Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.
NASA Astrophysics Data System (ADS)
Jia, Ningning; Y Lam, Edmund
2010-04-01
Inverse lithography technology (ILT) synthesizes photomasks by solving an inverse imaging problem through optimization of an appropriate functional. Much effort on ILT is dedicated to deriving superior masks at a nominal process condition. However, the lower k1 factor causes the mask to be more sensitive to process variations. Robustness to major process variations, such as focus and dose variations, is desired. In this paper, we consider the focus variation as a stochastic variable, and treat the mask design as a machine learning problem. The stochastic gradient descent approach, which is a useful tool in machine learning, is adopted to train the mask design. Compared with previous work, simulation shows that the proposed algorithm is effective in producing robust masks.
Method of Real-Time Principal-Component Analysis
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu
2005-01-01
Dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN) is a method of sequential principal-component analysis (PCA) that is well suited for such applications as data compression and extraction of features from sets of data. In comparison with a prior method of gradient-descent-based sequential PCA, this method offers a greater rate of learning convergence. Like the prior method, DOGEDYN can be implemented in software. However, the main advantage of DOGEDYN over the prior method lies in the facts that it requires less computation and can be implemented in simpler hardware. It should be possible to implement DOGEDYN in compact, low-power, very-large-scale integrated (VLSI) circuitry that could process data in real time.
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
An online supervised learning method based on gradient descent for spiking neurons.
Xu, Yan; Yang, Jing; Zhong, Shuiming
2017-09-01
The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fractional-order gradient descent learning of BP neural networks with Caputo derivative.
Wang, Jian; Wen, Yanqing; Gou, Yida; Ye, Zhenyun; Chen, Hua
2017-05-01
Fractional calculus has been found to be a promising area of research for information processing and modeling of some physical systems. In this paper, we propose a fractional gradient descent method for the backpropagation (BP) training of neural networks. In particular, the Caputo derivative is employed to evaluate the fractional-order gradient of the error defined as the traditional quadratic energy function. The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset. The numerical simulations effectively verify the theoretical observations of this paper as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stochastic Spectral Descent for Discrete Graphical Models
Carlson, David; Hsieh, Ya-Ping; Collins, Edo; ...
2015-12-14
Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted asmore » gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.« less
NASA Technical Reports Server (NTRS)
Duong, T. A.
2004-01-01
In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
Online learning in optical tomography: a stochastic approach
NASA Astrophysics Data System (ADS)
Chen, Ke; Li, Qin; Liu, Jian-Guo
2018-07-01
We study the inverse problem of radiative transfer equation (RTE) using stochastic gradient descent method (SGD) in this paper. Mathematically, optical tomography amounts to recovering the optical parameters in RTE using the incoming–outgoing pair of light intensity. We formulate it as a PDE-constraint optimization problem, where the mismatch of computed and measured outgoing data is minimized with same initial data and RTE constraint. The memory and computation cost it requires, however, is typically prohibitive, especially in high dimensional space. Smart iterative solvers that only use partial information in each step is called for thereafter. Stochastic gradient descent method is an online learning algorithm that randomly selects data for minimizing the mismatch. It requires minimum memory and computation, and advances fast, therefore perfectly serves the purpose. In this paper we formulate the problem, in both nonlinear and its linearized setting, apply SGD algorithm and analyze the convergence performance.
Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.
Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter
2012-08-01
An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at.... The steady gradient and rate of climb/descent must be determined at each weight, altitude, and ambient...
Nonuniformity correction for an infrared focal plane array based on diamond search block matching.
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.
Algorithms for accelerated convergence of adaptive PCA.
Chatterjee, C; Kang, Z; Roychowdhury, V P
2000-01-01
We derive and discuss new adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja, Sanger, and Xu. It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: 1) gradient descent; 2) steepest descent; 3) conjugate direction; and 4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods.We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.
Understanding the Convolutional Neural Networks with Gradient Descent and Backpropagation
NASA Astrophysics Data System (ADS)
Zhou, XueFei
2018-04-01
With the development of computer technology, the applications of machine learning are more and more extensive. And machine learning is providing endless opportunities to develop new applications. One of those applications is image recognition by using Convolutional Neural Networks (CNNs). CNN is one of the most common algorithms in image recognition. It is significant to understand its theory and structure for every scholar who is interested in this field. CNN is mainly used in computer identification, especially in voice, text recognition and other aspects of the application. It utilizes hierarchical structure with different layers to accelerate computing speed. In addition, the greatest features of CNNs are the weight sharing and dimension reduction. And all of these consolidate the high effectiveness and efficiency of CNNs with idea computing speed and error rate. With the help of other learning altruisms, CNNs could be used in several scenarios for machine learning, especially for deep learning. Based on the general introduction to the background and the core solution CNN, this paper is going to focus on summarizing how Gradient Descent and Backpropagation work, and how they contribute to the high performances of CNNs. Also, some practical applications will be discussed in the following parts. The last section exhibits the conclusion and some perspectives of future work.
Gradient optimization and nonlinear control
NASA Technical Reports Server (NTRS)
Hasdorff, L.
1976-01-01
The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
Neural networks applications to control and computations
NASA Technical Reports Server (NTRS)
Luxemburg, Leon A.
1994-01-01
Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.
Bhaya, Amit; Kaszkurewicz, Eugenius
2004-01-01
It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.
Statistical Mechanics of Node-perturbation Learning with Noisy Baseline
NASA Astrophysics Data System (ADS)
Hara, Kazuyuki; Katahira, Kentaro; Okada, Masato
2017-02-01
Node-perturbation learning is a type of statistical gradient descent algorithm that can be applied to problems where the objective function is not explicitly formulated, including reinforcement learning. It estimates the gradient of an objective function by using the change in the object function in response to the perturbation. The value of the objective function for an unperturbed output is called a baseline. Cho et al. proposed node-perturbation learning with a noisy baseline. In this paper, we report on building the statistical mechanics of Cho's model and on deriving coupled differential equations of order parameters that depict learning dynamics. We also show how to derive the generalization error by solving the differential equations of order parameters. On the basis of the results, we show that Cho's results are also apply in general cases and show some general performances of Cho's model.
Learning Structured Classifiers with Dual Coordinate Ascent
2010-06-01
stochastic gradient descent (SGD) [LeCun et al., 1998], and the margin infused relaxed algorithm (MIRA) [ Crammer et al., 2006]. This paper presents a...evaluate these methods on the Prague Dependency Treebank us- ing online large-margin learning tech- niques ( Crammer et al., 2003; McDonald et al., 2005...between two kinds of factors: hard constraint factors, which are used to rule out forbidden par- tial assignments by mapping them to zero potential values
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
Energy minimization in medical image analysis: Methodologies and applications.
Zhao, Feng; Xie, Xianghua
2016-02-01
Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
NASA Astrophysics Data System (ADS)
Peckerar, Martin C.; Marrian, Christie R.
1995-05-01
Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.
Convergence Rates of Finite Difference Stochastic Approximation Algorithms
2016-06-01
dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
A Fast Deep Learning System Using GPU
2014-06-01
hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...widely used in data modeling until three decades later when efficient training algorithm for RBM is invented by Hinton [3] and the computing power is...be trained using most of optimization algorithms , such as BP, conjugate gradient descent (CGD) or Levenberg-Marquardt (LM). The advantage of this
One Giant Leap for Categorizers: One Small Step for Categorization Theory
Smith, J. David; Ell, Shawn W.
2015-01-01
We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Smoothing of cost function leads to faster convergence of neural network learning
NASA Astrophysics Data System (ADS)
Xu, Li-Qun; Hall, Trevor J.
1994-03-01
One of the major problems in supervised learning of neural networks is the inevitable local minima inherent in the cost function f(W,D). This often makes classic gradient-descent-based learning algorithms that calculate the weight updates for each iteration according to (Delta) W(t) equals -(eta) (DOT)$DELwf(W,D) powerless. In this paper we describe a new strategy to solve this problem, which, adaptively, changes the learning rate and manipulates the gradient estimator simultaneously. The idea is to implicitly convert the local- minima-laden cost function f((DOT)) into a sequence of its smoothed versions {f(beta t)}Ttequals1, which, subject to the parameter (beta) t, bears less details at time t equals 1 and gradually more later on, the learning is actually performed on this sequence of functionals. The corresponding smoothed global minima obtained in this way, {Wt}Ttequals1, thus progressively approximate W-the desired global minimum. Experimental results on a nonconvex function minimization problem and a typical neural network learning task are given, analyses and discussions of some important issues are provided.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.
Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar
2017-03-01
The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Accelerating deep neural network training with inconsistent stochastic gradient descent.
Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat
2017-09-01
Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Li, Xiao; Chen, Zilum; Xu, Xiaojun; Liu, Zejin
2009-10-01
Coherent summation of fibre laser beams, which can be scaled to a relatively large number of elements, is simulated by using the stochastic parallel gradient descent (SPGD) algorithm. The applicability of this algorithm for coherent summation is analysed and its optimisaton parameters and bandwidth limitations are studied.
Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege
2016-08-15
One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.
2010-05-07
important for deep modular systems is that taking a series of small update steps and stopping before convergence, so called early stopping, is a form of regu...larization around the initial parameters of the system . For example, the stochastic gradient descent 5 1 u + 1 v = 1 6‖x2‖q = ‖x‖22q 22 Chapter 2...Aside from the overall speed of the classifier, no quantitative performance analysis was given, and the role played by the features in the larger system
Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.
2014-12-01
The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.
The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less
Product Distribution Theory for Control of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
Ellipsoidal fuzzy learning for smart car platoons
NASA Astrophysics Data System (ADS)
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.
Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo
2011-07-01
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji
2013-04-01
Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.
Learning and optimization with cascaded VLSI neural network building-block chips
NASA Technical Reports Server (NTRS)
Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.
1992-01-01
To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.
Analysis of Online Composite Mirror Descent Algorithm.
Lei, Yunwen; Zhou, Ding-Xuan
2017-03-01
We study the convergence of the online composite mirror descent algorithm, which involves a mirror map to reflect the geometry of the data and a convex objective function consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis provides convergence rates in terms of properties of the strongly convex differentiable mirror map and the objective function. For a class of objective functions with Hölder continuous gradients, the convergence rates of the excess (regularized) risk under polynomially decaying step sizes have the order [Formula: see text] after [Formula: see text] iterates. Our results improve the existing error analysis for the online composite mirror descent algorithm by avoiding averaging and removing boundedness assumptions, and they sharpen the existing convergence rates of the last iterate for online gradient descent without any boundedness assumptions. Our methodology mainly depends on a novel error decomposition in terms of an excess Bregman distance, refined analysis of self-bounding properties of the objective function, and the resulting one-step progress bounds.
Gradient descent for robust kernel-based regression
NASA Astrophysics Data System (ADS)
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
Deep neural mapping support vector machines.
Li, Yujian; Zhang, Ting
2017-09-01
The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
A pipeline leakage locating method based on the gradient descent algorithm
NASA Astrophysics Data System (ADS)
Li, Yulong; Yang, Fan; Ni, Na
2018-04-01
A pipeline leakage locating method based on the gradient descent algorithm is proposed in this paper. The method has low computing complexity, which is suitable for practical application. We have built experimental environment in real underground pipeline network. A lot of real data has been gathered in the past three months. Every leak point has been certificated by excavation. Results show that positioning error is within 0.4 meter. Rate of false alarm and missing alarm are both under 20%. The calculating time is not above 5 seconds.
Applying Gradient Descent in Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
Intelligence system based classification approach for medical disease diagnosis
NASA Astrophysics Data System (ADS)
Sagir, Abdu Masanawa; Sathasivam, Saratha
2017-08-01
The prediction of breast cancer in women who have no signs or symptoms of the disease as well as survivability after undergone certain surgery has been a challenging problem for medical researchers. The decision about presence or absence of diseases depends on the physician's intuition, experience and skill for comparing current indicators with previous one than on knowledge rich data hidden in a database. This measure is a very crucial and challenging task. The goal is to predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system. A framework describes methodology for designing and evaluation of classification performances of two discrete ANFIS systems of hybrid learning algorithms least square estimates with Modified Levenberg-Marquardt and Gradient descent algorithms that can be used by physicians to accelerate diagnosis process. The proposed method's performance was evaluated based on training and test datasets with mammographic mass and Haberman's survival Datasets obtained from benchmarked datasets of University of California at Irvine's (UCI) machine learning repository. The robustness of the performance measuring total accuracy, sensitivity and specificity is examined. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.
Rules and mechanisms for efficient two-stage learning in neural circuits.
Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay
2017-04-04
Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2013 CFR
2013-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2014 CFR
2014-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2012 CFR
2012-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2011 CFR
2011-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Algorithm for Training a Recurrent Multilayer Perceptron
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.
Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R
2015-01-05
Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. © 2014 Wiley Periodicals, Inc.
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than... tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is safe. The gradient must be established as an operating limitation and the information necessary to...
Top-Down Visual Saliency via Joint CRF and Dictionary Learning.
Yang, Jimei; Yang, Ming-Hsuan
2017-03-01
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
Recursive least-squares learning algorithms for neural networks
NASA Astrophysics Data System (ADS)
Lewis, Paul S.; Hwang, Jenq N.
1990-11-01
This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].
Steepest descent method implementation on unconstrained optimization problem using C++ program
NASA Astrophysics Data System (ADS)
Napitupulu, H.; Sukono; Mohd, I. Bin; Hidayat, Y.; Supian, S.
2018-03-01
Steepest Descent is known as the simplest gradient method. Recently, many researches are done to obtain the appropriate step size in order to reduce the objective function value progressively. In this paper, the properties of steepest descent method from literatures are reviewed together with advantages and disadvantages of each step size procedure. The development of steepest descent method due to its step size procedure is discussed. In order to test the performance of each step size, we run a steepest descent procedure in C++ program. We implemented it to unconstrained optimization test problem with two variables, then we compare the numerical results of each step size procedure. Based on the numerical experiment, we conclude the general computational features and weaknesses of each procedure in each case of problem.
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai
2017-03-01
This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rules and mechanisms for efficient two-stage learning in neural circuits
Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay
2017-01-01
Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning. DOI: http://dx.doi.org/10.7554/eLife.20944.001 PMID:28374674
Railway obstacle detection algorithm using neural network
NASA Astrophysics Data System (ADS)
Yu, Mingyang; Yang, Peng; Wei, Sen
2018-05-01
Aiming at the difficulty of detection of obstacle in outdoor railway scene, a data-oriented method based on neural network to obtain image objects is proposed. First, we mark objects of images(such as people, trains, animals) acquired on the Internet. and then use the residual learning units to build Fast R-CNN framework. Then, the neural network is trained to get the target image characteristics by using stochastic gradient descent algorithm. Finally, a well-trained model is used to identify an outdoor railway image. if it includes trains and other objects, it will issue an alert. Experiments show that the correct rate of warning reached 94.85%.
Parents and Siblings As Early Resources for Young Children's Learning in Mexican-Descent Families.
ERIC Educational Resources Information Center
Perez-Granados, Deanne R.; Callanan, Maureen A.
1997-01-01
Interviews with parents from 50 Mexican-descent families revealed that parents encouraged their preschool children to ask questions about science and causal relationships; older and younger siblings learned different skills from one another; and children learned through observation and imitation. Discusses issues of "match" between home…
Miller, Vonda H; Jansen, Ben H
2008-12-01
Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Explorations on High Dimensional Landscapes: Spin Glasses and Deep Learning
NASA Astrophysics Data System (ADS)
Sagun, Levent
This thesis deals with understanding the structure of high-dimensional and non-convex energy landscapes. In particular, its focus is on the optimization of two classes of functions: homogeneous polynomials and loss functions that arise in machine learning. In the first part, the notion of complexity of a smooth, real-valued function is studied through its critical points. Existing theoretical results predict that certain random functions that are defined on high dimensional domains have a narrow band of values whose pre-image contains the bulk of its critical points. This section provides empirical evidence for convergence of gradient descent to local minima whose energies are near the predicted threshold justifying the existing asymptotic theory. Moreover, it is empirically shown that a similar phenomenon may hold for deep learning loss functions. Furthermore, there is a comparative analysis of gradient descent and its stochastic version showing that in high dimensional regimes the latter is a mere speedup. The next study focuses on the halting time of an algorithm at a given stopping condition. Given an algorithm, the normalized fluctuations of the halting time follow a distribution that remains unchanged even when the input data is sampled from a new distribution. Two qualitative classes are observed: a Gumbel-like distribution that appears in Google searches, human decision times, and spin glasses and a Gaussian-like distribution that appears in conjugate gradient method, deep learning with MNIST and random input data. Following the universality phenomenon, the Hessian of the loss functions of deep learning is studied. The spectrum is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. Empirical evidence is presented for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data. Furthermore, an algorithm is proposed such that it would explore such large dimensional, degenerate landscapes to locate a solution with decent generalization properties. Finally, a demonstration of how the new method can explain the empirical success of some of the recent methods that have been proposed for distributed deep learning. In the second part, two applied machine learning problems are studied that are complementary to the machine learning problems of part I. First, US asylum applications cases are studied using random forests on the data of past twenty years. Using only features up to when the case opens, the algorithm can predict the outcome of the case with 80% accuracy. Next, a particular question and answer system has been studied. The questions are collected from Jeopardy! show and they fed to Google, then the results are parsed into a recurrent neural network to come up with a system that would outcome the answer to the original question. Close to 50% accuracy is achieved where human level benchmark is just a little above 60%.
A conjugate gradient method with descent properties under strong Wolfe line search
NASA Astrophysics Data System (ADS)
Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.
2017-09-01
The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.
Representational Distance Learning for Deep Neural Networks
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889
Representational Distance Learning for Deep Neural Networks.
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.
ERIC Educational Resources Information Center
Reyes, Reynaldo, III
2007-01-01
Many students of Mexican descent must learn how to be successful students. This study describes 5 students of Mexican descent from situationally marginalized lives who were a part of a support and retention scholarship program (College Assistance Migrant Program--CAMP). These case studies document how they perceived their learning and how they…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.
1994-12-31
By means of the author`s earlier theory of antieigenvalues and antieigenvectors, a new computational approach to iterative methods is presented. This enables an explicit trigonometric understanding of iterative convergence and provides new insights into the sharpness of error bounds. Direct applications to Gradient descent, Conjugate gradient, GCR(k), Orthomin, CGN, GMRES, CGS, and other matrix iterative schemes will be given.
On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2013-12-01
Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.
Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao
2017-01-01
Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858
A differential memristive synapse circuit for on-line learning in neuromorphic computing systems
NASA Astrophysics Data System (ADS)
Nair, Manu V.; Muller, Lorenz K.; Indiveri, Giacomo
2017-12-01
Spike-based learning with memristive devices in neuromorphic computing architectures typically uses learning circuits that require overlapping pulses from pre- and post-synaptic nodes. This imposes severe constraints on the length of the pulses transmitted in the network, and on the network’s throughput. Furthermore, most of these circuits do not decouple the currents flowing through memristive devices from the one stimulating the target neuron. This can be a problem when using devices with high conductance values, because of the resulting large currents. In this paper, we propose a novel circuit that decouples the current produced by the memristive device from the one used to stimulate the post-synaptic neuron, by using a novel differential scheme based on the Gilbert normalizer circuit. We show how this circuit is useful for reducing the effect of variability in the memristive devices, and how it is ideally suited for spike-based learning mechanisms that do not require overlapping pre- and post-synaptic pulses. We demonstrate the features of the proposed synapse circuit with SPICE simulations, and validate its learning properties with high-level behavioral network simulations which use a stochastic gradient descent learning rule in two benchmark classification tasks.
Learning algorithms for human-machine interfaces.
Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A
2009-05-01
The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore-Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
Learning Algorithms for Human–Machine Interfaces
Fishbach, Alon; Mussa-Ivaldi, Ferdinando A.
2012-01-01
The goal of this study is to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user and the controlled device. To evaluate these algorithms, we have developed a simple experimental framework. Subjects wear an instrumented data glove that records finger motions. The high-dimensional glove signals remotely control the joint angles of a simulated planar two-link arm on a computer screen, which is used to acquire targets. A machine learning algorithm was applied to adaptively change the transformation between finger motion and the simulated robot arm. This algorithm was either LMS gradient descent or the Moore–Penrose (MP) pseudoinverse transformation. Both algorithms modified the glove-to-joint angle map so as to reduce the endpoint errors measured in past performance. The MP group performed worse than the control group (subjects not exposed to any machine learning), while the LMS group outperformed the control subjects. However, the LMS subjects failed to achieve better generalization than the control subjects, and after extensive training converged to the same level of performance as the control subjects. These results highlight the limitations of coadaptive learning using only endpoint error reduction. PMID:19203886
Model-Free Optimal Tracking Control via Critic-Only Q-Learning.
Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding
2016-10-01
Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms
2010-01-01
Algorithm The cyclic coordinate descent algorithm is also known as the nonlinear Gauss - Seidel iteration [32]. There are several studies of this type of...vkρ(vi−1). It can be shown that the above BB gradient projection direction is always a descent direction. The R-linear convergence of the BB method has...KKT solution ) of the inexact pricing algorithm for MISO interference channel. The latter is interesting since the convergence of the original pricing
A three-term conjugate gradient method under the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
Ring-push metric learning for person reidentification
NASA Astrophysics Data System (ADS)
He, Botao; Yu, Shaohua
2017-05-01
Person reidentification (re-id) has been widely studied because of its extensive use in video surveillance and forensics applications. It aims to search a specific person among a nonoverlapping camera network, which is highly challenging due to large variations in the cluttered background, human pose, and camera viewpoint. We present a metric learning algorithm for learning a Mahalanobis distance for re-id. Generally speaking, there exist two forces in the conventional metric learning process, one pulling force that pulls points of the same class closer and the other pushing force that pushes points of different classes as far apart as possible. We argue that, when only a limited number of training data are given, forcing interclass distances to be as large as possible may drive the metric to overfit the uninformative part of the images, such as noises and backgrounds. To alleviate overfitting, we propose the ring-push metric learning algorithm. Different from other metric learning methods that only punish too small interclass distances, in the proposed method, both too small and too large inter-class distances are punished. By introducing the generalized logistic function as the loss, we formulate the ring-push metric learning as a convex optimization problem and utilize the projected gradient descent method to solve it. The experimental results on four public datasets demonstrate the effectiveness of the proposed algorithm.
Online Sequential Projection Vector Machine with Adaptive Data Mean Update
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM. PMID:27143958
Online Sequential Projection Vector Machine with Adaptive Data Mean Update.
Chen, Lin; Jia, Ji-Ting; Zhang, Qiong; Deng, Wan-Yu; Wei, Wei
2016-01-01
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly. In particular, the model parameters including (1) the projection vectors for dimension reduction, (2) the input weights, biases, and output weights, and (3) the number of hidden nodes can be updated simultaneously. Moreover, only one parameter, the number of hidden nodes, needs to be determined manually, and this makes it easy for use in real applications. Performance comparison was made on various high-dimensional classification problems for OSPVM against other fast online algorithms including budgeted stochastic gradient descent (BSGD) approach, adaptive multihyperplane machine (AMM), primal estimated subgradient solver (Pegasos), online sequential extreme learning machine (OSELM), and SVD + OSELM (feature selection based on SVD is performed before OSELM). The results obtained demonstrated the superior generalization performance and efficiency of the OSPVM.
Structure identification in fuzzy inference using reinforcement learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1993-01-01
In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.
Compensation of significant parametric uncertainties using sliding mode online learning
NASA Astrophysics Data System (ADS)
Schnetter, Philipp; Kruger, Thomas
An augmented nonlinear inverse dynamics (NID) flight control strategy using sliding mode online learning for a small unmanned aircraft system (UAS) is presented. Because parameter identification for this class of aircraft often is not valid throughout the complete flight envelope, aerodynamic parameters used for model based control strategies may show significant deviations. For the concept of feedback linearization this leads to inversion errors that in combination with the distinctive susceptibility of small UAS towards atmospheric turbulence pose a demanding control task for these systems. In this work an adaptive flight control strategy using feedforward neural networks for counteracting such nonlinear effects is augmented with the concept of sliding mode control (SMC). SMC-learning is derived from variable structure theory. It considers a neural network and its training as a control problem. It is shown that by the dynamic calculation of the learning rates, stability can be guaranteed and thus increase the robustness against external disturbances and system failures. With the resulting higher speed of convergence a wide range of simultaneously occurring disturbances can be compensated. The SMC-based flight controller is tested and compared to the standard gradient descent (GD) backpropagation algorithm under the influence of significant model uncertainties and system failures.
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
Fast temporal neural learning using teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)
1992-01-01
A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.
