise discriminant analysis was performed on spectral data acquired from the field, laboratory, and Landsat thematic mapper (TM). The principal objectives were (1) to investigate the fundamental differences in the spectral properties of outcrops on the surface of breccia pipes and the background, (2) to choose TM bandpasses that were statistically optimum for distinguishing between breccia pipes and the background, and (3) to compare the results of the field, laboratory, and TM digital data which were acquired by different instruments having different spatial and spectral resolutions.

  13. Study of the Utah uranium milling industry. Volume II. Utah energy resources: uranium

    SciTech Connect

    Turley, R.E.

    1981-01-01

    Volume II provides an overview of Utah's uranium industry including its history and present status. Uranium production peaked in 1958, then declined until 1976. A second production boom has begun and ore production could reach more than 1.3 million tons by 1985. Utah's milling industry has the capacity to produce 1600 tons of yellow cake per year. Uranium ores are mined by both conventional surface and underground techniques. (DMC)

  14. URANIUM EXTRACTION

    DOEpatents

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  15. Uranium (U)-Tolerant Bacterial Diversity from U Ore Deposit of Domiasiat in North-East India and Its Prospective Utilisation in Bioremediation

    PubMed Central

    Kumar, Rakshak; Nongkhlaw, Macmillan; Acharya, Celin; Joshi, Santa Ram

    2013-01-01

    Uranium (U)-tolerant aerobic chemo-heterotrophic bacteria were isolated from the sub-surface soils of U-rich deposits in Domiasiat, North East India. The bacterial community explored at molecular level by amplified ribosomal DNA restriction analysis (ARDRA) resulted in 51 distinct phylotypes. Bacterial community assemblages at the U mining site with the concentration of U ranging from 20 to 100 ppm, were found to be most diverse. Representative bacteria analysed by 16S rRNA gene sequencing were affiliated to Firmicutes (51%), Gammaproteobacteria (26%), Actinobacteria (11%), Bacteroidetes (10%) and Betaproteobacteria (2%). Representative strains removed more than 90% and 53% of U from 100 μM and 2 mM uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure and the activity was retained until 24 h. Overall, 76% of characterized isolates possessed phosphatase enzyme and 53% had PIB-type ATPase genes. This study generated baseline information on the diverse indigenous U-tolerant bacteria which could serve as an indicator to estimate the environmental impact expected to be caused by mining in the future. Also, these natural isolates efficient in uranium binding and harbouring phosphatase enzyme and metal-transporting genes could possibly play a vital role in the bioremediation of metal-/radionuclide-contaminated environments. PMID:23080407

  16. URANIUM SOLVENT EXTRACTION PROCESS

    DOEpatents

    Harrington, C.D.

    1959-09-01

    A method is given for extracting uranium values from ores of high phosphate content consisting of dissolving them in aqueous nitric acid, adjusting the concentration of the aqueous solution to about 2 M with respect to nitric acid, and then contacting it with diethyl ether which has previously been made 1 M with respect to nitric acid.

  17. Uranium occurrence in major rock types by fission-track mapping

    SciTech Connect

    Ledger, E.G.; Bomber, B.J.; Schaftenaar, W.E.; Tieh, T.T.

    1984-04-01

    Microscopic occurrence of uranium has been determined in about 50 igneous rocks from various location, and in a genetically unrelated sandstone from south Texas. Precambrian granites from the Llano uplift of central Texas contain from a few ppm uranium (considered normal) to over 100 ppm on a whole-rock basis. In granite, uranium is concentrated in: (1) accessory minerals including zircon, biotite, allanite, Fe-Ti oxides, and altered sphene, (2) along grain boundaries and in microfractures by precipitation from deuteric fluids, and (3) as point sources (small inclusions) in quartz and feldspars. Tertiary volcanic rocks from the Davis Mountains of west Texas include diverse rock types from basalt to rhyolite. Average uranium contents increase from 1 ppm in basalts to 7 ppm in rhyolites. Concentration occurs: (1) in iron-titanium-oxides, zircon, and rutile, (2) in the fine-grained groundmass as uniform and point-source concentrations, and (3) as late uranium in cavities associated with banded, silica-rich material. Uranium in ore-grade sandstone is concentrated to more than 3%. Specific occurrences include (1) leucoxene and/or anatase, (2) opaline and calcite cements, (3) mud clasts and altered volcanic rock fragments, and (4) in a few samples, as silt-size uranium- and molybdenum-rich spheres. Uranium content is quite low in pyrite, marcasite, and zeolites.

  18. Radioactivity in the environment around past radium and uranium mining sites of Portugal.

    PubMed

    Carvalho, F P; Madruga, M J; Reis, M C; Alves, J G; Oliveira, J M; Gouveia, J; Silva, L

    2007-01-01

    Measurements of ambient radiation doses and determination of radionuclide concentrations in mining waste and soils were performed in 60 areas of former radium and uranium mining. In several places, mining waste and low-grade uranium ore left on the surface contain radioactivity above regional background. Most of the former mining sites present no enhanced radionuclide concentrations. However, in the mining facilities where the radioactive ore was chemically extracted, mill tailings contain materials with elevated levels of radioactivity, up to 200 times the levels in unaffected soils of the region. Mud from neutralization ponds used to treat acid mine waters contains also elevated radionuclide concentrations. Furthermore, depending on the type of waste, the radioelement composition varies. Environmental rehabilitation measures shall take these differences into account in order to prevent in the long term the radioactive contamination of agriculture soils and water resources, and to ensure adequate radiological protection to the public and to the environment.

  19. Assessment of the total effective dose of miners in the underground Rožná Uranium Mine in the Czech Republic during the period 2004-2009.

    PubMed

    Sabol, J; Jurda, M; Gregor, Z; Navrátil, L

    2011-03-01

    The paper discusses the situation in the Czech Republic regarding past and present uranium mining activities with emphasis on the evaluation of the exposure of underground miners in the Rožná Uranium Mine, which is currently the only active mine in the country and practically in the entire European Union. The total effective dose has been summarised taking into account all three major components, namely radon short-lived decay products, long-lived alpha emitters in ore dust and penetrating external gamma radiation. The average and maximum values of the effective dose as well as the collective effective dose of underground miners are also presented. The purpose of the paper is to document the miners' exposures during a period of 6 years in a uranium mine where conditions including the ore grade and methods of mining showed recently some changes that may affect the individual components of the total effective dose.

  20. Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.

    PubMed

    Mudd, Gavin M; Diesendorf, Mark

    2008-04-01

    The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.

  1. Computer finds ore

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.

  2. GEOLOGY AND ORIGIN OF THE DEATH VALLEY URANIUM DEPOSIT, SEWARD PENINSULA, ALASKA.

    USGS Publications Warehouse

    Dickinson, Kendell A.; Cunningham, Kenneth D.; Ager, Thomas A.

    1987-01-01

    A uranium deposit discovered in 1977 in western Alaska, by means of airborne radiometric data, is the largest known in Alaska on the basis of industry reserve estimates. The deposit is apparently of epigenetic and supergene origin. The uranium was derived from the Cretaceous granite of the Darby pluton that forms part of the western side of Death Valley. Uranium from primary mineralization is in the subsurface in a marginal facies of the Tertiary sedimentary basin where nearshore coarse clastic rocks are interbedded with coal and lacustrine clay. The supergene enrichment is related to a soil horizon at the present ground surface. Extensive exploratory drilling took place from 1979 to 1981. The average grade of the potential ore is 0. 27 percent U//3O//8 and the average thickness is 3 m. The calculated reserves are 1,000,000 lbs U//3O//8; additional drilling would probably add to this figure. Additional study results are discussed.

  3. Uranium industry annual 1993

    SciTech Connect

    Not Available

    1994-09-01

    Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

  4. Study of the Utah uranium-milling industry. Volume II. Utah energy resources: uranium

    SciTech Connect

    Millar, R.D.; Neilson, L.T.; Turley, R.E.

    1980-07-01

    This report is a general overview of the uranium mining and milling industry and its history and present status with particular reference to Utah. This volume serves two purposes: (1) it serves as a companion volume to Volume I, which is a policy analysis; and (2) it serves as one of a set of energy resource assessment studies previously performed by the authors. The following topics are covered: development of the uranium industry on the Colorado Plateau with emphasis on Utah; geology of uranium; uranium reserves; uranium exploration in Utah; uranium ore production and mining operation in Utah; uranium milling operations in Utah; utilization of uranium; uranium mill tailings; and future outlook. Appendices on pricing of uranium and incentives for production since World War II are also presented.

  5. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory

  6. Federal Guidance Report No. 8: Guidance for the Control of Radiation Hazards in Uranium Mining

    EPA Pesticide Factsheets

    This report contains background material used in the development of guidance concerning radiation protection in the mining of uranium ore, and seeks to provide guidance for long-term radiation protection in uranium mining.

  7. SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL

    DOEpatents

    Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.

    1958-12-01

    A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.

  8. Depleted Uranium | RadTown USA | US EPA

    EPA Pesticide Factsheets

    2016-12-13

    Depleted uranium is the material left after most of the highly radioactive uranium-235 is removed from uranium ore for nuclear power and weapons. DU is used for tank armor, armor-piercing bullets and as weights to help balance aircraft. DU is both a toxic chemical and radiation health hazard when inside the body.

  9. 10 CFR 40.67 - Requirement for advance notice for importation of natural uranium from countries that are not...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore...

  10. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    SciTech Connect

    Ilas, Germina; Primm, Trent

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  11. RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS

    DOEpatents

    Wilson, H.F.

    1958-07-01

    An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.

  12. Inherently safe in situ uranium recovery

    DOEpatents

    Krumhansl, James L; Brady, Patrick V

    2014-04-29

    An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.

  13. Commercial considerations in uranium transactions - Part 1

    SciTech Connect

    1988-03-01

    In the nuclear fuel cycle, uranium appears in a variety of forms including: ore, natural uranium concentrates, natural UF{sub 6}, enriched and depleted UF{sub 6}, enriched UO{sub 2} powder, pellets, fabricated fuel, and spent fuel. Less common forms include UF{sub 4} (green salt), natural UO{sub 2}, and uranium metal. Most uranium commerce, however, involves one or more of the following forms - natural uranium concentrates (referred to herein as {open_quotes}concentrates{close_quotes}), natural UF{sub 6}, and enriched UF{sub 6}. While uranium is normally considered fungible, uranium commerce is often circumscribed by such factors as: (1) Milling arrangements; (2) converters` policies and capabilities; (3) storage arrangements; (4) origin restrictions; and (5) ownership, possession and location considerations. This article reviews these factors and the resulting commercial implications associated with natural uranium concentrates. Future articles will cover natural UF{sub 6} and enriched UF{sub 6}.

  14. National Uranium Resource Evaluation: Denver Quadrangle, Colorado

    SciTech Connect

    Hills, F.A.; Dickinson, K.A.; Nash, J.T.; Otton, J.K.; Dodge, H.W.; Granger, H.C.; Robinson, K.; McDonnell, J.R.; Yancey, C.L.

    1982-09-01

    Nine areas in the Denver 1/sup 0/ x 2/sup 0/ Quadrangle, Colorado have been identified as favorable for the occurrence of uranium deposits containing a minimum of 100 tons U/sub 3/O/sub 8/ at grades of 0.01% or better. Six of these areas are in metamorphic and igneous rocks of the Front Range, one is in sedimentary rocks of South Park, and two are in sedimentary rocks of the Great Plains. Favorable areas and the classes of deposits for which they are thought to be favorable are: Area A, The Foothills Favorable Environment (700 km/sup 2/ to a depth of 1500 m); Areas B-D, The Silver Plume Granite Favorable Environment; Area E, Southern Elkhorn Upthrust Favorable Environment; Area F, South Park Favorable Environments (27 km/sup 2/ in units of variable thickness); Area G, Dawson Arkose Favorable Environment (3600 km/sup 2/ with an estimated thickness of 50 m); and Area H, Fox Hills Formation Favorable Environment (700 km/sup 2/ with an estimated thickness of 38 m). Other areas and environments in the Denver Quadrangle have uranium occurences and some have yielded small amounts of uranium ore in the past (for example the Central City district). These areas are ranked as unfavorable because in our judgment the evidence does not suggest favorability for deposits of the minimum size. However, neither empirical data nor genetic models for uranium deposits are adequate presently to make determinations of favorability with confidence, and changes of rank are to be expected in the future.

  15. The Complete Burning of Weapons Grade Plutonium and Highly Enriched Uranium with (Laser Inertial Fusion-Fission Energy) LIFE Engine

    SciTech Connect

    Farmer, J C; Diaz de la Rubia, T; Moses, E

    2008-12-23

    The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spent nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion

  16. U-Pb isotope systematics and age of uranium mineralization, Midnite mine, Washington.

    USGS Publications Warehouse

    Ludwig, K. R.; Nash, J.T.; Naeser, C.W.

    1981-01-01

    Uranium ores at the Midnite mine, near Spokane, Washington, occur in phyllites and calcsilicates of the Proterozoic Togo Formation, near the margins of an anomalously uraniferous, porphyritic quartz monzonite of Late Cretaceous age. The present geometry of the ore zones is tabular, with the thickest zones above depressions in the pluton-country rock contact. Analyses of high-grade ores from the mine define a 207 Pb/ 204 Pb- 235 U/ 204 Pb isochron indicating an age of mineralization of 51.0 + or - 0.5 m.y. This age coincides with a time of regional volcanic activity (Sanpoil Volcanics), shallow intrusive activity, erosion, and faulting. U-Th-Pb isotopic ages of zircons from the porphyritic quartz monzonite in the mine indicate an age of about 75 m.y., hence the present orebodies were formed about 24 m.y. after its intrusion. The 51-m.y. time of mineralization probably represents a period of mobilization and redeposition of uranium by supergene ground waters, perhaps aided by mild heating and ground preparation and preserved by a capping of newly accumulated, impermeable volcanic rocks. It seems most likely that the initial concentration of uranium occurred about 75 m.y. ago, probably from relatively mild hydrothermal fluids in the contact-metamorphic aureole of the U-rich porphyritic quartz monzonite.Pitchblende, coffinitc, pyrite, marcasite, and hisingerite are the most common minerals in the uranium-bearing veinlets, with minor sphalerite and chalcopyrite. Coffinitc with associated marcasite is paragenetically later than pitchblende, though textural and isotopic evidence suggests no large difference in the times of pitchblende and colfinite formation.The U-Pb isotope systematics of total ores and of pitchblende-coffinite and pyrite-marcasite separates show that whereas open system behavior for U and Pb is essentially negligible for large (200-500 g) ore samples, Pb migration has occurred on a scale of 1 to 10 mm (out of pitchblende and coffinite and into pyrite

  17. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  18. Potential Impacts of Legacy and Current Uranium Mining in the Grand Canyon Region of Northern Arizona

    NASA Astrophysics Data System (ADS)

    Bills, D. J.

    2012-12-01

    The Grand Canyon region in Northern Arizona contains high grade uranium resources hosted in geologic features called breccia pipes that represent an important component of the Nation's energy resource base. The exploration and extraction of uranium ore from these deposits poses potential risks to humans and biota of the Grand Canyon watershed. These issues led the Secretary of the Interior to a Record of Decision in January 2012 to withdraw over a million acres of federal lands in the region from mineral entry for the next 20 years. Dissolved uranium and other major ions and trace elements occur naturally in surface water and in groundwater as a result of precipitation infiltrating from the surface to perched water-bearing zones in contact with mineralized breccia pipes or in contact with sandstones with high trace element content, and to underlying regional aquifers. Discharge from these water-bearing zones and aquifers occur as seeps and springs throughout the region and provide valuable habitat and water sources for plants and animals. Runoff and groundwater flow in the Grand Canyon region is also a component of the water supply for over 25 million people in the Southwestern United States. Soil and sediment in the region can naturally contain as much a 5.6 micrograms per gram of uranium and naturally occurring dissolved uranium in groundwater is about 5.0 μg/L or less, except in proximity to uranium ore bodies where it tends to be greater. The current discharge of dissolved uranium from the Grand Canyon region to Lake Mead have concentrations of 4.0 μg/L or less resulting in a total annual load of uranium delivered to Lake Mead of about 60 tons per year. Increased amounts of radioactive materials and trace metals on the surface and in groundwater are related to uranium mining activity in the watershed in the 1970s and 1980s. Monitoring and data collection from 2010 to 2012 confirm this legacy impact in some parts of the Grand Canyon watershed, but have yet to

  19. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1953-01-01

    The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.

  20. Retrospective - the beginnings of the uranium industry

    SciTech Connect

    1994-06-01

    This article is a historical perspective of the uranium industry, from the discovery of uranium in 1789 to the discovery of fission in 1939. It is the first in a series of articles. In this part of the series, the initial discovery of uranium is mentioned. Early ore discoveries, especially in the USA, are also noted, and the market conditions at the end of the 19th century are reviewed. Shortly after the discovery of radium in 1898 and natural radioactivity, the connection between uranium and radium was noted, and this is outlined in the article. Due to the intimate relationship between the two elements, radium product and radium markets are also reviewed.

  1. Geology, petrology, and chemistry of the Leadville Dolomite: host for uranium at the Pitch Mine, Saguache County, Colorado

    USGS Publications Warehouse

    Nash, J. Thomas

    1979-01-01

    Newly documented uranium ore in the Pitch Mine occurs chiefly in brecciated Mississippian Leadville Dolomite along the Chester reverse fault zone, and to a lesser extent in sandstone, siltstone, and carbonaceous shale of the Pennsylvanian Belden Formation and in Precambrian granitic rocks and schist. Uranium-mineralized zones are generally thicker, more consistent, and of higher grade in dolomite than in other hosts, and roughly 50 percent of the new reserves are in dolomite. Strong physical control by dolomite is evident, as this is the only lithology that is pervasively brecciated within the fault slices that make up the footwall of the reverse fault zone. Other lithologies tend to either remain unbroken or undergo ductile deformation. Chemical controls are subtle and appear to involve chiefly formation of FeS2 as pyrite and marcasite, which accompany uranium. Leadville Dolomite in the area is about 130 m thick and is predominantly nonfossiliferous dolomicrite. In the Pitch Mine, Leadville Dolomite is bound by faults and maximum known thickness is about 17 m. Mud texture, paucity of fossils and other allochems, thin laminations, and probable algal mat structures suggest sedimentation in a tidal-flat (possibly supratidal) environment. Preservation of mud texture and lack of replacement features indicate that dolomitization was an early, prelithification process, as in modern tidal flats, and produced a chemically and texturally uniform rock over tens of meters with relatively few limestone beds surviving. The sedimentary and diagenetic environment of the tidal-flat dolomite, apparently most favorable for uranium deposits, probably obtained over a large area and should consistute an exploration target over a broad area of central Colorado. Carbonate rocks of the Belden Formation, in contrast to those of the Leadville, contain calcite in great excess of dolomite, more than 5 percent silt-size quartz and clay, and abundant fossils and oolites. Belden limestones

  2. Geochemical reconnaissance for uranium occurrences in the Notch Peak intrusive area, House Range, Millard County, Utah

    USGS Publications Warehouse

    Cadigan, R.A.; Robinson, Keith

    1982-01-01

    Samples collected from the contact metamorphic zone of the Notch Peak intrusive area, House Range, Millard County, Utah, indicate the occurrence of low-grade uranium and thorium ore. Maximum abundances in the altered mineralized rocks in the contact zone are 450 ppm uranium and 480 ppm thorium. Interpretation of factor analysis of the spectrochemical and delayed neutron analytical data suggests the presence of five geological factors which account for 82 percent of element covariance of 34 elements in 61 samples. The factors are identified as (1) limestone source rock reactions; (2) monzonite source rock reactions; (3) hydrothermal element group 1; (4) rare earth group; and (5) hydrothermal element group 2. The last factor effects the distribution of, primarily, beryllium, uranium, copper, molybdenum, tungsten, niobium, and secondarily, thorium, tin, and zinc; it is identified as the prime mineralization factor. The Notch Peak intrusive area has been a tungsten producing area since before the 1940's and the location of small-scale gold placer operations. This reconnaissance study was a 'follow-up' of uranium anomaly data which were developed during the U.S. Dept. of Energy National Uranium Resource Evaluation (NURE) program in 1978-80.

  3. A top-down assessment of energy, water and land use in uranium mining, milling, and refining

    SciTech Connect

    E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

    2013-11-01

    Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.

  4. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  5. The sources of our iron ores. II

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    In this instalment** the iron ore deposits of the Lake Superior States, which normally furnish about 80 per cent, of the annual output of the United States, are described together with historical notes on discovery and transportation of ore. Deposits in the Mississippi Valley and Western States are likewise outlined and the sources of imported ore are given. Reviewing the whole field, it is indicated that the great producing deposits of the Lake Superior and southern Appalachian regions are of hematite in basin areas of sedimentary rocks, that hydrated iron oxides and iron carbonates are generally found in undisturbed comparatively recent sediments, and that magnetite occurs in metamorphic and igneous rocks; also that numerical abundance of deposits is not a criterion as to their real importance as a source of supply. Statistics of production of iron ore and estimates of reserves of present grade conclude the paper.

  6. Kinetics of Uranium Extraction from Uranium Tailings by Oxidative Leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Li, Mi; Zhang, Xiaowen; Huang, Jing

    2016-07-01

    Extraction of uranium from uranium tailings by oxidative leaching with hydrogen peroxide (H2O2) was studied. The effects of various extraction factors were investigated to optimize the dissolution conditions, as well as to determine the leaching kinetic parameters. The behavior of H2O2 in the leaching process was determined through scanning electron microscopy-energy dispersive x-ray spectroscopy (SEM-EDX) and x-ray diffraction analysis of leaching residues. Results suggest that H2O2 can significantly improve uranium extraction by decomposing the complex gangue structures in uranium tailings and by enhancing the reaction rate between uranium phases and the leaching agent. The extraction kinetics expression was changed from 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)-0.14903(S/L)-1.80435( R o)0.20023 e -1670.93/T t ( t ≥ 5) to 1 - 3(1 - α)2/3 + 2(1 - α) = K 0(H2SO4)0.01382(S/L)-1.83275( R o)0.25763 e -1654.59/T t ( t ≥ 5) by the addition of H2O2 in the leaching process. The use of H2O2 in uranium leaching may help in extracting uranium more efficiently and rapidly from low-uranium-containing ores or tailings.

  7. The Rožná uranium deposit (Bohemian Massif, Czech Republic): shear zone-hosted, late Variscan and post-Variscan hydrothermal mineralization

    NASA Astrophysics Data System (ADS)

    Kříbek, Bohdan; Žák, Karel; Dobeš, Petr; Leichmann, Jaromír; Pudilová, Marta; René, Miloš; Scharm, Bohdan; Scharmová, Marta; Hájek, Antonín; Holeczy, Daniel; Hein, Ulrich F.; Lehmann, Bernd

    2009-01-01

    Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K-Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K-Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K-Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to

  8. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  9. Biogeochemical aspects of uranium mineralization, mining, milling, and remediation

    USGS Publications Warehouse

    Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.

