Sample records for graded working memory

  1. Changes in verbal and visuospatial working memory from Grade 1 to Grade 3 of primary school: Population longitudinal study.

    PubMed

    Nicolaou, E; Quach, J; Lum, J; Roberts, G; Spencer-Smith, M; Gathercole, S; Anderson, P J; Mensah, F K; Wake, M

    2018-05-01

    Adaptive working memory training is being implemented without an adequate understanding of developmental trajectories of working memory. We aimed to quantify from Grade 1 to Grade 3 of primary school (1) changes in verbal and visuospatial working memory and (2) whether low verbal and visuospatial working memory in Grade 1 predicts low working memory in Grade 3. The study design includes a population-based longitudinal study of 1,802 children (66% uptake from all 2,747 Grade 1 students) at 44 randomly selected primary schools in Melbourne, Australia. Backwards Digit Recall (verbal working memory) and Mister X (visuospatial working memory) screening measures from the Automated Working Memory Assessment (M = 100; SD = 15) were used to assess Grades 1 and 3 (ages 6-7 and 8-9 years) students. Low working memory was defined as ≥1 standard deviation below the standard score mean. Descriptive statistics addressed Aim 1, and predictive parameters addressed Aim 2. One thousand seventy (59%) of 1802 Grade 1 participants were reassessed in Grade 3. As expected for typically developing children, group mean standard scores were similar in Grades 1 and 3 for verbal, visuospatial, and overall working memory, but group mean raw scores increased markedly. Compared to "not low" children, those classified as having low working memory in Grade 1 showed much larger increases in both standard and raw scores across verbal, visuospatial, and overall working memory. Sensitivity was very low for Grade 1 low working memory predicting Grade 3 low classifications. Although mean changes in working memory standard scores between Grades 1 and 3 were minimal, we found that individual development varied widely, with marked natural resolution by Grade 3 in children who initially had low working memory. This may render brain-training interventions ineffective in the early school year ages, particularly if (as population-based programmes usually mandate) selection occurs within a screening paradigm. © 2017 John Wiley & Sons Ltd.

  2. The Development of Working Memory from Kindergarten to First Grade in Children with Different Decoding Skills

    ERIC Educational Resources Information Center

    Nevo, Einat; Breznitz, Zvia

    2013-01-01

    This study investigated the development of working memory ability (measured by tasks assessing all four working memory components) from the end of kindergarten to the end of first grade--the first year reading is taught in school--and the relationship between working memory abilities in kindergarten and first grade and reading skills in first…

  3. Involvement of Working Memory in Mental Multiplication in Chinese Elementary Students

    ERIC Educational Resources Information Center

    Liu, Ru-De; Ding, Yi; Xu, Le; Wang, Jia

    2017-01-01

    The authors' aim was to examine the relation between two-digit mental multiplication and working memory. In Study 1, involving 30 fifth-grade students, we used digit span backward as an abbreviated measure of working memory. In Study 2, involving 41 fourth-grade students, working memory comprised measures of phonological loop, visuospatial…

  4. The Relations between Early Working Memory Abilities and Later Developing Reading Skills: A Longitudinal Study from Kindergarten to Fifth Grade

    ERIC Educational Resources Information Center

    Nevo, Einat; Bar-Kochva, Irit

    2015-01-01

    This study investigated the relations of early working-memory abilities (phonological and visual-spatial short-term memory [STM] and complex memory and episodic buffer memory) and later developing reading skills. Sixty Hebrew-speaking children were followed from kindergarten through Grade 5. Working memory was tested in kindergarten and reading in…

  5. Working Memory and Individual Differences in Mathematics Achievement: A Longitudinal Study from First Grade to Second Grade

    ERIC Educational Resources Information Center

    De Smedt, Bert; Janssen, Rianne; Bouwens, Kelly; Verschaffel, Lieven; Boets, Bart; Ghesquiere, Pol

    2009-01-01

    This longitudinal study examined the relationship between working memory and individual differences in mathematics. Working memory measures, comprising the phonological loop, the visuospatial sketchpad, and the central executive, were administered at the start of first grade. Mathematics achievement was assessed 4 months later (at the middle of…

  6. Is the Use of Information and Communication Technology Related to Performance in Working Memory Tasks? Evidence from Seventh-Grade Students

    ERIC Educational Resources Information Center

    Garcia, Lucy; Nussbaum, Miguel; Preiss, David D.

    2011-01-01

    The main purpose of this study was to assess whether seventh-grade students use of information and communication technology (ICT) was related to performance on working memory tasks. In addition, the study tested whether the relationship between ICT use and performance on working memory tasks interacted with seventh-grade students' socioeconomic…

  7. Relationship of word- and sentence-level working memory to reading and writing in second, fourth, and sixth grade.

    PubMed

    Berninger, Virginia W; Abbott, Robert D; Swanson, H Lee; Lovitt, Dan; Trivedi, Pam; Lin, Shin-Ju Cindy; Gould, Laura; Youngstrom, Marci; Shimada, Shirley; Amtmann, Dagmar

    2010-04-01

    The purpose of this study was to evaluate the contribution of working memory at the word and sentence levels of language to reading and writing outcomes. Measures of working memory at the word and sentence levels, reading and writing, were administered to 2nd (N = 122), 4th (N = 222), and 6th (N = 105) graders. Structural equation modeling was used to evaluate whether the 2 predictor working memory factors contributed unique variance beyond their shared covariance to each of 5 outcome factors: handwriting, spelling, composing, word reading, and reading comprehension. At each grade level, except for handwriting and composing in 6th grade, the word-level working memory factor contributed unique variance to each reading and writing outcome. The text-level working memory factor contributed unique variance to reading comprehension in 4th and 6th grade. The clinical significance of these findings for assessment and intervention is discussed.

  8. Reactivity to stress and the cognitive components of math disability in grade 1 children.

    PubMed

    MacKinnon McQuarrie, Maureen A; Siegel, Linda S; Perry, Nancy E; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children's reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. © Hammill Institute on Disabilities 2012.

  9. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    PubMed Central

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2016-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary cortisol levels) to measure children’s reactivity while completing tasks that assess the core components of MD: working memory for numbers, working memory for words, digits backward, letter number sequence, digit span forward, processing speed for numbers and words, block rotation, and math tasks. Grade 1 children with MD obtained significantly lower scores on the letter number sequence and quantitative concepts tasks. Higher levels of reactivity significantly predicted poorer performance on the working memory for numbers, working memory for words, and quantitative concepts tasks for Grade 1 children, regardless of math ability. Grade 1 children with MD and higher reactivity had significantly lower scores on the letter number sequence task than the children with MD and low reactivity. The findings suggest that high reactivity impairs performance in working memory and math tasks in Grade 1 children, and young children with high reactivity may benefit from interventions aimed at lowering anxiety in stressful situations, which may improve learning. PMID:23124381

  10. The Differential Contributions of Auditory-Verbal and Visuospatial Working Memory on Decoding Skills in Children Who Are Poor Decoders

    ERIC Educational Resources Information Center

    Squires, Katie Ellen

    2013-01-01

    This study investigated the differential contribution of auditory-verbal and visuospatial working memory (WM) on decoding skills in second- and fifth-grade children identified with poor decoding. Thirty-two second-grade students and 22 fifth-grade students completed measures that assessed simple and complex auditory-verbal and visuospatial memory,…

  11. Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school.

    PubMed

    Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Van Luit, Johannes E H

    2015-04-01

    The relative importance of visual-spatial and verbal working memory for mathematics performance and learning seems to vary with age, the novelty of the material, and the specific math domain that is investigated. In this study, the relations between verbal and visual-spatial working memory and performance in four math domains (i.e., addition, subtraction, multiplication, and division) at different ages during primary school are investigated. Children (N = 4337) from grades 2 through 6 participated. Visual-spatial and verbal working memory were assessed using online computerized tasks. Math performance was assessed at the start, middle, and end of the school year using a speeded arithmetic test. Multilevel Multigroup Latent Growth Modeling was used to model individual differences in level and growth in math performance, and examine the predictive value of working memory per grade, while controlling for effects of classroom membership. The results showed that as grade level progressed, the predictive value of visual-spatial working memory for individual differences in level of mathematics performance waned, while the predictive value of verbal working memory increased. Working memory did not predict individual differences between children in their rate of performance growth throughout the school year. These findings are discussed in relation to three, not mutually exclusive, explanations for such age-related findings.

  12. Children’s visuospatial memory predicts mathematics achievement through early adolescence

    PubMed Central

    Li, Yaoran

    2017-01-01

    A previous study showed that gains in visuospatial memory from first to fifth grade predicted end-of-fifth grade mathematics but not reading achievement, controlling other factors. In this follow up study, these relations were assessed from sixth to ninth grade, inclusive (n = 145). The results showed that growth in visuospatial memory across the elementary school years was related to growth in mathematics achievement after fifth grade, controlling intelligence, the central executive and phonological memory components of working memory, in-class attentive behavior, parental education, and fifth grade mathematics achievement. As found for fifth grade, this relation was not found for reading achievement after fifth grade. In total, the results suggest that visuospatial memory has a unique influence on ease of learning some types of mathematics and that this influence becomes more important across successive grades. PMID:28192484

  13. Children's visuospatial memory predicts mathematics achievement through early adolescence.

    PubMed

    Li, Yaoran; Geary, David C

    2017-01-01

    A previous study showed that gains in visuospatial memory from first to fifth grade predicted end-of-fifth grade mathematics but not reading achievement, controlling other factors. In this follow up study, these relations were assessed from sixth to ninth grade, inclusive (n = 145). The results showed that growth in visuospatial memory across the elementary school years was related to growth in mathematics achievement after fifth grade, controlling intelligence, the central executive and phonological memory components of working memory, in-class attentive behavior, parental education, and fifth grade mathematics achievement. As found for fifth grade, this relation was not found for reading achievement after fifth grade. In total, the results suggest that visuospatial memory has a unique influence on ease of learning some types of mathematics and that this influence becomes more important across successive grades.

  14. Evaluating the developmental trajectory of the episodic buffer component of working memory and its relation to word recognition in children.

    PubMed

    Wang, Shinmin; Allen, Richard J; Lee, Jun Ren; Hsieh, Chia-En

    2015-05-01

    The creation of temporary bound representation of information from different sources is one of the key abilities attributed to the episodic buffer component of working memory. Whereas the role of working memory in word learning has received substantial attention, very little is known about the link between the development of word recognition skills and the ability to bind information in the episodic buffer of working memory and how it may develop with age. This study examined the performance of Grade 2 children (8 years old), Grade 3 children (9 years old), and young adults on a task designed to measure their ability to bind visual and auditory-verbal information in working memory. Children's performance on this task significantly correlated with their word recognition skills even when chronological age, memory for individual elements, and other possible reading-related factors were taken into account. In addition, clear developmental trajectories were observed, with improvements in the ability to hold temporary bound information in working memory between Grades 2 and 3, and between the child and adult groups, that were independent from memory for the individual elements. These findings suggest that the capacity to temporarily bind novel auditory-verbal information to visual form in working memory is linked to the development of word recognition in children and improves with age. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Dominance Analysis Approach to Determining Predictor Importance in Third, Seventh, and Tenth Grade Reading Comprehension Skills

    PubMed Central

    Tighe, Elizabeth; Schatschneider, Christopher

    2015-01-01

    The purpose of the present study was to investigate and rank order by importance the contributions of various cognitive predictors to reading comprehension in third, seventh, and tenth graders. An exploratory factor analysis revealed that for third grade, the best fit was a four-factor solution including Fluency, Verbal Reasoning, Nonverbal Reasoning, and Working Memory factors. For seventh and tenth grade, three-factor solutions with Fluency, Reasoning, and Working Memory factors were the best fit. The three and four-factor models were used in separate dominance analyses for each grade to rank order the factors by predictive importance to reading comprehension. Results indicated that Fluency and Verbal Reasoning were the most important predictors of third grade reading comprehension. For seventh grade, Fluency and Reasoning were the most important predictors. By tenth grade, Reasoning was the most important predictor of reading comprehension. Working Memory was the least predictive of reading comprehension across all grade levels. These results suggest that inferential reasoning skills become an important contributor to reading comprehension at increasing grade levels. PMID:26346315

  16. Strategy Choices in Simple and Complex Addition: Contributions of Working Memory and Counting Knowledge for Children with Mathematical Disability

    ERIC Educational Resources Information Center

    Geary, David C.; Hoard, Mary K.; Byrd-Craven, Jennifer; DeSoto, M. Catherine

    2004-01-01

    Groups of first-grade (mean age = 82 months), third-grade (mean age = 107 months), and fifth-grade (mean age = 131 months) children with a learning disability in mathematics (MD, n=58) and their normally achieving peers (n = 91) were administered tasks that assessed their knowledge of counting principles, working memory, and the strategies used to…

  17. Additive and Multiplicative Effects of Working Memory and Test Anxiety on Mathematics Performance in Grade 3 Students

    ERIC Educational Resources Information Center

    Korhonen, Johan; Nyroos, Mikaela; Jonsson, Bert; Eklöf, Hanna

    2018-01-01

    The aim of this study was to investigate the interplay between test anxiety and working memory (WM) on mathematics performance in younger children. A sample of 624 grade 3 students completed a test battery consisting of a test anxiety scale, WM tasks and the Swedish national examination in mathematics for grade 3. The main effects of test anxiety…

  18. First-Grade Predictors of Mathematical Learning Disability: A Latent Class Trajectory Analysis

    PubMed Central

    Geary, David C.; Bailey, Drew H.; Littlefield, Andrew; Wood, Phillip; Hoard, Mary K.; Nugent, Lara

    2009-01-01

    Kindergarten to 3rd grade mathematics achievement scores from a prospective study of mathematical development were subjected to latent growth trajectory analyses (n = 306). The four corresponding classes included children with mathematical learning disability (MLD, 6% of sample), and low (LA, 50%), typically (TA, 39%) and high (HA, 5%) achieving children. The groups were administered a battery of intelligence (IQ), working memory, and mathematical-cognition measures in 1st grade. The children with MLD had general deficits in working memory and IQ, and potentially more specific deficits on measures of number sense. The LA children did not have working memory or IQ deficits, but showed moderate deficits on these number sense measures and for addition fact retrieval. The distinguishing features of the HA children were a strong visuospatial working memory, a strong number sense, and frequent use of memory-based processes to solve addition problems. Implications for the early identification of children at risk for poor mathematics achievement are discussed. PMID:20046817

  19. Long-Term Episodic Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Skowronek, Jeffrey S.; Leichtman, Michelle D.; Pillemer, David B.

    2008-01-01

    Twenty-nine grade-matched 4th-8th-grade males, 12 with attention-deficit/hyperactivity disorder (ADHD) (age M = 12.2 years, SD = 1.48), and 17 without (age M = 11.5, SD = 1.59), completed two working memory tasks (digit span and the Simon game) and three long-term episodic memory tasks (a personal event memory task, story memory task, and picture…

  20. Predictors of Verbal Working Memory in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Peeters, Marieke; Verhoeven, Ludo; de Moor, Jan

    2009-01-01

    The goal of the present study was to examine the precursors of verbal working memory in 52 children with cerebral palsy with varying degrees of speech impairments in the first grade of special education. Following Baddeley's model of working memory, children's verbal working memory was measured by means of a forced-recognition task. As precursors…

  1. Working Memory Differences between Children Living in Rural and Urban Poverty

    ERIC Educational Resources Information Center

    Tine, Michele

    2014-01-01

    This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and…

  2. Validity of the MicroDYN Approach: Complex Problem Solving Predicts School Grades beyond Working Memory Capacity

    ERIC Educational Resources Information Center

    Schweizer, Fabian; Wustenberg, Sascha; Greiff, Samuel

    2013-01-01

    This study examines the validity of the complex problem solving (CPS) test MicroDYN by investigating a) the relation between its dimensions--rule identification (exploration strategy), rule knowledge (acquired knowledge), rule application (control performance)--and working memory capacity (WMC), and b) whether CPS predicts school grades in…

  3. Threshold relationship between lesion extent of the cholinergic basal forebrain in the rat and working memory impairment in the radial maze.

    PubMed

    Wrenn, C C; Lappi, D A; Wiley, R G

    1999-11-20

    The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex.

  4. Developmental Changes in Working Memory, Updating, and Math Achievement

    ERIC Educational Resources Information Center

    Lee, Kerry; Bull, Rebecca

    2016-01-01

    Children with higher working memory or updating (WMU) capacity perform better in math. What is less clear is whether and how this relation varies with grade. Children (N = 673, kindergarten to Grade 9) participated in a 4-year cross-sequential study. Data from 3 WMU (Listening Recall, Mr. X, and an updating task) and a standardized math task…

  5. Working memory in Farsi-speaking children with normal development and cochlear implant.

    PubMed

    Soleymani, Zahra; Amidfar, Meysam; Dadgar, Hooshang; Jalaie, Shohre

    2014-04-01

    Working memory has an important role in language acquisition and development of cognition skills. The ability of encoding, storage and retrieval of phonological codes, as activities of working memory, acquired by audition sense. Children with cochlear implant experience a period that they are not able to perceive sounds. In order to assess the effect of hearing on working memory, we investigated working memory as a cognition skill in children with normal development and cochlear implant. Fifty students with normal hearing and 50 students with cochlear implant aged 5-7 years participated in this study. Children educated in the preschool, the first and second grades. Children with normal development were matched based on age, gender, and grade of education with cochlear implant. Two components of working memory including phonological loop and central executive were compared between two groups. Phonological loop assessed by nonword repetition task and forward digit span. To assess central executive component backward digit span was used. The developmental trend was studied in children with normal development and cochlear implant as well. The effect of age at implantation in children with cochlear implants on components of working memory was investigated. There are significant differences between children with normal development and cochlear implant in all tasks that assess working memory (p < 0.001). The children's age at implantation was negatively correlated with all tasks (p < 0.001). In contrast, duration of usage of cochlear implant set was positively correlated with all tasks (p < 0.001). The comparison of working memory between different grades showed significant differences both in children with normal development and in children with cochlear implant (p < 0.05). These results implied that children with cochlear implant may experience difficulties in working memory. Therefore, these children have problems in encoding, practicing, and repeating phonological units. The results also suggested working memory develops when the child grows up. In cochlear implant children, with decreasing age at implantation and increasing their experience in perceiving sound, working memory skills improved. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Developmental gains in visuospatial memory predict gains in mathematics achievement.

    PubMed

    Li, Yaoran; Geary, David C

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.

  7. Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement

    PubMed Central

    Li, Yaoran; Geary, David C.

    2013-01-01

    Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154

  8. A Metacognitive Visuospatial Working Memory Training for Children

    ERIC Educational Resources Information Center

    Caviola, Sara; Mammarella, Irene C.; Cornoldi, Cesare; Lucangeli, Daniela

    2009-01-01

    The paper studies whether visuospatial working memory (VSWM) and, specifically, recall of sequential-spatial information, can be improved by metacognitive training. Twenty-two fourth-grade children were involved in seven sessions of sequential-spatial memory training, while twenty-four children attended lessons given by their teacher. The…

  9. Working Memory Differences Between Children Living in Rural and Urban Poverty

    PubMed Central

    Tine, Michele

    2014-01-01

    This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and high-income urban developmental contexts. Both low-income rural and low-income urban children showed working memory deficits compared with their high-income counterparts, but their deficits were distinct. Low-income urban children exhibited symmetrical verbal and visuospatial working memory deficits compared with their high-income urban counterparts. Meanwhile, low-income rural children exhibited asymmetrical deficits when compared with their high-income rural counterparts, with more extreme visuospatial working memory deficits than verbal working memory deficits. These results suggest that different types of poverty are associated with different working memory abilities. PMID:25554726

  10. Working Memory Differences Between Children Living in Rural and Urban Poverty.

    PubMed

    Tine, Michele

    2014-10-02

    This study was designed to investigate if the working memory profiles of children living in rural poverty are distinct from the working memory profiles of children living in urban poverty. Verbal and visuospatial working memory tasks were administered to sixth-grade students living in low-income rural, low-income urban, high-income rural, and high-income urban developmental contexts. Both low-income rural and low-income urban children showed working memory deficits compared with their high-income counterparts, but their deficits were distinct. Low-income urban children exhibited symmetrical verbal and visuospatial working memory deficits compared with their high-income urban counterparts. Meanwhile, low-income rural children exhibited asymmetrical deficits when compared with their high-income rural counterparts, with more extreme visuospatial working memory deficits than verbal working memory deficits. These results suggest that different types of poverty are associated with different working memory abilities.

  11. Pathways to Third-Grade Calculation versus Word-Reading Competence: Are They More Alike or Different?

    PubMed Central

    Fuchs, Lynn S.; Geary, David C.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.

    2015-01-01

    Children (n=747; 6.5 years) were assessed on domain-general processes and mathematics and reading-related competencies (start of 1st grade); addition retrieval (end of 2nd grade); and calculations and word reading (end of 3rd grade). Attentive behavior, reasoning, visuospatial memory, and rapid automatized naming (RAN) indirectly contributed to both outcomes, via retrieval. However, there was no overlap in domain-general direct effects on calculations (attentive behavior, reasoning, working memory) versus word reading (language, phonological memory, RAN). Results suggest ease of forming associative relations and abilities engaged during the formation of these long-term memories are common to both outcomes and can be indexed by addition fact retrieval, but further growth in calculations and word reading is driven by different constellations of domain-general abilities. PMID:26700885

  12. It's Greek to me: Domain specific relationships between intellectual helplessness and academic performance.

    PubMed

    Krejtz, Izabela; Nezlek, John B

    2016-01-01

    In a study of the domain specificity of intellectual learned helplessness, we collected data from 376 students in 14 classrooms. We measured feelings of intellectual helplessness for mathematics and language skills, anxiety about performance in each of these domains, and general working memory. Multilevel modeling analyses found that feelings of helplessness in language skills were negatively related to grades in language but were unrelated to grades in mathematics. Similarly, feelings of helplessness in mathematics were negatively related to grades in mathematics but were unrelated to grades in language. Controlling for anxiety or working memory did not change these relationships, nor did they vary across the age of students. The results support conceptualizations in which learned helplessness has a domain specific component.

  13. Visual working memory and number sense: Testing the double deficit hypothesis in mathematics.

    PubMed

    Toll, Sylke W M; Kroesbergen, Evelyn H; Van Luit, Johannes E H

    2016-09-01

    Evidence exists that there are two main underlying cognitive factors in mathematical difficulties: working memory and number sense. It is suggested that real math difficulties appear when both working memory and number sense are weak, here referred to as the double deficit (DD) hypothesis. The aim of this study was to test the DD hypothesis within a longitudinal time span of 2 years. A total of 670 children participated. The mean age was 4.96 years at the start of the study and 7.02 years at the end of the study. At the end of the first year of kindergarten, both visual-spatial working memory and number sense were measured by two different tasks. At the end of first grade, mathematical performance was measured with two tasks, one for math facts and one for math problems. Multiple regressions revealed that both visual working memory and symbolic number sense are predictors of mathematical performance in first grade. Symbolic number sense appears to be the strongest predictor for both math areas (math facts and math problems). Non-symbolic number sense only predicts performance in math problems. Multivariate analyses of variance showed that a combination of visual working memory and number sense deficits (NSDs) leads to the lowest performance on mathematics. Our DD hypothesis was confirmed. Both visual working memory and symbolic number sense in kindergarten are related to mathematical performance 2 years later, and a combination of visual working memory and NSDs leads to low performance in mathematical performance. © 2016 The British Psychological Society.

  14. Pathways to Third-Grade Calculation Versus Word-Reading Competence: Are They More Alike or Different?

    PubMed

    Fuchs, Lynn S; Geary, David C; Fuchs, Douglas; Compton, Donald L; Hamlett, Carol L

    2016-01-01

    Children (n = 747; 6.5 years) were assessed on domain-general processes and mathematics and reading-related competencies (start of first grade), addition retrieval (end of second grade), and calculations and word reading (end of third grade). Attentive behavior, reasoning, visuospatial memory, and rapid automatized naming (RAN) indirectly contributed to both outcomes, via retrieval. However, there was no overlap in domain-general direct effects on calculations (attentive behavior, reasoning, working memory) versus word reading (language, phonological memory, RAN). Results suggest ease of forming associative relations and abilities engaged during the formation of these long-term memories are common to both outcomes and can be indexed by addition-fact retrieval, but further growth in calculations and word reading is driven by different constellations of domain-general abilities. © 2015 The Authors. Child Development © 2015 Society for Research in Child Development, Inc.

  15. Text Comprehension in Chinese Children: Relative Contribution of Verbal Working Memory, Pseudoword Reading, Rapid Automated Naming, and Onset-Rime Phonological Segmentation

    ERIC Educational Resources Information Center

    Leong, Che Kan; Tse, Shek Kam; Loh, Ka Yee; Hau, Kit Tai

    2008-01-01

    The present study examined the role of verbal working memory (memory span, tongue twister), 2-character Chinese pseudoword reading, rapid automatized naming (letters, numbers), and phonological segmentation (deletion of rimes and onsets) in inferential text comprehension in Chinese in 518 Chinese children in Hong Kong in Grades 3 to 5. It was…

  16. The Relations between Number Property Strategies, Working Memory, and Multiplication in Elementary Students

    ERIC Educational Resources Information Center

    Liu, Ru-De; Ding, Yi; Gao, Bing-Cheng; Zhang, Dake

    2015-01-01

    This study aimed to examine the relations among property strategies, working memory, and multiplication tasks with 101 Chinese fourth-grade students. Two multiplication property strategies (associative and distributive) were compared with no strategy and demonstrated differentiated effects on students' accuracy and reaction time. Associative…

  17. Developmental Change in the Influence of Domain-General Abilities and Domain-Specific Knowledge on Mathematics Achievement: An Eight-Year Longitudinal Study

    PubMed Central

    Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo

    2016-01-01

    The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects and domain-specific effects were indexed by prior grade mathematics achievement and mathematical cognition measures of prior grade number knowledge, addition skills, and fraction knowledge. Use of functional data analysis enabled grade-by-grade estimation of overall domain-general and domain-specific effects on subsequent mathematics achievement, the relative importance of individual domain-general and domain-specific variables on this achievement, and linear and non-linear across-grade estimates of these effects. The overall importance of domain-general abilities for subsequent achievement was stable across grades, with working memory emerging as the most important domain-general ability in later grades. The importance of prior mathematical competencies on subsequent mathematics achievement increased across grades, with number knowledge and arithmetic skills critical in all grades and fraction knowledge in later grades. Overall, domain-general abilities were more important than domain-specific knowledge for mathematics learning in early grades but general abilities and domain-specific knowledge were equally important in later grades. PMID:28781382

  18. Development of Number Line Representations in Children With Mathematical Learning Disability

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Byrd-Craven, Jennifer

    2015-01-01

    Children with a mathematical learning disability (MLD, n = 19) and low achieving (LA, n = 43) children were identified using mathematics achievement scores below the 11th percentile and between the 11th and 25th percentiles, respectively. A control group of typically achieving (TA, n = 50) children was also identified. Number line and speed of processing tasks were administered in 1st and 2nd grade and a working memory battery in 1st grade. In both grades, the MLD children were less accurate in their number line placements and more reliant on a natural number-magnitude representational system to make these placements than were TA children. The TA children were more reliant on the school-taught linear system in both grades. The performance of the LA children was similar to that of the MLD children in first grade and to the TA children in second. The central executive component of working memory contributed to across-grade improvements in number line performance and to group differences in this performance. PMID:18473200

  19. Working memory capacity predicts listwise directed forgetting in adults and children.

    PubMed

    Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T

    2010-05-01

    In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.

  20. The Cognitive Predictors of Computational Skill with Whole versus Rational Numbers: An Exploratory Study.

    PubMed

    Seethaler, Pamela M; Fuchs, Lynn S; Star, Jon R; Bryant, Joan

    2011-10-01

    The purpose of the present study was to explore the 3(rd)-grade cognitive predictors of 5th-grade computational skill with rational numbers and how those are similar to and different from the cognitive predictors of whole-number computational skill. Students (n = 688) were assessed on incoming whole-number calculation skill, language, nonverbal reasoning, concept formation, processing speed, and working memory in the fall of 3(rd) grade. Students were followed longitudinally and assessed on calculation skill with whole numbers and with rational numbers in the spring of 5(th) grade. The unique predictors of skill with whole-number computation were incoming whole-number calculation skill, nonverbal reasoning, concept formation, and working memory (numerical executive control). In addition to these cognitive abilities, language emerged as a unique predictor of rational-number computational skill.

  1. The Cognitive Predictors of Computational Skill with Whole versus Rational Numbers: An Exploratory Study

    PubMed Central

    Seethaler, Pamela M.; Fuchs, Lynn S.; Star, Jon R.; Bryant, Joan

    2011-01-01

    The purpose of the present study was to explore the 3rd-grade cognitive predictors of 5th-grade computational skill with rational numbers and how those are similar to and different from the cognitive predictors of whole-number computational skill. Students (n = 688) were assessed on incoming whole-number calculation skill, language, nonverbal reasoning, concept formation, processing speed, and working memory in the fall of 3rd grade. Students were followed longitudinally and assessed on calculation skill with whole numbers and with rational numbers in the spring of 5th grade. The unique predictors of skill with whole-number computation were incoming whole-number calculation skill, nonverbal reasoning, concept formation, and working memory (numerical executive control). In addition to these cognitive abilities, language emerged as a unique predictor of rational-number computational skill. PMID:21966180

  2. Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.

    PubMed

    Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N

    2017-08-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  3. Is rapid automatized naming related to reading and mathematics for the same reason(s)? A follow-up study from kindergarten to Grade 1.

    PubMed

    Georgiou, George K; Tziraki, Niki; Manolitsis, George; Fella, Argyro

    2013-07-01

    We examined (a) what rapid automatized naming (RAN) components (articulation time and/or pause time) predict reading and mathematics ability and (b) what processing skills involved in RAN (speed of processing, response inhibition, working memory, and/or phonological awareness) may explain its relationship with reading and mathematics. A sample of 72 children were followed from the beginning of kindergarten until the end of Grade 1 and were assessed on measures of RAN, general cognitive ability, speed of processing, attention, working memory, phonological awareness, reading, and mathematics. The results indicated that pause time was the critical component in both the RAN-reading and RAN-mathematics relationships and that it shared most of its predictive variance in reading and mathematics with speed of processing and working memory. Our findings further suggested that, unlike the relationship between RAN and reading fluency in Grade 1, there is nothing in the RAN task that is uniquely related to math. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. The Roles of Cognitive and Motivational Predictors in Explaining School Achievement in Elementary School

    ERIC Educational Resources Information Center

    Weber, Heike S.; Lu, Liping; Shi, Jiannong; Spinath, Frank M.

    2013-01-01

    The present study investigated the roles of cognitive (working memory, intelligence) and motivational variables (self-perceived ability, intrinsic value) in explaining school achievement. The sample consisted of N = 320 German elementary school children in the fourth grade. Working memory and intelligence were assessed in the classroom.…

  5. Working Memory Load and Automaticity in Relation to Mental Multiplication

    ERIC Educational Resources Information Center

    Ding, Yi; Liu, Ru-De; Xu, Le; Wang, Jia; Zhang, Dake

    2017-01-01

    The authors' aim was to examine the relations among mental multiplication, working memory load (WML), and automaticity by alternating the difficulty level of task characteristics. In Experiment 1, involving 30 fifth-grade students with mixed abilities, a 2 (WML) × 2 (automaticity) design was utilized. In Experiment 2, involving 21 high-achieving…

  6. Working Memory Components as Predictors of Children's Mathematical Word Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Xinhua; Swanson, H. Lee; Marcoulides, George A.

    2011-01-01

    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N = 310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM,…

  7. A Longitudinal Examination of the Persistence of Late Emerging Reading Disabilities.

    PubMed

    Etmanskie, Jill M; Partanen, Marita; Siegel, Linda S

    2016-01-01

    There are some children who encounter unexpected reading difficulties in the fourth grade. This phenomenon has been described as late emerging reading disabilities (LERD). Using Grade 4 as a starting point, this study examined the reading development of 964 children between kindergarten and Grade 7. The results showed that 72.0% of children had typical reading performance in Grade 4, whereas there was 0.7% with poor word reading, 12.6% with poor reading comprehension, 2.5% with poor word reading and comprehension, and 12.2% with borderline performance. We also showed that there were similar proportions of children who had early versus late emerging reading difficulties; however, most of the late emerging poor readers recovered by Grade 7. Furthermore, our study showed that poor comprehenders showed poorer performance than typical readers on word reading, pseudoword decoding, and spelling between Grade 1 and Grade 7 and poorer performance on a working memory task in kindergarten. Overall, this study showed that most children recover from late emerging reading problems and that working memory may be an early indicator for reading comprehension difficulties. © Hammill Institute on Disabilities 2014.

  8. Cognitive Predictors of Achievement Growth in Mathematics: A Five Year Longitudinal Study

    PubMed Central

    Geary, David C.

    2011-01-01

    The study's goal was to identify the beginning of first grade quantitative competencies that predict mathematics achievement start point and growth through fifth grade. Measures of number, counting, and arithmetic competencies were administered in early first grade and used to predict mathematics achievement through fifth (n = 177), while controlling for intelligence, working memory, and processing speed. Multilevel models revealed intelligence, processing speed, and the central executive component of working memory predicted achievement or achievement growth in mathematics and, as a contrast domain, word reading. The phonological loop was uniquely predictive of word reading and the visuospatial sketch pad of mathematics. Early fluency in processing and manipulating numerical set size and Arabic numerals, accurate use of sophisticated counting procedures for solving addition problems, and accuracy in making placements on a mathematical number line were uniquely predictive of mathematics achievement. Use of memory-based processes to solve addition problems predicted mathematics and reading achievement but in different ways. The results identify the early quantitative competencies that uniquely contribute to mathematics learning. PMID:21942667

  9. Working Memory, Attention, and Mathematical Problem Solving: A Longitudinal Study of Elementary School Children

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2011-01-01

    The role of working memory (WM) in children's growth in mathematical problem solving was examined in a longitudinal study of children (N = 127). A battery of tests was administered that assessed problem solving, achievement, WM, and cognitive processing (inhibition, speed, phonological coding) in Grade 1 children, with follow-up testing in Grades…

  10. The Contribution of Verbal Working Memory to Deaf Children's Oral and Written Production

    ERIC Educational Resources Information Center

    Arfé, Barbara; Rossi, Cristina; Sicoli, Silvia

    2015-01-01

    This study investigated the contribution of verbal working memory to the oral and written story production of deaf children. Participants were 29 severely to profoundly deaf children aged 8-13 years and 29 hearing controls, matched for grade level. The children narrated a picture story orally and in writing and performed a reading comprehension…

  11. The Association between Working Memory and Educational Attainment as Measured in Different Mathematical Subtopics in the Swedish National Assessment: Primary Education

    ERIC Educational Resources Information Center

    Nyroos, Mikaela; Wiklund-Hornqvist, Carola

    2012-01-01

    The aim of this study was to examine the relationship between working memory capacity and mathematical performance measured by the national curriculum assessment in third-grade children (n = 40). The national tests concerned six subareas within mathematics. One-way ANOVA, two-tailed Pearson correlation and multiple regression analyses were…

  12. The Influence of Working Memory and Phonological Processing on English Language Learner Children's Bilingual Reading and Language Acquisition

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Orosco, Michael J.; Lussier, Cathy M.; Gerber, Michael M.; Guzman-Orth, Danielle A.

    2011-01-01

    In this study, we explored whether the contribution of working memory (WM) to children's (N = 471) 2nd language (L2) reading and language acquisition was best accounted for by processing efficiency at a phonological level and/or by executive processes independent of phonological processing. Elementary school children (Grades 1, 2, & 3) whose…

  13. Text Comprehension Mediates Morphological Awareness, Syntactic Processing, and Working Memory in Predicting Chinese Written Composition Performance

    PubMed Central

    Guan, Connie Qun; Ye, Feifei; Wagner, Richard K.; Meng, Wanjin; Leong, Che Kan

    2014-01-01

    The goal of the present study was to test opposing views about four issues concerning predictors of individual differences in Chinese written composition: (a) Whether morphological awareness, syntactic processing, and working memory represent distinct and measureable constructs in Chinese or are just manifestations of general language ability; (b) whether they are important predictors of Chinese written composition, and if so, the relative magnitudes and independence of their predictive relations; (c) whether observed predictive relations are mediated by text comprehension; and (d) whether these relations vary or are developmentally invariant across three years of writing development. Based on analyses of the performance of students in grades 4 (n = 246), 5 (n = 242) and 6 (n = 261), the results supported morphological awareness, syntactic processing, and working memory as distinct yet correlated abilities that made independent contributions to predicting Chinese written composition, with working memory as the strongest predictor. However, predictive relations were mediated by text comprehension. The final model accounted for approximately 75 percent of the variance in Chinese written composition. The results were largely developmentally invariant across the three grades from which participants were drawn. PMID:25530630

  14. Muscular and Aerobic Fitness, Working Memory, and Academic Achievement in Children.

    PubMed

    Kao, Shih-Chun; Westfall, Daniel R; Parks, Andrew C; Pontifex, Matthew B; Hillman, Charles H

    2017-03-01

    This study investigated the relationship between aerobic and muscular fitness with working memory and academic achievement in preadolescent children. Seventy-nine 9- to 11-yr-old children completed an aerobic fitness assessment using a graded exercise test; a muscular fitness assessment consisting of upper body, lower body, and core exercises; a serial n-back task to assess working memory; and an academic achievement test of mathematics and reading. Hierarchical regression analyses indicated that after controlling for demographic variables (age, sex, grade, IQ, socioeconomic status), aerobic fitness was associated with greater response accuracy and d' in the 2-back condition and increased mathematic performance in algebraic functions. Muscular fitness was associated with increased response accuracy and d', and longer reaction time in the 2-back condition. Further, the associations of muscular fitness with response accuracy and d' in the 2-back condition were independent of aerobic fitness. The current findings suggest the differential relationships between the aerobic and the muscular aspects of physical fitness with working memory and academic achievement. With the majority of research focusing on childhood health benefits of aerobic fitness, this study suggests the importance of muscular fitness to cognitive health during preadolescence.

  15. Can improving working memory prevent academic difficulties? A school based randomised controlled trial.

    PubMed

    Roberts, Gehan; Quach, Jon; Gold, Lisa; Anderson, Peter; Rickards, Field; Mensah, Fiona; Ainley, John; Gathercole, Susan; Wake, Melissa

    2011-06-20

    Low academic achievement is common and is associated with adverse outcomes such as grade repetition, behavioural disorders and unemployment. The ability to accurately identify these children and intervene before they experience academic failure would be a major advance over the current 'wait to fail' model. Recent research suggests that a possible modifiable factor for low academic achievement is working memory, the ability to temporarily store and manipulate information in a 'mental workspace'. Children with working memory difficulties are at high risk of academic failure. It has recently been demonstrated that working memory can be improved with adaptive training tasks that encourage improvements in working memory capacity. Our trial will determine whether the intervention is efficacious as a selective prevention strategy for young children at risk of academic difficulties and is cost-effective. This randomised controlled trial aims to recruit 440 children with low working memory after a school-based screening of 2880 children in Grade one. We will approach caregivers of all children from 48 participating primary schools in metropolitan Melbourne for consent. Children with low working memory will be randomised to usual care or the intervention. The intervention will consist of 25 computerised working memory training sessions, which take approximately 35 minutes each to complete. Follow-up of children will be conducted at 6, 12 and 24 months post-randomisation through child face-to-face assessment, parent and teacher surveys and data from government authorities. The primary outcome is academic achievement at 12 and 24 months, and other outcomes include child behaviour, attention, health-related quality of life, working memory, and health and educational service utilisation. A successful start to formal learning in school sets the stage for future academic, psychological and economic well-being. If this preventive intervention can be shown to be efficacious, then we will have the potential to prevent academic underachievement in large numbers of at-risk children, to offer a ready-to-use intervention to the Australian school system and to build international research partnerships along the health-education interface, in order to carry our further studies of effectiveness and generalisability.

  16. The Relations between Children's Reading Comprehension, Working Memory, Language Skills and Components of Reading Decoding in a Normal Sample

    ERIC Educational Resources Information Center

    Goff, Deborah A.; Pratt, Chris; Ong, Ben

    2005-01-01

    The primary aim of the current study was to identify the strongest independent predictors of reading comprehension using word reading, language and memory variables in a normal sample of 180 children in grades 3-5, with a range of word reading skills. It was hypothesized that orthographic processing, receptive vocabulary and verbal working memory…

  17. Applying a Multiple Group Causal Indicator Modeling Framework to the Reading Comprehension Skills of Third, Seventh, and Tenth Grade Students

    PubMed Central

    Tighe, Elizabeth L.; Wagner, Richard K.; Schatschneider, Christopher

    2015-01-01

    This study demonstrates the utility of applying a causal indicator modeling framework to investigate important predictors of reading comprehension in third, seventh, and tenth grade students. The results indicated that a 4-factor multiple indicator multiple indicator cause (MIMIC) model of reading comprehension provided adequate fit at each grade level. This model included latent predictor constructs of decoding, verbal reasoning, nonverbal reasoning, and working memory and accounted for a large portion of the reading comprehension variance (73% to 87%) across grade levels. Verbal reasoning contributed the most unique variance to reading comprehension at all grade levels. In addition, we fit a multiple group 4-factor MIMIC model to investigate the relative stability (or variability) of the predictor contributions to reading comprehension across development (i.e., grade levels). The results revealed that the contributions of verbal reasoning, nonverbal reasoning, and working memory to reading comprehension were stable across the three grade levels. Decoding was the only predictor that could not be constrained to be equal across grade levels. The contribution of decoding skills to reading comprehension was higher in third grade and then remained relatively stable between seventh and tenth grade. These findings illustrate the feasibility of using MIMIC models to explain individual differences in reading comprehension across the development of reading skills. PMID:25821346

  18. Arithmetic difficulties in children with cerebral palsy are related to executive function and working memory.

    PubMed

    Jenks, Kathleen M; de Moor, Jan; van Lieshout, Ernest C D M

    2009-07-01

    Although it is believed that children with cerebral palsy are at high risk for learning difficulties and arithmetic difficulties in particular, few studies have investigated this issue. Arithmetic ability was longitudinally assessed in children with cerebral palsy in special (n = 41) and mainstream education (n = 16) and controls in mainstream education (n = 16). Second grade executive function and working memory scores were used to predict third grade arithmetic accuracy and response time. Children with cerebral palsy in special education were less accurate and slower than their peers on all arithmetic tests, even after controlling for IQ, whereas children with cerebral palsy in mainstream education performed as well as controls. Although the performance gap became smaller over time, it did not disappear. Children with cerebral palsy in special education showed evidence of executive function and working memory deficits in shifting, updating, visuospatial sketchpad and phonological loop (for digits, not words) whereas children with cerebral palsy in mainstream education only had a deficit in visuospatial sketchpad. Hierarchical regression revealed that, after controlling for intelligence, components of executive function and working memory explained large proportions of unique variance in arithmetic accuracy and response time and these variables were sufficient to explain group differences in simple, but not complex, arithmetic. Children with cerebral palsy are at risk for specific executive function and working memory deficits that, when present, increase the risk for arithmetic difficulties in these children.

  19. Developmental Change in the Influence of Domain-General Abilities and Domain-Specific Knowledge on Mathematics Achievement: An Eight-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Geary, David C.; Nicholas, Alan; Li, Yaoran; Sun, Jianguo

    2017-01-01

    The contributions of domain-general abilities and domain-specific knowledge to subsequent mathematics achievement were longitudinally assessed (n = 167) through 8th grade. First grade intelligence and working memory and prior grade reading achievement indexed domain-general effects, and domain-specific effects were indexed by prior grade…

  20. Does Growth in the Executive System of Working Memory Underlie Growth in Literacy for Bilingual Children with and without Reading Disabilities?

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Orosco, Michael J.; Kudo, Milagros

    2017-01-01

    This cohort-sequential study explored the components of working memory (WM) that underlie second language (L2) reading growth in 450 children at risk and not at risk for reading disabilities (RD) whose first language is Spanish. English language learners designated as balanced and nonbalanced bilinguals with and without risk for RD in Grades 1, 2,…

  1. Verbal Working Memory in Children With Cochlear Implants

    PubMed Central

    Caldwell-Tarr, Amanda; Low, Keri E.; Lowenstein, Joanna H.

    2017-01-01

    Purpose Verbal working memory in children with cochlear implants and children with normal hearing was examined. Participants Ninety-three fourth graders (47 with normal hearing, 46 with cochlear implants) participated, all of whom were in a longitudinal study and had working memory assessed 2 years earlier. Method A dual-component model of working memory was adopted, and a serial recall task measured storage and processing. Potential predictor variables were phonological awareness, vocabulary knowledge, nonverbal IQ, and several treatment variables. Potential dependent functions were literacy, expressive language, and speech-in-noise recognition. Results Children with cochlear implants showed deficits in storage and processing, similar in size to those at second grade. Predictors of verbal working memory differed across groups: Phonological awareness explained the most variance in children with normal hearing; vocabulary explained the most variance in children with cochlear implants. Treatment variables explained little of the variance. Where potentially dependent functions were concerned, verbal working memory accounted for little variance once the variance explained by other predictors was removed. Conclusions The verbal working memory deficits of children with cochlear implants arise due to signal degradation, which limits their abilities to acquire phonological awareness. That hinders their abilities to store items using a phonological code. PMID:29075747

  2. Phonological awareness and the working memory of children with and without literacy difficulties.

    PubMed

    Cardoso, Andreia Martins de Souza; Silva, Mônica Marins da; Pereira, Mônica Medeiros de Britto

    2013-01-01

    To investigate phonological awareness and working memory skills as well as their influence on the literacy process in a group of intellectually normal children. Forty intellectually normal children (7.6-8.0 years) from the second and third grades of elementary school participated. Children were organized in two groups (20 children each): one with and another without literacy difficulties. These participants underwent RAVEN's intelligence quotient test, audiometric assessment, CONFIAS test of phonological awareness, written spelling task, and working memory test. Children in the alphabetic phase presented a good development of phonological awareness, and 85% of them showed a high-performance working memory. Children in the syllabic-alphabetic phase had changes in phonological awareness, and 91.6% of them showed an average working memory performance. The subjects at pre-syllabic and syllabic phases demonstrated more difficulties in phonological awareness than those at syllabic-alphabetic and had a poor working memory performance. Between-group differences were observed for CONFIAS and working memory tests (p<0.0001). There was also a significant correlation (r=0.78, p=0.01) between the skills of phonological awareness and working memory for the total sample of individuals. Based on these results, it was found that as phonological awareness and working memory levels increased, the literacy phase also advanced, therefore showing that these are directly proportional measures.