Fast temporal neural learning using teacher forcing
NASA Technical Reports Server (NTRS)
Toomarian, Nikzad (Inventor); Bahren, Jacob (Inventor)
1995-01-01
A neural network is trained to output a time dependent target vector defined over a predetermined time interval in response to a time dependent input vector defined over the same time interval by applying corresponding elements of the error vector, or difference between the target vector and the actual neuron output vector, to the inputs of corresponding output neurons of the network as corrective feedback. This feedback decreases the error and quickens the learning process, so that a much smaller number of training cycles are required to complete the learning process. A conventional gradient descent algorithm is employed to update the neural network parameters at the end of the predetermined time interval. The foregoing process is repeated in repetitive cycles until the actual output vector corresponds to the target vector. In the preferred embodiment, as the overall error of the neural network output decreasing during successive training cycles, the portion of the error fed back to the output neurons is decreased accordingly, allowing the network to learn with greater freedom from teacher forcing as the network parameters converge to their optimum values. The invention may also be used to train a neural network with stationary training and target vectors.
Accelerating IMRT optimization by voxel sampling
NASA Astrophysics Data System (ADS)
Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.
2007-12-01
This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.
An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.
Bukovsky, Ivo; Homma, Noriyasu
2017-09-01
Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.
Self-Organizing Hidden Markov Model Map (SOHMMM).
Ferles, Christos; Stafylopatis, Andreas
2013-12-01
A hybrid approach combining the Self-Organizing Map (SOM) and the Hidden Markov Model (HMM) is presented. The Self-Organizing Hidden Markov Model Map (SOHMMM) establishes a cross-section between the theoretic foundations and algorithmic realizations of its constituents. The respective architectures and learning methodologies are fused in an attempt to meet the increasing requirements imposed by the properties of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein chain molecules. The fusion and synergy of the SOM unsupervised training and the HMM dynamic programming algorithms bring forth a novel on-line gradient descent unsupervised learning algorithm, which is fully integrated into the SOHMMM. Since the SOHMMM carries out probabilistic sequence analysis with little or no prior knowledge, it can have a variety of applications in clustering, dimensionality reduction and visualization of large-scale sequence spaces, and also, in sequence discrimination, search and classification. Two series of experiments based on artificial sequence data and splice junction gene sequences demonstrate the SOHMMM's characteristics and capabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2015-12-01
Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.
A hybrid neural network model for noisy data regression.
Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M
2004-04-01
A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.
Natural learning in NLDA networks.
González, Ana; Dorronsoro, José R
2007-07-01
Non Linear Discriminant Analysis (NLDA) networks combine a standard Multilayer Perceptron (MLP) transfer function with the minimization of a Fisher analysis criterion. In this work we will define natural-like gradients for NLDA network training. Instead of a more principled approach, that would require the definition of an appropriate Riemannian structure on the NLDA weight space, we will follow a simpler procedure, based on the observation that the gradient of the NLDA criterion function J can be written as the expectation nablaJ(W)=E[Z(X,W)] of a certain random vector Z and defining then I=E[Z(X,W)Z(X,W)(t)] as the Fisher information matrix in this case. This definition of I formally coincides with that of the information matrix for the MLP or other square error functions; the NLDA J criterion, however, does not have this structure. Although very simple, the proposed approach shows much faster convergence than that of standard gradient descent, even when its costlier complexity is taken into account. While the faster convergence of natural MLP batch training can be also explained in terms of its relationship with the Gauss-Newton minimization method, this is not the case for NLDA training, as we will see analytically and numerically that the hessian and information matrices are different.
Adaptive Batch Mode Active Learning.
Chakraborty, Shayok; Balasubramanian, Vineeth; Panchanathan, Sethuraman
2015-08-01
Active learning techniques have gained popularity to reduce human effort in labeling data instances for inducing a classifier. When faced with large amounts of unlabeled data, such algorithms automatically identify the exemplar and representative instances to be selected for manual annotation. More recently, there have been attempts toward a batch mode form of active learning, where a batch of data points is simultaneously selected from an unlabeled set. Real-world applications require adaptive approaches for batch selection in active learning, depending on the complexity of the data stream in question. However, the existing work in this field has primarily focused on static or heuristic batch size selection. In this paper, we propose two novel optimization-based frameworks for adaptive batch mode active learning (BMAL), where the batch size as well as the selection criteria are combined in a single formulation. We exploit gradient-descent-based optimization strategies as well as properties of submodular functions to derive the adaptive BMAL algorithms. The solution procedures have the same computational complexity as existing state-of-the-art static BMAL techniques. Our empirical results on the widely used VidTIMIT and the mobile biometric (MOBIO) data sets portray the efficacy of the proposed frameworks and also certify the potential of these approaches in being used for real-world biometric recognition applications.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
A Framework for Hierarchical Perception-Action Learning Utilizing Fuzzy Reasoning.
Windridge, David; Felsberg, Michael; Shaukat, Affan
2013-02-01
Perception-action (P-A) learning is an approach to cognitive system building that seeks to reduce the complexity associated with conventional environment-representation/action-planning approaches. Instead, actions are directly mapped onto the perceptual transitions that they bring about, eliminating the need for intermediate representation and significantly reducing training requirements. We here set out a very general learning framework for cognitive systems in which online learning of the P-A mapping may be conducted within a symbolic processing context, so that complex contextual reasoning can influence the P-A mapping. In utilizing a variational calculus approach to define a suitable objective function, the P-A mapping can be treated as an online learning problem via gradient descent using partial derivatives. Our central theoretical result is to demonstrate top-down modulation of low-level perceptual confidences via the Jacobian of the higher levels of a subsumptive P-A hierarchy. Thus, the separation of the Jacobian as a multiplying factor between levels within the objective function naturally enables the integration of abstract symbolic manipulation in the form of fuzzy deductive logic into the P-A mapping learning. We experimentally demonstrate that the resulting framework achieves significantly better accuracy than using P-A learning without top-down modulation. We also demonstrate that it permits novel forms of context-dependent multilevel P-A mapping, applying the mechanism in the context of an intelligent driver assistance system.
Generalization in Adaptation to Stable and Unstable Dynamics
Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne
2012-01-01
Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191
Iterative free-energy optimization for recurrent neural networks (INFERNO).
Pitti, Alexandre; Gaussier, Philippe; Quoy, Mathias
2017-01-01
The intra-parietal lobe coupled with the Basal Ganglia forms a working memory that demonstrates strong planning capabilities for generating robust yet flexible neuronal sequences. Neurocomputational models however, often fails to control long range neural synchrony in recurrent spiking networks due to spontaneous activity. As a novel framework based on the free-energy principle, we propose to see the problem of spikes' synchrony as an optimization problem of the neurons sub-threshold activity for the generation of long neuronal chains. Using a stochastic gradient descent, a reinforcement signal (presumably dopaminergic) evaluates the quality of one input vector to move the recurrent neural network to a desired activity; depending on the error made, this input vector is strengthened to hill-climb the gradient or elicited to search for another solution. This vector can be learned then by one associative memory as a model of the basal-ganglia to control the recurrent neural network. Experiments on habit learning and on sequence retrieving demonstrate the capabilities of the dual system to generate very long and precise spatio-temporal sequences, above two hundred iterations. Its features are applied then to the sequential planning of arm movements. In line with neurobiological theories, we discuss its relevance for modeling the cortico-basal working memory to initiate flexible goal-directed neuronal chains of causation and its relation to novel architectures such as Deep Networks, Neural Turing Machines and the Free-Energy Principle.
A feasible DY conjugate gradient method for linear equality constraints
NASA Astrophysics Data System (ADS)
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Approximate solution of the p-median minimization problem
NASA Astrophysics Data System (ADS)
Il'ev, V. P.; Il'eva, S. D.; Navrotskaya, A. A.
2016-09-01
A version of the facility location problem (the well-known p-median minimization problem) and its generalization—the problem of minimizing a supermodular set function—is studied. These problems are NP-hard, and they are approximately solved by a gradient algorithm that is a discrete analog of the steepest descent algorithm. A priori bounds on the worst-case behavior of the gradient algorithm for the problems under consideration are obtained. As a consequence, a bound on the performance guarantee of the gradient algorithm for the p-median minimization problem in terms of the production and transportation cost matrix is obtained.
A modified form of conjugate gradient method for unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa
2016-06-01
Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions and...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
A new family of Polak-Ribiere-Polyak conjugate gradient method with the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
Conjugate gradient (CG) method is an important technique in unconstrained optimization, due to its effectiveness and low memory requirements. The focus of this paper is to introduce a new CG method for solving large scale unconstrained optimization. Theoretical proofs show that the new method fulfills sufficient descent condition if strong Wolfe-Powell inexact line search is used. Besides, computational results show that our proposed method outperforms to other existing CG methods.
Radial basis function network learns ceramic processing and predicts related strength and density
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Baaklini, George Y.; Vary, Alex; Tjia, Robert E.
1993-01-01
Radial basis function (RBF) neural networks were trained using the data from 273 Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135 MOR bars which were tested at 1370 C. Milling time, sintering time, and sintering gas pressure were the processing parameters used as the input features. Flexural strength and density were the outputs by which the RBF networks were assessed. The 'nodes-at-data-points' method was used to set the hidden layer centers and output layer training used the gradient descent method. The RBF network predicted strength with an average error of less than 12 percent and density with an average error of less than 2 percent. Further, the RBF network demonstrated a potential for optimizing and accelerating the development and processing of ceramic materials.
NASA Astrophysics Data System (ADS)
Gong, Maoguo; Yang, Hailun; Zhang, Puzhao
2017-07-01
Ternary change detection aims to detect changes and group the changes into positive change and negative change. It is of great significance in the joint interpretation of spatial-temporal synthetic aperture radar images. In this study, sparse autoencoder, convolutional neural networks (CNN) and unsupervised clustering are combined to solve ternary change detection problem without any supervison. Firstly, sparse autoencoder is used to transform log-ratio difference image into a suitable feature space for extracting key changes and suppressing outliers and noise. And then the learned features are clustered into three classes, which are taken as the pseudo labels for training a CNN model as change feature classifier. The reliable training samples for CNN are selected from the feature maps learned by sparse autoencoder with certain selection rules. Having training samples and the corresponding pseudo labels, the CNN model can be trained by using back propagation with stochastic gradient descent. During its training procedure, CNN is driven to learn the concept of change, and more powerful model is established to distinguish different types of changes. Unlike the traditional methods, the proposed framework integrates the merits of sparse autoencoder and CNN to learn more robust difference representations and the concept of change for ternary change detection. Experimental results on real datasets validate the effectiveness and superiority of the proposed framework.
NASA Technical Reports Server (NTRS)
Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.;
1996-01-01
Observations of the long-lived tracers N2O, CH4 and HF obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in early November 1994 are used to estimate average descent rates during winter in the Antarctic polar vortex of 0.5 to 1.5 km/month in the lower stratosphere, and 2.5 to 3.5 km/month in the middle and upper stratosphere. Descent rates inferred from ATMOS tracer observations agree well with theoretical estimates obtained using radiative heating calculations. Air of mesospheric origin (N2O less than 5 ppbV) was observed at altitudes above about 25 km within the vortex. Strong horizontal gradients of tracer mixing ratios, the presence of mesospheric air in the vortex in early spring, and the variation with altitude of inferred descent rates indicate that the Antarctic vortex is highly isolated from midlatitudes throughout the winter from approximately 20 km to the stratopause. The 1994 Antarctic vortex remained well isolated between 20 and 30 km through at least mid-November.
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...
Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models
ERIC Educational Resources Information Center
Humphreys, L. D.; McKenna, P. J.
2005-01-01
This paper describes how the method of steepest descent can be used to find periodic solutions of differential equations. Applications to two suspension bridge models are discussed, and the method is used to find non-obvious large-amplitude solutions.
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient multiplying the L2 norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography.
NASA Astrophysics Data System (ADS)
Dong, Bing; Ren, De-Qing; Zhang, Xi
2011-08-01
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.
3D-Web-GIS RFID location sensing system for construction objects.
Ko, Chien-Ho
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.
Optimization of OT-MACH Filter Generation for Target Recognition
NASA Technical Reports Server (NTRS)
Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.
3D-Web-GIS RFID Location Sensing System for Construction Objects
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821
Cosmic Microwave Background Mapmaking with a Messenger Field
NASA Astrophysics Data System (ADS)
Huffenberger, Kevin M.; Næss, Sigurd K.
2018-01-01
We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.
A Convex Formulation for Learning a Shared Predictive Structure from Multiple Tasks
Chen, Jianhui; Tang, Lei; Liu, Jun; Ye, Jieping
2013-01-01
In this paper, we consider the problem of learning from multiple related tasks for improved generalization performance by extracting their shared structures. The alternating structure optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has been successfully applied in various multitask learning problems. However, ASO is nonconvex and the alternating algorithm only finds a local solution. We first present an improved ASO formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP), which is, however, not scalable to large datasets. We propose to employ the block coordinate descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find the globally optimal solution to rASO; we also develop efficient algorithms for solving the key subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and the Drosophila gene expression pattern images datasets demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical analysis. PMID:23520249
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
A General Method for Solving Systems of Non-Linear Equations
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)
1995-01-01
The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
NASA Astrophysics Data System (ADS)
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model.
NASA Astrophysics Data System (ADS)
Lin, Daw-Tung; Ligomenides, Panos A.; Dayhoff, Judith E.
1993-08-01
Inspired from the time delays that occur in neurobiological signal transmission, we describe an adaptive time delay neural network (ATNN) which is a powerful dynamic learning technique for spatiotemporal pattern transformation and temporal sequence identification. The dynamic properties of this network are formulated through the adaptation of time-delays and synapse weights, which are adjusted on-line based on gradient descent rules according to the evolution of observed inputs and outputs. We have applied the ATNN to examples that possess spatiotemporal complexity, with temporal sequences that are completed by the network. The ATNN is able to be applied to pattern completion. Simulation results show that the ATNN learns the topology of a circular and figure eight trajectories within 500 on-line training iterations, and reproduces the trajectory dynamically with very high accuracy. The ATNN was also trained to model the Fourier series expansion of the sum of different odd harmonics. The resulting network provides more flexibility and efficiency than the TDNN and allows the network to seek optimal values for time-delays as well as optimal synapse weights.
Huang, Mingzhi; Zhang, Tao; Ruan, Jujun; Chen, Xiaohong
2017-01-01
A new efficient hybrid intelligent approach based on fuzzy wavelet neural network (FWNN) was proposed for effectively modeling and simulating biodegradation process of Dimethyl phthalate (DMP) in an anaerobic/anoxic/oxic (AAO) wastewater treatment process. With the self learning and memory abilities of neural networks (NN), handling uncertainty capacity of fuzzy logic (FL), analyzing local details superiority of wavelet transform (WT) and global search of genetic algorithm (GA), the proposed hybrid intelligent model can extract the dynamic behavior and complex interrelationships from various water quality variables. For finding the optimal values for parameters of the proposed FWNN, a hybrid learning algorithm integrating an improved genetic optimization and gradient descent algorithm is employed. The results show, compared with NN model (optimized by GA) and kinetic model, the proposed FWNN model have the quicker convergence speed, the higher prediction performance, and smaller RMSE (0.080), MSE (0.0064), MAPE (1.8158) and higher R2 (0.9851) values. which illustrates FWNN model simulates effluent DMP more accurately than the mechanism model. PMID:28120889
Efficient Online Learning Algorithms Based on LSTM Neural Networks.
Ergen, Tolga; Kozat, Suleyman Serdar
2017-09-13
We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
Chowdhary, J; Keyes, T
2002-02-01
Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.
Algorithms for Mathematical Programming with Emphasis on Bi-level Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldfarb, Donald; Iyengar, Garud
2014-05-22
The research supported by this grant was focused primarily on first-order methods for solving large scale and structured convex optimization problems and convex relaxations of nonconvex problems. These include optimal gradient methods, operator and variable splitting methods, alternating direction augmented Lagrangian methods, and block coordinate descent methods.
A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.
Araújo, Ricardo de A
2012-04-01
Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
A study on the performance comparison of metaheuristic algorithms on the learning of neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2017-08-01
The learning or training process of neural networks entails the task of finding the most optimal set of parameters, which includes translation vectors, dilation parameter, synaptic weights, and bias terms. Apart from the traditional gradient descent-based methods, metaheuristic methods can also be used for this learning purpose. Since the inception of genetic algorithm half a century ago, the last decade witnessed the explosion of a variety of novel metaheuristic algorithms, such as harmony search algorithm, bat algorithm, and whale optimization algorithm. Despite the proof of the no free lunch theorem in the discipline of optimization, a survey in the literature of machine learning gives contrasting results. Some researchers report that certain metaheuristic algorithms are superior to the others, whereas some others argue that different metaheuristic algorithms give comparable performance. As such, this paper aims to investigate if a certain metaheuristic algorithm will outperform the other algorithms. In this work, three metaheuristic algorithms, namely genetic algorithms, particle swarm optimization, and harmony search algorithm are considered. The algorithms are incorporated in the learning of neural networks and their classification results on the benchmark UCI machine learning data sets are compared. It is found that all three metaheuristic algorithms give similar and comparable performance, as captured in the average overall classification accuracy. The results corroborate the findings reported in the works done by previous researchers. Several recommendations are given, which include the need of statistical analysis to verify the results and further theoretical works to support the obtained empirical results.
A gradient system solution to Potts mean field equations and its electronic implementation.
Urahama, K; Ueno, S
1993-03-01
A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.
Hybrid DFP-CG method for solving unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Osman, Wan Farah Hanan Wan; Asrul Hery Ibrahim, Mohd; Mamat, Mustafa
2017-09-01
The conjugate gradient (CG) method and quasi-Newton method are both well known method for solving unconstrained optimization method. In this paper, we proposed a new method by combining the search direction between conjugate gradient method and quasi-Newton method based on BFGS-CG method developed by Ibrahim et al. The Davidon-Fletcher-Powell (DFP) update formula is used as an approximation of Hessian for this new hybrid algorithm. Numerical result showed that the new algorithm perform well than the ordinary DFP method and proven to posses both sufficient descent and global convergence properties.
NASA Astrophysics Data System (ADS)
Ghani, N. H. A.; Mohamed, N. S.; Zull, N.; Shoid, S.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is one of iterative techniques prominently used in solving unconstrained optimization problems due to its simplicity, low memory storage, and good convergence analysis. This paper presents a new hybrid conjugate gradient method, named NRM1 method. The method is analyzed under the exact and inexact line searches in given conditions. Theoretically, proofs show that the NRM1 method satisfies the sufficient descent condition with both line searches. The computational result indicates that NRM1 method is capable in solving the standard unconstrained optimization problems used. On the other hand, the NRM1 method performs better under inexact line search compared with exact line search.
A modified three-term PRP conjugate gradient algorithm for optimization models.
Wu, Yanlin
2017-01-01
The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.
North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships
NASA Technical Reports Server (NTRS)
Norris, Joel R.; Iacobellis, Sam F.
2005-01-01
This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111
Constraint-based Temporal Reasoning with Preferences
NASA Technical Reports Server (NTRS)
Khatib, Lina; Morris, Paul; Morris, Robert; Rossi, Francesca; Sperduti, Alessandro; Venable, K. Brent
2005-01-01
Often we need to work in scenarios where events happen over time and preferences are associated to event distances and durations. Soft temporal constraints allow one to describe in a natural way problems arising in such scenarios. In general, solving soft temporal problems require exponential time in the worst case, but there are interesting subclasses of problems which are polynomially solvable. In this paper we identify one of such subclasses giving tractability results. Moreover, we describe two solvers for this class of soft temporal problems, and we show some experimental results. The random generator used to build the problems on which tests are performed is also described. We also compare the two solvers highlighting the tradeoff between performance and robustness. Sometimes, however, temporal local preferences are difficult to set, and it may be easier instead to associate preferences to some complete solutions of the problem. To model everything in a uniform way via local preferences only, and also to take advantage of the existing constraint solvers which exploit only local preferences, we show that machine learning techniques can be useful in this respect. In particular, we present a learning module based on a gradient descent technique which induces local temporal preferences from global ones. We also show the behavior of the learning module on randomly-generated examples.
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.
Liu, Zitao; Hauskrecht, Milos
2015-01-01
Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.
E-Learning, Engineering, and Learners of African Descent: A Needs Analysis
ERIC Educational Resources Information Center
Eugene, Wanda; Clark, Kevin
2012-01-01
The rapid growth and short history of e-Learning technologies and the desire to see these technologies integrated into the learning process have caused a lack of specific guidance and firm foundation of principles on which to base instructional choices. Lessons cultivated in the Learning Sciences about the cultural influences of learning provide a…
Cascade Error Projection: A Learning Algorithm for Hardware Implementation
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Daud, Taher
1996-01-01
In this paper, we workout a detailed mathematical analysis for a new learning algorithm termed Cascade Error Projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters. Furthermore, CEP learning algorithm is operated only on one layer, whereas the other set of weights can be calculated deterministically. In association with the dynamical stepsize change concept to convert the weight update from infinite space into a finite space, the relation between the current stepsize and the previous energy level is also given and the estimation procedure for optimal stepsize is used for validation of our proposed technique. The weight values of zero are used for starting the learning for every layer, and a single hidden unit is applied instead of using a pool of candidate hidden units similar to cascade correlation scheme. Therefore, simplicity in hardware implementation is also obtained. Furthermore, this analysis allows us to select from other methods (such as the conjugate gradient descent or the Newton's second order) one of which will be a good candidate for the learning technique. The choice of learning technique depends on the constraints of the problem (e.g., speed, performance, and hardware implementation); one technique may be more suitable than others. Moreover, for a discrete weight space, the theoretical analysis presents the capability of learning with limited weight quantization. Finally, 5- to 8-bit parity and chaotic time series prediction problems are investigated; the simulation results demonstrate that 4-bit or more weight quantization is sufficient for learning neural network using CEP. In addition, it is demonstrated that this technique is able to compensate for less bit weight resolution by incorporating additional hidden units. However, generation result may suffer somewhat with lower bit weight quantization.
Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization.
Guan, Naiyang; Wei, Lei; Luo, Zhigang; Tao, Dacheng
2013-01-01
Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Symbol:see text]R(m x n) to the product of two lower-rank nonnegative factor matrices, i.e.,W[Symbol:see text]R(m x r) and H[Symbol:see text]R(r x n) (r < min {m,n}) and aims to preserve the local geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton's method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF. In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with the representative GNMF solvers.
Jankovic, Marko; Ogawa, Hidemitsu
2004-10-01
Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.
Mini-batch optimized full waveform inversion with geological constrained gradient filtering
NASA Astrophysics Data System (ADS)
Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai
2018-05-01
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
Implementation of neural network for color properties of polycarbonates
NASA Astrophysics Data System (ADS)
Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.
2014-05-01
In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.
Rocca, Jeffery F; Lister, Joshua G; Beninger, Richard J
2017-02-01
Rats repeatedly exposed to the bar test following injections with a dopamine D2-like receptor antagonist such as haloperidol show increased descent latencies, suggesting that contextual stimuli may lose their ability to elicit approach and other responses. Here, we showed that rats took progressively longer to initiate descent from a horizontal bar across sessions following daily intraperitoneal treatment (paired group) with the D2-like receptor antagonist, spiroperidol (0.125 and 0.25 mg/kg), but not in the control group that received 0.25 mg/kg in their home cage and testing following saline. When both groups were tested following an injection of spiroperidol or following saline, a sensitized and a conditioned increase in descent latency, respectively, were observed in the paired but not in the unpaired group. No evidence of sensitization or conditioning was found with the substituted benzamide compound, eticlopride (0.15-0.5 mg/kg), or the D2-like receptor partial agonist, aripiprazole (0.25-0.5 mg/kg). The different effects of these agents on learning may be related to different region-specific affinities for dopamine receptors or differences in receptor dissociation profiles. We suggest that the behavioural changes observed in spiroperidol-treated rats may reflect inverse incentive learning.
Individual predictions of eye-movements with dynamic scenes
NASA Astrophysics Data System (ADS)
Barth, Erhardt; Drewes, Jan; Martinetz, Thomas
2003-06-01
We present a model that predicts saccadic eye-movements and can be tuned to a particular human observer who is viewing a dynamic sequence of images. Our work is motivated by applications that involve gaze-contingent interactive displays on which information is displayed as a function of gaze direction. The approach therefore differs from standard approaches in two ways: (1) we deal with dynamic scenes, and (2) we provide means of adapting the model to a particular observer. As an indicator for the degree of saliency we evaluate the intrinsic dimension of the image sequence within a geometric approach implemented by using the structure tensor. Out of these candidate saliency-based locations, the currently attended location is selected according to a strategy found by supervised learning. The data are obtained with an eye-tracker and subjects who view video sequences. The selection algorithm receives candidate locations of current and past frames and a limited history of locations attended in the past. We use a linear mapping that is obtained by minimizing the quadratic difference between the predicted and the actually attended location by gradient descent. Being linear, the learned mapping can be quickly adapted to the individual observer.