    2015-01-01

    Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide

  10. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these

  11. Evolution of uranium and thorium minerals

    NASA Astrophysics Data System (ADS)

    Hazen, R. M.; Ewing, R. C.; Sverjensky, D. A.

    2009-12-01

    The origins and near-surface distributions of the approximately 250 known uranium and/or thorium minerals elucidate principles of mineral evolution. This history can be divided into four phases. The first, from ~4.5 to 3.5 Ga, involved successive concentrations of uranium and thorium from their initial uniform trace distribution into magmatic-related fluids from which the first U4+ and Th4+ minerals, uraninite (UO2), thorianite (ThO2) and coffinite (USiO4), precipitated in the crust. The second period, from ~3.5 to 2.2 Ga, saw the formation of large low-grade concentrations of detrital uraninite (containing several weight percent Th) in the Witwatersrand-type quartz-pebble conglomerates deposited in a highly anoxic fluvial environment. Abiotic alteration of uraninite and coffinite, including radiolysis and auto-oxidation caused by radioactive decay and the formation of helium from alpha particles, may have resulted in the formation of a limited suite of uranyl oxide-hydroxides. Earth’s third phase of uranium mineral evolution, during which most known U minerals first precipitated from reactions of soluble uranyl (U6+O2)2+ complexes, followed the Great Oxidation Event (GOE) at ~2.2 Ga and thus was mediated indirectly by biologic activity. Most uraninite deposited during this phase was low in Th and precipitated from saline and oxidizing hydrothermal solutions (100 to 300°C) transporting (UO2)2+-chloride complexes. Examples include the unconformity- and vein-type U deposits (Australia and Canada) and the unique Oklo natural nuclear reactors in Gabon. The onset of hydrothermal transport of (UO2)2+ complexes in the upper crust may reflect the availability of CaSO4-bearing evaporites after the GOE. During this phase, most uranyl minerals would have been able to form in the O2-bearing near-surface environment for the first time through weathering processes. The fourth phase of uranium mineralization began approximately 400 million years ago, as the rise of land plants

  12. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.63 Proof of... Public Health Service (PHS) in the course of any health studies of uranium workers during or including the period 1942-1990; (2) Records of a uranium worker census performed by the PHS at various...

  13. 28 CFR 79.63 - Proof of employment as an ore transporter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Ore Transporters § 79.63 Proof of... Public Health Service (PHS) in the course of any health studies of uranium workers during or including the period 1942-1990; (2) Records of a uranium worker census performed by the PHS at various...

  14. Uranium deposits in Fall River County, South Dakota

    USGS Publications Warehouse

    Bell, Henry; Bales, W.E.

    1954-01-01

    mudstone and thinly bedded sandstone. Other deposits are in the massive sandstone lenses of the Lakota sandstone and in the thin units between the lenses. Although carnotite is the most conspicuous and important mineral in most deposits, corvusite is an important constituent of some deposits. Other uranium minerals in the deposits are tyuyamunite, rauvite, and autunite. Ore produced in 1952 from the Fall River and Lakota sandstones contained about 0.2 percent U3O8 and 0.6 percent V2O5. In general, deposits in the Fall River and Lakota sandstones contain about the same percentage of U3O8, but the deposits in the Fall River sandstone appear to have a higher percentage of vanadium. The grade of individual deposits, however, is highly variable. Most deposits are small, but a few have yielded as much as a thousand tons of ore.

  15. The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants

    SciTech Connect

    Brown, S.H.

    2008-07-01

    In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon

  16. Dewatering of the Jenkins open pit uranium mine

    SciTech Connect

    Straskraba, V.; Kissinger, L.E.

    1984-12-01

    Mining of low grade uranium sandstones in the Jenkins open pit mine in the Shirley Basin, Wyoming was troubled by slope failures and wet conditions in the pit. Since the mine was expanding toward a river, the possibility of drainage from this river into the mine raised serious concern during the mine planning. A baseline hydrogeologic study was performed and dewatering measures were designed with the help of a numerical mathematical model. A combination of dewatering wells installed from the surface around the perimeter of the pit and horizontal drains in areas of high slope failure potential substantially improved the mining conditions and slope stability. This procedure consequently led to the successful ore recovery from the highly saturated sandstone strata. The development of drawdown during the dewatering of two separated aquifers in the overburden was close to that predicted by the model.

  17. 10 CFR 40.66 - Requirements for advance notice of export shipments of natural uranium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Requirements for advance notice of export shipments of natural uranium. 40.66 Section 40.66 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE... natural uranium. (a) Each licensee authorized to export natural uranium, other than in the form of ore...

  18. National Uranium Resource Evaluation, Glens Falls Quadrangle: New York, Vermont, and New Hampshire

    SciTech Connect

    McHone, J.G.; Wagener, H.D.

    1982-06-01

    Grenville anatectic pegmatites of the Adirondack Mountains of New York are a favorable environment for the occurrence of uranium deposits of not less than 100 tons U/sub 3/O/sub 8/ at an average grade of not less than 100 ppM U/sub 3/O/sub 8/. The pegmatites have local high concentrations of U/sub 3/O/sub 8/ in uraninite and lesser concentrations in allanite, uranothorite, and rare-earth minerals. Metamorphosed anatectic pegmatites of the Mt. Holly Complex in the Green Mountains of Vermont are a favorable environment for uranium deposits. Allanite is prominent in thorium-rich pegmatites, but intergranular pitchblende is the principal ore mineral of uranium-rich pegmatites. Mt. Holly pegmatite appears to be Grenville pegmatite with part of the uranium removed by Paleozoic metamorphism. The Mt. Holly Complex is a favorable environment for vein-type deposits of uranium in biotite gneisses, mica schists, and quartzites. Pitchblende is concentrated along minor thrust faults and steeply dipping fault zones. Disseminations of pitchblende occur along biotite lamellae in gneissoid and schistose rocks in the vicinity of faults, and in pods and lenses of biotite-rich schist in both highly contorted rocks and interlayered gneisses and schists. Carnotite and torbernite commonly occur along faults, fractures, and biotite lamellae in uraniferous rocks. The two-mica granite of the small Sunapee pluton in New Hampshire contains authigenic favorable areas consisting of closely spaced Mesozoic fractures filled with hexavalent uranium minerals. The uranium is being leached from the granite by ground water.

  19. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  20. Australia's big copper-uranium deposit

    SciTech Connect

    Lyons, L.A.

    1981-07-01

    A combination of studies of satellite imagery with emphasis on lineament analysis, conventional gravity studies, aerial and ground magnetic surveys, theoretical and empirical modeling contributed to the discovery of the Roxby Downs/Olympic Dam deposit. The main ore body could contain as much as 750,000,000 tons of ore at grades of 1.5 percent copper.

  1. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  2. Processing of Goethitic Iron Ore Fines

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Sharma, T.; Mandre, N. R.

    2015-10-01

    In the present investigation an attempt has been made to beneficiate goethitic iron ore containing 59.02 % Iron, 6.51 % Alumina, 4.79 % Silica, 0.089 % Phosphorus with 7.11 % loss on ignition. For this purpose, different beneficiation techniques such as gravity and magnetic separation processes have been employed. During the process two conceptual flow sheets were also developed for the beneficiation of goethite iron ore fines. In the prsent work it was possible to enhance grade of iron to 63.35, 63.18, and 65.35 % from Jigging, Multi Gravity Separation (MGS) and Wet High Intensity Magnetic Separator (WHIMS) respectively.

  3. Newly discovered uranium mineralization at 2.0 Ma in the Menggongjie granite-hosted uranium deposit, South China

    NASA Astrophysics Data System (ADS)

    Luo, Jin-Cheng; Hu, Rui-Zhong; Fayek, Mostafa; Bi, Xian-Wu; Shi, Shao-Hua; Chen, You-Wei

    2017-04-01

    The southeastern part of the Nanling metallogenic province, South China contains numerous economically important granite-hosted, hydrothermal vein-type uranium deposits. The Miao'ershan (MES) uranium ore field is one of the most important uranium sources in China, hosts the largest Chanziping carbonaceous-siliceous-pelitic rock-type uranium deposit and several representative granite-hosted uranium deposits. The geology and geochemistry of these deposits have been extensively studied. However, accurate and precise ages for the uranium mineralization are scarce because uranium minerals in these deposits are usually fine-grained, and may have formed in several stages, thus hindering the understanding of the uranium metallogenesis of this province. The Menggongjie (MGJ) uranium deposit is one of the largest granite-hosted uranium deposits in the MES ore field. Uranium mineralization in this deposit occurs at the central part of the MES granitic complex, accompanied with silicification, fluorination, K-metasomatism and hematitization. The ore minerals are dominated by uraninite, occurring in quartz or fluorite veinlets along fractures in altered granite. In-situ SIMS U-Pb dating on the uraninite yields the U-Pb isotopic age of 1.9 ± 0.7 Ma, which is comparable to the chemical U-Th-Pbtol uraninite age of 2.3 ± 0.1 Ma. Such ages agree well with the eruption ages of the extension-related Quaternary volcanics (2.1-1.2 Ma) in South China, suggesting that the uranium mineralization have formed at an extensional setting, possibly related to the Quaternary volcanic activities. Therefore, our robust, new dating results of the MGJ uranium deposit make it the youngest granite-hosted uranium deposit reported so far in South China and the mineralization event represents a newly identified mineralization epoch.

  4. Upgrading Titanium Ore Through Selective Chlorination Using Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Kang, Jungshin; Okabe, Toru H.

    2013-06-01

    To develop a simple and effective process for upgrading low-grade titanium ore (ilmenite, mainly FeTiO3), a new selective chlorination process based on the use of calcium chloride (CaCl2) as the chlorine source was investigated in this study. Titanium ore and a titanium ore/CaCl2 mixture were placed in two separate crucibles inside a gas-tight quartz tube that was then positioned in a horizontal furnace. In the experiments, the titanium ore in the two crucibles reacted with either HCl produced from CaCl2 or CaCl2 itself at 1100 K (827 °C), leading to the selective removal of the iron present in the titanium ore as iron chlorides [FeCl x (l,g) ( x = 2, 3)]. Various kinds of titanium ores produced in different countries were used as feedstock, and the influence of the particle size and atmosphere on the selective chlorination was investigated. Under certain conditions, titanium dioxide (TiO2) with purity of about 97 pct was directly obtained in a single step from titanium ore containing 51 pct TiO2. Thus, selective chlorination is a feasible method for producing high purity titanium dioxide from low-grade titanium ore.

  5. Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

    NASA Astrophysics Data System (ADS)

    Fougerouse, Denis; Micklethwaite, Steven; Tomkins, Andrew G.; Mei, Yuan; Kilburn, Matt; Guagliardo, Paul; Fisher, Louise A.; Halfpenny, Angela; Gee, Mary; Paterson, David; Howard, Daryl L.

    2016-04-01

    Both gold-rich sulphides and ultra-high grade native gold oreshoots are common but poorly understood phenomenon in orogenic-type mineral systems, partly because fluids in these systems are considered to have relatively low gold solubilities and are unlikely to generate high gold concentrations. The world-class Obuasi gold deposit, Ghana, has gold-rich arsenopyrite spatially associated with quartz veins, which have extremely high, localised concentrations of native gold, contained in microcrack networks within the quartz veins where they are folded. Here, we examine selected samples from Obuasi using a novel combination of quantitative electron backscatter diffraction analysis, ion microprobe imaging, synchrotron XFM mapping and geochemical modelling to investigate the origin of the unusually high gold concentrations. The auriferous arsenopyrites are shown to have undergone partial replacement (∼15%) by Au-poor, nickeliferous arsenopyrite, during localised crystal-plastic deformation, intragranular microfracture and metamorphism (340-460 °C, 2 kbars). Our results show the dominant replacement mechanism was pseudomorphic dissolution-reprecipitation, driven by small volumes of an infiltrating fluid that had relatively low ƒS2 and carried aqueous NiCl2. We find that arsenopyrite replacement produced strong chemical gradients at crystal-fluid interfaces due to an increase in ƒS2 during reaction, which enabled efficient removal of gold to the fluid phase and development of anomalously gold-rich fluid (potentially 10 ppm or more depending on sulphur concentration). This process was facilitated by precipitation of ankerite, which removed CO2 from the fluid, increasing the relative proportion of sulphur for gold complexation and inhibited additional quartz precipitation. Gold re-precipitation occurred over distances of 10 μm to several tens of metres and was likely a result of sulphur activity reduction through precipitation of pyrite and other sulphides. We suggest

  6. Uranium mineralization and unconformities: how do they correlate? - A look beyond the classic unconformity-type deposit model?

    NASA Astrophysics Data System (ADS)

    Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.

    2010-05-01

    Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier

  7. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  8. URANIUM RECOVERY

    DOEpatents

    Fitch, F.T.; Cruikshank, A.J.

    1958-10-28

    A process for recovering uranium from a solution of a diethyl dithiocarbaruate of uranium in an orgakic solvent substantially immiscible with water is presented. The process comprises brlnging the organic solutlon into intimate contact wlth an aqueous solution of ammonium carbonate, whereby the uranium passes to the aqueous carbonate solution as a soluble uranyl carbonate.

  9. Bioprocessing of ores: Application to space resources

    NASA Astrophysics Data System (ADS)

    Johansson, Karl R.

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  10. Bioprocessing of ores: Application to space resources

    NASA Technical Reports Server (NTRS)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  11. Uranium from seawater

    SciTech Connect

    Gregg, D.; Folkendt, M.

    1982-09-21

    A novel process for recovering uranium from seawater is proposed and some of the critical technical parameters are evaluated. The process, in summary, consists of two different options for contacting adsorbant pellets with seawater without pumping the seawater. It is expected that this will reduce the mass handling requirements, compared to pumped seawater systems, by a factor of approximately 10/sup 5/, which should also result in a large reduction in initial capital investment. Activated carbon, possibly in combination with a small amount of dissolved titanium hydroxide, is expected to be the preferred adsorbant material instead of the commonly assumed titanium hydroxide alone. The activated carbon, after exposure to seawater, can be stripped of uranium with an appropriate eluant (probably an acid) or can be burned for its heating value (possible in a power plant) leaving the uranium further enriched in its ash. The uranium, representing about 1% of the ash, is then a rich ore and would be recovered in a conventional manner. Experimental results have indicated that activated carbon, acting alone, is not adequately effective in adsorbing the uranium from seawater. We measured partition coefficients (concentration ratios) of approximately 10/sup 3/ in seawater instead of the reported values of 10/sup 5/. However, preliminary tests carried out in fresh water show considerable promise for an extraction system that uses a combination of dissolved titanium hydroxide (in minute amounts) which forms an insoluble compound with the uranyl ion, and the insoluble compound then being sorbed out on activated carbon. Such a system showed partition coefficients in excess of 10/sup 5/ in fresh water. However, the system was not tested in seawater.

  12. Relationship between collapse history and ore distribution in Sage Breccia pipe, northwestern Arizona

    SciTech Connect

    Brown, N.A.; Mead, R.H.; McMurray, J.M. )

    1989-09-01

    The Sage pipe is similar to other collapse breccia pipes in northern Arizona which have their beginnings in cave systems in the Redwall Limestone. Stoping of successively younger units caused the upward propagation of the pipe and provided the pipe-filling breccia. The Sage pipe extends at least 2,500 ft (762 m) vertically; the horizontal dimensions range from 100 to 300 ft (30.5-91 m), depending on variations in the adjoining host stratigraphy. The composition and distribution of breccia facies suggest a complex collapse history and variability in the mechanics of collapse. Rock failure took place both by block stoping and by decementation of sandstone and siltstone followed by flow of unconsolidated grains. The resulting breccias range from matrix to fragment-dominated, to sand flow breccia resulting from flow of individual grains. Episodic secondary collapse or readjustment within the breccia pile complicated facies distribution. Paragenetic studies indicate multiple periods of mineralization at Sage resulting in enrichment in an extensive suite of elements. Ore-grade uranium mineralization extends vertically for nearly 700 ft (213 m). Lateral distribution of the ore is variable and is directly related to breccia facies distribution. In generally, the more permeable breccias tend to be the most highly mineralized. Fracture, intergranular, and interfragment permeability were important to mineral distribution. Breccia continuity or plumbing was also important to lateral and vertical mineral distribution.

  13. Life Cycle Greenhouse Gas Emissions from Uranium Mining and Milling in Canada.

    PubMed

    Parker, David J; McNaughton, Cameron S; Sparks, Gordon A

    2016-09-06

    Life cycle greenhouse gas (GHG) emissions from the production of nuclear power (in g CO2e/kWh) are uncertain due partly to a paucity of data on emissions from individual phases of the nuclear fuel cycle. Here, we present the first comprehensive life cycle assessment of GHG emissions produced from the mining and milling of uranium in Canada. The study includes data from 2006-2013 for two uranium mine-mill operations in northern Saskatchewan (SK) and data from 1995-2010 for a third SK mine-mill operation. The mine-mill operations were determined to have GHG emissions intensities of 81, 64, and 34 kg CO2e/kg U3O8 at average ore grades of 0.74%, 1.54%, and 4.53% U3O8, respectively. The production-weighted average GHG emission intensity is 42 kg CO2e/kg U3O8 at an average ore grade of 3.81% U3O8. The production-weighted average GHG emission intensity drops to 24 kg CO2e/kg U3O8 when the local hydroelectric GHG emission factor (7.2 g CO2e/kWh) is substituted for the SK grid-average electricity GHG emission factor (768 g CO2e/kWh). This results in Canadian uranium mining-milling contributing only 1.1 g CO2e/kWh to total life cycle GHG emissions from the nuclear fuel cycle (0.7 g CO2e/kWh using the local hydroelectric emission factor).

  14. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    PubMed

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program.

  15. Uranium-bearing breccia pipes of northwestern Arizona - an overview

    SciTech Connect

    Chenoweth, W.L.

    1986-08-01

    During the 1950s and 1960s, the uranium deposits in breccia pipes of the Grand Canyon region were regarded as geologic curiosities. Today this area is the site of numerous exploration projects for ore-bearing pipes. The classic example of the older mines is the Orphan Lode, a patented claim within Grand Canyon National Park. Between 1956 and 1969, this deposit produced 4.26 million lb U/sub 3/O/sub 8/. Exploration since the mid-1970s has developed numerous new deposits in the Grand Canyon region. The Hack 1, 2, and 3, Pigeon, Kanab North, Canyon, and Pinenut deposits are, or will be, mined. The pipes are circular and originated by dissolution of the Mississippian Redwall Limestone and collapse of the overlying strata. Uraninite ore occurs in both the pipe fill and in association with the peripheral shear zone. The principal host rocks are the Coconino Sandstone, Hermit Shale, and Esplanade Sandstone. Although small (3 to 5 million lb U/sub 3/O/sub 8/), the high grade (60 to 70% U/sub 3/O/sub 8/) of the deposits makes the pipes attractive exploration targets.

  16. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  17. Measurements of uranium in soils and small mammals

    SciTech Connect

    Miera, F.R. Jr.

    1980-12-01

    The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 10/sup 9/ kg of uranium ore.

  18. Developments in uranium in 1987

    SciTech Connect

    Chenoweth, W.L.

    1988-10-01

    Legal and political factors, imports, and low prices continued to plague the domestic uranium industry. As a result, the Secretary of Energy in 1987 declared the domestic industry to be nonviable for the third straight year. Uranium exploration expenditures in the US declined for the ninth consecutive year. In 1987, an estimated $18 million was spent on uranium exploration, including 1.9 million ft of surface drilling. This drilling was done mainly in production areas and in areas of recent discoveries. Production of uranium concentrate decreased slightly in 1987, when 12.5 million lb of uranium oxide (U/sub 3/O/sub 8/) were produced, a 7% decrease from 1986. Uranium produced from mine water, solution mining, and as the byproduct of phosphoric acid and copper production accounted for about 38% of the total production in the US. At the end of 1987, only 5 uranium mills were operating in the US. The large, high-grade reserves being discovered and developed in Saskatchewan will enable Canada to dominate the world market for many years. Development of the Olympic Dam deposit continued in Australia and will being production in 1988. US uranium production is expected to increase slightly in 1988, as a new open-pit mine begin production. 3 figs., 2 tabs.

  19. Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling

    NASA Astrophysics Data System (ADS)

    Aghbelagh, Yousef Beiraghdar; Yang, Jianwen

    2017-03-01

    The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.

  20. Role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium deposits: insights from reactive-flow modeling

    NASA Astrophysics Data System (ADS)

    Aghbelagh, Yousef Beiraghdar; Yang, Jianwen

    2016-11-01

    The role of hydrodynamic factors in controlling the formation and location of unconformity-related uranium (URU) deposits in sedimentary basins during tectonically quiet periods is investigated. A number of reactive-flow modeling experiments at the deposit scale were carried out by assigning different dip angles and directions to a fault and various permeabilities to hydrostratigraphic units). The results show that the fault dip angle and direction, and permeability of the hydrostratigraphic units govern the convection pattern, temperature distribution, and uranium mineralization. A vertical fault results in uranium mineralization at the bottom of the fault within the basement, while a dipping fault leads to precipitation of uraninite below the unconformity either away from or along the plane of the fault, depending on the fault permeability. A more permeable fault causes uraninite precipitates along the fault plane, whereas a less permeable one gives rise to the precipitation of uraninite away from it. No economic ore mineralization can form when either very low or very high permeabilities are assigned to the sandstone or basement suggesting that these units seem to have an optimal window of permeability for the formation of uranium deposits. Physicochemical parameters also exert an additional control in both the location and grade of URU deposits. These results indicate that the difference in size and grade of different URU deposits may result from variation in fluid flow pattern and physicochemical conditions, caused by the change in structural features and hydraulic properties of the stratigraphic units involved.

  1. Direct Reduction of Iron Ore

    NASA Astrophysics Data System (ADS)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  2. PROCESS FOR THE RECOVERY OF METALS FROM HIGH-LIME CARNOTITE ORES

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A process is presented for recovering uranium values from a high-lime carnotite ore comprising contacting the ore dispersed in a finely divided state with a concentrated mineral acid, adding an industrial orgnnic solvent containing alkyl ontho or pyro phosphoric acids, alkyl phosphates or alkyl phosphonates so as to effect an organic phase into which the metal value is leached and then recovering the metal value from the organic phase.

  3. Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment

    USGS Publications Warehouse

    Nash, J. Thomas

    2010-01-01

    Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures

  4. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  5. 26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN THE BACKGROUND. BLAST FURNACES ALONG THE RIGHT SIDE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  6. Geology and uranium deposits of the Cochetopa and Marshall Pass districts, Saguache and Gunnison counties, Colorado

    USGS Publications Warehouse

    Olson, Jerry C.