  3. Developmental Relations between Reading Comprehension and Reading Strategies

    ERIC Educational Resources Information Center

    Muijselaar, Marloes M. L.; Swart, Nicole M.; Steenbeek-Planting, Esther G.; Droop, Mienke; Verhoeven, Ludo; de Jong, Peter F.

    2017-01-01

    We examined the developmental relations between knowledge of reading strategies and reading comprehension in a longitudinal study of 312 Dutch children from the beginning of fourth grade to the end of fifth grade. Measures for reading comprehension, reading strategies, reading fluency, vocabulary, and working memory were administered. A structural…

  4. Changes in cognitive functions of students in the transitional period from elementary school to junior high school.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Sasabe, Tetsuya; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi

    2011-05-01

    When students proceed to junior high school from elementary school, rapid changes in the environment occur, which may cause various behavioral and emotional problems. However, the changes in cognitive functions during this transitional period have rarely been studied. In 158 elementary school students from 4th- to 6th-grades and 159 junior high school students from 7th- to 9th-grades, we assessed various cognitive functions, including motor processing, spatial construction ability, semantic fluency, immediate memory, delayed memory, spatial and non-spatial working memory, and selective, alternative, and divided attention. Our findings showed that performance on spatial and non-spatial working memory, alternative attention, divided attention, and semantic fluency tasks improved from elementary to junior high school. In particular, performance on alternative and divided attention tasks improved during the transitional period from elementary to junior high school. Our finding suggests that development of alternative and divided attention is of crucial importance in the transitional period from elementary to junior high school. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  5. Experimental demonstration of the influence of alcohol advertising on the activation of alcohol expectancies in memory among fourth- and fifth-grade children.

    PubMed

    Dunn, M E; Yniguez, R M

    1999-11-01

    Previous work has demonstrated that children's organization and activation of alcohol expectancies in memory vary as a function of alcohol use, even among children as young as in the 3rd grade. To advance the understanding of influences on the development of alcohol expectancies in children, 551 4th- and 5th-grade children were exposed to 5 beer commercials or 5 soft drink commercials. After viewing the advertisements, all children reported their 1st associate to an alcohol prompt and completed a memory model-based measure of children's alcohol expectancies. Multidimensional scaling was used to map expectancies into hypothetical memory network format, and preference mapping was used to derive possible paths of activation. Children who viewed beer commercials were more likely to activate positive and arousing alcohol expectancies. In view of previous findings demonstrating that this pattern of activation corresponded to higher drinking among 3rd, 6th, 9th, and 12th graders, the present findings suggested that antecedents to drinking like exposure to advertising may promote heavier drinking among children by influencing the activation of expectancies in memory.

  6. Relationship between cognitive function and prevalence of decrease in intrinsic academic motivation in adolescents

    PubMed Central

    2011-01-01

    Background Decrease in intrinsic motivation is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance by these students, we examined whether cognitive functions are related to the prevalence of decrease in intrinsic academic motivation. Methods The study group consisted of 134 elementary school students from 4th to 6th grades and 133 junior high school students from 7th to 9th grades. Participants completed a questionnaire on intrinsic academic motivation. They also performed paper-and-pencil and computerized cognitive tests to measure abilities in motor processing, spatial construction, semantic fluency, immediate memory, short-term memory, delayed memory, spatial working memory, and selective, alternative, and divided attention. Results In multivariate logistic regression analyses adjusted for grade and gender, scores of none of the cognitive tests were correlated with the prevalence of decrease in intrinsic academic motivation in elementary school students. However, low digit span forward test score and score for comprehension of the story in the kana pick-out test were positively correlated with the prevalence of decrease in intrinsic academic motivation in junior high school students. Conclusions The present findings suggest that decrease in capacity for verbal memory is associated with the prevalence of decrease in intrinsic academic motivation among junior high school students. PMID:21235802

  7. Relationship between cognitive function and prevalence of decrease in intrinsic academic motivation in adolescents.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi

    2011-01-14

    Decrease in intrinsic motivation is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance by these students, we examined whether cognitive functions are related to the prevalence of decrease in intrinsic academic motivation. The study group consisted of 134 elementary school students from 4th to 6th grades and 133 junior high school students from 7th to 9th grades. Participants completed a questionnaire on intrinsic academic motivation. They also performed paper-and-pencil and computerized cognitive tests to measure abilities in motor processing, spatial construction, semantic fluency, immediate memory, short-term memory, delayed memory, spatial working memory, and selective, alternative, and divided attention. In multivariate logistic regression analyses adjusted for grade and gender, scores of none of the cognitive tests were correlated with the prevalence of decrease in intrinsic academic motivation in elementary school students. However, low digit span forward test score and score for comprehension of the story in the kana pick-out test were positively correlated with the prevalence of decrease in intrinsic academic motivation in junior high school students. The present findings suggest that decrease in capacity for verbal memory is associated with the prevalence of decrease in intrinsic academic motivation among junior high school students.

  8. Predicting the reading skill of Japanese children.

    PubMed

    Ogino, Tatsuya; Hanafusa, Kaoru; Morooka, Teruko; Takeuchi, Akihito; Oka, Makio; Ohtsuka, Yoko

    2017-02-01

    To clarify cognitive processes underlining the development of reading in children speaking Japanese as their first language, we examined relationships between performances of cognitive tasks in the preschool period and later reading abilities. Ninety-one normally developing preschoolers (41 girls and 50 boys; 5years 4months to 6years 4months, mean 5years 10months) participated as subjects. We conducted seven cognitive tasks including phonological awareness tasks, naming tasks, and working memory tasks in the preschool period. In terms of reading tasks, the hiragana naming task was administered in the preschool period; the reading times, which is a composite score of the monomoraic syllable reading task, the word and the non-word reading tasks, and the single sentence reading task, was evaluated in first and second grade; and the kanji reading task (naming task) was tested in second grade. Raven's colored progressive matrices and picture vocabulary test revised were also conducted in first grade. Correlation analyses between task scores and stepwise multiple regression analyses were implemented. Tasks tapping phonological awareness, lexical access, and verbal working memory showed significant correlations with reading tasks. In the multiple regression analyses the performances in the verbal working memory task played a key role in predicting character naming task scores (the hiragana naming task and the kanji reading task) while the digit naming task was an important predictor of reading times. Unexpectedly, the role of phonological (mora) awareness was modest among children speaking Japanese. Cognitive functions including phonological awareness, digit naming, and verbal working memory (especially the latter two) were involved in the development of reading skills of children speaking Japanese. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Fabrication and characterization of compositionally-graded shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Cole, Daniel Paul

    2009-12-01

    The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME with a reduced hysteresis, while the homogeneous films exhibited the classical one-way SME. The fabrication and characterization techniques developed in this work have the potential to be applied to general graded and multi-layer film systems.

  10. The contribution of attentional lapses to individual differences in visual working memory capacity.

    PubMed

    Adam, Kirsten C S; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K

    2015-08-01

    Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe.

  11. The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity

    PubMed Central

    Adam, Kirsten C. S.; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K.

    2015-01-01

    Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe. PMID:25811710

  12. The Importance of Additive Reasoning in Children's Mathematical Achievement: A Longitudinal Study

    ERIC Educational Resources Information Center

    Ching, Boby Ho-Hong; Nunes, Terezinha

    2017-01-01

    This longitudinal study examines the relative importance of counting ability, additive reasoning, and working memory in children's mathematical achievement (calculation and story problem solving). In Hong Kong, 115 Chinese children aged 6 years old participated in 2 waves of assessments (T1 = first grade and T2 = second grade). Multiple regression…

  13. Investigating Predictors of Listening Comprehension in Third-, Seventh-, and Tenth-Grade Students: A Dominance Analysis Approach

    ERIC Educational Resources Information Center

    Tighe, Elizabeth L.; Spencer, Mercedes; Schatschneider, Christopher

    2015-01-01

    This study rank ordered the contributive importance of several predictors of listening comprehension for third, seventh, and tenth graders. Principal components analyses revealed that a three-factor solution with fluency, reasoning, and working memory components provided the best fit across grade levels. Dominance analyses indicated that fluency…

  14. Independent contributions of the central executive, intelligence, and in-class attentive behavior to developmental change in the strategies used to solve addition problems.

    PubMed

    Geary, David C; Hoard, Mary K; Nugent, Lara

    2012-09-01

    Children's (N=275) use of retrieval, decomposition (e.g., 7=4+3 and thus 6+7=6+4+3), and counting to solve additional problems was longitudinally assessed from first grade to fourth grade, and intelligence, working memory, and in-class attentive behavior was assessed in one or several grades. The goal was to assess the relation between capacity of the central executive component of working memory, controlling for intelligence and in-class attentive behavior, and grade-related changes in children's use of these strategies. The predictor on intercept effects from multilevel models revealed that children with higher central executive capacity correctly retrieved more facts and used the most sophisticated counting procedure more frequently and accurately than their lower capacity peers at the beginning of first grade, but the predictor on slope effects indicated that this advantage disappeared (retrieval) or declined in importance (counting) from first grade to fourth grade. The predictor on slope effects also revealed that from first grade to fourth grade, children with higher capacity adopted the decomposition strategy more quickly than other children. The results remained robust with controls for children's sex, race, school site, speed of encoding Arabic numerals and articulating number words, and mathematics achievement in kindergarten. The results also revealed that intelligence and in-class attentive behavior independently contributed to children's strategy development. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. How phonological awareness mediates the relation between working memory and word reading efficiency in children with dyslexia.

    PubMed

    Knoop-van Campen, Carolien A N; Segers, Eliane; Verhoeven, Ludo

    2018-05-01

    This study examined the relation between working memory, phonological awareness, and word reading efficiency in fourth-grade children with dyslexia. To test whether the relation between phonological awareness and word reading efficiency differed for children with dyslexia versus typically developing children, we assessed phonological awareness and word reading efficiency in 50 children with dyslexia (aged 9;10, 35 boys) and 613 typically developing children (aged 9;5, 279 boys). Phonological awareness was found to be associated with word reading efficiency, similar for children with dyslexia and typically developing children. To find out whether the relation between working memory and word reading efficiency in the group with dyslexia could be explained by phonological awareness, the children with dyslexia were also tested on working memory. Results of a mediation analysis showed a significant indirect effect of working memory on word reading efficiency via phonological awareness. Working memory predicted reading efficiency, via its relation with phonological awareness in children with dyslexia. This indicates that working memory is necessary for word reading efficiency via its impact on phonological awareness and that phonological awareness continues to be important for word reading efficiency in older children with dyslexia. © 2018 The Authors Dyslexia Published by John Wiley & Sons Ltd.

  16. Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence.

    PubMed

    Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain

    2014-01-01

    Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.

  17. Predicting first-grade mathematics achievement: the contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence

    PubMed Central

    Hornung, Caroline; Schiltz, Christine; Brunner, Martin; Martin, Romain

    2014-01-01

    Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners' nonverbal number sense and domain-general abilities (i.e., working memory, fluid intelligence, and receptive vocabulary) and their early number competence (i.e., symbolic number skills) on first grade math achievement (i.e., arithmetic, shape and space skills, and number line estimation) assessed 1 year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms. PMID:24772098

  18. Cognition and Literacy in English Language Learners at Risk for Reading Disabilities

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Orosco, Michael J.; Lussier, Cathy M.

    2012-01-01

    This study explores the cognitive basis of reading disabilities (RDs) in Spanish-speaking children who are learning English as a second language. Children (N = 393) designated as English language learners (ELLs) or bilingual with and without RDs in Grades 1, 2, and 3 were administered a battery of cognitive (short-term memory, working memory,…

  19. Accounting for Individual Variability in Inversion Shortcut Use

    ERIC Educational Resources Information Center

    Dube, Adam K.; Robinson, Katherine M.

    2010-01-01

    This study investigated whether children's inversion shortcut use (i.e., reasoning that no calculations are required for the problem 4 x 8 divided by 8, as the answer is the first number) is related to their analogical reasoning ability, short-term memory capacity, and working memory capacity. Children from Grades 6 and 8 solved multiplication and…

  20. Independent Contributions of the Central Executive, Intelligence, and In-Class Attentive Behavior to Developmental Change in the Strategies Used to Solve Addition Problems

    ERIC Educational Resources Information Center

    Geary, David C.; Hoard, Mary K.; Nugent, Lara

    2012-01-01

    Children's (N = 275) use of retrieval, decomposition (e.g., 7 = 4+3 and thus 6+7 = 6+4+3), and counting to solve additional problems was longitudinally assessed from first grade to fourth grade, and intelligence, working memory, and in-class attentive behavior was assessed in one or several grades. The goal was to assess the relation between…

  1. Traveling with Eighth-Grade Students to Learn about State and Local History

    ERIC Educational Resources Information Center

    Morris, Ronald V.

    2016-01-01

    Eighth-grade students from three school districts in three small towns in Crosby County, Texas, received academic credit for working together with the biannual Crosby County Pioneer Memorial Museum summer travel education program. Each of the three districts radiate from a small town. They were within one county, and the museum was located in the…

  2. People Around Us. Language Arts Theme Units, Volume V. Cross Curricular Activities for Primary Grades.

    ERIC Educational Resources Information Center

    McAllister, Elizabeth A.; Hildebrand, Joan M.; Ericson, Joann H.

    Suggesting that students in the primary grades can explore the world around them and practice valuable skills in spelling, reading, writing, communication, and language, this book presents cross-curricular units on "people around us" that reach diverse needs by working through emotional memory, deductive reasoning, and multiple intelligences.…

  3. Cognitive Processes and Math Performance: A Study with Children at Third Grade of Basic Education

    ERIC Educational Resources Information Center

    Campos, Isabel S.; Almeida, Leandro S.; Ferreira, Aristides I.; Martinez, Luis F.; Ramalho, Gloria

    2013-01-01

    The present study aims to examine the relationship between cognitive factors and mathematical achievement in primary education. Participants were 103 Portuguese third grade students, aged 8 and 9. All participants completed a battery for working memory (WMTB-C), a test of general intelligence (Raven's Progressive Color Matrices), a selective…

  4. Reactivity to Stress and the Cognitive Components of Math Disability in Grade 1 Children

    ERIC Educational Resources Information Center

    MacKinnon McQuarrie, Maureen A.; Siegel, Linda S.; Perry, Nancy E.; Weinberg, Joanne

    2014-01-01

    This study investigated the relationship among working memory, processing speed, math performance, and reactivity to stress in 83 Grade 1 children. Specifically, 39 children with math disability (MD) were compared to 44 children who are typically achieving (TA) in mathematics. It is the first study to use a physiological index of stress (salivary…

  5. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9

    ERIC Educational Resources Information Center

    Sanders, Elizabeth A.; Berninger, Virginia W.; Abbott, Robert D.

    2018-01-01

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in Grades 4 through 9 (N = 103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n = 25), word reading and spelling…

  6. Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control

    PubMed Central

    2014-01-01

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633

  7. A neural measure of precision in visual working memory.

    PubMed

    Ester, Edward F; Anderson, David E; Serences, John T; Awh, Edward

    2013-05-01

    Recent studies suggest that the temporary storage of visual detail in working memory is mediated by sensory recruitment or sustained patterns of stimulus-specific activation within feature-selective regions of visual cortex. According to a strong version of this hypothesis, the relative "quality" of these patterns should determine the clarity of an individual's memory. Here, we provide a direct test of this claim. We used fMRI and a forward encoding model to characterize population-level orientation-selective responses in visual cortex while human participants held an oriented grating in memory. This analysis, which enables a precise quantitative description of multivoxel, population-level activity measured during working memory storage, revealed graded response profiles whose amplitudes were greatest for the remembered orientation and fell monotonically as the angular distance from this orientation increased. Moreover, interparticipant differences in the dispersion-but not the amplitude-of these response profiles were strongly correlated with performance on a concurrent memory recall task. These findings provide important new evidence linking the precision of sustained population-level responses in visual cortex and memory acuity.

  8. Relationship between cognitive functions and prevalence of fatigue in elementary and junior high school students.

    PubMed

    Mizuno, Kei; Tanaka, Masaaki; Fukuda, Sanae; Imai-Matsumura, Kyoko; Watanabe, Yasuyoshi

    2011-06-01

    Fatigue is a common complaint among elementary and junior high school students, and is related to poor academic performance. Since grade-dependent development of cognitive functions also influences academic performance, we attempted to determine whether cognitive functions were associated with the prevalence of fatigue. Participants were 148 elementary school students from 4th- to 6th-grades and 152 junior high school students from 7th- to 9th-grades. Participants completed a questionnaire about fatigue (Japanese version of the Chalder Fatigue Scale) and paper-and-pencil and computerized cognitive tests which could evaluate the abilities of motor processing, immediate, delayed and working memory, selective, divided and alternative attention, retrieve learned material, and spatial construction. We found that in multivariate logistic regression analyses adjusted for grade and gender, slow motor processing was positively correlated with the prevalence of fatigue in the elementary school students and decreases in working memory and divided and alternative attention processing were positively correlated with the prevalence of fatigue in the junior high school students. The grade-dependent development of cognitive function influences the severity of fatigue in elementary and junior high school students. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  9. Contribution of Oral Language Skills, Linguistic Skills, and Transcription Skills to Chinese Written Composition among Fourth-Grade Students

    ERIC Educational Resources Information Center

    Yeung, Pui-sze; Ho, Connie Suk-han; Chan, David Wai-ock; Chung, Kevin Kien-hoa

    2013-01-01

    The present study aimed to investigate the contribution of oral language skills, linguistic skills, and transcription skills to Chinese written composition among Grade 4 students in Hong Kong. Measures assessing verbal working memory, oral language skills, linguistic skills (i.e., syntactic skills and discourse skills), transcription skills (i.e.,…

  10. Variable Memory Strategy Use in Children's Adaptive Intratask Learning Behavior: Developmental Changes and Working Memory Influences in Free Recall

    ERIC Educational Resources Information Center

    Lehmann, Martin; Hasselhorn, Marcus

    2007-01-01

    Variability in strategy use within single trials in free recall was analyzed longitudinally from second to fourth grades (ages 8-10 years). To control for practice effects another sample of fourth graders was included (age 10 years). Video analyses revealed that children employed different strategies when preparing for free recall. A gradual shift…

  11. The Co-Development of Skill at and Preference for Use of Retrieval-Based Processes for Solving Addition Problems: Individual and Sex Differences from First to Sixth Grade

    PubMed Central

    Bailey, Drew H.; Littlefield, Andrew; Geary, David C.

    2012-01-01

    The ability to retrieve basic arithmetic facts from long-term memory contributes to individual and perhaps sex differences in mathematics achievement. The current study tracked the co-development of preference for using retrieval over other strategies to solve single-digit addition problems, independent of accuracy, and skilled use of retrieval (i.e., accuracy and RT) from first to sixth grade, inclusive (n = 311). Accurate retrieval in first grade was related to working memory capacity and intelligence and predicted a preference for retrieval in second grade. In later grades, the relation between skill and preference changed such that preference in one grade predicted accuracy and RT in the next, as RT and accuracy continued to predict future gains in preference. In comparison to girls, boys had a consistent preference for retrieval over other strategies and had faster retrieval speeds, but the sex difference in retrieval accuracy varied across grades. Results indicate ability influences early skilled retrieval but both practice and skill influence each other in a feedback loop later in development, and provide insights into the source of the sex difference in problem solving approaches. PMID:22704036

  12. Cross-modal working memory binding and word recognition skills: how specific is the link?

    PubMed

    Wang, Shinmin; Allen, Richard J

    2018-04-01

    Recent research has suggested that the creation of temporary bound representations of information from different sources within working memory uniquely relates to word recognition abilities in school-age children. However, it is unclear to what extent this link is attributable specifically to the binding ability for cross-modal information. This study examined the performance of Grade 3 (8-9 years old) children on binding tasks requiring either temporary association formation of two visual items (i.e., within-modal binding) or pairs of visually presented abstract shapes and auditorily presented nonwords (i.e., cross-modal binding). Children's word recognition skills were related to performance on the cross-modal binding task but not on the within-modal binding task. Further regression models showed that cross-modal binding memory was a significant predictor of word recognition when memory for its constituent elements, general abilities, and crucially, within-modal binding memory were taken into account. These findings may suggest a specific link between the ability to bind information across modalities within working memory and word recognition skills.

  13. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.

    PubMed

    Lim, Sukbin; Goldman, Mark S

    2014-05-14

    A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.

  14. Effect of retirement on cognitive function: the Whitehall II cohort study.

    PubMed

    Xue, Baowen; Cadar, Dorina; Fleischmann, Maria; Stansfeld, Stephen; Carr, Ewan; Kivimäki, Mika; McMunn, Anne; Head, Jenny

    2017-12-26

    According to the 'use it or lose it' hypothesis, a lack of mentally challenging activities might exacerbate the loss of cognitive function. On this basis, retirement has been suggested to increase the risk of cognitive decline, but evidence from studies with long follow-up is lacking. We tested this hypothesis in a cohort of 3433 civil servants who participated in the Whitehall II Study, including repeated measurements of cognitive functioning up to 14 years before and 14 years after retirement. Piecewise models, centred at the year of retirement, were used to compare trajectories of verbal memory, abstract reasoning, phonemic verbal fluency, and semantic verbal fluency before and after retirement. We found that all domains of cognition declined over time. Declines in verbal memory were 38% faster after retirement compared to before, after taking account of age-related decline. In analyses stratified by employment grade, higher employment grade was protective against verbal memory decline while people were still working, but this 'protective effect' was lost when individuals retired, resulting in a similar rate of decline post-retirement across employment grades. We did not find a significant impact of retirement on the other cognitive domains. In conclusion, these findings are consistent with the hypothesis that retirement accelerates the decline in verbal memory function. This study points to the benefits of cognitively stimulating activities associated with employment that could benefit older people's memory.

  15. Refining the quantitative pathway of the Pathways to Mathematics model.

    PubMed

    Sowinski, Carla; LeFevre, Jo-Anne; Skwarchuk, Sheri-Lynn; Kamawar, Deepthi; Bisanz, Jeffrey; Smith-Chant, Brenda

    2015-03-01

    In the current study, we adopted the Pathways to Mathematics model of LeFevre et al. (2010). In this model, there are three cognitive domains--labeled as the quantitative, linguistic, and working memory pathways--that make unique contributions to children's mathematical development. We attempted to refine the quantitative pathway by combining children's (N=141 in Grades 2 and 3) subitizing, counting, and symbolic magnitude comparison skills using principal components analysis. The quantitative pathway was examined in relation to dependent numerical measures (backward counting, arithmetic fluency, calculation, and number system knowledge) and a dependent reading measure, while simultaneously accounting for linguistic and working memory skills. Analyses controlled for processing speed, parental education, and gender. We hypothesized that the quantitative, linguistic, and working memory pathways would account for unique variance in the numerical outcomes; this was the case for backward counting and arithmetic fluency. However, only the quantitative and linguistic pathways (not working memory) accounted for unique variance in calculation and number system knowledge. Not surprisingly, only the linguistic pathway accounted for unique variance in the reading measure. These findings suggest that the relative contributions of quantitative, linguistic, and working memory skills vary depending on the specific cognitive task. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Who's Who? Memory updating and character reference in children's narratives.

    PubMed

    Whitely, Cristy; Colozzo, Paola

    2013-10-01

    The capacity to update and monitor the contents of working memory is an executive function presumed to play a critical role in language processing. The current study used an individual differences approach to consider the relationship between memory updating and accurate reference to story characters in the narratives of typically developing children. English-speaking children from kindergarten to grade 2 ( N = 63; M age = 7.0 years) completed updating tasks, short-term memory tasks, and narrative productions. The authors used multiple regression to test whether updating accounted for independent variability in referential adequacy. The capacity to update working memory was related to adequate character reference beyond the effects of age and of short-term memory capacity, with the strongest relationship emerging for maintaining reference over multiple utterances. This individual differences study is the first to show a link between updating and performance in a discourse production task for young school-age children. The findings contribute to the growing body of research investigating the role of working memory in shaping language production. This study invites extension to children of different ages and language abilities as well as to other language production tasks.

  17. Independent Contributions of the Central Executive, Intelligence, and In-Class Attentive Behavior to Developmental Change in the Strategies Used to Solve Addition Problems

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara

    2012-01-01

    Children’s (n = 275) use of retrieval, decomposition (e.g., 7 = 4+3, and thus 6+7=6+4+3), and counting to solve additional problems was longitudinally assessed from first to fourth grade, and intelligence, working memory, and in-class attentive behavior was assessed in one or several grades. The goal was to assess the relation between capacity of the central executive component of working memory, controlling for intelligence and in-class attentive behavior, and grade-related changes in children’s use of these strategies. The predictor on intercept effects from multilevel models revealed that children with higher central executive capacity correctly retrieved more facts and used the most sophisticated counting procedure more frequently and accurately than did their lower capacity peers at the beginning of first grade, but the predictor on slope effects indicated that this advantage disappeared (retrieval) or declined in importance (counting) from first to fourth grade. The predictor on slope effects also revealed that from first through fourth grade, children with higher capacity adopted the decomposition strategy more quickly than did other children. The results remained robust with controls for children’s sex, race, school site, speed of encoding Arabic numerals and articulating number words, and mathematics achievement in kindergarten. The results also revealed that intelligence and in-class attentive behavior independently contributed to children’s strategy development. PMID:22698947

  18. Math Achievement, Numerical Processing, and Executive Functions in Girls with Turner Syndrome: Do Girls with Turner Syndrome Have Math Learning Disability?

    ERIC Educational Resources Information Center

    Mazzocco, Michele M. M.; Hanich, Laurie B.

    2010-01-01

    Turner syndrome is a common genetic disorder associated with select deficits in executive functions, working memory and mathematics. In Study 1, we examined growth trajectories of skills in these areas, from grades 1 to 6, among girls with or without Turner syndrome. Rates of growth and performance levels at 6th grade, on an untimed math…

  19. Variable memory strategy use in children's adaptive intratask learning behavior: developmental changes and working memory influences in free recall.

    PubMed

    Lehmann, Martin; Hasselhorn, Marcus

    2007-01-01

    Variability in strategy use within single trials in free recall was analyzed longitudinally from second to fourth grades (ages 8-10 years). To control for practice effects another sample of fourth graders was included (age 10 years). Video analyses revealed that children employed different strategies when preparing for free recall. A gradual shift from labeling to cumulative rehearsal was present both with increasing age and across different list positions. Whereas cumulative rehearsal was frequent at early list positions, labeling was dominant at later list portions. Working memory capacity predicted the extent of cumulative rehearsal usage, which became more efficient with increasing age. Results are discussed in the context of the adaptive strategy choice model.

  20. Investigating Predictors of Listening Comprehension in Third-, Seventh-, and Tenth-Grade Students: A Dominance Analysis Approach

    PubMed Central

    Tighe, Elizabeth L.; Spencer, Mercedes; Schatschneider, Christopher

    2015-01-01

    This study rank ordered the contributive importance of several predictors of listening comprehension for third, seventh, and tenth graders. Principal components analyses revealed that a three-factor solution with fluency, reasoning, and working memory components provided the best fit across grade levels. Dominance analyses indicated that fluency and reasoning were the strongest predictors of third grade listening comprehension. Reasoning emerged as the strongest predictor of seventh and tenth grade listening comprehension. These findings suggest a shift in the contributive importance of predictors to listening comprehension across development (i.e., grade levels). The implications of our findings for educators and researchers are discussed. PMID:26877573

  1. Keeping the Spirits Up: The Effect of Teachers' and Parents' Emotional Support on Children's Working Memory Performance.

    PubMed

    Vandenbroucke, Loren; Spilt, Jantine; Verschueren, Karine; Baeyens, Dieter

    2017-01-01

    Working memory, used to temporarily store and mentally manipulate information, is important for children's learning. It is therefore valuable to understand which (contextual) factors promote or hinder working memory performance. Recent research shows positive associations between positive parent-child and teacher-student interactions and working memory performance and development. However, no study has yet experimentally investigated how parents and teachers affect working memory performance. Based on attachment theory, the current study investigated the role of parent and teacher emotional support in promoting working memory performance by buffering the negative effect of social stress. Questionnaires and an experimental session were completed by 170 children from grade 1 to 2 ( M age = 7 years 6 months, SD = 7 months). Questionnaires were used to assess children's perceptions of the teacher-student and parent-child relationship. During an experimental session, working memory was measured with the Corsi task backward (Milner, 1971) in a pre- and post-test design. In-between the tests stress was induced in the children using the Cyberball paradigm (Williams et al., 2000). Emotional support was manipulated (between-subjects) through an audio message (either a weather report, a supportive message of a stranger, a supportive message of a parent, or a supportive message of a teacher). Results of repeated measures ANOVA showed no clear effect of the stress induction. Nevertheless, an effect of parent and teacher support was found and depended on the quality of the parent-child relationship. When children had a positive relationship with their parent, support of parents and teachers had little effect on working memory performance. When children had a negative relationship with their parent, a supportive message of that parent decreased working memory performance, while a supportive message from the teacher increased performance. In sum, the current study suggests that parents and teachers can support working memory performance by being supportive for the child. Teacher support is most effective when the child has a negative relationship with the parent. These insights can give direction to specific measures aimed at preventing and resolving working memory problems and related issues.

  2. Keeping the Spirits Up: The Effect of Teachers’ and Parents’ Emotional Support on Children’s Working Memory Performance

    PubMed Central

    Vandenbroucke, Loren; Spilt, Jantine; Verschueren, Karine; Baeyens, Dieter

    2017-01-01

    Working memory, used to temporarily store and mentally manipulate information, is important for children’s learning. It is therefore valuable to understand which (contextual) factors promote or hinder working memory performance. Recent research shows positive associations between positive parent–child and teacher–student interactions and working memory performance and development. However, no study has yet experimentally investigated how parents and teachers affect working memory performance. Based on attachment theory, the current study investigated the role of parent and teacher emotional support in promoting working memory performance by buffering the negative effect of social stress. Questionnaires and an experimental session were completed by 170 children from grade 1 to 2 (Mage = 7 years 6 months, SD = 7 months). Questionnaires were used to assess children’s perceptions of the teacher–student and parent–child relationship. During an experimental session, working memory was measured with the Corsi task backward (Milner, 1971) in a pre- and post-test design. In-between the tests stress was induced in the children using the Cyberball paradigm (Williams et al., 2000). Emotional support was manipulated (between-subjects) through an audio message (either a weather report, a supportive message of a stranger, a supportive message of a parent, or a supportive message of a teacher). Results of repeated measures ANOVA showed no clear effect of the stress induction. Nevertheless, an effect of parent and teacher support was found and depended on the quality of the parent–child relationship. When children had a positive relationship with their parent, support of parents and teachers had little effect on working memory performance. When children had a negative relationship with their parent, a supportive message of that parent decreased working memory performance, while a supportive message from the teacher increased performance. In sum, the current study suggests that parents and teachers can support working memory performance by being supportive for the child. Teacher support is most effective when the child has a negative relationship with the parent. These insights can give direction to specific measures aimed at preventing and resolving working memory problems and related issues. PMID:28421026

  3. Executive functions predict conceptual learning of science.

    PubMed

    Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J

    2016-06-01

    We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. © 2016 The British Psychological Society.

  4. The Contribution of Verbal Working Memory to Deaf Children’s Oral and Written Production

    PubMed Central

    Arfé, Barbara; Rossi, Cristina; Sicoli, Silvia

    2015-01-01

    This study investigated the contribution of verbal working memory to the oral and written story production of deaf children. Participants were 29 severely to profoundly deaf children aged 8–13 years and 29 hearing controls, matched for grade level. The children narrated a picture story orally and in writing and performed a reading comprehension test, the Wechsler Intelligence Scale for Children-Fourth Edition forward digit span task, and a reading span task. Oral and written stories were analyzed at the microstructural (i.e., clause) and macrostructural (discourse) levels. Hearing children’s stories scored higher than deaf children’s at both levels. Verbal working memory skills contributed to deaf children’s oral and written production over and above age and reading comprehension skills. Verbal rehearsal skills (forward digit span) contributed significantly to deaf children’s ability to organize oral and written stories at the microstructural level; they also accounted for unique variance at the macrostructural level in writing. Written story production appeared to involve greater verbal working memory resources than oral story production. PMID:25802319

  5. Count on dopamine: influences of COMT polymorphisms on numerical cognition

    PubMed Central

    Júlio-Costa, Annelise; Antunes, Andressa M.; Lopes-Silva, Júlia B.; Moreira, Bárbara C.; Vianna, Gabrielle S.; Wood, Guilherme; Carvalho, Maria R. S.; Haase, Vitor G.

    2013-01-01

    Catechol-O-methyltransferase (COMT) is an enzyme that is particularly important for the metabolism of dopamine. Functional polymorphisms of COMT have been implicated in working memory and numerical cognition. This is an exploratory study that aims at investigating associations between COMT polymorphisms, working memory, and numerical cognition. Elementary school children from 2th to 6th grades were divided into two groups according to their COMT val158met polymorphism [homozygous for valine allele (n = 61) vs. heterozygous plus methionine homozygous children or met+ group (n = 94)]. Both groups were matched for age and intelligence. Working memory was assessed through digit span and Corsi blocks. Symbolic numerical processing was assessed through transcoding and single-digit word problem tasks. Non-symbolic magnitude comparison and estimation tasks were used to assess number sense. Between-group differences were found in symbolic and non-symbolic numerical tasks, but not in working memory tasks. Children in the met+ group showed better performance in all numerical tasks while val homozygous children presented slower development of non-symbolic magnitude representations. These results suggest COMT-related dopaminergic modulation may be related not only to working memory, as found in previous studies, but also to the development of magnitude processing and magnitude representations. PMID:23966969

  6. Memory loss in Alzheimer's disease

    PubMed Central

    Jahn, Holger

    2013-01-01

    Loss of memory is among the first symptoms reported by patients suffering from Alzheimer's disease (AD) and by their caretakers. Working memory and long-term declarative memory are affected early during the course of the disease. The individual pattern of impaired memory functions correlates with parameters of structural or functional brain integrity. AD pathology interferes with the formation of memories from the molecular level to the framework of neural networks. The investigation of AD memory loss helps to identify the involved neural structures, such as the default mode network, the influence of epigenetic and genetic factors, such as ApoE4 status, and evolutionary aspects of human cognition. Clinically, the analysis of memory assists the definition of AD subtypes, disease grading, and prognostic predictions. Despite new AD criteria that allow the earlier diagnosis of the disease by inclusion of biomarkers derived from cerebrospinal fluid or hippocampal volume analysis, neuropsychological testing remains at the core of AD diagnosis. PMID:24459411

  7. Exploring the relations among physical fitness, executive functioning, and low academic achievement.

    PubMed

    de Bruijn, A G M; Hartman, E; Kostons, D; Visscher, C; Bosker, R J

    2018-03-01

    Physical fitness seems to be related to academic performance, at least when taking the role of executive functioning into account. This assumption is highly relevant for the vulnerable population of low academic achievers because their academic performance might benefit from enhanced physical fitness. The current study examined whether physical fitness and executive functioning are independent predictors of low mathematics and spelling achievement or whether the relation between physical fitness and low achievement is mediated by specific executive functions. In total, 477 students from second- and third-grade classes of 12 primary schools were classified as either low or average-to-high achievers in mathematics and spelling based on their scores on standardized achievement tests. Multilevel structural equation models were built with direct paths between physical fitness and academic achievement and added indirect paths via components of executive functioning: inhibition, verbal working memory, visuospatial working memory, and shifting. Physical fitness was only indirectly related to low achievement via specific executive functions, depending on the academic domain involved. Verbal working memory was a mediator between physical fitness and low achievement in both domains, whereas visuospatial working memory had a mediating role only in mathematics. Physical fitness interventions aiming to improve low academic achievement, thus, could potentially be successful. The mediating effect of executive functioning suggests that these improvements in academic achievement will be preceded by enhanced executive functions, either verbal working memory (in spelling) or both verbal and visuospatial working memory (in mathematics). Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Clinical correlates of working memory deficits in youth with and without ADHD: A controlled study.

    PubMed

    Fried, Ronna; Chan, James; Feinberg, Leah; Pope, Amanda; Woodworth, K Yvonne; Faraone, Stephen V; Biederman, Joseph

    2016-01-01

    Both working memory (WM; a brain system that provides temporary storage and manipulation of the information) and attention-deficit/hyperactivity disorder (ADHD) have been associated with educational deficits. Since WM deficits are prevalent in children with ADHD, the main aim of the present study was to examine whether educational deficits are driven by working memory deficits or driven by the effect of ADHD itself. Participants were referred youth with (N = 276) and without (N = 241) ADHD ascertained from pediatric and psychiatric sources. Assessment included measures of psychiatric, psychosocial, educational, and cognitive functioning. Education deficits were defined as grade retention or placement in special classes and were assessed using interviews and written rating scales. Working memory was assessed using the Wechsler Intelligence Scale for Children-Revised (WISC-R) Freedom from Distractibility (FFD) factor based on Digit Span, Arithmetic, and Coding. Significantly more youth with ADHD had WM deficits than controls (31.9% vs. 13.7%, p < .05). In ADHD children, WM deficits were significantly (p < .01) associated with an increased risk for grade retention and placement in special classes as well as lower scores on reading and math achievement tests than for ADHD children without WM deficits. In contrast, no other differences were noted in other areas of functioning. Although WM deficits also had some adverse impact on educational and cognitive correlates in non-ADHD controls, these differences failed to attain statistical significance. WM deficits significantly and selectively increase the risk for academic deficits and cognitive dysfunction in children with ADHD beyond those conferred by ADHD. Screening for WM deficits may help identify children with ADHD at high risk for academic and cognitive dysfunction.

  9. Clinical Correlates of Working Memory Deficits in Youth With and Without ADHD: A Controlled Study

    PubMed Central

    Fried, Ronna; Chan, James; Feinberg, Leah; Pope, Amanda; Woodworth, K. Yvonne; Faraone, Stephen V.; Biederman, Joseph

    2016-01-01

    Objective Both working memory (WM) (a brain system that provides temporary storage and manipulation of the information) and attention-deficit/hyperactivity disorder (ADHD) have been associated with educational deficits. Since WM deficits are prevalent in children with ADHD, the main aim of the present study was to examine whether educational deficits are driven by working memory deficits or driven by the effect of ADHD itself. Method Participants were referred youth with (N=276) and without (N=241) ADHD ascertained from pediatric and psychiatric sources. Assessment included measures of psychiatric, psychosocial, educational, and cognitive functioning. Education deficits were defined as grade retention or placement in special classes, and were assessed using interviews and written rating scales. Working memory was assessed using the WISC-R Freedom from Distractibility (FFD) factor based on digit span, arithmetic and coding. Results Significantly more youth with ADHD had WM deficits than controls (31.9% vs. 13.7%, p< 0.05). In ADHD children, WM deficits were significantly (p<0.01) associated with an increased risk for grade retention and placement in special classes as well as lower scores on reading and math achievement tests, relative to ADHD children without WM deficits. In contrast, no other differences were noted in other areas of functioning. Although WM deficits also had some adverse impact on educational and cognitive correlates in non ADHD controls, these differences failed to attain statistical significance. Conclusion WM deficits significantly and selectively increase the risk for academic deficits and cognitive dysfunction in children with ADHD beyond those conferred by ADHD. Screening for WM deficits may help identify children with ADHD at high risk for academic and cognitive dysfunction. PMID:26902180

  10. Is Word-Problem Solving a Form of Text Comprehension?

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.

    2015-01-01

    This study’s hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of the 2nd grade, children (n = 206; on average, 7 years, 6 months) were assessed on general language comprehension, working memory, nonlinguistic reasoning, processing speed (a control variable), and foundational skill (arithmetic for WPs; word reading for text comprehension). In spring, they were assessed on WP-specific language comprehension, WPs, and text comprehension. Path analytic mediation analysis indicated that effects of general language comprehension on text comprehension were entirely direct, whereas effects of general language comprehension on WPs were partially mediated by WP-specific language. By contrast, effects of working memory and reasoning operated in parallel ways for both outcomes. PMID:25866461

  11. Exploring the impact of phonological awareness, visual-spatial working memory, and preschool quantity-number competencies on mathematics achievement in elementary school: findings from a 3-year longitudinal study.

    PubMed

    Krajewski, Kristin; Schneider, Wolfgang

    2009-08-01

    This longitudinal study explored the importance of kindergarten measures of phonological awareness, working memory, and quantity-number competencies (QNC) for predicting mathematical school achievement in third graders (mean age 8 years 8 months). It was found that the impact of phonological awareness and visual-spatial working memory, assessed at 5 years of age, was mediated by early QNC, which predicted math achievement in third grade. Importantly, and confirming our isolated number words hypothesis, phonological awareness had no impact on higher numerical competencies (i.e., when number words needed to be linked with quantities [QNC Level II and above]) but predicted basic numerical competencies (i.e., when number words were isolated from quantities [QNC Level I]), explaining the moderate relationship between early literacy development and the development of mathematical competencies.

  12. Hippocampal Area CA1 and Remote Memory in Rats

    ERIC Educational Resources Information Center

    Ocampo, Amber C.; Squire, Larry R.; Clark, Robert E.

    2017-01-01

    Hippocampal lesions often produce temporally graded retrograde amnesia (TGRA), whereby recent memory is impaired more than remote memory. This finding has provided support for the process of systems consolidation. However, temporally graded memory impairment has not been observed with the watermaze task, and the findings have been inconsistent…

  13. Developmental memory capacity resources of typical children retrieving picture communication symbols using direct selection and visual linear scanning with fixed communication displays.

    PubMed

    Wagner, Barry T; Jackson, Heather M

    2006-02-01

    This study examined the cognitive demands of 2 selection techniques in augmentative and alternative communication (AAC), direct selection, and visual linear scanning, by determining the memory retrieval abilities of typically developing children when presented with fixed communication displays. One hundred twenty typical children from kindergarten, 1st, and 3rd grades were randomly assigned to either a direct selection or visual linear scanning group. Memory retrieval was assessed through word span using Picture Communication Symbols (PCSs). Participants were presented various numbers and arrays of PCSs and asked to retrieve them by placing identical graphic symbols on fixed communication displays with grid layouts. The results revealed that participants were able to retrieve more PCSs during direct selection than scanning. Additionally, 3rd-grade children retrieved more PCSs than kindergarten and 1st-grade children. An analysis on the type of errors during retrieval indicated that children were more successful at retrieving the correct PCSs than the designated location of those symbols on fixed communication displays. AAC practitioners should consider using direct selection over scanning whenever possible and account for anticipatory monitoring and pulses when scanning is used in the service delivery of children with little or no functional speech. Also, researchers should continue to investigate AAC selection techniques in relationship to working memory resources.

  14. Iconic and Immediate Memory in Elementary School Children.

    ERIC Educational Resources Information Center

    Ewert, G. D.; Janzen, H. L.

    1978-01-01

    As age and grade increased, recall on all tasks increased; subjects in grades three to six were also seen to have a fully developed Iconic Memory, while only sixth graders had a functionally developed Immediate Memory. (KR)

  15. Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty

    NASA Astrophysics Data System (ADS)

    Molteni, Erika; Contini, Davide; Caffini, Matteo; Baselli, Giuseppe; Spinelli, Lorenzo; Cubeddu, Rinaldo; Cerutti, Sergio; Bianchi, Anna Maria; Torricelli, Alessandro

    2012-05-01

    We evaluated frontal brain activation during a mixed attentional/working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-domain functional near-infrared spectroscopy (fNIRS). Brain activation was assessed, and load-related oxy- and deoxy-hemoglobin changes were studied. Generalized linear model (GLM) was applied to the data to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short-term memorization. GLM was applied to the data twice: for modeling the task as a whole and for specifically investigating brain activation at each cognitive load. This twofold employment of GLM allowed (1) the extraction and isolation of different information from the same signals, obtained through the modeling of different cognitive categories (sustained attention and working memory), and (2) the evaluation of model fitness, by inspection and comparison of residuals (i.e., unmodeled part of the signal) obtained in the two different cases. Results attest to the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Some hemispherical differences have also been highlighted frontally: deoxy-hemoglobin changes manifested a strong right lateralization, whereas modifications in oxy- and total hemoglobin showed a medial localization. The present work successfully explored the capability of fNIRS to detect the two neurophysiological categories under investigation and distinguish their activation patterns.

  16. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9

    PubMed Central

    Sanders, Elizabeth A.; Berninger, Virginia W.; Abbott, Robert D.