Scalable Nonparametric Low-Rank Kernel Learning Using Block Coordinate Descent.
Hu, En-Liang; Kwok, James T
2015-09-01
Nonparametric kernel learning (NPKL) is a flexible approach to learn the kernel matrix directly without assuming any parametric form. It can be naturally formulated as a semidefinite program (SDP), which, however, is not very scalable. To address this problem, we propose the combined use of low-rank approximation and block coordinate descent (BCD). Low-rank approximation avoids the expensive positive semidefinite constraint in the SDP by replacing the kernel matrix variable with V(T)V, where V is a low-rank matrix. The resultant nonlinear optimization problem is then solved by BCD, which optimizes each column of V sequentially. It can be shown that the proposed algorithm has nice convergence properties and low computational complexities. Experiments on a number of real-world data sets show that the proposed algorithm outperforms state-of-the-art NPKL solvers.
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M
2018-03-01
This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana
2016-01-01
With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.
Online adaptive decision trees: pattern classification and function approximation.
Basak, Jayanta
2006-09-01
Recently we have shown that decision trees can be trained in the online adaptive (OADT) mode (Basak, 2004), leading to better generalization score. OADTs were bottlenecked by the fact that they are able to handle only two-class classification tasks with a given structure. In this article, we provide an architecture based on OADT, ExOADT, which can handle multiclass classification tasks and is able to perform function approximation. ExOADT is structurally similar to OADT extended with a regression layer. We also show that ExOADT is capable not only of adapting the local decision hyperplanes in the nonterminal nodes but also has the potential of smoothly changing the structure of the tree depending on the data samples. We provide the learning rules based on steepest gradient descent for the new model ExOADT. Experimentally we demonstrate the effectiveness of ExOADT in the pattern classification and function approximation tasks. Finally, we briefly discuss the relationship of ExOADT with other classification models.
Training feed-forward neural networks with gain constraints
Hartman
2000-04-01
Inaccurate input-output gains (partial derivatives of outputs with respect to inputs) are common in neural network models when input variables are correlated or when data are incomplete or inaccurate. Accurate gains are essential for optimization, control, and other purposes. We develop and explore a method for training feedforward neural networks subject to inequality or equality-bound constraints on the gains of the learned mapping. Gain constraints are implemented as penalty terms added to the objective function, and training is done using gradient descent. Adaptive and robust procedures are devised for balancing the relative strengths of the various terms in the objective function, which is essential when the constraints are inconsistent with the data. The approach has the virtue that the model domain of validity can be extended via extrapolation training, which can dramatically improve generalization. The algorithm is demonstrated here on artificial and real-world problems with very good results and has been advantageously applied to dozens of models currently in commercial use.
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan
2015-01-01
Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
New learning based super-resolution: use of DWT and IGMRF prior.
Gajjar, Prakash P; Joshi, Manjunath V
2010-05-01
In this paper, we propose a new learning-based approach for super-resolving an image captured at low spatial resolution. Given the low spatial resolution test image and a database consisting of low and high spatial resolution images, we obtain super-resolution for the test image. We first obtain an initial high-resolution (HR) estimate by learning the high-frequency details from the available database. A new discrete wavelet transform (DWT) based approach is proposed for learning that uses a set of low-resolution (LR) images and their corresponding HR versions. Since the super-resolution is an ill-posed problem, we obtain the final solution using a regularization framework. The LR image is modeled as the aliased and noisy version of the corresponding HR image, and the aliasing matrix entries are estimated using the test image and the initial HR estimate. The prior model for the super-resolved image is chosen as an Inhomogeneous Gaussian Markov random field (IGMRF) and the model parameters are estimated using the same initial HR estimate. A maximum a posteriori (MAP) estimation is used to arrive at the cost function which is minimized using a simple gradient descent approach. We demonstrate the effectiveness of the proposed approach by conducting the experiments on gray scale as well as on color images. The method is compared with the standard interpolation technique and also with existing learning-based approaches. The proposed approach can be used in applications such as wildlife sensor networks, remote surveillance where the memory, the transmission bandwidth, and the camera cost are the main constraints.
Regression Analysis of Top of Descent Location for Idle-thrust Descents
NASA Technical Reports Server (NTRS)
Stell, Laurel; Bronsvoort, Jesper; McDonald, Greg
2013-01-01
In this paper, multiple regression analysis is used to model the top of descent (TOD) location of user-preferred descent trajectories computed by the flight management system (FMS) on over 1000 commercial flights into Melbourne, Australia. The independent variables cruise altitude, final altitude, cruise Mach, descent speed, wind, and engine type were also recorded or computed post-operations. Both first-order and second-order models are considered, where cross-validation, hypothesis testing, and additional analysis are used to compare models. This identifies the models that should give the smallest errors if used to predict TOD location for new data in the future. A model that is linear in TOD altitude, final altitude, descent speed, and wind gives an estimated standard deviation of 3.9 nmi for TOD location given the trajec- tory parameters, which means about 80% of predictions would have error less than 5 nmi in absolute value. This accuracy is better than demonstrated by other ground automation predictions using kinetic models. Furthermore, this approach would enable online learning of the model. Additional data or further knowl- edge of algorithms is necessary to conclude definitively that no second-order terms are appropriate. Possible applications of the linear model are described, including enabling arriving aircraft to fly optimized descents computed by the FMS even in congested airspace. In particular, a model for TOD location that is linear in the independent variables would enable decision support tool human-machine interfaces for which a kinetic approach would be computationally too slow.
Shape regularized active contour based on dynamic programming for anatomical structure segmentation
NASA Astrophysics Data System (ADS)
Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra
2005-04-01
We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.
Distributed multisensory integration in a recurrent network model through supervised learning
NASA Astrophysics Data System (ADS)
Wang, He; Wong, K. Y. Michael
Sensory integration between different modalities has been extensively studied. It is suggested that the brain integrates signals from different modalities in a Bayesian optimal way. However, how the Bayesian rule is implemented in a neural network remains under debate. In this work we propose a biologically plausible recurrent network model, which can perform Bayesian multisensory integration after trained by supervised learning. Our model is composed of two modules, each for one modality. We assume that each module is a recurrent network, whose activity represents the posterior distribution of each stimulus. The feedforward input on each module is the likelihood of each modality. Two modules are integrated through cross-links, which are feedforward connections from the other modality, and reciprocal connections, which are recurrent connections between different modules. By stochastic gradient descent, we successfully trained the feedforward and recurrent coupling matrices simultaneously, both of which resembles the Mexican-hat. We also find that there are more than one set of coupling matrices that can approximate the Bayesian theorem well. Specifically, reciprocal connections and cross-links will compensate each other if one of them is removed. Even though trained with two inputs, the network's performance with only one input is in good accordance with what is predicted by the Bayesian theorem.
Xia, Peng; Hu, Jie; Peng, Yinghong
2017-10-25
A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Analysis of a New Variational Model to Restore Point-Like and Curve-Like Singularities in Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubert, Gilles, E-mail: gaubert@unice.fr; Blanc-Feraud, Laure, E-mail: Laure.Blanc-Feraud@inria.fr; Graziani, Daniele, E-mail: Daniele.Graziani@inria.fr
2013-02-15
The paper is concerned with the analysis of a new variational model to restore point-like and curve-like singularities in biological images. To this aim we investigate the variational properties of a suitable energy which governs these pathologies. Finally in order to realize numerical experiments we minimize, in the discrete setting, a regularized version of this functional by fast descent gradient scheme.
On Nonconvex Decentralized Gradient Descent
2016-08-01
and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math . Program., 116: 5-16, 2009. [2] H...splitting, and regularized Gauss-Seidel methods, Math . Pro- gram., Ser. A, 137: 91-129, 2013. [3] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent...subgradient method under random communication topologies , IEEE J. Sel. Top. Signal Process., 5:754-771, 2011. [11] A. Nedic and A. Ozdaglar, Distributed
Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.
Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping
2018-04-27
Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.
New hybrid conjugate gradient methods with the generalized Wolfe line search.
Xu, Xiao; Kong, Fan-Yu
2016-01-01
The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.
A modified conjugate gradient coefficient with inexact line search for unconstrained optimization
NASA Astrophysics Data System (ADS)
Aini, Nurul; Rivaie, Mohd; Mamat, Mustafa
2016-11-01
Conjugate gradient (CG) method is a line search algorithm mostly known for its wide application in solving unconstrained optimization problems. Its low memory requirements and global convergence properties makes it one of the most preferred method in real life application such as in engineering and business. In this paper, we present a new CG method based on AMR* and CD method for solving unconstrained optimization functions. The resulting algorithm is proven to have both the sufficient descent and global convergence properties under inexact line search. Numerical tests are conducted to assess the effectiveness of the new method in comparison to some previous CG methods. The results obtained indicate that our method is indeed superior.
DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
Wachinger, Christian; Reuter, Martin; Klein, Tassilo
2018-04-15
We introduce DeepNAT, a 3D Deep convolutional neural network for the automatic segmentation of NeuroAnaTomy in T1-weighted magnetic resonance images. DeepNAT is an end-to-end learning-based approach to brain segmentation that jointly learns an abstract feature representation and a multi-class classification. We propose a 3D patch-based approach, where we do not only predict the center voxel of the patch but also neighbors, which is formulated as multi-task learning. To address a class imbalance problem, we arrange two networks hierarchically, where the first one separates foreground from background, and the second one identifies 25 brain structures on the foreground. Since patches lack spatial context, we augment them with coordinates. To this end, we introduce a novel intrinsic parameterization of the brain volume, formed by eigenfunctions of the Laplace-Beltrami operator. As network architecture, we use three convolutional layers with pooling, batch normalization, and non-linearities, followed by fully connected layers with dropout. The final segmentation is inferred from the probabilistic output of the network with a 3D fully connected conditional random field, which ensures label agreement between close voxels. The roughly 2.7million parameters in the network are learned with stochastic gradient descent. Our results show that DeepNAT compares favorably to state-of-the-art methods. Finally, the purely learning-based method may have a high potential for the adaptation to young, old, or diseased brains by fine-tuning the pre-trained network with a small training sample on the target application, where the availability of larger datasets with manual annotations may boost the overall segmentation accuracy in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Expected energy-based restricted Boltzmann machine for classification.
Elfwing, S; Uchibe, E; Doya, K
2015-04-01
In classification tasks, restricted Boltzmann machines (RBMs) have predominantly been used in the first stage, either as feature extractors or to provide initialization of neural networks. In this study, we propose a discriminative learning approach to provide a self-contained RBM method for classification, inspired by free-energy based function approximation (FE-RBM), originally proposed for reinforcement learning. For classification, the FE-RBM method computes the output for an input vector and a class vector by the negative free energy of an RBM. Learning is achieved by stochastic gradient-descent using a mean-squared error training objective. In an earlier study, we demonstrated that the performance and the robustness of FE-RBM function approximation can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that the learning performance of RBM function approximation can be further improved by computing the output by the negative expected energy (EE-RBM), instead of the negative free energy. To create a deep learning architecture, we stack several RBMs on top of each other. We also connect the class nodes to all hidden layers to try to improve the performance even further. We validate the classification performance of EE-RBM using the MNIST data set and the NORB data set, achieving competitive performance compared with other classifiers such as standard neural networks, deep belief networks, classification RBMs, and support vector machines. The purpose of using the NORB data set is to demonstrate that EE-RBM with binary input nodes can achieve high performance in the continuous input domain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Online selective kernel-based temporal difference learning.
Chen, Xingguo; Gao, Yang; Wang, Ruili
2013-12-01
In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
A mesh gradient technique for numerical optimization
NASA Technical Reports Server (NTRS)
Willis, E. A., Jr.
1973-01-01
A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal
2012-06-01
Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.
A network of spiking neurons for computing sparse representations in an energy efficient way
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.
2013-01-01
Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853
A network of spiking neurons for computing sparse representations in an energy-efficient way.
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B
2012-11-01
Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.
Low-complexity nonlinear adaptive filter based on a pipelined bilinear recurrent neural network.
Zhao, Haiquan; Zeng, Xiangping; He, Zhengyou
2011-09-01
To reduce the computational complexity of the bilinear recurrent neural network (BLRNN), a novel low-complexity nonlinear adaptive filter with a pipelined bilinear recurrent neural network (PBLRNN) is presented in this paper. The PBLRNN, inheriting the modular architectures of the pipelined RNN proposed by Haykin and Li, comprises a number of BLRNN modules that are cascaded in a chained form. Each module is implemented by a small-scale BLRNN with internal dynamics. Since those modules of the PBLRNN can be performed simultaneously in a pipelined parallelism fashion, it would result in a significant improvement of computational efficiency. Moreover, due to nesting module, the performance of the PBLRNN can be further improved. To suit for the modular architectures, a modified adaptive amplitude real-time recurrent learning algorithm is derived on the gradient descent approach. Extensive simulations are carried out to evaluate the performance of the PBLRNN on nonlinear system identification, nonlinear channel equalization, and chaotic time series prediction. Experimental results show that the PBLRNN provides considerably better performance compared to the single BLRNN and RNN models.
Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng
2013-07-01
In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.
Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua
2018-03-01
The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Live Speech Driven Head-and-Eye Motion Generators.
Le, Binh H; Ma, Xiaohan; Deng, Zhigang
2012-11-01
This paper describes a fully automated framework to generate realistic head motion, eye gaze, and eyelid motion simultaneously based on live (or recorded) speech input. Its central idea is to learn separate yet interrelated statistical models for each component (head motion, gaze, or eyelid motion) from a prerecorded facial motion data set: 1) Gaussian Mixture Models and gradient descent optimization algorithm are employed to generate head motion from speech features; 2) Nonlinear Dynamic Canonical Correlation Analysis model is used to synthesize eye gaze from head motion and speech features, and 3) nonnegative linear regression is used to model voluntary eye lid motion and log-normal distribution is used to describe involuntary eye blinks. Several user studies are conducted to evaluate the effectiveness of the proposed speech-driven head and eye motion generator using the well-established paired comparison methodology. Our evaluation results clearly show that this approach can significantly outperform the state-of-the-art head and eye motion generation algorithms. In addition, a novel mocap+video hybrid data acquisition technique is introduced to record high-fidelity head movement, eye gaze, and eyelid motion simultaneously.
Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Mostafa, Hesham
2017-08-01
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong
2013-12-07
The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.
Dynamic metrology and data processing for precision freeform optics fabrication and testing
NASA Astrophysics Data System (ADS)
Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook
2017-06-01
Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.
NASA Astrophysics Data System (ADS)
Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian
2017-08-01
In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography.
Matthews, Thomas P; Wang, Kun; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2017-05-01
Ultrasound computed tomography (USCT) holds great promise for breast cancer screening. Waveform inversion-based image reconstruction methods account for higher order diffraction effects and can produce high-resolution USCT images, but are computationally demanding. Recently, a source encoding technique has been combined with stochastic gradient descent (SGD) to greatly reduce image reconstruction times. However, this method bundles the stochastic data fidelity term with the deterministic regularization term. This limitation can be overcome by replacing SGD with a structured optimization method, such as the regularized dual averaging method, that exploits knowledge of the composition of the cost function. In this paper, the dual averaging method is combined with source encoding techniques to improve the effectiveness of regularization while maintaining the reduced reconstruction times afforded by source encoding. It is demonstrated that each iteration can be decomposed into a gradient descent step based on the data fidelity term and a proximal update step corresponding to the regularization term. Furthermore, the regularization term is never explicitly differentiated, allowing nonsmooth regularization penalties to be naturally incorporated. The wave equation is solved by the use of a time-domain method. The effectiveness of this approach is demonstrated through computer simulation and experimental studies. The results suggest that the dual averaging method can produce images with less noise and comparable resolution to those obtained by the use of SGD.
A different approach to estimate nonlinear regression model using numerical methods
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].
Multicultural Education: Lessons from Teaching and Learning in the U.S. and Abroad
ERIC Educational Resources Information Center
Reyes, Xaé Alicia
2012-01-01
This article is a reflective essay that examines the experiences of a Multicultural Educator from a non-mainstream perspective. The author, of Latino descent, has attended schools in Puerto Rico and in the United States, and has taught at universities in both. Experiences teaching and learning within and outside of the United States are compared…
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.
2014-12-01
One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.
An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.
Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin
2015-07-01
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051
Cruz, Albert C; Luvisi, Andrea; De Bellis, Luigi; Ampatzidis, Yiannis
2017-01-01
We have developed a vision-based program to detect symptoms of Olive Quick Decline Syndrome (OQDS) on leaves of Olea europaea L. infected by Xylella fastidiosa , named X-FIDO ( Xylella FastIdiosa Detector for O. europaea L.). Previous work predicted disease from leaf images with deep learning but required a vast amount of data which was obtained via crowd sourcing such as the PlantVillage project. This approach has limited applicability when samples need to be tested with traditional methods (i.e., PCR) to avoid incorrect training input or for quarantine pests which manipulation is restricted. In this paper, we demonstrate that transfer learning can be leveraged when it is not possible to collect thousands of new leaf images. Transfer learning is the re-application of an already trained deep learner to a new problem. We present a novel algorithm for fusing data at different levels of abstraction to improve performance of the system. The algorithm discovers low-level features from raw data to automatically detect veins and colors that lead to symptomatic leaves. The experiment included images of 100 healthy leaves, 99 X. fastidiosa -positive leaves and 100 X. fastidiosa -negative leaves with symptoms related to other stress factors (i.e., abiotic factors such as water stress or others diseases). The program detects OQDS with a true positive rate of 98.60 ± 1.47% in testing, showing great potential for image analysis for this disease. Results were obtained with a convolutional neural network trained with the stochastic gradient descent method, and ten trials with a 75/25 split of training and testing data. This work shows potential for massive screening of plants with reduced diagnosis time and cost.
PySeqLab: an open source Python package for sequence labeling and segmentation.
Allam, Ahmed; Krauthammer, Michael
2017-11-01
Text and genomic data are composed of sequential tokens, such as words and nucleotides that give rise to higher order syntactic constructs. In this work, we aim at providing a comprehensive Python library implementing conditional random fields (CRFs), a class of probabilistic graphical models, for robust prediction of these constructs from sequential data. Python Sequence Labeling (PySeqLab) is an open source package for performing supervised learning in structured prediction tasks. It implements CRFs models, that is discriminative models from (i) first-order to higher-order linear-chain CRFs, and from (ii) first-order to higher-order semi-Markov CRFs (semi-CRFs). Moreover, it provides multiple learning algorithms for estimating model parameters such as (i) stochastic gradient descent (SGD) and its multiple variations, (ii) structured perceptron with multiple averaging schemes supporting exact and inexact search using 'violation-fixing' framework, (iii) search-based probabilistic online learning algorithm (SAPO) and (iv) an interface for Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited-memory BFGS algorithms. Viterbi and Viterbi A* are used for inference and decoding of sequences. Using PySeqLab, we built models (classifiers) and evaluated their performance in three different domains: (i) biomedical Natural language processing (NLP), (ii) predictive DNA sequence analysis and (iii) Human activity recognition (HAR). State-of-the-art performance comparable to machine-learning based systems was achieved in the three domains without feature engineering or the use of knowledge sources. PySeqLab is available through https://bitbucket.org/A_2/pyseqlab with tutorials and documentation. ahmed.allam@yale.edu or michael.krauthammer@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Machine Learning Interface for Medical Image Analysis.
Zhang, Yi C; Kagen, Alexander C
2017-10-01
TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
The Double Star Orbit Initial Value Problem
NASA Astrophysics Data System (ADS)
Hensley, Hagan
2018-04-01
Many precise algorithms exist to find a best-fit orbital solution for a double star system given a good enough initial value. Desmos is an online graphing calculator tool with extensive capabilities to support animations and defining functions. It can provide a useful visual means of analyzing double star data to arrive at a best guess approximation of the orbital solution. This is a necessary requirement before using a gradient-descent algorithm to find the best-fit orbital solution for a binary system.
Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.
2012-12-01
We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·10 6 particles on 65,536 MPI tasks.
2009-10-09
trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was
NASA Astrophysics Data System (ADS)
Ortiz, M.; Pinales, J. C.; Graber, H. C.; Wilkinson, J.; Lund, B.
2016-02-01
Melt ponds on sea ice play a significant and complex role on the thermodynamics in the Marginal Ice Zone (MIZ). Ponding reduces the sea ice's ability to reflect sunlight, and in consequence, exacerbates the albedo positive feedback cycle. In order to understand how melt ponds work and their effect on the heat uptake of sea ice, we must quantify ponds through their seasonal evolution first. A semi-supervised neural network three-class learning scheme using a gradient descent with momentum and adaptive learning rate backpropagation function is applied to classify melt ponds/melt areas in the Beaufort Sea region. The network uses high resolution panchromatic satellite images from the MEDEA program, which are collocated with autonomous platform arrays from the Marginal Ice Zone Program, including ice mass-balance buoys, arctic weather stations and wave buoys. The goal of the study is to capture the spatial variation of melt onset and freeze-up of the ponds within the MIZ, and gather ponding statistics such as size and concentration. The innovation of this work comes from training the neural network as the melt ponds evolve over time; making the machine learning algorithm time-dependent, which has not been previously done. We will achieve this by analyzing the image histograms through quantification of the minima and maxima intensity changes as well as linking textural variation information of the imagery. We will compare the evolution of the melt ponds against several different array sites on the sea ice to explore if there are spatial differences among the separated platforms in the MIZ.
Linear Subspace Ranking Hashing for Cross-Modal Retrieval.
Li, Kai; Qi, Guo-Jun; Ye, Jun; Hua, Kien A
2017-09-01
Hashing has attracted a great deal of research in recent years due to its effectiveness for the retrieval and indexing of large-scale high-dimensional multimedia data. In this paper, we propose a novel ranking-based hashing framework that maps data from different modalities into a common Hamming space where the cross-modal similarity can be measured using Hamming distance. Unlike existing cross-modal hashing algorithms where the learned hash functions are binary space partitioning functions, such as the sign and threshold function, the proposed hashing scheme takes advantage of a new class of hash functions closely related to rank correlation measures which are known to be scale-invariant, numerically stable, and highly nonlinear. Specifically, we jointly learn two groups of linear subspaces, one for each modality, so that features' ranking orders in different linear subspaces maximally preserve the cross-modal similarities. We show that the ranking-based hash function has a natural probabilistic approximation which transforms the original highly discontinuous optimization problem into one that can be efficiently solved using simple gradient descent algorithms. The proposed hashing framework is also flexible in the sense that the optimization procedures are not tied up to any specific form of loss function, which is typical for existing cross-modal hashing methods, but rather we can flexibly accommodate different loss functions with minimal changes to the learning steps. We demonstrate through extensive experiments on four widely-used real-world multimodal datasets that the proposed cross-modal hashing method can achieve competitive performance against several state-of-the-arts with only moderate training and testing time.
Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2017-07-01
We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Burge, Johannes
2017-01-01
Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important. PMID:28178266
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid
2017-01-01
Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Piecewise convexity of artificial neural networks.
Rister, Blaine; Rubin, Daniel L
2017-10-01
Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intelligent voltage control strategy for three-phase UPS inverters with output LC filter
NASA Astrophysics Data System (ADS)
Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.
2015-08-01
This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.
Classification of breast cancer cytological specimen using convolutional neural network
NASA Astrophysics Data System (ADS)
Żejmo, Michał; Kowal, Marek; Korbicz, Józef; Monczak, Roman
2017-01-01
The paper presents a deep learning approach for automatic classification of breast tumors based on fine needle cytology. The main aim of the system is to distinguish benign from malignant cases based on microscopic images. Experiment was carried out on cytological samples derived from 50 patients (25 benign cases + 25 malignant cases) diagnosed in Regional Hospital in Zielona Góra. To classify microscopic images, we used convolutional neural networks (CNN) of two types: GoogLeNet and AlexNet. Due to the very large size of images of cytological specimen (on average 200000 × 100000 pixels), they were divided into smaller patches of size 256 × 256 pixels. Breast cancer classification usually is based on morphometric features of nuclei. Therefore, training and validation patches were selected using Support Vector Machine (SVM) so that suitable amount of cell material was depicted. Neural classifiers were tuned using GPU accelerated implementation of gradient descent algorithm. Training error was defined as a cross-entropy classification loss. Classification accuracy was defined as the percentage ratio of successfully classified validation patches to the total number of validation patches. The best accuracy rate of 83% was obtained by GoogLeNet model. We observed that more misclassified patches belong to malignant cases.
The effect of encoding conditions on learning in the prototype distortion task.