    1988-01-01

    The Cochetopa and Marshall Pass uranium districts are in Saguache and Gunnison Counties, south-central Colorado. Geologic mapping of both districts has shown that their structural history and geologic relationships have a bearing on the distribution and origin of their uranium deposits. In both districts, the principal uranium deposits are situated at the intersection of major faults with Tertiary erosion surfaces. These surfaces were buried by early Tertiary siliceous tuffs-- a likely source of the uranium. That uranium deposits are related to such unconformities in various parts of the world has been suggested by many other authors. The purpose of this study is to understand the geology of the two districts and to define a genetic model for uranium deposits that may be useful in the discovery and evaluation of uranium deposits in these and other similar geologic settings. The Cochetopa and Marshall Pass uranium districts produced nearly 1,200 metric tons of uranium oxide from 1956 to 1963. Several workings at the Los Ochos mine in the Cochetopa district, and the Pitch mine in the Marshall Pass district, accounted for about 97 percent of this production, but numerous other occurrences of uranium are known in the two districts. As a result of exploration of the Pitch deposit in the 1970's, a large open-pit mining operation began in 1978. Proterozoic rocks in both districts comprise metavolcanic, metasedimentary, and igneous units. Granitic rocks, predominantly quartz monzonitic in composition, occupy large areas. In the northwestern part of the Cochetopa district, metavolcanic and related metasedimentary rocks are of low grade (lower amphibolite facies). In the Marshall Pass district, layered metamorphic rocks are predominantly metasedimentary and are of higher (sillimanite subfacies) grade than the Cochetopa rocks. Paleozoic sedimentary rocks in the Marshall Pass district range from Late Cambrian to Pennsylvanian in age and are 700 m thick. The Paleozoic rocks

  7. Yellow Canary uranium deposits, Daggett County, Utah

    USGS Publications Warehouse

    Wilmarth, Verl Richard

    1953-01-01

    The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.

  8. National Uranium Resource Evaluation: Shiprock Quadrangle, Arizona, New Mexico, Colorado, and Utah

    SciTech Connect

    Green, M.W.; Byers, V.P.; Condon, S.M.

    1982-09-01

    Formations and areas in the Shiprock 1/sup 0/x2/sup 0/ Quadrangle, New Mexico, Arizona, Colorado, and Utah, evaluated to be favorable for uranium deposits of 100 tons U/sub 3/O/sub 8/ at a minimum ore grade of 0.01% include, in decreasing order of relative favorability: (1) the Late Jurassic Salt Wash and Recapture Members of the Morrison Formation located along the western flank of the San Juan Basin; (2) the Late Triassic Shinarump Member of the Chinle Formation located in the northwest segment of the quadrangle in the vicinity of Monument Valley; (3) the Late Cretaceous Toreva Formation in the Black Mesa Basin; and (4) the Late Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation along the western flank of the San Juan Basin. Favorability of the above rock units is based on the presence of a significant number of recognition criteria in each of the formations, as well as the presence of known uranium deposits in all stratigraphic units, except in the Westwater Canyon and Brushy Basin Members which contain none. All of the favorable units are considered favorable for sandstone-type deposits (Class 240, Subclass 243 and 244). In all units, host rocks are fluvial and fluvial-lacustrine, contain associated fine-grained impermeable facies, are carbonaceous or exhibit evidence of the former presence of organic matter, and are composed, in large part, of feldspathic sandstone. The remainder of formations and areas in the quadrangle are considered unfavorable for uranium deposits of minimum grade and tonnage because they exhibit adverse geologic and geochemical characteristics and, in general, lack uranium occurrences and radioactive anomalies. These rocks include, in order of decreasing age: (1) Precambrian rocks; (2) all Paleozoic rock formations; (3) all Mesozoic rocks except those listed above as favorable; and (4) all rock formations of Cenozoic age.

  9. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  10. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  11. Uranium occurrences at the Moonlight Mine and Granite Point claims, Humboldt County, Nevada

    USGS Publications Warehouse

    Taylor, Allen O.; Powers, James Farl

    1955-01-01

    The Moonlight mine and Granite Foint claims are on the western flank of the Double H Mountains between the Kings River and Quinn, River valleys in northern Humboldt County, Nev. Uranium minerals at the Moonlight mine occur in a vein in intensely altered Tertiary volcanic rocks. The knovm uranium mineralization is spotty and erratic, but ore-grade material is present in the vein. Samples of the vein taken along its outcrop and in the mine shaft contain from less than 0.02 percent to 0.40 percent U308. The uranium minerals change from autunite at the surface to torbernite, 'gummite(?)' and pitchblende below the 90-foot level of the shaft. The Granite Point claims are two miles north of the Moonlight mine at the base of a rhyolite cliff. Radioactivity traverses made along the base and slope of the rhyolite cliff indicate that a large part of the rhyolite is abnormally radioactive. Radioactivity ranges from 0.013 to 0.3 mr/hr and averaged 0.10 mr/hr. in the vicinity of the claims. A sample taken at the base of the rhyolite cliff, at the point of highest radioactivity c6ntains 0.02 percent U3O8.

  12. Interim report on an appraisal of the uranium possibilities of Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; White, Max G.; Moxham, Robert M.

    1952-01-01

    Summaries of the geology and mineral deposits, and appraisals of the uranium possibilities of the various regions of Alaska are presented in this report. A short statement on previous knowledge and investigation of radioactive materials in the Territory is also given. The review of data and appraisal for the Seward Peninsula-Jobuk, Lower Yukon-Kuskokwim, Upper Yukon, Alaska Railroad-Iliamna, and southeastern Alaska regions are essentially complete. Those of the Copper River, Gulf of Alaska, Aleutian and northern Alaska regions are not yet complete. A more detailed presentation of these latter regions will be made in the final report. The appraisals are based on known occurrences of radioactive materials and geologic criteria that suggest the presence of uranium. Review of published and unpublished data to date shows that the Seward Peninsula-Kobuk region and southeastern Alaska followed by the Alaska Railroad, Gulf of Alaska and Lower Yukon-Kuskokwim regions are perhaps the more promising regions of the Territory for the occurrence of high-grade uranium ores.

  13. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    USGS Publications Warehouse

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; Van Riper, Charles; Wolff, S.W.

    2014-01-01

    are the locally endemic Tusayan flameflower Phemeranthus validulus, the long-legged bat Myotis volans, and the Arizona bat Myotis occultus. The most common vertebrate species identified at the mine site included the Mexican spadefoot toad Spea multiplicata, plateau fence lizard Sceloporus tristichus, violetgreen swallow Tachycineta thalassina, pygmy nuthatch Sitta pygmaea, purple martin Progne subis, western bluebird Sialia mexicana, deermouse Peromyscus maniculatus, valley pocket gopher Thomomys bottae, cliff chipmunk Tamias dorsalis, black-tailed jackrabbit Lepus californicus, mule deer Odocoileus hemionus, and elk Cervus canadensis. A limited number of the most common species were collected for contaminant analysis to establish baseline contaminant and radiological concentrations prior to ore extraction. These empirical baseline data will help validate contaminant exposure pathways and potential threats from contaminant exposures to ecological receptors. Resource managers will also be able to use these data to determine the extent to which local species are exposed to chemical and radiation contamination once the mine is operational and producing ore. More broadly, these data could inform resource management decisions on mitigating chemical and radiation exposure of biota at high-grade uranium breccia pipes throughout the Grand Canyon watershed.

  14. The future of Yellowcake: a global assessment of uranium resources and mining.

    PubMed

    Mudd, Gavin M

    2014-02-15

    Uranium (U) mining remains controversial in many parts of the world, especially in a post-Fukushima context, and often in areas with significant U resources. Although nuclear proponents point to the relatively low carbon intensity of nuclear power compared to fossil fuels, opponents argue that this will be eroded in the future as ore grades decline and energy and greenhouse gas emissions (GGEs) intensity increases as a result. Invariably both sides fail to make use of the increasingly available data reported by some U mines through sustainability reporting - allowing a comprehensive assessment of recent trends in the energy and GGE intensity of U production, as well as combining this with reported mineral resources to allow more comprehensive modelling of future energy and GGEs intensity. In this study, detailed data sets are compiled on reported U resources by deposit type, as well as mine production, energy and GGE intensity. Some important aspects included are the relationship between ore grade, deposit type and recovery, which are crucial in future projections of U mining. Overall, the paper demonstrates that there are extensive U resources known to meet potential short to medium term demand, although the future of U mining remains uncertain due to the doubt about the future of nuclear power as well as a range of complex social, environmental, economic and some site-specific technical issues.

  15. Deposit model for volcanogenic uranium deposits

    USGS Publications Warehouse

    Breit, George N.; Hall, Susan M.

    2011-01-01

    The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.

  16. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  17. The uranium-bearing nickel-cobalt-native silver deposits in the Black Hawk district, Grant County, New Mexico

    USGS Publications Warehouse

    Gillerman, Elliot; Whitebread, Donald H.

    1953-01-01

    The Black Hawk (Bullard Peak) district, Grant County, N. Mex., is 21 miles by road west of Silver City. From 1881 to 1893 more than $1,000,000.00 of high-grade silver ore is reported to have been shipped from the district. Since 1893 there has been no mining in the district except during a short period in 1917 when the Black Hawk mine was rehabilitated. Pre-Cambrian quartz diorite gneiss, which contains inclusions of quartzite, schist, monzonite, and quartz monzonite, is the most widespread rock in the district. The quartz diorite gneiss is intruded by many pre-Cambrian and younger rocks, including diorite granite, diabase, monzonite porphyry and andesite and is overlain by the Upper Cretaceous Beartooth quartzite. The monzonite porphyry, probably of late Cretaceous or early Tertiary age, forms a small stock along the northwestern edge of the district and numerous dikes and irregular masses throughout the district. The ore deposits are in fissure veins that contain silver, cobalt, and uranium. The ore minerals, which include native silver, niccolite, millerite, skutterudite, nickel skutterudite, bismuthinite, pitchblende, and sphalerite, are in a carbonate gangue in narrow, persistent veins, most of which trend northeasterly. Pitchblende has been identified in the Black Hawk and the Alhabra deposits and unidentified radioactive minerals were found at five other localities. The deposits that contain the radioactive minerals constitude a belt 600 to 1,500 feet wide that trends about N. 45° E., and is approximately parallel to the southeastern boundary of the monzonite porphyry stock. All the major ore deposits are in the quartz diorite gneiss in close proximity to the monzonite porphyry. The ore deposits are similar to the deposits at Great Bear Lake, Canada, and Joachimstahl, Czechoslovakia.

  18. Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites

    EPA Science Inventory

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...

  19. Intense alpha-particle emitting crystallites in uranium mill wastes

    USGS Publications Warehouse

    Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.

    1994-01-01

    Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.

  20. Distribution of trace elements in drilling chip samples around a roll-type uranium deposit, San Juan Basin, New Mexico

    USGS Publications Warehouse

    Day, H.C.; Spirakis, C.S.; Zech, R.S.; Kirk, A.R.

    1983-01-01

    Chip samples from rotary drilling in the vicinity of a roll-type uranium deposit in the southwestern San Juan Basin were split into a whole-washed fraction, a clay fraction, and a heavy mineral concentrate fraction. Analyses of these fractions determined that cutting samples could be used to identify geochemical halos associated with this ore deposit. In addition to showing a distribution of selenium, uranium, vanadium, and molybdenum similar to that described by Harshman (1974) in uranium roll-type deposits in Wyoming, South Dakota, and Texas, the chemical data indicate a previously unrecognized zinc anomaly in the clay fraction downdip of the uranium ore.

  1. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    SciTech Connect

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  2. Fungi outcompete bacteria under increased uranium concentration in culture media.

    PubMed

    Mumtaz, Saqib; Streten-Joyce, Claire; Parry, David L; McGuinness, Keith A; Lu, Ping; Gibb, Karen S

    2013-06-01

    As a key part of water management at the Ranger Uranium Mine (Northern Territory, Australia), stockpile (ore and waste) runoff water was applied to natural woodland on the mine lease in accordance with regulatory requirements. Consequently, the soil in these Land Application Areas (LAAs) presents a range of uranium concentrations. Soil samples were collected from LAAs with different concentrations of uranium and extracts were plated onto LB media containing no (0 ppm), low (3 ppm), medium (250 ppm), high (600 ppm) and very high (1500 ppm) uranium concentrations. These concentrations were similar to the range of measured uranium concentrations in the LAAs soils. Bacteria grew on all plates except for the very high uranium concentrations, where only fungi were recovered. Identifications based on bacterial 16S rRNA sequence analysis showed that the dominant cultivable bacteria belonged to the genus Bacillus. Members of the genera Paenibacillus, Lysinibacillus, Klebsiella, Microbacterium and Chryseobacterium were also isolated from the LAAs soil samples. Fungi were identified by sequence analysis of the intergenic spacer region, and members of the genera Aspergillus, Cryptococcus, Penicillium and Curvularia were dominant on plates with very high uranium concentrations. Members of the Paecilomyces and Alternaria were also present but in lower numbers. These findings indicate that fungi can tolerate very high concentrations of uranium and are more resistant than bacteria. Bacteria and fungi isolated at the Ranger LAAs from soils with high concentrations of uranium may have uranium binding capability and hence the potential for uranium bioremediation.

  3. Mining and beneficiation of lunar ores

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.

    1979-01-01

    The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.

  4. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  5. JACKETING URANIUM

    DOEpatents

    Saller, H.A.; Keeler, J.R.

    1959-07-14

    The bonding to uranium of sheathing of iron or cobalt, or nickel, or alloys thereof is described. The bonding is accomplished by electro-depositing both surfaces to be joined with a coating of silver and amalgamating or alloying the silver layer with mercury or indium. Then the silver alloy is homogenized by exerting pressure on an assembly of the uranium core and the metal jacket, reducing the area of assembly and heating the assembly to homogenize by diffusion.

  6. China's emergence as the world's leading iron-ore-consuming country

    USGS Publications Warehouse

    Kirk, W.S.

    2004-01-01

    China has become the leading iron ore consuming nation, and, based on recent steel production capacity increases and plans for more, its consumption will almost certainly to continue to grow. China's iron ore industry, however, faces a number of problems. China's iron ore is low-grade, expensive to process, and its mines are being depleted. For many Chinese steelmakers, particularly in the coastal regions, the delivered cost of domestic iron ore, is more than the delivered cost of foreign ore. Thus China's iron ore imports are expected to increase. As China's growth continues, it will almost certainly surpass Japan to become the leading iron ore importing country as well. Without China's increasing appetite for iron ore, the world iron ore market would be flat or declining. China's recent imports largely offset the slump in demand in North America and Europe. China is regarded by the iron ore industry as the growth sector for the next decade. Although Chinese imports are expected to continue their rapid increase and imports in other Asian countries are expected to continue growing, there appears to be enough greenfield and expansion projects to meet future demand for iron ore worldwide. Present suppliers of iron ore, Australia, Brazil, India, and South Africa, will probably be the chief beneficiaries of China's increasing consumption of iron ore. How long China can continue its extraordinary growth is the primary issue for the future of the iron ore industry. Based on the number and size of planned blast furnaces it appears that China's growth could continue for several more years. ?? 2004 Taylor and Francis.

  7. The History of Uranium Mining and the Navajo People

    PubMed Central

    Brugge, Doug; Goble, Rob

    2002-01-01

    From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act. PMID:12197966

  8. Morphological Comparison of U3O8 Ore Concentrates from Canada Key Lake and Namibia Sources

    SciTech Connect

    Schwartz, Daniel S.; Tandon, Lav; Martinez, Patrick Thomas

    2016-03-11

    Uranium ore concentrates from two different sources were examined using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The ore powders are referred to as Namibia (id. no. 90036, LIMS id. no. 18775) and Canada Key Lake (id. no. 90019, LIMS id. no. 18774). Earlier work identified the ores as the U₃O₈ phase of uranium oxide using x-ray diffraction. Both sets of powders were in the form of dark brown to black powder fines. However, the Canada Key Lake concentrates contained larger chunks of material on the millimeter scale that were easily visible to the unaided eye. The powders were mounted for SEM examination by hand dispersing a small amount onto conductive sticky tape. Two types of applicators were used and compared: a fine-tipped spatula and a foam-tipped applicator. The sticky tape was on a standard SEM “tee” mount, which was tapped to remove loose contamination before being inserted into the SEM.

  9. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  10. Uranium bombs

    NASA Astrophysics Data System (ADS)

    DeGroot, Gerard

    2009-11-01

    Enrico Fermi was a brilliant physicist, but he did occasionally get things wrong. In 1934 he famously bombarded a sample of uranium with neutrons. The result was astounding: the experiment had, Fermi concluded, produced element 93, later called neptunium. The German physicist Ida Noddack, however, came to an even more spectacular conclusion, namely that Fermi had split the uranium nucleus to produce lighter elements. Noddack's friend Otto Hahn judged that idea preposterous and advised her to keep quiet, since ridicule could ruin a female physicist. She ignored that advice, and was, indeed, scorned.

  11. TRACE ELEMENT ANALYSES OF URANIUM MATERIALS

    SciTech Connect

    Beals, D; Charles Shick, C

    2008-06-09

    The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.

  12. In situ exploitation of deep set porphyry ores

    SciTech Connect

    Hard, R.A.; Harvey, W.W.; Lingane, P.J.; Park, W.C.; Redman, M.J.

    1981-09-29

    Disclosed is a method of economically exploiting deep set porphyry ore bodies of the type containing metal values such as sulfidic copper, nickel, or uranium minerals and minerals capable of absorbing copper, uranium, and nickel ions. The method involves establishing communication with the ore body through access and recovery wells and passing fluids sequentially therethrough. If necessary, thief zones of as low as 25 to 50 md in igneous rock of 1 to 5 md are prevented from distorting flow, by the injection of a polymeric solution of macromolecules with molecular weights of the order of 5 million along the entire wellbore, the higher permeability zones initially accepting the majority of the flow and being impaired at a much faster rate than the less permeable zones. In a first stage, the permeability of the leaching interval is stimulated as an ammoniated solution of sodium, potassium, or ammonium nitrate or chloride contacts calcium containing minerals to promote ion exchange, resulting in clay contraction or calcium carbonate dissolution. In a second stage, the leaching interval is primed as calcium ion is displaced with an aqueous solution of ammonium salt, a calcium sulfate scale inhibitor, and oxygen gas. In a third stage, a two-phase lixiviant comprising entrained oxygen containing bubbles and an ammoniacal leach liquor having a pH less than 10.5 and less than 1.0 mole/liter ammonia is passed through the leaching interval to solubilize copper, nickel, uranium, and other metal values.

  13. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  14. Origin of marcasite and its implications regarding the genesis of roll-front uranium deposits

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.

    1979-01-01

    Study of five roll-type uranium deposits (three in Texas and two in Wyoming) has resulted in the recognition of ore-stage marcasite in each deposit. Ore-stage marcasite is identified by its close association with uranium- and vanadium-bearing phases in the ore zones; by its close association with ferroselite at and near the redox boundary in some deposits; by its abundance and distribution across deposits; and by its textural relationships with identifiable pre-ore iron disulfide minerals (primarily pyrite). In deposits that are essentially devoid of fossil vegetal debris, marcasite is the dominant ore-stage sulfide and occurs in a large volume of rock beyond the ore zones. In deposits that contain organic matter, ore-stage pyrite is at least as abundant as ore-stage marcasite. Many factors and processes may lead to the formation of either marcasite or pyrite as an ore-stage mineral in roll-type deposits. One of the dominant factors is the complex interrelationship of pH and sulfur species that are precursors of iron-disulfide minerals. Experimental work and study of geochemical environments analogous to those governing the formation of roll-type deposits indicate that relatively low pH (less than about six) and the presence of elemental sulfur favor marcasite, whereas higher pH and the presence of polysulfide ions favor pyrite. Conditions that favor marcasite as the dominant ore-stage iron disulfide are likely to arise during uranium deposition in host rock without fossil vegetal matter. In host rock containing carbonaceous debris, the presence of polysulfide ions and pH buffering any anaerobic bacterial metabolic processes apparently lead to the formation of ore-stage pyrite.

  15. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  16. Uranium, natural

    Integrated Risk Information System (IRIS)

    Uranium , natural ; CASRN 7440 - 61 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  17. Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.

    2015-12-01

    In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within

  18. Measurements of /sup 234/U, /sup 238/U and /sup 230/Th in excreta of uranium-mill crushermen

    SciTech Connect

    Fisher, D.R.; Jackson, P.O.; Brodacynski, G.G.; Scherpelz, R.I.

    1982-07-01

    Uranium and thorium levels in excreta of uranium mill crushermen who are routinely exposed to airborne uranium ore dust were measured. The purpose was to determine whether /sup 230/Th was preferentially retained over either /sup 234/U or /sup 238/U in the body. Urine and fecal samples were obtained from fourteen active crushermen with long histories of exposure to uranium ore dust, plus four retired crushermen and three control individuals for comparison. Radiochemical procedures were used to separate out the uranium and thorium fractions, which were then electroplated on stainless steel discs and assayed by alpha spectrometry. Significantly greater activity levels of /sup 234/U and /sup 238/U were measured in both urine and fecal samples obtained from uranium mill crushermen, indicating that uranium in the inhaled ore dust was cleared from the body with a shorter biological half-time than the daughter product /sup 230/Th. The measurements also indicated that uranium and thorium separate in vivo and have distinctly different metabolic pathways and transfer rates in the body. The appropriateness of current ICRP retention and clearance parameters for /sup 230/Th in ore dust is questioned.

  19. Comparison of the chemical characteristics of the uranium deposits of the Morrison Formation in the Grants uranium region, New Mexico

    USGS Publications Warehouse

    Spirakis, C.S.; Pierson, C.T.

    1983-01-01

    Statistical treatment of the chemical data of samples from the northeast Church Rock area, Ruby deposit, Mariano Lake deposit, and the Ambrosia Lake district indicates that primary ore-forming processes concentrated copper, iron, magnesium, manganese, molybdenum, selenium, vanadium, yttrium, arsenic, organic carbon, and sulfur, along with uranium. A barium halo that is associated with all of these deposits formed from secondary processes. Calcium and strontium were also enriched in the ores by secondary processes. Comparison of the chemical characteristics of the redistributed deposits in the Church Rock district to the primary deposits in the Grants uranium region indicates that calcium, manganese, strontium, yttrium, copper, iron, magnesium, molybdenum, lead, selenium, and vanadium are separated from uranium during redistribution of the deposits in the Church Rock area. Comparisons of the chemical characteristics of the Church Rock deposits and the secondary deposits at Ambrosia Lake suggest some differences in the processes that were involved in the genesis of the redistributed deposits in these two areas.

  20. Uranium industry annual 1996

    SciTech Connect

    1997-04-01

    The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

  1. Can I Trust ORE Reports?

    ERIC Educational Resources Information Center

    Feedback, 1984

    1984-01-01

    This issue of FEEDBACK, a newsletter produced by the the Austin Independent School District Office of Research and Evaluation (ORE), illustrates the accuracy, validity, and fairness of ORE reports. The independence of the reports is explained. Internal and external quality controls are used to ensure reliability and accuracy of the reports.…

  2. Development of Novel Sorbents for Uranium Extraction from Seawater

    SciTech Connect

    Lin, Wenbin; Taylor-Pashow, Kathryn

    2014-01-08

    As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recent research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be

  3. Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas

    SciTech Connect

    Davidson, J.R.

    1998-02-01

    Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between {sup 226}Ra and {sup 238}U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail.

  4. Apache Trail uranium prospect, White Signal district, Grant County, New Mexico

    USGS Publications Warehouse

    Bauer, Herman L.