    2017-01-01

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in grades 4–9 (N=103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n=25), word reading and spelling (dyslexia, n=60), or oral and written language (OWL LD, n=18). That is, SLDs are defined on basis of cascading level of language impairment (subword, word, and syntax/text). A 5-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% variance. Orthographic word form coding uniquely predicted nearly every measure, whereas attention switching only uniquely predicted reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and OWL LD were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed. PMID:28199175

  17. Recall Performance of Children Failing Memory Portions of a Speech--Language--Memory Screening Battery.

    ERIC Educational Resources Information Center

    Tobey, Emily A.; And Others

    1982-01-01

    Recall performance of 22 first-grade and third-grade children who failed memory portions of a speech-language-memory screen was examined using digit and consonant-vowel (CV) stimulus sets. Data indicate children failing the screening battery differed quantitatively, rather than qualitatively, from children passing the screening batter. (Author)

  18. Working memory and the identification of facial expression in patients with left frontal glioma.

    PubMed

    Mu, Yong-Gao; Huang, Ling-Juan; Li, Shi-Yun; Ke, Chao; Chen, Yu; Jin, Yu; Chen, Zhong-Ping

    2012-09-01

    Patients with brain tumors may have cognitive dysfunctions including memory deterioration, such as working memory, that affect quality of life. This study was to explore the presence of defects in working memory and the identification of facial expressions in patients with left frontal glioma. This case-control study recruited 11 matched pairs of patients and healthy control subjects (mean age ± standard deviation, 37.00 ± 10.96 years vs 36.73 ± 11.20 years; 7 male and 4 female) from March through December 2011. The psychological tests contained tests that estimate verbal/visual-spatial working memory, executive function, and the identification of facial expressions. According to the paired samples analysis, there were no differences in the anxiety and depression scores or in the intelligence quotients between the 2 groups (P > .05). All indices of the Digit Span Test were significantly worse in patients than in control subjects (P < .05), but the Tapping Test scores did not differ between patient and control groups. Of all 7 Wisconsin Card Sorting Test (WCST) indexes, only the Preservative Response was significantly different between patients and control subjects (P < .05). Patients were significantly less accurate in detecting angry facial expressions than were control subjects (30.3% vs 57.6%; P < .05) but showed no deficits in the identification of other expressions. The backward indexes of the Digit Span Test were associated with emotion scores and tumor size and grade (P < .05). Patients with left frontal glioma had deficits in verbal working memory and the ability to identify anger. These may have resulted from damage to functional frontal cortex regions, in which roles in these 2 capabilities have not been confirmed. However, verbal working memory performance might be affected by emotional and tumor-related factors.

  19. Will Learning to Solve One-Step Equations Pose a Challenge to 8th Grade Students?

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2017-01-01

    Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. "Element interactivity" arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features…

  20. ADD, LD and Extended Information Processing.

    ERIC Educational Resources Information Center

    Stolzenberg, J. B.; Cherkes-Julkowski, M.

    This study examines executive function and its relationship to attention dysfunction and working memory. It attempts to document the manifestations of executive function problems in school-related extended processing tasks, such as verbal problem-solving in math and reading of extended passages. Subjects (in grades 1-12) included 49 children with…

  1. Using Photographs from American Memory.

    ERIC Educational Resources Information Center

    Singleton, Laurel R., Ed.

    2001-01-01

    This publication contains teaching ideas generated by classroom teachers. For grades K-4, elementary teacher Doris Waud and media specialist Gail Petri developed "Celebrate America with Symbols from American Memory," in which students explore the American memory and symbols. For grades 5-8, media specialist Mary Alice Anderson developed…

  2. Cognitive self-regulation and social functioning among French children: A longitudinal study from kindergarten to first grade.

    PubMed

    Hubert, Blandine; Guimard, Philippe; Florin, Agnès

    2017-03-01

    This study adds to the body of research examining the links between two components of cognitive self-regulation (inhibitory control and verbal working memory) and social functioning (social integration, social problem solving, and prosocial skills) and focuses on children's sex as a moderator of the association between cognitive self-regulation and social functioning. The participants (N = 131) were French schoolchildren followed from kindergarten (Mage = 68.36 months, SD = 3.33 months) through Grade 1. Using hierarchical regression analyses, three major findings were revealed: (1) inhibitory control was a better predictor than verbal working memory of prosocial skills assessed by peers using the sociometric technique as well as by teachers using questionnaires, after controlling for sex, mother's education, and verbal and non-verbal IQ; (2) the prosocial skills assessed by teachers in kindergarten contributed more to explaining the prosocial skills and peer acceptance assessed in Grade 1 than cognitive self-regulation; and (3) sex did not moderate the relationship between cognitive self-regulation and social functioning. These results suggest that developing strong cognitive self-regulation, especially inhibitory control and prosocial skills, in young children schooled in France could be beneficial for their social development. © 2017 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  3. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    NASA Astrophysics Data System (ADS)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was completed by comparing lab grade averages, final exam averages, and final course grade averages between the two groups. Participant mental effort survey results showed significant positive effects of technology in reducing cognitive load for two laboratory investigations. One investigation revealed a significant difference in achievement measured by lab grade average comparisons. Although results of this study are inconclusive as to the usefulness of technology-driven investigations to affect learning, recommendations for further study are discussed.

  4. Predicting Levels of Reading and Writing Achievement in Typically Developing, English-Speaking 2nd and 5th Graders

    PubMed Central

    Jones, Jasmin Niedo; Abbott, Robert D.; Berninger, Virginia W.

    2014-01-01

    Human traits tend to fall along normal distributions. The aim of this research was to evaluate an evidence-based conceptual framework for predicting expected individual differences in reading and writing achievement outcomes for typically developing readers and writers in early and middle childhood from Verbal Reasoning with or without Working Memory Components (phonological, orthographic, and morphological word storage and processing units, phonological and orthographic loops, and rapid switching attention for cross-code integration). Verbal Reasoning (reconceptualized as Bidirectional Cognitive-Linguistic Translation) plus the Working Memory Components (reconceptualized as a language learning system) accounted for more variance than Verbal Reasoning alone, except for handwriting for which Working Memory Components alone were better predictors. Which predictors explained unique variance varied within and across reading (oral real word and pseudoword accuracy and rate, reading comprehension) and writing (handwriting, spelling, composing) skills and grade levels (second and fifth) in this longitudinal study. Educational applications are illustrated and theoretical and practical significance discussed. PMID:24948868

  5. Sequential Prediction of Literacy Achievement for Specific Learning Disabilities Contrasting in Impaired Levels of Language in Grades 4 to 9.

    PubMed

    Sanders, Elizabeth A; Berninger, Virginia W; Abbott, Robert D

    Sequential regression was used to evaluate whether language-related working memory components uniquely predict reading and writing achievement beyond cognitive-linguistic translation for students in Grades 4 through 9 ( N = 103) with specific learning disabilities (SLDs) in subword handwriting (dysgraphia, n = 25), word reading and spelling (dyslexia, n = 60), or oral and written language (oral and written language learning disabilities, n = 18). That is, SLDs are defined on the basis of cascading level of language impairment (subword, word, and syntax/text). A five-block regression model sequentially predicted literacy achievement from cognitive-linguistic translation (Block 1); working memory components for word-form coding (Block 2), phonological and orthographic loops (Block 3), and supervisory focused or switching attention (Block 4); and SLD groups (Block 5). Results showed that cognitive-linguistic translation explained an average of 27% and 15% of the variance in reading and writing achievement, respectively, but working memory components explained an additional 39% and 27% of variance. Orthographic word-form coding uniquely predicted nearly every measure, whereas attention switching uniquely predicted only reading. Finally, differences in reading and writing persisted between dyslexia and dysgraphia, with dysgraphia higher, even after controlling for Block 1 to 4 predictors. Differences in literacy achievement between students with dyslexia and oral and written language learning disabilities were largely explained by the Block 1 predictors. Applications to identifying and teaching students with these SLDs are discussed.

  6. Does the Component Processes Task Assess Text-Based Inferences Important for Reading Comprehension? A Path Analysis in Primary School Children

    PubMed Central

    Wassenburg, Stephanie I.; de Koning, Björn B.; de Vries, Meinou H.; van der Schoot, Menno

    2016-01-01

    Using a component processes task (CPT) that differentiates between higher-level cognitive processes of reading comprehension provides important advantages over commonly used general reading comprehension assessments. The present study contributes to further development of the CPT by evaluating the relative contributions of its components (text memory, text inferencing, and knowledge integration) and working memory to general reading comprehension within a single study using path analyses. Participants were 173 third- and fourth-grade children. As hypothesized, knowledge integration was the only component of the CPT that directly contributed to reading comprehension, indicating that the text-inferencing component did not assess inferential processes related to reading comprehension. Working memory was a significant predictor of reading comprehension over and above the component processes. Future research should focus on finding ways to ensure that the text-inferencing component taps into processes important for reading comprehension. PMID:27378989

  7. Examining the Prediction of Reading Comprehension on Different Multiple-Choice Tests

    ERIC Educational Resources Information Center

    Andreassen, Rune; Braten, Ivar

    2010-01-01

    In this study, 180 Norwegian fifth-grade students with a mean age of 10.5 years were administered measures of word recognition skills, strategic text processing, reading motivation and working memory. Six months later, the same students were given three different multiple-choice reading comprehension measures. Based on three forced-order…

  8. Math Anxiety, Working Memory, and Math Achievement in Early Elementary School

    ERIC Educational Resources Information Center

    Ramirez, Gerardo; Gunderson, Elizabeth A.; Levine, Susan C.; Beilock, Sian L.

    2013-01-01

    Although math anxiety is associated with poor mathematical knowledge and low course grades (Ashcraft & Krause, 2007), research establishing a connection between math anxiety and math achievement has generally been conducted with young adults, ignoring the emergence of math anxiety in young children. In the current study, we explored whether…

  9. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    ERIC Educational Resources Information Center

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  10. Structural Synaptic Plasticity Has High Memory Capacity and Can Explain Graded Amnesia, Catastrophic Forgetting, and the Spacing Effect

    PubMed Central

    Knoblauch, Andreas; Körner, Edgar; Körner, Ursula; Sommer, Friedrich T.

    2014-01-01

    Although already William James and, more explicitly, Donald Hebb's theory of cell assemblies have suggested that activity-dependent rewiring of neuronal networks is the substrate of learning and memory, over the last six decades most theoretical work on memory has focused on plasticity of existing synapses in prewired networks. Research in the last decade has emphasized that structural modification of synaptic connectivity is common in the adult brain and tightly correlated with learning and memory. Here we present a parsimonious computational model for learning by structural plasticity. The basic modeling units are “potential synapses” defined as locations in the network where synapses can potentially grow to connect two neurons. This model generalizes well-known previous models for associative learning based on weight plasticity. Therefore, existing theory can be applied to analyze how many memories and how much information structural plasticity can store in a synapse. Surprisingly, we find that structural plasticity largely outperforms weight plasticity and can achieve a much higher storage capacity per synapse. The effect of structural plasticity on the structure of sparsely connected networks is quite intuitive: Structural plasticity increases the “effectual network connectivity”, that is, the network wiring that specifically supports storage and recall of the memories. Further, this model of structural plasticity produces gradients of effectual connectivity in the course of learning, thereby explaining various cognitive phenomena including graded amnesia, catastrophic forgetting, and the spacing effect. PMID:24858841

  11. Growth in literacy, cognition, and working memory in English language learners.

    PubMed

    Lee Swanson, H; Orosco, Michael J; Lussier, Catherine M

    2015-04-01

    This cohort sequential study explored the components of working memory that underlie English reading and language acquisition in elementary school children whose first language is Spanish. To this end, children (N=410) in Grades 1, 2, and 3 at Wave 1 were administered a battery of cognitive (short-term memory [STM], working memory [WM], rapid naming, phonological processing, and random letter and number generation), vocabulary, and reading measures in both Spanish and English. These same measures were administered 1 and 2 years later. The results showed that (a) a three-factor structure (phonological STM, visual-spatial WM, and verbal WM) captured the data within both language systems, (b) growth in both the executive and STM storage components was uniquely related to growth in second language (L2) reading and language acquisition, and (c) the contribution of growth in the executive component of WM to growth in L2 processing was independent of growth in storage, phonological knowledge, inhibition, and rapid naming speed. The results suggested that growth in the phonological storage system does not supersede growth of the executive component of WM as a major contributor to growth in children's L2 reading and language. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities.

    PubMed

    Swanson, H Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures.

  13. Cognitive strategy interventions improve word problem solving and working memory in children with math disabilities

    PubMed Central

    Swanson, H. Lee

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on problem solving solution accuracy in children with and without math disabilities (MD). Children in grade 3 (N = 204) with and without MD subdivided into high and low WMC were randomly assigned to 1 of 4 conditions: verbal strategies (e.g., underlining question sentence), visual strategies (e.g., correctly placing numbers in diagrams), verbal + visual strategies, and an untreated control. The dependent measures for training were problem solving accuracy and two working memory transfer measures (operation span and visual-spatial span). Three major findings emerged: (1) strategy instruction facilitated solution accuracy but the effects of strategy instruction were moderated by WMC, (2) some strategies yielded higher post-test scores than others, but these findings were qualified as to whether children were at risk for MD, and (3) strategy training on problem solving measures facilitated transfer to working memory measures. The main findings were that children with MD, but high WM spans, were more likely to benefit from strategy conditions on target and transfer measures than children with lower WMC. The results suggest that WMC moderates the influence of cognitive strategies on both the targeted and non-targeted measures. PMID:26300803

  14. Developmental Changes in the Effect of Verbal, Non-verbal, and Spatial-Positional Cues for Memory

    ERIC Educational Resources Information Center

    Derevensky, Jeffrey

    1976-01-01

    Sixty kindergarten, sixty second grade, and sixty fourth grade students performed several memory tasks under one of six conditions. The conditions differed as to the method of presentation of information. The study focused on developmental changes in children's use of verbal, nonverbal, and spatial-positional cues for memory. (Editor)

  15. A synthesis of mathematical and cognitive performances of students with mathematics learning disabilities.

    PubMed

    Shin, Mikyung; Bryant, Diane Pedrotty

    2015-01-01

    The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.

  16. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    ERIC Educational Resources Information Center

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  17. Lexical Quality and Executive Control Predict Children's First and Second Language Reading Comprehension

    ERIC Educational Resources Information Center

    Raudszus, Henriette; Segers, Eliane; Verhoeven, Ludo

    2018-01-01

    This study compared how lexical quality (vocabulary and decoding) and executive control (working memory and inhibition) predict reading comprehension directly as well as indirectly, via syntactic integration, in monolingual and bilingual fourth grade children. The participants were 76 monolingual and 102 bilingual children (mean age 10 years,…

  18. Mathematics Difficulty with and without Reading Difficulty: Findings and Implications from a Four-Year Longitudinal Study

    ERIC Educational Resources Information Center

    Vukovic, Rose K.

    2012-01-01

    An overarching question guided this study:What is mathematics difficulty (MD) independent of reading difficulty (RD)? The sample included 203 children whom the researchers followed from kindergarten to third grade. The researchers used latent growth modeling to investigate the relationship between MD and measures of working memory, short-term…

  19. The Influence of Phonological Mechanisms in Written Spelling of Profoundly Deaf Children

    ERIC Educational Resources Information Center

    Colombo, Lucia; Arfe, Barbara; Bronte, Tiziana

    2012-01-01

    In the present study, the effect of phonological and working memory mechanisms involved in spelling Italian single words was explored in two groups of children matched for grade level: a group of normally hearing children and a group of pre-verbally deaf children, with severe-to-profound hearing loss. Three-syllable and four-syllable familiar…

  20. Memory consolidation from seconds to weeks: a three-stage neural network model with autonomous reinstatement dynamics

    PubMed Central

    Fiebig, Florian; Lansner, Anders

    2014-01-01

    Declarative long-term memories are not created in an instant. Gradual stabilization and temporally shifting dependence of acquired declarative memories in different brain regions—called systems consolidation—can be tracked in time by lesion experiments. The observation of temporally graded retrograde amnesia (RA) following hippocampal lesions points to a gradual transfer of memory from hippocampus to neocortical long-term memory. Spontaneous reactivations of hippocampal memories, as observed in place cell reactivations during slow-wave-sleep, are supposed to drive neocortical reinstatements and facilitate this process. We propose a functional neural network implementation of these ideas and furthermore suggest an extended three-state framework that includes the prefrontal cortex (PFC). It bridges the temporal chasm between working memory percepts on the scale of seconds and consolidated long-term memory on the scale of weeks or months. We show that our three-stage model can autonomously produce the necessary stochastic reactivation dynamics for successful episodic memory consolidation. The resulting learning system is shown to exhibit classical memory effects seen in experimental studies, such as retrograde and anterograde amnesia (AA) after simulated hippocampal lesioning; furthermore the model reproduces peculiar biological findings on memory modulation, such as retrograde facilitation of memory after suppressed acquisition of new long-term memories—similar to the effects of benzodiazepines on memory. PMID:25071536

  1. Lightweight thermal energy recovery system based on shape memory alloys: a DOE ARPA-E initiative

    NASA Astrophysics Data System (ADS)

    Browne, Alan L.; Keefe, Andrew C.; Alexander, Paul W.; Mankame, Nilesh; Usoro, Patrick; Johnson, Nancy L.; Aase, Jan; Sarosi, Peter; McKnight, Geoffrey P.; Herrera, Guillermo; Churchill, Christopher; Shaw, John; Brown, Jeff

    2012-04-01

    Over 60% of energy that is generated is lost as waste heat with close to 90% of this waste heat being classified as low grade being at temperatures less than 200°C. Many technologies such as thermoelectrics have been proposed as means for harvesting this lost thermal energy. Among them, that of SMA (shape memory alloy) heat engines appears to be a strong candidate for converting this low grade thermal output to useful mechanical work. Unfortunately, though proposed initially in the late 60's and the subject of significant development work in the 70's, significant technical roadblocks have existed preventing this technology from moving from a scientific curiosity to a practical reality. This paper/presentation provides an overview of the work performed on SMA heat engines under the US DOE (Department of Energy) ARPA-E (Advanced Research Projects Agency - Energy) initiative. It begins with a review of the previous art, covers the identified technical roadblocks to past advancement, presents the solution path taken to remove these roadblocks, and describes significant breakthroughs during the project. The presentation concludes with details of the functioning prototypes developed, which, being able to operate in air as well as fluids, dramatically expand the operational envelop and make significant strides towards the ultimate goal of commercial viability.

  2. Improving problem solving in primary school students: The effect of a training programme focusing on metacognition and working memory.

    PubMed

    Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara

    2015-09-01

    Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both general and specific underlying abilities. If effective, these programmes could help to increase students' motivation and competence. This study examined the feasibility of improving problem-solving skills in school children by means of a training programme that addresses general and specific abilities involved in problem solving, focusing on metacognition and working memory. The project involved a sample of 135 primary school children attending eight classes in the third, fourth, and fifth grades (age range 8-10 years). The classes were assigned to two groups, one attending the training programme in the first 3 months of the study (Training Group 1) and the other serving as a waiting-list control group (Training Group 2). In the second phase of the study, the role of the two groups was reversed, with Training Group 2 attending the training instead of Training Group 1. The training programme led to improvements in both metacognitive and working memory tasks, with positive-related effects on the ability to solve problems. The gains seen in Training Group 1 were also maintained at the second post-test (after 3 months). Specific activities focusing on metacognition and working memory may contribute to modifying arithmetical problem-solving performance in primary school children. © 2015 The British Psychological Society.

  3. The Effect of Executive Function on Science Achievement Among Normally Developing 10-Year Olds

    NASA Astrophysics Data System (ADS)

    Lederman, Sheri G.

    Executive function (EF) is an umbrella term used to identify a set of discrete but interrelated cognitive abilities that enable individuals to engage in goal-directed, future-oriented action in response to a novel context. Developmental studies indicate that EF is predictive of reading and math achievement in middle childhood. The purpose of this study was to identify the association between EF and science achievement among normally developing 10 year olds. A sample of fifth grade students from a Northeastern suburban community participated in tests of EF, science, and intelligence. Consistent with adult models of EF, principal components analysis identified a three-factor model of EF organization in middle childhood, including cognitive flexibility, working memory, and inhibition. Multiple regression analyses revealed that executive function processes of cognitive flexibility, working memory, and inhibition were all predictive of science performance. Post hoc analyses revealed that high-performing science students differed significantly from low-performing students in both cognitive flexibility and working memory. These findings suggest that complex academic demands specific to science achievement rely on the emergence and maturation of EF components.

  4. Direct and mediated effects of language and cognitive skills on comprehension of oral narrative texts (listening comprehension) for children.

    PubMed

    Kim, Young-Suk Grace

    2016-01-01

    We investigated component language and cognitive skills of oral language comprehension of narrative texts (i.e., listening comprehension). Using the construction-integration model of text comprehension as an overarching theoretical framework, we examined direct and mediated relations of foundational cognitive skills (working memory and attention), foundational language skills (vocabulary and grammatical knowledge), and higher-order cognitive skills (inference, theory of mind, and comprehension monitoring) to listening comprehension. A total of 201 first grade children in South Korea participated in the study. Structural equation modeling results showed that listening comprehension is directly predicted by working memory, grammatical knowledge, inference, and theory of mind and is indirectly predicted by attention, vocabulary, and comprehension monitoring. The total effects were .46 for working memory, .07 for attention, .30 for vocabulary, .49 for grammatical knowledge, .31 for inference, .52 for theory of mind, and .18 for comprehension monitoring. These results suggest that multiple language and cognitive skills make contributions to listening comprehension, and their contributions are both direct and indirect. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A Longitudinal Study on Predictors of Early Calculation Development among Young Children At-Risk for Learning Difficulties

    PubMed Central

    Peng, Peng; Namkung, Jessica M.; Fuchs, Douglas; Fuchs, Lynn S.; Patton, Samuel; Yen, Loulee; Compton, Donald L.; Zhang, Wenjuan; Miller, Amanda; Hamlett, Carol

    2016-01-01

    The purpose of this study was to explore domain-general cognitive skills, domain-specific academic skills, and demographic characteristics that are associated with calculation development from first through third grade among young children with learning difficulties. Participants were 176 children identified with reading and mathematics difficulties at the beginning of first grade. Data were collected on working memory, language, nonverbal reasoning, processing speed, decoding, numerical competence, incoming calculations, socioeconomic status, and gender at the beginning of first grade and on calculation performance at 4 time points: the beginning of first grade, the end of first grade, the end of second grade, and the end of third grade. Latent growth modelling analysis showed that numerical competence, incoming calculation, processing speed, and decoding skills significantly explained the variance of calculation performance at the beginning of first grade. Numerical competence and processing speed significantly explained the variance of calculation performance at the end of third grade. However, numerical competence was the only significant predictor of calculation development from the beginning of first grade to the end of third grade. Implications of these findings for early calculation instructions among young at-risk children are discussed. PMID:27572520

  6. Temporally Graded Activation of Neocortical Regions in Response to Memories of Different Ages

    PubMed Central

    Woodard, John L.; Seidenberg, Michael; Nielson, Kristy A.; Miller, Sarah K.; Franczak, Malgorzata; Antuono, Piero; Douville, Kelli L.; Rao, Stephen M.

    2007-01-01

    The temporally graded memory impairment seen in many neurobehavioral disorders implies different neuroanatomical pathways and/or cognitive mechanisms involved in storage and retrieval of memories of different ages. A dynamic interaction between medial-temporal and neocortical brain regions has been proposed to account for memory’s greater permanence with time. Despite considerable debate concerning its time-dependent role in memory retrieval, medial-temporal lobe activity has been well studied. However, the relative participation of neocortical regions in recent and remote memory retrieval has received much less attention. Using functional magnetic resonance imaging, we demonstrate robust, temporally graded signal differences in posterior cingulate, right middle frontal, right fusiform, and left middle temporal regions in healthy older adults during famous name identification from two disparate time epochs. Importantly, no neocortical regions demonstrated greater response to older than to recent stimuli. Our results suggest a possible role of these neocortical regions in temporally dating items in memory and in establishing and maintaining memory traces throughout the lifespan. Theoretical implications of these findings for the two dominant models of remote memory functioning (Consolidation Theory and Multiple Trace Theory) are discussed. PMID:17583988

  7. Frontal brain activation during a working memory task: a time-domain fNIRS study

    NASA Astrophysics Data System (ADS)

    Molteni, E.; Baselli, G.; Bianchi, A. M.; Caffini, M.; Contini, D.; Spinelli, L.; Torricelli, A.; Cerutti, S.; Cubeddu, R.

    2009-02-01

    We evaluated frontal brain activation during a working memory task with graded levels of difficulty in a group of 19 healthy subjects, by means of time-resolved fNIRS technique. Brain activation was computed, and was then separated into a "block-related" and a "tonic" components. Load-related increases of blood oxygenation were studied for the four different levels of task difficulty. Generalized Linear Models were applied to the data in order to explore the metabolic processes occurring during the mental effort and, possibly, their involvement in short term memorization. Results attest the presence of a persistent attentional-related metabolic activity, superimposed to a task-related mnemonic contribution. Moreover, a systemic component probably deriving from the extra-cerebral capillary bed was detected.

  8. Cognitive and Linguistic Predictors of Mathematical Word Problems With and Without Irrelevant Information.

    PubMed

    Wang, Amber Y; Fuchs, Lynn S; Fuchs, Douglas

    2016-12-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research.

  9. Differential Relationships between RAN Performance, Behaviour Ratings, and Executive Function Measures: Searching for a Double Dissociation

    ERIC Educational Resources Information Center

    Stringer, Ronald W.; Toplak, Maggie E.; Stanovich, Keith E.

    2004-01-01

    In this study, we investigated the relationships between rapid naming of letters, digits and colours, and reading ability and executive function. We gave fifty-six grade three and four children rapid automatised naming tasks using letters and digits as stimuli, executive function measures including the Stroop task, a working memory task and the…

  10. Cognitive Predictors of Calculations and Number Line Estimation with Whole Numbers and Fractions among At-Risk Students

    ERIC Educational Resources Information Center

    Namkung, Jessica M.; Fuchs, Lynn S.

    2015-01-01

    The purpose of this study was to examine the cognitive predictors of calculations and number line estimation with whole numbers and fractions. At-risk 4th-grade students (N = 139) were assessed on 7 domain-general abilities (i.e., working memory, processing speed, concept formation, language, attentive behavior, and nonverbal reasoning) and…

  11. Syntactic and Discourse Skills in Chinese Adolescent Readers with Dyslexia: A Profiling Study

    ERIC Educational Resources Information Center

    Chung, Kevin K. H.; Lo, Jason C. M.; Ho, Connie S.-H.; Xiao, Xiaoyun; Chan, David W.

    2014-01-01

    This study aims to investigate the relation of syntactic and discourse skills to morphological skills, rapid naming, and working memory in Chinese adolescent readers with dyslexia and to examine their cognitive-linguistic profiles. Fifty-two dyslexic readers (mean age, 13;42) from grade 7 to 9 in Hong Kong high schools were compared with 52…

  12. Expanding the Developmental Models of Writing: A Direct and Indirect Effects Model of Developmental Writing (DIEW)

    ERIC Educational Resources Information Center

    Kim, Young-Suk Grace; Schatschneider, Christopher

    2017-01-01

    We investigated direct and indirect effects of component skills on writing (DIEW) using data from 193 children in Grade 1. In this model, working memory was hypothesized to be a foundational cognitive ability for language and cognitive skills as well as transcription skills, which, in turn, contribute to writing. Foundational oral language skills…

  13. The Role of Domain-General Cognitive Abilities and Decimal Labels in At-Risk Fourth-Grade Students' Decimal Magnitude Understanding

    ERIC Educational Resources Information Center

    Malone, Amelia Schneider; Loehr, Abbey M.; Fuchs, Lynn S.

    2017-01-01

    The purpose of the study was to determine whether individual differences in at-risk 4th graders' language comprehension, nonverbal reasoning, concept formation, working memory, and use of decimal labels (i.e., place value, point, incorrect place value, incorrect fraction, or whole number) are related to their decimal magnitude understanding.…

  14. Cognitive Predictors of Calculations and Number Line Estimation with Whole Numbers and Fractions among At-Risk Students

    ERIC Educational Resources Information Center

    Namkung, Jessica M.; Fuchs, Lynn S.

    2016-01-01

    The purpose of this study was to examine the cognitive predictors of calculations and number line estimation with whole numbers and fractions. At-risk 4th-grade students (N = 139) were assessed on 6 domain-general abilities (i.e., working memory, processing speed, concept formation, language, attentive behavior, and nonverbal reasoning) and…

  15. The Role of the Executive Functions in School Achievement at the End of Grade 1

    ERIC Educational Resources Information Center

    Monette, Sebastien; Bigras, Marc; Guay, Marie-Claude

    2011-01-01

    The aim of this study was to determine the role of executive functions (EFs) in early school achievement when a variety of potential confounding factors were controlled. Measures of EF (inhibition, flexibility, and working memory) and school readiness were administered to a sample of 85 kindergartners (39 boys and 46 girls, 5-6 years old). School…

  16. Prediction and Stability of Mathematics Skill and Difficulty

    PubMed Central

    Martin, Rebecca B.; Cirino, Paul T.; Barnes, Marcia A.; Ewing-Cobbs, Linda; Fuchs, Lynn S.; Stuebing, Karla K.; Fletcher, Jack M.

    2016-01-01

    The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance. PMID:22392890

  17. A predictive study of reading comprehension in third-grade Spanish students.

    PubMed

    López-Escribano, Carmen; Elosúa de Juan, María Rosa; Gómez-Veiga, Isabel; García-Madruga, Juan Antonio

    2013-01-01

    The study of the contribution of language and cognitive skills to reading comprehension is an important goal of current reading research. However, reading comprehension is not easily assessed by a single instrument, as different comprehension tests vary in the type of tasks used and in the cognitive demands required. This study examines the contribution of basic language and cognitive skills (decoding, word recognition, reading speed, verbal and nonverbal intelligence and working memory) to reading comprehension, assessed by two tests utilizing various tasks that require different skill sets in third-grade Spanish-speaking students. Linguistic and cognitive abilities predicted reading comprehension. A measure of reading speed (the reading time of pseudo-words) was the best predictor of reading comprehension when assessed by the PROLEC-R test. However, measures of word recognition (the orthographic choice task) and verbal working memory were the best predictors of reading comprehension when assessed by means of the DARC test. These results show, on the one hand, that reading speed and word recognition are better predictors of Spanish language comprehension than reading accuracy. On the other, the reading comprehension test applied here serves as a critical variable when analyzing and interpreting results regarding this topic.

  18. Prediction and stability of mathematics skill and difficulty.

    PubMed

    Martin, Rebecca B; Cirino, Paul T; Barnes, Marcia A; Ewing-Cobbs, Linda; Fuchs, Lynn S; Stuebing, Karla K; Fletcher, Jack M

    2013-01-01

    The present study evaluated the stability of math learning difficulties over a 2-year period and investigated several factors that might influence this stability (categorical vs. continuous change, liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math performance over time and by performance level was also evaluated. Participants were 144 students initially identified as having a math difficulty (MD) or no learning difficulty according to low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years later. For both measure types, a similar proportion of students changed whether assessed categorically or continuously. However, categorical change was heavily dependent on distance from the cut point and so more common for MD, who started closer to the cut point; reliable change index change was more similar across groups. There were few differences with regard to severity level of MD on continuous metrics or in terms of prediction. Final math performance on a broad computation measure was predicted by behavioral inattention and working memory while considering initial performance; for a specific fluency measure, working memory was not uniquely related, and behavioral inattention more variably related to final performance, again while considering initial performance.

  19. Associations Between Physical Fitness Indices and Working Memory in Breast Cancer Survivors and Age-Matched Controls

    PubMed Central

    Mackenzie, Michael J.; Zuniga, Krystle E.; Raine, Lauren B.; Awick, Elizabeth A.; Hillman, Charles H.; Kramer, Arthur F.

    2016-01-01

    Abstract Background: This study examined the effects of cardiorespiratory fitness, heart rate recovery, and physical activity on working memory in breast cancer survivors and age-matched controls. Method: Using a case-control design, 32 women who had received a breast cancer diagnosis and completed primary treatment within the past 36-months (11 radiation only; 21 chemotherapy) and 30 age-matched women with no previous cancer diagnosis completed a n-back continuous performance task commonly used as an assessment of working memory. In addition, cardiorespiratory fitness and heart rate recovery were measured during a submaximal graded exercise test and physical activity was measured using 7-days of accelerometer monitoring. Results: Breast cancer survivors who had received chemotherapy had poorer heart rate recovery (p = .010) and engaged in less physical activity than women who had received radiation only (p = .004) or non-cancer controls (p = .029). Cancer treatment (radiation; chemotherapy) predicted differences in reaction times on the 1-back working memory task (p = .029). However, more rapid heart rate recovery predicted shorter reaction times on the 1-back task in the age-matched control group (p = .002). All participants with greater cardiorespiratory fitness displayed greater accuracy independent of disease status on the 1-back task (p = .017). No significant group differences in reaction times were observed for 2-back target trials between breast cancer survivors and controls. However, greater total physical activity predicted shorter reaction times in breast cancer survivors (radiation, chemotherapy) on the 2-back task (p = .014). In addition, all participants who exhibited more rapid heart rate recovery demonstrated better greater accuracy regardless of disease status (p = .013). Conclusion: These findings support differences in physical activty participation, heart rate recovery, and 1- and 2-back working memory reaction times between breast cancer survivors and age-matched controls. Greater cardiorespiratory fitness, heart rate recovery, and physical activity were positively associated with better working memory performance across conditions. PMID:26418463

  20. Using Text Documents from American Memory.

    ERIC Educational Resources Information Center

    Singleton, Laurel R., Ed.

    2002-01-01

    This publication contains classroom-tested teaching ideas. For grades K-4, "'Blessed Ted-fred': Famous Fathers Write to Their Children" uses American Memory for primary source letters written by Theodore Roosevelt and Alexander Graham Bell to their children. For grades 5-8, "Found Poetry and the American Life Histories…

  1. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th grade Chinese adolescent binge drinkers

    PubMed Central

    Johnson, C. Anderson; Xiao, Lin; Palmer, Paula; Sun, Ping; Wang, Qiong; Wei, Yonglan; Jia, Yong; Grenard, Jerry L.; Stacy, Alan W.; Bechara, Antoine

    2011-01-01

    The primary aim of this study was to test the hypothesis that adolescent binge drinkers, but not lighter drinkers, would show signs of impairment on tasks of affective decision-making as measured by the Iowa Gambling Test (IGT), when compared to adolescents who never drank. We tested 207 10th grade adolescents in Chengdu City, China, using two versions of the IGT, the original and a variant, in which the reward/punishment contingencies were reversed. This enables one to distinguish among different possibilities of impaired decision-making, such as insensitivity to long-term consequences, or hypersensitivity to reward. Furthermore, we tested working memory capacity using the Self-ordered Pointing Test (SOPT). Paper and pencil questionnaires were used to assess drinking behaviors and school academic performance. Results indicated that relative to never-drinkers, adolescent binge drinkers, but not other (ever, past 30-day) drinkers, showed significantly lower net scores on the original version of the IGT especially in the latter trials. Furthermore, the profiles of behavioral performance from the original and variant versions of the IGT were consistent with a decision-making impairment attributed to hypersensitivity to reward. In addition, working memory and school academic performance revealed no differences between drinkers (at all levels) and never-drinkers. Logistic regression analysis showed that after controlling for demographic variables, working memory, and school academic performance, the IGT significantly predicted binge-drinking. These findings suggest that a “myopia” for future consequences linked to hypersensitivity to reward is a key characteristic of adolescents with binge-drinking behavior, and that underlying neural mechanisms for this “myopia” for future consequences may serve as a predisposing factor that renders some adolescents more susceptible to future addictive behaviors. PMID:17996909

  2. Affective decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in 10th-grade Chinese adolescent smokers

    PubMed Central

    Xiao, Lin; Bechara, Antoine; Cen, Steven; Grenard, Jerry L.; Stacy, Alan W.; Gallaher, Peggy; Wei, Yonglan; Jia, Yong; Johnson, C. Anderson

    2008-01-01

    This study addressed the question of whether poor decision making would be associated with adolescent past 7-day smoking. We conducted a cross-sectional study of 208 10th-grade adolescents in Chengdu City, China. We used the Iowa Gambling Task (IGT) to assess decision-making, and the Self-ordered Pointing Task (SOPT) to assess working memory capacity. Paper and pencil questionnaires assessed the school academic performance (SAP) and smoking variables. The results showed that a significantly higher proportion of past 7-day smokers (91.7%) were susceptible to future smoking and cigarette offers from best friends compared to other levels of smokers (never, ever and past 30-day smokers). Consistent with these behavioral data, the neuropsychological assessments revealed that relative to never smokers, past 7-day adolescent smokers (but not ever smokers or past 30-day smokers) demonstrated significantly lower scores on the IGT. Moreover, a higher proportion of past 7-day smokers (91.7%) performed poorly (no more than an overall net score of 10) on the IGT than nonsmokers and irregular (ever or past 30-day) smokers (about 65.3%). There were no differences on working memory performance for smokers (at any level) compared to never smokers after adjusting for school-type. In addition, logistic regression showed that the IGT significantly predicted past 7-day smoking after controlling for the working memory, school academic performance and demographic variables. These results suggest that poor affective decision making might predispose some adolescents to smoking in the future or in the social situations where their peers are smoking. Intervention targeting affective decision making might hold promise for reducing adolescents’ risks for substance use. PMID:18584472

  3. Working memory moderates the effect of the integrative process of implicit and explicit autonomous motivation on academic achievement.

    PubMed

    Gareau, Alexandre; Gaudreau, Patrick

    2017-11-01

    In previous research, autonomous motivation (AM) has been found to be associated with school achievement, but the relation has been largely heterogeneous across studies. AM has typically been assessed with explicit measures such as self-report questionnaires. Recent self-determination theory (SDT) research has suggested that converging implicit and explicit measures can be taken to characterize the integrative process in SDT. Drawing from dual-process theories, we contended that explicit AM is likely to promote school achievement when it is part of an integrated cognitive system that combines easily accessible mental representations (i.e., implicit AM) and efficient executive functioning. A sample of 272 university students completed a questionnaire and a lexical decision task to assess their explicit and implicit AM, respectively, and they also completed working memory capacity measures. Grades were obtained at the end of the semester to examine the short-term prospective effect of implicit and explicit AM, working memory, and their interaction. Results of moderation analyses have provided support for a synergistic interaction in which the association between explicit AM and academic achievement was positive and significant only for individuals with high level of implicit AM. Moreover, working memory was moderating the synergistic effect of explicit and implicit AM. Explicit AM was positively associated with academic achievement for students with average-to-high levels of working memory capacity, but only if their motivation operated synergistically with high implicit AM. The integrative process thus seems to hold better proprieties for achievement than the sole effect of explicit AM. Implications for SDT are outlined. © 2017 The British Psychological Society.

  4. A longitudinal study on predictors of early calculation development among young children at risk for learning difficulties.

    PubMed

    Peng, Peng; Namkung, Jessica M; Fuchs, Douglas; Fuchs, Lynn S; Patton, Samuel; Yen, Loulee; Compton, Donald L; Zhang, Wenjuan; Miller, Amanda; Hamlett, Carol

    2016-12-01

    The purpose of this study was to explore domain-general cognitive skills, domain-specific academic skills, and demographic characteristics that are associated with calculation development from first grade to third grade among young children with learning difficulties. Participants were 176 children identified with reading and mathematics difficulties at the beginning of first grade. Data were collected on working memory, language, nonverbal reasoning, processing speed, decoding, numerical competence, incoming calculations, socioeconomic status, and gender at the beginning of first grade and on calculation performance at four time points: the beginning of first grade, the end of first grade, the end of second grade, and the end of third grade. Latent growth modeling analysis showed that numerical competence, incoming calculation, processing speed, and decoding skills significantly explained the variance in calculation performance at the beginning of first grade. Numerical competence and processing speed significantly explained the variance in calculation performance at the end of third grade. However, numerical competence was the only significant predictor of calculation development from the beginning of first grade to the end of third grade. Implications of these findings for early calculation instructions among young at-risk children are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cognition and Literacy in English Language Learners at Risk for Reading Disabilities: A Latent Transition Analysis

    ERIC Educational Resources Information Center

    Swanson, H. Lee; Kudo, Milagros; Guzman-Orth, Danielle

    2016-01-01

    This study investigated the prevalence and stability of latent classes at risk for reading disabilities (RD) in elementary-aged children whose first language is Spanish. To this end, children (N = 489) in Grades 1, 2, and 3 at Wave 1 were administered a battery of reading, vocabulary, and cognitive measures (short-term memory [STM], working memory…

  6. The Role of Executive Attention in the Acquisition of Mathematical Skills for Children in Grades 2 through 4

    ERIC Educational Resources Information Center

    LeFevre, Jo-Anne; Berrigan, Lindsay; Vendetti, Corrie; Kamawar, Deepthi; Bisanz, Jeffrey; Skwarchuk, Sheri-Lynn; Smith-Chant, Brenda L.

    2013-01-01

    We examined the role of executive attention, which encompasses the common aspects of executive function and executive working memory, in children's acquisition of two aspects of mathematical skill: (a) knowledge of the number system (e.g., place value) and of arithmetic procedures (e.g., multi-digit addition) and (b) arithmetic fluency (i.e.,…

  7. The Work of Mourning in the Bilingual Schools of Israel: Ambivalent Emotions and the Risks of Seeking Mutual Respect and Understanding

    ERIC Educational Resources Information Center

    Zembylas, Michalinos; Bekerman, Zvi

    2011-01-01

    This article presents an in-depth analysis of two commemoration events in a first-grade classroom of a bilingual school in Israel. The two events presented--the commemorations of the Holocaust Day and the Memorial Day--derive from a longitudinal ethnographic study of integrated bilingual schools in Israel. The analysis of these events shows…

  8. Cognitive and Linguistic Predictors of Basic Arithmetic Skills: Evidence from First-Language and Second-Language Learners

    ERIC Educational Resources Information Center

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2014-01-01

    The present study investigated the role of both cognitive and linguistic predictors in basic arithmetic skills (i.e., addition and subtraction) in 69 first-language (L1) learners and 60 second-language (L2) learners from the second grade of primary schools in the Netherlands. All children were tested on non-verbal intelligence, working memory,…

  9. The Role of Executive Function in Arithmetic Problem-Solving Processes: A Study of Third Graders

    ERIC Educational Resources Information Center

    Viterbori, Paola; Traverso, Laura; Usai, M. Carmen

    2017-01-01

    This study investigated the roles of different executive function (EF) components (inhibition, shifting, and working memory) in 2-step arithmetic word problem solving. A sample of 139 children aged 8 years old and regularly attending the 3rd grade of primary school were tested on 6 EF tasks measuring different EF components, a reading task and a…

  10. Cognitive and Linguistic Predictors of Mathematical Word Problems With and Without Irrelevant Information

    PubMed Central

    Fuchs, Lynn S.; Fuchs, Douglas

    2016-01-01

    The purpose of this study was to identify cognitive and linguistic predictors of word problems with versus without irrelevant information. The sample was 701 2nd-grade students who received no specialized intervention on word problems. In the fall, they were assessed on initial arithmetic and word-problem skill as well as language ability, working memory capacity, and processing speed; in the spring, they were tested on a word-problem measure that included items with versus without irrelevant information. Significant predictors common to both forms of word problems were initial arithmetic and word problem-solving skill as well as language and working memory. Nonverbal reasoning predicted word problems with irrelevant information, but not word problems without irrelevant information. Findings are discussed in terms of implications for intervention and future research. PMID:28190942

  11. Parent-Child Engagement in Decision Making and the Development of Adolescent Affective Decision Capacity and Binge Drinking

    PubMed Central

    Xiao, Lin; Bechara, Antoine; Palmer, Paula H.; Trinidad, Dennis R.; Wei, Yonglan; Jia, Yong; Johnson, C. Anderson

    2010-01-01

    The goal of this study was to investigate how parents’ engagement of their child in everyday decision-making influenced their adolescent’s development on two neuropsychological functions, namely, affective decision-making and working memory, and its effect on adolescent binge-drinking behavior. We conducted a longitudinal study of 192 Chinese adolescents. In 10th grade, the adolescents were tested for their affective decision-making ability using the Iowa Gambling Task (IGT) and working memory capacity using the Self-ordered Pointing Test (SOPT). Questionnaires were used to assess perceived parent-child engagement in decision-making, academic performance and drinking behavior. At one-year follow-up, the same neuropsychological tasks and questionnaires were repeated. Results indicate that working memory and academic performance were uninfluenced by parent-child engagement in decision-making. However, compared to adolescents whose parents made solitary decisions for them, adolescents engaged in everyday decision-making showed significant improvement on affective decision capacity and significantly less binge-drinking one year later. These findings suggest that parental engagement of children in everyday decision-making might foster the development of neurocognitive functioning relative to affective decision-making and reduce adolescent substance use behaviors. PMID:21804682

  12. Errors in nonword repetition: bridging short- and long-term memory.

    PubMed

    Santos, F H; Bueno, O F A; Gathercole, S E

    2006-03-01

    According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep) is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR) as a Portuguese-language version. The objectives of the present study were: i) to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii) to examine phoneme (substitution, omission and addition) and order (migration) errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525) = 180.47; P < 0.0001]. The performance was age-related [F(4,175) = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519) = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16) = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48) = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.

  13. On the relationship between math anxiety and math achievement in early elementary school: The role of problem solving strategies.