Lee, Jessica C; Livesey, Evan J
2017-06-01
The prototype distortion task demonstrates that it is possible to learn about a category of physically similar stimuli through mere observation. However, there have been few attempts to test whether different encoding conditions affect learning in this task. This study compared prototypicality gradients produced under incidental learning conditions in which participants performed a visual search task, with those produced under intentional learning conditions in which participants were required to memorize the stimuli. Experiment 1 showed that similar prototypicality gradients could be obtained for category endorsement and familiarity ratings, but also found (weaker) prototypicality gradients in the absence of exposure. In Experiments 2 and 3, memorization was found to strengthen prototypicality gradients in familiarity ratings in comparison to visual search, but there were no group differences in participants' ability to discriminate between novel and presented exemplars. Although the Search groups in Experiments 2 and 3 produced prototypicality gradients, they were no different in magnitude to those produced in the absence of stimulus exposure in Experiment 1, suggesting that incidental learning during visual search was not conducive to producing prototypicality gradients. This study suggests that learning in the prototype distortion task is not implicit in the sense of resulting automatically from exposure, is affected by the nature of encoding, and should be considered in light of potential learning-at-test effects.
Crosswind Shear Gradient Affect on Wake Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Levitt, Antoine; Tang, Qinglin
2017-08-01
We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Molecular Phylogenetics and the Perennial Problem of Homology.
Inkpen, S Andrew; Doolittle, W Ford
2016-12-01
The concept of homology has a long history, during much of which the issue has been how to reconcile similarity and common descent when these are not coextensive. Although thinking molecular phylogeneticists have learned not to say "percent homology," the problems are deeper than that and unresolved.
Three learning phases for radial-basis-function networks.
Schwenker, F; Kestler, H A; Palm, G
2001-05-01
In this paper, learning algorithms for radial basis function (RBF) networks are discussed. Whereas multilayer perceptrons (MLP) are typically trained with backpropagation algorithms, starting the training procedure with a random initialization of the MLP's parameters, an RBF network may be trained in many different ways. We categorize these RBF training methods into one-, two-, and three-phase learning schemes. Two-phase RBF learning is a very common learning scheme. The two layers of an RBF network are learnt separately; first the RBF layer is trained, including the adaptation of centers and scaling parameters, and then the weights of the output layer are adapted. RBF centers may be trained by clustering, vector quantization and classification tree algorithms, and the output layer by supervised learning (through gradient descent or pseudo inverse solution). Results from numerical experiments of RBF classifiers trained by two-phase learning are presented in three completely different pattern recognition applications: (a) the classification of 3D visual objects; (b) the recognition hand-written digits (2D objects); and (c) the categorization of high-resolution electrocardiograms given as a time series (ID objects) and as a set of features extracted from these time series. In these applications, it can be observed that the performance of RBF classifiers trained with two-phase learning can be improved through a third backpropagation-like training phase of the RBF network, adapting the whole set of parameters (RBF centers, scaling parameters, and output layer weights) simultaneously. This, we call three-phase learning in RBF networks. A practical advantage of two- and three-phase learning in RBF networks is the possibility to use unlabeled training data for the first training phase. Support vector (SV) learning in RBF networks is a different learning approach. SV learning can be considered, in this context of learning, as a special type of one-phase learning, where only the output layer weights of the RBF network are calculated, and the RBF centers are restricted to be a subset of the training data. Numerical experiments with several classifier schemes including k-nearest-neighbor, learning vector quantization and RBF classifiers trained through two-phase, three-phase and support vector learning are given. The performance of the RBF classifiers trained through SV learning and three-phase learning are superior to the results of two-phase learning, but SV learning often leads to complex network structures, since the number of support vectors is not a small fraction of the total number of data points.
Li, Kan; Príncipe, José C.
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime. PMID:29666568
Li, Kan; Príncipe, José C
2018-01-01
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a function space of infinite dimension, i.e., a Reproducing Kernel Hilbert Space (RKHS) using point-process kernels, where a state-space model learns the dynamics of the multidimensional spike input using gradient descent learning. This kernelized recurrent system is very parsimonious and achieves the necessary memory depth via feedback of its internal states when trained discriminatively, utilizing the full context of the phoneme sequence. A main advantage of modeling nonlinear dynamics using state-space trajectories in the RKHS is that it imposes no restriction on the relationship between the exogenous input and its internal state. We are free to choose the input representation with an appropriate kernel, and changing the kernel does not impact the system nor the learning algorithm. Moreover, we show that this novel framework can outperform both traditional hidden Markov model (HMM) speech processing as well as neuromorphic implementations based on spiking neural network (SNN), yielding accurate and ultra-low power word spotters. As a proof of concept, we demonstrate its capabilities using the benchmark TI-46 digit corpus for isolated-word automatic speech recognition (ASR) or keyword spotting. Compared to HMM using Mel-frequency cepstral coefficient (MFCC) front-end without time-derivatives, our MFCC-KAARMA offered improved performance. For spike-train front-end, spike-KAARMA also outperformed state-of-the-art SNN solutions. Furthermore, compared to MFCCs, spike trains provided enhanced noise robustness in certain low signal-to-noise ratio (SNR) regime.
Decoding of finger trajectory from ECoG using deep learning.
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.
Decoding of finger trajectory from ECoG using deep learning
NASA Astrophysics Data System (ADS)
Xie, Ziqian; Schwartz, Odelia; Prasad, Abhishek
2018-06-01
Objective. Conventional decoding pipeline for brain-machine interfaces (BMIs) consists of chained different stages of feature extraction, time-frequency analysis and statistical learning models. Each of these stages uses a different algorithm trained in a sequential manner, which makes it difficult to make the whole system adaptive. The goal was to create an adaptive online system with a single objective function and a single learning algorithm so that the whole system can be trained in parallel to increase the decoding performance. Here, we used deep neural networks consisting of convolutional neural networks (CNN) and a special kind of recurrent neural network (RNN) called long short term memory (LSTM) to address these needs. Approach. We used electrocorticography (ECoG) data collected by Kubanek et al. The task consisted of individual finger flexions upon a visual cue. Our model combined a hierarchical feature extractor CNN and a RNN that was able to process sequential data and recognize temporal dynamics in the neural data. CNN was used as the feature extractor and LSTM was used as the regression algorithm to capture the temporal dynamics of the signal. Main results. We predicted the finger trajectory using ECoG signals and compared results for the least angle regression (LARS), CNN-LSTM, random forest, LSTM model (LSTM_HC, for using hard-coded features) and a decoding pipeline consisting of band-pass filtering, energy extraction, feature selection and linear regression. The results showed that the deep learning models performed better than the commonly used linear model. The deep learning models not only gave smoother and more realistic trajectories but also learned the transition between movement and rest state. Significance. This study demonstrated a decoding network for BMI that involved a convolutional and recurrent neural network model. It integrated the feature extraction pipeline into the convolution and pooling layer and used LSTM layer to capture the state transitions. The discussed network eliminated the need to separately train the model at each step in the decoding pipeline. The whole system can be jointly optimized using stochastic gradient descent and is capable of online learning.
Representation of People of Asian Descent in Mainstream Mass Media within the United States
ERIC Educational Resources Information Center
Kim, Younghan
2013-01-01
The public school classroom in the United States has been getting more diverse, linguistically and ethnically. Immigrant and second/third generation students learn American culture and norms from messages conveyed through mainstream media like internet, advertisements, films, newspapers, TV, and magazines. Their self-perceptions, perspectives…
Meetings with Elaine, an African and Native American Woman
ERIC Educational Resources Information Center
O'Donnell, Melanie Merola
2006-01-01
The author, a Caucasian doctoral student of clinical psychology, examined her ongoing interaction with Elaine, an adult woman of African and Native American descent. Incidents of learning during the interaction process are reviewed and qualitative and quantitative assessments are provided to examine the effectiveness of such interactions in a…
Separating figure from ground with a parallel network.
Kienker, P K; Sejnowski, T J; Hinton, G E; Schumacher, L E
1986-01-01
The differentiation of figure from ground plays an important role in the perceptual organization of visual stimuli. The rapidity with which we can discriminate the inside from the outside of a figure suggests that at least this step in the process may be performed in visual cortex by a large number of neurons in several different areas working together in parallel. We have attempted to simulate this collective computation by designing a network of simple processing units that receives two types of information: bottom-up input from the image containing the outlines of a figure, which may be incomplete, and a top-down attentional input that biases one part of the image to be the inside of the figure. No presegmentation of the image was assumed. Two methods for performing the computation were explored: gradient descent, which seeks locally optimal states, and simulated annealing, which attempts to find globally optimal states by introducing noise into the computation. For complete outlines, gradient descent was faster, but the range of input parameters leading to successful performance was very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of attention parameters and a wider range of outlines, including incomplete ones. Our network model is too simplified to serve as a model of human performance, but it does demonstrate that one global property of outlines can be computed through local interactions in a parallel network. Some features of the model, such as the role of noise in escaping from nonglobal optima, may generalize to more realistic models.
Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward
2016-01-01
Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592
Ciaccio, Edward J; Micheli-Tzanakou, Evangelia
2007-07-01
Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.
Learning to Use Illumination Gradients as an Unambiguous Cue to Three Dimensional Shape
Harding, Glen; Harris, Julie M.; Bloj, Marina
2012-01-01
The luminance and colour gradients across an image are the result of complex interactions between object shape, material and illumination. Using such variations to infer object shape or surface colour is therefore a difficult problem for the visual system. We know that changes to the shape of an object can affect its perceived colour, and that shading gradients confer a sense of shape. Here we investigate if the visual system is able to effectively utilise these gradients as a cue to shape perception, even when additional cues are not available. We tested shape perception of a folded card object that contained illumination gradients in the form of shading and more subtle effects such as inter-reflections. Our results suggest that observers are able to use the gradients to make consistent shape judgements. In order to do this, observers must be given the opportunity to learn suitable assumptions about the lighting and scene. Using a variety of different training conditions, we demonstrate that learning can occur quickly and requires only coarse information. We also establish that learning does not deliver a trivial mapping between gradient and shape; rather learning leads to the acquisition of assumptions about lighting and scene parameters that subsequently allow for gradients to be used as a shape cue. The perceived shape is shown to be consistent for convex and concave versions of the object that exhibit very different shading, and also similar to that delivered by outline, a largely unrelated cue to shape. Overall our results indicate that, although gradients are less reliable than some other cues, the relationship between gradients and shape can be quickly assessed and the gradients therefore used effectively as a visual shape cue. PMID:22558279
Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application
NASA Astrophysics Data System (ADS)
Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie
2015-10-01
Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.
Geodesic regression on orientation distribution functions with its application to an aging study.
Du, Jia; Goh, Alvina; Kushnarev, Sergey; Qiu, Anqi
2014-02-15
In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the appropriate gradient terms and employ gradient descent to find the minimizer of this least-squares optimization problem. In addition, we show how to perform statistical testing for determining the significance of the relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic regression of ODFs in normal adults aged 22 years old and above. © 2013 Elsevier Inc. All rights reserved.
Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction
Gregor, Jens; Fessler, Jeffrey A.
2015-01-01
Tomographic image reconstruction is often formulated as a regularized weighted least squares (RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous Iterative Reconstruction Technique), which is of the former type, with a version of SQS (Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms minimize the same criterion function using similar forms of preconditioned gradient descent. We present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS converge at the same rate for all intents and purposes. For context, we compare their performance with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray CT of luggage for aviation security. PMID:26478906
Borrayo, Evelinn A; Jenkins, Sharon Rae
2003-05-01
Psychosocial and socioeconomic variables are often confounded. The authors combined quantitative with grounded theory analysis to investigate influences of acculturation, socioeconomic status (SES), and cultural health beliefs on Mexican-descent women's preventive health behaviors. In 5 focus group interviews sampling across levels of acculturation and SES, women expressing more traditional Mexican health beliefs about breast cancer screening were of lower SES and were less U.S. acculturated. However, SES and acculturation were uncorrelated with screening behaviors. Qualitative analysis generated hypotheses about joint influences of SES and traditional health beliefs; for example, low-SES women may learn frugal habits as part of their cultural traditions that influence their health care decision making, magnifying SES-imposed structural restrictions on health care access.
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
Ferrari, Ulisse
2016-08-01
Maximum entropy models provide the least constrained probability distributions that reproduce statistical properties of experimental datasets. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters' space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters' dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a "rectified" data-driven algorithm that is fast and by sampling from the parameters' posterior avoids both under- and overfitting along all the directions of the parameters' space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method.
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces.
Lu, Jun; McFarland, Dennis J; Wolpaw, Jonathan R
2013-02-01
Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an 'adaptive Laplacian (ALAP) filter', can provide better performance for SMR-based BCIs. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Monthly evaporation forecasting using artificial neural networks and support vector machines
NASA Astrophysics Data System (ADS)
Tezel, Gulay; Buyukyildiz, Meral
2016-04-01
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.
Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia
NASA Astrophysics Data System (ADS)
Karimi, Sepideh; Kisi, Ozgur; Shiri, Jalal; Makarynskyy, Oleg
2013-03-01
Accurate predictions of sea level with different forecast horizons are important for coastal and ocean engineering applications, as well as in land drainage and reclamation studies. The methodology of tidal harmonic analysis, which is generally used for obtaining a mathematical description of the tides, is data demanding requiring processing of tidal observation collected over several years. In the present study, hourly sea levels for Darwin Harbor, Australia were predicted using two different, data driven techniques, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN). Multi linear regression (MLR) technique was used for selecting the optimal input combinations (lag times) of hourly sea level. The input combination comprises current sea level as well as five previous level values found to be optimal. For the ANFIS models, five different membership functions namely triangular, trapezoidal, generalized bell, Gaussian and two Gaussian membership function were tested and employed for predicting sea level for the next 1 h, 24 h, 48 h and 72 h. The used ANN models were trained using three different algorithms, namely, Levenberg-Marquardt, conjugate gradient and gradient descent. Predictions of optimal ANFIS and ANN models were compared with those of the optimal auto-regressive moving average (ARMA) models. The coefficient of determination, root mean square error and variance account statistics were used as comparison criteria. The obtained results indicated that triangular membership function was optimal for predictions with the ANFIS models while adaptive learning rate and Levenberg-Marquardt were most suitable for training the ANN models. Consequently, ANFIS and ANN models gave similar forecasts and performed better than the developed for the same purpose ARMA models for all the prediction intervals.
Perry, Thomas Ernest; Zha, Hongyuan; Zhou, Ke; Frias, Patricio; Zeng, Dadan; Braunstein, Mark
2014-02-01
Electronic health records possess critical predictive information for machine-learning-based diagnostic aids. However, many traditional machine learning methods fail to simultaneously integrate textual data into the prediction process because of its high dimensionality. In this paper, we present a supervised method using Laplacian Eigenmaps to enable existing machine learning methods to estimate both low-dimensional representations of textual data and accurate predictors based on these low-dimensional representations at the same time. We present a supervised Laplacian Eigenmap method to enhance predictive models by embedding textual predictors into a low-dimensional latent space, which preserves the local similarities among textual data in high-dimensional space. The proposed implementation performs alternating optimization using gradient descent. For the evaluation, we applied our method to over 2000 patient records from a large single-center pediatric cardiology practice to predict if patients were diagnosed with cardiac disease. In our experiments, we consider relatively short textual descriptions because of data availability. We compared our method with latent semantic indexing, latent Dirichlet allocation, and local Fisher discriminant analysis. The results were assessed using four metrics: the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), specificity, and sensitivity. The results indicate that supervised Laplacian Eigenmaps was the highest performing method in our study, achieving 0.782 and 0.374 for AUC and MCC, respectively. Supervised Laplacian Eigenmaps showed an increase of 8.16% in AUC and 20.6% in MCC over the baseline that excluded textual data and a 2.69% and 5.35% increase in AUC and MCC, respectively, over unsupervised Laplacian Eigenmaps. As a solution, we present a supervised Laplacian Eigenmap method to embed textual predictors into a low-dimensional Euclidean space. This method allows many existing machine learning predictors to effectively and efficiently capture the potential of textual predictors, especially those based on short texts.
NASA Astrophysics Data System (ADS)
Singh, Shiwangi; Bard, Deborah
2017-01-01
Weak gravitational lensing is an effective tool to map the structure of matter in the universe, and has been used for more than ten years as a probe of the nature of dark energy. Beyond the well-established two-point summary statistics, attention is now turning to methods that use the full statistical information available in the lensing observables, through analysis of the reconstructed shear field. This offers an opportunity to take advantage of powerful deep learning methods for image analysis. We present two early studies that demonstrate that deep learning can be used to characterise features in weak lensing convergence maps, and to identify the underlying cosmological model that produced them.We developed an unsupervised Denoising Convolutional Autoencoder model in order to learn an abstract representation directly from our data. This model uses a convolution-deconvolution architecture, which is fed with input data (corrupted with binomial noise to prevent over-fitting). Our model effectively trains itself to minimize the mean-squared error between the input and the output using gradient descent, resulting in a model which, theoretically, is broad enough to tackle other similarly structured problems. Using this model we were able to successfully reconstruct simulated convergence maps and identify the structures in them. We also determined which structures had the highest “importance” - i.e. which structures were most typical of the data. We note that the structures that had the highest importance in our reconstruction were around high mass concentrations, but were highly non-Gaussian.We also developed a supervised Convolutional Neural Network (CNN) for classification of weak lensing convergence maps from two different simulated theoretical models. The CNN uses a softmax classifier which minimizes a binary cross-entropy loss between the estimated distribution and true distribution. In other words, given an unseen convergence map the trained CNN determines probabilistically which theoretical model fits the data best. This preliminary work demonstrates that we can classify the cosmological model that produced the convergence maps with 80% accuracy.
ERIC Educational Resources Information Center
Bowen, Merle L.; Tillman, Ayesha S.
2015-01-01
Considerable empirical research, along with a growing body of conceptual and theoretical literature, exists on the role of culture and context in evaluation. Less scholarship has examined culturally responsive surveys in the context of international evaluation. In this article, the authors present lessons learned from the development,…
Youths of Mexican Descent of the Southwest: Exploring Differences in Ethnic Labels
ERIC Educational Resources Information Center
Holley, Lynn C.; Salas, Lorraine Moya; Marsiglia, Flavio F.; Yabiku, Scott T.; Fitzharris, Blythe; Jackson, Kelly F.
2009-01-01
Knowledge of the factors that influence youths' choice of racial or ethnic labels would help us understand intragroup diversity, suggest ways in which school social workers can support youths' ethnic identity development, and learn whether youths who choose different combinations of labels may be grouped together for research purposes. This study…
Kurtosis Approach for Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.
On Vehicle Placement to Intercept Moving Targets (Preprint)
2010-03-09
which is feasible only if X1 −X2 = 0 and Y1 − Y2 = 0. We now present the main result for this section. Theorem 3.4 (Minimizing expected cost) From an...Vandenberghe (2004)) leads the vehicle to the unique global minimizer of Cexp. Let V ⊂ [0,W ], and choose φ(x) such that φ(x) = 0,∀x ∈ [0,W ] \\ V. Then, Theorem ...R>0, and following gradient descent with V as the region of integration, the vehicle remains inside [0,W ] × R>0 at all subsequent times. 3 Theorem
Product Distribution Theory and Semi-Coordinate Transformations
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for doing distributed adaptive control of a multiagent system (MAS). We introduce the technique of "coordinate transformations" in PD theory gradient descent. These transformations selectively couple a few agents with each other into "meta-agents". Intuitively, this can be viewed as a generalization of forming binding contracts between those agents. Doing this sacrifices a bit of the distributed nature of the MAS, in that there must now be communication from multiple agents in determining what joint-move is finally implemented However, as we demonstrate in computer experiments, these transformations improve the performance of the MAS.
Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks
Chen, Jianhui; Liu, Ji; Ye, Jieping
2013-01-01
We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms. PMID:24077658
Learning Incoherent Sparse and Low-Rank Patterns from Multiple Tasks.
Chen, Jianhui; Liu, Ji; Ye, Jieping
2012-02-01
We consider the problem of learning incoherent sparse and low-rank patterns from multiple tasks. Our approach is based on a linear multi-task learning formulation, in which the sparse and low-rank patterns are induced by a cardinality regularization term and a low-rank constraint, respectively. This formulation is non-convex; we convert it into its convex surrogate, which can be routinely solved via semidefinite programming for small-size problems. We propose to employ the general projected gradient scheme to efficiently solve such a convex surrogate; however, in the optimization formulation, the objective function is non-differentiable and the feasible domain is non-trivial. We present the procedures for computing the projected gradient and ensuring the global convergence of the projected gradient scheme. The computation of projected gradient involves a constrained optimization problem; we show that the optimal solution to such a problem can be obtained via solving an unconstrained optimization subproblem and an Euclidean projection subproblem. We also present two projected gradient algorithms and analyze their rates of convergence in details. In addition, we illustrate the use of the presented projected gradient algorithms for the proposed multi-task learning formulation using the least squares loss. Experimental results on a collection of real-world data sets demonstrate the effectiveness of the proposed multi-task learning formulation and the efficiency of the proposed projected gradient algorithms.
NASA Astrophysics Data System (ADS)
Xu, Rui; Zhou, Miaolei
2018-04-01
Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.
On the use of harmony search algorithm in the training of wavelet neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
Decoding English Alphabet Letters Using EEG Phase Information
Wang, YiYan; Wang, Pingxiao; Yu, Yuguo
2018-01-01
Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG) contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM) with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8). These results may provide a new approach for brain-computer interface techniques (BCI) and may deepen our understanding of EEG oscillations in cognition. PMID:29467615
Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network.
Liu, Yu-Ting; Lin, Yang-Yin; Wu, Shang-Lin; Chuang, Chun-Hsiang; Lin, Chin-Teng
2016-02-01
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
Mars Science Laboratory Heatshield Flight Data Analysis
NASA Technical Reports Server (NTRS)
Mahzari, Milad; White, Todd
2017-01-01
NASA Mars Science Laboratory (MSL), which landed the Curiosity rover on the surface of Mars on August 5th, 2012, was the largest and heaviest Mars entry vehicle representing a significant advancement in planetary entry, descent and landing capability. Hypersonic flight performance data was collected using MSLs on-board sensors called Mars Entry, Descent and Landing Instrumentation (MEDLI). This talk will give an overview of MSL entry and a description of MEDLI sensors. Observations from flight data will be examined followed by a discussion of analysis efforts to reconstruct surface heating from heatshields in-depth temperature measurements. Finally, a brief overview of MEDLI2 instrumentation, which will fly on NASAs Mars2020 mission, will be presented with a discussion on how lessons learned from MEDLI data affected the design of MEDLI2 instrumentation.
Deep learning classifier with optical coherence tomography images for early dental caries detection
NASA Astrophysics Data System (ADS)
Karimian, Nima; Salehi, Hassan S.; Mahdian, Mina; Alnajjar, Hisham; Tadinada, Aditya
2018-02-01
Dental caries is a microbial disease that results in localized dissolution of the mineral content of dental tissue. Despite considerable decline in the incidence of dental caries, it remains a major health problem in many societies. Early detection of incipient lesions at initial stages of demineralization can result in the implementation of non-surgical preventive approaches to reverse the demineralization process. In this paper, we present a novel approach combining deep convolutional neural networks (CNN) and optical coherence tomography (OCT) imaging modality for classification of human oral tissues to detect early dental caries. OCT images of oral tissues with various densities were input to a CNN classifier to determine variations in tissue densities resembling the demineralization process. The CNN automatically learns a hierarchy of increasingly complex features and a related classifier directly from training data sets. The initial CNN layer parameters were randomly selected. The training set is split into minibatches, with 10 OCT images per batch. Given a batch of training patches, the CNN employs two convolutional and pooling layers to extract features and then classify each patch based on the probabilities from the SoftMax classification layer (output-layer). Afterward, the CNN calculates the error between the classification result and the reference label, and then utilizes the backpropagation process to fine-tune all the layer parameters to minimize this error using batch gradient descent algorithm. We validated our proposed technique on ex-vivo OCT images of human oral tissues (enamel, cortical-bone, trabecular-bone, muscular-tissue, and fatty-tissue), which attested to effectiveness of our proposed method.