    1951-01-01

    The Apache Trail uranium prospect in the White Signal district, Grant County. N. Mex., was mapped by the Geological Survey in May 1950. Pre-Cambrian granite is cut by a diabase dike and a parallel quartz-hematite vein, both of which strike easterly and dip 60 to 65 degrees north. Small quantities of copper carbonates and bismuth-gold ore have been mined. The quartz-hematite vein is moderately radioactive and, although no uranium minerals were seen, two samples contained about 0.01 percent uranium. The diabase dike locally contains torbernite. Two samples of diabase contained about 0.04 percent uranium.

  5. Evaluation of in vitro dissolution rates of throum in uranium mill tailings

    SciTech Connect

    Reif, R.G.

    1996-06-01

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employed different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for {sup 230}Th was calculated for the UMTRAP Site that was associated with a multiple component dissolution curve.

  6. Evaluation of in vitro dissolution rates of thorium in uranium mill tailings.

    PubMed

    Reif, R H

    1994-11-01

    Dissolution rates of thorium from the uranium mill tailings piles at two Department of Energy Uranium Mill Tailings Remedial Action Project (UMTRAP) sites have been evaluated. The thorium dissolution rates were evaluated in vitro using simulated lung fluid. The former uranium mills at the UMTRAP sites employed different chemical processes (acid leach and alkaline pressure leach) to extract the uranium from the ore, and the thorium dissolution rates at these sites were found to be markedly different. A site specific annual limit on intake (ALI) value for 230Th was calculated for the UMTRAP site that was associated with a multiple component dissolution curve.

  7. High-resolution gamma-ray spectrometry in uranium exploration

    USGS Publications Warehouse

    Moxham, Robert M.; Tanner, Allan B.

    1977-01-01

    Sedimentary-type uranium deposits accumulate at favorable sites along a migration path which may be kilometers in length. Their source is a large volume of rock from which the uranium has been leached. The geochemical mobilities and half lives of uranium and its daughter products vary widely so that they are transported from the source rocks, at different rates, along the migration path to their ultimate site. The radioactive disequilibrium resulting from this process has been well documented in the immediate vicinity of ore deposits, and disequilibrium is commonly recorded on gamma-ray logs up the hydraulic gradient from uranium ore. Little is known about the state of secular equilibrium in the leached host rocks, which often represent the only part of the migration path that is at or near the surface and is thus most accessible to the exploration geophysicist. High-resolution gamma-ray spectrometry provides a means of investigating the disequilibrium associated with uranium leaching and migration. Direct measurement of uranium can be made by this method, and the equivalent weight percents can be determined for six of the seven daughter-product decay groups that characterize the state of radioactive equilibrium. The technique has been used quantitatively in laboratory studies, where the results compare favorably with radiochemical analyses; field experiments suggest that semi-quantitative data may be obtained at the outcrop.

  8. Derived enriched uranium market

    SciTech Connect

    Rutkowski, E.

    1996-12-01

    The potential impact on the uranium market of highly enriched uranium from nuclear weapons dismantling in the Russian Federation and the USA is analyzed. Uranium supply, conversion, and enrichment factors are outlined for each country; inventories are also listed. The enrichment component and conversion components are expected to cause little disruption to uranium markets. The uranium component of Russian derived enriched uranium hexafluoride is unresolved; US legislation places constraints on its introduction into the US market.

  9. National uranium resource evaluation. Geology and recognition criteria for sandstone uranium deposits of the salt wash type, Colorado Plateau Province. Final report

    SciTech Connect

    Thamm, J.K.; Kovschak, A.A. Jr.; Adams, S.S.

    1981-01-01

    The uranium-vanadium deposits of the Salt Wash Member of the Morrison Formation in the Colorado Plateau are similar to sandstone uranium deposits elsewhere in the USA. The differences between Salt Wash deposits and other sandstone uranium deposits are also significant. The Salt Wash deposits are unique among sandstone deposits in that they are dominantly vanadium deposits with accessory uranium. The Salt Wash ores generally occur entirely within reduced sandstone, without adjacent tongues of oxidized sandstone. They are more like the deposits of Grants, which similarly occur in reduced sandstones. Recent studies of the Grants deposits have identified alteration assemblages which are asymmetrically distributed about the deposits and provide a basis for a genetic model for those deposits. The alteration types recognized by Shawe in the Slick Rock district may provide similar constraints on ore formation when expanded to broader areas and more complete chemical analyses.

  10. Ecotechnological approach for consolidation of uranium tailings.

    PubMed

    Soni, Prafulla; Singh, Lal

    2011-07-01

    Present study has been undertaken to consolidate radioactivity in uranium mill tailings at Jaduguda, Jharkhand, India.Tailings that remain after processing of ore are released in tailing ponds specially designed for the purpose. The degraded tailing ponds have been capped with 30 cm. thick soil cover. For cosolidation of radioactivity in the tailings firstly the selected plant species should not have any socioeconomic relevance in that area and secondly, uptake of uranium by selected plants has to be low to avoid its dissemination in any form in environment. Seven native plant species of forestry origin were used for experimental trials. Above ground growth has been measured for two years under ex- situ and in- situ conditions. Distribution and concentration of uranium have been evaluated in tailing pond soil as well as tailings. Uranium uptake by plants has been evaluated and discussed in this paper. The highest concentration of uranium has been found in the order as: in tailings > soil cover on tailings > roots of selected plant species > shoots of all the selected species. These results show that among seven species tried Jatropha gossypifolia and Furcraea foetida have lowest uptake (below detectable limit), while Saccharum spontaneum and Pogostemon benghalense have comparatively higher uptake among the studied species.

  11. Formation conditions of paleovalley uranium deposits hosted in upper Eocene-lower Oligocene rocks of Bulgaria

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Strelkova, E. A.

    2016-03-01

    The uranium deposits of Bulgaria related to the Late Alpine tectonomagmatic reactivation are subdivided into two groups: exogenic-epigenetic paleovalley deposits related to the basins filled with upper Eocene-lower Oligocene volcanic-sedimentary rocks and the hydrothermal deposits hosted in the coeval depressions. The geological and lithofacies conditions of their localization, the epigenetic alteration of rocks, mineralogy and geochemistry of uranium ore are exemplified in thoroughly studied paleovalley deposits of the Maritsa ore district. Argumentation of the genetic concepts providing insights into both sedimentation-diagenetic and exogenic-epigenetic mineralization with development of stratal oxidation zones is discussed. A new exfiltration model has been proposed to explain the origin of the aforementioned deposits on the basis of additional analysis with consideration of archival factual data and possible causes of specific ningyoite uranium ore composition.

  12. Uranium Industry Annual, 1992

    SciTech Connect

    Not Available

    1993-10-28

    The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

  13. Uranium recovery from wet process phosphoric acid

    SciTech Connect

    Carrington, O.F.; Pyrih, R.Z.; Rickard, R.S.

    1981-03-24

    Improvement in the process for recovering uranium from wetprocess phosphoric acid solution derived from the acidulation of uraniferous phosphate ores by the use of two ion exchange liquidliquid solvent extraction circuits in which in the first circuit (A) the uranium is reduced to the uranous form; (B) the uranous uranium is recovered by liquid-liquid solvent extraction using a mixture of mono- and di-(Alkyl-phenyl) esters of orthophosphoric acid as the ion exchange agent; and (C) the uranium oxidatively stripped from the agent with phosphoric acid containing an oxidizing agent to convert uranous to uranyl ions, and in the second circuit (D) recovering the uranyl uranium from the strip solution by liquid-liquid solvent extraction using di(2ethylhexyl)phosphoric acid in the presence of trioctylphosphine oxide as a synergist; (E) scrubbing the uranium loaded agent with water; (F) stripping the loaded agent with ammonium carbonate, and (G) calcining the formed ammonium uranyl carbonate to uranium oxide, the improvement comprising: (1) removing the organics from the raffinate of step (B) before recycling the raffinate to the wet-process plant, and returning the recovered organics to the circuit to substantially maintain the required balance between the mono and disubstituted esters; (2) using hydogren peroxide as the oxidizing agent in step (C); (3) using an alkali metal carbonate as the stripping agent in step (F) following by acidification of the strip solution with sulfuric acid; (4) using some of the acidified strip solution as the scrubbing agent in step (E) to remove phosphorus and other impurities; and (5) regenerating the alkali metal loaded agent from step (F) before recycling it to the second circuit.

  14. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  15. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  16. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.

    PubMed

    Adeleke, Rasheed; Cloete, T E; Khasa, D P

    2012-03-01

    With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to "purify" the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.

  17. Dissolution rates of uranium compounds in simulated lung fluid.

    PubMed

    Kalkwarf, D R

    1983-06-01

    Maximum dissolution rates of uranium into simulated lung fluid were measured at 37 degrees C to estimate clearance rates from the deep lung. The materials tested included: ore and yellowcake, an airborne sample from an industrial site, and purified samples of (NH4)2U2O7, U3O8, UO2 and UF4. A batch procedure was developed to test samples containing as little as 10 micrograms of natural uranium. Values of dissolution halftimes varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the #UO2(CO3)3 ]4-ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellowcake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.

  18. Uranium resources in the Silver Reef (Harrisburg) district, Washington County, Utah

    USGS Publications Warehouse

    Stugard, Frederick

    1951-01-01

    The Silver Reef district is near Leeds, about 16 miles north of St. George, Utah. The major structural feature of the district is the Virgin anticline, a fold extending southwestward toward St. George. The anticline has been breached by erosion, and sandstone hogbacks or 'reefs' are carved from the Shinarump conglomerate mud sandstone members of the Chinle formation, both of Triassic age. Thirteen occurrences of uranium-vanadium minerals, all within the Tecumseh sandstone, which is the upper part of the Silver Reef sandstone member of the Chinle formation, have been examined over an area about 1.75 miles wide and 3 miles long. Two shipments of uranium-vanadium ore have been produced from the Chloride Chief and Silver Point claims. Samples from the deposits contain as much as 0.94 percent U3O8. The ore contains several times as much vanadium oxide as uranium, some copper, and traces of silver. It occurs in thinly bedded cross-bedded shales and sandstones within the fluviatile Tecumseh sandstone member of the Chinle formation. The ore beds are lenticular and are localized 2 near the base, center, and top of this sandstone member. The uranium-vanadium ore contains several yellow and green minerals not yet identified; the occurrences are similar to, but not associated with, the cerargyrite ore that made the district famous from 1879 to 1909.

  19. Determination of beryllium in ores and rocks by a dilution-fluorometric method with morin

    USGS Publications Warehouse

    May, R.; Grimaldi, F.S.

    1961-01-01

    Beryllium in concentrations as little as a few parts per million is determined fluorometrically with morin in low grade ores by a dilution method without separations. A high sensitivity is obtained by the adoption of instrumental and reaction conditions that give a satisfactory ratio of beryllium to blank fluorescence and at the same time minimize iron interference. Data on the behavior of 47 ions are given. The method is applied to ores containing bertrandite and beryl as the beryllium minerals.

  20. PRODUCTION OF URANIUM TETRACHLORIDE

    DOEpatents

    Calkins, V.P.

    1958-12-16

    A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.

  1. PRODUCTION OF URANIUM MONOCARBIDE

    DOEpatents

    Powers, R.M.

    1962-07-24

    A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

  2. Uranium redox transition pathways in acetate-amended sediments

    USGS Publications Warehouse

    Bargar, John R.; Williams, Kenneth H.; Campbell, Kate M.; Long, Philip E.; Stubbs, Joanne E.; Suvorova, Elenal I.; Lezama-Pacheco, Juan S.; Alessi, Daniel S.; Stylo, Malgorzata; Webb, Samuel M.; Davis, James A.; Giammar, Daniel E.; Blue, Lisa Y.; Bernier-Latmani, Rizlan

    2013-01-01

    Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.

  3. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  4. DECONTAMINATION OF URANIUM

    DOEpatents

    Feder, H.M.; Chellew, N.R.

    1958-02-01

    This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.

  5. Quantitative radiochemical method for determination of major sources of natural radioactivity in ores and minerals

    USGS Publications Warehouse

    Rosholt, J.N.

    1954-01-01

    When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.

  6. The geological parameters affecting in-situ leaching of uranium deposits

    USGS Publications Warehouse

    Brooks, Robert A.

    1979-01-01

    This report contains material presented at the Uranium Leach Conference, which was held in Vail, Colo., August 25-27, 1976. The purpose of the presentation was to summarize some important geological concepts to a largely nongeological audience involved in the in situ extraction of uranium from buried uranium ore deposits. The major geological feature affecting the leaching of sandstone-type deposits is permeability. Important permeability variations may be caused by sedimentary structures, texture, structure, composition, and lithology. The effects of these features on leaching uranium are discussed. The major uranium districts of the U.S. and the various factors that would affect permeability and, consequently, uranium extraction in these districts are also discussed.

  7. Remote sensing and uranium exploration at Lisbon Valley, Utah

    NASA Technical Reports Server (NTRS)

    Conel, J. E.; Niesen, P. L.

    1981-01-01

    As part of the joint NASA-Geosat uranium test case program, aircraft-acquired multispectral scanner data are used to investigate the distribution of bleaching in Windgate sandstone exposed in Lisbon Valley anticline, Utah. It is noted that all of the large ore bodies contained in lower Chinle Triassic age or Cutler Permian age strata in this area lie beneath or closely adjacent to such bleached outcrops. The geographic coincidences reported here are seen as inviting renewed interest in speculation of a causal relation between occurrences of Mississippian-Pennsylvanian oil and gas in this area and of Triassic uranium accumulation and rock bleaching.

  8. URANIUM DECONTAMINATION

    DOEpatents

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  9. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    USGS Publications Warehouse

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related

  10. Urinary excretion of uranium in adult inhabitants of the Czech Republic.

    PubMed

    Malátová, Irena; Bečková, Věra; Kotík, Lukáš

    2016-02-01

    The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA.

  11. Uranium industry annual 1998

    SciTech Connect

    1999-04-22

    The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

  12. Uranium industry annual 1994

    SciTech Connect

    1995-07-05

    The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

  13. Geochemical hosts of solubilized radionuclides in uranium mill tailings

    USGS Publications Warehouse

    Landa, E.R.; Bush, C.A.

    1990-01-01

    The solubilization and subsequent resorption of radionuclides by ore components or by reaction products during the milling of uranium ores may have both economic and environmental consequences. Particle-size redistribution of radium during milling has been demonstrated by previous investigators; however, the identification of sorbing components in the tailings has received little experimental attention. In this study, uranium-bearing sandstone ore was milled, on a laboratory scale, with sulfuric acid. At regular intervals, filtrate from this suspension was placed in contact with mixtures of quartz sand and various potential sorbents which occur as gangue in uranium ores; the potential sorbents included clay minerals, iron and aluminum oxides, feldspar, fluorspar, barite, jarosite, coal, and volcanic glass. After equilibration, the quartz sand-sorbent mixtures were separated from the filtrate and radioassayed by gamma-spectrometry to determine the quantities of 238U, 230Th, 226Ra, and 210Pb sorbed, and the radon emanation coefficients. Sorption of 238U was low in all cases, with maximal sorptions of 1-2% by the bentonite- and coal-bearing samples. 230Th sorption also was generally less than 1%; maximal sorption here was observed in the fluorspar-bearing sample and appears to be associated with the formation of gypsum during milling. 226Ra and 210 Pb generally showed higher sorption than the other nuclides - more than 60% of the 26Ra solubilized from the ore was sorbed on the barite-bearing sample. The mechanism (s) for this sorption by a wide variety of substrates is not yet understood. Radon emanation coefficients of the samples ranged from about 5 to 30%, with the coal-bearing samples clearly demonstrating an emanating power higher than any of the other materials. ?? 1990.

  14. Process for electroslag refining of uranium and uranium alloys

    DOEpatents

    Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.

    1975-07-22

    A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)

  15. Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction

    NASA Astrophysics Data System (ADS)

    Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin

    2016-10-01

    With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.

  16. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  17. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    SciTech Connect

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  18. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  19. PRODUCTION OF PURIFIED URANIUM

    DOEpatents

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  20. Induced Polarization Responses of the Specimen with Sulfide Ore Minerals

    NASA Astrophysics Data System (ADS)

    Park, S.; Sung, N. H.

    2012-04-01

    Basic data of the physical properties of the rocks is required to effectively interpret geologic structures and mineralized zones in study areas from the geophysical data in the field of subsurface investigations and mineral resources explorations. In this study, the spectral induced polarization (SIP) measurement system in the laboratory was constructed to obtain the IP characteristics of the specimen with sulfide ore minerals. The SIP measurement system consists of lab transmitter for electrical current transmission, and GDP-32 for current receiver. The SIP system employs 14 steps of frequencies from 0.123 to 1,024 Hz, and uses copper sulfate solution as an electrolyte. The SIP data for system verification was acquired using a measurement system of parallel circuit with fixed resistance and condenser. This measured data was in good agreement with Cole-Cole model data. First of all, the experiment on the SIP response was conducted in the laboratory with the mixture of glass beads and pyrite powders for ore grade assessment using characteristics of IP response of the rocks. The results show that the phase difference of IP response to the frequency is nearly proportional to the weight content of pyrite, and that the dominant frequency of the IP response varies with the size of the pyrite powder. Subsequently, the specimens used for SIP measurement are slate and limestone which were taken from drilling cores and outcrops of skarn ore deposits. All specimens are cylindrical in shape, with a diameter of 5 cm and a length of 10 cm. When measuring SIP of water-saturated specimens, the specimen surface is kept dry, tap water is put into the bottom of sample holder and a lid is closed. It is drawn that the SIP characteristics of the rocks show the phase difference depends on the amount of the sulfide minerals. The phase difference did not occur with frequencies applied in the absence of sulfide minerals in the rock specimens. On the contrary, the rock specimens containing

  1. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    SciTech Connect

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca in the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.

  2. A record of uranium-series transport at Nopal I, Sierra Pena Blanca, Mexico: Implications for natural uranium deposits and radioactive waste repositories

    DOE PAGES

    Denton, J. S.; Goldstein, S. J.; Paviet, P.; ...

    2016-04-10

    Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less

  3. O-ring gasket test fixture

    NASA Technical Reports Server (NTRS)

    Turner, James Eric (Inventor); Mccluney, Donald Scott (Inventor)

    1991-01-01

    An apparatus is presented for testing O-ring gaskets under a variety of temperature, pressure, and dynamic loading conditions. Specifically, this apparatus has the ability to simulate a dynamic loading condition where the sealing surface in contact with the O-ring moves both away from and axially along the face of the O-ring.

  4. Microbial biogeochemistry of uranium mill tailings

    USGS Publications Warehouse

    Landa, Edward R.

    2005-01-01

    Uranium mill tailings (UMT) are the crushed ore residues from the extraction of uranium (U) from ores. Among the radioactive wastes associated with the nuclear fuel cycle, UMT are unique in terms of their volume and their limited isolation from the surficial environment. For this latter reason, their management and long-term fate has many interfaces with environmental microbial communities and processes. The interactions of microorganisms with UMT have been shown to be diverse and with significant consequences for radionuclide mobility and bioremediation. These radionuclides are associated with the U-decay series. The addition of organic carbon and phosphate is required to initiate the reduction of the U present in the groundwater down gradient of the mills. Investigations on sediment and water from the U-contaminated aquifer, indicates that the addition of a carbon source stimulates the rate of U removal by microbial reduction. Moreover, most attention with respect to passive or engineered removal of U from groundwaters focuses on iron-reducing and sulfate-reducing bacteria.

  5. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  6. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  7. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  8. Uranium deposits at the Jomac mine, White Canyon area, San Juan County, Utah

    USGS Publications Warehouse

    Trites, A.F.; Hadd, G.A.

    1955-01-01

    azurite, and chalcanthite occur locally with the uranium minerals. Principal ore guides at the Jomac mine are channels, and scours at the bottom of these channels coal-bearing sandstone or conglomerate at the base of the Shinarump conglomerate, coal, and jarosite.

  9. Brazilian uranium mine decommissioning-chemical and radiological study of waste rock piles

    SciTech Connect

    Wiikmann, L. O.

    1996-12-31

    The Pocos de Caldas plateau is a high-natural-radioactivity area in the state of Minas Gerais, southeast Brazil. Uranium occurrence in the plateau was first observed in 1948. Mining started in 1977 with mine scouring, and the first ore pile was constructed in 1981. Waste rocks are derived from the mine material. The analysis of core samples is discussed.

  10. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  11. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  12. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  13. PGM in chromite ore of the Sopcheozero deposit, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Neradovsky, Yu. N.; Savchenko, E. E.

    2008-12-01

    The Sopcheozero chromite deposit is hosted in dunite of the Monchegorsk layered intrusion as a sheetlike body of disseminated ore with a chromite grade varying from 20 to 60%. The total PGM content in the ore attains 0.5-0.8 g/t. The composition of host rocks varies from plagioclase peridotite to dunite, but PGM were found only in chromite-bearing dunite. PGM inclusions were detected in the interstices of chromite and olivine grains and within grains themselves. The data obtained confirm the known tendency toward variation in PGM composition with increasing sulfur and light PGE contents in the residual magmatic melt. The first particles of refractory Ir, Os, and Ru intermetallides appeared at the final stage of olivine crystallization, whereas laurite (Ru,Os,Ir)S2 and pentlandite (Fe,Ni)9S8 were formed at the final stage of chromite crystallization, when the sulfur concentration in the residual melt became sufficient.

  14. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  15. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement.

  16. Importance of Organic Matter-Uranium Biogeochemistry to Uranium Plume Persistence in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Bargar, J.; Janot, N.; Jones, M. E.; Bone, S. E.; Lezama-Pacheco, J.; Fendorf, S. E.; Long, P. E.; Williams, K. H.; Bush, R. P.

    2014-12-01

    Recent evidence suggests that biologically driven redox reactions, fueled by sedimentary lenses enriched in detrital organic matter, play major roles in maintaining the persistent uranium groundwater plume in the subsurface at the U.S. Department of Enery's Rifle, CO field research site. Biogeochemical cycling of C, N, Fe, and S is highly active in these organic-rich naturally reduced zones (NRZs), and uranium is present as U(IV). The speciation of these elements profoundly influences the susceptibility of uranium to be reoxidized and remobiliized and contribute to plume persistence. However, uranim speciation in particular is poorly constrained in these sytems. To better evaluate the importance of NRZs to uranium mobility and plume persistence at the Rifle site, the DOE-BER-funded SLAC SFA team has characterized vertical concentration profiles and speciation of uranium, iron, sulfur, and NOM in well bores at high spatial resolution (4 inch intervals). Up to 95% of the sedimentary uranium pool was found to be concentrated in NRZs, where it occurs dominantly as non-crystalline forms of U(IV). Uranium accumulation and the presence of the short-lived sulfide mackinawite (FeS) at NRZ-aquifer interfaces indicate that NRZs actively exchange solutes with the surrounding aquifer. Moreover, sediment textures indicate that NRZs are likely to be abundant in riparian zones throughout the upper Colorado River basin (U.S.A.), which contains most of the contaminated DOE legacy uranium ore processing sites in the U.S. These results suggest that NRZ-uranium interactions may be important to plume persistence regionally and emphasize the importance of understanding molecular-scale processes.