    PubMed

    Ramirez, Gerardo; Chang, Hyesang; Maloney, Erin A; Levine, Susan C; Beilock, Sian L

    2016-01-01

    Even at young ages, children self-report experiencing math anxiety, which negatively relates to their math achievement. Leveraging a large dataset of first and second grade students' math achievement scores, math problem solving strategies, and math attitudes, we explored the possibility that children's math anxiety (i.e., a fear or apprehension about math) negatively relates to their use of more advanced problem solving strategies, which in turn relates to their math achievement. Our results confirm our hypothesis and, moreover, demonstrate that the relation between math anxiety and math problem solving strategies is strongest in children with the highest working memory capacity. Ironically, children who have the highest cognitive capacity avoid using advanced problem solving strategies when they are high in math anxiety and, as a result, underperform in math compared with their lower working memory peers. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Untangling the Contribution of the Subcomponents of Working Memory to Mathematical Proficiency as Measured by the National Tests: A Study among Swedish Third Graders

    PubMed Central

    Wiklund-Hörnqvist, Carola; Jonsson, Bert; Korhonen, Johan; Eklöf, Hanna; Nyroos, Mikaela

    2016-01-01

    The aim with the present study was to examine the relationship between the subcomponents in working memory (WM) and mathematical performance, as measured by the National tests in a sample of 597 Swedish third-grade pupils. In line with compelling evidence of other studies, individual differences in WM capacity significantly predicted mathematical performance. Dividing the sample into four groups, based on their mathematical performance, revealed that mathematical ability can be conceptualized in terms of different WM profiles. Pupils categorized as High-math performers particularly differed from the other three groups in having a significant higher phonological ability. In contrast, pupils categorized as Low-math performers were particularly characterized by having a significant lower visuo-spatial ability. Findings suggest that it is important for educators to recognize and acknowledge individual differences in WM to support mathematical achievement at an individual level. PMID:27486413

  15. Child-Level Predictors of Responsiveness to Evidence-Based Mathematics Intervention.

    PubMed

    Powell, Sarah R; Cirino, Paul T; Malone, Amelia S

    2017-07-01

    We identified child-level predictors of responsiveness to 2 types of mathematics (calculation and word-problem) intervention among 2nd-grade children with mathematics difficulty. Participants were 250 children in 107 classrooms in 23 schools pretested on mathematics and general cognitive measures and posttested on mathematics measures. We assigned classrooms randomly assigned to calculation intervention, word-problem intervention, or business-as-usual control. Intervention lasted 17 weeks. Path analyses indicated that scores on working memory and language comprehension assessments moderated responsiveness to calculation intervention. No moderators were identified for responsiveness to word-problem intervention. Across both intervention groups and the control group, attentive behavior predicted both outcomes. Initial calculation skill predicted the calculation outcome, and initial language comprehension predicted word-problem outcomes. These results indicate that screening for calculation intervention should include a focus on working memory, language comprehension, attentive behavior, and calculations. Screening for word-problem intervention should focus on attentive behavior and word problems.

  16. Working memory and social functioning in children.

    PubMed

    McQuade, Julia D; Murray-Close, Dianna; Shoulberg, Erin K; Hoza, Betsy

    2013-07-01

    This study extends previous research and examines whether working memory (WM) is associated with multiple measures of concurrent social functioning (peer rejection, overall social competence, relational aggression, physical aggression, and conflict resolutions skills) in typically developing fourth- and fifth-grade children (N=116). Poor central executive WM was associated with both broad social impairments (peer rejection and poor overall social competence) and specific social impairments (physical aggression, relational aggression, and impaired conflict resolution skills); poor verbal storage was associated only with greater peer rejection, and spatial storage was not associated with any measures of social impairment. Analyses also examined whether specific impairments in aggressive behavior and conflict resolution skills mediated the association between central executive and broad measures of social functioning. Greater physical aggression and impaired conflict resolution skills were both significant mediators; relational aggression was not. Implications for theory and future research are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Color Cues and Rehearsal in Short-Term Memory.

    ERIC Educational Resources Information Center

    Sabo, Ruth A.; Hagen, John W.

    A short term memory task was used to explore the effects of color cues and of a condition that permitted rehearsal as compared to one that did not. Eighty subjects per grade at grades 3, 5, and 7 were tested. A stimulus array consisted of five cards, each of which contained pictures that could be designated as central or incidental. The stimulus…

  18. Functional Integrity of the Retrosplenial Cortex Is Essential for Rapid Consolidation and Recall of Fear Memory

    ERIC Educational Resources Information Center

    Katche, Cynthia; Dorman, Guido; Slipczuk, Leandro; Cammarota, Martin; Medina, Jorge H.

    2013-01-01

    Memory storage is a temporally graded process involving different phases and different structures in the mammalian brain. Cortical plasticity is essential to store stable memories, but little is known regarding its involvement in memory processing. Here we show that fear memory consolidation requires early post-training macromolecular synthesis in…

  19. Neurocomputational account of memory and perception: Thresholded and graded signals in the hippocampus.

    PubMed

    Elfman, Kane W; Aly, Mariam; Yonelinas, Andrew P

    2014-12-01

    Recent evidence suggests that the hippocampus, a region critical for long-term memory, also supports certain forms of high-level visual perception. A seemingly paradoxical finding is that, unlike the thresholded hippocampal signals associated with memory, the hippocampus produces graded, strength-based signals in perception. This article tests a neurocomputational model of the hippocampus, based on the complementary learning systems framework, to determine if the same model can account for both memory and perception, and whether it produces the appropriate thresholded and strength-based signals in these two types of tasks. The simulations showed that the hippocampus, and most prominently the CA1 subfield, produced graded signals when required to discriminate between highly similar stimuli in a perception task, but generated thresholded patterns of activity in recognition memory. A threshold was observed in recognition memory because pattern completion occurred for only some trials and completely failed to occur for others; conversely, in perception, pattern completion always occurred because of the high degree of item similarity. These results offer a neurocomputational account of the distinct hippocampal signals associated with perception and memory, and are broadly consistent with proposals that CA1 functions as a comparator of expected versus perceived events. We conclude that the hippocampal computations required for high-level perceptual discrimination are congruous with current neurocomputational models that account for recognition memory, and fit neatly into a broader description of the role of the hippocampus for the processing of complex relational information. © 2014 Wiley Periodicals, Inc.

  20. Competence with Fractions Predicts Gains in Mathematics Achievement

    PubMed Central

    Bailey, Drew H.; Hoard, Mary K.; Nugent, Lara; Geary, David C.

    2012-01-01

    Competence with fractions predicts later mathematics achievement, but the co-developmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this co-development through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grade (n = 212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted one year gains in mathematics achievement (β = .14, p<.01), controlling for the central executive component of working memory and intelligence, but sixth grade mathematics achievement did not predict gains on the fractions concepts measure (β = .03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, and central executive span and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement. PMID:22832199

  1. Time and resource limits on working memory: cross-age consistency in counting span performance.

    PubMed

    Ransdell, Sarah; Hecht, Steven

    2003-12-01

    This longitudinal study separated resource demand effects from those of retention interval in a counting span task among 100 children tested in grade 2 and again in grades 3 and 4. A last card large counting span condition had an equivalent memory load to a last card small, but the last card large required holding the count over a longer retention interval. In all three waves of assessment, the last card large condition was found to be less accurate than the last card small. A model predicting reading comprehension showed that age was a significant predictor when entered first accounting for 26% of the variance, but counting span accounted for a further 22% of the variance. Span at Wave 1 accounted for significant unique variance at Wave 2 and at Wave 3. Results were similar for math calculation with age accounting for 31% of the variance and counting span accounting for a further 34% of the variance. Span at Wave 1 explained unique variance in math at Wave 2 and at Wave 3.

  2. Child Intelligence and Reductions in Water Arsenic and Manganese: A Two-Year Follow-up Study in Bangladesh.

    PubMed

    Wasserman, Gail A; Liu, Xinhua; Parvez, Faruque; Factor-Litvak, Pam; Kline, Jennie; Siddique, Abu B; Shahriar, Hasan; Uddin, Mohammed Nasir; van Geen, Alexander; Mey, Jacob L; Balac, Olgica; Graziano, Joseph H

    2016-07-01

    Arsenic (As) exposure from drinking water is associated with modest intellectual deficits in childhood. It is not known whether reducing exposure is associated with improved intelligence. We aimed to determine whether reducing As exposure is associated with improved child intellectual outcomes. Three hundred three 10-year-old children drinking from household wells with a wide range of As concentrations were enrolled at baseline. In the subsequent year, deep community wells, low in As, were installed in villages of children whose original wells had high water As (WAs ≥ 50 μg/L). For 296 children, intelligence was assessed by WISC-IV (Wechsler Intelligence Scale for Children, 4th ed.), with a version modified for the study population, at baseline and approximately 2 years later; analyses considered standardized scores for both Full Scale IQ and Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indices. Creatinine-adjusted urinary arsenic (UAs/Cr), blood As (BAs), and blood manganese (BMn) were assessed at both times. UAs/Cr concentrations declined significantly by follow-up for both the high (≥ 50 μg/L) and low (< 50 μg/L) WAs subgroups. At baseline, adjusting for maternal age and intelligence, plasma ferritin, head circumference, home environment quality, school grade, and BMn, UAs/Cr was significantly negatively associated with Full Scale IQ, and with all Index scores (except Processing Speed). After adjustment for baseline Working Memory scores and school grade, each 100-μg/g reduction in UAs/Cr from baseline to follow-up was associated with a 0.91 point increase in Working Memory (95% CI: 0.14, 1.67). The change in UAs/Cr across follow-up was not significantly associated with changes in Full Scale IQ or Index scores. Installation of deep, low-As community wells lowered UAs, BAs, and BMn. A greater decrease in UAs/Cr was associated with greater improvements in Working Memory scores, but not with a greater improvement in Full Scale IQ. Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Kline J, Siddique AB, Shahriar H, Uddin MN, van Geen A, Mey JL, Balac O, Graziano JH. 2016. Child intelligence and reductions in water arsenic and manganese: a two-year follow-up study in Bangladesh. Environ Health Perspect 124:1114-1120; http://dx.doi.org/10.1289/ehp.1509974.

  3. The Effects of Intelligence, Self-Concept, and Attributional Style on Metamemory and Memory Behavior: A Developmental Study. Paper 1.

    ERIC Educational Resources Information Center

    Schneider, Wolfgang; And Others

    The influence of intelligence, self-concept, and causal attributions on metamemory and the metamemory-memory behavior relationship in grade-school children was studied. Following the assessment of intelligence, self-concept, and causal attributions, 105 children each from grades 3, 5, and 7 were given a metamemory interview and a sort-recall task.…

  4. Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2010-01-01

    The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…

  5. Spatial Working Memory Deficits in Male Rats Following Neonatal Hypoxic Ischemic Brain Injury Can Be Attenuated by Task Modifications

    PubMed Central

    Smith, Amanda L.; Hill, Courtney A.; Alexander, Michelle; Szalkowski, Caitlin E.; Chrobak, James J.; Rosenkrantz, Ted S.; Fitch, R. Holly

    2014-01-01

    Hypoxia-ischemia (HI; reduction in blood/oxygen supply) is common in infants with serious birth complications, such as prolonged labor and cord prolapse, as well as in infants born prematurely (<37 weeks gestational age; GA). Most often, HI can lead to brain injury in the form of cortical and subcortical damage, as well as later cognitive/behavioral deficits. A common domain of impairment is working memory, which can be associated with heightened incidence of developmental disorders. To further characterize these clinical issues, the current investigation describes data from a rodent model of HI induced on postnatal (P)7, an age comparable to a term (GA 36–38) human. Specifically, we sought to assess working memory using an eight-arm radial water maze paradigm. Study 1 used a modified version of the paradigm, which requires a step-wise change in spatial memory via progressively more difficult tasks, as well as multiple daily trials for extra learning opportunity. Results were surprising and revealed a small HI deficit only for the final and most difficult condition, when a delay before test trial was introduced. Study 2 again used the modified radial arm maze, but presented the most difficult condition from the start, and only one daily test trial. Here, results were expected and revealed a robust and consistent HI deficit across all weeks. Combined results indicate that male HI rats can learn a difficult spatial working memory task if it is presented in a graded multi-trial format, but performance is poor and does not appear to remediate if the task is presented with high initial memory demand. Male HI rats in both studies displayed impulsive characteristics throughout testing evidenced as reduced choice latencies despite more errors. This aspect of behavioral results is consistent with impulsiveness as a core symptom of ADHD—a diagnosis common in children with HI insult. Overall findings suggest that task specific behavioral modifications are crucial to accommodating memory deficits in children suffering from cognitive impairments following neonatal HI. PMID:24961760

  6. Role of linguistic skills in fifth-grade mathematics.

    PubMed

    Kleemans, Tijs; Segers, Eliane; Verhoeven, Ludo

    2018-03-01

    The current study investigated the direct and indirect relations between basic linguistic skills (i.e., phonological skills and grammatical ability) and advanced linguistic skills (i.e., academic vocabulary and verbal reasoning), on the one hand, and fifth-grade mathematics (i.e., arithmetic, geometry, and fractions), on the other, taking working memory and general intelligence into account and controlling for socioeconomic status, age, and gender. The results showed the basic linguistic representations of 167 fifth graders to be indirectly related to their geometric and fraction skills via arithmetic. Furthermore, advanced linguistic skills were found to be directly related to geometry and fractions after controlling for arithmetic. It can be concluded that linguistic skills directly and indirectly relate to mathematical ability in the upper grades of primary education, which highlights the importance of paying attention to such skills in the school curriculum. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Information Memory Processing and Retrieval: The Use of Information Theory to Study Primacy and Recency Characteristics of Ninth Grade Science Students Processing Learning Tasks.

    ERIC Educational Resources Information Center

    Dunlop, David L.

    Reported is another study related to the Project on an Information Memory Model. This study involved using information theory to investigate the concepts of primacy and recency as they were exhibited by ninth-grade science students while processing a biological sorting problem and an immediate, abstract recall task. Two hundred randomly selected…

  8. Entorhinal volume, aerobic fitness, and recognition memory in healthy young adults: A voxel-based morphometry study.

    PubMed

    Whiteman, Andrew S; Young, Daniel E; Budson, Andrew E; Stern, Chantal E; Schon, Karin

    2016-02-01

    Converging evidence supports the hypothesis effects of aerobic exercise and environmental enrichment are beneficial for cognition, in particular for hippocampus-supported learning and memory. Recent work in humans suggests that exercise training induces changes in hippocampal volume, but it is not known if aerobic exercise and fitness also impact the entorhinal cortex. In animal models, aerobic exercise increases expression of growth factors, including brain derived neurotrophic factor (BDNF). This exercise-enhanced expression of growth hormones may boost synaptic plasticity, and neuronal survival and differentiation, potentially supporting function and structure in brain areas including but not limited to the hippocampus. Here, using voxel based morphometry and a standard graded treadmill test to determine cardio-respiratory fitness (Bruce protocol; ·VO2 max), we examined if entorhinal and hippocampal volumes were associated with cardio-respiratory fitness in healthy young adults (N=33). In addition, we examined if volumes were modulated by recognition memory performance and by serum BDNF, a putative marker of synaptic plasticity. Our results show a positive association between volume in right entorhinal cortex and cardio-respiratory fitness. In addition, average gray matter volume in the entorhinal cortex, bilaterally, was positively associated with memory performance. These data extend prior work on the cerebral effects of aerobic exercise and fitness to the entorhinal cortex in healthy young adults thus providing compelling evidence for a relationship between aerobic fitness and structure of the medial temporal lobe memory system. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Neurocognitive functioning in pediatric craniopharyngioma: performance before treatment with proton therapy.

    PubMed

    Fournier-Goodnight, Ashley S; Ashford, Jason M; Merchant, Thomas E; Boop, Frederick A; Indelicato, Daniel J; Wang, Lei; Zhang, Hui; Conklin, Heather M

    2017-08-01

    The goal of this study was to investigate the impact of patient-, disease-, and treatment-related variables upon neurocognitive outcomes in pediatric patients with craniopharyngioma prior to treatment with proton therapy or observation after radical resection. For all participants (N = 104), relevant clinical and demographic variables were attained and neurocognitive evaluations completed prior to irradiation or planned observation. One-sample t-tests were conducted to compare performance to published normative data. Linear models were used to investigate predictors of performance on measures where performance was below normative expectations. Participants showed poorer performance in comparison to the normative group across neurocognitive domains including executive functions (e.g., working memory; Wechsler Digit Span Backward p = 0.03), learning and memory (e.g., California Verbal Learning Test [CVLT] Total T p = 0.00), and fine-motor coordination (e.g., Grooved Pegboard Dominant Hand p = 0.00). Poor performance across areas was predicted by presurgical hypothalamic involvement (e.g., Behavior Rating Inventory of Executive Function Working Memory Index Grade 2 β = -7.68, p = 0.03; CVLT Total T Grade 2 β = 7.94, p = 0.04; Grade 3 β = -9.80, p = 0.00), extent of surgery (e.g., CVLT Total T Resection β = -7.77, p = 0.04; Grooved Pegboard Dominant Hand β = -1.58, p = 0.04), and vision status (e.g., CVLT Total T Reduced vision without impairment β = -10.01, p = 0.02; Grooved Pegboard Dominant Hand Bilateral field defect β = -1.45, p = 0.01; Reduced vision without impairment β = -2.30, p = 0.00). This study demonstrated that patients with craniopharyngioma show weaker neurocognitive performance in comparison to the normative population resulting from tumor, events leading to diagnosis, and early surgical intervention. Systematic investigation of neurocognitive performance before treatment with radiation therapy is essential to evaluating the potential risks and benefits of newer methods of radiation therapy including proton therapy.

  10. Adolescents born prematurely with isolated grade 2 haemorrhage in the early 1990s face increased risks of learning challenges.

    PubMed

    Vohr, Betty R; Allan, Walter; Katz, Karol H; Schneider, Karen; Tucker, Richard; Ment, Laura R

    2014-10-01

    To compare the impact of low-grade haemorrhage on neurocognitive function in 16-year-old adolescents born preterm, by grade of intraventricular haemorrhage, and term controls. We evaluated 338 preterm adolescents (birth weight 600-1250 g) for intelligence, executive function and memory tasks. Eleven had grade 3-4 haemorrhage, 44 had grade 2, 31 had grade 1, and 251 had no haemorrhage. Group comparisons were made with 102 term age-matched controls, and regression models used to identify the risk that low-grade haemorrhage posed for cognitive, executive function and memory deficits. Preterm adolescents with grade 2 haemorrhage had higher deficit rates of verbal intelligence, receptive vocabulary, phonemic fluency, cognitive flexibility and phonological fluency than preterm adolescents with grade 1 or no haemorrhage, compared with term controls. After excluding preterm adolescents with both grade 2 haemorrhage and cystic periventricular leukomalacia, those with isolated grade 2 haemorrhage remained at greater risk of cognitive and executive function deficits than term controls and of cognitive deficits than preterm adolescents with no haemorrhage. Our findings suggest that preterm adolescents born in the early 1990s with isolated grade 2 haemorrhage are at increased risk of learning challenges, including cognitive and executive function deficits. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  11. Structure and validity of sluggish cognitive tempo using an expanded item pool in children with attention-deficit/hyperactivity disorder.

    PubMed

    McBurnett, Keith; Villodas, Miguel; Burns, G Leonard; Hinshaw, Stephen P; Beaulieu, Allyson; Pfiffner, Linda J

    2014-01-01

    We evaluated the latent structure and validity of an expanded pool of Sluggish Cognitive Tempo (SCT) items. An experimental rating scale with 44 candidate SCT items was administered to parents and teachers of 165 children in grades 2-5 (ages 7-11) recruited for a randomized clinical trial of a psychosocial intervention for Attention-Deficit/Hyperactivity Disorder, Predominantly Inattentive Type. Exploratory factor analyses (EFA) were used to extract items with high loadings (>0.59) on primary factors of SCT and low cross-loadings (0.30 or lower) on other SCT factors and on the Inattention factor of ADHD. Items were required to meet these criteria for both informants. This procedure reduced the pool to 15 items. Generally, items representing slowness and low initiative failed these criteria. SCT factors (termed Daydreaming, Working Memory Problems, and Sleepy/Tired) showed good convergent and discriminant validity in EFA and in a confirmatory model with ADHD factors. Simultaneous regressions of impairment and comorbidity on SCT and ADHD factors found that Daydreams was associated with global impairment, and Sleepy/Tired was associated with organizational problems and depression ratings, across both informants. For teachers, Daydreams also predicted ODD (inversely); Sleepy/Tired also predicted poor academic behavior, low social skills, and problem social behavior; and Working Memory Problems predicted organizational problems and anxiety. When depression, rather than ADHD, was included among the predictors, the only SCT-related associations rendered insignificant were the teacher-reported associations of Daydreams with ODD; Working Memory Problems with anxiety, and Sleepy/Tired with poor social skills. SCT appears to be meaningfully associated with impairment, even when controlling for depression. Common behaviors resembling Working Memory problems may represent a previously undescribed factor of SCT.

  12. The association of context-specific sitting time and physical activity intensity to working memory capacity and academic achievement in young adults.

    PubMed

    Felez-Nobrega, Mireia; Hillman, Charles H; Cirera, Eva; Puig-Ribera, Anna

    2017-08-01

    To examine combined associations between self-reported context-specific sitting time (ST) and physical activity (PA) with working memory capacity (WMC) and academic achievement in a sample of Spanish adults. Undergraduate students (n = 371; 21 years ± 3 years, 44% female) were recruited from University of Vic-Central University of Catalonia. Participants completed a 54-item survey that assessed socio-demographic variables (e.g. age, gender, academic year), min/week of light (LPA), moderate (MPA) and vigorous (VPA) intensity PA (International Physical Activity Questionnaire), min/day of domain-specific ST (Last 7 days sedentary behavior questionnaire) and academic performance (grade point average). WMC was assessed through a multiple complex span task that included: Operation Span, Symmetry Span and Rotation Span. These tasks interleave a processing task with a short list of to-be-remembered items. General linear models-adjusted by PA, ST and gender-assessed combined associations between ST and PA with WMC and academic achievement. Performing more than 3 h/week of MPA was related to increases in WMC (P < 0.001). However, PA was not associated with academic performance. More than 3 h seated on a weekend day while performing non-screen leisure activities were related to reduced WMC after adjusting for PA (P = 0.012). Similarly, >3 h/weekday spent seated in these sedentary activities or in leisure-forms of screen time were inversely associated with academic performance regardless of PA (P = 0.033; P = 0.048). MPA may benefit working memory; however, specific domains of leisure-time sedentary behavior may have an unfavorable influence on working memory and academic performance regardless of time spent in PA. © The Author 2017. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  13. Discourse Memory and Reading Comprehension Skill

    ERIC Educational Resources Information Center

    Perfetti, Charles A.; Goldman, Susan R.

    1976-01-01

    A study is reported in which short-term memory capacity, estimated by a probe digit task, and memory for structured language, measured by a probe discourse task, were investigated in an experiment with third and fifth grade IQ-matched children representing two levels of reading comprehension skill. (Author/RM)

  14. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children.

    PubMed

    Passolunghi, Maria C; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C

    2016-01-01

    Mathematics anxiety (MA) has been defined as "a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations." Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA.

  15. Mathematics Anxiety, Working Memory, and Mathematics Performance in Secondary-School Children

    PubMed Central

    Passolunghi, Maria C.; Caviola, Sara; De Agostini, Ruggero; Perin, Chiara; Mammarella, Irene C.

    2016-01-01

    Mathematics anxiety (MA) has been defined as “a feeling of tension and anxiety that interferes with the manipulation of numbers and the solving of math problems in a wide variety of ordinary life and academic situations.” Previous studies have suggested that a notable proportion of children in primary and secondary school suffer from MA, which is negatively correlated with calculation skills. The processing efficiency and attentional control theories suggest that working memory (WM) also plays an important part in such anxious feelings. The present study aimed to analyze the academic achievement and cognitive profiles of students with high math anxiety (HMA) and low math anxiety (LMA). Specifically, 32 students with HMA and 34 with LMA matched for age, gender, generalized anxiety, and vocabulary attending sixth to eighth grades were selected from a larger sample. The two groups were tested on reading decoding, reading comprehension, mathematics achievement, and on verbal short-term memory and WM. Our findings showed that HMA students were weak in several measures of mathematics achievement, but not in reading and writing skills, and that students with HMA reported lower scores on short-term memory and WM performances (with associated difficulties in inhibiting irrelevant information) than children with LMA. In addition, a logistic regression showed that weaknesses in inhibitory control and fact retrieval were the strongest variables for classifying children as having HMA or LMA. PMID:26869951

  16. Getting Started Using American Memory.

    ERIC Educational Resources Information Center

    Singleton, Laurel R., Ed.

    2001-01-01

    This publication features teaching ideas generated by classroom teachers. For grades K-4, fourth grade teacher, Janet Williamson, has developed "Off and Running with Primary Sources" which describes how she introduces students to primary sources using historical advertisements. Appropriate for grades 5-8, a strategy was developed by…

  17. Pathways to Third-Grade Calculation versus Word-Reading Competence: Are They More Alike or Different?

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; Geary, David C.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.

    2016-01-01

    Children (n = 747; 6.5 years) were assessed on domain-general processes and mathematics and reading-related competencies (start of first grade), addition retrieval (end of second grade), and calculations and word reading (end of third grade). Attentive behavior, reasoning, visuospatial memory, and rapid automatized naming (RAN) indirectly…

  18. Memory Lane Is a Two-Way Street.

    ERIC Educational Resources Information Center

    Sprenger, Marilee

    1998-01-01

    Our memories are not necessarily "bad," but stored in different areas. By understanding the five memory lanes (semantic, episodic, procedural, automatic, and emotional), a high school English teacher discovered why her students could not do fractions (to calculate grades) in English class. Paper-and-pencil tests can be redesigned to assess memory…

  19. Path Analysis Tests of Theoretical Models of Children's Memory Performance

    ERIC Educational Resources Information Center

    DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.

    2004-01-01

    Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…

  20. The Relationship Between Memory for Order and Other Cognitive Tasks.

    ERIC Educational Resources Information Center

    Merkel, Stephen P.; Hall, Vernon C.

    1982-01-01

    Measures of memory for order were correlated with measures requiring mental manipulation, achievement, and aptitude using college and fifth grade students. A significant relationship was found for fifth graders but not for college students, suggesting that the nature and capacity of short-term memory changes with age. (Author/PN)

  1. The Effects of Motoric Action and Organization on Children's Memory.

    ERIC Educational Resources Information Center

    Heindel, Patricia; Kose, Gary

    1990-01-01

    Two experiments examined preschool, first, and third grade students for the effects of motoric activities on memory performance. Findings for the first experiment revealed that, although organizational differences affected memory performance, the drawing of configurations enhanced the effect of unitary organization. In the second experiment,…

  2. Cognitive Strategies, Working Memory, and Growth in Word Problem Solving in Children With Math Difficulties.

    PubMed

    Swanson, H Lee; Lussier, Catherine M; Orosco, Michael J

    2015-01-01

    This study investigated the role of strategy instruction and working memory capacity (WMC) on word problem solving accuracy in children with (n = 100) and without (n = 92) math difficulties (MD). Within classrooms, children in Grades 2 and 3 were randomly assigned to one of four treatment conditions: verbal-only strategies (e.g., underlining question sentence), verbal + visual strategies, visual-only strategies (e.g., correctly placing numbers in diagrams), or untreated control. Strategy interventions included 20 sessions in both Year 1 and Year 2. The intent-to-treat as well as the "as-treated" analyses showed that treatment effects were significantly moderated by WMC. In general, treatment outcomes were higher when WMC was set to a high rather than low level. When set to a relatively high WMC level, children with MD performed significantly better under visual-only strategy conditions and children without MD performed better under verbal + visual conditions when compared to control conditions. © Hammill Institute on Disabilities 2013.

  3. Chromosomes on the move: The educational and neurological advantages of using body movement to teach cellular division

    NASA Astrophysics Data System (ADS)

    Baumwoll, Alma Aron

    As education and neuroscience begin to merge, creating the new field of brain-based education, teachers are working to integrate scientific research into the classroom. While working to improve my own teaching, I developed a lesson plan to teach mitosis and meiosis through movement. My thesis reviews education theory and neuroscience to support using movement as a teaching tool in high-level, subject-based classrooms. I then outline my lesson plan and present my investigations of its effectiveness as demonstrated through short-term memory, long-term memory, and students' personal responses to the class. Two experiments were completed with biology lab sections at Northeastern University between 2009 and 2012; I taught my lesson to experimental groups while control groups learned through video-based lessons. The short-term study showed significant improvement in both the grades and enjoyment of the experimental groups. The long-term, retroactive study yielded no significant data, possibly due to weaknesses in the experimental design.

  4. A pilot study of working memory and academic achievement in college students with ADHD.

    PubMed

    Gropper, Rachel J; Tannock, Rosemary

    2009-05-01

    To investigate working memory (WM), academic achievement, and their relationship in university students with attention-deficit/hyperactivity disorder (ADHD). Participants were university students with previously confirmed diagnoses of ADHD (n = 16) and normal control (NC) students (n = 30). Participants completed 3 auditory-verbal WM measures, 2 visual-spatial WM measures, and 1 control executive function task. Also, they self-reported grade point averages (GPAs) based on university courses. The ADHD group displayed significant weaknesses on auditory-verbal WM tasks and 1 visual-spatial task. They also showed a nonsignificant trend for lower GPAs. Within the entire sample, there was a significant relationship between GPA and auditory-verbal WM. WM impairments are evident in a subgroup of the ADHD population attending university. WM abilities are linked with, and thus may compromise, academic attainment. Parents and physicians are advised to counsel university-bound students with ADHD to contact the university accessibility services to provide them with academic guidance.

  5. Phonological working memory and reading in students with dyslexia

    PubMed Central

    de Carvalho, Carolina A. F.; Kida, Adriana de S. B.; Capellini, Simone A.; de Avila, Clara R. B.

    2014-01-01

    Purpose: To investigate parameters related to fluency, reading comprehension and phonological processing (operational and short-term memory) and identify potential correlation between the variables in Dyslexia and in the absence of reading difficulties. Method: One hundred and fifteen students from the third to eighth grade of elementary school were grouped into a Control Group (CG) and Group with Dyslexia (GDys). Reading of words, pseudowords and text (decoding); listening and reading comprehension; phonological short-term and working memory (repetition of pseudowords and Digit Span) were evaluated. Results: The comparison of the groups showed significant differences in decoding, phonological short-term memory (repetition of pseudowords) and answers to text-connecting questions (TC) on reading comprehension, with the worst performances identified for GDys. In this group there were negative correlations between pseudowords repetition and TC answers and total score, both on listening comprehension. No correlations were found between operational and short-term memory (Digit Span) and parameters of fluency and reading comprehension in dyslexia. For the sample without complaint, there were positive correlations between some parameters of reading fluency and repetition of pseudowords and also between answering literal questions in listening comprehension and repetition of digits on the direct and reverse order. There was no correlation with the parameters of reading comprehension. Conclusion: GDys and CG showed similar performance in listening comprehension and in understanding of explicit information and gap-filling inference on reading comprehension. Students of GDys showed worst performance in reading decoding, phonological short-term memory (pseudowords) and on inferences that depends on textual cohesion understanding in reading. There were negative correlations between pseudowords repetition and TC answers and total score, both in listening comprehension. PMID:25101021

  6. Expanding the developmental models of writing: A direct and indirect effects model of developmental writing (DIEW)

    PubMed Central

    Kim, Young-Suk Grace; Schatschneider, Christopher

    2016-01-01

    We investigated direct and indirect effects of component skills on writing (DIEW) using data from 193 children in Grade 1. In this model, working memory was hypothesized to be a foundational cognitive ability for language and cognitive skills as well as transcription skills, which, in turn, contribute to writing. Foundational oral language skills (vocabulary and grammatical knowledge) and higher-order cognitive skills (inference and theory of mind) were hypothesized to be component skills of text generation (i.e., discourse-level oral language). Results from structural equation modeling largely supported a complete mediation model among four variations of the DIEW model. Discourse-level oral language, spelling, and handwriting fluency completely mediated the relations of higher-order cognitive skills, foundational oral language, and working memory to writing. Moreover, language and cognitive skills had both direct and indirect relations to discourse-level oral language. Total effects, including direct and indirect effects, were substantial for discourse-level oral language (.46), working memory (.43), and spelling (.37), followed by vocabulary (.19), handwriting (.17), theory of mind (.12), inference (.10), and grammatical knowledge (.10). The model explained approximately 67% of variance in writing quality. These results indicate that multiple language and cognitive skills make direct and indirect contributions, and it is important to consider both direct and indirect pathways of influences when considering skills that are important to writing. PMID:28260812

  7. Relation between arithmetic performance and phonological working memory in children.

    PubMed

    Silva, Kelly da; Zuanetti, Patrícia Aparecida; Borcat, Vanessa Trombini Ribeiro; Guedes-Granzotti, Raphaela Barroso; Kuroishi, Rita Cristina Sadako; Domenis, Daniele Ramos; Fukuda, Marisa Tomoe Hebihara

    2017-08-17

    To compare the results of Loop Phonological Working Memory (LPWM) in children without global learning alterations, with lower and average/higher arithmetic performance. The study was conducted with 30 children, between the ages of seven and nine years old, who attended the second or third grade of elementary school in the public network. Exclusion criteria were children with suggestive signs of hearing loss, neurological disorders, poor performance in the reading comprehension test or in speech therapy. The children included in the study were submitted to the subtest of arithmetic of Academic Achievement Test for division into two groups (G1 and G2). The G1 was composed of children with low performance in arithmetic and G2 for children with average/higher performance in arithmetic. All children were submitted to PWM assessment through the repetition of pseudowords test. Statistical analysis was performed using the Mann-Whitney test and a p-value <0.05 was considered significant. The study included 20 girls and 10 boys, mean age 8.7 years. The G1 was composed of 17 children and G2 of 13 children. There was a statistically significant difference between the groups studied for the repetition of pseudowords with three and four syllables. The results of this study provide support for the hypothesis that changes in phonological working memory are related to difficulties in arithmetic tests.

  8. Tactile Scanning and Memory for a Spatial Display by Blind Students.

    ERIC Educational Resources Information Center

    Berla, Edward P.

    1981-01-01

    Thirty-six braille students (grades 4 through 12) were asked to inspect a tactile display consisting of nine removable symbols. Students in the lower grades benefited most from the systematic searching training and were superior to the control group in the same grades. (Author)

  9. Competence with fractions predicts gains in mathematics achievement.

    PubMed

    Bailey, Drew H; Hoard, Mary K; Nugent, Lara; Geary, David C

    2012-11-01

    Competence with fractions predicts later mathematics achievement, but the codevelopmental pattern between fractions knowledge and mathematics achievement is not well understood. We assessed this codevelopment through examination of the cross-lagged relation between a measure of conceptual knowledge of fractions and mathematics achievement in sixth and seventh grades (N=212). The cross-lagged effects indicated that performance on the sixth grade fractions concepts measure predicted 1-year gains in mathematics achievement (ß=.14, p<.01), controlling for the central executive component of working memory and intelligence, but sixth grade mathematics achievement did not predict gains on the fractions concepts measure (ß=.03, p>.50). In a follow-up assessment, we demonstrated that measures of fluency with computational fractions significantly predicted seventh grade mathematics achievement above and beyond the influence of fluency in computational whole number arithmetic, performance on number fluency and number line tasks, central executive span, and intelligence. Results provide empirical support for the hypothesis that competence with fractions underlies, in part, subsequent gains in mathematics achievement. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Secondary Students' Perceptions about Learning Qualitative Analysis in Inorganic Chemistry

    NASA Astrophysics Data System (ADS)

    Tan, Kim-Chwee Daniel; Goh, Ngoh-Khang; Chia, Lian-Sai; Treagust, David F.

    2001-02-01

    Grade 10 students in Singapore find qualitative analysis one of the more difficult topics in their external examinations. Fifty-one grade 10 students (15-17 years old) from three schools were interviewed to investigate their perceptions about learning qualitative analysis and the aspects of qualitative analysis they found difficult. The results showed that students found qualitative analysis tedious, difficult to understand and found the practical sessions unrelated to what they learned in class. They also believed that learning qualitative analysis required a great amount of memory work. It is proposed that their difficulties may arise from not knowing explicitly what is required in qualitative analysis, the content of qualitative analysis, the lack of motivation to understand qualitative analysis, cognitive overloading, and the lack of mastery of the required process skills.

  11. Child Intelligence and Reductions in Water Arsenic and Manganese: A Two-Year Follow-up Study in Bangladesh

    PubMed Central

    Wasserman, Gail A.; Liu, Xinhua; Parvez, Faruque; Factor-Litvak, Pam; Kline, Jennie; Siddique, Abu B.; Shahriar, Hasan; Uddin, Mohammed Nasir; van Geen, Alexander; Mey, Jacob L.; Balac, Olgica; Graziano, Joseph H.

    2015-01-01

    Background: Arsenic (As) exposure from drinking water is associated with modest intellectual deficits in childhood. It is not known whether reducing exposure is associated with improved intelligence. Objective: We aimed to determine whether reducing As exposure is associated with improved child intellectual outcomes. Methods: Three hundred three 10-year-old children drinking from household wells with a wide range of As concentrations were enrolled at baseline. In the subsequent year, deep community wells, low in As, were installed in villages of children whose original wells had high water As (WAs ≥ 50 μg/L). For 296 children, intelligence was assessed by WISC-IV (Wechsler Intelligence Scale for Children, 4th ed.), with a version modified for the study population, at baseline and approximately 2 years later; analyses considered standardized scores for both Full Scale IQ and Verbal Comprehension, Perceptual Reasoning, Working Memory, and Processing Speed Indices. Creatinine-adjusted urinary arsenic (UAs/Cr), blood As (BAs), and blood manganese (BMn) were assessed at both times. Results: UAs/Cr concentrations declined significantly by follow-up for both the high (≥ 50 μg/L) and low (< 50 μg/L) WAs subgroups. At baseline, adjusting for maternal age and intelligence, plasma ferritin, head circumference, home environment quality, school grade, and BMn, UAs/Cr was significantly negatively associated with Full Scale IQ, and with all Index scores (except Processing Speed). After adjustment for baseline Working Memory scores and school grade, each 100-μg/g reduction in UAs/Cr from baseline to follow-up was associated with a 0.91 point increase in Working Memory (95% CI: 0.14, 1.67). The change in UAs/Cr across follow-up was not significantly associated with changes in Full Scale IQ or Index scores. Conclusions: Installation of deep, low-As community wells lowered UAs, BAs, and BMn. A greater decrease in UAs/Cr was associated with greater improvements in Working Memory scores, but not with a greater improvement in Full Scale IQ. Citation: Wasserman GA, Liu X, Parvez F, Factor-Litvak P, Kline J, Siddique AB, Shahriar H, Uddin MN, van Geen A, Mey JL, Balac O, Graziano JH. 2016. Child intelligence and reductions in water arsenic and manganese: a two-year follow-up study in Bangladesh. Environ Health Perspect 124:1114–1120; http://dx.doi.org/10.1289/ehp.1509974 PMID:26713676

  12. Encoding Dimensions in Memory: Developmental Similarities at Two Grade Levels

    ERIC Educational Resources Information Center

    Geis, Mary Fulcher

    1975-01-01

    Second and sixth grade children's relative sensitivity to acoustic, semantic, and physical dimensions was inferred from the amount of release from proactive interference obtained for shifts along each dimension. (ED)

  13. Working Memory and Decision-Making in a Frontoparietal Circuit Model

    PubMed Central

    2017-01-01

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental “building blocks” of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. PMID:29114071

  14. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    PubMed

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal cortex (PPC) at the core. It is not clear, however, what the contributions of PPC and PFC are in light of the computations that subserve working memory and decision-making. We constructed a biophysical model of a reciprocally connected frontoparietal circuit that revealed shared and distinct functions for the PFC and PPC across working memory and decision-making tasks. Our parsimonious model connects circuit-level properties to cognitive functions and suggests novel design principles beyond those of local circuits for cognitive processing in multiregional brain networks. Copyright © 2017 the authors 0270-6474/17/3712167-20$15.00/0.

  15. Short-term Memory in Childhood Dyslexia: Deficient Serial Order in Multiple Modalities.

    PubMed

    Cowan, Nelson; Hogan, Tiffany P; Alt, Mary; Green, Samuel; Cabbage, Kathryn L; Brinkley, Shara; Gray, Shelley

    2017-08-01

    In children with dyslexia, deficits in working memory have not been well-specified. We assessed second-grade children with dyslexia, with and without concomitant specific language impairment, and children with typical development. Immediate serial recall of lists of phonological (non-word), lexical (digit), spatial (location) and visual (shape) items were included. For the latter three modalities, we used not only standard span but also running span tasks, in which the list length was unpredictable to limit mnemonic strategies. Non-word repetition tests indicated a phonological memory deficit in children with dyslexia alone compared with those with typical development, but this difference vanished when these groups were matched for non-verbal intelligence and language. Theoretically important deficits in serial order memory in dyslexic children, however, persisted relative to matched typically developing children. The deficits were in recall of (1) spoken digits in both standard and running span tasks and (2) spatial locations, in running span only. Children with dyslexia with versus without language impairment, when matched on non-verbal intelligence, had comparable serial order memory, but differed in phonology. Because serial orderings of verbal and spatial elements occur in reading, the careful examination of order memory may allow a deeper understanding of dyslexia and its relation to language impairment. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Neuropsychological outcome in patients with childhood craniopharyngioma and hypothalamic involvement.

    PubMed

    Özyurt, Jale; Thiel, Christiane M; Lorenzen, Anna; Gebhardt, Ursel; Calaminus, Gabriele; Warmuth-Metz, Monika; Müller, Hermann L

    2014-04-01

    To test memory performance and executive functions in patients with childhood craniopharyngioma and hypothalamic involvement. Using standardized neuropsychological tests, we compared cognitive performance in a group of 15 patients with childhood craniopharyngioma and known hypothalamic involvement and a group of 24 age- and intelligence-matched control subjects. In addition, we compared individual patients' results with normative data to detect abnormal performance in the clinically relevant range. Within the patient group, we further tested whether the grade of hypothalamic involvement had an impact on cognitive performance and quality of life. Relative to healthy controls, the patients demonstrated significantly lower performance scores in tests of memory and executive functioning. On the individual performance level, delayed recall performance was severely impaired in one-third of the patients. Compared with patients with low-grade hypothalamic involvement, those with high-grade hypothalamic involvement showed worse performance in executive functions and reduced functional capabilities for daily life actions, indicating lower quality of life. Our findings demonstrate that hypothalamic involvement is related to impairments in memory and executive functioning in patients with childhood craniopharyngioma and indicate that a high grade of hypothalamic involvement is related to worse outcomes. Copyright © 2014 Mosby, Inc. All rights reserved.

  17. Will learning to solve one-step equations pose a challenge to 8th grade students?

    NASA Astrophysics Data System (ADS)

    Ngu, Bing Hiong; Phan, Huy P.

    2017-08-01

    Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. Element interactivity arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features (e.g. negative pronumeral) poses additional challenge to master equation solving skills. In an experiment, 41 8th grade students (girls = 16, boys = 25) sat for a pre-test, attended a session about equation solving, completed an acquisition phase which constituted the main intervention and were tested again in a post-test. The results showed that at post-test, students performed better on one-step equations tapping low rather than high element interactivity knowledge. In addition, students performed better on those one-step equations that contained no special features. Thus, both the degree of element interactivity and the operation with special features affect the challenge posed to 8th grade students on learning how to solve one-step equations.

  18. Temporally graded semantic memory loss in amnesia and semantic dementia: Further evidence for opposite gradients.

    PubMed

    Estmacott, Robyn W; Moscovitch, Morris

    2002-03-01

    The consolidation theory of long-term memory (e.g., Squire, 1992) predicts that damage to the medial temporal lobes will result in temporally graded retrograde memory loss, with a disproportionate impairment of recent relative to remote knowledge; in contrast, severe atrophy of the temporal neocortex is predicted to result in the reverse temporally graded pattern, with a selective sparing of recent memory (K.S. Graham & Hodges, 1997). Previously, we reported evidence that autobiographical episodic memory does not follow this temporal pattern (Westmacott, Leach, Freedman, & Moscovitch, 2001). In the present study, we found evidence suggesting that semantic memory loss does follow the predicted temporal pattern. We used a set of tasks that tap implicit and explicit memory for famous names and English vocabulary terms from across the 20th century. KC, a person with medial temporal amnesia, consistently demonstrated across tasks a selective deficit for famous names and vocabulary terms from the 5-year period just prior to injury; this deficit was particularly profound for elaborated semantic knowledge (e.g., word definitions, occupation of famous person). However, when asked to guess on unfamiliar items, KC's performance for names and words from this 5-year time period increased substantially, suggesting that he retains some of this knowledge at an implicit or rudimentary level. Conversely, EL, a semantic dementia patient with temporal neocortical atrophy and relative sparing of the medial temporal lobe, demonstrated a selective sparing of names and words from the most recent time period. However, this selective sparing of recent semantic memory was demonstrated in the implicit tasks only; performance on explicit tasks suggested an equally severe impairment of semantics across all time periods. Unlike the data from our previous study of autobiographical episodic memory, these findings are consistent with the predictions both of consolidation theory (Hodges & Graham, 1998; Squire, 1992) and multiple trace theory (Nadel & Moscovitch, 1999) that the hippocampus plays a timelimited role in the acquisition and representation of long-term semantic memories. Moreover, our findings suggest that tasks requiring minimal verbal production and explicit recall may provide a more sensitive and comprehensive assessment of intact memory capacity in brain-damaged individuals.