Shih, Peter; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A
2009-10-01
A novel reinforcement-learning-based output adaptive neural network (NN) controller, which is also referred to as the adaptive-critic NN controller, is developed to deliver the desired tracking performance for a class of nonlinear discrete-time systems expressed in nonstrict feedback form in the presence of bounded and unknown disturbances. The adaptive-critic NN controller consists of an observer, a critic, and two action NNs. The observer estimates the states and output, and the two action NNs provide virtual and actual control inputs to the nonlinear discrete-time system. The critic approximates a certain strategic utility function, and the action NNs minimize the strategic utility function and control inputs. All NN weights adapt online toward minimization of a performance index, utilizing the gradient-descent-based rule, in contrast with iteration-based adaptive-critic schemes. Lyapunov functions are used to show the stability of the closed-loop tracking error, weights, and observer estimates. Separation and certainty equivalence principles, persistency of excitation condition, and linearity in the unknown parameter assumption are not needed. Experimental results on a spark ignition (SI) engine operating lean at an equivalence ratio of 0.75 show a significant (25%) reduction in cyclic dispersion in heat release with control, while the average fuel input changes by less than 1% compared with the uncontrolled case. Consequently, oxides of nitrogen (NO(x)) drop by 30%, and unburned hydrocarbons drop by 16% with control. Overall, NO(x)'s are reduced by over 80% compared with stoichiometric levels.
The glucokinase mutation p.T206P is common among MODY patients of Jewish Ashkenazi descent.
Gozlan, Yael; Tenenbaum, Ariel; Shalitin, Shlomit; Lebenthal, Yael; Oron, Tal; Cohen, Ohad; Phillip, Moshe; Gat-Yablonski, Galia
2012-09-01
Maturity-onset diabetes of the young (MODY) is characterized by an autosomal dominant mode of inheritance; a primary defect in insulin secretion with non-ketotic hyperglycemia, age of onset under 25 yr; and lack of autoantibodies. Heterozygous mutations in glucokinase (GCK) are associated with mild fasting hyperglycemia and gestational diabetes mellitus while homozygous or compound heterozygous GCK mutations result in permanent neonatal diabetes mellitus. Given that both the Israeli-Arabic and the various Israeli-Jewish communities tend to maintain ethnic seclusion, we speculated that it would be possible to identify a relatively narrow spectrum of mutations in the Israeli population. To characterize the genetic basis of GCK-MODY in the different ethnic groups of the Israeli population. Patients with clinically identified GCK-MODY and their first degree family members. Molecular analysis of GCK was performed on genomic DNA using polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and sequencing. Bioinformatic model was preformed using the NEST program. Mutations in GCK were identified in 25 families and were all family-specific, except c.616A>C. p.T206P. This mutation was identified in six unrelated families, all patients from a Jewish-Ashkenazi descent, thus indicating an ethno-genetic correlation. A simple, fast, and relatively cheap DGGE/restriction-digestion assay was developed. The high incidence of the mutant allele in GCK-MODY patients of Jewish-Ashkenazi descent suggests a founder effect. We propose that clinically identified GCK-MODY patients of Jewish-Ashkenazi origin be first tested for this mutation. © 2011 John Wiley & Sons A/S.
Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H
2014-01-01
To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Pixel-By Estimation of Scene Motion in Video
NASA Astrophysics Data System (ADS)
Tashlinskii, A. G.; Smirnov, P. V.; Tsaryov, M. G.
2017-05-01
The paper considers the effectiveness of motion estimation in video using pixel-by-pixel recurrent algorithms. The algorithms use stochastic gradient decent to find inter-frame shifts of all pixels of a frame. These vectors form shift vectors' field. As estimated parameters of the vectors the paper studies their projections and polar parameters. It considers two methods for estimating shift vectors' field. The first method uses stochastic gradient descent algorithm to sequentially process all nodes of the image row-by-row. It processes each row bidirectionally i.e. from the left to the right and from the right to the left. Subsequent joint processing of the results allows compensating inertia of the recursive estimation. The second method uses correlation between rows to increase processing efficiency. It processes rows one after the other with the change in direction after each row and uses obtained values to form resulting estimate. The paper studies two criteria of its formation: gradient estimation minimum and correlation coefficient maximum. The paper gives examples of experimental results of pixel-by-pixel estimation for a video with a moving object and estimation of a moving object trajectory using shift vectors' field.
Prichard, David O; Lee, Taehee; Parthasarathy, Gopanandan; Fletcher, Joel G; Zinsmeister, Alan R; Bharucha, Adil E
2017-03-01
Contrary to conventional wisdom, the rectoanal gradient during evacuation is negative in many healthy people, undermining the utility of anorectal high-resolution manometry (HRM) for diagnosing defecatory disorders. We aimed to compare HRM and magnetic resonance imaging (MRI) for assessing rectal evacuation and structural abnormalities. We performed a retrospective analysis of 118 patients (all female; 51 with constipation, 48 with fecal incontinence, and 19 with rectal prolapse; age, 53 ± 1 years) assessed by HRM, the rectal balloon expulsion test (BET), and MRI at Mayo Clinic, Rochester, Minnesota, from February 2011 through March 2013. Thirty healthy asymptomatic women (age, 37 ± 2 years) served as controls. We used principal components analysis of HRM variables to identify rectoanal pressure patterns associated with rectal prolapse and phenotypes of patients with prolapse. Compared with patients with normal findings from the rectal BET, patients with an abnormal BET had lower median rectal pressure (36 vs 22 mm Hg, P = .002), a more negative median rectoanal gradient (-6 vs -29 mm Hg, P = .006) during evacuation, and a lower proportion of evacuation on the basis of MRI analysis (median of 40% vs 80%, P < .0001). A score derived from rectal pressure and anorectal descent during evacuation and a patulous anal canal was associated (P = .005) with large rectoceles (3 cm or larger). A principal component (PC) logistic model discriminated between patients with and without prolapse with 96% accuracy. Among patients with prolapse, there were 2 phenotypes, which were characterized by high (PC1) or low (PC2) anal pressures at rest and squeeze along with higher rectal and anal pressures (PC1) or a higher rectoanal gradient during evacuation (PC2). In a retrospective analysis of patients assessed by HRM, measurements of rectal evacuation by anorectal HRM, BET, and MRI were correlated. HRM alone and together with anorectal descent during evacuation may identify rectal prolapse and large rectoceles, respectively, and also identify unique phenotypes of rectal prolapse. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Direct Temperature Measurements during Netlander Descent on Mars
NASA Astrophysics Data System (ADS)
Colombatti, G.; Angrilli, F.; Ferri, F.; Francesconi, A.; Fulchignoni, M.; Lion Stoppato, P. F.; Saggi, B.
1999-09-01
A new design for a platinum thermoresistance temperature sensor has been developed and tested in Earth's atmosphere and stratosphere. It will be one of the sensors equipping the scientific package ATMIS (Atmospheric and Meteorology Instrument System), which will be devoted to the measurement of the meteorological parameters during both the entry/descent phase and the surface phase, aboard the Netlanders. In particular vertical profiles of temperature, density and pressure will allow the resolution of vertical gradients to investigate the atmospheric structure and dynamics. In view of the future missions to Mars, Netlander represents a unique chance to increase significantly the climate record both in time and in space, doubling the current knowledge of the atmospheric parameters. Furthermore is the only opportunity to conduct direct measurement of temperature and pressure (outside the boundary layer of the airbags used for the landing). The temperature sensor proposed is a platinum thermoresistance, enhancement of HASI TEM (Cassini/Huygens Mission); a substantial improvement of the performances, i.e. a faster dynamic response, has been obtained. Two different prototypes of new design sensor have been built, laboratory test are proceeding and the second one has been already flown aboard a stratospheric balloon.
NASA Astrophysics Data System (ADS)
Ferrari, Ulisse
A maximal entropy model provides the least constrained probability distribution that reproduces experimental averages of an observables set. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a ``rectified'' Data-Driven algorithm that is fast and by sampling from the parameters posterior avoids both under- and over-fitting along all the directions of the parameters space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method. This research was supported by a Grant from the Human Brain Project (HBP CLAP).
Adjoint shape optimization for fluid-structure interaction of ducted flows
NASA Astrophysics Data System (ADS)
Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.
2018-03-01
Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.
Northern Hemisphere Nitrous Oxide Morphology during the 1989 AASE and the 1991-1992 AASE 2 Campaigns
NASA Technical Reports Server (NTRS)
Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan; Chan, K. Roland
1993-01-01
Nitrous oxide vertical profiles and latitudinal distributions for the 1989 AASE and 1992 AASE II northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occurring poleward of the polar jet. The AASE II morphology shows a mid latitude 'surf zone,' characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.
Northern hemisphere nitrous oxide morphology during the 1989 AASE and the 1991-1992 AASE 2 campaigns
NASA Technical Reports Server (NTRS)
Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan E.; Chan, K. Roland
1993-01-01
Nitrous oxide vertical profiles and latitudinal distributions for the 1989 Airborne Antarctic Ozone Experiment (AASE) and 1992 AASE 2 northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occuring poleward of the polar jet. The AASE 2 morphology shows a mid latitude 'surf zone', characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
A Gradient Taguchi Method for Engineering Optimization
NASA Astrophysics Data System (ADS)
Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song
2017-10-01
To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.
Kurtosis Approach Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.
Atmospheric tides on Venus. III - The planetary boundary layer
NASA Technical Reports Server (NTRS)
Dobrovolskis, A. R.
1983-01-01
Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.
Yang, Ping; Ning, Yu; Lei, Xiang; Xu, Bing; Li, Xinyang; Dong, Lizhi; Yan, Hu; Liu, Wenjing; Jiang, Wenhan; Liu, Lei; Wang, Chao; Liang, Xingbo; Tang, Xiaojun
2010-03-29
We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.
An image morphing technique based on optimal mass preserving mapping.
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2007-06-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.
An Image Morphing Technique Based on Optimal Mass Preserving Mapping
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2013-01-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128
Quantum generalisation of feedforward neural networks
NASA Astrophysics Data System (ADS)
Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.
2017-09-01
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.
Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation
NASA Astrophysics Data System (ADS)
Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai
2017-02-01
The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.
Convergence of fractional adaptive systems using gradient approach.
Gallegos, Javier A; Duarte-Mermoud, Manuel A
2017-07-01
Conditions for boundedness and convergence of the output error and the parameter error for various Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to the concept of persistently exciting signals used in the integer order case. An application is designed in adaptive indirect control of integer order systems using fractional equations to adjust parameters. This application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjustment in control adaptive schemes are experimentally obtained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Speidel, Lisa
2010-01-01
Research has shown that one of the most effective responses for women to thwart sexual assault is through competence in physical fighting techniques. Various studies also reveal multiple benefits beyond the actual defensive moves learned and the impact of women's self-defense classes on gender identity; however, the primary focus has been on white…
ERIC Educational Resources Information Center
Bowman, Nicole R.
2003-01-01
The author is a researcher and graduate student of American Indian descent (Stockbridge-Munsee/Mohican). She has always been very aware of the absence of other American Indian students in postsecondary education programs; has noticed the shortage of American Indians employed as educators, professors, or administrators; and is acutely aware of the…
Code of Federal Regulations, 2012 CFR
2012-01-01
... Italy lives on in the millions of American women and men of Italian descent who strengthen and enrich... we mark this important milestone in Italian history, we also honor the joint efforts of Americans and... 150th Anniversary of the Unification of Italy. I encourage all Americans to learn more about the history...
A new modified conjugate gradient coefficient for solving system of linear equations
NASA Astrophysics Data System (ADS)
Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations
Multigrid one shot methods for optimal control problems: Infinite dimensional control
NASA Technical Reports Server (NTRS)
Arian, Eyal; Taasan, Shlomo
1994-01-01
The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.
Measurement of lung expansion with computed tomography and comparison with quantitative histology.
Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C
1995-11-01
The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.
Derivatives of logarithmic stationary distributions for policy gradient reinforcement learning.
Morimura, Tetsuro; Uchibe, Eiji; Yoshimoto, Junichiro; Peters, Jan; Doya, Kenji
2010-02-01
Most conventional policy gradient reinforcement learning (PGRL) algorithms neglect (or do not explicitly make use of) a term in the average reward gradient with respect to the policy parameter. That term involves the derivative of the stationary state distribution that corresponds to the sensitivity of its distribution to changes in the policy parameter. Although the bias introduced by this omission can be reduced by setting the forgetting rate gamma for the value functions close to 1, these algorithms do not permit gamma to be set exactly at gamma = 1. In this article, we propose a method for estimating the log stationary state distribution derivative (LSD) as a useful form of the derivative of the stationary state distribution through backward Markov chain formulation and a temporal difference learning framework. A new policy gradient (PG) framework with an LSD is also proposed, in which the average reward gradient can be estimated by setting gamma = 0, so it becomes unnecessary to learn the value functions. We also test the performance of the proposed algorithms using simple benchmark tasks and show that these can improve the performances of existing PG methods.
ERIC Educational Resources Information Center
Vervliet, Bram; Iberico, Carlos; Vervoort, Ellen; Baeyens, Frank
2011-01-01
Generalization gradients have been investigated widely in animal conditioning experiments, but much less so in human predictive learning tasks. Here, we apply the experimental design of a recent study on conditioned fear generalization in humans (Lissek et al., 2008) to a predictive learning task, and examine the effects of a number of relevant…
Implementing the Mars Science Laboratory Terminal Descent Sensor Field Test Campaign
NASA Technical Reports Server (NTRS)
Montgomery, James F.; Bodie, James H.; Brown, Joseph D.; Chen, Allen; Chen, Curtis W.; Essmiller, John C.; Fisher, Charles D.; Goldberg, Hannah R.; Lee, Steven W.; Shaffer, Scott J.
2012-01-01
The Mars Science Laboratory (MSL) will deliver a 900 kg rover to the surface of Mars in August 2012. MSL will utilize a new pulse-Doppler landing radar, the Terminal Descent Sensor (TDS). The TDS employs six narrow-beam antennas to provide unprecedented slant range and velocity performance at Mars to enable soft touchdown of the MSL rover using a unique sky crane Entry, De-scent, and Landing (EDL) technique. Prior to use on MSL, the TDS was put through a rigorous verification and validation (V&V) process. A key element of this V&V was operating the TDS over a series of field tests, using flight-like profiles expected during the descent and landing of MSL over Mars-like terrain on Earth. Limits of TDS performance were characterized with additional testing meant to stress operational modes outside of the expected EDL flight profiles. The flight envelope over which the TDS must operate on Mars encompasses such a large range of altitudes and velocities that a variety of venues were neces-sary to cover the test space. These venues included an F/A-18 high performance aircraft, a Eurocopter AS350 AStar helicopter and 100-meter tall Echo Towers at the China Lake Naval Air Warfare Center. Testing was carried out over a five year period from July 2006 to June 2011. TDS performance was shown, in gen-eral, to be excellent over all venues. This paper describes the planning, design, and implementation of the field test campaign plus results and lessons learned.
Predictability of Top of Descent Location for Operational Idle-Thrust Descents
NASA Technical Reports Server (NTRS)
Stell, Laurel L.
2010-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its uncertainty models, commercial flights executed idle-thrust descents at a specified descent speed, and the recorded data included the specified descent speed profile, aircraft weight, and the winds entered into the FMS as well as the radar data. The FMS computed the intended descent path assuming idle thrust after top of descent (TOD), and the controllers and pilots then endeavored to allow the FMS to fly the descent to the meter fix with minimal human intervention. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location were extracted from the radar data. Using approximately 70 descents each in Boeing 757 and Airbus 319/320 aircraft, multiple regression estimated TOD location as a linear function of the available predictive factors. The cruise and meter fix altitudes, descent speed, and wind clearly improve goodness of fit. The aircraft weight improves fit for the Airbus descents but not for the B757. Except for a few statistical outliers, the residuals have absolute value less than 5 nmi. Thus, these predictive factors adequately explain the TOD location, which indicates the data do not include excessive noise.
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.
Gradient Learning Algorithms for Ontology Computing
Gao, Wei; Zhu, Linli
2014-01-01
The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752
Diverse expected gradient active learning for relative attributes.
You, Xinge; Wang, Ruxin; Tao, Dacheng
2014-07-01
The use of relative attributes for semantic understanding of images and videos is a promising way to improve communication between humans and machines. However, it is extremely labor- and time-consuming to define multiple attributes for each instance in large amount of data. One option is to incorporate active learning, so that the informative samples can be actively discovered and then labeled. However, most existing active-learning methods select samples one at a time (serial mode), and may therefore lose efficiency when learning multiple attributes. In this paper, we propose a batch-mode active-learning method, called diverse expected gradient active learning. This method integrates an informativeness analysis and a diversity analysis to form a diverse batch of queries. Specifically, the informativeness analysis employs the expected pairwise gradient length as a measure of informativeness, while the diversity analysis forces a constraint on the proposed diverse gradient angle. Since simultaneous optimization of these two parts is intractable, we utilize a two-step procedure to obtain the diverse batch of queries. A heuristic method is also introduced to suppress imbalanced multiclass distributions. Empirical evaluations of three different databases demonstrate the effectiveness and efficiency of the proposed approach.
Diverse Expected Gradient Active Learning for Relative Attributes.
You, Xinge; Wang, Ruxin; Tao, Dacheng
2014-06-02
The use of relative attributes for semantic understanding of images and videos is a promising way to improve communication between humans and machines. However, it is extremely labor- and time-consuming to define multiple attributes for each instance in large amount of data. One option is to incorporate active learning, so that the informative samples can be actively discovered and then labeled. However, most existing active-learning methods select samples one at a time (serial mode), and may therefore lose efficiency when learning multiple attributes. In this paper, we propose a batch-mode active-learning method, called Diverse Expected Gradient Active Learning (DEGAL). This method integrates an informativeness analysis and a diversity analysis to form a diverse batch of queries. Specifically, the informativeness analysis employs the expected pairwise gradient length as a measure of informativeness, while the diversity analysis forces a constraint on the proposed diverse gradient angle. Since simultaneous optimization of these two parts is intractable, we utilize a two-step procedure to obtain the diverse batch of queries. A heuristic method is also introduced to suppress imbalanced multi-class distributions. Empirical evaluations of three different databases demonstrate the effectiveness and efficiency of the proposed approach.
Frame prediction using recurrent convolutional encoder with residual learning
NASA Astrophysics Data System (ADS)
Yue, Boxuan; Liang, Jun
2018-05-01
The prediction for the frame of a video is difficult but in urgent need in auto-driving. Conventional methods can only predict some abstract trends of the region of interest. The boom of deep learning makes the prediction for frames possible. In this paper, we propose a novel recurrent convolutional encoder and DE convolutional decoder structure to predict frames. We introduce the residual learning in the convolution encoder structure to solve the gradient issues. The residual learning can transform the gradient back propagation to an identity mapping. It can reserve the whole gradient information and overcome the gradient issues in Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN). Besides, compared with the branches in CNNs and the gated structures in RNNs, the residual learning can save the training time significantly. In the experiments, we use UCF101 dataset to train our networks, the predictions are compared with some state-of-the-art methods. The results show that our networks can predict frames fast and efficiently. Furthermore, our networks are used for the driving video to verify the practicability.
Shih, Peter; Kaul, Brian C; Jagannathan, S; Drallmeier, James A
2008-08-01
A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary one for the affine nonlinear discrete-time system but the controllers together offer the desired performance. The primary adaptive critic NN controller includes an NN observer for estimating the states and output, an NN critic, and two action NNs for generating virtual control and actual control inputs for the nonstrict feedback nonlinear discrete-time system, whereas an additional critic NN and an action NN are included for the affine nonlinear discrete-time system by assuming the state availability. All NN weights adapt online towards minimization of a certain performance index, utilizing gradient-descent-based rule. Using Lyapunov theory, the uniformly ultimate boundedness (UUB) of the closed-loop tracking error, weight estimates, and observer estimates are shown. The adaptive critic NN controller performance is evaluated on an SI engine operating with high EGR levels where the controller objective is to reduce cyclic dispersion in heat release while minimizing fuel intake. Simulation and experimental results indicate that engine out emissions drop significantly at 20% EGR due to reduction in dispersion in heat release thus verifying the dual-control approach.
Optimum Strategies for Selecting Descent Flight-Path Angles
NASA Technical Reports Server (NTRS)
Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)
2016-01-01
An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.
Slama, Matous; Benes, Peter M.; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time. PMID:25893194
Multiple supervised residual network for osteosarcoma segmentation in CT images.
Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin
2018-01-01
Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Bukovsky, Ivo; Homma, Noriyasu; Ichiji, Kei; Cejnek, Matous; Slama, Matous; Benes, Peter M; Bila, Jiri
2015-01-01
During radiotherapy treatment for thoracic and abdomen cancers, for example, lung cancers, respiratory motion moves the target tumor and thus badly affects the accuracy of radiation dose delivery into the target. A real-time image-guided technique can be used to monitor such lung tumor motion for accurate dose delivery, but the system latency up to several hundred milliseconds for repositioning the radiation beam also affects the accuracy. In order to compensate the latency, neural network prediction technique with real-time retraining can be used. We have investigated real-time prediction of 3D time series of lung tumor motion on a classical linear model, perceptron model, and on a class of higher-order neural network model that has more attractive attributes regarding its optimization convergence and computational efficiency. The implemented static feed-forward neural architectures are compared when using gradient descent adaptation and primarily the Levenberg-Marquardt batch algorithm as the ones of the most common and most comprehensible learning algorithms. The proposed technique resulted in fast real-time retraining, so the total computational time on a PC platform was equal to or even less than the real treatment time. For one-second prediction horizon, the proposed techniques achieved accuracy less than one millimeter of 3D mean absolute error in one hundred seconds of total treatment time.
Narayanan, Shrikanth
2009-01-01
We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005
Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.
Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban
2015-07-20
In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.
NASA Astrophysics Data System (ADS)
Jiao Ling, LIn; Xiaoli, Yin; Huan, Chang; Xiaozhou, Cui; Yi-Lin, Guo; Huan-Yu, Liao; Chun-YU, Gao; Guohua, Wu; Guang-Yao, Liu; Jin-KUn, Jiang; Qing-Hua, Tian
2018-02-01
Atmospheric turbulence limits the performance of orbital angular momentum-based free-space optical communication (FSO-OAM) system. In order to compensate phase distortion induced by atmospheric turbulence, wavefront sensorless adaptive optics (WSAO) has been proposed and studied in recent years. In this paper a new version of SPGD called MZ-SPGD, which combines the Z-SPGD based on the deformable mirror influence function and the M-SPGD based on the Zernike polynomials, is proposed. Numerical simulations show that the hybrid method decreases convergence times markedly but can achieve the same compensated effect compared to Z-SPGD and M-SPGD.
CP decomposition approach to blind separation for DS-CDMA system using a new performance index
NASA Astrophysics Data System (ADS)
Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss
2014-12-01
In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.
Mirror gait retraining for the treatment of patellofemoral pain in female runners
Willy, Richard W.; Scholz, John P.; Davis, Irene S.
2012-01-01
Background Abnormal hip mechanics are often implicated in female runners with patellofemoral pain. We sought to evaluate a simple gait retraining technique, using a full-length mirror, in female runners with patellofemoral pain and abnormal hip mechanics. Transfer of the new motor skill to the untrained tasks of single leg squat and step descent was also evaluated. Methods Ten female runners with patellofemoral pain completed 8 sessions of mirror and verbal feedback on their lower extremity alignment during treadmill running. During the last 4 sessions, mirror and verbal feedback were progressively removed. Hip mechanics were assessed during running gait, a single leg squat and a step descent, both pre- and post-retraining. Subjects returned to their normal running routines and analyses were repeated at 1-month and 3-month post-retraining. Data were analyzed via repeated measures analysis of variance. Findings Subjects reduced peaks of hip adduction, contralateral pelvic drop, and hip abduction moment during running (P<0.05, effect size=0.69–2.91). Skill transfer to single leg squatting and step descent was noted (P<0.05, effect size=0.91–1.35). At 1 and 3 months post retraining, most mechanics were maintained in the absence of continued feedback. Subjects reported improvements in pain and function (P<0.05, effect size=3.81–7.61) and maintained through 3 months post retraining. Interpretation Mirror gait retraining was effective in improving mechanics and measures of pain and function. Skill transfer to the untrained tasks of squatting and step descent indicated that a higher level of motor learning had occurred. Extended follow-up is needed to determine the long term efficacy of this treatment. PMID:22917625
Statistical efficiency of adaptive algorithms.