  17. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  18. PRODUCTION OF URANIUM

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1958-04-15

    The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.

  19. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  20. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    SciTech Connect

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  1. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  2. 31 CFR 540.317 - Uranium feed; natural uranium feed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed....

  3. Welding of uranium and uranium alloys

    SciTech Connect

    Mara, G.L.; Murphy, J.L.

    1982-03-26

    The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

  4. Method for beneficiating coal ore

    SciTech Connect

    Irons, S.D.

    1983-03-15

    A new heavy liquid parting medium comprising an emulsion of water and a substantially water immiscible heavy parting liquid for use in beneficiating ores by gravity separations such as sink -float processes. The specific gravity of the emulsion parting medium can be adjusted by proportioning the relative amounts of water and the substantially water immiscible heavy liquid. Asmined coal is beneficiated using a water-trichlorofluoromethane emulsion as the parting medium in a sink-float separation process.

  5. Psychosocial and health impacts of uranium mining and milling on Navajo lands.

    PubMed

    Dawson, Susan E; Madsen, Gary E

    2011-11-01

    The uranium industry in the American Southwest has had profoundly negative impacts on American Indian communities. Navajo workers experienced significant health problems, including lung cancer and nonmalignant respiratory diseases, and psychosocial problems, such as depression and anxiety. There were four uranium processing mills and approximately 1,200 uranium mines on the Navajo Nation's over 27,000 square miles. In this paper, a chronology is presented of how uranium mining and milling impacted the lives of Navajo workers and their families. Local community leaders organized meetings across the reservation to inform workers and their families about the relationship between worker exposures and possible health problems. A reservation-wide effort resulted in activists working with political leaders and attorneys to write radiation compensation legislation, which was passed in 1990 as the Radiation Exposure Compensation Act (RECA) and included underground uranium miners, atomic downwinders, and nuclear test-site workers. Later efforts resulted in the inclusion of surface miners, ore truck haulers, and millworkers in the RECA Amendments of 2000. On the Navajo Nation, the Office of Navajo Uranium Workers was created to assist workers and their families to apply for RECA funds. Present issues concerning the Navajo and other uranium-impacted groups include those who worked in mining and milling after 1971 and are excluded from RECA. Perceptions about uranium health impacts have contributed recently to the Navajo people rejecting a resumption of uranium mining and milling on Navajo lands.

  6. Beneficiation of flotation tailing from Polish copper sulfide ores

    SciTech Connect

    Luszczkiewicz, A.; Sztaba, K.S.

    1995-12-31

    Flotation tailing of Polish copper sulfide ores represents more than 90% of the mass of run-of-mine ore. The tailing contains mainly quartz, dolomite, clay minerals, traces of sulfides, and some accessory minerals. Almost all minerals of the tailing are well liberated and, therefore, any further beneficiation process applied to the tailing is expected to be inexpensive. In this work, results of investigations on utilization of flotation tailing using classification and gravity concentration are presented. It is shown that due to classification of flotation tailing in hydrocyclones, the coarse fraction becomes suitable material for gravity separation providing backfill material for underground mines as well as heavy minerals, a source of valuable rare elements. It was also found that heavy minerals separated by gravity methods contain a significant amount of rare elements such as zirconium, titanium, silver, rare earth metals, and uranium. The light fraction of the gravity separation contains well deslimed quartz particles and meets strict requirements for hydraulic filling material used for structural support in underground mines. Evaluation of the cost of the proposed technology indicated that investment to implement the method would provide a return within 2--4 years.

  7. Uranium series disequilibrium in a young surficial uranium deposit, northeastern Washington, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Bush, C.A.; Rosholt, J.N.

    1986-01-01

    A recently discovered ore-grade accumulation of U in organic-rich sediments of late Quaternary age provides an opportunity for studying the early association of U, U-daughters, and organic matter in a natural setting. The U occurs in valley-fill sediments of peat, peaty clay, silt, and sand along the north fork of Flodelle Creek, Stevens County, Washington. Radiometric techniques (delayed neutron, high-resolution gamma-ray spectrometry, thin-source alpha spectrometry) were employed to determine the abundance and distribution of U-series nuclides, the extent of secular equilibrium within the U decay series, and the apparent U-series ages of U incorporation. Sixteen lithologically distinct intervals were sampled from a 292 cm core. Uranium contents range from 140 to 2790 ppm and are positively correlated with organic contents. Measured alpha activity ratios of 234U/238U (1.31-1.38) are very similar to those reported in coexisting waters, suggesting a rather constant isotopic composition of introduced U. Much lower Th contents of <10-40 ppm are controlled by the type and abundance of silicate detritus. The youth of the host sediments (<15 000 a) and the paucity of associated radioactivity suggested large excesses of U relative to radioactive daughters and such excesses were observed, particularly in the shallowest intervals. Apparent ages of U emplacement determined by the (alpha) activity ratio of 230Th daughter to 234U parent show a general increase with depth and fair agreement with estimated depositional ages. This observation suggests dominantly syndepositional or early post depositional emplacement of U followed by decay-generated buildup of 230Th daughter with time. However, interval by interval comparisons of the relative abundances of other daughters, particularly 226Ra and 210Pb, indicate variability caused by processes other than closed-system growth and decay, probably because chemically diverse daughters that are decay-generated in situ have differing

  8. Uranium hexafluoride public risk

    SciTech Connect

    Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

    1994-08-01

    The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

  9. Characterization of molybdenum interfacial crud in a uranium mill that employs tertiary-amine solvent extraction

    SciTech Connect

    Moyer, B.; McDowell, W.J.

    1983-01-01

    In the present work, samples of a molybdenum-caused green gummy interfacial crud from an operating western US uranium mill have been physically and chemically examined. Formaton of cruds of this description has been a long-standing problem in the use of tertiary amine solvent extraction for the recovery of uranium from low-grade ores (Amex Process). The crud is essentially an organic-continuous dispersion containing about 10 wt % aqueous droplets and about 37 wt % greenish-yellow crystalline solids suspended in kerosene-amine process solvent. The greenish-yellow crystals were found to be a previously unknown double salt of tertiary amine molybdophosphate with three tertiary amine chlorides having the empirical formula (R/sub 3/NH)/sub 3/(PMo/sub 12/O/sub 40/).3(R/sub 3/NH)Cl. To confirm the identification of the compound, a pure trioctylamine (TOA) analog was synthesized. In laboratory extraction experiments, it was demonstrated that organic-soluble amine molydophosphate forms slowly upon contact of TOA solvent with dilute sulfuric acid solutions containing low concentrations of molybdate and phosphate. If the organic solutions of amine molybdophosphate were then contacted with aqueous NaCl solutions, a greenish-yellow precipitate of (TOAH)/sub 3/(PMo/sub 12/O/sub 40/).3(TOAH)Cl formed at the interface. The proposed mechanism for the formation of the crud under process conditions involves build up of molybdenum in the solvent, followed by reaction with extracted phosphate to give dissolved amine molybdophosphate. The amine molybdophosphate then co-crystallizes with amine chloride, formed during the stripping cycle, to give the insoluble double salt, which precipitates as a layer of small particles at the interface. The proposed solution to the problem is the use of branched-chain, instead of straight-chain, tertiary amine extractants under the expectation that branching would increase the solubility of the double salt. 2 figures, 5 tables.

  10. Liquid-liquid extraction of uranium(VI) in the system with a membrane contactor.

    PubMed

    Biełuszka, Paweł; Zakrzewska, Grażyna; Chajduk, Ewelina; Dudek, Jakub

    Raising role of the nuclear power industry, including governmental plans for the construction of first nuclear power plant in Poland, creates increasing demand for the uranium-based nuclear fuels. The project implemented by Institute of Nuclear Chemistry and Technology concerns the development of effective methods for uranium extraction from low-grade ores and phosphorites for production of yellow cake-U3O8. The Liqui-Cel(®) Extra-Flow 2.5 × 8 Membrane Contactor produced by CELGARD LLC (Charlotte, NC) company is the main component of the installation for liquid-liquid extraction applied for processing of post leaching liquors. In the process of membrane extraction the uranyl ions from aqueous phase are transported through the membrane into organic phase. The flow of two phases in the system was arranged in co-current mode. The very important element of the work was a selection of extracting agents appropriate for the membrane process. After preliminary experiments comprising tests of membrane resistivity and determination of extraction efficiency, di(2-ethylhexyl)phosphoric acid was found to be most favourable. An important aspect of the work was the adjustment of hydrodynamic conditions in the capillary module. To avoid the membrane wettability by organic solvent and mixing two phases equal pressure drops along the membrane module to minimize the transmembrane pressure, were assumed. Determination of pressure drop along the module was conducted using Bernoulli equation. The integrated process of extraction/re-extraction conducted in continuous mode with application of two contactors was designed.

  11. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  12. Microwave heating characteristics of magnetite ore

    NASA Astrophysics Data System (ADS)

    Rajavaram, Ramaraghavulu; Lee, Jaehong; Oh, Joon Seok; Kim, Han Gyeol; Lee, Joonho

    2016-11-01

    The heating characteristics of magnetite ore under microwave irradiation were investigated as a function of incident microwave power, particle size, and magnetite ore mass. The results showed that the heating rate of magnetite ore is highly dependent on microwave power and magnetite ore mass. The maximum heating rate was obtained at a microwave irradiation power of 1.70 kW with a mass of 25 g and particle size between 53-75 µm. The volumetric heating rate of magnetite ore was investigated by measuring the temperature at different depths during microwave irradiation. Microwave irradiation resulted in modification of the microstructure of the magnetite ore, but new phases such as FeO or Fe2O3 were not formed. In addition, the crystal size decreased from 115 nm to 63 nm after microwave irradiation up to 1573 K.

  13. Enhancing of Fe removal in pyrophyllite using magnetite ore susceptor

    NASA Astrophysics Data System (ADS)

    Hack Lim, Dae; Myung, Eun Ji; Kim, Hyun Soo; Choul Choi, Nag; Cho, Kang Hee; Park, Cheon Young

    2016-04-01

    Pyrite and hematite are an impurity that reduces the grade of pyrophyllite in the final products. Because the impurity in pyrophyllite which was associated with hydrothermally altered rocks. Microwave has been extensively explored in various fields of materials processing. This technology exhibits unique characteristics including volumetric and selective heating, which eventually lead to many exceptional advantages over conventional processing methods including both energy and cost savings, improved product quality and faster processing. The aim of this study was to investigate the application possibility of microwave process for Fe removal in pyrophyllite. The pyrite and quartz of the pyrophyllite was determined by reflected light microscopy and XRD. The result of Fe removal experiment in pyrophyllite using microwave susceptor(magnetite ore included ilmenite and magnetite) showed to decrease of Fe content in pyrophyllite. The Fe removal of 93.62% and parameters were obtained under the following conditions by magnetite ore was 20.0 g, the pyrophyllite was 10.0 g, and the microwave heating time was 10.0 min. By means of microwave, Fe removal in pyrophyllite can be rapidly and efficiently pyrolyze. if some of the magnetite ore, which acts as a microwave susceptor, is mixed with the raw material. Acknowledgment : This subject is supported by Korea Ministry of Environment as "Advanced Technology Program for Environmental Industry"

  14. National Uranium Resource Evaluation: Richfield Quadrangle, Utah

    SciTech Connect

    Bromfield, C.S.; Grauch, R.I.; Otton, J.K.; Osmonson, L.M.; Robinson, K.; Reed, R.L.; Noah, R.J.

    1982-09-01

    The Richfield Quadrangle in west-central Utah was evaluated to identify areas favorable for the occurrence of uranium deposits known or likely to contain 100 tons of uranium with an average grade of not less than 100 ppM U/sub 3/O/sub 8/. Geologic reconnaissance was made of all known environments thought to be favorable for uranium deposits, and a representative selection of uranium occurrences reported in the literature was visited. Geochemical analyses from rock and limited water samples were used in the evaluation. Preliminary and incomplete aeroradiometric data and hydrogeochemical and stream-sediment analyses arrived too late in the program to be field-checked or to be adequately analyzed for this report. Two areas favorable for uranium deposits were delineated: (1) volcanogenic deposits (class 500 to 599) in association with Miocene Mount Belknap rhyolite, and acidic plutons in the Marysvale Volcanic Field in the Antelope Range and Tushar Mountains; and (2) volcanogenic (class 500 to 599) and/or magmatic hydrothermal deposits (class 330) associated with Miocene high-silica high-alkali rhyolite tuffs, flows, and hypabyssal intrusives in volcanic or subvolcanic environments in the southern Wah Wah Mountains.

  15. Search for uranium in western United States

    USGS Publications Warehouse

    McKelvey, Vincent Ellis

    1953-01-01

    The search for uranium in the United States is one of the most intensive ever made for any metal during our history. The number of prospectors and miners involved is difficult to estimate but some measure of the size of the effort is indicated by the fact that about 500 geologists are employed by government and industry in the work--more than the total number of geologists engaged in the study of all other minerals together except oil. The largest part of the effort has been concentrated in the western states. No single deposit of major importance by world standards has been discovered but the search has led to the discovery of important minable deposits of carnotite and related minerals on the Colorado Plateau; of large, low grade deposits of uranium in phosphates in the northwestern states and in lignites in the Dakotas, Wyoming, Idaho and New Mexico; and of many new and some promising occurrences of uranium in carnotite-like deposits and in vein deposits. Despite the fact that a large number of the districts considered favorable for the occurrence of uranium have already been examined, the outlook for future discoveries is bright, particularly for uranium in vein and in carnotite-like deposits in the Rocky Mountain States.

  16. Principal uranium deposits of the world

    USGS Publications Warehouse

    Byers, Virginia P.

    1978-01-01

    The geology of the principal world uranium deposits that have identified uranium reserves and production, as described in published literature, is summarized briefly, including such features as type of deposit, host rock and age of host roc, age of mineralization, depositional environment, and mineralogy. The deposits are located on four maps with the deposit grouped according to age of host rocks?Precambrian, Paleozoic, Mesozoic, and Cenozoic?and further subdivided into types of deposits and size categories. Types of deposits are penecordant sandstone, quartz-pebble conglomerate, vein and vein-type, marine black shale, phosphate deposits, coaly carbonaceous rocks, and pegmatic and alaskitic rocks. The economically most significant deposits of uranium known in 1975 are in quartz-pebble conglomerates and sandstones, which together represented about 75 percent of the world?s total production. The largest deposits occur in quartz-pebble conglomerate at the Elliot Lake-Blind River area, Canada (average grade 0.12 percent U3O8), and at the Witwatersrand basin area in the Republic of South Africa (average grade 0.025 percent U3O8), where uranium is produced principally as a byproduct or coproduct of gold mining; and in medium-grained sandstones in the Colorado Plateau, USA (average grade 0.2 percent U3O8). Other economically significant concentrations are vein, pegmatite or contact metamorphic types, containing smaller but relatively high-grade tonnages and representing about 20 percent of the world?s total production. At Vastergotland (Billingen) and Narke in Sweden, uranium has been recovered on a pilot-plant basis from black shale deposits having an uncommonly high grade for black shale of 0.03 percent U3O8. ?Recoverable reserves? in the near future (40 year period, lifetime of nuclear plants) is on the order of 50,000 metric tons U. Over 50 percent of the world?s total uranium reserves is located on or near the trend of the iron deposits in the Precambrian iron

  17. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  18. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  19. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  20. Gunnar uranium mine environmental remediation - Northern Saskatchewan

    SciTech Connect

    Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L.

    2013-07-01

    The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22. largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which still

  1. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  2. Sintering Characteristics of Indian Chrome Ore Fines

    NASA Astrophysics Data System (ADS)

    Nandy, Bikash; Chaudhury, Manoj Kumar; Paul, Jagannath; Bhattacharjee, D.

    2009-10-01

    Chrome ore concentrate consists of high-temperature melting oxides such as Cr2O3, MgO, and Al2O3. The presence of these refractory constituents makes the ore a very high melting mineral. Hence, it is difficult to produce sinter from chrome ore by a pyrometallurgical route. Currently, chrome ore is ground to below 75 μm, pelletized, heat hardened through carbothermic reaction at 1300 °C to 1400 °C, and then charged into a submerged electric arc furnace (EAF), along with lumpy ore for ferrochrome/charge-chrome production. Electricity is a major cost element in this extraction process. This work explores the sinterability of chrome ore. The objective of this study was to: (1) determine whether chrome ore is sinterable and, if so, (2) ascertain ways of achieving satisfactory properties at a low temperature of sintering. Sintering of the raw material feed could be a way to reduce electricity consumption, because during sintering a partial reduction of minerals is expected along with agglomeration. Studies carried out by the authors show that it is possible to agglomerate chrome ore fines through sintering. The chrome ore sinter thus produced was found to be inferior in strength, comparable to that of an iron ore sinter, but strength requirements may not be the same for both. Because the heat generation during chrome ore sintering is high owing to some exothermic reactions, compared with iron ore, and because chrome ore contains a high amount of fines, shallow-bed-depth sinter cake production was attempted in the laboratory-scale pot-sintering machine. The sintered product was found to be a good conductor of electricity because of the presence of phases such as magnetite and maghemite. This characteristic of the chrome ore sinter will subsequently have a favorable impact in terms of power consumption during the production of ferrochrome in a submerged EAF. The sinter made was melted in the arc furnace and it was found that the specific melting energy is comparable to

  3. Metallization of siderite ore in reducing roasting

    NASA Astrophysics Data System (ADS)

    Vusikhis, A. S.; Leont'ev, L. I.; Kudinov, D. Z.; Gulyakov, V. S.

    2016-05-01

    The behavior of the initial ore and the concentrate of magnetoroasting beneficiation during metallization under the conditions that are close to those for reducing roasting of iron ores in a rotary furnace is studied in terms of works on extending the field of application of Bakal siderites. A difference in the mechanisms of the metallization of crude ore and the roasted concentrate is observed. The metallization of roasted concentrate lumps is more efficient than that of crude siderite ore. In this case, the process ends earlier and can be carried out at higher temperatures (1250-1300°C) without danger of skull formation.

  4. A quantitative radiochemical method for the determination of the major sources of natural radioactivity in ores and minerals

    USGS Publications Warehouse

    Rosholt, John Nicholas

    1953-01-01

    The determination of Th232, Rn222, and Pb210 by isolation and subsequent activity analysis of some of their short-lived daughter products is described. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the alpha particle activity of PO214. PO212 and PO210 is determined by scintillation counting techniques. PO214 activity is used to determine Rn222, PO212 activity for Th232, and PO210 for Pb210.

  5. Mineralogical characterization of the Nkamouna Co-Mn laterite ore, southeast Cameroon

    NASA Astrophysics Data System (ADS)

    Lambiv Dzemua, G.; Gleeson, S. A.; Schofield, P. F.

    2013-02-01

    The Nkamouna property is an oxide laterite deposit developed on serpentinized peridotite in southeast Cameroon. It is enriched in Co and Mn, has sub-economic Ni grades and will be mined primarily for Co. The ore zone is ca. 10 m thick and comprises the lower breccia (˜3 m thick) and ferralite (7-8 m thick) units sandwiched between an 8-m-thick ferricrete overburden and a barren hydrated Mg-silicate saprolite. The ore mineral assemblage includes Mn oxyhydroxides, magnetite, maghemite, ferritchromite, goethite, hematite, kaolinite and gibbsite. Lithiophorite is the most common Mn mineral and is the main host of Co, Mn and a significant proportion of Ni. It occurs as coatings in pores and on other mineral grains and as concretions and impregnations in the matrix. It is invariably associated with gibbsite in the lower breccia and with magnetite and ferritchromite in the ferralite. Although ore in the lower breccia is volumetrically less important than the ferralite, it has the highest grade and Co/Ni ratio. The lithiophorite in the ore zone is authigenic, and its formation was enhanced by influx of Al3+ from the overlying ferricrete. Magnetite and ferritchromite in the ferralite are relicts and contributed to mineralization by enhancing the permeability of the ferralite and providing substrates for the precipitation of the Mn oxyhydroxides. The structure and mode of occurrence of the lithiophorite makes Nkamouna ore amenable to physical beneficiation, producing a concentrate with Co grades 2.3-4.5 times higher than the run-of-mine ore.

  6. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  7. PRODUCTION OF URANIUM

    DOEpatents

    Ruehle, A.E.; Stevenson, J.W.

    1957-11-12

    An improved process is described for the magnesium reduction of UF/sub 4/ to produce uranium metal. In the past, there have been undesirable premature reactions between the Mg and the bomb liner or the UF/sub 4/ before the actual ignition of the bomb reaction. Since these premature reactions impair the yield of uranium metal, they have been inhibited by forming a protective film upon the particles of Mg by reacting it with hydrated uranium tetrafluoride, sodium bifluoride, uranyl fluoride, or uranium trioxide. This may be accomplished by adding about 0.5 to 2% of the additive to the bomb charge.

  8. Uranium Dispersion & Dosimetry Model.

    SciTech Connect

    MICHAEL,; MOMENI, H.

    2002-03-22

    The Uranium Dispersion and Dosimetry (UDAD) program provides estimates of potential radiation exposure to individuals and to the general population in the vicinity of a uranium processing facility such as a uranium mine or mill. Only transport through the air is considered. Exposure results from inhalation, external irradiation from airborne and ground-deposited activity, and ingestion of foodstuffs. Individual dose commitments, population dose commitments, and environmental dose commitments are computed. The program was developed for application to uranium mining and milling; however, it may be applied to dispersion of any other pollutant.

  9. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  10. Forensic analysis of uranium

    SciTech Connect

    Stoyer, N.J.; Moody, K.J.

    1996-10-01

    As more and more offers for illicit {open_quotes}Black Market{close_quotes} radioactive materials are found, the forensic information contained within the radioactive material itself becomes more important. Many {open_quotes}Black Market{close_quotes} offers are for uranium in various forms and enrichments. Although most are scams, some countries have actually interdicted enriched uranium. We will discuss the forensic information that can be obtained from materials containing uranium along with examples of data that has been determined from analysis of uranium samples obtained from legitimate sources.

  11. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, Steven A.

    1981-01-01

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  12. Uranium and Sm isotope studies of the supergiant Olympic Dam Cu-Au-U-Ag deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Kirchenbaur, Maria; Maas, Roland; Ehrig, Kathy; Kamenetsky, Vadim S.; Strub, Erik; Ballhaus, Chris; Münker, Carsten

    2016-05-01

    ores define a neutron capture line, with correlated depletions in 149Sm (up to ∼2ε units) and excesses in 150Sm (up to ∼ 4ε units), but fission fragment contributions to Sm are below detection. These observations provide evidence for small-scale neutron-capture effects, with calculated neutron fluences of 1015 to 1016 n cm-2, similar to those observed in several Proterozoic and Phanerozoic U deposits. The apparent lack of fission fragment contributions in Olympic Dam high-grade ores can be explained with an age of U deposition, or re-deposition that is substantially younger than the initial 1.59 Ga age of the oldest IOCG-style mineralization. The results presented here thus (i) suggest uranium sources in common (likely igneous) upper crustal lithologies, (ii) support geochronological evidence for gradual addition of U in several stages over 1000 Ma at elevated temperatures of mineralization, and (iii) do not show the high δ238U signatures expected from low-temperature reworking of older low- δ238U ores.