  19. Sleep timing is more important than sleep length or quality for medical school performance.

    PubMed

    Genzel, L; Ahrberg, K; Roselli, C; Niedermaier, S; Steiger, A; Dresler, M; Roenneberg, T

    2013-07-01

    Overwhelming evidence supports the importance of sleep for memory consolidation. Medical students are often deprived of sufficient sleep due to large amounts of clinical duties and university load, we therefore investigated how study and sleep habits influence university performance. We performed a questionnaire-based study with 31 medical students of the University of Munich (second and third clinical semesters; surgery and internal medicine). The students kept a diary (in 30-min bins) on their daily schedules (times when they studied by themselves, attended classes, slept, worked on their thesis, or worked to earn money). The project design involved three 2-wk periods (A: during the semester; B: directly before the exam period--pre-exam; C: during the subsequent semester break). Besides the diaries, students completed once questionnaires about their sleep quality (Pittsburgh Sleep Quality Index [PSQI]), their chronotype (Munich Chronotype Questionnaire [MCTQ]), and their academic history (previous grades, including the previously achieved preclinical board exam [PBE]). Analysis revealed significant correlations between the actual sleep behavior during the semester (MS(diary); mid-sleep point averaged from the sleep diaries) during the pre-exam period and the achieved grade (p = 0.002) as well as between the grades of the currently taken exam and the PBE (p = 0.002). A regression analysis with MS(diary) pre-exam and PBE as predictors in a model explained 42.7% of the variance of the exam grade (effect size 0.745). Interestingly, MS(diary)--especially during the pre-exam period-was the strongest predictor for the currently achieved grade, along with the preclinical board exam as a covariate, whereas the chronotype did not significantly influence the exam grade.

  20. Using Instructional and Motivational Techniques in the Art Classroom To Increase Memory Retention.

    ERIC Educational Resources Information Center

    Calverley, Ann; Grafer, Bonnie; Hauser, Michelle

    This report describes a program for improving memory retention through instructional and motivational techniques in elementary art. Targeted population consisted of third grade students at three sites in a middle class suburb of a large midwestern city. The problems of memory retention were documented through teacher pre-surveys and art memory…

  1. Presentation Modality and Proactive Interference in Children's Short-Term Memory.

    ERIC Educational Resources Information Center

    Douglas, Joan Delahanty

    This study examined the role of visual and auditory presentation in memory encoding processes of 80 second-grade children, using the release-from-proactive-interference short-term memory (STM) paradigm. Words were presented over three trials within one of the presentation modes and one taxonomic category, followed by a fourth trial in which the…

  2. Route Descriptions by Visually Impaired and Sighted Children from Memory and from Maps.

    ERIC Educational Resources Information Center

    Edwards, Rachel; Ungar, Simon; Blades, Mark

    1998-01-01

    This study evaluated descriptions, either from memory or by using a map (print or tactile), of 12 visually impaired and 12 sighted elementary grade children of two routes around their schools. Descriptions from maps were generally poorer than those from memory. Qualitative differences were also found between descriptions of visually impaired and…

  3. A Short-Term Longitudinal Study of Memorial Development during Early Grade School.

    ERIC Educational Resources Information Center

    Kunzinger, Edward L., III

    1985-01-01

    Overt rehearsal and free recall performance was analyzed longitudinally in two experimental testing sessions at 7 and later at 9 years of age. Measures of short- and long-term memory recall, and two measures of input processing were obtained. Significant increases between age levels were exhibited by all variables except short-term memory.…

  4. Age-Related and Intelligence-Related Differences in Implicit Memory: Effects of Generation on a Word-Fragment Completion Test.

    ERIC Educational Resources Information Center

    Komatsu, Shin-Ichi; And Others

    1996-01-01

    Investigated developmental differences in implicit memory performance. Subjects ranged in age from second grade to college level. Results suggested that there are two different components in implicit memory, one that shows no developmental difference and relies heavily on perceptual processing and one that shows an age-related or…

  5. Endogenous BDNF Is Required for Long-Term Memory Formation in the Rat Parietal Cortex

    ERIC Educational Resources Information Center

    Alonso, Mariana; Bekinschtein, Pedro, Cammarota, Martin; Vianna, Monica R. M.; Izquierdo, Ivan; Medina, Jorge H.

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory…

  6. An efficient spectral crystal plasticity solver for GPU architectures

    NASA Astrophysics Data System (ADS)

    Malahe, Michael

    2018-03-01

    We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.

  7. First Grade Math Skills Set Foundation for Later Math Ability

    MedlinePlus

    ... cognitive skills as memory, attention span, and general intelligence. The researchers found that by seventh grade, children ... between the two groups were not related to intelligence, language skills or the method students used to ...

  8. Is the Link from Working Memory to Analogy Causal? No Analogy Improvements following Working Memory Training Gains

    PubMed Central

    Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter

    2014-01-01

    Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356

  9. A Randomized Control Trial of Working Memory Training With and Without Strategy Instruction: Effects on Young Children’s Working Memory and Comprehension

    PubMed Central

    Peng, Peng

    2015-01-01

    Researchers are increasingly interested in working memory (WM) training. However, it is unclear whether it strengthens comprehension in young children who are at risk for learning difficulties. We conducted a modest study of whether the training of verbal WM would improve verbal WM and passage listening comprehension, and whether training effects differed between two approaches: training with and without strategy instruction. A total of 58 first-grade children were randomly assigned to 3 groups: WM training with a rehearsal strategy, WM training without strategy instruction, and controls. Every member of the 2 training groups received a one-to-one, 35-minute session of verbal WM training on each of 10 consecutive school days, totaling 5.8 hours. Both training groups improved on trained verbal WM tasks, with the rehearsal group making greater gains. Without correction for multiple group comparisons, the rehearsal group made reliable improvements over controls on an untrained verbal WM task and on passage listening comprehension and listening retell measures. The no-strategy- instruction group outperformed controls on passage listening comprehension. When corrected for multiple contrasts, these group differences disappeared, but were associated with moderate-to-large effect sizes. Findings suggest—however tentatively—that brief but intensive verbal WM training may strengthen the verbal WM and comprehension performance of young children at risk. Necessary caveats and possible implications for theory and future research are discussed. PMID:26156961

  10. A Randomized Control Trial of Working Memory Training With and Without Strategy Instruction: Effects on Young Children's Working Memory and Comprehension.

    PubMed

    Peng, Peng; Fuchs, Douglas

    2017-01-01

    Researchers are increasingly interested in working memory (WM) training. However, it is unclear whether it strengthens comprehension in young children who are at risk for learning difficulties. We conducted a modest study of whether the training of verbal WM would improve verbal WM and passage listening comprehension and whether training effects differed between two approaches: training with and without strategy instruction. A total of 58 first-grade children were randomly assigned to three groups: WM training with a rehearsal strategy, WM training without strategy instruction, and controls. Each member of the two training groups received a one-to-one, 35-min session of verbal WM training on each of 10 consecutive school days, totaling 5.8 hr. Both training groups improved on trained verbal WM tasks, with the rehearsal group making greater gains. Without correction for multiple group comparisons, the rehearsal group made reliable improvements over controls on an untrained verbal WM task and on passage listening comprehension and listening retell measures. The no-strategy-instruction group outperformed controls on passage listening comprehension. When corrected for multiple contrasts, these group differences disappeared but were associated with moderate to large effect sizes. Findings suggest-however tentatively-that brief but intensive verbal WM training may strengthen the verbal WM and comprehension performance of young children at risk. Necessary caveats and possible implications for theory and future research are discussed. © Hammill Institute on Disabilities 2015.

  11. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    PubMed

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.

  12. Metamemory Ability in Learning Disabled Children with and without a Memory Deficit.

    ERIC Educational Resources Information Center

    Goldstein, David; Golding, Jonathan

    Normal children (N=8) and two groups of 8 learning disabled (LD) elementary grade children, one with and one without a short-term memory deficit, were administered a battery of questions concerning knowledge of how their memories function (metamemory). Metamemory was found to be deficient only in the subgroup of LD children with a short-term…

  13. Autobiographical memory loss following a right prefrontal lobe tumour resection: a case report and review of the literature.

    PubMed

    Jamjoom, A A B; Gallo, P; Kandasamy, J; Phillips, J; Sokol, D

    2017-07-01

    The right prefrontal lobe has not traditionally been considered eloquent brain. Resection of tumours within this region does not typically lead to permanent functional impairment. In this report, we highlight the case of a patient who developed autobiographical memory loss following an uncomplicated resection of a right prefrontal tumour. A previously fit and well 15-year old presented with a persistent right-sided headache. An MRI demonstrated an expanded right mid-frontal gyrus with changes consistent with a low-grade tumour. The patient underwent a right-sided craniotomy and resection of the lesion which was confirmed as a WHO grade II diffuse astrocytoma. Postoperatively, the patient reported profound retrograde amnesia for a range of memory components, in particular autobiographical memory and semantic memory. Postoperative imaging showed a good resection margin with no evidence of underlying brain injury. Over an 18-month period, the patient showed no improvement in autobiographical memory; however, significant relearning of semantic knowledge took place and her academic performance was found to be in line with expectations for her age. In this report, we discuss a case and review the literature on the role of the right prefrontal cortex in memory and caution on the perception of right prefrontal non-eloquence.

  14. Rehearsal Training and Developmental Differences in Memory

    ERIC Educational Resources Information Center

    Ornstein, Peter A.; And Others

    1977-01-01

    This experiment investigated age differences in memory performance and the extent to which rehearsal techniques contribute to these differences. Second and sixth grade children were trained in a variety of rehearsal techniques in an overt-rehearsal free recall task. (Author/SB)

  15. Functional integrity of the retrosplenial cortex is essential for rapid consolidation and recall of fear memory.

    PubMed

    Katche, Cynthia; Dorman, Guido; Slipczuk, Leandro; Cammarota, Martín; Medina, Jorge H

    2013-03-15

    Memory storage is a temporally graded process involving different phases and different structures in the mammalian brain. Cortical plasticity is essential to store stable memories, but little is known regarding its involvement in memory processing. Here we show that fear memory consolidation requires early post-training macromolecular synthesis in the anterior part of the retrosplenial cortex (aRSC), and that reversible pharmacological inactivation of this cortical region impairs recall of recent as well as of remote memories. These results challenge the generally accepted idea that neocortical areas are slow encoding systems that participate in the retrieval of remote memories only.

  16. Naming of objects, faces and buildings in mild cognitive impairment.

    PubMed

    Ahmed, Samrah; Arnold, Robert; Thompson, Sian A; Graham, Kim S; Hodges, John R

    2008-06-01

    Accruing evidence suggests that the cognitive deficits in very early Alzheimer's Disease (AD) are not confined to episodic memory, with a number of studies documenting semantic memory deficits, especially for knowledge of people. To investigate whether this difficulty in naming famous people extends to other proper names based information, three naming tasks - the Graded Naming Test (GNT), which uses objects and animals, the Graded Faces Test (GFT) and the newly designed Graded Buildings Test (GBT) - were administered to 69 participants (32 patients in the early prodromal stage of AD, so-called Mild Cognitive Impairment (MCI), and 37 normal control participants). Patients were found to be impaired on all three tests compared to controls, although naming of objects was significantly better than naming of faces and buildings. Discriminant analysis successfully predicted group membership for 100% controls and 78.1% of patients. The results suggest that even in cases that do not yet fulfil criteria for AD naming of famous people and buildings is impaired, and that both these semantic domains show greater vulnerability than general semantic knowledge. A semantic deficit together with the hallmark episodic deficit may be common in MCI, and that the use of graded tasks tapping semantic memory may be useful for the early identification of patients with MCI.

  17. Disentangling the effects of working memory, language, parental education, and non-verbal intelligence on children’s mathematical abilities

    PubMed Central

    Pina, Violeta; Fuentes, Luis J.; Castillo, Alejandro; Diamantopoulou, Sofia

    2014-01-01

    It is assumed that children’s performance in mathematical abilities is influenced by several factors such as working memory (WM), verbal ability, intelligence, and socioeconomic status. The present study explored the contribution of those factors to mathematical performance taking a componential view of both WM and mathematics. We explored the existing relationship between different WM components (verbal and spatial) with tasks that make differential recruitment of the central executive, and simple and complex mathematical skills in a sample of 102 children in grades 4–6. The main findings point to a relationship between the verbal WM component and complex word arithmetic problems, whereas language and non-verbal intelligence were associated with knowledge of quantitative concepts and arithmetic ability. The spatial WM component was associated with the subtest Series, whereas the verbal component was with the subtest Concepts. The results also suggest a positive relationship between parental educational level and children’s performance on Quantitative Concepts. These findings suggest that specific cognitive skills might be trained in order to improve different aspects of mathematical ability. PMID:24847306

  18. Effectiveness of working memory training among children with dyscalculia: evidence for transfer effects on mathematical achievement-a pilot study.

    PubMed

    Layes, Smail; Lalonde, Robert; Bouakkaz, Yamina; Rebai, Mohamed

    2017-12-22

    We examined whether the working memory (WM) capacity of developmentally dyscalculic children can be improved by a WM training program and whether outcomes relate to mathematical performance. The experimental design comprised two groups with developmental dyslexia with grade 4 schooling: an experimental group (n = 14; mean age = 129.74 months) and a control group (n = 14; mean age = 126.9 months). All participants were assessed on measures of WM, mathematic attainment, and nonverbal mental ability (Raven test) before and after training. The WM training program focused on manipulating and maintaining arithmetic information. The results show that both WM and mathematical performances improved significantly after intervention, indicating a strong relationship between these two constructs. The control group improved slightly in Raven's progressive matrices and a reading number task. These findings are discussed in terms of near and far transfer toward trained and untrained skills and stress the positive impact of WM training on learning mathematics in children with dyscalculia.

  19. The role of working memory and fluency practice on the reading comprehension of students who are dysfluent readers.

    PubMed

    Swanson, H Lee; O'Connor, Rollanda

    2009-01-01

    The authors investigated whether practice in reading fluency had a causal influence on the relationship between working memory (WM) and text comprehension for 155 students in Grades 2 and 4 who were poor or average readers. Dysfluent readers were randomly assigned to repeated reading or continuous reading practice conditions and compared with untreated dysfluent and fluent readers on posttest measures of fluency, word identification, vocabulary, and reading comprehension. Three main findings emerged: (a) The influence of WM on text comprehension was not related to fluency training, (b) dysfluent readers in the continuous-reading condition had higher posttest scores than dysfluent readers in the other conditions on measures of text comprehension but not on vocabulary, and (c) individual differences in WM better predicted posttest comprehension performance than word-attack skills. In general, the results suggested that although continuous reading increased comprehension, fluency practice did not compensate for WM demands. The results were interpreted within a model that viewed reading comprehension processes as competing for a limited supply of WM resources that operate independent of fluency.

  20. Adolescents’ Functional Numeracy Is Predicted by Their School Entry Number System Knowledge

    PubMed Central

    Geary, David C.; Hoard, Mary K.; Nugent, Lara; Bailey, Drew H.

    2013-01-01

    One in five adults in the United States is functionally innumerate; they do not possess the mathematical competencies needed for many modern jobs. We administered functional numeracy measures used in studies of young adults’ employability and wages to 180 thirteen-year-olds. The adolescents began the study in kindergarten and participated in multiple assessments of intelligence, working memory, mathematical cognition, achievement, and in-class attentive behavior. Their number system knowledge at the beginning of first grade was defined by measures that assessed knowledge of the systematic relations among Arabic numerals and skill at using this knowledge to solve arithmetic problems. Early number system knowledge predicted functional numeracy more than six years later (ß = 0.195, p = .0014) controlling for intelligence, working memory, in-class attentive behavior, mathematical achievement, demographic and other factors, but skill at using counting procedures to solve arithmetic problems did not. In all, we identified specific beginning of schooling numerical knowledge that contributes to individual differences in adolescents’ functional numeracy and demonstrated that performance on mathematical achievement tests underestimates the importance of this early knowledge. PMID:23382934

  1. Self-government of complex reading and writing brains informed by cingulo-opercular network for adaptive control and working memory components for language learning.

    PubMed

    Richards, Todd L; Abbott, Robert D; Yagle, Kevin; Peterson, Dan; Raskind, Wendy; Berninger, Virginia W

    2017-01-01

    To understand mental self-government of the developing reading and writing brain, correlations of clustering coefficients on fMRI reading or writing tasks with BASC 2 Adaptivity ratings (time 1 only) or working memory components (time 1 before and time 2 after instruction previously shown to improve achievement and change magnitude of fMRI connectivity) were investigated in 39 students in grades 4 to 9 who varied along a continuum of reading and writing skills. A Philips 3T scanner measured connectivity during six leveled fMRI reading tasks (subword-letters and sounds, word-word-specific spellings or affixed words, syntax comprehension-with and without homonym foils or with and without affix foils, and text comprehension) and three fMRI writing tasks-writing next letter in alphabet, adding missing letter in word spelling, and planning for composing. The Brain Connectivity Toolbox generated clustering coefficients based on the cingulo-opercular (CO) network; after controlling for multiple comparisons and movement, significant fMRI connectivity clustering coefficients for CO were identified in 8 brain regions bilaterally (cingulate gyrus, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, superior temporal gyrus, insula, cingulum-cingulate gyrus, and cingulum-hippocampus). BASC2 Parent Ratings for Adaptivity were correlated with CO clustering coefficients on three reading tasks (letter-sound, word affix judgments and sentence comprehension) and one writing task (writing next letter in alphabet). Before instruction, each behavioral working memory measure (phonology, orthography, morphology, and syntax coding, phonological and orthographic loops for integrating internal language and output codes, and supervisory focused and switching attention) correlated significantly with at least one CO clustering coefficient. After instruction, the patterning of correlations changed with new correlations emerging. Results show that the reading and writing brain's mental government, supported by both CO Adaptive Control and multiple working memory components, had changed in response to instruction during middle childhood/early adolescence.

  2. Consciousness and working memory: Current trends and research perspectives.

    PubMed

    Velichkovsky, Boris B

    2017-10-01

    Working memory has long been thought to be closely related to consciousness. However, recent empirical studies show that unconscious content may be maintained within working memory and that complex cognitive computations may be performed on-line. This promotes research on the exact relationships between consciousness and working memory. Current evidence for working memory being a conscious as well as an unconscious process is reviewed. Consciousness is shown to be considered a subset of working memory by major current theories of working memory. Evidence for unconscious elements in working memory is shown to come from visual masking and attentional blink paradigms, and from the studies of implicit working memory. It is concluded that more research is needed to explicate the relationship between consciousness and working memory. Future research directions regarding the relationship between consciousness and working memory are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. The Relationships of Working Memory, Secondary Memory, and General Fluid Intelligence: Working Memory is Special

    PubMed Central

    Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew

    2010-01-01

    Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski, 2008), while other research suggests retrieval from secondary memory is only partly responsible for the observed link between working memory and reasoning (Unsworth & Engle, 2006, 2007b). The present study investigates the relationship between processing speed, working memory, secondary memory, primary memory, and fluid intelligence. Although our findings show all constructs are significantly correlated with fluid intelligence, working memory, but not secondary memory, accounts for significant unique variance in fluid intelligence. Our data support predictions made by Unsworth and Engle, and suggest that the combined need for maintenance and retrieval processes present in working memory tests makes them “special” in their prediction of higher-order cognition. PMID:20438278

  4. Working Memory From the Psychological and Neurosciences Perspectives: A Review.

    PubMed

    Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin

    2018-01-01

    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory's capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects.

  5. The Nature of Individual Differences in Working Memory Capacity: Active Maintenance in Primary Memory and Controlled Search from Secondary Memory

    ERIC Educational Resources Information Center

    Unsworth, Nash; Engle, Randall W.

    2007-01-01

    Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…

  6. The distance effect in numerical memory-updating tasks.

    PubMed

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, Teresa

    2011-05-01

    Two experiments examined the role of numerical distance in updating numerical information in working memory. In the first experiment, participants had to memorize a new number only when it was smaller than a previously memorized number. In the second experiment, updating was based on an external signal, which removed the need to perform any numerical comparison. In both experiments, distance between the memorized number and the new one was manipulated. The results showed that smaller distances between the new and the old information led to shorter updating times. This graded facilitation suggests that the process by which information is substituted in the focus of attention involves maintaining the shared features between the new and the old number activated and selecting other new features to be activated. Thus, the updating cost may be related to amount of new features to be activated in the focus of attention.

  7. Contrasting single and multi-component working-memory systems in dual tasking.

    PubMed

    Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels

    2016-05-01

    Working memory can be a major source of interference in dual tasking. However, there is no consensus on whether this interference is the result of a single working memory bottleneck, or of interactions between different working memory components that together form a complete working-memory system. We report a behavioral and an fMRI dataset in which working memory requirements are manipulated during multitasking. We show that a computational cognitive model that assumes a distributed version of working memory accounts for both behavioral and neuroimaging data better than a model that takes a more centralized approach. The model's working memory consists of an attentional focus, declarative memory, and a subvocalized rehearsal mechanism. Thus, the data and model favor an account where working memory interference in dual tasking is the result of interactions between different resources that together form a working-memory system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Modern Speed-Reading Apps Do Not Foster Reading Comprehension.

    PubMed

    Acklin, Dina; Papesh, Megan H

    2017-01-01

    New computer apps are gaining popularity by suggesting that reading speeds can be drastically increased when eye movements that normally occur during reading are eliminated. This is done using rapid serial visual presentation (RSVP), where words are presented 1 at a time, thus preventing natural eye movements such as saccades, fixations, and regressions from occurring. Al- though the companies producing these apps suggest that RSVP reading does not yield comprehension deficits, research investigating the role of eye movements in reading documents shows the necessity of natural eye movements for accurate comprehension. The current study explored variables that may affect reading comprehension during RSVP reading, including text difficulty (6th grade and 12th grade), text presentation speed (static, 700 wpm, and 1,000 wpm), and working memory capacity (WMC). Consistent with recent work showing a tenuous relationship between comprehension and WMC, participants' WMC did not predict comprehension scores. Instead, comprehension was most affected by reading speed: Static text was associated with superior performance, relative to either RSVP reading condition. Furthermore, slower RSVP speeds yielded better verbatim comprehension, and faster speeds benefited inferential comprehension.

  9. The contributions of handedness and working memory to episodic memory.

    PubMed

    Sahu, Aparna; Christman, Stephen D; Propper, Ruth E

    2016-11-01

    Past studies have independently shown associations of working memory and degree of handedness with episodic memory retrieval. The current study takes a step ahead by examining whether handedness and working memory independently predict episodic memory. In agreement with past studies, there was an inconsistent-handed advantage for episodic memory; however, this advantage was absent for working memory tasks. Furthermore, regression analyses showed handedness, and complex working memory predicted episodic memory performance at different times. Results are discussed in light of theories of episodic memory and hemispheric interaction.

  10. Working Memory From the Psychological and Neurosciences Perspectives: A Review

    PubMed Central

    Chai, Wen Jia; Abd Hamid, Aini Ismafairus; Abdullah, Jafri Malin

    2018-01-01

    Since the concept of working memory was introduced over 50 years ago, different schools of thought have offered different definitions for working memory based on the various cognitive domains that it encompasses. The general consensus regarding working memory supports the idea that working memory is extensively involved in goal-directed behaviors in which information must be retained and manipulated to ensure successful task execution. Before the emergence of other competing models, the concept of working memory was described by the multicomponent working memory model proposed by Baddeley and Hitch. In the present article, the authors provide an overview of several working memory-relevant studies in order to harmonize the findings of working memory from the neurosciences and psychological standpoints, especially after citing evidence from past studies of healthy, aging, diseased, and/or lesioned brains. In particular, the theoretical framework behind working memory, in which the related domains that are considered to play a part in different frameworks (such as memory’s capacity limit and temporary storage) are presented and discussed. From the neuroscience perspective, it has been established that working memory activates the fronto-parietal brain regions, including the prefrontal, cingulate, and parietal cortices. Recent studies have subsequently implicated the roles of subcortical regions (such as the midbrain and cerebellum) in working memory. Aging also appears to have modulatory effects on working memory; age interactions with emotion, caffeine and hormones appear to affect working memory performances at the neurobiological level. Moreover, working memory deficits are apparent in older individuals, who are susceptible to cognitive deterioration. Another younger population with working memory impairment consists of those with mental, developmental, and/or neurological disorders such as major depressive disorder and others. A less coherent and organized neural pattern has been consistently reported in these disadvantaged groups. Working memory of patients with traumatic brain injury was similarly affected and shown to have unusual neural activity (hyper- or hypoactivation) as a general observation. Decoding the underlying neural mechanisms of working memory helps support the current theoretical understandings concerning working memory, and at the same time provides insights into rehabilitation programs that target working memory impairments from neurophysiological or psychological aspects. PMID:29636715

  11. Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability.

    PubMed

    Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H

    2018-05-01

    The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Can verbal working memory training improve reading?

    PubMed

    Banales, Erin; Kohnen, Saskia; McArthur, Genevieve

    2015-01-01

    The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.

  13. Visual working memory buffers information retrieved from visual long-term memory.

    PubMed

    Fukuda, Keisuke; Woodman, Geoffrey F

    2017-05-16

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.

  14. Visual working memory buffers information retrieved from visual long-term memory

    PubMed Central

    Fukuda, Keisuke; Woodman, Geoffrey F.

    2017-01-01

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479

  15. Working and strategic memory deficits in schizophrenia

    NASA Technical Reports Server (NTRS)

    Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.

    1998-01-01

    Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.

  16. Influencing Memory Performance in Learning Disabled Students through Semantic Processing.

    ERIC Educational Resources Information Center

    Walker, Stephen C.; Poteet, James A.

    1989-01-01

    Thirty learning-disabled and 30 nonhandicapped intermediate grade children were assessed on memory performance for stimulus words, which were presented with congruent and noncongruent rhyming words and semantically congruent and noncongruent sentence frames. Both groups performed significantly better on words encoded using deep level congruent…

  17. Memory systems interaction in the pigeon: working and reference memory.

    PubMed

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  18. Numerical and arithmetical cognition: a longitudinal study of process and concept deficits in children with learning disability.

    PubMed

    Geary, D C; Hamson, C O; Hoard, M K

    2000-11-01

    Based on the stability and level of performance on standard achievement tests in first and second grade (mean age in first grade = 82 months), children with IQ scores in the low-average to high-average range were classified as learning disabled (LD) in mathematics (MD), reading (RD), or both (MD/RD). These children (n = 42), a group of children who showed variable achievement test performance across grades (n = 16), and a control group of academically normal peers (n = 35) were administered a series of experimental and psychometric tasks. The tasks assessed number comprehension and production skills, counting knowledge, arithmetic skills, working memory, the ease of activation of phonetic representations of words and numbers, and spatial abilities. The children with variable achievement test performance did not differ from the academically normal children in any cognitive domain, whereas the children in the LD groups showed specific patterns of cognitive deficit, above and beyond the influence of IQ. Discussion focuses on the similarities and differences across the groups of LD children. Copyright 2000 Academic Press.

  19. Pathways to fraction learning: Numerical abilities mediate the relation between early cognitive competencies and later fraction knowledge.

    PubMed

    Ye, Ai; Resnick, Ilyse; Hansen, Nicole; Rodrigues, Jessica; Rinne, Luke; Jordan, Nancy C

    2016-12-01

    The current study investigated the mediating role of number-related skills in the developmental relationship between early cognitive competencies and later fraction knowledge using structural equation modeling. Fifth-grade numerical skills (i.e., whole number line estimation, non-symbolic proportional reasoning, multiplication, and long division skills) mapped onto two distinct factors: magnitude reasoning and calculation. Controlling for participants' (N=536) demographic characteristics, these two factors fully mediated relationships between third-grade general cognitive competencies (attentive behavior, verbal and nonverbal intellectual abilities, and working memory) and sixth-grade fraction knowledge (concepts and procedures combined). However, specific developmental pathways differed by type of fraction knowledge. Magnitude reasoning ability fully mediated paths from all four cognitive competencies to knowledge of fraction concepts, whereas calculation ability fully mediated paths from attentive behavior and verbal ability to knowledge of fraction procedures (all with medium to large effect sizes). These findings suggest that there are partly overlapping, yet distinct, developmental pathways from cognitive competencies to general fraction knowledge, fraction concepts, and fraction procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Interactions Between Modality of Working Memory Load and Perceptual Load in Distractor Processing.

    PubMed

    Koshino, Hideya; Olid, Pilar

    2015-01-01

    The present study investigated interactions between working memory load and perceptual load. The load theory (Lavie, Hirst, de Fockert, & Viding, 2004 ) claims that perceptual load decreases distractor interference, whereas working memory load increases interference. However, recent studies showed that effects of working memory might depend on the relationship between modalities of working memory and task stimuli. Here, we examined whether the relationship between working memory load and perceptual load would remain the same across modalities. The results of Experiment 1 showed that verbal working memory load did not affect a compatibility effect for low perceptual load, whereas it increased the compatibility effect for high perceptual load. In Experiment 2, the compatibility effect remained the same regardless of visual working memory load. These results suggest that the effects of working memory load and perceptual load depend on the relationship between the modalities of working memory and stimuli.

  1. Working-memory performance is related to spatial breadth of attention.

    PubMed

    Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J

    2015-11-01

    Working memory and attention are closely related constructs. Models of working memory often incorporate an attention component, and some even equate working memory and attentional control. Although some attention-related processes, including inhibitory control of response conflict and interference resolution, are strongly associated with working memory, for other aspects of attention the link is less clear. We examined the association between working-memory performance and attentional breadth, the ability to spread attention spatially. If the link between attention and working memory is broader than inhibitory and interference resolution processes, then working-memory performance might also be associated with other attentional abilities, including attentional breadth. We tested 123 participants on a variety of working-memory and attentional-breadth measures, finding a strong correlation between performances on these two types of tasks. This finding demonstrates that the link between working memory and attention extends beyond inhibitory processes.

  2. Cognitive Attributes, Attention, and Self-Efficacy of Adequate and Inadequate Responders in a Fourth Grade Reading Intervention

    PubMed Central

    Cho, Eunsoo; Roberts, Garrett J.; Capin, Philip; Roberts, Greg; Miciak, Jeremy; Vaughn, Sharon

    2015-01-01

    We examined cognitive attributes, attention, and self-efficacy of fourth grade struggling readers who were identified as adequate responders (n = 27), inadequate responders with comprehension only deficits (n = 46), and inadequate responders with comprehension and word reading deficits (n = 52) after receiving a multicomponent reading intervention. We also included typical readers (n = 40). These four groups were compared on measures of nonverbal reasoning, working memory, verbal knowledge, listening comprehension, phonological awareness, and rapid naming as well as on teacher ratings of attention problems and self-reported self-efficacy. The two inadequate responder groups demonstrated difficulties primarily with verbal knowledge and listening comprehension compared to typical readers and adequate responders. Phonological awareness and rapid naming differentiated the two inadequate responder groups. In addition, both inadequate responder groups showed more attention problems and low self-efficacy compared to typical readers. PMID:26997755

  3. Working Memory in the Classroom: An Inside Look at the Central Executive.

    PubMed

    Barker, Lauren A

    2016-01-01

    This article provides a review of working memory and its application to educational settings. A discussion of the varying definitions of working memory is presented. Special attention is given to the various multidisciplinary professionals who work with students with working memory deficits, and their unique understanding of the construct. Definitions and theories of working memory are briefly summarized and provide the foundation for understanding practical applications of working memory to assessment and intervention. Although definitions and models of working memory abound, there is limited consensus regarding universally accepted definitions and models. Current research indicates that developing new models of working memory may be an appropriate paradigm shift at this time. The integration of individual practitioner's knowledge regarding academic achievement, working memory and processing speed could provide a foundation for the future development of new working memory models. Future directions for research should aim to explain how tasks and behaviors are supported by the substrates of the cortico-striatal and the cerebro-cerebellar systems. Translation of neurobiological information into educational contexts will be helpful to inform all practitioners' knowledge of working memory constructs. It will also allow for universally accepted definitions and models of working memory to arise and facilitate more effective collaboration between disciplines working in educational setting.

  4. Examining factors involved in stress-related working memory impairments: Independent or conditional effects?

    PubMed

    Banks, Jonathan B; Tartar, Jaime L; Tamayo, Brittney A

    2015-12-01

    A large and growing body of research demonstrates the impact of psychological stress on working memory. However, the typical study approach tests the effects of a single biological or psychological factor on changes in working memory. The current study attempted to move beyond the standard single-factor assessment by examining the impact of 2 possible factors in stress-related working memory impairments. To this end, 60 participants completed a working memory task before and after either a psychological stressor writing task or a control writing task and completed measures of both cortisol and mind wandering. We also included a measure of state anxiety to examine the direct and indirect effect on working memory. We found that mind wandering mediated the relationship between state anxiety and working memory at the baseline measurement. This indirect relationship was moderated by cortisol, such that the impact of mind wandering on working memory increased as cortisol levels increased. No overall working memory impairment was observed following the stress manipulation, but increases in state anxiety and mind wandering were observed. State anxiety and mind wandering independently mediated the relationship between change in working memory and threat perception. The indirect paths resulted in opposing effects on working memory. Combined, the findings from this study suggest that cortisol enhances the impact of mind wandering on working memory, that state anxiety may not always result in stress-related working memory impairments, and that high working memory performance can protect against mind wandering. (c) 2015 APA, all rights reserved).

  5. Visuospatial and verbal memory in mental arithmetic.

    PubMed

    Clearman, Jack; Klinger, Vojtěch; Szűcs, Dénes

    2017-09-01

    Working memory allows complex information to be remembered and manipulated over short periods of time. Correlations between working memory and mathematics achievement have been shown across the lifespan. However, only a few studies have examined the potentially distinct contributions of domain-specific visuospatial and verbal working memory resources in mental arithmetic computation. Here we aimed to fill this gap in a series of six experiments pairing addition and subtraction tasks with verbal and visuospatial working memory and interference tasks. In general, we found higher levels of interference between mental arithmetic and visuospatial working memory tasks than between mental arithmetic and verbal working memory tasks. Additionally, we found that interference that matched the working memory domain of the task (e.g., verbal task with verbal interference) lowered working memory performance more than mismatched interference (verbal task with visuospatial interference). Findings suggest that mental arithmetic relies on domain-specific working memory resources.

  6. Developmental Differences in the Use of Retrieval Cues to Describe Episodic Information in Memory.

    ERIC Educational Resources Information Center

    Ackerman, Brian P.; Rathburn, Jill

    1984-01-01

    Examines reasons why second and fourth grade students use cues relatively ineffectively to retrieve episodic information. Four experiments tested the hypothesis that retrieval cue effectiveness varies with the extent to which cue information describes event information in memory. Results showed that problems of discriminability and…

  7. An Analysis of Active Rehearsal in Children's Memory.

    ERIC Educational Resources Information Center

    Stone, Barbara Prince; And Others

    This paper presents a developmental study of the effects of item rehearsal on children's short term memory. Two experiments are discussed. The first, involving second and sixth grade children, concerned the relationship between item retrieval ability and rehearsal strategies in item recall. The design of the experiment involved varying the visual…

  8. Emotional Mood and Memory in Young Children.

    ERIC Educational Resources Information Center

    Bartlett, James C.; And Others

    1982-01-01

    Two experiments examined affect-dependent memory in preschool/kindergarten and third-grade children. A two-list intentional learning procedure was used to assess the effects of the congruent versus incongruent relationship between happy versus sad affect during initial list learning and happy versus sad affect during a delayed-recall test.…

  9. MIDI Keyboards: Memory Skills and Building Values toward School.

    ERIC Educational Resources Information Center

    Marcinkiewicz, Henryk R.; And Others

    This document summarizes the results of a study which evaluated whether school instruction with Musical Instrument Digital Interface (MIDI) keyboards improves memory skill and whether school instruction with MIDI keyboards improves sentiments toward school and instructional media. Pupils in early elementary grades at five schools were evaluated…

  10. Gum chewing affects academic performance in adolescents

    USDA-ARS?s Scientific Manuscript database

    Chewing gum may have an impact on improved memory during specific tasks of recognition and sustained attention. Research objective was to determine the effect of gum chewing on standardized test scores and math class grades of eighth grade students. Four math classes, 108 students, were randomized i...

  11. Transfer after Working Memory Updating Training

    PubMed Central

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319

  12. Transfer after Working Memory Updating Training.

    PubMed

    Waris, Otto; Soveri, Anna; Laine, Matti

    2015-01-01

    During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.

  13. How preschool executive functioning predicts several aspects of math achievement in Grades 1 and 3: A longitudinal study.

    PubMed

    Viterbori, Paola; Usai, M Carmen; Traverso, Laura; De Franchis, Valentina

    2015-12-01

    This longitudinal study analyzes whether selected components of executive function (EF) measured during the preschool period predict several indices of math achievement in primary school. Six EF measures were assessed in a sample of 5-year-old children (N = 175). The math achievement of the same children was then tested in Grades 1 and 3 using both a composite math score and three single indices of written calculation, arithmetical facts, and problem solving. Using previous results obtained from the same sample of children, a confirmatory factor analysis examining the latent EF structure in kindergarten indicated that a two-factor model provided the best fit for the data. In this model, inhibition and working memory (WM)-flexibility were separate dimensions. A full structural equation model was then used to test the hypothesis that math achievement (the composite math score and single math scores) in Grades 1 and 3 could be explained by the two EF components comprising the kindergarten model. The results indicate that the WM-flexibility component measured during the preschool period substantially predicts mathematical achievement, especially in Grade 3. The math composite scores were predicted by the WM-flexibility factor at both grade levels. In Grade 3, both problem solving and arithmetical facts were predicted by the WM-flexibility component. The results empirically support interventions that target EF as an important component of early childhood mathematics education. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Relationships of Working Memory, Secondary Memory, and General Fluid Intelligence: Working Memory Is Special

    ERIC Educational Resources Information Center

    Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew

    2010-01-01

    Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…

  15. The effects of refreshing and elaboration on working memory performance, and their contributions to long-term memory formation.

    PubMed

    Bartsch, Lea M; Singmann, Henrik; Oberauer, Klaus

    2018-03-19

    Refreshing and elaboration are cognitive processes assumed to underlie verbal working-memory maintenance and assumed to support long-term memory formation. Whereas refreshing refers to the attentional focussing on representations, elaboration refers to linking representations in working memory into existing semantic networks. We measured the impact of instructed refreshing and elaboration on working and long-term memory separately, and investigated to what extent both processes are distinct in their contributions to working as well as long-term memory. Compared with a no-processing baseline, immediate memory was improved by repeating the items, but not by refreshing them. There was no credible effect of elaboration on working memory, except when items were repeated at the same time. Long-term memory benefited from elaboration, but not from refreshing the words. The results replicate the long-term memory benefit for elaboration, but do not support its beneficial role for working memory. Further, refreshing preserves immediate memory, but does not improve it beyond the level achieved without any processing.

  16. Working memory and arithmetic calculation in children: the contributory roles of processing speed, short-term memory, and reading.

    PubMed

    Berg, Derek H

    2008-04-01

    The cognitive underpinnings of arithmetic calculation in children are noted to involve working memory; however, cognitive processes related to arithmetic calculation and working memory suggest that this relationship is more complex than stated previously. The purpose of this investigation was to examine the relative contributions of processing speed, short-term memory, working memory, and reading to arithmetic calculation in children. Results suggested four important findings. First, processing speed emerged as a significant contributor of arithmetic calculation only in relation to age-related differences in the general sample. Second, processing speed and short-term memory did not eliminate the contribution of working memory to arithmetic calculation. Third, individual working memory components--verbal working memory and visual-spatial working memory--each contributed unique variance to arithmetic calculation in the presence of all other variables. Fourth, a full model indicated that chronological age remained a significant contributor to arithmetic calculation in the presence of significant contributions from all other variables. Results are discussed in terms of directions for future research on working memory in arithmetic calculation.

  17. Visual Working Memory Capacity and Proactive Interference

    PubMed Central

    Hartshorne, Joshua K.

    2008-01-01

    Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493

  18. Visual working memory capacity and proactive interference.

    PubMed

    Hartshorne, Joshua K

    2008-07-23

    Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.

  19. Effectiveness of Acoustic and Conceptual Retrieval Cues in Memory for Words at Two Grade Levels. Technical Report No. 220.

    ERIC Educational Resources Information Center

    Ghatala, Elizabeth S.; Hurlbut, Nancy L.

    The effectiveness of two types of retrieval cues was assessed with second- and sixth-grade children. After a single presentation of a list of words, the children first recalled as many of the words as they could. Following free recall, children in each grade were given either conceptual (category names for words on the input lists) or acoustic…

  20. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain.

    PubMed

    Mattfeld, Aaron T; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D E

    2016-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity.

  1. Dissociation of working memory impairments and attention-deficit/hyperactivity disorder in the brain

    PubMed Central

    Mattfeld, Aaron T.; Whitfield-Gabrieli, Susan; Biederman, Joseph; Spencer, Thomas; Brown, Ariel; Fried, Ronna; Gabrieli, John D.E.

    2015-01-01

    Prevailing neuropsychological models of attention-deficit/hyperactivity disorder (ADHD) propose that ADHD arises from deficits in executive functions such as working memory, but accumulating clinical evidence suggests a dissociation between ADHD and executive dysfunctions. This study examined whether ADHD and working memory capacity are behaviorally and neurobiologically separable using functional magnetic resonance imaging (fMRI). Participants diagnosed with ADHD in childhood who subsequently remitted or persisted in their diagnosis as adults were characterized at follow-up in adulthood as either impaired or unimpaired in spatial working memory relative to controls who never had ADHD. ADHD participants with impaired spatial working memory performed worse than controls and ADHD participants with unimpaired working memory during an n-back working memory task while being scanned. Both controls and ADHD participants with unimpaired working memory exhibited significant linearly increasing activation in the inferior frontal junction, precuneus, lingual gyrus, and cerebellum as a function of working-memory load, and these activations did not differ significantly between these groups. ADHD participants with impaired working memory exhibited significant hypoactivation in the same regions, which was significantly different than both control participants and ADHD participants with unimpaired working memory. These findings support both a behavioral and neurobiological dissociation between ADHD and working memory capacity. PMID:26900567

  2. Working, declarative and procedural memory in specific language impairment

    PubMed Central

    Lum, Jarrad A.G.; Conti-Ramsden, Gina; Page, Debra; Ullman, Michael T.

    2012-01-01

    According to the Procedural Deficit Hypothesis (PDH), abnormalities of brain structures underlying procedural memory largely explain the language deficits in children with specific language impairment (SLI). These abnormalities are posited to result in core deficits of procedural memory, which in turn explain the grammar problems in the disorder. The abnormalities are also likely to lead to problems with other, non-procedural functions, such as working memory, that rely at least partly on the affected brain structures. In contrast, declarative memory is expected to remain largely intact, and should play an important compensatory role for grammar. These claims were tested by examining measures of working, declarative and procedural memory in 51 children with SLI and 51 matched typically-developing (TD) children (mean age 10). Working memory was assessed with the Working Memory Test Battery for Children, declarative memory with the Children’s Memory Scale, and procedural memory with a visuo-spatial Serial Reaction Time task. As compared to the TD children, the children with SLI were impaired at procedural memory, even when holding working memory constant. In contrast, they were spared at declarative memory for visual information, and at declarative memory in the verbal domain after controlling for working memory and language. Visuo-spatial short-term memory was intact, whereas verbal working memory was impaired, even when language deficits were held constant. Correlation analyses showed neither visuo-spatial nor verbal working memory was associated with either lexical or grammatical abilities in either the SLI or TD children. Declarative memory correlated with lexical abilities in both groups of children. Finally, grammatical abilities were associated with procedural memory in the TD children, but with declarative memory in the children with SLI. These findings replicate and extend previous studies of working, declarative and procedural memory in SLI. Overall, we suggest that the evidence largely supports the predictions of the PDH. PMID:21774923

  3. Spatial working memory load affects counting but not subitizing in enumeration.

    PubMed

    Shimomura, Tomonari; Kumada, Takatsune

    2011-08-01

    The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.

  4. Working memory involvement in stuttering: exploring the evidence and research implications.

    PubMed

    Bajaj, Amit

    2007-01-01

    Several studies of utterance planning and attention processes in stuttering have raised the prospect of working memory involvement in the disorder. In this paper, potential connections between stuttering and two elements of Baddeley's [Baddeley, A. D. (2003). Working memory: Looking back and looking forward. Neuroscience, 4, 829-839] working memory model, phonological memory and central executive, are posited. Empirical evidence is drawn from studies on phonological memory and dual-task performance among children and adults who stutter to examine support for the posited connections. Implications for research to examine working memory as one of the psycholinguistic bases of stuttering are presented. The reader will learn about and be able to: (1) appraise potential relationships between working memory and stuttering; (2) evaluate empirical evidence that suggests the possibility of working memory involvement in stuttering; and (3) identify research directions to explore the role of working memory in stuttering.