Widrow, Bernard; Kamenetsky, Max
2003-01-01
The statistical efficiency of a learning algorithm applied to the adaptation of a given set of variable weights is defined as the ratio of the quality of the converged solution to the amount of data used in training the weights. Statistical efficiency is computed by averaging over an ensemble of learning experiences. A high quality solution is very close to optimal, while a low quality solution corresponds to noisy weights and less than optimal performance. In this work, two gradient descent adaptive algorithms are compared, the LMS algorithm and the LMS/Newton algorithm. LMS is simple and practical, and is used in many applications worldwide. LMS/Newton is based on Newton's method and the LMS algorithm. LMS/Newton is optimal in the least squares sense. It maximizes the quality of its adaptive solution while minimizing the use of training data. Many least squares adaptive algorithms have been devised over the years, but no other least squares algorithm can give better performance, on average, than LMS/Newton. LMS is easily implemented, but LMS/Newton, although of great mathematical interest, cannot be implemented in most practical applications. Because of its optimality, LMS/Newton serves as a benchmark for all least squares adaptive algorithms. The performances of LMS and LMS/Newton are compared, and it is found that under many circumstances, both algorithms provide equal performance. For example, when both algorithms are tested with statistically nonstationary input signals, their average performances are equal. When adapting with stationary input signals and with random initial conditions, their respective learning times are on average equal. However, under worst-case initial conditions, the learning time of LMS can be much greater than that of LMS/Newton, and this is the principal disadvantage of the LMS algorithm. But the strong points of LMS are ease of implementation and optimal performance under important practical conditions. For these reasons, the LMS algorithm has enjoyed very widespread application. It is used in almost every modem for channel equalization and echo cancelling. Furthermore, it is related to the famous backpropagation algorithm used for training neural networks.
MSL Lessons Learned and Knowledge Capture
NASA Technical Reports Server (NTRS)
Buxbaum, Karen L.
2012-01-01
The Mars Program has recently been informed of the Planetary Protection Subcommittee (PPS) recommendation, which was endorsed by the NAC, concerning Mars Science Lab (MSL) lessons learned and knowledge capture. The Mars Program has not had an opportunity to consider any decisions specific to the PPS recommendation. Some of the activities recommended by the PPS would involve members of the MSL flight team who are focused on cruise, entry descent & landing, and early surface operations; those activities would have to wait. Members of the MSL planetary protection team at JPL are still available to support MSL lessons learned and knowledge capture; some of the specifically recommended activities have already begun. The Mars Program shares the PPS/NAC concerns about loss of potential information & expertise in planetary protection practice.
A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.
2005-01-01
We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.
Atrioventricular nonuniformity of pericardial constraint.
Hamilton, Douglas R; Sas, Rozsa; Tyberg, John V
2004-10-01
Physiologists and clinicians commonly refer to "pressure" as a measure of the constraining effects of the pericardium; however, "pericardial pressure" is really a local measurement of epicardial radial stress. During diastole, from the bottom of the y descent to the beginning of the a wave, pericardial pressure over the right atrium (P(pRA)) is approximately equal to that over the right ventricle (P(pRV)). However, in systole, during the interval between the bottom of the x descent and the peak of the v wave, these two pericardial pressures appear to be completely decoupled in that P(pRV) decreases, whereas P(pRA) remains constant or increases. This decoupling indicates considerable mechanical independence between the RA and RV during systole. That is, RV systolic emptying lowers P(pRV), but P(pRA) continues to increase, suggesting that the relation of the pericardium to the RA must allow effective constraint, even though the pericardium over the RV is simultaneously slack. In conclusion, we measured the pericardial pressure responsible for the previously reported nonuniformity of pericardial strain. P(pRA) and P(pRV) are closely coupled during diastole, but during systole they become decoupled. Systolic nonuniformity of pericardial constraint may augment the atrioventricular valve-opening pressure gradient in early diastole and, so, affect ventricular filling.
NASA Astrophysics Data System (ADS)
Delay, Frederick; Badri, Hamid; Fahs, Marwan; Ackerer, Philippe
2017-12-01
Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are frequently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by some of the authors, as the continuous form is completely new and here fully differentiated for handling all types of model parameters. Adjoint states assist descent methods by calculating the gradient components of the objective function, these being a key to good convergence of inverse solutions. Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwithstanding, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging an inversion toolbox quasi-independent from the code employed for solving the forward problem.
Flight Management System Execution of Idle-Thrust Descents in Operations
NASA Technical Reports Server (NTRS)
Stell, Laurel L.
2011-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.
Statistical Mechanics of the Delayed Reward-Based Learning with Node Perturbation
NASA Astrophysics Data System (ADS)
Hiroshi Saito,; Kentaro Katahira,; Kazuo Okanoya,; Masato Okada,
2010-06-01
In reward-based learning, reward is typically given with some delay after a behavior that causes the reward. In machine learning literature, the framework of the eligibility trace has been used as one of the solutions to handle the delayed reward in reinforcement learning. In recent studies, the eligibility trace is implied to be important for difficult neuroscience problem known as the “distal reward problem”. Node perturbation is one of the stochastic gradient methods from among many kinds of reinforcement learning implementations, and it searches the approximate gradient by introducing perturbation to a network. Since the stochastic gradient method does not require a objective function differential, it is expected to be able to account for the learning mechanism of a complex system, like a brain. We study the node perturbation with the eligibility trace as a specific example of delayed reward-based learning, and analyzed it using a statistical mechanics approach. As a result, we show the optimal time constant of the eligibility trace respect to the reward delay and the existence of unlearnable parameter configurations.
Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.
Li, Xin; Bai, Yanqin; Peng, Yaxin; Du, Shaoyi; Ying, Shihui
2018-03-01
Changing the metric on the data may change the data distribution, hence a good distance metric can promote the performance of learning algorithm. In this paper, we address the semi-supervised distance metric learning (ML) problem to obtain the best nonlinear metric for the data. First, we describe the nonlinear metric by the multiple kernel representation. By this approach, we project the data into a high dimensional space, where the data can be well represented by linear ML. Then, we reformulate the linear ML by a minimization problem on the positive definite matrix group. Finally, we develop a two-step algorithm for solving this model and design an intrinsic steepest descent algorithm to learn the positive definite metric matrix. Experimental results validate that our proposed method is effective and outperforms several state-of-the-art ML methods.
ERIC Educational Resources Information Center
Mather, Richard
2015-01-01
This paper explores the application of canonical gradient analysis to evaluate and visualize student performance and acceptance of a learning system platform. The subject of evaluation is a first year BSc module for computer programming. This uses "Ceebot," an animated and immersive game-like development environment. Multivariate…
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress
2014-01-01
Background Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. Results M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. Conclusions MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress.
Chen, Zi-Hong; Xu, Ling; Yang, Feng-lian; Ji, Guang-Hai; Yang, Jing; Wang, Jian-Yun
2014-01-03
Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.
Broiler weight estimation based on machine vision and artificial neural network.
Amraei, S; Abdanan Mehdizadeh, S; Salari, S
2017-04-01
1. Machine vision and artificial neural network (ANN) procedures were used to estimate live body weight of broiler chickens in 30 1-d-old broiler chickens reared for 42 d. 2. Imaging was performed two times daily. To localise chickens within the pen, an ellipse fitting algorithm was used and the chickens' head and tail removed using the Chan-Vese method. 3. The correlations between the body weight and 6 physical extracted features indicated that there were strong correlations between body weight and the 5 features including area, perimeter, convex area, major and minor axis length. 5. According to statistical analysis there was no significant difference between morning and afternoon data over 42 d. 6. In an attempt to improve the accuracy of live weight approximation different ANN techniques, including Bayesian regulation, Levenberg-Marquardt, Scaled conjugate gradient and gradient descent were used. Bayesian regulation with R 2 value of 0.98 was the best network for prediction of broiler weight. 7. The accuracy of the machine vision technique was examined and most errors were less than 50 g.
Adaptation to Space: An Introduction
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1995-01-01
The cardiovascular and musculoskeletal systems are normally exposed to gradients of blood pressure and weight on Earth. These gradients increase blood pressure and tissue weight in dependent tissues of the body. Exposure to actual and simulated microgravity causes blood and tissue fluid to shift from the legs to the head. Studies of humans in space have documented facial edema, space motion sickness, decreased plasma volume, muscle atrophy, and loss of bone strength. Return of astronauts to Earth is accompanied by orthostatic intolerance, decreased neuromuscular coordination, and reduced exercise capacity. These factors decrease performance during descent from orbit and increase risk during emergency egress from the spacecraft. Models of simulated microgravity include 6 deg head-down tilt, immersion, and prolonged horizontal bedrest. Head-down tilt is the most accepted model and studies using this model of up to one year have been performed in Russia. Animal models which offer clear insights into the role of gravity on vertebrates include the developing giraffe and snakes from various habitats. Finally, possible countermeasures to speed readaptation of astronauts to gravity after prolonged space flight will be discussed.
Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.
Sokoloski, Sacha
2017-09-01
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.
Field evaluation of flight deck procedures for flying CTAS descents
DOT National Transportation Integrated Search
1997-01-01
Flight deck descent procedures were developed for a field evaluation of the CTAS Descent Advisor conducted in the fall of 1995. During this study, CTAS descent clearances were issued to 185 commercial flights at Denver International Airport. Data col...
How to define pathologic pelvic floor descent in MR defecography during defecation?
Schawkat, Khoschy; Heinrich, Henriette; Parker, Helen L; Barth, Borna K; Mathew, Rishi P; Weishaupt, Dominik; Fox, Mark; Reiner, Caecilia S
2018-06-01
To assess the extents of pelvic floor descent both during the maximal straining phase and the defecation phase in healthy volunteers and in patients with pelvic floor disorders, studied with MR defecography (MRD), and to define specific threshold values for pelvic floor descent during the defecation phase. Twenty-two patients (mean age 51 ± 19.4) with obstructed defecation and 20 healthy volunteers (mean age 33.4 ± 11.5) underwent 3.0T MRD in supine position using midsagittal T2-weighted images. Two radiologists performed measurements in reference to PCL-lines in straining and during defecation. In order to identify cutoff values of pelvic floor measurements for diagnosis of pathologic pelvic floor descent [anterior, middle, and posterior compartments (AC, MC, PC)], receiver-operating characteristic (ROC) curves were plotted. Pelvic floor descent of all three compartments was significantly larger during defecation than at straining in patients and healthy volunteers (p < 0.002). When grading pelvic floor descent in the straining phase, only two healthy volunteers showed moderate PC descent (10%), which is considered pathologic. However, when applying the grading system during defecation, PC descent was overestimated with 50% of the healthy volunteers (10 of 20) showing moderate PC descent. The AUC for PC measurements during defecation was 0.77 (p = 0.003) and suggests a cutoff value of 45 mm below the PCL to identify patients with pathologic PC descent. With the adapted cutoff, only 15% of healthy volunteers show pathologic PC descent during defecation. MRD measurements during straining and defecation can be used to differentiate patients with pelvic floor dysfunction from healthy volunteers. However, different cutoff values should be used during straining and during defecation to define normal or pathologic PC descent.
Evaluation of pelvic descent disorders by dynamic contrast roentgenography.
Takano, M; Hamada, A
2000-10-01
For precise diagnosis and rational treatment of the increasing number of patients with descent of intrapelvic organ(s) and anatomic plane(s), dynamic contrast roentgenography of multiple intrapelvic organs and planes is described. Sixty-six patients, consisting of 11 males, with a mean age (+/- standard deviation) of 65.6+/-14.2 years and with chief complaints of intrapelvic organ and perineal descent or defecation problems, were examined in this study. Dynamic contrast roentgenography was obtained by opacifying the ileum, urinary bladder, vagina, rectum, and the perineum. Films were taken at both squeeze and strain phases. On the films the lowest points of each organ and plane were plotted, and the distances from the standard line drawn at the upper surface of the sacrum were measured. The values were corrected to percentages according to the height of the sacrococcygeal bone of each patient. From these corrected values, organ or plane descents at strain and squeeze were diagnosed and graphically demonstrated as a descentgram in each patient. Among 17 cases with subjective symptoms of bladder descent, 9 cases (52.9 percent) showed roentgenographic descent. By the same token, among the cases with subjective feeling of descent of the vagina, uterus, peritoneum, perineum, rectum, and anus, roentgenographic descent was confirmed in 15 of 20 (75 percent), 7 of 9 (77.8 percent), 6 of 16 (37.5 percent), 33 of 33 (100 percent), 25 of 37 (67.6 percent), and 22 of 36 (61.6 percent), respectively. The descentgrams were divided into three patterns: anorectal descent type, female genital descent type, and total organ descent type. Dynamic contrast roentgenography and successive descentgraphy of multiple intrapelvic organs and planes are useful for objective diagnosis and rational treatment of patients with descent disorders of the intrapelvic organ(s) and plane(s).
Learning-Related Shifts in Generalization Gradients for Complex Sounds
Wisniewski, Matthew G.; Church, Barbara A.; Mercado, Eduardo
2010-01-01
Learning to discriminate stimuli can alter how one distinguishes related stimuli. For instance, training an individual to differentiate between two stimuli along a single dimension can alter how that individual generalizes learned responses. In this study, we examined the persistence of shifts in generalization gradients after training with sounds. University students were trained to differentiate two sounds that varied along a complex acoustic dimension. Students subsequently were tested on their ability to recognize a sound they experienced during training when it was presented among several novel sounds varying along this same dimension. Peak shift was observed in Experiment 1 when generalization tests immediately followed training, and in Experiment 2 when tests were delayed by 24 hours. These findings further support the universality of generalization processes across species, modalities, and levels of stimulus complexity. They also raise new questions about the mechanisms underlying learning-related shifts in generalization gradients. PMID:19815929
Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1975-01-01
The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.
Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.
Xu, Dongpo; Xia, Yili; Mandic, Danilo P
2016-02-01
The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.
A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz
1990-01-01
A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Power plant fault detection using artificial neural network
NASA Astrophysics Data System (ADS)
Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul
2018-02-01
The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.
Incoherent beam combining based on the momentum SPGD algorithm
NASA Astrophysics Data System (ADS)
Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng
2018-05-01
Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.
Frequency-domain ultrasound waveform tomography breast attenuation imaging
NASA Astrophysics Data System (ADS)
Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb
2016-04-01
Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.
Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.
Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey
2016-02-15
We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
Aeroassisted orbital maneuvering using Lyapunov optimal feedback control
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Lee, Byoung-Soo
1987-01-01
A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.
An experimental trip to the Calculus of Variations
NASA Astrophysics Data System (ADS)
Arroyo, Josu
2008-04-01
This paper presents a collection of experiments in the Calculus of Variations. The implementation of the Gradient Descent algorithm built on cubic-splines acting as "numerically friendly" elementary functions, give us ways to solve variational problems by constructing the solution. It wins a pragmatic point of view: one gets solutions sometimes as fast as possible, sometimes as close as possible to the true solutions. The balance speed/precision is not always easy to achieve. Starting from the most well-known, classic or historical formulation of a variational problem, section 2 describes briefly the bridge between theoretical and computational formulations. The next sections show the results of several kind of experiments; from the most basics, as those about geodesics, to the most complex, as those about vesicles.
Quantitative characterization of turbidity by radiative transfer based reflectance imaging
Tian, Peng; Chen, Cheng; Jin, Jiahong; Hong, Heng; Lu, Jun Q.; Hu, Xin-Hua
2018-01-01
A new and noncontact approach of multispectral reflectance imaging has been developed to inversely determine the absorption coefficient of μa, the scattering coefficient of μs and the anisotropy factor g of a turbid target from one measured reflectance image. The incident beam was profiled with a diffuse reflectance standard for deriving both measured and calculated reflectance images. A GPU implemented Monte Carlo code was developed to determine the parameters with a conjugate gradient descent algorithm and the existence of unique solutions was shown. We noninvasively determined embedded region thickness in heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative reflectance imaging. PMID:29760971
Parachute Models Used in the Mars Science Laboratory Entry, Descent, and Landing Simulation
NASA Technical Reports Server (NTRS)
Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Powell, Richard W.; Kipp, Devin M.; Adams, Douglas S.; Witkowski, Al; Kandis, Mike
2013-01-01
An end-to-end simulation of the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) sequence was created at the NASA Langley Research Center using the Program to Optimize Simulated Trajectories II (POST2). This simulation is capable of providing numerous MSL system and flight software responses, including Monte Carlo-derived statistics of these responses. The MSL POST2 simulation includes models of EDL system elements, including those related to the parachute system. Among these there are models for the parachute geometry, mass properties, deployment, inflation, opening force, area oscillations, aerodynamic coefficients, apparent mass, interaction with the main landing engines, and off-loading. These models were kept as simple as possible, considering the overall objectives of the simulation. The main purpose of this paper is to describe these parachute system models to the extent necessary to understand how they work and some of their limitations. A list of lessons learned during the development of the models and simulation is provided. Future improvements to the parachute system models are proposed.
Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices
Guiry, John J.; van de Ven, Pepijn; Nelson, John
2014-01-01
In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances. PMID:24662406
Guiry, John J; van de Ven, Pepijn; Nelson, John
2014-03-21
In this paper, the authors investigate the role that smart devices, including smartphones and smartwatches, can play in identifying activities of daily living. A feasibility study involving N = 10 participants was carried out to evaluate the devices' ability to differentiate between nine everyday activities. The activities examined include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair ascents and stair descents. The authors also evaluated the ability of these devices to differentiate indoors from outdoors, with the aim of enhancing contextual awareness. Data from this study was used to train and test five well known machine learning algorithms: C4.5, CART, Naïve Bayes, Multi-Layer Perceptrons and finally Support Vector Machines. Both single and multi-sensor approaches were examined to better understand the role each sensor in the device can play in unobtrusive activity recognition. The authors found overall results to be promising, with some models correctly classifying up to 100% of all instances.
NASA Technical Reports Server (NTRS)
Vicroy, D. D.; Knox, C. E.
1983-01-01
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.
The Yearly Variation in Fall-Winter Arctic Winter Vortex Descent
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Newman, Paul A.
1999-01-01
Using the change in HALOE methane profiles from early September to late March, we have estimated the minimum amount of diabatic descent within the polar which takes place during Arctic winter. The year to year variations are a result in the year to year variations in stratospheric wave activity which (1) modify the temperature of the vortex and thus the cooling rate; (2) reduce the apparent descent by mixing high amounts of methane into the vortex. The peak descent amounts from HALOE methane vary from l0km -14km near the arrival altitude of 25 km. Using a diabatic trajectory calculation, we compare forward and backward trajectories over the course of the winter using UKMO assimilated stratospheric data. The forward calculation agrees fairly well with the observed descent. The backward calculation appears to be unable to produce the observed amount of descent, but this is only an apparent effect due to the density decrease in parcels with altitude. Finally we show the results for unmixed descent experiments - where the parcels are fixed in latitude and longitude and allowed to descend based on the local cooling rate. Unmixed descent is found to always exceed mixed descent, because when normal parcel motion is included, the path average cooling is always less than the cooling at a fixed polar point.
Automatic toilet seat lowering apparatus
Guerty, Harold G.
1994-09-06
A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat. A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat.
NASA Astrophysics Data System (ADS)
Bhawre, Purushottam
2016-07-01
Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.
A new approach to blind deconvolution of astronomical images
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Jefferies, S. M.
2017-05-01
We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
Huygens Highlights and lessons learned
NASA Astrophysics Data System (ADS)
Lebreton, Jean-Pierre
2015-04-01
Ten years ago, on 14 January 2005, the Huygens Probe parachuted down to the surface of Titan, Saturn's largest moon. Huygens is part of the international Cassini/Huygens mission, a joint endeavor of NASA, the European Space Agency, and Agenzia Spaziale Italiana. Cassini/Huygens, comprising the NASA-provided Saturn Orbiter and the ESA-provided Huygens probe, was launched in October 1997. It arrived at Saturn in early July 2004. Huygens was released on the 3rd orbit around Saturn. It made measurements during the hypersonic entry, the descent, and for more than one hour on the surface. Unique in situ characterization of the atmosphere along the entry and descent trajectory and of the surface at the landing site was provided, revealing that many Earth-like processes were at work on Titan, a very fascinating methane world. Huygens observations also allowed inferring the ice crust thickness, hence an estimation of the depth of the icy crust/liquid water ocean interface. Huygens measurements are also used as ground-truth of the measurements made by the orbiter during Titan flybys. In this presentation, after a brief review of the major mission milestones, Huygens achievements are discussed in the context of the progress made in our understanding of Titan during the Cassini/Huygens mission. Lessons learned for the future in situ exploration of Titan are addressed. * Most of this work was performed while at ESA/ESTEC, Noordwijk, The Netherlands
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Karakida, Ryo; Okada, Masato; Amari, Shun-ichi
2017-04-01
Weight normalization, a newly proposed optimization method for neural networks by Salimans and Kingma (2016), decomposes the weight vector of a neural network into a radial length and a direction vector, and the decomposed parameters follow their steepest descent update. They reported that learning with the weight normalization achieves better converging speed in several tasks including image recognition and reinforcement learning than learning with the conventional parameterization. However, it remains theoretically uncovered how the weight normalization improves the converging speed. In this study, we applied a statistical mechanical technique to analyze on-line learning in single layer linear and nonlinear perceptrons with weight normalization. By deriving order parameters of the learning dynamics, we confirmed quantitatively that weight normalization realizes fast converging speed by automatically tuning the effective learning rate, regardless of the nonlinearity of the neural network. This property is realized when the initial value of the radial length is near the global minimum; therefore, our theory suggests that it is important to choose the initial value of the radial length appropriately when using weight normalization.
NASA Astrophysics Data System (ADS)
Sagir, Abdu Masanawa; Sathasivam, Saratha
2017-08-01
Medical diagnosis is the process of determining which disease or medical condition explains a person's determinable signs and symptoms. Diagnosis of most of the diseases is very expensive as many tests are required for predictions. This paper aims to introduce an improved hybrid approach for training the adaptive network based fuzzy inference system with Modified Levenberg-Marquardt algorithm using analytical derivation scheme for computation of Jacobian matrix. The goal is to investigate how certain diseases are affected by patient's characteristics and measurement such as abnormalities or a decision about presence or absence of a disease. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system to classify and predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. The proposed hybridised intelligent system was tested with Pima Indian Diabetes dataset obtained from the University of California at Irvine's (UCI) machine learning repository. The proposed method's performance was evaluated based on training and test datasets. In addition, an attempt was done to specify the effectiveness of the performance measuring total accuracy, sensitivity and specificity. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.
Hybrid supervisory control using recurrent fuzzy neural network for tracking periodic inputs.
Lin, F J; Wai, R J; Hong, C M
2001-01-01
A hybrid supervisory control system using a recurrent fuzzy neural network (RFNN) is proposed to control the mover of a permanent magnet linear synchronous motor (PMLSM) servo drive for the tracking of periodic reference inputs. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMLSM. Then, a hybrid supervisory control system, which combines a supervisory control system and an intelligent control system, is proposed to control the mover of the PMLSM for periodic motion. The supervisory control law is designed based on the uncertainty bounds of the controlled system to stabilize the system states around a predefined bound region. Since the supervisory control law will induce excessive and chattering control effort, the intelligent control system is introduced to smooth and reduce the control effort when the system states are inside the predefined bound region. In the intelligent control system, the RFNN control is the main tracking controller which is used to mimic a idea control law and a compensated control is proposed to compensate the difference between the idea control law and the RFNN control. The RFNN has the merits of fuzzy inference, dynamic mapping and fast convergence speed, In addition, an online parameter training methodology, which is derived using the Lyapunov stability theorem and the gradient descent method, is proposed to increase the learning capability of the RFNN. The proposed hybrid supervisory control system using RFNN can track various periodic reference inputs effectively with robust control performance.
NASA Astrophysics Data System (ADS)
Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza
2017-07-01
In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.
Improving the Incoherence of a Learned Dictionary via Rank Shrinkage.
Ubaru, Shashanka; Seghouane, Abd-Krim; Saad, Yousef
2017-01-01
This letter considers the problem of dictionary learning for sparse signal representation whose atoms have low mutual coherence. To learn such dictionaries, at each step, we first update the dictionary using the method of optimal directions (MOD) and then apply a dictionary rank shrinkage step to decrease its mutual coherence. In the rank shrinkage step, we first compute a rank 1 decomposition of the column-normalized least squares estimate of the dictionary obtained from the MOD step. We then shrink the rank of this learned dictionary by transforming the problem of reducing the rank to a nonnegative garrotte estimation problem and solving it using a path-wise coordinate descent approach. We establish theoretical results that show that the rank shrinkage step included will reduce the coherence of the dictionary, which is further validated by experimental results. Numerical experiments illustrating the performance of the proposed algorithm in comparison to various other well-known dictionary learning algorithms are also presented.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicroy, D.D.; Knox, C.E.
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modelingmore » required for the DC-10 airplane is described.« less
Solving ill-posed inverse problems using iterative deep neural networks
NASA Astrophysics Data System (ADS)
Adler, Jonas; Öktem, Ozan
2017-12-01
We propose a partially learned approach for the solution of ill-posed inverse problems with not necessarily linear forward operators. The method builds on ideas from classical regularisation theory and recent advances in deep learning to perform learning while making use of prior information about the inverse problem encoded in the forward operator, noise model and a regularising functional. The method results in a gradient-like iterative scheme, where the ‘gradient’ component is learned using a convolutional network that includes the gradients of the data discrepancy and regulariser as input in each iteration. We present results of such a partially learned gradient scheme on a non-linear tomographic inversion problem with simulated data from both the Sheep-Logan phantom as well as a head CT. The outcome is compared against filtered backprojection and total variation reconstruction and the proposed method provides a 5.4 dB PSNR improvement over the total variation reconstruction while being significantly faster, giving reconstructions of 512 × 512 pixel images in about 0.4 s using a single graphics processing unit (GPU).
Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent
Chang, Bao-Li; Spangler, Elaine; Gallagher, Stephen; Haiman, Christopher A.; Henderson, Brian; Isaacs, William; Benford, Marnita L.; Kidd, LaCreis R.; Cooney, Kathleen; Strom, Sara; Ann Ingles, Sue; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Xu, Jianfeng; Giri, Veda N.; Rybicki, Benjamin; Neslund-Dudas, Christine; Kibel, Adam S.; Thompson, Ian M.; Leach, Robin J.; Ostrander, Elaine A.; Stanford, Janet L.; Witte, John; Casey, Graham; Eeles, Rosalind; Hsing, Ann W.; Chanock, Stephen; Hu, Jennifer J.; John, Esther M.; Park, Jong; Stefflova, Klara; Zeigler-Johnson, Charnita; Rebbeck, Timothy R.
2010-01-01
Background Genome-wide association studies (GWAS) have identified numerous prostate cancer susceptibility alleles, but these loci have been identified primarily in men of European descent. There is limited information about the role of these loci in men of African descent. Methods We identified 7,788 prostate cancer cases and controls with genotype data for 47 GWAS-identified loci. Results We identified significant associations for SNP rs10486567 at JAZF1, rs10993994 at MSMB, rs12418451 and rs7931342 at 11q13, and rs5945572 and rs5945619 at NUDT10/11. These associations were in the same direction and of similar magnitude as those reported in men of European descent. Significance was attained at all report prostate cancer susceptibility regions at chromosome 8q24, including associations reaching genome-wide significance in region 2. Conclusion We have validated in men of African descent the associations at some, but not all, prostate cancer susceptibility loci originally identified in European descent populations. This may be due to heterogeneity in genetic etiology or in the pattern of genetic variation across populations. Impact The genetic etiology of prostate cancer in men of African descent differs from that of men of European descent. PMID:21071540
Studies of the hormonal control of postnatal testicular descent in the rat.
Spencer, J R; Vaughan, E D; Imperato-McGinley, J
1993-03-01
Dihydrotestosterone is believed to control the transinguinal phase of testicular descent based on hormonal manipulation studies performed in postnatal rats. In the present study, these hormonal manipulation experiments were repeated, and the results were compared with those obtained using the antiandrogens flutamide and cyproterone acetate. 17 beta-estradiol completely blocked testicular descent, but testosterone and dihydrotestosterone were equally effective in reversing this inhibition. Neither flutamide nor cyproterone acetate prevented testicular descent in postnatal rats despite marked peripheral antiandrogenic action. Further analysis of the data revealed a correlation between testicular size and descent. Androgen receptor blockade did not produce a marked reduction in testicular size and consequently did not prevent testicular descent, whereas estradiol alone caused marked testicular atrophy and testicular maldescent. Reduction of the estradiol dosage or concomitant administration of androgens or human chorionic gonadotropin resulted in both increased testicular size and degree of descent. These data suggest that growth of the neonatal rat testis may contribute to its passage into the scrotum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less
Applying machine-learning techniques to Twitter data for automatic hazard-event classification.
NASA Astrophysics Data System (ADS)
Filgueira, R.; Bee, E. J.; Diaz-Doce, D.; Poole, J., Sr.; Singh, A.
2017-12-01
The constant flow of information offered by tweets provides valuable information about all sorts of events at a high temporal and spatial resolution. Over the past year we have been analyzing in real-time geological hazards/phenomenon, such as earthquakes, volcanic eruptions, landslides, floods or the aurora, as part of the GeoSocial project, by geo-locating tweets filtered by keywords in a web-map. However, not all the filtered tweets are related with hazard/phenomenon events. This work explores two classification techniques for automatic hazard-event categorization based on tweets about the "Aurora". First, tweets were filtered using aurora-related keywords, removing stop words and selecting the ones written in English. For classifying the remaining between "aurora-event" or "no-aurora-event" categories, we compared two state-of-art techniques: Support Vector Machine (SVM) and Deep Convolutional Neural Networks (CNN) algorithms. Both approaches belong to the family of supervised learning algorithms, which make predictions based on labelled training dataset. Therefore, we created a training dataset by tagging 1200 tweets between both categories. The general form of SVM is used to separate two classes by a function (kernel). We compared the performance of four different kernels (Linear Regression, Logistic Regression, Multinomial Naïve Bayesian and Stochastic Gradient Descent) provided by Scikit-Learn library using our training dataset to build the SVM classifier. The results shown that the Logistic Regression (LR) gets the best accuracy (87%). So, we selected the SVM-LR classifier to categorise a large collection of tweets using the "dispel4py" framework.Later, we developed a CNN classifier, where the first layer embeds words into low-dimensional vectors. The next layer performs convolutions over the embedded word vectors. Results from the convolutional layer are max-pooled into a long feature vector, which is classified using a softmax layer. The CNN's accuracy is lower (83%) than the SVM-LR, since the algorithm needs a bigger training dataset to increase its accuracy. We used TensorFlow framework for applying CNN classifier to the same collection of tweets.In future we will modify both classifiers to work with other geo-hazards, use larger training datasets and apply them in real-time.
Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad
2016-12-01
Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a control group without symptoms. Three-dimensional endovaginal ultrasonography is a reliable technique for assessment of perineal descent. Using this technique, excessive perineal descent can be defined as displacement of the anorectal junction >1 cm and/or its position below the symphysis pubis on Valsalva maneuver.
A responsive evaluation of an Aboriginal nursing education access program.
Curran, Vernon; Solberg, Shirley; LeFort, Sandra; Fleet, Lisa; Hollett, Ann
2008-01-01
Nursing education access programs have been introduced in a number of countries to address the shortage of healthcare providers of Aboriginal descent. An evaluation study of a nursing education access program in Labrador, Canada, was undertaken using a Responsive Evaluation approach. Interviews and focus groups with program stakeholders were conducted. Program effectiveness was influenced by culturally relevant curriculum, experiential and authentic learning opportunities, academic and social support, and the need for partnership building between stakeholders. The authors report key findings resulting from the Responsive Evaluation.
Transmit Designs for the MIMO Broadcast Channel With Statistical CSI
NASA Astrophysics Data System (ADS)
Wu, Yongpeng; Jin, Shi; Gao, Xiqi; McKay, Matthew R.; Xiao, Chengshan
2014-09-01
We investigate the multiple-input multiple-output broadcast channel with statistical channel state information available at the transmitter. The so-called linear assignment operation is employed, and necessary conditions are derived for the optimal transmit design under general fading conditions. Based on this, we introduce an iterative algorithm to maximize the linear assignment weighted sum-rate by applying a gradient descent method. To reduce complexity, we derive an upper bound of the linear assignment achievable rate of each receiver, from which a simplified closed-form expression for a near-optimal linear assignment matrix is derived. This reveals an interesting construction analogous to that of dirty-paper coding. In light of this, a low complexity transmission scheme is provided. Numerical examples illustrate the significant performance of the proposed low complexity scheme.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
Optimal landing of a helicopter in autorotation
NASA Technical Reports Server (NTRS)
Lee, A. Y. N.
1985-01-01
Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.
Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros
NASA Technical Reports Server (NTRS)
Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.
1973-01-01
Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.
Algorithms for the optimization of RBE-weighted dose in particle therapy.
Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M
2013-01-21
We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.
Algorithms for the optimization of RBE-weighted dose in particle therapy
NASA Astrophysics Data System (ADS)
Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.
2013-01-01
We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.
NASA Astrophysics Data System (ADS)
Bhosale, Parag; Staring, Marius; Al-Ars, Zaid; Berendsen, Floris F.
2018-03-01
Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gradient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registration tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD (FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.
McIntosh, Chris; Hamarneh, Ghassan
2012-01-01
We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.
Image counter-forensics based on feature injection
NASA Astrophysics Data System (ADS)
Iuliani, M.; Rossetto, S.; Bianchi, T.; De Rosa, Alessia; Piva, A.; Barni, M.
2014-02-01
Starting from the concept that many image forensic tools are based on the detection of some features revealing a particular aspect of the history of an image, in this work we model the counter-forensic attack as the injection of a specific fake feature pointing to the same history of an authentic reference image. We propose a general attack strategy that does not rely on a specific detector structure. Given a source image x and a target image y, the adversary processes x in the pixel domain producing an attacked image ~x, perceptually similar to x, whose feature f(~x) is as close as possible to f(y) computed on y. Our proposed counter-forensic attack consists in the constrained minimization of the feature distance Φ(z) =│ f(z) - f(y)│ through iterative methods based on gradient descent. To solve the intrinsic limit due to the numerical estimation of the gradient on large images, we propose the application of a feature decomposition process, that allows the problem to be reduced into many subproblems on the blocks the image is partitioned into. The proposed strategy has been tested by attacking three different features and its performance has been compared to state-of-the-art counter-forensic methods.
Axial compartmentation of descending and ascending thin limbs of Henle's loops
Westrick, Kristen Y.; Serack, Bradley; Dantzler, William H.
2013-01-01
In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss. PMID:23195680
Axial compartmentation of descending and ascending thin limbs of Henle's loops.
Westrick, Kristen Y; Serack, Bradley; Dantzler, William H; Pannabecker, Thomas L
2013-02-01
In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss.
Effects of flutamide and finasteride on rat testicular descent.
Spencer, J R; Torrado, T; Sanchez, R S; Vaughan, E D; Imperato-McGinley, J
1991-08-01
The endocrine control of descent of the testis in mammalian species is poorly understood. The androgen dependency of testicular descent was studied in the rat using an antiandrogen (flutamide) and an inhibitor of the enzyme 5 alpha-reductase (finasteride). Androgen receptor blockade inhibited testicular descent more effectively than inhibition of 5 alpha-reductase activity. Moreover, its inhibitory effect was limited to the outgrowth phase of the gubernaculum testis, particularly the earliest stages of outgrowth. Gubernacular size was also significantly reduced in fetuses exposed to flutamide during the outgrowth period. In contrast, androgen receptor blockade or 5 alpha-reductase inhibition applied after the initiation of gubernacular outgrowth or during the regression phase did not affect testicular descent. Successful inhibition of the development of epididymis and vas by prenatal flutamide did not correlate with ipsilateral testicular maldescent, suggesting that an intact epididymis is not required for descent of the testis. Plasma androgen assays confirmed significant inhibition of dihydrotestosterone formation in finasteride-treated rats. These data suggest that androgens, primarily testosterone, are required during the early phases of gubernacular outgrowth for subsequent successful completion of testicular descent.
Image reconstruction from few-view CT data by gradient-domain dictionary learning.
Hu, Zhanli; Liu, Qiegen; Zhang, Na; Zhang, Yunwan; Peng, Xi; Wu, Peter Z; Zheng, Hairong; Liang, Dong
2016-05-21
Decreasing the number of projections is an effective way to reduce the radiation dose exposed to patients in medical computed tomography (CT) imaging. However, incomplete projection data for CT reconstruction will result in artifacts and distortions. In this paper, a novel dictionary learning algorithm operating in the gradient-domain (Grad-DL) is proposed for few-view CT reconstruction. Specifically, the dictionaries are trained from the horizontal and vertical gradient images, respectively and the desired image is reconstructed subsequently from the sparse representations of both gradients by solving the least-square method. Since the gradient images are sparser than the image itself, the proposed approach could lead to sparser representations than conventional DL methods in the image-domain, and thus a better reconstruction quality is achieved. To evaluate the proposed Grad-DL algorithm, both qualitative and quantitative studies were employed through computer simulations as well as real data experiments on fan-beam and cone-beam geometry. The results show that the proposed algorithm can yield better images than the existing algorithms.
Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong
2014-01-01
The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging features related to brain diseases.
Zhu, Fei; Liu, Quan; Fu, Yuchen; Shen, Bairong
2014-01-01
The segmentation of structures in electron microscopy (EM) images is very important for neurobiological research. The low resolution neuronal EM images contain noise and generally few features are available for segmentation, therefore application of the conventional approaches to identify the neuron structure from EM images is not successful. We therefore present a multi-scale fused structure boundary detection algorithm in this study. In the algorithm, we generate an EM image Gaussian pyramid first, then at each level of the pyramid, we utilize Laplacian of Gaussian function (LoG) to attain structure boundary, we finally assemble the detected boundaries by using fusion algorithm to attain a combined neuron structure image. Since the obtained neuron structures usually have gaps, we put forward a reinforcement learning-based boundary amendment method to connect the gaps in the detected boundaries. We use a SARSA (λ)-based curve traveling and amendment approach derived from reinforcement learning to repair the incomplete curves. Using this algorithm, a moving point starts from one end of the incomplete curve and walks through the image where the decisions are supervised by the approximated curve model, with the aim of minimizing the connection cost until the gap is closed. Our approach provided stable and efficient structure segmentation. The test results using 30 EM images from ISBI 2012 indicated that both of our approaches, i.e., with or without boundary amendment, performed better than six conventional boundary detection approaches. In particular, after amendment, the Rand error and warping error, which are the most important performance measurements during structure segmentation, were reduced to very low values. The comparison with the benchmark method of ISBI 2012 and the recent developed methods also indicates that our method performs better for the accurate identification of substructures in EM images and therefore useful for the identification of imaging features related to brain diseases. PMID:24625699
Testicular descent related to growth hormone treatment.
Papadimitriou, Anastasios; Fountzoula, Ioanna; Grigoriadou, Despina; Christianakis, Stratos; Tzortzatou, Georgia
2003-01-01
An 8.7 year-old boy with cryptorchidism and growth hormone (GH) deficiency due to septooptic dysplasia presented testicular descent related to the commencement of hGH treatment. This case suggests a role for GH in testicular descent.
Aircraft Vortex Wake Descent and Decay under Real Atmospheric Effects
DOT National Transportation Integrated Search
1973-10-01
Aircraft vortex wake descent and decay in a real atmosphere is studied analytically. Factors relating to encounter hazard, wake generation, wake descent and stability, and atmospheric dynamics are considered. Operational equations for encounter hazar...
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2016-12-01
Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1974-01-01
Apollo lunar-descent guidance transfers the Lunar Module from a near-circular orbit to touchdown, traversing a 17 deg central angle and a 15 km altitude in 11 min. A group of interactive programs in an onboard computer guide the descent, controlling altitude and the descent propulsion system throttle. A ground-based program pre-computes guidance targets. The concepts involved in this guidance are described. Explicit and implicit guidance are discussed, guidance equations are derived, and the earlier Apollo explicit equation is shown to be an inferior special case of the later implicit equation. Interactive guidance, by which the two-man crew selects a landing site in favorable terrain and directs the trajectory there, is discussed. Interactive terminal-descent guidance enables the crew to control the essentially vertical descent rate in order to land in minimum time with safe contact speed. The altitude maneuver routine uses concepts that make gimbal lock inherently impossible.
NASA Technical Reports Server (NTRS)
Smith, Charlee C., Jr.; Lovell, Powell M., Jr.
1954-01-01
An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
Magnified gradient function with deterministic weight modification in adaptive learning.
Ng, Sin-Chun; Cheung, Chi-Chung; Leung, Shu-Hung
2004-11-01
This paper presents two novel approaches, backpropagation (BP) with magnified gradient function (MGFPROP) and deterministic weight modification (DWM), to speed up the convergence rate and improve the global convergence capability of the standard BP learning algorithm. The purpose of MGFPROP is to increase the convergence rate by magnifying the gradient function of the activation function, while the main objective of DWM is to reduce the system error by changing the weights of a multilayered feedforward neural network in a deterministic way. Simulation results show that the performance of the above two approaches is better than BP and other modified BP algorithms for a number of learning problems. Moreover, the integration of the above two approaches forming a new algorithm called MDPROP, can further improve the performance of MGFPROP and DWM. From our simulation results, the MDPROP algorithm always outperforms BP and other modified BP algorithms in terms of convergence rate and global convergence capability.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control attempts to find the operating condition that will generate optimal performance and control the plant at that operating condition. In this paper a nonlinear multivariable Adaptive Performance Seeking Control (APSC) methodology will be developed and it will be demonstrated on a nonlinear system. The APSC is comprised of the Positive Gradient Control (PGC) and the Fuzzy Model Reference Learning Control (FMRLC). The PGC computes the positive gradients of the desired performance function with respect to the control inputs in order to drive the plant set points to the operating point that will produce optimal performance. The PGC approach will be derived in this paper. The feedback control of the plant is performed by the FMRLC. For the FMRLC, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for the effective tuning of the FMRLC controller.
Adaptive learning and control for MIMO system based on adaptive dynamic programming.
Fu, Jian; He, Haibo; Zhou, Xinmin
2011-07-01
Adaptive dynamic programming (ADP) is a promising research field for design of intelligent controllers, which can both learn on-the-fly and exhibit optimal behavior. Over the past decades, several generations of ADP design have been proposed in the literature, which have demonstrated many successful applications in various benchmarks and industrial applications. While many of the existing researches focus on multiple-inputs-single-output system with steepest descent search, in this paper we investigate a generalized multiple-input-multiple-output (GMIMO) ADP design for online learning and control, which is more applicable to a wide range of practical real-world applications. Furthermore, an improved weight-updating algorithm based on recursive Levenberg-Marquardt methods is presented and embodied in the GMIMO approach to improve its performance. Finally, we test the performance of this approach based on a practical complex system, namely, the learning and control of the tension and height of the looper system in a hot strip mill. Experimental results demonstrate that the proposed approach can achieve effective and robust performance.
Manifold Preserving: An Intrinsic Approach for Semisupervised Distance Metric Learning.
Ying, Shihui; Wen, Zhijie; Shi, Jun; Peng, Yaxin; Peng, Jigen; Qiao, Hong
2017-05-18
In this paper, we address the semisupervised distance metric learning problem and its applications in classification and image retrieval. First, we formulate a semisupervised distance metric learning model by considering the metric information of inner classes and interclasses. In this model, an adaptive parameter is designed to balance the inner metrics and intermetrics by using data structure. Second, we convert the model to a minimization problem whose variable is symmetric positive-definite matrix. Third, in implementation, we deduce an intrinsic steepest descent method, which assures that the metric matrix is strictly symmetric positive-definite at each iteration, with the manifold structure of the symmetric positive-definite matrix manifold. Finally, we test the proposed algorithm on conventional data sets, and compare it with other four representative methods. The numerical results validate that the proposed method significantly improves the classification with the same computational efficiency.
ExoMars Entry, Descent, and Landing Science
NASA Astrophysics Data System (ADS)
Karatekin, Özgür; Forget, Francois; Withers, Paul; Colombatti, Giacomo; Aboudan, Alessio; Lewis, Stephen; Ferri, Francesca; Van Hove, Bart; Gerbal, Nicolas
2016-07-01
Schiaparelli, the Entry Demonstrator Module (EDM) of the ESA ExoMars Program will to land on Mars on 19th October 2016. The ExoMars Atmospheric Mars Entry and Landing Investigations and Analysis (AMELIA) team seeks to exploit the Entry Descent and Landing (EDL) engineering measurements of Schiaparelli for scientific investigations of Mars' atmosphere and surface. ExoMars offers a rare opportunity to perform an in situ investigation of the martian environment over a wide altitude range. There has been only 7 successfully landing on the surface of Mars, from the Viking probes in the 1970's to the Mars Science Laboratory (MSL) in 2012. ExoMars EDM is equipped with an instrumented heat shield like MSL. These novel flight sensors complement conventional accelerometer and gyroscope instrumentation, and provide additional information to reconstruct atmospheric conditions with. This abstract outlines general atmospheric reconstruction methodology using complementary set of sensors and in particular the use of surface pressure and radio data. In addition, we discuss the lessons learned from previous EDL and the plans for ExoMars AMELIA data analysis.
Bernard, Olivier; Alata, Olivier; Francaux, Marc
2006-03-01
Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic parameters, but a large inaccuracy remains in estimating the parameter values of the second exponential.
Evaluation of vertical profiles to design continuous descent approach procedure
NASA Astrophysics Data System (ADS)
Pradeep, Priyank
The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of uncertainties in external factors. Analysis from operational feasibility perspective suggests that two key features of the performance based Flight Management System (FMS) i.e. required time of arrival (RTA) and geometric descent path would help in reduction of unpredictability associated with arrival time and vertical profile of aircraft guided by the FMS coupled with auto-pilot (AP) and auto-throttle (AT). The statistical analysis of the vertical profiles of CDA also suggests that for procedure design window type, 'AT or above' and 'AT or below' altitude and FPA constraints are more realistic and useful compared to obsolete 'AT' type altitude constraint.
A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle
NASA Astrophysics Data System (ADS)
Fields, Travis D.
Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight information during the ascent and descent. Simulation and real-world flight tests (using the developed low-cost hardware) demonstrate the significance of the improvements achievable when flying the developed system.
NASA Astrophysics Data System (ADS)
Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi
2018-06-01
A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.
An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.
1986-01-01
Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.
An annealed chaotic maximum neural network for bipartite subgraph problem.
Wang, Jiahai; Tang, Zheng; Wang, Ronglong
2004-04-01
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
Khachatryan, Naira; Medeiros, Felipe A.; Sharpsten, Lucie; Bowd, Christopher; Sample, Pamela A.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Weinreb, Robert N.; Miki, Atsuya; Hammel, Na’ama; Zangwill, Linda M.
2015-01-01
Purpose To evaluate racial differences in the development of visual field (VF) damage in glaucoma suspects. Design Prospective, observational cohort study. Methods Six hundred thirty six eyes from 357 glaucoma suspects with normal VF at baseline were included from the multicenter African Descent and Glaucoma Evaluation Study (ADAGES). Racial differences in the development of VF damage were examined using multivariable Cox Proportional Hazard models. Results Thirty one (25.4%) of 122 African descent participants and 47 (20.0%) of 235 European descent participants developed VF damage (p=0.078). In multivariable analysis, worse baseline VF mean deviation, higher mean arterial pressure during follow up, and a race *mean intraocular pressure (IOP) interaction term were significantly associated with the development of VF damage suggesting that racial differences in the risk of VF damage varied by IOP. At higher mean IOP levels, race was predictive of the development of VF damage even after adjusting for potentially confounding factors. At mean IOPs during follow-up of 22, 24 and 26 mmHg, multivariable hazard ratios (95%CI) for the development of VF damage in African descent compared to European descent subjects were 2.03 (1.15–3.57), 2.71 (1.39–5.29), and 3.61 (1.61–8.08), respectively. However, at lower mean IOP levels (below 22 mmHg) during follow-up, African descent was not predictive of the development of VF damage. Conclusion In this cohort of glaucoma suspects with similar access to treatment, multivariate analysis revealed that at higher mean IOP during follow-up, individuals of African descent were more likely to develop VF damage than individuals of European descent. PMID:25597839
van der Stoep, T
Compared to the percentage of ethnic minorities in the general population, ethnic minorities are overrepresented in forensic psychiatry. If these minorities are to be treated successfully, we need to know more about this group. So far, however, little is known about the differences between mental disorders and types of offences associated with patients of non-Dutch descent and those associated with patients of Dutch descent.
AIM: To take the first steps to obtain the information we need in order to provide customised care for patients of non-Dutch descent.
METHOD: It proved possible to identify differences between patients of Dutch and non-Dutch descent with regard to treatment, diagnosis and offences committed within a group of patients who were admitted to the forensic psychiatric centre Oostvaarderskliniek during the period 2001 - 2014.
RESULTS: The treatment of patients of non-Dutch descent lasted longer than the treatment of patients of Dutch descent (8.5 year versus 6.6 year). Furthermore, patients from ethnic minority groups were diagnosed more often with schizophrenia (49.1% versus 21.4%), but less often with pervasive developmental disorders or sexual disorders. Patients of non-Dutch descent were more often convicted for sexual crimes where the victim was aged 16 years or older, whereas patients of Dutch descent were convicted of sexual crimes where the victim was under 16.
CONCLUSION: There are differences between patients of Dutch and non-Dutch descent with regard to treatment duration, diagnosis and offences they commit. Future research needs to investigate whether these results are representative for the entire field of forensic psychiatry and to discover the reasons for these differences.
The impact of Asian descent on the incidence of acquired severe aplastic anaemia in children.