  13. URANIUM LEACHING AND RECOVERY PROCESS

    DOEpatents

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  14. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise

    USGS Publications Warehouse

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.

    1979-01-01

    Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.

  15. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    SciTech Connect

    McCammon, R.B. ); Finch, W.I.; Grundy, W.D.; Pierson, C.T. )

    1990-12-31

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  16. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    NASA Astrophysics Data System (ADS)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the

  17. Toxicity of nickel ores to marine organisms.

    PubMed

    Florence, T M; Stauber, J L; Ahsanullah, M

    1994-06-06

    Queensland Nickel proposes to import New Caledonian (Ballande) and Indonesian (Gebe) nickel ores, one option being ship-to-barge transfer in Halifax Bay, North Queensland. Because small amounts of ore may be split during the unloading and transfer operations, it was important to investigate the potential impact of the spilt ore on the ecological health of the Bay. Long-term leaching of the ores with seawater showed that only nickel and chromium (VI) were released from the ores in sufficient concentrations to cause toxicity to a range of marine organisms. The soluble fractions of nickel and chromium (VI) were released from the ores within a few days. Nickel, chromium (VI) and the ore leachates showed similar toxicity to the juvenile banana prawn Penaeus merguiensis, the amphipod Allorchestes compressa and both temperature (22 degrees C) and tropical (27 degrees C) strains of the unicellular marine alga Nitzschia closterium. In a series of 30-day sub-chronic microcosm experiments, juvenile leader prawns Penaeus monodon, polychaete worms Galeolaria caespitosa and the tropical gastropod Nerita chamaeleon were all very resistant to the nickel ores, with mortality unaffected by 700 g ore per 50 l seawater. The growth rate of the leader prawns was, however, lower than that of the controls. From these data, a conservative maximum safe concentration of the nickel ores in seawater is 0.1 g l-1. The nickel ore was not highly toxic and if spilt in the quantities predicted, would not have a significant impact on the ecological health of the Bay.

  18. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    SciTech Connect

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  19. Two types of ore-bearing mafic complexes of the Early Proterozoic East-Scandinavian LIP and their ore potential

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Zhirov, Dmitry; Bayanova, Tamara; Korchagin, Alexey; Chaschin, Victor

    2015-04-01

    magma generate single volcano-plutonic rock series. For intrusive ore bodies rock differentiation with the formation of syngenetic wehrlite-clinopyroxenite-gabbro- orthoclase gabbro sequence is typical. Upper mantle source of the depleted magma is characterized by the following isotope indicators: ɛNd(T) +0.5 to +4, ISr= 87Sr/86Sr 0.703-0.704. Ore-bearing intrusive bodies are injected in the upper part of the Early Palaeoproterozoic volcano-sedimentary cross-section. Ores are located in the basement of intrusions and in the redeposited veined bodies, including offset setting. Numerous Ni-Cu deposits with total reserves and resources of several million tons of Nickel equivalent (with an average grade ≥ 0,3%) have been explored, and some of them now is mining. As a result of our research, the complex of indicators and criteria is suggested for predicting the occurrence, for regional exploration target selection and for regional resource evaluation of PGE and base metals. The studies are supported by the Russian Foundation for Basic Research (project nos. 13-05-12055).

  20. Atmospheric leaching of nickel and cobalt from nickel saprolite ores using the Starved Acid Leaching Technology

    NASA Astrophysics Data System (ADS)

    Dreisinger, David

    2017-01-01

    There is great potential to recover nickel from below cut-off grade nickel saprolite ores using the Starved Acid Leach Technology (SALT). Nickel saprolite ores are normally mined as feed to Fe-Ni smelters or Ni matte smelting operations. The smelting processes typically require high Ni cut-off grades of 1.5 to 2.2% Ni, depending on the operation. These very high cutoff grades result in a significant portion of the saprolite profile being regarded as "waste" and hence having little to no value. The below cut-off grade (waste) material can be processed by atmospheric acid leaching with "starvation" levels of acid addition. The leached nickel and cobalt may be recovered as a mixed hydroxide (or alternate product). The mixed hydroxide may be added to the saprolite smelting operation feed system to increase the nickel production of the smelter or may be refined separately. The technical development of the SALT process will be described along with an economic summary. The SALT process has great potential to treat many Indonesian Nickel ores that are too low a grade for current technology.

  1. Comparative evaluation of radon measurement techniques for uranium exploration. National Uranium Resource Evaluation

    SciTech Connect

    Czarnecki, R F; Pacer, J C; Freeman, R W

    1983-03-01

    The measurement of radon (Rn-222) in soil gas aids in uranium exploration by indicating indirectly the presence of buried ore bodies. Intrest in this exploration methodology has led to the development of various radon measurement techniques which detect the presence of soil-gas radon, both directly and/or indirectly. To establish the relative merit of these new radon measurement techniques, Bendix Field Engineering Corporation has tested a variety of them using existing uranium occurrences located in the Red Desert area of south-central Wyoming. The following soil-gas radon measurement techniques were tested: a prototype microprocessor-controlled emanometer; a commercially available emanometer; alpha-track detectors equipped with two types of detector material (carbonate and nitrate), and equipped with and without membranes for thoron separation; radon adsorption on activated charcoal; and partial extraction of lead-210 from soil samples. These techniques were compared for relative sensitivity, variability, signal-to-background contrast, and correlation. The radon measurements obtained were also correlated to the equivalent uranium in soil, as determined radiometrically. From approximately 34 replicate samples, the variability associated with a technique was lowest with the TSA emanometer (13%). The EDA emanometer showed 31% and Track Etch carbonate/open cup (C/O) 27%. The best signal-to-background ratio, 2.55, was obtained by the EDA emanometer; the Track Etch nitrate/members cup (N/M) was a close second with 2.45. All signal-to-background ratios were greater than 2.0 except for the TSA emanometer with 1.87. All the techniques measured a sufficient number of anomalous values to locate the subsurface ore body.

  2. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    USGS Publications Warehouse

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  3. Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada.

    PubMed

    Othmane, Guillaume; Allard, Thierry; Morin, Guillaume; Sélo, Madeleine; Brest, Jessica; Llorens, Isabelle; Chen, Ning; Bargar, John R; Fayek, Mostafa; Calas, Georges

    2013-11-19

    The speciation of uranium was studied in the mill tailings of the Gunnar uranium mine (Saskatchewan, Canada), which operated in the 1950s and 1960s. The nature, quantification, and spatial distribution of uranium-bearing phases were investigated by chemical and mineralogical analyses, fission track mapping, electron microscopy, and X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies at the U LIII-edge and Fe K-edge. In addition to uranium-containing phases from the ore, uranium is mostly associated with iron-bearing minerals in all tailing sites. XANES and EXAFS data and transmission electron microscopy analyses of the samples with the highest uranium concentrations (∼400-700 mg kg(-1) of U) demonstrate that uranium primarily occurs as monomeric uranyl ions (UO2(2+)), forming inner-sphere surface complexes bound to ferrihydrite (50-70% of the total U) and to a lesser extent to chlorite (30-40% of the total U). Thus, the stability and mobility of uranium at the Gunnar site are mainly influenced by sorption/desorption processes. In this context, acidic pH or alkaline pH with the presence of UO2(2+)- and/or Fe(3+)-complexing agents (e.g., carbonate) could potentially solubilize U in the tailings pore waters.

  4. Assessment of a Hydroxyapatite Permeable Reactive Barrier to Remediate Uranium at the Old Rifle Site Colorado.

    SciTech Connect

    Moore, Robert C.; Szecsody, James; Rigali, Mark J.; Vermuel, Vince; Leullen, Jon

    2016-02-01

    We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests to study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.

  5. DECONTAMINATION OF URANIUM

    DOEpatents

    Spedding, F.H.; Butler, T.A.

    1962-05-15

    A process is given for separating fission products from uranium by extracting the former into molten aluminum. Phase isolation can be accomplished by selectively hydriding the uranium at between 200 and 300 deg C and separating the hydride powder from coarse particles of fissionproduct-containing aluminum. (AEC)

  6. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  7. Uranium: A Dentist's perspective

    PubMed Central

    Toor, R. S. S.; Brar, G. S.

    2012-01-01

    Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959

  8. Uranium and Thorium

    ERIC Educational Resources Information Center

    Finch, Warren I.

    1978-01-01

    The results of President Carter's policy on non-proliferation of nuclear weapons are expected to slow the growth rate in energy consumption, put the development of the breeder reactor in question, halt plans to reprocess and recycle uranium and plutonium, and expand facilities to supply enriched uranium. (Author/MA)

  9. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  10. Production of Solar Cells in Space from Non Specific Ores by Utilization of Electronically Enhanced Sputtering

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.

    2009-01-01

    An ideal method of construction in space would utilize some form of the Universal Differentiator and Universal Constructor as described by Von Neumann (1). The Universal Differentiator is an idealized non ore specific extractive device which is capable of breaking any ore into its constituent elements, and the Universal Constructor can utilize these elements to build any device with controllability to the nanometer scale. During the Human Exploration Initiative program in the early 1990s a conceptual study was done (2) to understand whether such devices were feasible with near term technology for the utilization of space resources and energy. A candidate system was proposed which would utilize electronically enhanced sputtering as the differentiator. Highly ionized ions would be accelerated to a kinetic energy at which the interaction between them and the lattice elections in the ore would be at a maximum. Experiments have shown that the maximum disintegration of raw material occurs at an ion kinetic energy of about 5 MeV, regardless of the composition and structure of the raw material. Devices that could produce charged ion beams in this energy range in space were being tested in the early 1990s. At this energy, for example an ion in a beam of fluorine ions yields about 8 uranium ions from uranium fluoride, 1,400 hydrogen and oxygen atoms from ice, or 7,000 atoms from sulfur dioxide ice. The ions from the disintegrated ore would then be driven by an electrical field into a discriminator in the form of a mass spectrometer, where the magnetic field would divert the ions into collectors for future use or used directly in molecular beam construction techniques. The process would require 10-7 Torr vacuum which would be available in space or on the moon. If the process were used to make thin film silicon solar cells (ignoring any energy inefficiency for beam production), then energy break even for solar cells in space would occur after 14 days.

  11. Uranium triamidoamine chemistry.

    PubMed

    Gardner, Benedict M; Liddle, Stephen T

    2015-07-07

    Triamidoamine (Tren) complexes of the p- and d-block elements have been well-studied, and they display a diverse array of chemistry of academic, industrial and biological significance. Such in-depth investigations are not as widespread for Tren complexes of uranium, despite the general drive to better understand the chemical behaviour of uranium by virtue of its fundamental position within the nuclear sector. However, the chemistry of Tren-uranium complexes is characterised by the ability to stabilise otherwise reactive, multiply bonded main group donor atom ligands, construct uranium-metal bonds, promote small molecule activation, and support single molecule magnetism, all of which exploit the steric, electronic, thermodynamic and kinetic features of the Tren ligand system. This Feature Article presents a current account of the chemistry of Tren-uranium complexes.

  12. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L.; Ackerman, John P.; Williamson, Mark A.

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  13. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  14. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    SciTech Connect

    Mujaini, M. Chankow, N.; Yusoff, M. Z.; Hamid, N. A.

    2016-01-22

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.

  15. Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy

    SciTech Connect

    2013-07-01

    For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding

  16. High resolution remote sensing information identification for characterizing uranium mineralization setting in Namibia

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-Lin; Wang, Jun-hu; Zhou, Mi; Huang, Yan-ju; Xuan, Yan-xiu; Wu, Ding

    2011-11-01

    The modern Earth Observation System (EOS) technology takes important role in the uranium geological exploration, and high resolution remote sensing as one of key parts of EOS is vital to characterize spectral and spatial information of uranium mineralization factors. Utilizing satellite high spatial resolution and hyperspectral remote sensing data (QuickBird, Radarsat2, ASTER), field spectral measurement (ASD data) and geological survey, this paper established the spectral identification characteristics of uranium mineralization factors including six different types of alaskite, lower and upper marble of Rössing formation, dolerite, alkali metasomatism, hematization and chloritization in the central zone of Damara Orogen, Namibia. Moreover, adopted the texture information identification technology, the geographical distribution zones of ore-controlling faults and boundaries between the different strata were delineated. Based on above approaches, the remote sensing geological anomaly information and image interpretation signs of uranium mineralization factors were extracted, the metallogenic conditions were evaluated, and the prospective areas have been predicted.

  17. High temperature attack of ores by means of a liquor essentially containing a soluble bicarbonate

    SciTech Connect

    Bosca, B.; Maurel, P.; Nicolas, F.

    1981-10-20

    A process for the oxidizing attack at high temperature of ores containing at least one metal belonging to the group formed by uranium, vanadium and molybdenum, by means of an aqueous liquor containing a majority of sodium bicarbonate and a minority of sodium carbonate according to a ratio by weight of sodium bicarbonate to sodium carbonate of at least 1.5, in the presence of free oxygen injected into the reaction medium, this medium being maintained at a temperature of between 160/sup 0/C and 300/sup 0/C. For at most six hours.

  18. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    PubMed Central

    Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251

  19. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.

    PubMed

    Romo, E; Weinacker, D F; Zepeda, A B; Figueroa, C A; Chavez-Crooker, P; Farias, J G

    2013-01-01

    The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  20. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  1. The Role of Groundwater Flow and Faulting on Hydrothermal Ore Formation in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Garven, G.

    2006-05-01

    Sediment-hosted ore formation is thought to occur as a normal outcome of basin evolution, due to deep groundwater flow, heat transport, and reactive mass transport ---all of which are intimately coupled. This paper reviews recent attempts to understand the hydrologic and geochemical processes forming some of the world's largest sediment-hosted ores. Several questions still dominate the literature (driving forces for flows, source and controls on metal acquisition, concentrations of ore-forming components, timing and duration, role of faults, effects of transient flows). This paper touches upon all of these questions. Coupled reactive transport models have been applied for understanding the genesis of sandstone-hosted uranium ores of North America and Australia, red-bed copper ores of North America and northern Europe, carbonate-hosted MVT lead-zinc ores of the U.S. Midcontinent and northwestern Canada, and the carbonate- hosted lead-zinc ores of Ireland and southeast France. Good progress has been made in using these computational methods for comparing and contrasting both carbonate hosted (MVT and Irish types) and shale- hosted (SEDEX type) Pb-Zn deposits. The former are mostly associated with undeformed carbonate platforms associated with distal orogenic belts and the later are mostly associated with extensional basins and failed rifts that are heavily faulted. Two giant ore provinces in extensional basins provide good examples of structural control on reactive mass transport: shale-hosted Pb-Zn ores of the Proterozoic McArthur basin, Australia, and shale-hosted Pb-Zn-Ba ores of the Paleozoic Kuna basin, Alaska. For the McArthur basin, hydrogeologic simulations of thermally-driven free convection suggest a strong structural control on fluid flow created by the north-trending fault systems that dominate this Proterozoic extensional basin. Brines appear to have descended to depths of a few kilometers along the western side of the basin, migrated laterally to the

  2. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    NASA Astrophysics Data System (ADS)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-04-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  3. In Situ Synchrotron Powder Diffraction Studies of Reduction-Oxidation (Redox) Behavior of Iron Ores and Ilmenite

    NASA Astrophysics Data System (ADS)

    Ilyushechkin, Alexander Y.; Kochanek, Mark; Tang, Liangguang; Lim, Seng

    2017-01-01

    Phase transformations of two types of iron-based oxides (iron ore and industrial-grade ilmenite) were studied using synchrotron powder diffraction of the samples processed in reducing and oxidizing atmospheres at 1173 K (900 °C) and 1223 K (950 °C), respectively. In iron ore oxidation, the disappearance of the wustite and fayalite phases was followed by hematite growth and a decrease of the magnetite phase. The magnetite phase was partially recovered by treatment in a reducing atmosphere. Ilmenite oxidation initiated decomposition of the ilmenite phase with rapid growth of hematite and gradual growth of the pseudobrookite phase. In a reducing atmosphere, ilmenite was gradually recovered from pseudobrookite with a relatively fast initial decrease in rutile and hematite content. Under reducing conditions, there was interaction of iron ore with magnesio-ferrites in iron ore-ash mixture and interaction of ilmenite with silica by the formation of fayalite.

  4. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  5. Ore microscopy of the Paoli silver-copper deposit, Oklahoma

    USGS Publications Warehouse

    Thomas, C.A.; Hagni, R.D.; Berendsen, P.

    1991-01-01

    The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a

  6. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable

  7. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  8. Mineral and Elemental Composition Features of "Loose" Oolitic Ores in Bakchar Iron Ore Cluster (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Rudmin, M.; Mazurov, A.; Bolsunovskaya, L.

    2014-08-01

    Geo-technological investigation considerations of iron ore deposits within the Bakchar ore cluster are being carried out. The mineral and elemental composition of "loose" ores have been studied, embracing such important aspects as the distribution pattern of valuable and harmful impurities, the determination of element concentrators (such as vanadium, phosphate and sulphur) in basic minerals and the analysis of ore composition varaiation in volume ore cluster. Based on investigation results the mineral and elemental composition characteristic features of "loose" ores were defined. Although hydrogoethite was the basic identified ore mineral, such minerals as goethite, lepidocrocite, leptochlorite, siderite and hisingerite were also found. The deportment of calcium phosphate (anapaite) and phosphates of rare-earth elements (monazite, killarite), which are associated with the harmful impurity- phosphorous, are described. It has been defined that the ore constituent composition contains such persistent impurities as vanadium and manganese, the content of which is 0.35% and 0.03%, respectively. The "loose" ores are continuous in mineral composition, both in area and cross-section throughout the Bakchar ore cluster. Based on the sample element composition analysis the most perspective areas for further mineral processing could be: western with the fraction of 1....0.2mm. and eastern- fraction of 1...0.1mm.

  9. India's Worsening Uranium Shortage

    SciTech Connect

    Curtis, Michael M.

    2007-01-15

    As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a number of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.

  10. Uranium, geoinformatics, and the economic image of mineral exploration.

    PubMed

    Schilling, Tom

    2013-09-01

    When uranium prospectors working in northern Canada want to visualize a new deposit, they can't simply walk outside and take a picture of the ground beneath their feet. 'Mapping' an ore body in the twenty-first century means building a statistical model from a grid of chemical data, a collaborative process demanding the efforts of drilling crews, geologists, chemists, and statisticians. As rock samples are translated into numerical concentration values and then back into images of geological features, scientific theories become economic data, reshaping geological theory, environmental regulation and development in the process.

  11. Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico

    NASA Astrophysics Data System (ADS)

    Hinojosa de la Garza, Octavio R.; Montero Cabrera, María Elena; Sanín, Luz H.; Reyes Cortés, Manuel; Martínez Meyer, Enrique

    2014-07-01

    To estimate the distribution of uranium minerals in Chihuahua, the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data), as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores, a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography, gravimetry, climate (worldclim), soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model, comparisons were done with other research of the Mexican Service of Geological Survey, with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated, finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

  12. Reconstruction of atmospheric concentrations and deposition of uranium and decay products released from the former uranium mill at Uravan, Colorado.

    PubMed

    Rood, Arthur S; Voillequé, Paul G; Rope, Susan K; Grogan, Helen A; Till, John E

    2008-08-01

    Radionuclide concentrations in air from uranium milling emissions were estimated for the town of Uravan, Colorado, USA and the surrounding area for a 49-yr period of mill operations beginning in 1936 and ending in 1984. Milling processes with the potential to emit radionuclides to the air included crushing and grinding of ores; conveyance of ore; ore roasting, drying, and packaging of the product (U(3)O(8)); and fugitive dust releases from ore piles, tailings' piles, and roads. The town of Uravan is located in a narrow canyon formed by the San Miguel River in western Colorado. Atmospheric transport modeling required a complex terrain model. Because historical meteorological data necessary for a complex terrain model were lacking, meteorological instruments were installed, and relevant data were collected for 1 yr. Monthly average dispersion and deposition factors were calculated using the complex terrain model, CALPUFF. Radionuclide concentrations in air and deposition on ground were calculated by multiplying the estimated source-specific release rate by the dispersion or deposition factor. Time-dependent resuspension was also included in the model. Predicted concentrations in air and soil were compared to measurements from continuous air samplers from 1979 to 1986 and to soil profile sampling performed in 2006. The geometric mean predicted-to-observed ratio for annual average air concentrations was 1.25 with a geometric standard deviation of 1.8. Predicted-to-observed ratios for uranium concentrations in undisturbed soil ranged from 0.67 to 1.22. Average air concentrations from 1936 to 1984 in housing blocks ranged from about 2.5 to 6 mBq m(-3) for (238)U and 1.5 to 3.5 mBq m(-3) for (230)Th, (226)Ra, and (210)Pb.

  13. Summary of reconnaissance for radioactive deposits in Alaska, 1945-1954, and an appraisal of Alaskan uranium possibilities

    USGS Publications Warehouse

    Wedow, Helmuth

    1956-01-01

    In the period 1945-1954 over 100 investigations for radioactive source materials were made in Alaska. The nature of these investigations ranged from field examinations of individual prospects or the laboratory analysis of significantly radioactive samples submitted by prospectors to reconnaissance studies of large districts. In this period no deposits of uranium or thorium that would warrant commercial exploitation were discovered. The investigations, however, disclosed that radioactive materials occur in widely scattered areas of Alaska and in widely diverse environments. Many igneous rocks throughout Alaska are weakly radioactive because of uranium- and thorium-bearing accessory minerals, such as allanite, apatite, monazite, sphene, xenotime, and zircon; more rarely the radioactivity of these rocks is due to thorianite or thorite and their uranoan varieties. The felsic rocks, for example, granites and syenites, are generally more radioactive than the mafic igneous rocks. Pegmatites, locally, have also proved to be radioactive, but they have little commercial significance. No primary uranium oxide minerals have been found yet in Alaskan vein deposits, except, perhaps, for a mineral tentatively identified as pitchblende in the Hyder district of southeastern Alaska. However, certain occurrences of secondary uranium minerals, chiefly those of the uranite group, on the Seward Peninsula, in the Russian Mountains, and in the vicinity of Kodiak suggest that pitchblende-type ores may occur at depth beneath zones of alteration. Thorite-bearing veins have been discovered on Prince of Wales Island in southeastern Alaska. Although no deposits or carnotite-type minerals have been found in Alaska, several samples containing such minerals have been submitted by Alaskan prospectors. Efforts to locate the deposits from which these minerals were obtained have been unsuccessful, but review of available geologic data suggests that several Alaskan areas are potentially favorable for

  14. Some concepts of favorability for world-class-type uranium deposits in the northeastern United States

    SciTech Connect

    Adler, H.H.