  5. Contribution of auditory working memory to speech understanding in mandarin-speaking cochlear implant users.

    PubMed

    Tao, Duoduo; Deng, Rui; Jiang, Ye; Galvin, John J; Fu, Qian-Jie; Chen, Bing

    2014-01-01

    To investigate how auditory working memory relates to speech perception performance by Mandarin-speaking cochlear implant (CI) users. Auditory working memory and speech perception was measured in Mandarin-speaking CI and normal-hearing (NH) participants. Working memory capacity was measured using forward digit span and backward digit span; working memory efficiency was measured using articulation rate. Speech perception was assessed with: (a) word-in-sentence recognition in quiet, (b) word-in-sentence recognition in speech-shaped steady noise at +5 dB signal-to-noise ratio, (c) Chinese disyllable recognition in quiet, (d) Chinese lexical tone recognition in quiet. Self-reported school rank was also collected regarding performance in schoolwork. There was large inter-subject variability in auditory working memory and speech performance for CI participants. Working memory and speech performance were significantly poorer for CI than for NH participants. All three working memory measures were strongly correlated with each other for both CI and NH participants. Partial correlation analyses were performed on the CI data while controlling for demographic variables. Working memory efficiency was significantly correlated only with sentence recognition in quiet when working memory capacity was partialled out. Working memory capacity was correlated with disyllable recognition and school rank when efficiency was partialled out. There was no correlation between working memory and lexical tone recognition in the present CI participants. Mandarin-speaking CI users experience significant deficits in auditory working memory and speech performance compared with NH listeners. The present data suggest that auditory working memory may contribute to CI users' difficulties in speech understanding. The present pattern of results with Mandarin-speaking CI users is consistent with previous auditory working memory studies with English-speaking CI users, suggesting that the lexical importance of voice pitch cues (albeit poorly coded by the CI) did not influence the relationship between working memory and speech perception.

  6. Does Working Memory Training Lead to Generalized Improvements in Children with Low Working Memory? A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.

    2013-01-01

    Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…

  7. Working-memory training improves developmental dyslexia in Chinese children.

    PubMed

    Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu

    2013-02-15

    Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.

  8. Enhanced perceived responsibility decreases metamemory but not memory accuracy in obsessive-compulsive disorder (OCD).

    PubMed

    Moritz, S; Wahl, K; Zurowski, B; Jelinek, L; Hand, I; Fricke, S

    2007-09-01

    Mixed findings have been obtained in prior research with respect to the presence and severity of memory and metamemory deficits in obsessive-compulsive disorder (OCD). We tested the hypothesis that experimentally induced increments of subjective responsibility would lead to a disproportionately strong decline of memory confidence and enhanced response latencies in OCD while leaving memory accuracy unaffected. Twenty-eight OCD patients and 28 healthy controls were presented a computerized memory test framed with two different scenarios. In the neutral scenario, the participant was requested to imagine purchasing 15 items from a do-it-yourself store. In the recognition phase, the 15 needed items were presented along with 15 distractor items. The participant was asked to decide whether items were on his or her shopping list or not, graded by subjective confidence. In the responsibility scenario, the general experimental setup was analogous except that the participant now had to envision that he or she was a helper in a region recently struck by an earthquake, dispatched to provide 15 urgently needed goods from a nearby town. In line with prior work by our group, samples did not differ in either condition on memory accuracy in a subsequent recognition task. As hypothesized, OCD participants were less certain in their responses for the high responsibility condition than controls. Whereas patients and controls did not differ in their subjective estimates for memorized items, patients expressed stronger doubt that their earthquake mission was successful. The findings indicate that low memory confidence in OCD may only be elicited in situations where perceived responsibility is high and that patients may share higher performance standards ("good is not good enough") than controls when perceived responsibility is inflated.

  9. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials.

  10. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong

    2016-01-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of novel and functional biomedical scaffolds with advanced 4D printing technology and highly biocompatible smart biomaterials. PMID:28195832

  11. Can Interactive Working Memory Training Improve Learning?

    ERIC Educational Resources Information Center

    Alloway, Tracy

    2012-01-01

    Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…

  12. Working memory training may increase working memory capacity but not fluid intelligence.

    PubMed

    Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W

    2013-12-01

    Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.

  13. Spatial attention interacts with serial-order retrieval from verbal working memory.

    PubMed

    van Dijck, Jean-Philippe; Abrahamse, Elger L; Majerus, Steve; Fias, Wim

    2013-09-01

    The ability to maintain the serial order of events is recognized as a major function of working memory. Although general models of working memory postulate a close link between working memory and attention, such a link has so far not been proposed specifically for serial-order working memory. The present study provided the first empirical demonstration of a direct link between serial order in verbal working memory and spatial selective attention. We show that the retrieval of later items of a sequence stored in working memory-compared with that of earlier items-produces covert attentional shifts toward the right. This observation suggests the conceptually surprising notion that serial-order working memory, even for nonspatially defined verbal items, draws on spatial attention.

  14. Working Memory Underpins Cognitive Development, Learning, and Education

    PubMed Central

    Cowan, Nelson

    2014-01-01

    Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem-solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then I explore the nature of cognitive developmental improvements in working memory, the role of working memory in learning, and some potential implications of working memory and its development for the education of children and adults. The use of working memory is quite ubiquitous in human thought, but the best way to improve education using what we know about working memory is still controversial. I hope to provide some directions for research and educational practice. PMID:25346585

  15. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators.

    PubMed

    Reboreda, Antonio; Theissen, Frederik M; Valero-Aracama, Maria J; Arboit, Alberto; Corbu, Mihaela A; Yoshida, Motoharu

    2018-03-01

    Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Recollection is a continuous process: implications for dual-process theories of recognition memory.

    PubMed

    Mickes, Laura; Wais, Peter E; Wixted, John T

    2009-04-01

    Dual-process theory, which holds that recognition decisions can be based on recollection or familiarity, has long seemed incompatible with signal detection theory, which holds that recognition decisions are based on a singular, continuous memory-strength variable. Formal dual-process models typically regard familiarity as a continuous process (i.e., familiarity comes in degrees), but they construe recollection as a categorical process (i.e., recollection either occurs or does not occur). A continuous process is characterized by a graded relationship between confidence and accuracy, whereas a categorical process is characterized by a binary relationship such that high confidence is associated with high accuracy but all lower degrees of confidence are associated with chance accuracy. Using a source-memory procedure, we found that the relationship between confidence and source-recollection accuracy was graded. Because recollection, like familiarity, is a continuous process, dual-process theory is more compatible with signal detection theory than previously thought.

  17. Life goals of people with disabilities due to neurological disorders.

    PubMed

    Sivaraman Nair, K P; Wade, Derick T

    2003-08-01

    To identify the life goals of people with long-term neurological disabilities and to correlate them with measures of disability. Cross-sectional descriptive study. Centre for continuing disability management Patients with static or progressive neurological disorders. Survey using questionnaires and disability scales. Life goals were identified with a life goals questionnaire. Subjects were also assessed using the Barthel Index, Rivermead Extended Activities of Daily Living Index, Rivermead Mobility Index, Short Orientation Memory Concentration test and Hospital Anxiety and Depression Scale. Ninety-three subjects participated in the study. The frequency with which goals were chosen as extremely important was: family 64; personal care 59; residential arrangements 58; partner 53; social contacts 30; financial status 29; leisure 26; religion 22; and work 19. Positive correlation was noted between stated importance of: personal care and independence in ADL; work and independence; partner and cognitive ability; religion and age; and financial status and anxiety. There was negative correlation between grades of personal care and depression, work and age, residential arrangements and RMI, and social contact and anxiety and depression. Depressed patients rated fewer goals as being of extreme importance. People with disabilities attach great significance to relationships and personal care. Grades of life goals correlated with measures of disability, cognition and emotion.

  18. Conceptualizing and Measuring Working Memory and its Relationship to Aphasia

    PubMed Central

    Wright, Heather Harris; Fergadiotis, Gerasimos

    2011-01-01

    Background General agreement exists in the literature that individuals with aphasia can exhibit a working memory deficit that contributes to their language processing impairments. Though conceptualized within different working memory frameworks, researchers have suggested that individuals with aphasia have limited working memory capacity, impaired attention-control processes as well as impaired inhibitory mechanisms. However, across studies investigating working memory ability in individuals with aphasia, different measures have been used to quantify their working memory ability and identify the relationship between working memory and language performance. Aims The primary objectives of this article are to (1) review current working memory theoretical frameworks, (2) review tasks used to measure working memory, and (3) discuss findings from studies that have investigated working memory as they relate to language processing in aphasia. Main Contribution Though findings have been consistent across studies investigating working memory ability in individuals with aphasia, discussion of how working memory is conceptualized and defined is often missing, as is discussion of results within a theoretical framework. This is critical, as working memory is conceptualized differently across the different theoretical frameworks. They differ in explaining what limits capacity and the source of individual differences as well as how information is encoded, maintained, and retrieved. When test methods are considered within a theoretical framework, specific hypotheses can be tested and stronger conclusions that are less susceptible to different interpretations can be made. Conclusions Working memory ability has been investigated in numerous studies with individuals with aphasia. To better understand the underlying cognitive constructs that contribute to the language deficits exhibited by individuals with aphasia, future investigations should operationally define the cognitive constructs of interest and discuss findings within theoretical frameworks. PMID:22639480

  19. Predicting the Development of Analytical and Creative Abilities in Upper Elementary Grades

    ERIC Educational Resources Information Center

    Gubbels, Joyce; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    In some models, intelligence has been described as a multidimensional construct comprising both analytical and creative abilities. In addition, intelligence is considered to be dynamic rather than static. A structural equation model was used to examine the predictive role of cognitive (visual short-term memory, verbal short-term memory, selective…

  20. Students' Autobiographical Memory of Participation in Multiple Sport Education Seasons

    ERIC Educational Resources Information Center

    Sinelnikov, Oleg A.; Hastie, Peter A.

    2010-01-01

    This study examines the recollections of the Sport Education experiences of a cohort of students (15 boys and 19 girls) who had participated in seasons of basketball, soccer and badminton across grades six through eight (average age at data collection = 15.6 years). Using autobiographic memory theory techniques, the students completed surveys and…

  1. Developmental Differences in Recall and Recognition: The Relationship between Rehearsal and Memory as Test Expectation Changes

    ERIC Educational Resources Information Center

    Naus, Mary J.; And Others

    1977-01-01

    An overt rehearsal procedure was used to study the relationship between 48 third- and 48 sixth-grade children's rehearsal strategies and their memory performance under difficult conditions of test expectation. This study addressed the question of why active rehearsal content results in superior recall performances. (MS)

  2. Using Maintenance Rehearsal to Explore Recognition Memory

    ERIC Educational Resources Information Center

    Humphreys, Michael S.; Maguire, Angela M.; McFarlane, Kimberley A.; Burt, Jennifer S.; Bolland, Scott W.; Murray, Krista L.; Dunn, Ryan

    2010-01-01

    We examined associative and item recognition using the maintenance rehearsal paradigm. Our intent was to control for mnemonic strategies; to produce a low, graded level of learning; and to provide evidence of the role of attention in long-term memory. An advantage for low-frequency words emerged in both associative and item recognition at very low…

  3. Order Short-Term Memory Capacity Predicts Nonword Reading and Spelling in First and Second Grade

    ERIC Educational Resources Information Center

    Binamé, Florence; Poncelet, Martine

    2016-01-01

    Recent theories of short-term memory (STM) distinguish between item information, which reflects the temporary activation of long-term representations stored in the language system, and serial-order information, which is encoded in a specific representational system that is independent of the language network. Some studies examining the…

  4. Developmental Changes in Constructive Memory Abilities.

    ERIC Educational Resources Information Center

    Paris, Scott G.

    This paper describes three studies designed to determine whether there are age-related differences in children's memory for implicit and explicit information in prose. In the first study, six experimental paragraphs were read individually to a total of 60 children in grades K-5. Each child was then asked four verbatim recall questions (specific…

  5. Memory-for-Designs, Bender-Gestalt, Trail Making Test, and WISC-R Performance of Retarded and Adequate Readers

    ERIC Educational Resources Information Center

    McManis, Donald L.; And Others

    1978-01-01

    Twelve reading-disabled and 12 nondisabled boys, of average intellectual ability, in Grades 3 to 6 were compared on the Memory-For-Designs, Bender-Gestalt, Trail Making Test, and the 11 subtests of the Wechsler Intelligence Scale for Children--Revised (WISC-R). (Author)

  6. Changes in Brain Network Efficiency and Working Memory Performance in Aging

    PubMed Central

    Stanley, Matthew L.; Simpson, Sean L.; Dagenbach, Dale; Lyday, Robert G.; Burdette, Jonathan H.; Laurienti, Paul J.

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory. PMID:25875001

  7. Changes in brain network efficiency and working memory performance in aging.

    PubMed

    Stanley, Matthew L; Simpson, Sean L; Dagenbach, Dale; Lyday, Robert G; Burdette, Jonathan H; Laurienti, Paul J

    2015-01-01

    Working memory is a complex psychological construct referring to the temporary storage and active processing of information. We used functional connectivity brain network metrics quantifying local and global efficiency of information transfer for predicting individual variability in working memory performance on an n-back task in both young (n = 14) and older (n = 15) adults. Individual differences in both local and global efficiency during the working memory task were significant predictors of working memory performance in addition to age (and an interaction between age and global efficiency). Decreases in local efficiency during the working memory task were associated with better working memory performance in both age cohorts. In contrast, increases in global efficiency were associated with much better working performance for young participants; however, increases in global efficiency were associated with a slight decrease in working memory performance for older participants. Individual differences in local and global efficiency during resting-state sessions were not significant predictors of working memory performance. Significant group whole-brain functional network decreases in local efficiency also were observed during the working memory task compared to rest, whereas no significant differences were observed in network global efficiency. These results are discussed in relation to recently developed models of age-related differences in working memory.

  8. Working Memory Systems in the Rat.

    PubMed

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of working memory contents and perceptual load on distractor processing: When a response-related distractor is held in working memory.

    PubMed

    Koshino, Hideya

    2017-01-01

    Working memory and attention are closely related. Recent research has shown that working memory can be viewed as internally directed attention. Working memory can affect attention in at least two ways. One is the effect of working memory load on attention, and the other is the effect of working memory contents on attention. In the present study, an interaction between working memory contents and perceptual load in distractor processing was investigated. Participants performed a perceptual load task in a standard form in one condition (Single task). In the other condition, a response-related distractor was maintained in working memory, rather than presented in the same stimulus display as a target (Dual task). For the Dual task condition, a significant compatibility effect was found under high perceptual load; however, there was no compatibility effect under low perceptual load. These results suggest that the way the contents of working memory affect visual search depends on perceptual load. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Motor learning and working memory in children born preterm: a systematic review.

    PubMed

    Jongbloed-Pereboom, Marjolein; Janssen, Anjo J W M; Steenbergen, Bert; Nijhuis-van der Sanden, Maria W G

    2012-04-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has never been reviewed. The goal of this review was to provide an overview of motor learning, visual working memory and the role of working memory on motor learning in preterm children. A systematic review conducted in four databases identified 38 relevant articles, which were evaluated for methodological quality. Only 4 of 38 articles discussed motor learning in preterm children. Thirty-four studies reported on visual working memory; preterm birth affected performance on visual working memory tests. Information regarding motor learning and the role of working memory on the different components of motor learning was not available. Future research should address this issue. Insight in the relation between motor learning and visual working memory may contribute to the development of evidence based intervention programs for children born preterm. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Manipulations of attention dissociate fragile visual short-term memory from visual working memory.

    PubMed

    Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F

    2011-05-01

    People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Working memory consolidation: insights from studies on attention and working memory.

    PubMed

    Ricker, Timothy J; Nieuwenstein, Mark R; Bayliss, Donna M; Barrouillet, Pierre

    2018-04-10

    Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: consolidation, refreshing, and removal. Here, we discuss in detail the theoretical construct of working memory consolidation, a process critical to the creation of a stable working memory representation. We present a brief overview of the research that indicated the need for a construct such as working memory consolidation and the subsequent research that has helped to define the parameters of the construct. We then move on to explicitly state the points of agreement as to what processes are involved in working memory consolidation. © 2018 New York Academy of Sciences.

  13. Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.

    PubMed

    Smithson, Lisa; Nicoladis, Elena

    2016-06-01

    Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.

  14. Effective visual working memory capacity: an emergent effect from the neural dynamics in an attractor network.

    PubMed

    Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.

  15. Effective Visual Working Memory Capacity: An Emergent Effect from the Neural Dynamics in an Attractor Network

    PubMed Central

    Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo

    2012-01-01

    The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608

  16. Improving Dorsal Stream Function in Dyslexics by Training Figure/Ground Motion Discrimination Improves Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri

    2016-01-01

    There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  17. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation

    PubMed Central

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-01-01

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation. PMID:24639586

  18. Dysregulation of C-X-C motif ligand 10 during aging and association with cognitive performance.

    PubMed

    Bradburn, Steven; McPhee, Jamie; Bagley, Liam; Carroll, Michael; Slevin, Mark; Al-Shanti, Nasser; Barnouin, Yoann; Hogrel, Jean-Yves; Pääsuke, Mati; Gapeyeva, Helena; Maier, Andrea; Sipilä, Sarianna; Narici, Marco; Robinson, Andrew; Mann, David; Payton, Antony; Pendleton, Neil; Butler-Browne, Gillian; Murgatroyd, Chris

    2018-03-01

    Chronic low-grade inflammation during aging (inflammaging) is associated with cognitive decline and neurodegeneration; however, the mechanisms underlying inflammaging are unclear. We studied a population (n = 361) of healthy young and old adults from the MyoAge cohort. Peripheral levels of C-X-C motif chemokine ligand 10 (CXCL10) was found to be higher in older adults, compared with young, and negatively associated with working memory performance. This coincided with an age-related reduction in blood DNA methylation at specific CpGs within the CXCL10 gene promoter. In vitro analysis supported the role of DNA methylation in regulating CXCL10 transcription. A polymorphism (rs56061981) that altered methylation at one of these CpG sites further associated with working memory performance in 2 independent aging cohorts. Studying prefrontal cortex samples, we found higher CXCL10 protein levels in those with Alzheimer's disease, compared with aged controls. These findings support the association of peripheral inflammation, as demonstrated by CXCL10, in aging and cognitive decline. We reveal age-related epigenetic and genetic factors which contribute to the dysregulation of CXCL10. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Transcoding abilities in typical and atypical mathematics achievers: the role of working memory and procedural and lexical competencies.

    PubMed

    Moura, Ricardo; Wood, Guilherme; Pinheiro-Chagas, Pedro; Lonnemann, Jan; Krinzinger, Helga; Willmes, Klaus; Haase, Vitor Geraldi

    2013-11-01

    Transcoding between numerical systems is one of the most basic abilities acquired by children during their early school years. One important topic that requires further exploration is how mathematics proficiency can affect number transcoding. The aim of the current study was to investigate transcoding abilities (i.e., reading Arabic numerals and writing dictation) in Brazilian children with and without mathematics difficulties, focusing on different school grades. We observed that children with learning difficulties in mathematics demonstrated lower achievement in number transcoding in both early and middle elementary school. In early elementary school, difficulties were observed in both the basic numerical lexicon and the management of numerical syntax. In middle elementary school, difficulties appeared mainly in the transcoding of more complex numbers. An error analysis revealed that the children with mathematics difficulties struggled mainly with the acquisition of transcoding rules. Although we confirmed the previous evidence on the impact of working memory capacity on number transcoding, we found that it did not fully account for the observed group differences. The results are discussed in the context of a maturational lag in number transcoding ability in children with mathematics difficulties. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Sources of Group and Individual Differences in Emerging Fraction Skills

    PubMed Central

    Hecht, Steven A.; Vagi, Kevin J.

    2010-01-01

    Results from a two year longitudinal study of 181 children from fourth through fifth grade are reported. Levels of growth in children’s computation, word problem, and estimation skills using common fractions were predicted by working memory, attentive classroom behavior, conceptual knowledge about fractions, and simple arithmetic fluency. Comparisons of 55 participants identified as having mathematical difficulties to those without mathematical difficulties revealed that group differences in emerging fraction skills were consistently mediated by attentive classroom behavior and conceptual knowledge about fractions. Neither working memory nor arithmetic fluency mediated group differences in growth in fraction skills. It was also found that the development of basic fraction skills and conceptual knowledge are bidirectional in that conceptual knowledge exerted strong influences on all three types of basic fraction skills, and basic fraction skills exerted a more modest influence on subsequent conceptual knowledge. Results are discussed with reference to how the identification of potentially malleable student characteristics that contribute to the difficulties that some students have with fractions informs interventions and also will contribute to a future theoretical account concerning how domain general and domain specific factors influence the development of basic fraction skills. PMID:21170171

  1. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation.

    PubMed

    Raffone, Antonino; Srinivasan, Narayanan; van Leeuwen, Cees

    2014-05-05

    Despite the acknowledged relationship between consciousness and attention, theories of the two have mostly been developed separately. Moreover, these theories have independently attempted to explain phenomena in which both are likely to interact, such as the attentional blink (AB) and working memory (WM) consolidation. Here, we make an effort to bridge the gap between, on the one hand, a theory of consciousness based on the notion of global workspace (GW) and, on the other, a synthesis of theories of visual attention. We offer a theory of attention and consciousness (TAC) that provides a unified neurocognitive account of several phenomena associated with visual search, AB and WM consolidation. TAC assumes multiple processing stages between early visual representation and conscious access, and extends the dynamics of the global neuronal workspace model to a visual attentional workspace (VAW). The VAW is controlled by executive routers, higher-order representations of executive operations in the GW, without the need for explicit saliency or priority maps. TAC leads to newly proposed mechanisms for illusory conjunctions, AB, inattentional blindness and WM capacity, and suggests neural correlates of phenomenal consciousness. Finally, the theory reconciles the all-or-none and graded perspectives on conscious representation.

  2. Working memory, short-term memory and reading proficiency in school-age children with cochlear implants.

    PubMed

    Bharadwaj, Sneha V; Maricle, Denise; Green, Laura; Allman, Tamby

    2015-10-01

    The objective of the study was to examine short-term memory and working memory through both visual and auditory tasks in school-age children with cochlear implants. The relationship between the performance on these cognitive skills and reading as well as language outcomes were examined in these children. Ten children between the ages of 7 and 11 years with early-onset bilateral severe-profound hearing loss participated in the study. Auditory and visual short-term memory, auditory and visual working memory subtests and verbal knowledge measures were assessed using the Woodcock Johnson III Tests of Cognitive Abilities, the Wechsler Intelligence Scale for Children-IV Integrated and the Kaufman Assessment Battery for Children II. Reading outcomes were assessed using the Woodcock Reading Mastery Test III. Performance on visual short-term memory and visual working memory measures in children with cochlear implants was within the average range when compared to the normative mean. However, auditory short-term memory and auditory working memory measures were below average when compared to the normative mean. Performance was also below average on all verbal knowledge measures. Regarding reading outcomes, children with cochlear implants scored below average for listening and passage comprehension tasks and these measures were positively correlated to visual short-term memory, visual working memory and auditory short-term memory. Performance on auditory working memory subtests was not related to reading or language outcomes. The children with cochlear implants in this study demonstrated better performance in visual (spatial) working memory and short-term memory skills than in auditory working memory and auditory short-term memory skills. Significant positive relationships were found between visual working memory and reading outcomes. The results of the study provide support for the idea that WM capacity is modality specific in children with hearing loss. Based on these findings, reading instruction that capitalizes on the strengths in visual short-term memory and working memory is suggested for young children with early-onset hearing loss. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Misremembering Past Affect Predicts Adolescents' Future Affective Experience During Exercise.

    PubMed

    Karnaze, Melissa M; Levine, Linda J; Schneider, Margaret

    2017-09-01

    Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents' feelings during exercise. During the 1st semester of the school year, we assessed 6th-grade students' (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test and recalled their affect during the fitness test later that semester. During the 2nd semester, the same participants rated their affect during a moderate-intensity exercise task. Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences.

  4. Misremembering Past Affect Predicts Adolescents’ Future Affective Experience during Exercise

    PubMed Central

    Karnaze, Melissa M.; Levine, Linda J.; Schneider, Margaret

    2018-01-01

    Purpose Increasing physical activity among adolescents is a public health priority. Because people are motivated to engage in activities that make them feel good, this study examined predictors of adolescents’ feelings during exercise. Method During the first semester of the school year, we assessed sixth grade students’ (N = 136) cognitive appraisals of the importance of exercise. Participants also reported their affect during a cardiovascular fitness test, and recalled their affect during the fitness test later that semester. During the second semester, the same participants rated their affect during a moderate-intensity exercise task. Results Affect reported during the moderate-intensity exercise task was predicted by cognitive appraisals of the importance of exercise, and by misremembering affect during the fitness test as more positive than it actually was. This memory bias mediated the association between appraising exercise as important and experiencing a positive change in affect during the moderate-intensity exercise task. Conclusion These findings highlight the roles of both cognitive appraisals and memory as factors that may influence affect during exercise. Future work should explore whether affect during exercise can be modified by targeting appraisals and memories related to exercise experiences. PMID:28494196

  5. Examining procedural working memory processing in obsessive-compulsive disorder.

    PubMed

    Shahar, Nitzan; Teodorescu, Andrei R; Anholt, Gideon E; Karmon-Presser, Anat; Meiran, Nachshon

    2017-07-01

    Previous research has suggested that a deficit in working memory might underlie the difficulty of obsessive-compulsive disorder (OCD) patients to control their thoughts and actions. However, a recent meta-analyses found only small effect sizes for working memory deficits in OCD. Recently, a distinction has been made between declarative and procedural working memory. Working memory in OCD was tested mostly using declarative measurements. However, OCD symptoms typically concerns actions, making procedural working-memory more relevant. Here, we tested the operation of procedural working memory in OCD. Participants with OCD and healthy controls performed a battery of choice reaction tasks under high and low procedural working memory demands. Reaction-times (RT) were estimated using ex-Gaussian distribution fitting, revealing no group differences in the size of the RT distribution tail (i.e., τ parameter), known to be sensitive to procedural working memory manipulations. Group differences, unrelated to working memory manipulations, were found in the leading-edge of the RT distribution and analyzed using a two-stage evidence accumulation model. Modeling results suggested that perceptual difficulties might underlie the current group differences. In conclusion, our results suggest that procedural working-memory processing is most likely intact in OCD, and raise a novel, yet untested assumption regarding perceptual deficits in OCD. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Components of working memory and visual selective attention.

    PubMed

    Burnham, Bryan R; Sabia, Matthew; Langan, Catherine

    2014-02-01

    Load theory (Lavie, N., Hirst, A., De Fockert, J. W., & Viding, E. [2004]. Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.) proposes that control of attention depends on the amount and type of load that is imposed by current processing. Specifically, perceptual load should lead to efficient distractor rejection, whereas working memory load (dual-task coordination) should hinder distractor rejection. Studies support load theory's prediction that working memory load will lead to larger distractor effects; however, these studies used secondary tasks that required only verbal working memory and the central executive. The present study examined which other working memory components (visual, spatial, and phonological) influence visual selective attention. Subjects completed an attentional capture task alone (single-task) or while engaged in a working memory task (dual-task). Results showed that along with the central executive, visual and spatial working memory influenced selective attention, but phonological working memory did not. Specifically, attentional capture was larger when visual or spatial working memory was loaded, but phonological working memory load did not affect attentional capture. The results are consistent with load theory and suggest specific components of working memory influence visual selective attention. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. Effectiveness of Working Memory Training among Subjects Currently on Sick Leave Due to Complex Symptoms.

    PubMed

    Aasvik, Julie K; Woodhouse, Astrid; Stiles, Tore C; Jacobsen, Henrik B; Landmark, Tormod; Glette, Mari; Borchgrevink, Petter C; Landrø, Nils I

    2016-01-01

    Introduction: The current study examined if adaptive working memory training (Cogmed QM) has the potential to improve inhibitory control, working memory capacity, and perceptions of memory functioning in a group of patients currently on sick leave due to symptoms of pain, insomnia, fatigue, depression and anxiety. Participants who were referred to a vocational rehabilitation center volunteered to take part in the study. Methods: Participants were randomly assigned to either a training condition ( N = 25) or a control condition ( N = 29). Participants in the training condition received working memory training in addition to the clinical intervention offered as part of the rehabilitation program, while participants in the control condition received treatment as usual i.e., the rehabilitation program only. Inhibitory control was measured by The Stop Signal Task, working memory was assessed by the Spatial Working Memory Test, while perceptions of memory functioning were assessed by The Everyday Memory Questionnaire-Revised. Results: Participants in the training group showed a significant improvement on the post-tests of inhibitory control when compared with the comparison group ( p = 0.025). The groups did not differ on the post-tests of working memory. Both groups reported less memory problems at post-testing, but there was no sizeable difference between the two groups. Conclusions: Results indicate that working memory training does not improve general working memory capacity per se . Nor does it seem to give any added effects in terms of targeting and improving self-perceived memory functioning. Results do, however, provide evidence to suggest that inhibitory control is accessible and susceptible to modification by adaptive working memory training.

  8. Working Memory and Reasoning: The Processing Loads Imposed by Analogies.

    ERIC Educational Resources Information Center

    Halford, Graeme S.

    The proposals concerning working memory outlined in this paper involve the architecture of working memory, the reasoning mechanisms that draw on it, and the ways in which working memory may develop with age. Ways of assessing task demands and children's working memory capacities are also considered. It is noted that there is long-standing evidence…

  9. Executive Functions and Working Memory Behaviours in Children with a Poor Working Memory

    ERIC Educational Resources Information Center

    St. Clair-Thompson, Helen L.

    2011-01-01

    Previous research has suggested that working memory difficulties play an integral role in children's underachievement at school. However, working memory is just one of several executive functions. The extent to which problems in working memory extend to other executive functions is not well understood. In the current study 38 children with a poor…

  10. Initial Feasibility and Validity of a Prospective Memory Training Program in a Substance Use Treatment Population

    PubMed Central

    Sweeney, Mary M.; Rass, Olga; Johnson, Patrick S.; Strain, Eric C.; Berry, Meredith S.; Vo, Hoa T.; Fishman, Marc J.; Munro, Cynthia A.; Rebok, George W.; Mintzer, Miriam Z.; Johnson, Matthew W.

    2016-01-01

    Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 male; 9 female) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support development of this intervention as an adjunctive therapy for substance use disorders. PMID:27690506

  11. Initial feasibility and validity of a prospective memory training program in a substance use treatment population.

    PubMed

    Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W

    2016-10-01

    Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. Mental Imagery and Visual Working Memory

    PubMed Central

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024

  13. Mental imagery and visual working memory.

    PubMed

    Keogh, Rebecca; Pearson, Joel

    2011-01-01

    Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.

  14. A Comparison of Computation Span and Reading Span Working Memory Measures' Relations With Problem-Solving Criteria.

    PubMed

    Perlow, Richard; Jattuso, Mia

    2018-06-01

    Researchers have operationalized working memory in different ways and although working memory-performance relationships are well documented, there has been relatively less attention devoted to determining whether seemingly similar measures yield comparable relations with performance outcomes. Our objective is to assess whether two working memory measures deploying the same processes but different item content yield different relations with two problem-solving criteria. Participants completed a computation-based working memory measure and a reading-based measure prior to performing a computerized simulation. Results reveal differential relations with one of the two criteria and support the notion that the two working memory measures tap working memory capacity and other cognitive abilities. One implication for theory development is that researchers should consider incorporating other cognitive abilities in their working memory models and that the selection of those abilities should correspond to the criterion of interest. One practical implication is that researchers and practitioners shouldn't automatically assume that different phonological loop-based working memory scales are interchangeable.

  15. Exploring the Effects of Working Memory on Time Perception in Attention Deficit Hyperactivity Disorder.

    PubMed

    Lee, Hom-Yi; Yang, En-Lin

    2018-01-01

    Children with attention deficit hyperactivity disorder (ADHD) are often reported to have deficits of time perception. However, there is a strong relation between performance on tasks of working memory and time perception. Thus, it is possible that the poor performance of children with ADHD on time perception results from their deficit of working memory. In this study, the working memory of participants was separately assessed; therefore, we could explore the relationship between working memory and time perception of children with ADHD. Fifty-six children with ADHD and those of healthy controls completed tasks measuring working memory and time perception. The results showed that the time discrimination ability of children with ADHD was poorer than that of controls. However, there was a strong association between time perception and working memory. After controlling working memory and intelligence, the time discrimination ability of children with ADHD was not significantly poorer than that of controls. We suggest that there is an interdependent relationship between time perception and working memory for children with ADHD.

  16. Working memory, control of interference and everyday experience of thought interference: when age makes the difference.

    PubMed

    Borella, Erika; Carretti, Barbara; Cornoldi, Cesare; De Beni, Rossana

    2007-06-01

    A number of studies suggest that age differences in working memory may be attributed to age-related differences in inhibitory efficacy. Nevertheless, little is known about the impact of intrusive thoughts, which occurs in everyday situations on working memory performance. This study investigates the role of cognitive and everyday inhibition mechanisms in working memory performance. Young, young-old and old-old adults performed a working memory task and the White Bear Suppression Inventory (WBSI). Results showed a decrease in working memory, and in inhibitory efficacy with age. In addition, old-old adults obtained higher scores in the three factors of the WBSI. Working memory performance was related to working memory control of interfering information in all age groups, and also to the tendency to suppress thoughts in old-old adults. The latter result was in the opposite direction with respect to observations collected with younger adults. Taken together, our results suggest the crucial role of intrusive thoughts in the functional capacity of working memory in late adulthood.

  17. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli

    PubMed Central

    Brady, Timothy F.; Störmer, Viola S.; Alvarez, George A.

    2016-01-01

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli—colors and orientations—is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up,” revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767

  18. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli.

    PubMed

    Brady, Timothy F; Störmer, Viola S; Alvarez, George A

    2016-07-05

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.

  19. Examining Material Culture through American Memory.

    ERIC Educational Resources Information Center

    Singleton, Laurel R., Ed.

    2002-01-01

    This publication contains teaching ideas generated by classroom teachers. For grades K-5, newsletter editor Laurel R. Singleton explains how students can explore the quilt as a metaphor used in literature to represent American values and ideals (the lesson is adaptable for all age groups). For grades 5-8, social studies teacher Claire McCaffery…

  20. Cognitive Development of Chinese Urban Only Children and Children with Siblings.

    ERIC Educational Resources Information Center

    Jiao, Shulan; And Others

    1996-01-01

    First- and fifth-grade only-children and children with siblings completed 11 cognitive tasks to investigate differences in cognitive abilities that may exist due to the Chinese 1-child family planning program. Superiority of grade one only-children over children with siblings appeared for memory processes, language skills, and mathematics.…

  1. Predictors of Early versus Later Spelling Development in Danish

    ERIC Educational Resources Information Center

    Nielsen, Anne-Mette Veber; Juul, Holger

    2016-01-01

    The present study examined phoneme awareness, phonological short term memory, letter knowledge, rapid automatized naming (RAN), and visual-verbal paired associate learning (PAL) as longitudinal predictors of spelling skills in an early phase (Grade 2) and a later phase (Grade 5) of development in a sample of 140 children learning to spell in the…

  2. Test-Enhanced Learning in Third-Grade Children

    ERIC Educational Resources Information Center

    Jaeger, Antonio; Eisenkraemer, Raquel Eloísa; Stein, Lilian Milnitsky

    2015-01-01

    Several recent studies have shown that retrieval is more efficient than restudy in enhancing the long-term retention of memories. However, studies investigating this effect in children are still rare. Here, we report an experiment in which third-grade children initially read a brief encyclopaedic text twice and then either performed a cued recall…

  3. Context controls access to working and reference memory in the pigeon (Columba livia).

    PubMed

    Roberts, William A; Macpherson, Krista; Strang, Caroline

    2016-01-01

    The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. © 2016 Society for the Experimental Analysis of Behavior.

  4. Working memory and organizational skills problems in ADHD.

    PubMed

    Kofler, Michael J; Sarver, Dustin E; Harmon, Sherelle L; Moltisanti, Allison; Aduen, Paula A; Soto, Elia F; Ferretti, Nicole

    2018-01-01

    This study tested model-driven predictions regarding working memory's role in the organizational problems associated with ADHD. Children aged 8-13 (M = 10.33, SD = 1.42) with and without ADHD (N = 103; 39 girls; 73% Caucasian/Non-Hispanic) were assessed on multiple, counterbalanced working memory tasks. Parents and teachers completed norm-referenced measures of organizational problems (Children's Organizational Skills Scale; COSS). Results confirmed large magnitude working memory deficits (d = 1.24) and organizational problems in ADHD (d = 0.85). Bias-corrected, bootstrapped conditional effects models linked impaired working memory with greater parent- and teacher-reported inattention, hyperactivity/impulsivity, and organizational problems. Working memory predicted organization problems across all parent and teacher COSS subscales (R 2  = .19-.23). Approximately 38%-57% of working memory's effect on organization problems was conveyed by working memory's association with inattentive behavior. Unique effects of working memory remained significant for both parent- and teacher-reported task planning, as well as for teacher-reported memory/materials management and overall organization problems. Attention problems uniquely predicted worse organizational skills. Hyperactivity was unrelated to parent-reported organizational skills, but predicted better teacher-reported task planning. Children with ADHD exhibit multisetting, broad-based organizational impairment. These impaired organizational skills are attributable in part to performance deficits secondary to working memory dysfunction, both directly and indirectly via working memory's role in regulating attention. Impaired working memory in ADHD renders it extraordinarily difficult for these children to consistently anticipate, plan, enact, and maintain goal-directed actions. © 2017 Association for Child and Adolescent Mental Health.

  5. The effects of autobiographical memory and visual perspective on working memory.

    PubMed

    Cheng, Zenghu; She, Yugui

    2018-08-01

    The present research aims to explore whether recalling and writing about autobiographical memory from different perspectives (first-person perspective vs. third-person perspective) could affect cognitive function. The participants first performed a working memory task to evaluate their working memory capacity as a baseline and then were instructed to recall (Study 1) or write about (Study 2) personal events (failures vs. successes) from the first-person perspective or the third-person perspective. Finally, they performed the working memory task again. The results suggested that autobiographical memory and perspective influence working memory interactively. When recalling a success, the participants who recalled from the third-person perspective performed better than those who recalled from the first-person perspective on the working memory capacity task; when recalling a failure, the opposite was true.

  6. Working memory dependence of spatial contextual cueing for visual search.

    PubMed

    Pollmann, Stefan

    2018-05-10

    When spatial stimulus configurations repeat in visual search, a search facilitation, resulting in shorter search times, can be observed that is due to incidental learning. This contextual cueing effect appears to be rather implicit, uncorrelated with observers' explicit memory of display configurations. Nevertheless, as I review here, this search facilitation due to contextual cueing depends on visuospatial working memory resources, and it disappears when visuospatial working memory is loaded by a concurrent delayed match to sample task. However, the search facilitation immediately recovers for displays learnt under visuospatial working memory load when this load is removed in a subsequent test phase. Thus, latent learning of visuospatial configurations does not depend on visuospatial working memory, but the expression of learning, as memory-guided search in repeated displays, does. This working memory dependence has also consequences for visual search with foveal vision loss, where top-down controlled visual exploration strategies pose high demands on visuospatial working memory, in this way interfering with memory-guided search in repeated displays. Converging evidence for the contribution of working memory to contextual cueing comes from neuroimaging data demonstrating that distinct cortical areas along the intraparietal sulcus as well as more ventral parieto-occipital cortex are jointly activated by visual working memory and contextual cueing. © 2018 The British Psychological Society.

  7. Verbal working memory performance correlates with regional white matter structures in the frontoparietal regions.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-10-01

    Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working memory performance has been suggested based on the analysis of individuals with varying pathologies. This study aimed to identify correlations between white matter and individual differences in verbal working memory performance in normal young subjects. We performed voxel-based morphometry (VBM) analyses using T1-weighted structural images as well as voxel-based analyses of fractional anisotropy (FA) using diffusion tensor imaging. Using the letter span task, we measured verbal working memory performance in normal young adult men and women (mean age, 21.7 years, SD=1.44; 42 men and 13 women). We observed positive correlations between working memory performance and regional white matter volume (rWMV) in the frontoparietal regions. In addition, FA was found to be positively correlated with verbal working memory performance in a white matter region adjacent to the right precuneus. These regions are consistently recruited by working memory. Our findings suggest that, among normal young subjects, verbal working memory performance is associated with various regions that are recruited during working memory tasks, and this association is not limited to specific parts of the working memory network. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Memory Retrieval and Interference: Working Memory Issues

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Copeland, David E.

    2006-01-01

    Working memory capacity has been suggested as a factor that is involved in long-term memory retrieval, particularly when that retrieval involves a need to overcome some sort of interference (Bunting, Conway, & Heitz, 2004; Cantor & Engle, 1993). Previous work has suggested that working memory is related to the acquisition of information during…

  9. Processing speed and working memory span: their differential role in superficial and deep memory processes in schizophrenia.

    PubMed

    Brébion, Gildas; Bressan, Rodrigo A; Pilowsky, Lyn S; David, Anthony S

    2011-05-01

    Previous work has suggested that decrement in both processing speed and working memory span plays a role in the memory impairment observed in patients with schizophrenia. We undertook a study to examine simultaneously the effect of these two factors. A sample of 49 patients with schizophrenia and 43 healthy controls underwent a battery of verbal and visual memory tasks. Superficial and deep encoding memory measures were tallied. We conducted regression analyses on the various memory measures, using processing speed and working memory span as independent variables. In the patient group, processing speed was a significant predictor of superficial and deep memory measures in verbal and visual memory. Working memory span was an additional significant predictor of the deep memory measures only. Regression analyses involving all participants revealed that the effect of diagnosis on all the deep encoding memory measures was reduced to non-significance when processing speed was entered in the regression. Decreased processing speed is involved in verbal and visual memory deficit in patients, whether the task require superficial or deep encoding. Working memory is involved only insofar as the task requires a certain amount of effort.

  10. Short-term and working memory impairments in aphasia.

    PubMed

    Potagas, Constantin; Kasselimis, Dimitrios; Evdokimidis, Ioannis

    2011-08-01

    The aim of the present study is to investigate short-term memory and working memory deficits in aphasics in relation to the severity of their language impairment. Fifty-eight aphasic patients participated in this study. Based on language assessment, an aphasia score was calculated for each patient. Memory was assessed in two modalities, verbal and spatial. Mean scores for all memory tasks were lower than normal. Aphasia score was significantly correlated with performance on all memory tasks. Correlation coefficients for short-term memory and working memory were approximately of the same magnitude. According to our findings, severity of aphasia is related with both verbal and spatial memory deficits. Moreover, while aphasia score correlated with lower scores in both short-term memory and working memory tasks, the lack of substantial difference between corresponding correlation coefficients suggests a possible primary deficit in information retention rather than impairment in working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Working Memory in Children With Neurocognitive Effects From Sickle Cell Disease: Contributions of the Central Executive and Processing Speed

    PubMed Central

    Smith, Kelsey E.; Schatz, Jeffrey

    2017-01-01

    Children with sickle cell disease (SCD) are at risk for working memory deficits due to multiple disease processes. We assessed working memory abilities and related functions in 32 school-age children with SCD and 85 matched comparison children using Baddeley’s working memory model as a framework. Children with SCD performed worse than controls for working memory, central executive function, and processing/rehearsal speed. Central executive function was found to mediate the relationship between SCD status and working memory, but processing speed did not. Cognitive remediation strategies that focus on central executive processes may be important for remediating working memory deficits in SCD. PMID:27759435

  12. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    PubMed Central

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  13. Behavioral Performance and Neural Areas Associated with Memory Processes Contribute to Math and Reading Achievement in 6-year-old Children.

    PubMed

    Blankenship, Tashauna L; Keith, Kayla; Calkins, Susan D; Bell, Martha Ann

    2018-01-01

    Associations between working memory and academic achievement (math and reading) are well documented. Surprisingly, little is known of the contributions of episodic memory, segmented into temporal memory (recollection proxy) and item recognition (familiarity proxy), to academic achievement. This is the first study to observe these associations in typically developing 6-year old children. Overlap in neural correlates exists between working memory, episodic memory, and math and reading achievement. We attempted to tease apart the neural contributions of working memory, temporal memory, and item recognition to math and reading achievement. Results suggest that working memory and temporal memory, but not item recognition, are important contributors to both math and reading achievement, and that EEG power during a working memory task contributes to performance on tests of academic achievement.

  14. Selective attention on representations in working memory: cognitive and neural mechanisms.

    PubMed

    Ku, Yixuan

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory.

  15. Selective attention on representations in working memory: cognitive and neural mechanisms

    PubMed Central

    2018-01-01

    Selective attention and working memory are inter-dependent core cognitive functions. It is critical to allocate attention on selected targets during the capacity-limited working memory processes to fulfill the goal-directed behavior. The trends of research on both topics are increasing exponentially in recent years, and it is considered that selective attention and working memory share similar underlying neural mechanisms. Different types of attention orientation in working memory are introduced by distinctive cues, and the means using retrospective cues are strengthened currently as it is manipulating the representation in memory, instead of the perceptual representation. The cognitive and neural mechanisms of the retro-cue effects are further reviewed, as well as the potential molecular mechanism. The frontal-parietal network that is involved in both attention and working memory is also the neural candidate for attention orientation during working memory. Neural oscillations in the gamma and alpha/beta oscillations may respectively be employed for the feedforward and feedback information transfer between the sensory cortices and the association cortices. Dopamine and serotonin systems might interact with each other subserving the communication between memory and attention. In conclusion, representations which attention shifts towards are strengthened, while representations which attention moves away from are degraded. Studies on attention orientation during working memory indicates the flexibility of the processes of working memory, and the beneficial way that overcome the limited capacity of working memory. PMID:29629245

  16. Differential relationships between language skills and working memory in Turkish-Dutch and native-Dutch first-graders from low-income families.

    PubMed

    Bosman, Anna M T; Janssen, Marije

    2017-01-01

    In the Netherlands, Turkish-Dutch children constitute a substantial group of children who learn to speak Dutch at the age of four after they learned to speak Turkish. These children are generally academically less successful. Academic success appears to be affected by both language proficiency and working memory skill. The goal of this study was to investigate the relationship between language skills and working memory in Turkish-Dutch and native-Dutch children from low-income families. The findings revealed reduced Dutch language and Dutch working-memory skills for Turkish-Dutch children compared to native-Dutch children. Working memory in native-Dutch children was unrelated to their language skills, whereas in Turkish-Dutch children strong correlations were found both between Turkish language skills and Turkish working-memory performance and between Dutch language skills and Dutch working-memory performance. Reduced language proficiencies and reduced working-memory skills appear to manifest itself in strong relationships between working memory and language skills in Turkish-Dutch children. The findings seem to indicate that limited verbal working-memory and language deficiencies in bilingual children may have reciprocal effects that strongly warrants adequate language education.

  17. Effects of load on the guidance of visual attention from working memory.

    PubMed

    Zhang, Bao; Zhang, John X; Huang, Sai; Kong, Lingyue; Wang, Suiping

    2011-12-08

    An active recent line of research on working memory and attention has shown that the visual attention can be top-down guided by working memory contents. The present study examined whether the guidance effect is modulated by memory load, i.e., the amount of information maintained in working memory. In a set of three experiments, participants were asked to perform a visual search task while maintaining several objects in working memory. The memory-driven attentional guidance effect was observed in all experiments when there were spare working memory resources. When memory load was increased from one item to two items, there was no sign that the guidance effect was attenuated. When load was further increased to four items, the guidance effect disappeared completely, indicating a clear impact of memory load on attentional guidance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Working memory capacity and the spacing effect in cued recall.

    PubMed

    Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin

    2018-07-01

    Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.

  19. Attention, Working Memory, and Long-Term Memory in Multimedia Learning: An Integrated Perspective Based on Process Models of Working Memory

    ERIC Educational Resources Information Center

    Schweppe, Judith; Rummer, Ralf

    2014-01-01

    Cognitive models of multimedia learning such as the Cognitive Theory of Multimedia Learning (Mayer 2009) or the Cognitive Load Theory (Sweller 1999) are based on different cognitive models of working memory (e.g., Baddeley 1986) and long-term memory. The current paper describes a working memory model that has recently gained popularity in basic…

  20. Working memory capacity and retrieval limitations from long-term memory: an examination of differences in accessibility.

    PubMed

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.

  1. Neurocognitive architecture of working memory

    PubMed Central

    Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars

    2015-01-01

    The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571

  2. Inhibition, Updating Working Memory, and Shifting Predict Reading Disability Symptoms in a Hybrid Model: Project KIDS.

    PubMed

    Daucourt, Mia C; Schatschneider, Christopher; Connor, Carol M; Al Otaiba, Stephanie; Hart, Sara A

    2018-01-01

    Recent achievement research suggests that executive function (EF), a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD). Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79-10.40 years). At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF), they had a mean age of 13.21 years ( SD = 1.54 years; range = 10.47-16.63 years). The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting) and the hybrid model of RD, and that the strength of EF's predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the hybrid model of RD. In total, all EF components were significant and equally effective predictors of RD when RD was operationalized using the hybrid model.

  3. Inhibition, Updating Working Memory, and Shifting Predict Reading Disability Symptoms in a Hybrid Model: Project KIDS

    PubMed Central

    Daucourt, Mia C.; Schatschneider, Christopher; Connor, Carol M.; Al Otaiba, Stephanie; Hart, Sara A.

    2018-01-01

    Recent achievement research suggests that executive function (EF), a set of regulatory processes that control both thought and action necessary for goal-directed behavior, is related to typical and atypical reading performance. This project examines the relation of EF, as measured by its components, Inhibition, Updating Working Memory, and Shifting, with a hybrid model of reading disability (RD). Our sample included 420 children who participated in a broader intervention project when they were in KG-third grade (age M = 6.63 years, SD = 1.04 years, range = 4.79–10.40 years). At the time their EF was assessed, using a parent-report Behavior Rating Inventory of Executive Function (BRIEF), they had a mean age of 13.21 years (SD = 1.54 years; range = 10.47–16.63 years). The hybrid model of RD was operationalized as a composite consisting of four symptoms, and set so that any child could have any one, any two, any three, any four, or none of the symptoms included in the hybrid model. The four symptoms include low word reading achievement, unexpected low word reading achievement, poorer reading comprehension compared to listening comprehension, and dual-discrepancy response-to-intervention, requiring both low achievement and low growth in word reading. The results of our multilevel ordinal logistic regression analyses showed a significant relation between all three components of EF (Inhibition, Updating Working Memory, and Shifting) and the hybrid model of RD, and that the strength of EF’s predictive power for RD classification was the highest when RD was modeled as having at least one or more symptoms. Importantly, the chances of being classified as having RD increased as EF performance worsened and decreased as EF performance improved. The question of whether any one EF component would emerge as a superior predictor was also examined and results showed that Inhibition, Updating Working Memory, and Shifting were equally valuable as predictors of the hybrid model of RD. In total, all EF components were significant and equally effective predictors of RD when RD was operationalized using the hybrid model. PMID:29662458

  4. The sensory strength of voluntary visual imagery predicts visual working memory capacity.

    PubMed

    Keogh, Rebecca; Pearson, Joel

    2014-10-09

    How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.

  5. Selective transfer of visual working memory training on Chinese character learning.

    PubMed

    Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel

    2014-01-01

    Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.

  6. Conjoint Influence of Maps and Auded Prose on Children's Retrieval of Instruction.

    ERIC Educational Resources Information Center

    Webb, James M.; And Others

    1994-01-01

    Ninety-six fifth-grade students studied a map of a fictitious island while twice listening to a related narrative with target feature and nonfeature items, cued by varying iconic and verbal stimuli in four map cue conditions. Memory for feature information and pictorial retrieval cues appeared to activate memory for nonfeature information. (SLD)

  7. Developmental Changes in the Effects of Presentation Mode on the Storage and Retrieval of Noun Pairs in Children's Recognition Memory.

    ERIC Educational Resources Information Center

    Kee, Daniel W.; And Others

    Four problems in children's paired-associate memory were addressed: (1) reappraisal of the presumed developmental trend in presentation mode effect during grade-school years, (2) identification of the locus of this developmental effect, (3) evaluation of the influence of combined presentation (verbal plus pictorial) relative to pictorial…

  8. Verbal Rehearsal and Short-Term Memory in Reading-disabled Children

    ERIC Educational Resources Information Center

    Torgesen, Joseph; Goldman, Tina

    1977-01-01

    To determine whether the frequently found short-term memory deficits in poor readers reflect a lack of ability or inclination to use efficient task strategies, the performances of second-grade good and poor readers were compared on a task which allowed direct observation of the use of verbal rehearsal as a mnemonic strategy. (Author/JMB)

  9. The Development of Auditory Sequential Memory in Young Black and White Children.

    ERIC Educational Resources Information Center

    Hurley, Oliver L.; And Others

    The question of whether Black children "peak" earlier than White children in auditory sequential memory (ASM) was investigated in 122 Black children and 120 White children in grades k-3 in two racially mixed schools in a large southern community. Each S was given the ASM subtest of the Illinois Test of Psycholinguistic Abilities. Results…

  10. Effects of Translation Methods in Imported Instructional Video Programs on Taiwan Fourth Graders' Memory.

    ERIC Educational Resources Information Center

    Tyan, Nay-ching Nancy; Hu, Yi-chain

    The purpose of this study was to investigate the effects of various translation methods used in imported instructional video programs on Taiwan elementary school students' visual and verbal memory. Following pretesting, 128 fourth grade students from an urban public elementary school in northern Taiwan participated. The students in 4 experimental…

  11. Writing Tasks and Immediate Auditory Memory in Peruvian Schoolchildren

    ERIC Educational Resources Information Center

    Ventura-León, José Luís; Caycho, Tomás

    2017-01-01

    The purpose of the study is to determine the relationship between a group of writing tasks and the immediate auditory memory, as well as to establish differences according to sex and level of study. Two hundred and three schoolchildren of fifth and sixth grade of elementary education from Lima (Peru) participated; they were selected by a…

  12. Orthographic Skills Important to Chinese Literacy Development: The Role of Radical Representation and Orthographic Memory of Radicals

    ERIC Educational Resources Information Center

    Yeung, Pui-sze; Ho, Connie Suk-han; Chan, David Wai-ock; Chung, Kevin Kien-hoa

    2016-01-01

    A 3-year longitudinal study among 239 Chinese students in Grades 2-4 was conducted to investigate the relationships between orthographic skills (including positional and functional knowledge of semantic radicals and phonetic radicals, and orthographic memory of radicals) and Chinese literacy skills (word reading, word spelling, reading…

  13. Interference control in working memory: comparing groups of children with atypical development.

    PubMed

    Palladino, Paola; Ferrari, Marcella

    2013-01-01

    The study aimed to test whether working memory deficits in children at risk of Learning Disabilities (LD) and/or attention deficit/hyperactivity disorder (ADHD) can be attributed to deficits in interference control, thereby implicating prefrontal systems. Two groups of children known for showing poor working memory (i.e., children with poor comprehension and children with ADHD) were compared to a group of children with specific reading decoding problems (i.e., having severe problems in phonological rather than working memory) and to a control group. All children were tested with a verbal working memory task. Interference control of irrelevant items was examined by a lexical decision task presented immediately after the final recall in about half the trials, selected at random. The interference control measure was therefore directly related to working memory performance. Results confirmed deficient working memory performance in poor comprehenders and children at risk of ADHD + LD. More interestingly, this working memory deficit was associated with greater activation of irrelevant information than in the control group. Poor decoders showed more efficient interference control, in contrast to poor comprehenders and ADHD + LD children. These results indicated that interfering items were still highly accessible to working memory in children who fail the working memory task. In turn, these findings strengthen and clarify the role of interference control, one of the most critical prefrontal functions, in working memory.

  14. Poor comprehenders in the classroom: teacher ratings of behavior in children with poor reading comprehension and its relationship with individual differences in working memory.

    PubMed

    Pimperton, Hannah; Nation, Kate

    2014-01-01

    Differing etiological explanations have been proposed to account for poor comprehenders' difficulties with reading comprehension, with some researchers emphasizing working memory deficits and others arguing for oral language weaknesses playing a key causal role. The authors contrasted these two theoretical accounts using data obtained from direct measures of working memory and from teacher ratings of poor comprehenders' behavior in the classroom. At the group level, poor comprehenders showed weaknesses on verbal but not nonverbal working memory tasks, in keeping with the "language account." However, they also showed evidence of elevated levels of problem behaviors specifically associated with working memory deficits. Further analysis revealed that these group differences in working-memory-related problem behaviors were carried by a small subgroup of poor comprehenders who also displayed domain-general (verbal and nonverbal) working memory problems, argued to be reflective of "genuine" underlying working memory deficits.

  15. A multisensory perspective of working memory

    PubMed Central

    Quak, Michel; London, Raquel Elea; Talsma, Durk

    2015-01-01

    Although our sensory experience is mostly multisensory in nature, research on working memory representations has focused mainly on examining the senses in isolation. Results from the multisensory processing literature make it clear that the senses interact on a more intimate manner than previously assumed. These interactions raise questions regarding the manner in which multisensory information is maintained in working memory. We discuss the current status of research on multisensory processing and the implications of these findings on our theoretical understanding of working memory. To do so, we focus on reviewing working memory research conducted from a multisensory perspective, and discuss the relation between working memory, attention, and multisensory processing in the context of the predictive coding framework. We argue that a multisensory approach to the study of working memory is indispensable to achieve a realistic understanding of how working memory processes maintain and manipulate information. PMID:25954176

  16. Working memory training and semantic structuring improves remembering future events, not past events.

    PubMed

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2015-01-01

    Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.

  17. Working memory contents revive the neglected, but suppress the inhibited.

    PubMed

    Han, Suk Won

    2015-12-01

    It is well known that attention is biased toward a stimulus matching working memory contents. However, it remains unknown whether the maintenance of information in working memory by itself is sufficient to create memory-driven attentional capture. Notably, in many previous studies showing the memory-driven attentional capture, the task settings might have explicitly or implicitly incentivized participants to strategically attend to a memory-matching stimulus. By innovating an experimental paradigm, the present study overcame this challenge and directly tested whether working memory contents capture attention in the absence of task-level attentional bias toward a memory-matching stimulus. I found that a stimulus that is usually outside the focus of attention, powerfully captured attention when it matched working memory contents, whereas a match between working memory and an inhibited stimulus suppressed attentional allocation toward the memory-matching stimulus. These findings suggest that in the absence of any task-level attentional bias toward memory-matching stimuli, attention is biased toward a memory-matching stimulus, but this memory-driven attentional capture is diminished when top-down inhibition is imposed on the stimulus. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Effects of Age and Working Memory Capacity on Speech Recognition Performance in Noise Among Listeners With Normal Hearing.

    PubMed

    Gordon-Salant, Sandra; Cole, Stacey Samuels

    2016-01-01

    This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.

  19. Episodic and working memory deficits in alcoholic Korsakoff patients: the continuity theory revisited.

    PubMed

    Pitel, Anne Lise; Beaunieux, Hélène; Witkowski, Thomas; Vabret, François; de la Sayette, Vincent; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis

    2008-07-01

    The exact nature of episodic and working memory impairments in alcoholic Korsakoff patients (KS) remains unclear, as does the specificity of these neuropsychological deficits compared with those of non-Korsakoff alcoholics (AL). The goals of the present study were therefore to (1) specify the nature of episodic and working memory impairments in KS, (2) determine the specificity of the KS neuropsychological profile compared with the AL profile, and (3) observe the distribution of individual performances within the 2 patient groups. We investigated episodic memory (encoding and retrieval abilities, contextual memory and state of consciousness associated with memories), the slave systems of working memory (phonological loop, visuospatial sketchpad and episodic buffer) and executive functions (inhibition, flexibility, updating and integration abilities) in 14 strictly selected KS, 40 AL and 55 control subjects (CS). Compared with CS, KS displayed impairments of episodic memory encoding and retrieval, contextual memory, recollection, the slave systems of working memory and executive functions. Although episodic memory was more severely impaired in KS than in AL, the single specificity of the KS profile was a disproportionately large encoding deficit. Apart from organizational and updating abilities, the slave systems of working memory and inhibition, flexibility and integration abilities were impaired to the same extent in both alcoholic groups. However, some KS were unable to complete the most difficult executive tasks. There was only a partial overlap of individual performances by KS and AL for episodic memory and a total mixture of the 2 groups for working memory. Korsakoff's syndrome encompasses impairments of the different episodic and working memory components. AL and KS displayed similar profiles of episodic and working memory deficits, in accordance with neuroimaging investigations showing similar patterns of brain damage in both alcoholic groups.

  20. A cross-sectional study of well water arsenic and child IQ in Maine schoolchildren

    PubMed Central

    2014-01-01

    Background In recent studies in Bangladesh and elsewhere, exposure to arsenic (As) via drinking water is negatively associated with performance-related aspects of child intelligence (e.g., Perceptual Reasoning, Working Memory) after adjustment for social factors. Because findings are not easily generalizable to the US, we examine this relation in a US population. Methods In 272 children in grades 3–5 from three Maine school districts, we examine associations between drinking water As (WAs) and intelligence (WISC-IV). Results On average, children had resided in their current home for 7.3 years (approximately 75% of their lives). In unadjusted analyses, household well WAs is associated with decreased scores on most WISC-IV Indices. With adjustment for maternal IQ and education, HOME environment, school district and number of siblings, WAs remains significantly negatively associated with Full Scale IQ and Perceptual Reasoning, Working Memory and Verbal Comprehension scores. Compared to those with WAs < 5 μg/L, exposure to WAs ≥ 5 μg/L was associated with reductions of approximately 5–6 points in both Full Scale IQ (p < 0.01) and most Index scores (Perceptual Reasoning, Working Memory, Verbal Comprehension, all p’s < 0.05). Both maternal IQ and education were associated with lower levels of WAs, possibly reflecting behaviors (e.g., water filters, residential choice) limiting exposure. Both WAs and maternal measures were associated with school district. Conclusions The magnitude of the association between WAs and child IQ raises the possibility that levels of WAs ≥ 5 μg/L, levels that are not uncommon in the United States, pose a threat to child development. PMID:24684736

  1. Socioeconomic status and executive function: developmental trajectories and mediation.

    PubMed

    Hackman, Daniel A; Gallop, Robert; Evans, Gary W; Farah, Martha J

    2015-09-01

    Childhood socioeconomic status (SES) predicts executive function (EF), but fundamental aspects of this relation remain unknown: the developmental course of the SES disparity, its continued sensitivity to SES changes during that course, and the features of childhood experience responsible for the SES-EF relation. Regarding course, early disparities would be expected to grow during development if caused by accumulating stressors at a given constant level of SES. Alternatively, they would narrow if schooling partly compensates for the effects of earlier deprivation, allowing lower-SES children to 'catch up'. The potential for later childhood SES change to affect EF is also unknown. Regarding mediating factors, previous analyses produced mixed answers, possibly due to correlation amongst candidate mediators. We address these issues with measures of SES, working memory and planning, along with multiple candidate mediators, from the NICHD Study of Early Childcare (n = 1009). Early family income-to-needs and maternal education predicted planning by first grade, and income-to-needs predicted working memory performance at 54 months. Effects of early SES remained consistent through middle childhood, indicating that the relation between early indicators of SES and EF emerges in childhood and persists without narrowing or widening across early and middle childhood. Changes in family income-to-needs were associated with significant changes in planning and trend-level changes in working memory. Mediation analyses supported the role of early childhood home characteristics in explaining the association between SES and EF, while early childhood maternal sensitivity was specifically implicated in the association between maternal education and planning. Early emerging and persistent SES-related differences in EF, partially explained by characteristics of the home and family environment, are thus a potential source of socioeconomic disparities in achievement and health across development. © 2015 John Wiley & Sons Ltd.

  2. NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline.

    PubMed

    McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L

    2016-12-14

    Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.

  3. Lower Working Memory Performance in Overweight and Obese Adolescents Is Mediated by White Matter Microstructure

    PubMed Central

    Alarcón, Gabriela; Ray, Siddharth; Nagel, Bonnie J.

    2017-01-01

    Objectives Elevated body mass index (BMI) is associated with deficits in working memory, reduced gray matter volume in frontal and parietal lobes, as well as changes in white matter (WM) microstructure. The current study examined whether BMI was related to working memory performance and blood oxygen level dependent (BOLD) activity, as well as WM microstructure during adolescence. Methods Linear regressions with BMI and (1) verbal working memory BOLD signal, (2) spatial working memory BOLD signal, and (3) fractional anisotropy (FA), a measure of WM microstructure, were conducted in a sample of 152 healthy adolescents ranging in BMI. Results BMI was inversely related to IQ and verbal and spatial working memory accuracy; however, there was no significant relationship between BMI and BOLD response for either verbal or spatial working memory. Furthermore, BMI was negatively correlated with FA in the left superior longitudinal fasciculus (SLF) and left inferior longitudinal fasciculus (ILF). ILF FA and IQ significantly mediated the relationship between BMI and verbal working memory performance, whereas SLF FA, but not IQ, significantly mediated the relationship between BMI and accuracy of both verbal and spatial working memory. Conclusions These findings indicate that higher BMI is associated with decreased FA in WM fibers connecting brain regions that support working memory, and that WM microstructural deficits may underlie inferior working memory performance in youth with higher BMI. Of interest, BMI did not show the same relationship with working memory BOLD activity, which may indicate that changes in brain structure precede changes in function. PMID:26708324

  4. GABA level, gamma oscillation, and working memory performance in schizophrenia

    PubMed Central

    Chen, Chi-Ming A.; Stanford, Arielle D.; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C.; Lisanby, Sarah H.; Schroeder, Charles E.; Kegeles, Lawrence S.

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia. PMID:24749063

  5. GABA level, gamma oscillation, and working memory performance in schizophrenia.

    PubMed

    Chen, Chi-Ming A; Stanford, Arielle D; Mao, Xiangling; Abi-Dargham, Anissa; Shungu, Dikoma C; Lisanby, Sarah H; Schroeder, Charles E; Kegeles, Lawrence S

    2014-01-01

    A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case-control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia.

  6. Selective attention supports working memory maintenance by modulating perceptual processing of distractors.

    PubMed

    Sreenivasan, Kartik K; Jha, Amishi P

    2007-01-01

    Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.

  7. Cognitive Control of Eating: the Role of Memory in Appetite and Weight Gain.

    PubMed

    Higgs, Suzanne; Spetter, Maartje S

    2018-03-01

    The present review organises the recent literature on the role of memory in eating behaviours and provides an overview of the current evidence relating to the associations between memory and weight gain. Research over the last few years has highlighted working memory as an important cognitive process that underpins many aspects of appetite control. Recent work on episodic memory and appetite has replicated work showing that manipulating memory for recent eating affects later consumption and extended this work to examine associations between individual differences in memory and eating behaviours. Poorer episodic memory ability is related to a reduced sensitivity to internal states of hunger and satiety and a tendency towards uncontrolled eating. There is also recent evidence to suggest that working memory and episodic memory impairments are related to weight gain and high BMI. Working memory and episodic memory are core cognitive processes that are critical for food-related decision-making, and disruption to these processes contributes to problems with appetite control and weight gain, which suggests that weight loss programmes might be improved by the addition of cognitive training.

  8. Investigating Memory Development in Children and Infantile Amnesia in Adults

    ERIC Educational Resources Information Center

    Kazemi Tari, Somayeh

    2008-01-01

    Although many researchers have worked on memory development, still little is known about what develops in memory development. When one reviews the literature about memory, she encounters many types of memories such as short term vs. long term memory, working memory, explicit vs. implicit memory, trans-saccadic memory, autobiographical memory,…

  9. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  10. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097

  11. The Development of Attention Systems and Working Memory in Infancy

    PubMed Central

    Reynolds, Greg D.; Romano, Alexandra C.

    2016-01-01

    In this article, we review research and theory on the development of attention and working memory in infancy using a developmental cognitive neuroscience framework. We begin with a review of studies examining the influence of attention on neural and behavioral correlates of an earlier developing and closely related form of memory (i.e., recognition memory). Findings from studies measuring attention utilizing looking measures, heart rate, and event-related potentials (ERPs) indicate significant developmental change in sustained and selective attention across the infancy period. For example, infants show gains in the magnitude of the attention related response and spend a greater proportion of time engaged in attention with increasing age (Richards and Turner, 2001). Throughout infancy, attention has a significant impact on infant performance on a variety of tasks tapping into recognition memory; however, this approach to examining the influence of infant attention on memory performance has yet to be utilized in research on working memory. In the second half of the article, we review research on working memory in infancy focusing on studies that provide insight into the developmental timing of significant gains in working memory as well as research and theory related to neural systems potentially involved in working memory in early development. We also examine issues related to measuring and distinguishing between working memory and recognition memory in infancy. To conclude, we discuss relations between the development of attention systems and working memory. PMID:26973473

  12. The Development of Attention Systems and Working Memory in Infancy.

    PubMed

    Reynolds, Greg D; Romano, Alexandra C

    2016-01-01

    In this article, we review research and theory on the development of attention and working memory in infancy using a developmental cognitive neuroscience framework. We begin with a review of studies examining the influence of attention on neural and behavioral correlates of an earlier developing and closely related form of memory (i.e., recognition memory). Findings from studies measuring attention utilizing looking measures, heart rate, and event-related potentials (ERPs) indicate significant developmental change in sustained and selective attention across the infancy period. For example, infants show gains in the magnitude of the attention related response and spend a greater proportion of time engaged in attention with increasing age (Richards and Turner, 2001). Throughout infancy, attention has a significant impact on infant performance on a variety of tasks tapping into recognition memory; however, this approach to examining the influence of infant attention on memory performance has yet to be utilized in research on working memory. In the second half of the article, we review research on working memory in infancy focusing on studies that provide insight into the developmental timing of significant gains in working memory as well as research and theory related to neural systems potentially involved in working memory in early development. We also examine issues related to measuring and distinguishing between working memory and recognition memory in infancy. To conclude, we discuss relations between the development of attention systems and working memory.

  13. Effects of Working Memory Capacity and Domain Knowledge on Recall for Grocery Prices.

    PubMed

    Bermingham, Douglas; Gardner, Michael K; Woltz, Dan J

    2016-01-01

    Hambrick and Engle (2002) proposed 3 models of how domain knowledge and working memory capacity may work together to influence episodic memory: a "rich-get-richer" model, a "building blocks" model, and a "compensatory" model. Their results supported the rich-get-richer model, although later work by Hambrick and Oswald (2005) found support for a building blocks model. We investigated the effects of domain knowledge and working memory on recall of studied grocery prices. Working memory was measured with 3 simple span tasks. A contrast of realistic versus fictitious foods in the episodic memory task served as our manipulation of domain knowledge, because participants could not have domain knowledge of fictitious food prices. There was a strong effect for domain knowledge (realistic food-price pairs were easier to remember) and a moderate effect for working memory capacity (higher working memory capacity produced better recall). Furthermore, the interaction between domain knowledge and working memory produced a small but significant interaction in 1 measure of price recall. This supported the compensatory model and stands in contrast to previous research.

  14. Working memory training to improve speech perception in noise across languages

    PubMed Central

    Ingvalson, Erin M.; Dhar, Sumitrajit; Wong, Patrick C. M.; Liu, Hanjun

    2015-01-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners. PMID:26093435

  15. Working memory training to improve speech perception in noise across languages.

    PubMed

    Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun

    2015-06-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.

  16. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention.

    PubMed

    Won, Bo-Yeong; Jiang, Yuhong V

    2015-05-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here, we show that the close relationship between these 2 constructs is limited to some but not all forms of spatial attention. In 5 experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval, they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. (c) 2015 APA, all rights reserved).

  17. Spatial working memory interferes with explicit, but not probabilistic cuing of spatial attention

    PubMed Central

    Won, Bo-Yeong; Jiang, Yuhong V.

    2014-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal that working memory is attention directed toward internal representations. Here we show that the close relationship between these two constructs is limited to some but not all forms of spatial attention. In five experiments, participants held color arrays, dot locations, or a sequence of dots in working memory. During the memory retention interval they performed a T-among-L visual search task. Crucially, the probable target location was cued either implicitly through location probability learning, or explicitly with a central arrow or verbal instruction. Our results showed that whereas imposing a visual working memory load diminished the effectiveness of explicit cuing, it did not interfere with probability cuing. We conclude that spatial working memory shares similar mechanisms with explicit, goal-driven attention but is dissociated from implicitly learned attention. PMID:25401460

  18. The Effect of Noise on the Relationship Between Auditory Working Memory and Comprehension in School-Age Children.

    PubMed

    Sullivan, Jessica R; Osman, Homira; Schafer, Erin C

    2015-06-01

    The objectives of the current study were to examine the effect of noise (-5 dB SNR) on auditory comprehension and to examine its relationship with working memory. It was hypothesized that noise has a negative impact on information processing, auditory working memory, and comprehension. Children with normal hearing between the ages of 8 and 10 years were administered working memory and comprehension tasks in quiet and noise. The comprehension measure comprised 5 domains: main idea, details, reasoning, vocabulary, and understanding messages. Performance on auditory working memory and comprehension tasks were significantly poorer in noise than in quiet. The reasoning, details, understanding, and vocabulary subtests were particularly affected in noise (p < .05). The relationship between auditory working memory and comprehension was stronger in noise than in quiet, suggesting an increased contribution of working memory. These data suggest that school-age children's auditory working memory and comprehension are negatively affected by noise. Performance on comprehension tasks in noise is strongly related to demands placed on working memory, supporting the theory that degrading listening conditions draws resources away from the primary task.

  19. Endogenous-cue prospective memory involving incremental updating of working memory: an fMRI study.

    PubMed

    Halahalli, Harsha N; John, John P; Lukose, Ammu; Jain, Sanjeev; Kutty, Bindu M

    2015-11-01

    Prospective memory paradigms are conventionally classified on the basis of event-, time-, or activity-based intention retrieval. In the vast majority of such paradigms, intention retrieval is provoked by some kind of external event. However, prospective memory retrieval cues that prompt intention retrieval in everyday life are commonly endogenous, i.e., linked to a specific imagined retrieval context. We describe herein a novel prospective memory paradigm wherein the endogenous cue is generated by incremental updating of working memory, and investigated the hemodynamic correlates of this task. Eighteen healthy adult volunteers underwent functional magnetic resonance imaging while they performed a prospective memory task where the delayed intention was triggered by an endogenous cue generated by incremental updating of working memory. Working memory and ongoing task control conditions were also administered. The 'endogenous-cue prospective memory condition' with incremental working memory updating was associated with maximum activations in the right rostral prefrontal cortex, and additional activations in the brain regions that constitute the bilateral fronto-parietal network, central and dorsal salience networks as well as cerebellum. In the working memory control condition, maximal activations were noted in the left dorsal anterior insula. Activation of the bilateral dorsal anterior insula, a component of the central salience network, was found to be unique to this 'endogenous-cue prospective memory task' in comparison to previously reported exogenous- and endogenous-cue prospective memory tasks without incremental working memory updating. Thus, the findings of the present study highlight the important role played by the dorsal anterior insula in incremental working memory updating that is integral to our endogenous-cue prospective memory task.

  20. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    ERIC Educational Resources Information Center

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals…

  1. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    PubMed

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Contribution of underlying processes to improved visuospatial working memory associated with physical activity.

    PubMed

    Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin

    2017-01-01

    Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n  = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n  = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.

  3. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of “Far Transfer”

    PubMed Central

    Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles

    2016-01-01

    It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138

  4. Visuospatial working memory in very preterm and term born children--impact of age and performance.

    PubMed

    Mürner-Lavanchy, I; Ritter, B C; Spencer-Smith, M M; Perrig, W J; Schroth, G; Steinlin, M; Everts, R

    2014-07-01

    Working memory is crucial for meeting the challenges of daily life and performing academic tasks, such as reading or arithmetic. Very preterm born children are at risk of low working memory capacity. The aim of this study was to examine the visuospatial working memory network of school-aged preterm children and to determine the effect of age and performance on the neural working memory network. Working memory was assessed in 41 very preterm born children and 36 term born controls (aged 7-12 years) using functional magnetic resonance imaging (fMRI) and neuropsychological assessment. While preterm children and controls showed equal working memory performance, preterm children showed less involvement of the right middle frontal gyrus, but higher fMRI activation in superior frontal regions than controls. The younger and low-performing preterm children presented an atypical working memory network whereas the older high-performing preterm children recruited a working memory network similar to the controls. Results suggest that younger and low-performing preterm children show signs of less neural efficiency in frontal brain areas. With increasing age and performance, compensational mechanisms seem to occur, so that in preterm children, the typical visuospatial working memory network is established by the age of 12 years. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Predicting Handwriting Difficulties Through Spelling Processes.

    PubMed

    Rodríguez, Cristina; Villarroel, Rebeca

    This study examined whether spelling tasks contribute to the prediction of the handwriting status of children with poor and good handwriting skills in a cross-sectional study with 276 Spanish children from Grades 1 and 3. The main hypothesis was that the spelling tasks would predict the handwriting status of the children, although this influence would decrease with age due to a gradual automatization of handwriting skills. The results confirmed this hypothesis. Another interesting result was that the pattern of pseudoword and irregular word spellings as predictors of handwriting status changed from Grade 1 to Grade 3. In Grade 1, the pseudoword spelling task made a significant contribution, whereas the irregular word spelling task did not. The opposite pattern was found in Grade 3. These results may be a consequence of progressive acquisition of orthographic representations. The orthographic role of the task of writing the alphabet in order from memory in the prediction model was also analyzed. The writing of the alphabet in order from memory task made a significant contribution to the prediction of handwriting status of the children beyond the orthographic influence of spelling tasks. The additional effect of this task on the prediction of handwriting status is presumably due to the fact that this measure is based on fluency.

  6. Working memory and the memory distortion component of hindsight bias.

    PubMed

    Calvillo, Dustin P

    2012-01-01

    One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.

  7. Failing to Succeed the First School: Exploring Phonological Factors and Letter Reading Ability in Grade 1

    ERIC Educational Resources Information Center

    Gafoor, Kunnathodi Abdul; Remia, K. R.

    2013-01-01

    The context of this paper is studies worldwide on influence of phonological factors in language development of children. Such studies reveal the significance of Phonological Awareness in development language skills: including, predictive value of phonological short-term memory for reading skills in Grade 1. This paper throws light on factors in…

  8. The Basic Study Skills Guide for Grades K-6.

    ERIC Educational Resources Information Center

    Prince George's County Public Schools, Upper Marlboro, MD.

    This guide has been designed for use in teaching study skills to elementary school students, kindergarten through grade six. It contains lessons developed and refined over a three-year period in the skills areas of listening, scheduling and task analysis, memory, notetaking, and using a textbook. Each skills area is developed in the context of a…

  9. The Basic Study Skills Curriculum Guide for Grades 10-12.

    ERIC Educational Resources Information Center

    Prince George's County Public Schools, Upper Marlboro, MD.

    This guide has been designed for use in teaching study skills to high school students, grades ten through twelve. It contains lessons developed and refined over a three-year period in the skills areas of listening, scheduling and task analysis, memory, notetaking, and using a textbook. Each skills area is developed in the context of a kindergarten…

  10. The Basic Study Skills Curriculum Guide for Grades 7-9.

    ERIC Educational Resources Information Center

    Prince George's County Public Schools, Upper Marlboro, MD.

    This guide has been designed for use in teaching study skills to junior high school students, grades seven through nine. It contains lessons developed and refined over a three-year period in the skills areas of listening, scheduling and task analysis, memory, notetaking, and using a textbook. Each skills area is developed in the context of a…

  11. Isolating Age-Group Differences in Working Memory Load-Related Neural Activity: Assessing the Contribution of Working Memory Capacity Using a Partial-Trial fMRI Method

    PubMed Central

    Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart

    2013-01-01

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076

  12. Discrepancy of performance among working memory-related tasks in autism spectrum disorders was caused by task characteristics, apart from working memory, which could interfere with task execution.

    PubMed

    Nakahachi, Takayuki; Iwase, Masao; Takahashi, Hidetoshi; Honaga, Eiko; Sekiyama, Ryuji; Ukai, Satoshi; Ishii, Ryouhei; Ishigami, Wataru; Kajimoto, Osami; Yamashita, Ko; Hashimoto, Ryota; Tanii, Hisashi; Shimizu, Akira; Takeda, Masatoshi

    2006-06-01

    Working memory performance has been inconsistently reported in autism spectrum disorders (ASD). Several studies in ASD have found normal performance in digit span and poor performance in digit symbol task although these are closely related with working memory. It is assumed that poor performance in digit symbol could be explained by confirmatory behavior, which is induced due to the vague memory representation of number-symbol association. Therefore it was hypothesized that the performance of working memory task, in which vagueness did not cause confirmatory behavior, would be normal in ASD. For this purpose, the Advanced Trail Making Test (ATMT) was used. The performance of digit span, digit symbol and ATMT was compared between ASD and normal control. The digit span, digit symbol and ATMT was given to 16 ASD subjects and 28 IQ-, age- and sex-matched control subjects. The scores of these tasks were compared. A significantly lower score for ASD was found only in digit symbol compared with control subjects. There were no significant difference in digit span and working memory estimated by ATMT. Discrepancy of scores among working memory-related tasks was demonstrated in ASD. Poor digit symbol performance, normal digit span and normal working memory in ATMT implied that ASD subjects would be intact in working memory itself, and that superficial working memory dysfunction might be observed due to confirmatory behavior in digit symbol. Therefore, to evaluate working memory in ASD, tasks that could stimulate psychopathology specific to ASD should be avoided.

  13. A Latent Variable Analysis of Working Memory Capacity, Short-Term Memory Capacity, Processing Speed, and General Fluid Intelligence.

    ERIC Educational Resources Information Center

    Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.

    2002-01-01

    Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…

  14. Verbal makes it positive, spatial makes it negative: working memory biases judgments, attention, and moods.

    PubMed

    Storbeck, Justin; Watson, Philip

    2014-12-01

    Prior research has suggested that emotion and working memory domains are integrated, such that positive affect enhances verbal working memory, whereas negative affect enhances spatial working memory (Gray, 2004; Storbeck, 2012). Simon (1967) postulated that one feature of emotion and cognition integration would be reciprocal connectedness (i.e., emotion influences cognition and cognition influences emotion). We explored whether affective judgments and attention to affective qualities are biased by the activation of verbal and spatial working memory mind-sets. For all experiments, participants completed a 2-back verbal or spatial working memory task followed by an endorsement task (Experiments 1 & 2), word-pair selection task (Exp. 3), or attentional dot-probe task (Exp. 4). Participants who had an activated verbal, compared with spatial, working memory mind-set were more likely to endorse pictures (Exp. 1) and words (Exp. 2) as being more positive and to select the more positive word pair out of a set of word pairs that went 'together best' (Exp. 3). Additionally, people who completed the verbal working memory task took longer to disengage from positive stimuli, whereas those who completed the spatial working memory task took longer to disengage from negative stimuli (Exp. 4). Interestingly, across the 4 experiments, we observed higher levels of self-reported negative affect for people who completed the spatial working memory task, which was consistent with their endorsement and attentional bias toward negative stimuli. Therefore, emotion and working memory may have a reciprocal connectedness allowing for bidirectional influence.

  15. A Brain System for Auditory Working Memory.

    PubMed

    Kumar, Sukhbinder; Joseph, Sabine; Gander, Phillip E; Barascud, Nicolas; Halpern, Andrea R; Griffiths, Timothy D

    2016-04-20

    The brain basis for auditory working memory, the process of actively maintaining sounds in memory over short periods of time, is controversial. Using functional magnetic resonance imaging in human participants, we demonstrate that the maintenance of single tones in memory is associated with activation in auditory cortex. In addition, sustained activation was observed in hippocampus and inferior frontal gyrus. Multivoxel pattern analysis showed that patterns of activity in auditory cortex and left inferior frontal gyrus distinguished the tone that was maintained in memory. Functional connectivity during maintenance was demonstrated between auditory cortex and both the hippocampus and inferior frontal cortex. The data support a system for auditory working memory based on the maintenance of sound-specific representations in auditory cortex by projections from higher-order areas, including the hippocampus and frontal cortex. In this work, we demonstrate a system for maintaining sound in working memory based on activity in auditory cortex, hippocampus, and frontal cortex, and functional connectivity among them. Specifically, our work makes three advances from the previous work. First, we robustly demonstrate hippocampal involvement in all phases of auditory working memory (encoding, maintenance, and retrieval): the role of hippocampus in working memory is controversial. Second, using a pattern classification technique, we show that activity in the auditory cortex and inferior frontal gyrus is specific to the maintained tones in working memory. Third, we show long-range connectivity of auditory cortex to hippocampus and frontal cortex, which may be responsible for keeping such representations active during working memory maintenance. Copyright © 2016 Kumar et al.

  16. As Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults.

    PubMed

    Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A

    2015-09-01

    Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.

  17. Working memory and intraindividual variability as neurocognitive indicators in ADHD: examining competing model predictions.

    PubMed

    Kofler, Michael J; Alderson, R Matt; Raiker, Joseph S; Bolden, Jennifer; Sarver, Dustin E; Rapport, Mark D

    2014-05-01

    The current study examined competing predictions of the default mode, cognitive neuroenergetic, and functional working memory models of attention-deficit/hyperactivity disorder (ADHD) regarding the relation between neurocognitive impairments in working memory and intraindividual variability. Twenty-two children with ADHD and 15 typically developing children were assessed on multiple tasks measuring intraindividual reaction time (RT) variability (ex-Gaussian: tau, sigma) and central executive (CE) working memory. Latent factor scores based on multiple, counterbalanced tasks were created for each construct of interest (CE, tau, sigma) to reflect reliable variance associated with each construct and remove task-specific, test-retest, and random error. Bias-corrected, bootstrapped mediation analyses revealed that CE working memory accounted for 88% to 100% of ADHD-related RT variability across models, and between-group differences in RT variability were no longer detectable after accounting for the mediating role of CE working memory. In contrast, RT variability accounted for 10% to 29% of between-group differences in CE working memory, and large magnitude CE working memory deficits remained after accounting for this partial mediation. Statistical comparison of effect size estimates across models suggests directionality of effects, such that the mediation effects of CE working memory on RT variability were significantly greater than the mediation effects of RT variability on CE working memory. The current findings question the role of RT variability as a primary neurocognitive indicator in ADHD and suggest that ADHD-related RT variability may be secondary to underlying deficits in CE working memory.

  18. Assessment and treatment of short-term and working memory impairments in stroke aphasia: a practical tutorial.

    PubMed

    Salis, Christos; Kelly, Helen; Code, Chris

    2015-01-01

    Aphasia following stroke refers to impairments that affect the comprehension and expression of spoken and/or written language, and co-occurring cognitive deficits are common. In this paper we focus on short-term and working memory impairments that impact on the ability to retain and manipulate auditory-verbal information. Evidence from diverse paradigms (large group studies, case studies) report close links between short-term/working memory and language functioning in aphasia. This evidence leads to the hypothesis that treating such memory impairments would improve language functioning. This link has only recently been acknowledged in aphasia treatment but has not been embraced widely by clinicians. To examine the association between language, and short-term and working memory impairments in aphasia. To describe practical ways of assessing short-term and working memory functioning that could be used in clinical practice. To discuss and critically appraise treatments of short-term and working memory reported in the literature. Taking a translational research approach, this paper provides clinicians with current evidence from the literature and practical information on how to assess and treat short-term and working memory impairments in people with aphasia. Published treatments of short-term and/or working memory in post-stroke aphasia are discussed through a narrative review. This paper provides the following. A theoretical rationale for adopting short-term and working memory treatments in aphasia. It highlights issues in differentially diagnosing between short-term, working memory disorders and other concomitant impairments, e.g. apraxia of speech. It describes short-term and working memory assessments with practical considerations for use with people with aphasia. It also offers a description of published treatments in terms of participants, treatments and outcomes. Finally, it critically appraises the current evidence base relating to the treatment of short-term and working memory treatments. The links between short-term/working memory functioning and language in aphasia are generally acknowledged. These strongly indicate the need to incorporate assessment of short-term/working memory functioning for people with aphasia. While the supportive evidence for treatment is growing and appears to highlight the benefits of including short-term/working memory in aphasia treatment, the quality of the evidence in its current state is poor. However, because of the clinical needs of people with aphasia and the prevalence of short-term/working memory impairments, incorporating related treatments through practice-based evidence is advocated. © 2015 Royal College of Speech and Language Therapists.

  19. Chronic stress effects on working memory: association with prefrontal cortical tyrosine hydroxylase.

    PubMed

    Lee, Young-A; Goto, Yukiori

    2015-06-01

    Chronic stress causes deficits in cognitive function including working memory, for which transmission of such catecholamines as dopamine and noradrenaline transmission in the prefrontal cortex (PFC) are crucial. Since catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase (TH), TH is thought to play an important role in PFC function. In this study, we found that two distinct population existed in Sprague-Dawley rats in terms of working memory capacity, one with higher working memory capacity, and the other with low capacity. This distinction of working memory capacity became apparent after rats were exposed to chronic stress. In addition, such working memory capacity and alterations of working memory function by chronic stress were associated with TH expression in the PFC. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Modeling individual differences in working memory performance: a source activation account

    PubMed Central

    Daily, Larry Z.; Lovett, Marsha C.; Reder, Lynne M.

    2008-01-01

    Working memory resources are needed for processing and maintenance of information during cognitive tasks. Many models have been developed to capture the effects of limited working memory resources on performance. However, most of these models do not account for the finding that different individuals show different sensitivities to working memory demands, and none of the models predicts individual subjects' patterns of performance. We propose a computational model that accounts for differences in working memory capacity in terms of a quantity called source activation, which is used to maintain goal-relevant information in an available state. We apply this model to capture the working memory effects of individual subjects at a fine level of detail across two experiments. This, we argue, strengthens the interpretation of source activation as working memory capacity. PMID:19079561

  1. To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.

    PubMed

    Basak, Chandramallika; O'Connell, Margaret A

    2016-01-01

    It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.

  2. Cognitive Behavioral Performance of Untreated Depressed Patients with Mild Depressive Symptoms

    PubMed Central

    Li, Mi; Zhong, Ning; Lu, Shengfu; Wang, Gang; Feng, Lei; Hu, Bin

    2016-01-01

    This study evaluated the working memory performance of 18 patients experiencing their first onset of mild depression without treatment and 18 healthy matched controls. The results demonstrated that working memory impairment in patients with mild depression occurred when memorizing the position of a picture but not when memorizing the pictures themselves. There was no significant difference between the two groups in the emotional impact on the working memory, indicating that the attenuation of spatial working memory was not affected by negative emotion; however, cognitive control selectively affected spatial working memory. In addition, the accuracy of spatial working memory in the depressed patients was not significantly reduced, but the reaction time was significantly extended compared with the healthy controls. This finding indicated that there was no damage to memory encoding and function maintenance in the patients but rather only impaired memory retrieval, suggesting that the extent of damage to the working memory system and cognitive control abilities was associated with the corresponding depressive symptoms. The development of mild to severe depressive symptoms may be accompanied by spatial working memory damage from the impaired memory retrieval function extending to memory encoding and memory retention impairments. In addition, the impaired cognitive control began with an inadequate capacity to automatically process internal negative emotions and further extended to impairment of the ability to regulate and suppress external emotions. The results of the mood-congruent study showed that the memory of patients with mild symptoms of depression was associated with a mood-congruent memory effect, demonstrating that mood-congruent memory was a typical feature of depression, regardless of the severity of depression. This study provided important information for understanding the development of cognitive dysfunction. PMID:26730597

  3. Exploring Expressive Vocabulary Variability in Two-Year-Olds: The Role of Working Memory.

    PubMed

    Newbury, Jayne; Klee, Thomas; Stokes, Stephanie F; Moran, Catherine

    2015-12-01

    This study explored whether measures of working memory ability contribute to the wide variation in 2-year-olds' expressive vocabulary skills. Seventy-nine children (aged 24-30 months) were assessed by using standardized tests of vocabulary and visual cognition, a processing speed measure, and behavioral measures of verbal working memory and phonological short-term memory. Strong correlations were observed between phonological short-term memory, verbal working memory, and expressive vocabulary. Speed of spoken word recognition showed a moderate significant correlation with expressive vocabulary. In a multivariate regression model for expressive vocabulary, the most powerful predictor was a measure of phonological short-term memory (accounting for 66% unique variance), followed by verbal working memory (6%), sex (2%), and age (1%). Processing speed did not add significant unique variance. These findings confirm previous research positing a strong role for phonological short-term memory in early expressive vocabulary acquisition. They also extend previous research in two ways. First, a unique association between verbal working memory and expressive vocabulary in 2-year-olds was observed. Second, processing speed was not a unique predictor of variance in expressive vocabulary when included alongside measures of working memory.