    1981-03-01

    An account is given of concepts of favorability of geologic environments in the eastern United States for uranium deposits of several major types existing elsewhere in the world. The purpose is to convey some initial ideas about the interrelationships of the geology of the eastern United States and the geologic settings of certain of these world-class deposits. The study and report include consideration of uranium deposits other than those generally manifesting the geologic, geochemical and genetic characteristics associated with the conventional sandstone-type ores of the western United States.

  15. Characterization of surface soils at a former uranium mill.

    PubMed

    Johnson, J A; Meyer, H R; Vidyasagar, M

    2006-02-01

    Dawn Mining Company operated a uranium mill in Stevens County, Washington, from 1957 to 1982, to process ore from the Midnite Mine, and from 1992 through 2000, to extract uranium from mine water treatment sludge. The mill was permanently shut down in 2001 when the Dawn Mining Company radioactive materials license was amended to allow direct disposal of water treatment sludge to a tailings disposal area at the mill. The mill building was demolished in 2003. Site soil characterization took place in 2004. Soil cleanup is ongoing. Contaminated soils on the site were characterized using a GPS-based gamma scanning system. A correlation between shielded gamma exposure rate and concentration of Ra in surface soils was developed. Subsurface soils were sampled using backhoe trenches. This system proved efficient and accurate in guiding development of the remedial action planning for the site and subsequent soil cleanup.

  16. Grade Span.

    ERIC Educational Resources Information Center

    Renchler, Ron

    2000-01-01

    This issue reviews grade span, or grade configuration. Catherine Paglin and Jennifer Fager's "Grade Configuration: Who Goes Where?" provides an overview of issues and concerns related to grade spans and supplies profiles of eight Northwest schools with varying grade spans. David F. Wihry, Theodore Coladarci, and Curtis Meadow's…

  17. On prediction and discovery of lunar ores

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    Sampling of lunar material and remote geochemical, mineralogical, and photogeologic sensing of the lunar surface, while meager, provide first-cut information about lunar composition and geochemical separation processes. Knowledge of elemental abundances in known lunar materials indicates which common lunar materials might serve as ores if there is economic demand and if economical extraction processes can be developed, remote sensing can be used to extend the understanding of the Moon's major geochemical separations and to locate potential ore bodies. Observed geochemical processes might lead to ores of less abundant elements under extreme local conditions.

  18. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  20. Oolitic ores in the Bakchar iron-ore cluster (Tomsk Oblast)

    NASA Astrophysics Data System (ADS)

    Rudmin, M. A.; Mazurov, A. K.

    2016-12-01

    Oolitic iron ores are typified, and their morphology and composition are studied. Special attention is focused on the character of distribution of valuable and harmful admixtures and determination of the principal minerals concentrating these elements. As a result of this study, three types of ores are identified, such as "loose" ores, cemented ores with glauconite-chlorite-clay cement, and well-cemented ores with siderite cement. The morphology and composition of the ore oolites are characterized. The forms of occurrence of calcium phosphates (anapaite) and phosphates of rare-earth elements (monazite, cularite) that are related to the harmful phosphorus admixture are described. According to the analysis of the elemental composition, the fractions of (-1…+0.2) and (-1…+0.1) mm in the western and eastern segments, respectively, may be promising for processing.

  1. Alteration and vein mineralization, Schwartzwalder uranium deposit, Front Range, Colorado

    USGS Publications Warehouse

    Wallace, Alan R.

    1983-01-01

    The Schwartzwalder uranium deposit, in the Front Range west of Denver, Colorado, is the largest vein-type uranium deposit in the United States. The deposit is situated in a steeply dipping fault system that cuts Proterozoic metamorphic rocks. The host rocks represent a submarine volcanic system with associated chert and iron- and sulfide-rich pelitic rocks. Where faulted, the more competent garnetiferous and quartzitic units behaved brittlely and created a deep, narrow conduit. The ores formed 70-72 m.y. ago beneath 3 km of Phanerozoic sedimentary rocks. Mineralization included two episodes of alteration and three stages of vein-mineralization. Early carbonate-sericite alteration pseudomorphically replaced mafic minerals, whereas the ensuing hematite-adularia episode replaced only the earlier alteration assemblage. Early vein mineralization produced a minor sulfide-adularia-carbonate assemblage. Later vein mineralization generated the uranium ores in two successive stages. Carbonates, sulfides, and adularia filled the remaining voids. Clastic dikes composed of fault gouge and, locally, ore were injected into new and existing fractures. Geologic and chemical evidence suggest that virtually all components of the deposit were derived from major hornblende gneiss units and related rocks. The initial fluids were evolved connate/metamorphic water that infiltrated and resided along the extensive fault zones. Complex fault movements in the frontal zone of the eastern Front Range caused the fluids to migrate to the most permeable segments of the fault zones. Heat was supplied by increased crustal heat flow related to igneous activity in the nearby Colorado mineral belt. Temperatures decreased from 225?C to 125?C during later mineralization, and the pressure episodically dropped from 1000 bars. The CO2 fugacity was initially near 100 bars, and uranium was carried as a dicarbonate complex. Sudden decreases in confining pressure during fault movement caused evolution of CO2

  2. Radionuclide inventories : ORIGEN2.2 isotopic depletion calculation for high burnup low-enriched uranium and weapons-grade mixed-oxide pressurized-water reactor fuel assemblies.

    SciTech Connect

    Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean; Longmire, Pamela

    2010-04-01

    The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction process was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.

  3. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  4. Uranium concentrations in asparagus

    SciTech Connect

    Tiller, B.L.; Poston, T.M.

    1992-05-01

    Concentrations of uranium were determined in asparagus collected from eight locations near and ten locations on the Hanford Site southcentral Washington State. Only one location (Sagemoor) had samples with elevated concentrations. The presence of elevated uranium in asparagus at Sagemoor may be explained by the elevated levels in irrigation water. These levels of uranium are comparable to levels previously reported upstream and downstream of the 300-FF-1 Operable Unit on the Hanford Site (0.0008 {mu}g/g), but were below the 0.020-{mu}g/g level reported for brush collected at Sagemoor in a 1982 study. Concentrations at all other onsite and offsite sample locations were considerably lower than concentrations reported immediately upstream and downstream of the 300-FF-1 Operable Unit. Using an earlier analysis of the uranium concentrations in asparagus collected from the Hanford Site constitutes a very small fraction of the US Department of Energy effective dose equivalent limit of 100 mrem.

  5. PURIFICATION OF URANIUM FUELS

    DOEpatents

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  6. Uranium Location Database Compilation

    EPA Pesticide Factsheets

    EPA has compiled mine location information from federal, state, and Tribal agencies into a single database as part of its investigation into the potential environmental hazards of wastes from abandoned uranium mines in the western United States.

  7. Depleted Uranium: Technical Brief

    EPA Pesticide Factsheets

    This technical brief provides accepted data and references to additional sources for radiological and chemical characteristics, health risks and references for both the monitoring and measurement, and applicable treatment techniques for depleted uranium.

  8. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  9. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  10. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  11. Uranium purchases report 1994

    SciTech Connect

    1995-07-01

    US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

  12. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  13. ANODIC TREATMENT OF URANIUM

    DOEpatents

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  14. Toxicity of Depleted Uranium

    DTIC Science & Technology

    1997-02-01

    Exposure to Uranium Hexafluoride NUREG /CR- 5566, PNL-7328, Prepared for US Nuclear Regulatory Commission, Washington, DC, 1990. 27. Thun MJ, Baker DB... NUREG /CR-495 1, Prepared for US Nuclear Regulatory Commission, Washington, DC, 1987. 31. Morrow PE, Leach LJ, Smith FA, Goloin RM, Scott JB, Belter HD...of Uranium Hexafluoride, NUREG /CR- 2268, RH, Prepared for Division of Health Siting and Waste Management, Washington, DC, 1982. 32. Eidson AF, Damon

  15. URANIUM EXTRACTION PROCESS

    DOEpatents

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  16. Paleo-channel deposits of natural uranium at a Former Air Force Landfill

    SciTech Connect

    Young, C.; Weismann, PGJ.; Nelson, CHPK.

    2007-07-01

    The US Air Force has sought to understand the provenance of radionuclides that were detected in monitor wells surrounding a closed solid-waste landfill at the former Lowry Air Force Base in Denver, Colorado. Groundwater concentrations of gross alpha, gross beta, and total uranium were thought to exceed regulatory standards. Down-gradient concentrations of these parameters exceeded up-gradient concentrations, suggesting that the landfill is leaching uranium to groundwater. Alternate hypotheses for the occurrence of the uranium included that either equipment containing refined uranium had been discarded or that uranium ore may have been disposed in the landfill, or that the uranium is naturally-occurring. Our study has concluded that the elevated radionuclide concentrations stem from naturally-occurring uranium in the regional watershed which has been preferentially deposited in paleo-channel sediments beneath the site. This study shows that a simple comparison of up-gradient versus down-gradient groundwater samples can be an inadequate method for determining whether heterogeneous geo-systems have been contaminated. It is important to understand the geologic depositional system, plus local geochemistry and how these factors impact contaminant transport. (authors)

  17. Radiological impact of surface water and sediment near uranium mining sites.

    PubMed

    Ivanova, K; Stojanovska, Z; Badulin, V; Kunovska, B; Yovcheva, M

    2015-12-01

    The aim of this study is to assess the radiological impact of surface water and sediment around uranium mining sites 20 years after their closing. The areas under observations are 31 former classical underground uranium mining and exploratory sites in Bulgaria, named as objects. The extraction and processing of uranium ores in the Republic of Bulgaria were ended in 1992. To assess the radiological impact of radionuclides field expeditions were performed to sample water and bottom sediment. The migration of uranium through surface water was examined as one of the major pathways for contamination spread. The range of uranium concentration in water flowing from the mining sites was from 0.012 to 6.8 mgU l(-1) with a geometric mean of 0.192 mgU l(-1). The uranium concentrations in water downstream the mining sites were approximately 3 times higher than the background value (upstream). The concentrations of Unat, (226)Ra, (210)Pb, and (232)Th in the sediment of downstream river were higher than those upstream by 3.4, 2.6, 2, and 1.7 times, respectively. The distribution coefficient of uranium reflects its high mobility in most of the sites. In order to evaluate the impact on people as well as site prioritization for more detailed assessment and water management, screening dose assessments were done.

  18. Influence of Leaching Parameters on the Biological Removal of Uranium from Coal by a Filamentous Cyanobacterium

    PubMed Central

    Lorenz, Michael G.; Krumbein, Wolfgang E.

    1985-01-01

    Axenic cultures of the filamentous cyanobacterium LPP OL3 were incubated with samples of uraniumbearing coal from a German mining area. The influence of leaching parameters such as coal concentration (pulp density), initial biomass, particle size, temperature, and composition of the growth medium on the leaching of uranium from the ore by the cyanobacterial strain was studied. When low pulp densities were applied, the yield of biologically extracted uranium was optimal (reaching 96% at 1% [wt/vol] coal) and all released uranium was found in the culture liquid. Above 10% (wt/vol) coal in the medium, the amount of cell-bound uranium increased. Initial biomass concentration (protein content of the cultures) and particle size were not critical parameters of leaching by LPP OL3. However, temperature and composition of the growth medium profoundly influenced the leaching of uranium and growth of the cyanobacterium. The yield of leached uranium (at 10% [wt/vol] coal) could not be raised with a tank leaching apparatus. Also, coal ashes were not suitable substrates for the leaching of uranium by LPP OL3. In conclusion, the reactions of the cyanobacterium to variations in leaching parameters were different from reactions of acidic leaching organisms. Images PMID:16346934

  19. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  20. Uranium in Soils Integrated Demonstration: Technology summary, March 1994

    SciTech Connect

    Not Available

    1994-03-01

    A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

  1. Structural changes in amber due to uranium mineralization.

    PubMed

    Havelcová, Martina; Machovič, Vladimír; Mizera, Jiří; Sýkorová, Ivana; René, Miloš; Borecká, Lenka; Lapčák, Ladislav; Bičáková, Olga; Janeček, Oldřich; Dvořák, Zdeněk

    2016-07-01

    The presence of uranium, with a bulk mass fraction of about 1.5 wt% and radiolytic alterations are a feature of Cenomanian amber from Křižany, at the northeastern edge of the North Bohemian Cretaceous uranium ore district. Pores and microcracks in the amber were filled with a mineral admixture, mainly in the form of Zr-Y-REE enriched uraninite. As a result of radiolytic alterations due to the presence of uranium, structural changes were observed in the Křižany amber in comparison with a reference amber from Nové Strašecí in central Bohemia; this was of similar age and botanical origin but did not contain elevated levels of uranium. Structural changes involved an increase in aromaticity due to dehydroaromatization of aliphatic cyclic hydrocarbons, loss of oxygen functional groups, an increase in the degree of polymerization, crosslinking of CC bonds, formation of a three-dimensional hydrocarbon network in the bulk organic matrix, and carbonization of the organic matrix around the uraninite infill.

  2. Systemic Lupus Erythematosus is Associated with Uranium Exposure in a Community Living Near a Uranium Processing Plant: A Nested Case-Control Study

    PubMed Central

    Lu-Fritts, Pai-Yue; Kottyan, Leah C.; James, Judith A.; Xie, Changchung; Buckholz, Jeanette M.; Pinney, Susan M.; Harley, John B.

    2014-01-01

    Objective Explore the hypothesis that cases of SLE will be found more frequently in community members with high prior uranium exposure in the Fernald Community Cohort (FCC). Methods A nested case control study was performed. The FCC is a volunteer population that lived near a uranium ore processing plant in Fernald, Ohio, USA during plant operation and members were monitored for 18 years. Uranium plant workers were excluded. SLE cases were identified using American College of Rheumatology classification criteria, laboratory testing, and medical record review. Each case was matched to four age-, race-, and sex-matched controls. Sera from potential cases and controls were screened for autoantibodies. Cumulative uranium particulate exposure was calculated using a dosimetry model. Logistic regression with covariates was used to calculate odds ratios (OR) with 95% confidence intervals (CI). Results The FCC includes 4,187 individuals with background uranium exposure, 1,273 with moderate exposure, and 2,756 with higher exposure. SLE was confirmed in 23 of 31 individuals with a lupus ICD9 code, and in 2 of 43 other individuals prescribed hydroxychloroquine. The female:male ratio was 5.25:1. Of the 25 SLE cases, 12 were in the higher exposure group. SLE was associated with higher uranium exposure (OR 3.92, 95% CI 1.131-13.588, p = 0.031). Conclusion High uranium exposure is associated with SLE relative to matched controls in this sample of uranium exposed individuals. Potential explanations for this relationship include possible autoimmune or estrogen effects of uranium, somatic mutation, epigenetic effects, or effects of some other unidentified accompanying exposure. PMID:25103365

  3. Soviet uranium supply capability

    SciTech Connect

    1990-02-01

    For many years, only limited information concerning uranium deposits in the USSR has been available from Soviet sources. The Soviet Union has, however, cooperated in some past efforts to promote interaction with the international scientific community. For example, in 1984 the Soviet Union hosted the 27th International Geological Congress (IGC). The uranium portion included 50 papers, primarily on uranium deposits in sandstone and metamorphic rocks, presented to about 300 members. The IGC sponsored almost 400 geology field trips, the most noteworthy of which was a five-day trip to the Krivoi Rog iron and uranium district in the south-central Ukraine, including visits to two open-pit iron mines and the underground Novaya uranium mine in Zholtye Vody. That conference was reported in detail on the October 1984 NUEXCO Monthly Report. Some other information that has been made available over the years is contained in the April 1985 Report discussion of uranium deposit classifications. Advanced processing technology, low-cost labor, by-product and co-product recovery, and the large existing production capacity enable MAEI to produce nuclear fuel at low cost. The Soviet Union`s reserve base, technological development, and production experience make it one of the world`s leading producers of nuclear fuel. As additional information is made available for publication, NUEXCO will present updated reports on the nuclear fuel cycle facilities in the Soviet Union.

  4. 8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  5. Research of Geochemical Associations of Nephelin Ores

    NASA Astrophysics Data System (ADS)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  6. The effect of solubility on inhaled uranium compound clearance: a review.

    PubMed

    Eidson, A F

    1994-07-01

    Research on inhaled industrial uranium compounds has shown that solubility influences the target organ, the toxic response, and the mode of uranium excretion. Consideration of physical chemical properties indicates that the dissolution of industrial uranium oxides is expected to be strongly dependent on process history, and that dissolved uranium exists in vivo in the hexavalent state regardless of the oxidation state of the inhaled compound. The overall clearance rate of uranium compounds from the lung reflects both mechanical and dissolution processes. Mechanical clearance rates are highly variable among individual workers studied, but dissolution rates of inhaled compounds are similar among the mammalian species studied. Results from experiments in vivo and accidental worker exposures indicate that the uptake of dissolved uranium from the lung is more rapid than the dissolution rate of most industrial uranium compounds. These results indicate that the absorption rate of inhaled uranium can be approximated by the dissolution rate of most industrial compounds. Dissolution rates of UF6 and UO2(NO3)2 are more rapid than the mechanical clearance rates and dominate the overall lung clearance rate. UF4, UO3, and ammonium diuranate have intermediate dissolution rates that are similar to mechanical clearance rates and exhibit high variability among uranium specimens. U3O8 and UO2 have slow dissolution rates such that pulmonary clearance rates are dominated by mechanical processes. Industrial uranium ores, oxides, and fluorides are often variable mixtures of relatively soluble and insoluble fractions. Dissolution rates measured in vitro can be used with biokinetics models to reduce the uncertainties in dosimetry associated with inhalation exposures to mixtures.

  7. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    SciTech Connect

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

  8. Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit

    DOE PAGES

    Brown, Shaun T.; Basu, Anirban; Christensen, John N.; ...

    2016-05-20

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The 238U/235U of groundwater varies by approximatelymore » 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in 238U and have the lowest U concentrations. Activity ratios of 234U/238U are ~5.5 up-gradient of the ore zone, ~1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of 234U/238U and 238U/235U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. Lastly, these results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.« less

  9. Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit

    SciTech Connect

    Brown, Shaun T.; Basu, Anirban; Christensen, John N.; Reimus, Paul; Heikoop, Jeffrey; Simmons, Ardyth; Woldegabriel, Giday; Maher, Kate; Weaver, Karrie; Clay, James; DePaolo, Donald J.

    2016-05-20

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The 238U/235U of groundwater varies by approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in 238U and have the lowest U concentrations. Activity ratios of 234U/238U are ~5.5 up-gradient of the ore zone, ~1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of 234U/238U and 238U/235U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. Lastly, these results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.

  10. Non-radiological contaminants from uranium mining and milling at Ranger, Jabiru, Northern Territory, Australia.

    PubMed

    Noller, B N

    1991-10-01

    Protection from the hazards from radioactivity is of prime importance in the management of uranium mine and mill wastes. Such wastes also contain non-radiological contaminants (heavy metals, acids and neutralising agents) which give rise to potential long-term health and environmental hazards and short-term hazards to the aquatic ecosystem, e.g. as a result of release of waste water. This study seeks to identify non-radiological contaminants (elements) transferred to waste water at the Ranger uranium mine/mill complex at Jabiru, which are likely to hazardous to the aquatic environment.The two principal sources of contaminants are: (i) ore and waste rock mobilised from mining; and (ii) process reagents used in the milling and mineral extraction process. These substances may or may not already be present in the natural environment but may lead to deleterious effects on the aquatic environment if increased above threshold levels.Rhenium, derived from the ore body, was found to be significantly enriched in waste water from Ranger, indicating its suitability as an indicator element for water originating from the mining and milling process, but only uranium, likewise derived from the ore, and magnesium, manganese and sulfur (as sulfate) from the milling process were found to be significant environmental contaminants.

  11. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    USGS Publications Warehouse

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  12. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  13. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-01-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  14. Process for electrolytically preparing uranium metal

    DOEpatents

    Haas, Paul A.

    1989-08-01

    A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.

  15. Geological Modeling of Gold Deposit Based on Grade Domaining Using Plurigaussian Simulation Technique

    SciTech Connect

    Yunsel, Tayfun Y.; Ersoy, Adem

    2011-12-15

    Mineral resource evaluation requires defining grade domains of an ore deposit. Common practice in mineral resource estimation consists of partitioning the ore body into several grade domains before the geostatistical modeling and estimation at unsampled locations. Many ore deposits are made up of different mineralogical ensembles such as oxide and sulfide zone: being able to model the spatial layout of the different grades is vital to good mine planning and management. This study addresses the application of the plurigaussian simulation to Sivas (Turkey) gold deposits for constructing grade domain models that reproduce the contacts between different grade domains in accordance with geologist's interpretation. The method is based on the relationship between indicator variables from grade distributions on the Gaussian random functions chosen to represent them. Geological knowledge is incorporated into the model by the definition of the indicator variables, their truncation strategy, and the grade domain proportions. The advantages of the plurigaussian simulation are exhibited through the case study. The results indicated that the processes are seen to respect reproducing complex geometrical grades of an ore deposit by means of simulating several grade domains with different spatial structure and taking into account their global proportions. The proposed proportion model proves as simple to use in resource estimation, to account for spatial variations of the grade characteristics and their distribution across the studied area, and for the uncertainty in the grade domain proportions. The simulated models can also be incorporated into mine planning and scheduling.

  16. Influence of uranium hydride oxidation on uranium metal behaviour

    SciTech Connect

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  17. Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah

    USGS Publications Warehouse

    Stugard, Frederick

    1954-01-01

    During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the U.S. atomic Energy Commission. A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey. The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium deposits. Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore sheets mined on the Point in fine-grained sandstones of the Chinle formation. Three additional holes were located around Tecumseh Hill to probe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef. Only one trace of uranium mineral was detected in the 13 drill holes by logging of drill cores, gamma-ray logging of the holes, and analysis of many core splits from favorable lithology. Extensive traversing with Geiger counters throughout the district and detailed geologic mapping of areas on Buckeye Reef and on East Reef indicate that the chances of discovering significant uranium deposits in the Silver Reef district are very poor, because of: highly variable lithology, closely faulted structure, and obliteration of the shallow uranium-bearing lenses by silver mining. Most of the available ore in the district was in the Pumpkin Point area and has been mined during 1950 to 1953. No ore reserves can be computed for the district before further development work. The most favorable remaining area in the district is now being explored by the operators with Atomic Energy Commission supervision.

  18. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.

    PubMed

    Beiranvand Pour, Amin; Hashim, Mazlan

    2014-01-01

    This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.

  19. Aquifer restoration at uranium in situ leach sites

    NASA Astrophysics Data System (ADS)

    Anastasi, Frank S.; Williams, Roy E.

    1984-12-01

    In situ mining of uranium involves injection of a leaching solution (lixiviant) into an ore-bearing aquifer. Frequently, the ground water in the mined aquifer is a domestic or livestock water supply. As the lixiviant migrates through the ore body, uranium and various associated elements such as arsenic, selenium, molybdenum, vanadium and radium-226 are mobilized in the ground water. Aquifer restoration after in situ mining is not fully understood. Several methods have been developed to restore mined aquifers to pre-mining (baseline) quality. Commonly used methods include ground water sweeping, clean water injection, and treatment by ion exchange and reverse osmosis technologies. Ammonium carbonate lixiviant was used at one R&D in situ mine. Attempts were made to restore the aquifer using a variety of methods. Efforts were successful in reducing concentrations of the majority of contaminants to baseline levels. Concentrations of certain parameters, however, remained at levels above baseline six months after restoration ceased. Relatively large quantitites of ground water were processed in the restoration attempt considering the small size of the project (1.25 acre). More thorough characterization of the hydrogeology of the site may have enhanced the effectiveness of restoration and reduced potential environmental impacts associated with the project. This paper presents some of the findings of a research project conducted by the Mineral Resources Waste Management Team at the University of Idaho in Moscow, Idaho. Views contained herein do not reflect U.S. Nuclear Regulatory Commission policy.

  20. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  1. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  2. Uranium deposits of Brazil

    SciTech Connect

    1991-09-01

    Brazil is a country of vast natural resources, including numerous uranium deposits. In support of the country`s nuclear power program, Brazil has developed the most active uranium industry in South America. Brazil has one operating reactor (Angra 1, a 626-MWe PWR), and two under construction. The country`s economic challenges have slowed the progress of its nuclear program. At present, the Pocos de Caldas district is the only active uranium production. In 1990, the Cercado open-pit mine produced approximately 45 metric tons (MT) U{sub 3}O{sub 8} (100 thousand pounds). Brazil`s state-owned uranium production and processing company, Uranio do Brasil, announced it has decided to begin shifting its production from the high-cost and nearly depleted deposits at Pocos de Caldas, to lower-cost reserves at Lagoa Real. Production at Lagoa Real is schedules to begin by 1993. In addition to these two districts, Brazil has many other known uranium deposits, and as a whole, it is estimated that Brazil has over 275,000 MT U{sub 3}O{sub 8} (600 million pounds U{sub 3}O{sub 8}) in reserves.

  3. Uranium hexafluoride handling. Proceedings

    SciTech Connect

    Not Available

    1991-12-31

    The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

  4. PRODUCTION OF URANIUM HEXAFLUORIDE

    DOEpatents

    Fowler, R.D.

    1957-08-27

    A process for the production of uranium hexafluoride from the oxides of uranium is reported. In accordance with the method, the higher oxides of uranium may be reduced to uranium dioxide (UO/sub 2/), the latter converted into uranium tetrafluoride by reaction with hydrogen fluoride, and the UF/sub 4/ converted to UF/sub 6/ by reaction with a fluorinating agent, such as CoF/sub 3/. The UO/sub 3/ or U/sub 3/O/sub 8/ is placed in a reac tion chamber in a copper boat or tray enclosed in a copper oven, and heated to 500 to 650 deg C while hydrogen gas is passed through the oven. After nitrogen gas is used to sweep out the hydrogen and the water vapor formed, and while continuing to inaintain the temperature between 400 deg C and 600 deg C, anhydrous hydrogen fluoride is passed through. After completion of the conversion of UO/sub 2/ to UF/sub 4/ the temperature of the reaction chamber is lowered to about 400 deg C or less, the UF/sub 4/ is mixed with the requisite quantity of CoF/sub 3/, and after evacuating the chamber, the mixture is heated to 300 to 400 deg C, and the resulting UF/sub 6/ is led off and delivered to a condenser.

  5. Uranium deposits at Shinarump Mesa and some adjacent areas in the Temple Mountain district, Emery County, Utah

    USGS Publications Warehouse

    Wyant, Donald G.

    1953-01-01

    Deposits of uraniferous hydrocarbons are associated with carnotite in the Shinarump conglomerate of Triassic age at Shinarump Mesa and adjacent areas of the Temple Mountain district in the San Rafael Swell of Emery County, Utah. The irregular ore bodies of carnotite-bearing sandstone are genetically related to lenticular uraniferous ore bodies containing disseminated asphaltitic and humic hydrocarbon in permeable sandstones and were localized indirectly by sedimentary controls. Nearly non-uraniferous bitumen commonly permeates the sandstones in the Shinarump conglomerate and the underlying Moekopi formation in the area. The ore deposits at Temple Mountain have been altered locally by hydrothermal solutions, and in other deposits throughout the area carnotite has been transported by ground and surface water. Uraniferous asphaltite is thought to be the non-volatile residue of an original weakly uraniferous crude oil that migrated into the San Rafael anticline; the ore metals concentrated in the asphaltite as the oil was devolatilized and polymerized. Carnotite is thought to have formed from the asphaltite by ground water leaching. It is concluded that additional study of the genesis of the asphaltitic uranium ores in the San Rafael Swell, of the processes by which the hydrocarbons interact and are modified (such as heat, polymerization, and hydrogenation under the influence of alpha-ray bombardment), of petroleum source beds, and of volcanic intrusive rocks of Tertiary age are of fundamental importance in the continuing study of the uranium deposits on the Colorado Plateau.

  6. The strategy on rehabilitation of the former uranium facilities at the 'Pridneprovsky chemical plant' in Ukraine

    SciTech Connect

    Voitsekhovich, O.; Lavrova, T.; Skalskiy, A.S.; Ryazantsev, V.F.

    2007-07-01

    This paper describes current status of the former Uranium Facilities at the Pridneprovsky Chemical Plant in Ukraine, which are currently under development of action plan for its territory rehabilitation. The monitoring data carried out during recent several years show its impact to the Environment and gives a basis for justification of the number of measures aiming to reduce radiological and ecological risks of the Uranium tailings situated at the territory of PChP. The monitoring data and strategy for its remediation are considered in the presentation. Uranium mining has been intensively conducted in Ukraine since the end of the 40-s. Most of the uranium deposits have been explored in the Dnieper river basin, while some smaller deposits can be found within the basins of the Southern Bug and Severskiy Donets rivers. There also several large Uranium Milling facilities were in operation since the end of the 40-s till 1991, when due to disintegration of the former Soviet Union system the own uranium production has been significantly declined. The Milling Plant and Uranium extraction Facilities in ZhevtiVody is still in operation with UkrAtomprom Industrial Consortium. Therefore rehabilitation programme for all Uranium facilities in this site are in duty of the East Mining Combine and the Consortium. The most difficult case is to provide rehabilitation Action Plan for Uranium tailings and number of other facilities situated in Dnieprodzerzhinsk town and which were in operation by the former State Industrial Enterprise Pridneprovskiy Chemical Plant (PChP). In past PChP was one of the largest Uranium Milling facilities of the Former Soviet Union and has been in operation since 1948 till 1991. During Soviet time the Uranium extraction at this legacy site has been carried out using the ore raw products delivered also from Central Asia, Germany and Checz Republic. After extraction the uranium residue has been putting to the nearest landscape depressions at the vicinity of

  7. PROCESS OF PREPARING URANIUM CARBIDE

    DOEpatents

    Miller, W.E.; Stethers, H.L.; Johnson, T.R.

    1964-03-24

    A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)

  8. Magnesium reduction of uranium oxide

    SciTech Connect

    Elliott, G.R.B.

    1985-08-13

    A method and apparatus are provided for reducing uranium oxide with magnesium to form uranium metal. The reduction is carried out in a molten-salt solution of density greater than 3.4 grams per cubic centimeter, thereby allowing the uranium product to sink and the magnesium oxide byproduct to float, consequently allowing separation of product and byproduct.

  9. Vanadium-uranium extraction from Wyoming vanadiferoud silicates. Report of investigations/1983

    SciTech Connect

    Hayashi, M.; Nichols, I.L.; Huiatt, J.L.

    1983-11-01

    The Bureau of Mines conducted laboratory studies on low-grade vanadiferous silicates from the Pumpkin Buttes and Nine Mile Lake deposits of Wyoming to examine techniques for extracting vanadium and uranium. Recovery from low-grade sources such as these could contribute to future vanadium production and reduce reliance on vanadium imports.

  10. Process for recovering uranium

    DOEpatents

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  11. PROCESS FOR RECOVERING URANIUM

    DOEpatents

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  12. Systematic evaluation of satellite remote sensing for identifying uranium mines and mills.

    SciTech Connect

    Blair, Dianna Sue; Stork, Christopher Lyle; Smartt, Heidi Anne; Smith, Jody Lynn

    2006-01-01

    In this report, we systematically evaluate the ability of current-generation, satellite-based spectroscopic sensors to distinguish uranium mines and mills from other mineral mining and milling operations. We perform this systematic evaluation by (1) outlining the remote, spectroscopic signal generation process, (2) documenting the capabilities of current commercial satellite systems, (3) systematically comparing the uranium mining and milling process to other mineral mining and milling operations, and (4) identifying the most promising observables associated with uranium mining and milling that can be identified using satellite remote sensing. The Ranger uranium mine and mill in Australia serves as a case study where we apply and test the techniques developed in this systematic analysis. Based on literature research of mineral mining and milling practices, we develop a decision tree which utilizes the information contained in one or more observables to determine whether uranium is possibly being mined and/or milled at a given site. Promising observables associated with uranium mining and milling at the Ranger site included in the decision tree are uranium ore, sulfur, the uranium pregnant leach liquor, ammonia, and uranyl compounds and sulfate ion disposed of in the tailings pond. Based on the size, concentration, and spectral characteristics of these promising observables, we then determine whether these observables can be identified using current commercial satellite systems, namely Hyperion, ASTER, and Quickbird. We conclude that the only promising observables at Ranger that can be uniquely identified using a current commercial satellite system (notably Hyperion) are magnesium chlorite in the open pit mine and the sulfur stockpile. Based on the identified magnesium chlorite and sulfur observables, the decision tree narrows the possible mineral candidates at Ranger to uranium, copper, zinc, manganese, vanadium, the rare earths, and phosphorus, all of which are

  13. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  14. The formation of basal-type uranium deposits in south central British Columbia

    SciTech Connect

    Boyle, D.R.

    1982-08-01

    The basal-type uranium deposits in south central British Columbia occur within unconsolidated, late Miocene fluvial paleochannel sediments that overlie major fault zones within the Okanagan Highlands Intrusive Complex. Five uranium deposits have been outlined to date, of which the Blizzard (4,020 metric tons U) and Tyee (650 metric tons U) are the largest. The basement intrusive complex underlying the deposits varies in age from early Cretaceous to Eocene and is comprised of quartz monzonite, granodiorite, Coryell monzonite, porphyritic granite, and pegmatite. Uranium mineralization is present in the form of uranous (ningyoite) or uranyl (saleeite, autunite) phosphates coating clastic grains and filling voids. Because of very strong reducing conditions related to large concentrations of marcasite and organic material, ningyoite is the only uranium mineral in the Tyee deposit, whereas the Blizzard deposit contains a more complex assemblage of minerals (saleeite, autunite, ningyoite). The observed paragenetic sequence of mineral precipitation in the Blizzard deposit (autunite-saleeite-ningyoite) indicates that the uranyl minerals, saleeite and autunite, are primary. Investigations of the source of the ore-forming elements (U, Ca, Mg, PO/sub 4/) showed the deposits to be formed by the infiltration into fluvial sediments of deep-seated, structurally controlled, ground waters that migrated in a well-developed regional hydrologic system within the Complex. Research indicates that the ore-forming ground waters were cold, slightly bicarbonated (150-400 ppm), highly uraniferous (10-50 ppb), and slightly oxidizing (dissolved oxygen = 2-4 ppm).

  15. Lakeview uranium area, Lake County, Oregon - constraints on genetic modelling from a district-scale perspective

    SciTech Connect

    Weissenburger, K.W.

    1984-01-01

    Extent-of-outcrop geologic mapping (1:12,000) on the Cox Flat 7.5-minute quadrangle establishes the stratigraphy and structure near the White King uranium mine, about 25 km northwest of Lakeview, Lake County, Oregon. Bedrock includes an Oligocene andesitic volcanic/sedimentary section, four late Oligocene rhyodacitic ignimbrite sequences, a late Oligocene/Miocene tuffaceous section, locally thick early to late Miocene basaltic flows, and an interbedded sequence of late Miocene (about 7-8 Ma old) felsic tuffs and thin basalt flows. Relatively intense down-to-the northeast normal faulting and southwestward stratal tilting resulted from a pre-Basin-and-Range extensional tectonic regime with an ENE least-principal stress orientation. This faulting and tilting began after the late Oligocene ignimbrite volcanism and before the spread of Coleman Rim-equivalent basalt flows. The interpreted geology constrains genetic models, resource estimates, and exploration strategies for uranium occurrences in the Lakeview area. Fault- and fracture-controlled hydrothermal uranium deposits are restricted to favorable stratigraphic horizons of the Miocene section with the important exception of porous and permeable upper portions of the late Oligocene section. Previous models have stressed the importance of intrusive rhyolite plug domes as sources of uranium and/or heat in ore genesis and targeted exploration efforts at dome contacts. Mass balance and other arguments show that an association with rhyolite domes is not a necessary criterion for ore formation or exploration.

  16. Isolation of uranium mill tailings and their component radionuclides from the biosphere; some earth science perspectives

    USGS Publications Warehouse

    Landa, Edward

    1980-01-01

    Uranium mining and milling is an expanding activity in the. Western United States. Although the milling process yields a uranium concentrate, the large volume of tailings remaining contains about 85 percent of the radioactivity originally associated with the ore. By virtue of the physical and chemical processing of the ore and the redistribution of the contained radionuclides at the Earth's surface, these tailings constitute a technologically enhanced source of natural radiation exposure. Sources of potential human radiation exposure from uranium mill tailings include the emanation of radon gas, the transport of particles by wind and water, and the transport of soluble radionuclides, seeping from disposal areas, by ground water. Due to the 77,000 year half-life of thorium-230, the parent of radium-226, the environmental effects associated with radionuclides contained in these railings must be conceived of within the framework of geologic processes operating over geologic time. The magnitude of erosion of cover materials and tailings and the extent of geochemical mobilization of the contained radionuclides to the atmosphere and hydrosphere should be considered in the evaluation of the potential, long-term consequences of all proposed uranium mill tailings management plans.

  17. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  18. Solubility characterization of airborne uranium from a uranium recycling plant.

    PubMed

    Metzger, Robert; Cole, Leslie

    2004-07-01

    Solubility profiles of uranium dusts in a uranium recycling plant were determined by performing in vitro solubility tests on breathing zone air samples conducted in all process areas of the processing plant. The recycling plant produces high density shields, closed end tubes that are punched and formed from uranium sheet metal, and high-fired uranium oxide, which is used as a catalyst. The recycled uranium is cut and melted in a vacuum furnace, and part of the molten uranium is poured into molds for further processing. Air samples were taken in process areas under normal working conditions. The dissolution rate of the uranium in a simulant solution of extracellular airway lining fluid (Gamble's solution) was then determined over the next 28 d. Airborne uranium in the oxide section of the plant was found to be highly insoluble with 99% of the uranium having a dissolution half time in excess of 100 d. The solubility of the airborne uranium in other areas of the facility was only slightly more soluble with over 90% of the airborne uranium having dissolution half times in excess of 90 d.

  19. PREPARATION OF URANIUM TRIOXIDE

    DOEpatents

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  20. PRODUCTION OF URANIUM TUBING

    DOEpatents

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  1. Corrosion-resistant uranium

    DOEpatents

    Hovis, Jr., Victor M.; Pullen, William C.; Kollie, Thomas G.; Bell, Richard T.

    1983-01-01

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  2. Corrosion-resistant uranium

    DOEpatents

    Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

    1981-10-21

    The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

  3. TREATMENT OF URANIUM SURFACES

    DOEpatents

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  4. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  5. METHOD OF ELECTROPOLISHING URANIUM

    DOEpatents

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  6. The U.S. Uranium Mill Tailings Radiation Control Act -- An environmental legacy of the Cold War

    SciTech Connect

    Watson, C.D.; Nelson, R.A.; Mann, P.

    1993-12-31

    The US Department of Energy (DOE) has guided the Uranium Mill Tailings Remedial Action (UMTRA) Project through its first 10 years of successful remediation. The Uranium Mill Tailings Radiation Control Act (UMTRCA), passed in 1978, identified 24 uranium mill tailings sites in need of remediation to protect human health and the environment from the residual contamination resulting from the processing of uranium ore. The UMTRCA was promulgated in two titles: Title 1 and Title 2. This paper describes the regulatory structure, required documentation, and some of the technical approaches used to meet the Act`s requirements for managing and executing the $1.4 billion project under Title 1. Remedial actions undertaken by private industry under Title 2 of the Act are not addressed in this paper. Some of the lessons learned over the course of the project`s history are presented so that other countries conducting similar remedial action activities may benefit.

  7. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill--Part II: Small mammal food chains and bioavailability.

    PubMed

    Thomas, P A

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, 226Ra, 210Pb, and 210Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  8. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  9. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect

    Not Available

    1994-09-01

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  10. The uranium-Xylidyl Blue I complex and its application in linear sweep polarography.

    PubMed

    Zhao, Z; Cai, X; Li, P

    1987-09-01

    The linear sweep polarographic wave of the uranium-Xylidyl Blue I complex in ethylenediamine-1,10-phenanthroline-hydrochloric acid medium has been studied. The complex, corresponding to UO(2)(XBI)(2-)(2) with log beta' = 9.09 (by polarography), 8.81 (by spectrophotometry), is strongly adsorbed on the surface of the mercury electrode. The polarographic wave is attributed to the reduction of Xylidyl Blue I in the complex. The method is very sensitive with a detection limit of 3 x 10(-8)M. The wave height is proportional to the concentration of uranium over the range 8 x 10(-8)-7 x 10(-6)M. Solvent extraction is used to separate possible interferences. The recommended procedure has been applied to the determination of trace amounts of uranium in ores.

  11. Remediation of uranium mill tailings by an integrated biological and chemical process

    SciTech Connect

    Torma, A.E.

    1992-01-01

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 [times] 10[sup [minus]3] and 2.3 [times] 10[sup [minus]3] mol/dry weight of alginate. The kinetic values, V[sub m] and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  12. Remediation of uranium mill tailings by an integrated biological and chemical process

    SciTech Connect

    Torma, A.E.

    1992-12-31

    Dilute calcium chloride brine solution was found to be effective in the solubilization of toxic heavy metals and long half-life radionuclides (Th-230, Ra-226 and Pb-210) from uranium ores and mill tailings. The recovery of heavy metals and radionuclides from uranium mill tailing effluents was studied with calcium alginate beads. The maximum cadmium and zinc uptakes by calcium alginate beads were determined to be 2.8 {times} 10{sup {minus}3} and 2.3 {times} 10{sup {minus}3} mol/dry weight of alginate. The kinetic values, V{sub m} and K, were calculated for uranium uptake by calcium alginate to be 96.2 mg/l/s and 0.125 g/l, respectively.

  13. Scientific basis for risk assessment and management of uranium mill tailings

    SciTech Connect

    Not Available

    1986-01-01

    A National Research Council study panel, convened by the Board on Radioactive Waste Management, has examined the scientific basis for risk assessment and management of uranium mill tailings and issued this final report containing a number of recommendations. Chapter 1 provides a brief introduction to the problem. Chapter 2 examines the processes of uranium extraction and the mechanisms by which radionuclides and toxic chemicals contained in the ore can enter the environment. Chapter 3 is devoted to a review of the evidence on health risks associated with radon and its decay products. Chapter 4 provides a consideration of conventional and possible new technical alternatives for tailings management. Chapter 5 explores a number of issues of comparative risk, provides a brief history of uranium mill tailings regulation, and concludes with a discussion of choices that must be made in mill tailing risk management. 211 refs., 30 figs., 27 tabs.

  14. A quantitative model of ground-water flow during formation of tabular sandstone uranium deposits

    USGS Publications Warehouse

    Sanford, R.F.

    1994-01-01

    Presents a quantitative simulation of regional groundwater flow during uranium deposition in the Westwater Canyon Member and Jackpile Sandstone Member of the Upper Jurassic Morrison Formation in the San Juan basin. Topographic slope, shoreline position, and density contrasts in the lake and pore fluids controlled the directions of flow and recharge-discharge areas. The most important results for uranium ore deposit formation are that regional groundwater discharged throughout the basin, regional discharge was concentrated along the shore line or playa margin, flow was dominantly gravity driven, and compaction dewatering was negligible. A strong association is found between the tabular sandstone uranium deposits and major inferred zones of mixed local and regional groundwater discharge. -from Author

  15. Decontamination and decommissioning of the uranium mill and processing plant at Seelingstaedt, Germany

    SciTech Connect

    Barnekow, Ulf; Bauroth, Matthias; Paul, Michael

    2007-07-01

    In Eastern Germany uranium mining lasted from 1946 till 1990 including a production of in total 220,000 t of uranium. The Seelingstaedt Uranium Mill and Processing Plant, located in Thuringia, Germany, was one of two large uranium mills owned by Wismut. The mill was erected by 1960 and covered an area of 93 ha. From 1961 till 1991 a total of about 110 million t of different types of uranium ores were milled and processed at the Seelingstaedt mill. The mill produced ca. 110,000 t of uranium (in yellow cake). Demolition of the buildings and industrial facilities of the Seelingstaedt mill and processing plant site are nearly completed. The site is being decommissioned with respect to after-use aiming at afforestation and grasslands allowing for a stable plant succession. Decommissioning includes excavation and relocation of contaminated materials, reshaping of the site and construction of ditches for granting a stable surface runoff as well construction of access and maintenance roads. About 85% of the demolition and relocation works have been completed till to date. Last decommissioning works shall be completed by 2015. The present paper presents experiences made and progress achieved till to date. (authors)

  16. Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.

    PubMed

    Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael

    2016-03-01

    This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings.

  17. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region

    USGS Publications Warehouse

    Ludwig, K. R.; Simmons, K.R.

    1992-01-01

    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  18. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOEpatents

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  19. High loading uranium fuel plate

    DOEpatents

    Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.

    1990-01-01

    Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

  20. Clay mineralogy of the Greenvale Ore Body, Queensland, Australia: Implications for the interpretation of paleoclimate

    SciTech Connect

    Lev, S.; Anderson, K.; Ramirez, B.; Sun, H.; Swank, R.; Yost, D.; Huff, W.; Maynard, J.B. . Dept. of Geology)

    1994-03-01

    A 3--5% nickel enriched laterite in the Greenvale Ore Body of Queensland, Australia, is the result of weathering a serpentinized ultramafic intrusion. Variations in solubilities and drainage, typical of laterite deposits, resulted in the formation of three primary zones: (1) the Saprolite zone, (2) the Intermediate zone, and (3) the Limonite zone. Within these zones, clay mineral species with distinct chemistries and/or mineralogies have been identified, including: Ni-rich Smectite, Halloysite, and Palygorskite. Clay minerals were analyzed using powder X-ray diffraction and SEM. Bulk chemistry was determined by X-ray fluorescence in an attempt to better constrain the chemical conditions at the time of formation of the clay minerals. Results indicate a complex drainage system and history for the Greenvale Ore Body. Based on the distribution of ore grade material, it is apparent that the deposit was initially characterized by fracture controlled drainage. Owing to precipitation of Ni-rich smectite, halloysite, and palygorskite, subsequent alteration of the ore body drainage network and/or local climate can be inferred.