  4. Is functional integration of resting state brain networks an unspecific biomarker for working memory performance?

    PubMed

    Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten

    2015-03-01

    Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Do Working Memory Deficits Underlie Reading Problems in Attention-Deficit/Hyperactivity Disorder (ADHD)?

    PubMed

    Kofler, Michael J; Spiegel, Jamie A; Soto, Elia F; Irwin, Lauren N; Wells, Erica L; Austin, Kristin E

    2018-06-19

    Reading problems are common in children with ADHD and show strong covariation with these children's underdeveloped working memory abilities. In contrast, working memory training does not appear to improve reading performance for children with ADHD or neurotypical children. The current study bridges the gap between these conflicting findings, and combines dual-task methodology with Bayesian modeling to examine the role of working memory for explaining ADHD-related reading problems. Children ages 8-13 (M = 10.50, SD = 1.59) with and without ADHD (N = 78; 29 girls; 63% Caucasian/Non-Hispanic) completed a counterbalanced series of reading tasks that systematically manipulated concurrent working memory demands. Adding working memory demands produced disproportionate decrements in reading comprehension for children with ADHD (d = -0.67) relative to Non-ADHD children (d = -0.18); comprehension was significantly reduced in both groups when working memory demands were increased. These effects were robust to controls for foundational reading skills (decoding, sight word vocabulary) and comorbid reading disability. Concurrent working memory demands did not slow reading speed for either group. The ADHD group showed lower comprehension (d = 1.02) and speed (d = 0.69) even before adding working memory demands beyond those inherently required for reading. Exploratory conditional effects analyses indicated that underdeveloped working memory overlapped with 41% (comprehension) and 85% (speed) of these between-group differences. Reading problems in ADHD appear attributable, at least in part, to their underdeveloped working memory abilities. Combined with prior cross-sectional and longitudinal findings, the current experimental evidence positions working memory as a potential causal mechanism that is necessary but not sufficient for effectively understanding written language.

  6. The role of speed versus working memory in predicting learning new information in multiple sclerosis.

    PubMed

    Chiaravalloti, Nancy D; Stojanovic-Radic, Jelena; DeLuca, John

    2013-01-01

    The most common cognitive impairments in multiple sclerosis (MS) have been documented in specific domains, including new learning and memory, working memory, and information processing speed. However, little attempt has been made to increase our understanding of their relationship to one another. While recent studies have shown that processing speed impacts new learning and memory abilities in MS, the role of working memory in this relationship has received less attention. The present study examines the relative contribution of impaired working memory versus processing speed in new learning and memory functions in MS. Participants consisted of 51 individuals with clinically definite MS. Participants completed two measures of processing speed, two measures of working memory, and two measures of episodic memory. Data were analyzed via correlational and multiple regression analysis. Results indicate that the variance in new learning abilities in this sample was primarily associated with processing speed, with working memory exerting much less of an influence. Results are discussed in terms of the role of cognitive rehabilitation of new learning and memory abilities in persons with MS.

  7. Spatial Working Memory Interferes with Explicit, but Not Probabilistic Cuing of Spatial Attention

    ERIC Educational Resources Information Center

    Won, Bo-Yeong; Jiang, Yuhong V.

    2015-01-01

    Recent empirical and theoretical work has depicted a close relationship between visual attention and visual working memory. For example, rehearsal in spatial working memory depends on spatial attention, whereas adding a secondary spatial working memory task impairs attentional deployment in visual search. These findings have led to the proposal…

  8. Effects of children's working memory capacity and processing speed on their sentence imitation performance.

    PubMed

    Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook

    2013-01-01

    More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.

  9. Functional neuroanatomical associations of working memory in early-onset Alzheimer's disease.

    PubMed

    Kobylecki, Christopher; Haense, Cathleen; Harris, Jennifer M; Stopford, Cheryl L; Segobin, Shailendra H; Jones, Matthew; Richardson, Anna M T; Gerhard, Alexander; Anton-Rodriguez, José; Thompson, Jennifer C; Herholz, Karl; Snowden, Julie S

    2018-01-01

    To characterize metabolic correlates of working memory impairment in clinically defined subtypes of early-onset Alzheimer's disease. Established models of working memory suggest a key role for frontal lobe function, yet the association in Alzheimer's disease between working memory impairment and visuospatial and language symptoms suggests that temporoparietal neocortical dysfunction may be responsible. Twenty-four patients with predominantly early-onset Alzheimer's disease were clinically classified into groups with predominantly amnestic, multidomain or visual deficits. Patients underwent neuropsychological evaluation focused on the domains of episodic and working memory, T1-weighted magnetic resonance imaging and brain fluorodeoxyglucose positron emission tomography. Fluorodeoxyglucose positron emission tomography data were analysed by using a region-of-interest approach. Patients with multidomain and visual presentations performed more poorly on tests of working memory compared with amnestic Alzheimer's disease. Working memory performance correlated with glucose metabolism in left-sided temporoparietal, but not frontal neocortex. Carriers of the apolipoprotein E4 gene showed poorer episodic memory and better working memory performance compared with noncarriers. Our findings support the hypothesis that working memory changes in early-onset Alzheimer's disease are related to temporoparietal rather than frontal hypometabolism and show dissociation from episodic memory performance. They further support the concept of subtypes of Alzheimer's disease with distinct cognitive profiles due to prominent neocortical dysfunction early in the disease course. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety

    PubMed Central

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed. PMID:27788235

  11. Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.

    PubMed

    Shi, Zhan; Liu, Peiru

    2016-01-01

    Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.

  12. Assessing Working Memory in Children: The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM).

    PubMed

    Cabbage, Kathryn; Brinkley, Shara; Gray, Shelley; Alt, Mary; Cowan, Nelson; Green, Samuel; Kuo, Trudy; Hogan, Tiffany P

    2017-06-12

    The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia 1 , 2 and language impairment 3 , 4 , but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The CABC-WM is administered on a desktop computer with a touchscreen interface and was specifically developed to be engaging and motivating for children. Although the long-term goal of the CABC-WM is to provide individualized working memory profiles in children, the present study focuses on the initial success and utility of the CABC-WM for measuring central executive, visuospatial, phonological loop, and binding constructs in children with typical development. Immediate next steps are to administer the CABC-WM to children with specific language impairment, dyslexia, and comorbid specific language impairment and dyslexia.

  13. A theory of working memory without consciousness or sustained activity

    PubMed Central

    Trübutschek, Darinka; Marti, Sébastien; Ojeda, Andrés; King, Jean-Rémi; Mi, Yuanyuan; Tsodyks, Misha; Dehaene, Stanislas

    2017-01-01

    Working memory and conscious perception are thought to share similar brain mechanisms, yet recent reports of non-conscious working memory challenge this view. Combining visual masking with magnetoencephalography, we investigate the reality of non-conscious working memory and dissect its neural mechanisms. In a spatial delayed-response task, participants reported the location of a subjectively unseen target above chance-level after several seconds. Conscious perception and conscious working memory were characterized by similar signatures: a sustained desynchronization in the alpha/beta band over frontal cortex, and a decodable representation of target location in posterior sensors. During non-conscious working memory, such activity vanished. Our findings contradict models that identify working memory with sustained neural firing, but are compatible with recent proposals of ‘activity-silent’ working memory. We present a theoretical framework and simulations showing how slowly decaying synaptic changes allow cell assemblies to go dormant during the delay, yet be retrieved above chance-level after several seconds. DOI: http://dx.doi.org/10.7554/eLife.23871.001 PMID:28718763

  14. Selective updating of working memory content modulates meso-cortico-striatal activity.

    PubMed

    Murty, Vishnu P; Sambataro, Fabio; Radulescu, Eugenia; Altamura, Mario; Iudicello, Jennifer; Zoltick, Bradley; Weinberger, Daniel R; Goldberg, Terry E; Mattay, Venkata S

    2011-08-01

    Accumulating evidence from non-human primates and computational modeling suggests that dopaminergic signals arising from the midbrain (substantia nigra/ventral tegmental area) mediate striatal gating of the prefrontal cortex during the selective updating of working memory. Using event-related functional magnetic resonance imaging, we explored the neural mechanisms underlying the selective updating of information stored in working memory. Participants were scanned during a novel working memory task that parses the neurophysiology underlying working memory maintenance, overwriting, and selective updating. Analyses revealed a functionally coupled network consisting of a midbrain region encompassing the substantia nigra/ventral tegmental area, caudate, and dorsolateral prefrontal cortex that was selectively engaged during working memory updating compared to the overwriting and maintenance of working memory content. Further analysis revealed differential midbrain-dorsolateral prefrontal interactions during selective updating between low-performing and high-performing individuals. These findings highlight the role of this meso-cortico-striatal circuitry during the selective updating of working memory in humans, which complements previous research in behavioral neuroscience and computational modeling. Published by Elsevier Inc.

  15. Working memory, long-term memory, and medial temporal lobe function

    PubMed Central

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  16. The Memory Stack: New Technologies Harness Talking for Writing.

    ERIC Educational Resources Information Center

    Gannon, Maureen T.

    In this paper, an elementary school teacher describes her experiences with the Memory Stack--a HyperCard based tool that can accommodate a voice recording, a graphic image, and a written text on the same card--which she designed to help her second and third grade students integrate their oral language fluency into the process of learning how to…

  17. The Relation of Age and Reading Ability to Memory Processing.

    ERIC Educational Resources Information Center

    Marrach, Alexa; Fireman, Gary

    This study examined the relation of reading ability, age, and familiarity to iconic and short-term memory processing and how the familiarity of the stimuli affects recall. A total of 10 children in grades 2 through 6 and 10 adults were shown novel abstract forms, words, and non-words varying in order of approximation to English, for 50 msec., 500…

  18. The Effects of Blue Ink Print on Students' Memory Retention of Math Terms and Definitions.

    ERIC Educational Resources Information Center

    Din, Feng S.; Barnes, Kahlon

    This study investigated whether students' memory retention rate improved when they were provided with blue ink printed material. A pretest, treatment, posttest with control group design was used. The participants were 93 10th and 11th grade students in algebra and geometry courses, and there were 2 classes in each course. The treatment lasted for…

  19. The Impact of Middle-School Students' Feedback Choices and Performance on Their Feedback Memory

    ERIC Educational Resources Information Center

    Cutumisu, Maria; Schwartz, Daniel L.

    2016-01-01

    This paper presents a novel examination of the impact of students' feedback choices and performance on their feedback memory. An empirical study was designed to collect the choices to seek critical feedback from a hundred and six Grade 8 middle-school students via Posterlet, a digital assessment game in which students design posters. Upon…

  20. Processing and Memory of Color, Contour, and Pattern Found in Computer Digitized Color Pictures for Elementary Children.

    ERIC Educational Resources Information Center

    Marschalek, Douglas G.

    1988-01-01

    Describes study of children in grades one, three, and five that examined their active processing and short term memory (STM) of color, contour, and interior pattern of shapes found in computer digitized pictures. Age-related differences are examined, and the role of processing visual information in the learning process is discussed. (12…

  1. Evidence of an Intelligent Tutoring System as a Mindtool to Promote Strategic Memory of Expository Texts and Comprehension with Children in Grades 4 and 5

    ERIC Educational Resources Information Center

    Wijekumar, Kausalai; Meyer, Bonnie J. F.; Lei, Puiwa; Cheng, Weiyi; Ji, Xuejun; Joshi, R. M.

    2017-01-01

    Reading and comprehending content area texts require learners to effectively select and encode with hierarchically strategic memory structures in order to combine new information with prior knowledge. Unfortunately, evidence from state and national tests shows that children fail to successfully navigate the reading comprehension challenges they…

  2. The Cognitive and Academic Profiles of Reading and Mathematics Learning Disabilities

    PubMed Central

    Compton, Donald L.; Fuchs, Lynn S.; Fuchs, Douglas; Lambert, Warren; Hamlett, Carol

    2012-01-01

    The purpose of this study was to examine the cognitive and academic profiles associated with learning disability (LD) in reading comprehension, word reading, applied problems, and calculations. The goal was to assess the specificity hypothesis, in which unexpected underachievement associated with LD is represented in terms of distinctive patterns of cognitive and academic strengths and weaknesses. At the start of 3rd grade, the authors assessed 684 students on five cognitive dimensions (nonverbal problem solving, processing speed, concept formation, language, and working memory), and across Grades 3 through 5, the authors assessed performance in each academic area three to four times. Based on final intercept, the authors classified students as LD or not LD in each of the four academic areas. For each of these four LD variables, they conducted multivariate cognitive profile analysis and academic profile analysis. Results, which generally supported the specificity hypothesis, are discussed in terms of the potential connections between reading and mathematics LD. PMID:21444929

  3. The cognitive and academic profiles of reading and mathematics learning disabilities.

    PubMed

    Compton, Donald L; Fuchs, Lynn S; Fuchs, Douglas; Lambert, Warren; Hamlett, Carol

    2012-01-01

    The purpose of this study was to examine the cognitive and academic profiles associated with learning disability (LD) in reading comprehension, word reading, applied problems, and calculations. The goal was to assess the specificity hypothesis, in which unexpected underachievement associated with LD is represented in terms of distinctive patterns of cognitive and academic strengths and weaknesses. At the start of 3rd grade, the authors assessed 684 students on five cognitive dimensions (nonverbal problem solving, processing speed, concept formation, language, and working memory), and across Grades 3 through 5, the authors assessed performance in each academic area three to four times. Based on final intercept, the authors classified students as LD or not LD in each of the four academic areas. For each of these four LD variables, they conducted multivariate cognitive profile analysis and academic profile analysis. Results, which generally supported the specificity hypothesis, are discussed in terms of the potential connections between reading and mathematics LD.

  4. How Is RAN Related to Reading Fluency? A Comprehensive Examination of the Prominent Theoretical Accounts

    PubMed Central

    Papadopoulos, Timothy C.; Spanoudis, George C.; Georgiou, George K.

    2016-01-01

    We examined the prominent theoretical explanations of the RAN-reading relationship in a relatively transparent language (Greek) in a sample of children (n = 286) followed from Grade 1 to Grade 2. Specifically, we tested the fit of eight different models, as defined by the type of reading performance predicted (oral vs. silent word reading fluency), the type of RAN tasks (non-alphanumeric vs. alphanumeric), and the RAN effects (direct vs. indirect). Working memory, attention, processing speed, and motor skills were used as “common cause” variables predicting both RAN and reading fluency and phonological awareness and orthographic processing were used as mediators of RAN's effects on reading fluency. The findings of both concurrent and longitudinal analyses indicated that RAN is a unique predictor of oral reading fluency, but not silent reading fluency. Using alphanumeric or non-alphanumeric RAN did not particularly affect the RAN-reading relationship. Both phonological awareness and orthographic processing partly mediated RAN's effects on reading fluency. Theoretical implications of these findings are discussed. PMID:27605918

  5. What’s working in working memory training? An educational perspective

    PubMed Central

    Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles

    2015-01-01

    Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children’s academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial research studies, the current review of all of the available evidence of working memory training efficacy is less optimistic. Our conclusion is that working memory training produces limited benefits in terms of specific gains on short-term and working memory tasks that are very similar to the training programs, but no advantage for academic and achievement-based reading and arithmetic outcomes. PMID:26640352

  6. Middle Grades Ideas.

    ERIC Educational Resources Information Center

    Classroom Computer Learning, 1984

    1984-01-01

    Presents activities that focus on computer memories, accuracy of computers, making music, and computer functions. Instructional strategies for the activities and program listings (when applicable) are included. (JN)

  7. Role of attentional tags in working memory-driven attentional capture.

    PubMed

    Kuo, Chun-Yu; Chao, Hsuan-Fu

    2014-08-01

    Recent studies have demonstrated that the contents of working memory capture attention when performing a visual search task. However, it remains an intriguing and unresolved question whether all kinds of items stored in working memory capture attention. The present study investigated this issue by manipulating the attentional tags (target or distractor) associated with information maintained in working memory. The results showed that working memory-driven attentional capture is a flexible process, and that attentional tags associated with items stored in working memory do modulate attentional capture. When items were tagged as a target, they automatically captured attention; however, when items were tagged as a distractor, attentional capture was reduced.

  8. High visual working memory capacity in trait social anxiety.

    PubMed

    Moriya, Jun; Sugiura, Yoshinori

    2012-01-01

    Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.

  9. Dual N-Back Working Memory Training in Healthy Adults: A Randomized Comparison to Processing Speed Training

    PubMed Central

    Lawlor-Savage, Linette; Goghari, Vina M.

    2016-01-01

    Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141

  10. 78. Augmenting NMDA Receptor Signaling Enhances Working Memory and Alters Gamma Oscillations in Patients With Schizophrenia

    PubMed Central

    Forsyth, Jennifer; Bachman, Peter; Asarnow, Robert

    2017-01-01

    Abstract Background: Gamma band oscillations (30–80 Hz) are associated with numerous sensory and higher cognitive functions and are abnormal in patients with schizophrenia. Glutamate signaling at the N-methyl-D-aspartate receptor (NMDAR) is theorized to play a key role in the pathophysiology of schizophrenia and NMDAR antagonists disrupt working memory and gamma oscillations in healthy individuals. It has therefore been suggested that NMDAR dysfunction may contribute to abnormalities in gamma oscillations and working memory in schizophrenia. In the current study, we examined the effects of acutely augmenting NMDAR signaling using the NMDAR agonist, d-cycloserine (DCS), on working memory and gamma power in patients with schizophrenia. Methods: In a double-blind design, patients with schizophrenia were randomized to receive a single dose of 100 mg DCS (SZ-DCS; n = 24) or Placebo (SZ-PLC; n = 21). Patients completed a spatial n-back task involving a 0-back control condition and 1-back and 2-back working memory loads while undergoing EEG recording. Gamma power (30–80 Hz) during the 0-back condition assessed gamma power associated with basic perceptual, motor, and attentive processes. Change in gamma power for correct working memory trials relative to the 0-back condition assessed gamma power associated with working memory function. Results: Among patients who performed above chance (SZ-DCS = 17, SZ-PLC = 16), patients who received DCS showed superior working memory performance compared to patients who received Placebo. Gamma power during the 0-back control condition was similar between SZ-DCS and SZ-PLC who performed above chance. However, gamma power associated with working memory function was significantly suppressed in SZ-DCS compared to SZ-PLC, particularly over frontal right channels. In addition, whereas higher working memory gamma power over frontal right channels was associated with better working memory performance in SZ-PLC, this relationship was not evident in SZ-DCS. Conclusion: Results suggest that augmenting NMDAR signaling enhanced working memory performance and suppressed gamma activity associated with working memory function in patients with schizophrenia. Given prior reports that schizophrenia patients may utilize excessive gamma power for successful working memory performance, these findings suggest that augmenting NMDAR signaling may improve the efficiency of neural encoding for successful working memory function in schizophrenia.

  11. Working Memory Training and Speech in Noise Comprehension in Older Adults.

    PubMed

    Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S

    2016-01-01

    Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.

  12. Isolating age-group differences in working memory load-related neural activity: assessing the contribution of working memory capacity using a partial-trial fMRI method.

    PubMed

    Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart

    2013-05-15

    Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Working Memory Training and Speech in Noise Comprehension in Older Adults

    PubMed Central

    Wayne, Rachel V.; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S.

    2016-01-01

    Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5–1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed. PMID:27047370

  14. Working Memory Training Does Not Improve Performance on Measures of Intelligence or Other Measures of "Far Transfer": Evidence From a Meta-Analytic Review.

    PubMed

    Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles

    2016-07-01

    It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.

  15. Can we improve the clinical assessment of working memory? An evaluation of the Wechsler Adult Intelligence Scale-Third Edition using a working memory criterion construct.

    PubMed

    Hill, B D; Elliott, Emily M; Shelton, Jill T; Pella, Russell D; O'Jile, Judith R; Gouvier, W Drew

    2010-03-01

    Working memory is the cognitive ability to hold a discrete amount of information in mind in an accessible state for utilization in mental tasks. This cognitive ability is impaired in many clinical populations typically assessed by clinical neuropsychologists. Recently, there have been a number of theoretical shifts in the way that working memory is conceptualized and assessed in the experimental literature. This study sought to determine to what extent the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) Working Memory Index (WMI) measures the construct studied in the cognitive working memory literature, whether an improved WMI could be derived from the subtests that comprise the WAIS-III, and what percentage of variance in individual WAIS-III subtests is explained by working memory. It was hypothesized that subtests beyond those currently used to form the WAIS-III WMI would be able to account for a greater percentage of variance in a working memory criterion construct than the current WMI. Multiple regression analyses (n = 180) revealed that the best predictor model of subtests for assessing working memory was composed of the Digit Span, Letter-Number Sequencing, Matrix Reasoning, and Vocabulary. The Arithmetic subtest was not a significant contributor to the model. These results are discussed in the context of how they relate to Unsworth and Engle's (2006, 2007) new conceptualization of working memory mechanisms.

  16. Cavum Septum Pellucidum in Retired American Pro-Football Players.

    PubMed

    Gardner, Raquel C; Hess, Christopher P; Brus-Ramer, Marcel; Possin, Katherine L; Cohn-Sheehy, Brendan I; Kramer, Joel H; Berger, Mitchel S; Yaffe, Kristine; Miller, Bruce; Rabinovici, Gil D

    2016-01-01

    Previous studies report that cavum septum pellucidum (CSP) is frequent among athletes with a history of repeated traumatic brain injury (TBI), such as boxers. Few studies of CSP in athletes, however, have assessed detailed features of the septum pellucidum in a case-control fashion. This is important because prevalence of CSP in the general population varies widely (2% to 85%) between studies. Further, rates of CSP among American pro-football players have not been described previously. We sought to characterize MRI features of the septum pellucidum in a series of retired pro-football players with a history of repeated concussive/subconcussive head traumas compared with controls. We retrospectively assessed retired American pro-football players presenting to our memory clinic with cognitive/behavioral symptoms in whom structural MRI was available with slice thickness ≤2 mm (n=17). Each player was matched to a memory clinic control patient with no history of TBI. Scans were interpreted by raters blinded to clinical information and TBI/football history, who measured CSP grade (0-absent, 1-equivocal, 2-mild, 3-moderate, 4-severe) and length according to a standard protocol. Sixteen of 17 (94%) players had a CSP graded ≥2 compared with 3 of 17 (18%) controls. CSP was significantly higher grade (p<0.001) and longer in players than controls (mean length±standard deviation: 10.6 mm±5.4 vs. 1.1 mm±1.3, p<0.001). Among patients presenting to a memory clinic, long high-grade CSP was more frequent in retired pro-football players compared with patients without a history of TBI.

  17. Concurrent working memory load can facilitate selective attention: evidence for specialized load.

    PubMed

    Park, Soojin; Kim, Min-Shik; Chun, Marvin M

    2007-10-01

    Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA

  18. Do the Contents of Visual Working Memory Automatically Influence Attentional Selection During Visual Search?

    PubMed Central

    Woodman, Geoffrey F.; Luck, Steven J.

    2007-01-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing. PMID:17469973

  19. Do the contents of visual working memory automatically influence attentional selection during visual search?

    PubMed

    Woodman, Geoffrey F; Luck, Steven J

    2007-04-01

    In many theories of cognition, researchers propose that working memory and perception operate interactively. For example, in previous studies researchers have suggested that sensory inputs matching the contents of working memory will have an automatic advantage in the competition for processing resources. The authors tested this hypothesis by requiring observers to perform a visual search task while concurrently maintaining object representations in visual working memory. The hypothesis that working memory activation produces a simple but uncontrollable bias signal leads to the prediction that items matching the contents of working memory will automatically capture attention. However, no evidence for automatic attentional capture was obtained; instead, the participants avoided attending to these items. Thus, the contents of working memory can be used in a flexible manner for facilitation or inhibition of processing.

  20. The Differential Relations between Verbal, Numerical and Spatial Working Memory Abilities and Children's Reading Comprehension

    ERIC Educational Resources Information Center

    Oakhill, Jane; Yuill, Nicola; Garnham, Alan

    2011-01-01

    Working memory predicts children's reading comprehension but it is not clear whether this relation is due to a modality-specific or general working memory. This study, which investigated the relations between children's reading skills and working memory (WM) abilities in 3 modalities, extends previous work by including measures of both reading…

  1. An fMRI investigation of cerebellar function during verbal working memory in methadone maintenance patients.

    PubMed

    Marvel, Cherie L; Faulkner, Monica L; Strain, Eric C; Mintzer, Miriam Z; Desmond, John E

    2012-03-01

    Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging to examine brain activity associated with working memory in five opioid-dependent, methadone-maintained patients and five matched, healthy controls. An item recognition task was administered in two conditions: (1) a low working memory load "match" condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and (2) a high working memory load "manipulation" condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load ("manipulation" condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit and shed light on the neuroanatomical basis of working memory impairments in this population.

  2. An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients

    PubMed Central

    Marvel, Cherie L.; Faulkner, Monica L.; Strain, Eric C.; Mintzer, Miriam Z.; Desmond, John E.

    2011-01-01

    Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging (fMRI) to examine brain activity associated with working memory in 5 opioid-dependent, methadone-maintained patients and 5 matched, healthy controls. An item recognition task was administered in two conditions: 1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and 2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit, and shed light on the neuroanatomical basis of working memory impairments in this population. PMID:21892700

  3. Teachers' Perceptions of Classroom Behaviour and Working Memory

    ERIC Educational Resources Information Center

    Alloway, Tracy Packiam

    2012-01-01

    Working memory, ability to remember and manipulate information, is crucial to academic attainment. The aim of the present study was to understand teachers' perception of working memory and how it impacts classroom behaviour. A semi-structured interview was used to explore teachers' ability to define working memory, identify these difficulties in…

  4. Verbal Working Memory in Children with Mild Intellectual Disabilities

    ERIC Educational Resources Information Center

    Van der Molen, M. J.; Van Luit, J. E. H.; Jongmans, M. J.; Van der Molen, M. W.

    2007-01-01

    Background: Previous research into working memory of individuals with intellectual disabilities (ID) has established clear deficits. The current study examined working memory in children with mild ID (IQ 55-85) within the framework of the Baddeley model, fractionating working memory into a central executive and two slave systems, the phonological…

  5. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  6. Working Memory Interventions with Children: Classrooms or Computers?

    ERIC Educational Resources Information Center

    Colmar, Susan; Double, Kit

    2017-01-01

    The importance of working memory to classroom functioning and academic outcomes has led to the development of many interventions designed to enhance students' working memory. In this article we briefly review the evidence for the relative effectiveness of classroom and computerised working memory interventions in bringing about measurable and…

  7. Improving Working Memory Efficiency by Reframing Metacognitive Interpretation of Task Difficulty

    ERIC Educational Resources Information Center

    Autin, Frederique; Croizet, Jean-Claude

    2012-01-01

    Working memory capacity, our ability to manage incoming information for processing purposes, predicts achievement on a wide range of intellectual abilities. Three randomized experiments (N = 310) tested the effectiveness of a brief psychological intervention designed to boost working memory efficiency (i.e., state working memory capacity) by…

  8. Object perception is selectively slowed by a visually similar working memory load.

    PubMed

    Robinson, Alan; Manzi, Alberto; Triesch, Jochen

    2008-12-22

    The capacity of visual working memory has been extensively characterized, but little work has investigated how occupying visual memory influences other aspects of cognition and perception. Here we show a novel effect: maintaining an item in visual working memory slows processing of similar visual stimuli during the maintenance period. Subjects judged the gender of computer rendered faces or the naturalness of body postures while maintaining different visual memory loads. We found that when stimuli of the same class (faces or bodies) were maintained in memory, perceptual judgments were slowed. Interestingly, this is the opposite of what would be predicted from traditional priming. Our results suggest there is interference between visual working memory and perception, caused by visual similarity between new perceptual input and items already encoded in memory.

  9. Individual differences in working memory: introduction to the special section.

    PubMed

    Miyake, A

    2001-06-01

    This special section includes a set of 5 articles that examine the nature of inter- and intraindividual differences in working memory, using working memory span tasks as the main research tools. These span tasks are different from traditional short-term memory spans (e.g., digit or word span) in that they require participants to maintain some target memory items (e.g., words) while simultaneously performing some other tasks (e.g., reading sentences). In this introduction, a brief discussion of these working memory span tasks and their characteristics is provided first. This is followed by an overview of 2 major theoretical issues that are addressed by the subsequent articles--(a) the factors influencing the inter- and intraindividual differences in working memory performance and (b) the domain generality versus domain specificity of working memory--and also of some important issues that must be kept in mind when readers try to evaluate the claims regarding these 2 theoretical issues.

  10. Structural correlates of impaired working memory in hippocampal sclerosis.

    PubMed

    Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S

    2013-07-01

    Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  11. Structural correlates of impaired working memory in hippocampal sclerosis

    PubMed Central

    Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S

    2013-01-01

    Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Significance: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. PMID:23614459

  12. [The impact of precursors on reading, spelling, and arithmetic at school 2nd grade].

    PubMed

    Daseking, M; Petermann, F

    2011-10-01

    The aim of this study was to determine the role of precursors in the prediction of school achievement. 372 children were followed from health examination for school entry to the second grade. Preschool skills assessed by a screening of developmental stage (SOPESS) were related to second-grade reading (ELFE 1-6), spelling (DERET 1-2+), and arithmetic (DEMAT 1+) by correlation and regression analyses. Correlations between numeracy and math abilities (r=0,340) met with our expectations as also did those between verbal abilities and spelling (r=0,276). The subtests of attention and counting (SOPESS) contribute significantly to an explanation of the variance in school achievement. Numeracy predicts math achievement, and verbal memory contributes to school achievement in math and spelling. Our findings support the contribution of visual selective attention, phonological memory, and verbal abilities to the development of reading, spelling, and math at primary school. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Changes across age groups in self-choice elaboration effects on incidental memory.

    PubMed

    Toyota, Hiroshi; Konishi, Tomoko

    2004-08-01

    The present study investigated age differences in the effects of a self-choice elaboration and an experimenter-provided elaboration on incidental memory. Adults, sixth grade, and second grade subjects chose which of two sentence frames the target fit better in a self-choice elaboration condition. They then judged whether each target made sense in its sentence frame in the experimenter-provided elaboration, then did free recall tests. Only adults recalled better the targets with an image sentence with self-choice elaboration, rather than experimenter-provided elaboration. However, self-choice elaboration was far superior for the recall of targets with nonimage sentences only for second graders. Thus, the effects of self-choice elaboration were determined both by age and by type of sentence frame.

  14. How visual working memory contents influence priming of visual attention.

    PubMed

    Carlisle, Nancy B; Kristjánsson, Árni

    2017-04-12

    Recent evidence shows that when the contents of visual working memory overlap with targets and distractors in a pop-out search task, intertrial priming is inhibited (Kristjánsson, Sævarsson & Driver, Psychon Bull Rev 20(3):514-521, 2013, Experiment 2, Psychonomic Bulletin and Review). This may reflect an interesting interaction between implicit short-term memory-thought to underlie intertrial priming-and explicit visual working memory. Evidence from a non-pop-out search task suggests that it may specifically be holding distractors in visual working memory that disrupts intertrial priming (Cunningham & Egeth, Psychol Sci 27(4):476-485, 2016, Experiment 2, Psychological Science). We examined whether the inhibition of priming depends on whether feature values in visual working memory overlap with targets or distractors in the pop-out search, and we found that the inhibition of priming resulted from holding distractors in visual working memory. These results are consistent with separate mechanisms of target and distractor effects in intertrial priming, and support the notion that the impact of implicit short-term memory and explicit visual working memory can interact when each provides conflicting attentional signals.

  15. Expertise for upright faces improves the precision but not the capacity of visual working memory.

    PubMed

    Lorenc, Elizabeth S; Pratte, Michael S; Angeloni, Christopher F; Tong, Frank

    2014-10-01

    Considerable research has focused on how basic visual features are maintained in working memory, but little is currently known about the precision or capacity of visual working memory for complex objects. How precisely can an object be remembered, and to what extent might familiarity or perceptual expertise contribute to working memory performance? To address these questions, we developed a set of computer-generated face stimuli that varied continuously along the dimensions of age and gender, and we probed participants' memories using a method-of-adjustment reporting procedure. This paradigm allowed us to separately estimate the precision and capacity of working memory for individual faces, on the basis of the assumptions of a discrete capacity model, and to assess the impact of face inversion on memory performance. We found that observers could maintain up to four to five items on average, with equally good memory capacity for upright and upside-down faces. In contrast, memory precision was significantly impaired by face inversion at every set size tested. Our results demonstrate that the precision of visual working memory for a complex stimulus is not strictly fixed but, instead, can be modified by learning and experience. We find that perceptual expertise for upright faces leads to significant improvements in visual precision, without modifying the capacity of working memory.

  16. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    PubMed Central

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the last decade a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals necessarily result in more forgetting. An obstacle to directly comparing conflicting reports is a divergence in methodology across studies. Studies which find no forgetting as a function of retention-interval duration tend to use sequential presentation of memory items, while studies which find forgetting as a function of retention-interval duration tend to use simultaneous presentation of memory items. Here, we manipulate the duration of retention and the presentation method of memory items, presenting items either sequentially or simultaneously. We find that these differing presentation methods can lead to different rates of forgetting because they tend to differ in the time available for consolidation into working memory. The experiments detailed here show that equating the time available for working memory consolidation equates the rates of forgetting across presentation methods. We discuss the meaning of this finding in the interpretation of previous forgetting studies and in the construction of working memory models. PMID:24059859

  17. Developmental Changes in the Access of Referential and Associative Information by Pictures and Words. Research Bulletin #9.

    ERIC Educational Resources Information Center

    Marschark, Marc; Carroll, Elizabeth

    Three experiments examined referential and associative linkages in memory as a function of stimulus and response material formats. Second grade, sixth grade, and university students were the subjects. In Experiment 1, subjects pointed to either the picture or printed name of a stimulus corresponding to the name or picture, respectively, pointed to…

  18. [Working memory and work with memory: visual-spatial and further components of processing].

    PubMed

    Velichkovsky, B M; Challis, B H; Pomplun, M

    1995-01-01

    Empirical and theoretical evidence for the concept of working memory is considered. We argue that the major weakness of this concept is its loose connection with the knowledge about background perceptive and cognitive processes. Results of two relevant experiments are provided. The first study demonstrated the classical chunking effect in a speeded visual search and comparison task, the proper domain of a large-capacity very short term sensory store. Our second study was a kind of extended levels-of-processing experiment. We attempted to manipulate visual, phonological, and (different) executive components of long-term memory in the hope of finding some systematic relationships between these forms of processing. Indeed, the results demonstrated a high degree of systematicity without any apparent need for a concept such as working memory for the explanation. Accordingly, the place for working memory is at all the interfaces where our metacognitive strategies interfere with mostly domain-specific cognitive mechanisms. Working memory is simply our work with memory.

  19. Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials.

    PubMed

    Bae, Gi-Yeul; Luck, Steven J

    2018-01-10

    In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the orientation of an object being held in memory, consistent with a memory storage signal. Copyright © 2018 the authors 0270-6474/18/380409-14$15.00/0.

  20. Working memory load predicts visual search efficiency: Evidence from a novel pupillary response paradigm.

    PubMed

    Attar, Nada; Schneps, Matthew H; Pomplun, Marc

    2016-10-01

    An observer's pupil dilates and constricts in response to variables such as ambient and focal luminance, cognitive effort, the emotional stimulus content, and working memory load. The pupil's memory load response is of particular interest, as it might be used for estimating observers' memory load while they are performing a complex task, without adding an interruptive and confounding memory test to the protocol. One important task in which working memory's involvement is still being debated is visual search, and indeed a previous experiment by Porter, Troscianko, and Gilchrist (Quarterly Journal of Experimental Psychology, 60, 211-229, 2007) analyzed observers' pupil sizes during search to study this issue. These authors found that pupil size increased over the course of the search, and they attributed this finding to accumulating working memory load. However, since the pupil response is slow and does not depend on memory load alone, this conclusion is rather speculative. In the present study, we estimated working memory load in visual search during the presentation of intermittent fixation screens, thought to induce a low, stable level of arousal and cognitive effort. Using standard visual search and control tasks, we showed that this paradigm reduces the influence of non-memory-related factors on pupil size. Furthermore, we found an early increase in working memory load to be associated with more efficient search, indicating a significant role of working memory in the search process.

  1. Iconic Memories Die a Sudden Death.

    PubMed

    Pratte, Michael S

    2018-06-01

    Iconic memory is characterized by its large storage capacity and brief storage duration, whereas visual working memory is characterized by its small storage capacity. The limited information stored in working memory is often modeled as an all-or-none process in which studied information is either successfully stored or lost completely. This view raises a simple question: If almost all viewed information is stored in iconic memory, yet one second later most of it is completely absent from working memory, what happened to it? Here, I characterized how the precision and capacity of iconic memory changed over time and observed a clear dissociation: Iconic memory suffered from a complete loss of visual items, while the precision of items retained in memory was only marginally affected by the passage of time. These results provide new evidence for the discrete-capacity view of working memory and a new characterization of iconic memory decay.

  2. A working memory account of the interaction between numbers and spatial attention.

    PubMed

    van Dijck, Jean-Philippe; Abrahamse, Elger L; Acar, Freya; Ketels, Boris; Fias, Wim

    2014-01-01

    Rather than reflecting the long-term memory construct of a mental number line, it has been proposed that the relation between numbers and space is of a more temporary nature and constructed in working memory during task execution. In three experiments we further explored the viability of this working memory account. Participants performed a speeded dot detection task with dots appearing left or right, while maintaining digits or letters in working memory. Just before presentation of the dot, these digits or letters were used as central cues. These experiments show that the "attentional SNARC-effect" (where SNARC is the spatial-numerical association of response codes) is not observed when only the lastly perceived number cue--and no serially ordered sequence of cues--is maintained in working memory (Experiment 1). It is only when multiple items (numbers in Experiment 2; letters in Experiment 3) are stored in working memory in a serially organized way that the attentional cueing effect is observed as a function of serial working memory position. These observations suggest that the "attentional SNARC-effect" is strongly working memory based. Implications for theories on the mental representation of numbers are discussed.

  3. Brain activity related to working memory for temporal order and object information.

    PubMed

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze

    PubMed Central

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600

  5. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    PubMed Central

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  6. Improving everyday memory performance after acquired brain injury: An RCT on recollection and working memory training.

    PubMed

    Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut

    2018-04-26

    To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Role of Prefrontal Persistent Activity in Working Memory

    PubMed Central

    Riley, Mitchell R.; Constantinidis, Christos

    2016-01-01

    The prefrontal cortex is activated during working memory, as evidenced by fMRI results in human studies and neurophysiological recordings in animal models. Persistent activity during the delay period of working memory tasks, after the offset of stimuli that subjects are required to remember, has traditionally been thought of as the neural correlate of working memory. In the last few years several findings have cast doubt on the role of this activity. By some accounts, activity in other brain areas, such as the primary visual and posterior parietal cortex, is a better predictor of information maintained in visual working memory and working memory performance; dynamic patterns of activity may convey information without requiring persistent activity at all; and prefrontal neurons may be ill-suited to represent non-spatial information about the features and identity of remembered stimuli. Alternative interpretations about the role of the prefrontal cortex have thus been suggested, such as that it provides a top-down control of information represented in other brain areas, rather than maintaining a working memory trace itself. Here we review evidence for and against the role of prefrontal persistent activity, with a focus on visual neurophysiology. We show that persistent activity predicts behavioral parameters precisely in working memory tasks. We illustrate that prefrontal cortex represents features of stimuli other than their spatial location, and that this information is largely absent from early cortical areas during working memory. We examine memory models not dependent on persistent activity, and conclude that each of those models could mediate only a limited range of memory-dependent behaviors. We review activity decoded from brain areas other than the prefrontal cortex during working memory and demonstrate that these areas alone cannot mediate working memory maintenance, particularly in the presence of distractors. We finally discuss the discrepancy between BOLD activation and spiking activity findings, and point out that fMRI methods do not currently have the spatial resolution necessary to decode information within the prefrontal cortex, which is likely organized at the micrometer scale. Therefore, we make the case that prefrontal persistent activity is both necessary and sufficient for the maintenance of information in working memory. PMID:26778980

  8. The protective effects of brief mindfulness meditation training.

    PubMed

    Banks, Jonathan B; Welhaf, Matthew S; Srour, Alexandra

    2015-05-01

    Mindfulness meditation has gained a great deal of attention in recent years due to the variety of physical and psychological benefits, including improved working memory, decreased mind wandering and reduced impact of stress on working memory. The current study examined a 1-week at home mindfulness meditation intervention compared to an active control intervention. Results suggest that mindfulness meditation does not increase working memory or decrease mind wandering but does prevent stress related working memory impairments. Mindfulness meditation appears to alter the factors that impair working memory such that the negative impact of mind wandering on working memory was only evident at higher levels of negative affect. The use of cognitive mechanism words in narratives of stressful events did not differ by condition but predicted poorer working memory in the control condition. The results support the use of an at home mindfulness meditation intervention for reducing stress-related impairments. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Neural activity reveals perceptual grouping in working memory.

    PubMed

    Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S

    2017-03-01

    There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.

  10. Improving attention control in dysphoria through cognitive training: transfer effects on working memory capacity and filtering efficiency.

    PubMed

    Owens, Max; Koster, Ernst H W; Derakshan, Nazanin

    2013-03-01

    Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.

  11. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    PubMed

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-06-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.

  12. Working memory capacity and task goals modulate error-related ERPs.

    PubMed

    Coleman, James R; Watson, Jason M; Strayer, David L

    2018-03-01

    The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.

  13. Storage of features, conjunctions and objects in visual working memory.

    PubMed

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  14. Is Working Memory Involved in the Transcribing and Editing of Texts?

    ERIC Educational Resources Information Center

    Hayes, John R.; Chenoweth, N. Ann

    2006-01-01

    Generally, researchers agree that verbal working memory plays an important role in cognitive processes involved in writing. However, there is disagreement about which cognitive processes make use of working memory. Kellogg has proposed that verbal working memory is involved in translating but not in editing or producing (i.e., typing) text. In…

  15. Pitch Perception, Working Memory, and Second-Language Phonological Production

    ERIC Educational Resources Information Center

    Posedel, James; Emery, Lisa; Souza, Benjamin; Fountain, Catherine

    2012-01-01

    Previous research has suggested that training on a musical instrument is associated with improvements in working memory and musical pitch perception ability. Good working memory and musical pitch perception ability, in turn, have been linked to certain aspects of language production. The current study examines whether working memory and/or pitch…

  16. Control of Interference during Working Memory Updating

    ERIC Educational Resources Information Center

    Szmalec, Arnaud; Verbruggen, Frederick; Vandierendonck, Andre; Kemps, Eva

    2011-01-01

    The current study examined the nature of the processes underlying working memory updating. In 4 experiments using the n-back paradigm, the authors demonstrate that continuous updating of items in working memory prevents strong binding of those items to their contexts in working memory, and hence leads to an increased susceptibility to proactive…

  17. Working Memory Capacity and Reading Skill Moderate the Effectiveness of Strategy Training in Learning from Hypertext

    ERIC Educational Resources Information Center

    Naumann, Johannes; Richter, Tobias; Christmann, Ursula; Groeben, Norbert

    2008-01-01

    Cognitive and metacognitive strategies are particularly important for learning with hypertext. The effectiveness of strategy training, however, depends on available working memory resources. Thus, especially learners high on working memory capacity can profit from strategy training, while learners low on working memory capacity might easily be…

  18. Distinct Transfer Effects of Training Different Facets of Working Memory Capacity

    ERIC Educational Resources Information Center

    von Bastian, Claudia C.; Oberauer, Klaus

    2013-01-01

    The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…

  19. Working Memory Functioning in Children with Learning Disorders and Specific Language Impairment

    ERIC Educational Resources Information Center

    Schuchardt, Kirsten; Bockmann, Ann-Katrin; Bornemann, Galina; Maehler, Claudia

    2013-01-01

    Purpose: On the basis of Baddeley's working memory model (1986), we examined working memory functioning in children with learning disorders with and without specific language impairment (SLI). We pursued the question whether children with learning disorders exhibit similar working memory deficits as children with additional SLI. Method: In…

  20. Impact of Working Memory Training Targeting the Central Executive on Kindergarteners' Numerical Skills

    ERIC Educational Resources Information Center

    Honoré, Nastasya; Noël, Marie-Pascale

    2017-01-01

    Working memory capacities are associated with mathematical development. Many studies have tried to improve working memory abilities through training. Furthermore, the central executive has been shown to be the component of working memory, which is the most strongly related to numerical and arithmetical skills. Therefore, we developed a training…

Top