McCahon, Emma; Tang, Keith; Rogers, Paul C J; McBride, Mary L; Schultz, Kirk R
2003-04-01
Previous studies have suggested an increased incidence of acquired severe aplastic anaemia in Asian populations. We evaluated the incidence of aplastic anaemia in people of Asian descent, using a well-defined paediatric (0-14 years) population in British Columbia, Canada to minimize environmental factors. The incidence in children of East/South-east Asian descent (6.9/million/year) and South Asian (East Indian) descent (7.3/million/year) was higher than for those of White/mixed ethnic descent (1.7/million/year). There appeared to be no contribution by environmental factors. This study shows that Asian children have an increased incidence of severe aplastic anaemia possibly as a result of a genetic predisposition.
Intrascrotal CGRP 8-37 causes a delay in testicular descent in mice.
Samarakkody, U K; Hutson, J M
1992-07-01
The genitofemoral nerve is a key factor in the inguinoscrotal descent of the testis. The effect of androgens may be mediated via the central nervous system, which in turn secretes the neurotransmitter calcitonin gene-related peptide (CGRP) at the genitofemoral nerve endings, to cause testicular descent. The effect of endogenous CGRP was examined by weekly injections of a vehicle with or without synthetic antagonist (CGRP 8-37) into the developing scrotum of neonatal mice. The descent of the testis was delayed in the experimental group compared with the control group. At 2 weeks of age 43% of controls had descended testes compared with 0% of experimental animals. At 3 weeks of age 17% of experimentals still had undescended testes, whereas all testes were descended in controls. At 4 weeks 3 testes remained undescended in the experimental group. It is concluded that the CGRP antagonist can retard testicular descent. This result is consistent with the hypothesis that CGRP is an important intermediary in testicular descent.
Houle, A M; Gagné, D
1995-01-01
The androgen-regulated paracrine factor, calcitonin gene-related peptide (CGRP), has been proposed as a possible mediator of testicular descent. This peptide has been found to increase rhythmic contractions of gubernaculae and is known to be released by the genitofemoral nerve. We have investigated the ability of CGRP to induce premature testicular descent. CGRP was administered alone, or in combination with human chorionic gonadotropin (hCG) to C57BL/6 male mice postnatally. The extent of testicular descent at 18 days postpartum was then ascertained. The potential relationship between testicular weight and descent was also examined. Our results show that testes of mice treated with either hCG alone, or in combination with 500 ng CGRP, were at a significantly lower position than those of controls by 16% and 17%, respectively. In contrast, mice treated with 500 ng of CGRP alone had testes at a higher position when compared to those of controls, by 19%. In mice treated with 50 ng of CGRP alone or in combination with hCG, testes were at a position similar to those in controls. Furthermore, testicular descent was analyzed in relation to testicular weight, and we found that significantly smaller testes per gram of body weight than those of controls were at a significantly lower position compared to those of controls. Our data demonstrate that CGRP had no effect on postnatal testicular descent and that there is no relationship between postnatal descent and testicular weight.
Transformable descent vehicles
NASA Astrophysics Data System (ADS)
Pichkhadze, K. M.; Finchenko, V. S.; Aleksashkin, S. N.; Ostreshko, B. A.
2016-12-01
This article presents some types of planetary descent vehicles, the shape of which varies in different flight phases. The advantages of such vehicles over those with unchangeable form (from launch to landing) are discussed. It is shown that the use of transformable descent vehicles widens the scope of possible tasks to solve.
43 CFR 10.14 - Lineal descent and cultural affiliation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... evidence sufficient to: (i) Establish the identity and cultural characteristics of the earlier group, (ii... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Lineal descent and cultural affiliation... GRAVES PROTECTION AND REPATRIATION REGULATIONS General § 10.14 Lineal descent and cultural affiliation...
43 CFR 10.14 - Lineal descent and cultural affiliation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... evidence sufficient to: (i) Establish the identity and cultural characteristics of the earlier group, (ii... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Lineal descent and cultural affiliation... GRAVES PROTECTION AND REPATRIATION REGULATIONS General § 10.14 Lineal descent and cultural affiliation...
Rocket measurements of electron density irregularities during MAC/SINE
NASA Technical Reports Server (NTRS)
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary
2012-07-15
Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.
NASA Astrophysics Data System (ADS)
Arias, E.; Florez, E.; Pérez-Torres, J. F.
2017-06-01
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
A dual estimate method for aeromagnetic compensation
NASA Astrophysics Data System (ADS)
Ma, Ming; Zhou, Zhijian; Cheng, Defu
2017-11-01
Scalar aeromagnetic surveys have played a vital role in prospecting. However, before analysis of the surveys’ aeromagnetic data is possible, the aircraft’s magnetic interference should be removed. The extensively adopted linear model for aeromagnetic compensation is computationally efficient but faces an underfitting problem. On the other hand, the neural model proposed by Williams is more powerful at fitting but always suffers from an overfitting problem. This paper starts off with an analysis of these two models and then proposes a dual estimate method to combine them together to improve accuracy. This method is based on an unscented Kalman filter, but a gradient descent method is implemented over the iteration so that the parameters of the linear model are adjustable during flight. The noise caused by the neural model’s overfitting problem is suppressed by introducing an observation noise.
Arias, E; Florez, E; Pérez-Torres, J F
2017-06-28
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu 7 , Cu 9 , and Cu 11 as benchmark systems, and Cu 38 and Ni 9 as novel systems. New equilibrium structures for Cu 9 , Cu 11 , Cu 38 , and Ni 9 are reported.
Overview of the Phoenix Entry, Descent and Landing System
NASA Technical Reports Server (NTRS)
Grover, Rob
2005-01-01
A viewgraph presentation on the entry, descent and landing system of Phoenix is shown. The topics include: 1) Phoenix Mission Goals; 2) Payload; 3) Aeroshell/Entry Comparison; 4) Entry Trajectory Comparison; 5) Phoenix EDL Timeline; 6) Hypersonic Phase; 7) Parachute Phase; 8) Terminal Descent Phase; and 9) EDL Communications.
NASA Technical Reports Server (NTRS)
Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben
2012-01-01
The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.
Descent Stage of Mars Science Laboratory During Assembly
NASA Technical Reports Server (NTRS)
2008-01-01
This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.Dynamics of the Venera 13 and 14 descent modules in the parachute segment of descent
NASA Astrophysics Data System (ADS)
Vishniak, A. A.; Kariagin, V. P.; Kovtunenko, V. M.; Kotov, B. B.; Kuznetsov, V. V.; Lopatkin, A. I.; Perov, O. V.; Pichkhadze, K. M.; Rysev, O. V.
1983-05-01
The parachute system for the Venera 13 and 14 descent modules was designed to assure the prescribed duration of descent in the Venus cloud layer as well as the separation of heat-shield elements from the module. A mathematical model is developed which makes possible a numerical analysis of the dynamics of the module-parachute system with allowance for parachute inertia, atmospheric turbulence, the means by which the parachute is attachead to the module, and the elasticity and damping of the suspended system. A formula is derived for determining the period of oscillations of the module in the parachute segment of descent. A comparison of theoretical and experimental results shows that this formula can be used in the design calculations, especially at the early stage of module development.
Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace
NASA Technical Reports Server (NTRS)
Coopenbarger, Richard A.
2010-01-01
Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicroy, D.D.
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used,more » as well as a detailed flow chart and listing of the algorithm are contained.« less
Zhang, Huisheng; Zhang, Ying; Xu, Dongpo; Liu, Xiaodong
2015-06-01
It has been shown that, by adding a chaotic sequence to the weight update during the training of neural networks, the chaos injection-based gradient method (CIBGM) is superior to the standard backpropagation algorithm. This paper presents the theoretical convergence analysis of CIBGM for training feedforward neural networks. We consider both the case of batch learning as well as the case of online learning. Under mild conditions, we prove the weak convergence, i.e., the training error tends to a constant and the gradient of the error function tends to zero. Moreover, the strong convergence of CIBGM is also obtained with the help of an extra condition. The theoretical results are substantiated by a simulation example.
Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter
NASA Technical Reports Server (NTRS)
Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.
2001-01-01
A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
Aliberti, Sandra; Mezêncio, Bruno; Amadio, Alberto Carlos; Serrão, Julio Cerca; Mochizuki, Luis
2018-05-23
Knee pain during stair managing is a common complaint among individuals with PFP and can negatively affect their activities of daily living. Gait modification programs can be used to decrease patellofemoral pain. Immediate effects of a stair descent distal gait modification session that intended to emphasize forefoot landing during stair descent are described in this study. To analyze the immediate effects of a distal gait modification session on lower extremity movements and intensity of pain in women with patellofemoral pain during stair descent. Nonrandomized controlled trial. Sixteen women with patellofemoral pain were allocated into two groups: (1) Gait Modification Group (n = 8); and 2) Control Group (n = 8). The intensity of pain (visual analog scale) and kinematics of knee, ankle, and forefoot (multi-segmental foot model) during stair descent were assessed before and after the intervention. After the gait modification session, there was an increase of forefoot eversion and ankle plantarflexion as well as a decrease of knee flexion. An immediate decrease in patellofemoral pain intensity during stair descent was also observed. The distal gait modification session changed the lower extremity kinetic chain strategy of movement, increasing foot and ankle movement contribution and decreasing knee contribution to the task. An immediate decrease in patellofemoral pain intensity during stair descent was also observed. To emphasize forefoot landing may be a useful intervention to immediately relieve pain in patients with patellofemoral pain during stair descent. Clinical studies are needed to verify the gait modification session effects in medium and long terms.
Fazio, Massimo A.; Grytz, Rafael; Morris, Jeffrey S.; Bruno, Luigi; Girkin, Christopher A.; Downs, J. Crawford
2014-01-01
Purpose. We tested the hypothesis that the variation of peripapillary scleral structural stiffness with age is different in donors of European (ED) and African (AD) descent. Methods. Posterior scleral shells from normal eyes from donors of European (n = 20 pairs; previously reported) and African (n = 9 pairs) descent aged 0 and 90 years old were inflation tested within 48 hours post mortem. Scleral shells were pressurized from 5 to 45 mm Hg and the full-field, 3-dimensional (3D) deformation of the outer surface was recorded at submicrometric accuracy using speckle interferometry (ESPI). Mean maximum principal (tensile) strain of the peripapillary and midperipheral regions surrounding the optic nerve head (ONH) were fit using a functional mixed effects model that accounts for intradonor variability, same-race correlation, and spatial autocorrelation to estimate the effect of race on the age-related changes in mechanical scleral strain. Results. Mechanical tensile strain significantly decreased with age in the peripapillary sclera in the African and European descent groups (P < 0.001), but the age-related stiffening was significantly greater in the African descent group (P < 0.05). Maximum principal strain in the peripapillary sclera was significantly higher than in the midperipheral sclera for both ethnic groups. Conclusions. The sclera surrounding the ONH stiffens more rapidly with age in the African descent group compared to the European group. Stiffening of the peripapillary sclera with age may be related to the higher prevalence of glaucoma in the elderly and persons of African descent. PMID:25237162
Fazio, Massimo A; Grytz, Rafael; Morris, Jeffrey S; Bruno, Luigi; Girkin, Christopher A; Downs, J Crawford
2014-09-18
We tested the hypothesis that the variation of peripapillary scleral structural stiffness with age is different in donors of European (ED) and African (AD) descent. Posterior scleral shells from normal eyes from donors of European (n = 20 pairs; previously reported) and African (n = 9 pairs) descent aged 0 and 90 years old were inflation tested within 48 hours post mortem. Scleral shells were pressurized from 5 to 45 mm Hg and the full-field, 3-dimensional (3D) deformation of the outer surface was recorded at submicrometric accuracy using speckle interferometry (ESPI). Mean maximum principal (tensile) strain of the peripapillary and midperipheral regions surrounding the optic nerve head (ONH) were fit using a functional mixed effects model that accounts for intradonor variability, same-race correlation, and spatial autocorrelation to estimate the effect of race on the age-related changes in mechanical scleral strain. Mechanical tensile strain significantly decreased with age in the peripapillary sclera in the African and European descent groups (P < 0.001), but the age-related stiffening was significantly greater in the African descent group (P < 0.05). Maximum principal strain in the peripapillary sclera was significantly higher than in the midperipheral sclera for both ethnic groups. The sclera surrounding the ONH stiffens more rapidly with age in the African descent group compared to the European group. Stiffening of the peripapillary sclera with age may be related to the higher prevalence of glaucoma in the elderly and persons of African descent. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Latin American Immigrant Women and Intergenerational Sex Education
ERIC Educational Resources Information Center
Alcalde, Maria Cristina; Quelopana, Ana Maria
2013-01-01
People of Latin American descent make up the largest and fastest-growing minority group in the USA. Rates of pregnancy, childbirth, and sexually transmitted infections among people of Latin American descent are higher than among other ethnic groups. This paper builds on research that suggests that among families of Latin American descent, mothers…
Analysis of foot clearance in firefighters during ascent and descent of stairs.
Kesler, Richard M; Horn, Gavin P; Rosengren, Karl S; Hsiao-Wecksler, Elizabeth T
2016-01-01
Slips, trips, and falls are a leading cause of injury to firefighters with many injuries occurring while traversing stairs, possibly exaggerated by acute fatigue from firefighting activities and/or asymmetric load carriage. This study examined the effects that fatigue, induced by simulated firefighting activities, and hose load carriage have on foot clearance while traversing stairs. Landing and passing foot clearances for each stair during ascent and descent of a short staircase were investigated. Clearances decreased significantly (p < 0.05) post-exercise for nine of 12 ascent parameters and increased for two of eight descent parameters. Load carriage resulted in significantly decreased (p < 0.05) clearance over three ascent parameters, and one increase during descent. Decreased clearances during ascent caused by fatigue or load carriage may result in an increased trip risk. Increased clearances during descent may suggest use of a compensation strategy to ensure stair clearance or an increased risk of over-stepping during descent. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Toward a Caribbean psychology: an African-centered approach.
Sutherland, Marcia Elizabeth
2011-01-01
Although the Americas and Caribbean region are purported to comprise different ethnic groups, this article’s focus is on people of African descent, who represent the largest ethnic group in many countries. The emphasis on people of African descent is related to their family structure, ethnic identity, cultural, psychohistorical, and contemporary psychosocial realities. This article discusses the limitations of Western psychology for theory, research, and applied work on people of African descent in the Americas and Caribbean region. In view of the adaptations that some people of African descent have made to slavery, colonialism, and more contemporary forms of cultural intrusions, it is argued that when necessary, notwithstanding Western psychology’s limitations, Caribbean psychologists should reconstruct mainstream psychology to address the psychological needs of these Caribbean people. The relationship between theory and psychological interventions for the optimal development of people of African descent is emphasized throughout this article. In this regard, the African-centered and constructionist viewpoint is argued to be of utility in addressing the psychological growth and development of people of African descent living in the Americas and Caribbean region.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1984-01-01
Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.
Ascent/descent ancillary data production user's guide
NASA Technical Reports Server (NTRS)
Brans, H. R.; Seacord, A. W., II; Ulmer, J. W.
1986-01-01
The Ascent/Descent Ancillary Data Product, also called the A/D BET because it contains a Best Estimate of the Trajectory (BET), is a collection of trajectory, attitude, and atmospheric related parameters computed for the ascent and descent phases of each Shuttle Mission. These computations are executed shortly after the event in a post-flight environment. A collection of several routines including some stand-alone routines constitute what is called the Ascent/Descent Ancillary Data Production Program. A User's Guide for that program is given. It is intended to provide the reader with all the information necessary to generate an Ascent or a Descent Ancillary Data Product. It includes descriptions of the input data and output data for each routine, and contains explicit instructions on how to run each routine. A description of the final output product is given.
Time-specific androgen blockade with flutamide inhibits testicular descent in the rat.
Husmann, D A; McPhaul, M J
1991-09-01
Inhibition of androgen action by flutamide, a nonsteroidal antiandrogen, blocked testicular descent in 40% of the testes exposed to this agent continuously from gestational day 13 through postpartal day 28. By contrast, only 11% of the testes failed to descend when blocked by 5 alpha-reductase inhibitors during the same period. Flutamide administration over narrower time intervals (gestational day 13-15, 16-17, or 18-19) revealed maximal interference with testicular descent after androgen inhibition during gestational days 16-17. No significant differences in testicular or epididymal weights were evident between descended and undescended testes; furthermore, no correlation was detected between the presence of epididymal abnormalities and testicular descent. These findings indicate that androgen inhibition during a brief period of embryonic development can block testicular descent. The mechanism through which this inhibition occurs remains to be elucidated.
A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Harris, C. S.
1990-01-01
A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory
Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM. PMID:29391864
Robust and Adaptive Online Time Series Prediction with Long Short-Term Memory.
Yang, Haimin; Pan, Zhisong; Tao, Qing
2017-01-01
Online time series prediction is the mainstream method in a wide range of fields, ranging from speech analysis and noise cancelation to stock market analysis. However, the data often contains many outliers with the increasing length of time series in real world. These outliers can mislead the learned model if treated as normal points in the process of prediction. To address this issue, in this paper, we propose a robust and adaptive online gradient learning method, RoAdam (Robust Adam), for long short-term memory (LSTM) to predict time series with outliers. This method tunes the learning rate of the stochastic gradient algorithm adaptively in the process of prediction, which reduces the adverse effect of outliers. It tracks the relative prediction error of the loss function with a weighted average through modifying Adam, a popular stochastic gradient method algorithm for training deep neural networks. In our algorithm, the large value of the relative prediction error corresponds to a small learning rate, and vice versa. The experiments on both synthetic data and real time series show that our method achieves better performance compared to the existing methods based on LSTM.
Analysis of Flight Management System Predictions of Idle-Thrust Descents
NASA Technical Reports Server (NTRS)
Stell, Laurel
2010-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the predictor and its uncertainty models, descents from cruise to the meter fix were executed using vertical navigation in a B737-700 simulator and a B777-200 simulator, both with commercial FMSs. For both aircraft types, the FMS computed the intended descent path for a specified speed profile assuming idle thrust after top of descent (TOD), and then it controlled the avionics without human intervention. The test matrix varied aircraft weight, descent speed, and wind conditions. The first analysis in this paper determined the effect of the test matrix parameters on the FMS computation of TOD location, and it compared the results to those for the current ground predictor in the Efficient Descent Advisor (EDA). The second analysis was similar but considered the time to fly a specified distance to the meter fix. The effects of the test matrix variables together with the accuracy requirements for the predictor will determine the allowable error for the predictor inputs. For the B737, the EDA prediction of meter fix crossing time agreed well with the FMS; but its prediction of TOD location probably was not sufficiently accurate to enable idle-thrust descents in congested airspace, even though the FMS and EDA gave similar shapes for TOD location as a function of the test matrix variables. For the B777, the FMS and EDA gave different shapes for the TOD location function, and the EDA prediction of the TOD location is not accurate enough to fully enable the concept. Furthermore, the differences between the FMS and EDA predictions of meter fix crossing time for the B777 indicated that at least one of them was not sufficiently accurate.
Rotary Wing Deceleration Use on Titan
NASA Technical Reports Server (NTRS)
Young, Larry A.; Steiner, Ted J.
2011-01-01
Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.
An optimization-based framework for anisotropic simplex mesh adaptation
NASA Astrophysics Data System (ADS)
Yano, Masayuki; Darmofal, David L.
2012-09-01
We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.
An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
NASA Astrophysics Data System (ADS)
Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.
2017-08-01
We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes ( 1 km), during the probe's fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.
Mars Exploration Rover Entry, Descent, and Landing: A Thermal Perspective
NASA Technical Reports Server (NTRS)
Tsuyuki, Glenn T.; Sunada, Eric T.; Novak, Keith S.; Kinsella, Gary M.; Phillip, Charles J.
2005-01-01
Perhaps the most challenging mission phase for the Mars Exploration Rovers was the Entry, Descent, and Landing (EDL). During this phase, the entry vehicle attached to its cruise stage was transformed into a stowed tetrahedral Lander that was surrounded by inflated airbags through a series of complex events. There was only one opportunity to successfully execute an automated command sequence without any possible ground intervention. The success of EDL was reliant upon the system thermal design: 1) to thermally condition EDL hardware from cruise storage temperatures to operating temperature ranges; 2) to maintain the Rover electronics within operating temperature ranges without the benefit of the cruise single phase cooling loop, which had been evacuated in preparation for EDL; and 3) to maintain the cruise stage propulsion components for the critical turn to entry attitude. Since the EDL architecture was inherited from Mars Pathfinder (MPF), the initial EDL thermal design would be inherited from MPF. However, hardware and implementation differences from MPF ultimately changed the MPF inheritance approach for the EDL thermal design. With the lack of full inheritance, the verification and validation of the EDL thermal design took on increased significance. This paper will summarize the verification and validation approach for the EDL thermal design along with applicable system level thermal testing results as well as appropriate thermal analyses. In addition, the lessons learned during the system-level testing will be discussed. Finally, the in-flight EDL experiences of both MER-A and -B missions (Spirit and Opportunity, respectively) will be presented, demonstrated how lessons learned from Spirit were applied to Opportunity.
Hair Breakage in Patients of African Descent: Role of Dermoscopy
Quaresma, Maria Victória; Martinez Velasco, María Abril; Tosti, Antonella
2015-01-01
Dermoscopy represents a useful technique for the diagnosis and follow-up of hair and scalp disorders. To date, little has been published regarding dermoscopy findings of hair disorders in patients of African descent. This article illustrates how dermoscopy allows fast diagnosis of hair breakage due to intrinsic factors and chemical damage in African descent patients. PMID:27170942
Ethnic Identity and Acculturative Stress as Mediators of Depression in Students of Asian Descent
ERIC Educational Resources Information Center
Lantrip, Crystal; Mazzetti, Francesco; Grasso, Joseph; Gill, Sara; Miller, Janna; Haner, Morgynn; Rude, Stephanie; Awad, Germine
2015-01-01
This study underscored the importance of addressing the well-being of college students of Asian descent, because these students had higher rates of depression and lower positive feelings about their ethnic group compared with students of European descent, as measured by the Affirmation subscale of the Ethnic Identity Scale. Affirmation mediated…
Device for Lowering Mars Science Laboratory Rover to the Surface
NASA Technical Reports Server (NTRS)
2008-01-01
This is hardware for controlling the final lowering of NASA's Mars Science Laboratory rover to the surface of Mars from the spacecraft's hovering, rocket-powered descent stage. The photo shows the bridle device assembly, which is about two-thirds of a meter, or 2 feet, from end to end, and has two main parts. The cylinder on the left is the descent brake. On the right is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover. When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion of the spool at far right. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage. The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992
NASA Technical Reports Server (NTRS)
Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.
2000-01-01
Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.
O'Connor, Michelle Y; Thoreson, Caroline K; Ramsey, Natalie L M; Ricks, Madia; Sumner, Anne E
2014-01-01
Vitamin D levels in people of African descent are often described as inadequate or deficient. Whether low vitamin D levels in people of African descent lead to compromised bone or cardiometabolic health is unknown. Clarity on this issue is essential because if clinically significant vitamin D deficiency is present, vitamin D supplementation is necessary. However, if vitamin D is metabolically sufficient, vitamin D supplementation could be wasteful of scarce resources and even harmful. In this review vitamin D physiology is described with a focus on issues specific to populations of African descent such as the influence of melanin on endogenous vitamin D production and lactose intolerance on the willingness of people to ingest vitamin D fortified foods. Then data on the relationship of vitamin D to bone and cardiometabolic health in people of African descent are evaluated. PMID:24267433
Descent Assisted Split Habitat Lunar Lander Concept
NASA Technical Reports Server (NTRS)
Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.
2008-01-01
The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs
Sobel, E.; Lange, K.
1996-01-01
The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms. PMID:8651310
NASA Technical Reports Server (NTRS)
Knox, C. E.; Cannon, D. G.
1980-01-01
A simple flight management descent algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control was developed and flight tested. This algorithm provides a three dimensional path with terminal area time constraints (four dimensional) for an airplane to make an idle thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithm is described. The results of the flight tests flown with the Terminal Configured Vehicle airplane are presented.
Clipping in neurocontrol by adaptive dynamic programming.
Fairbank, Michael; Prokhorov, Danil; Alonso, Eduardo
2014-10-01
In adaptive dynamic programming, neurocontrol, and reinforcement learning, the objective is for an agent to learn to choose actions so as to minimize a total cost function. In this paper, we show that when discretized time is used to model the motion of the agent, it can be very important to do clipping on the motion of the agent in the final time step of the trajectory. By clipping, we mean that the final time step of the trajectory is to be truncated such that the agent stops exactly at the first terminal state reached, and no distance further. We demonstrate that when clipping is omitted, learning performance can fail to reach the optimum, and when clipping is done properly, learning performance can improve significantly. The clipping problem we describe affects algorithms that use explicit derivatives of the model functions of the environment to calculate a learning gradient. These include backpropagation through time for control and methods based on dual heuristic programming. However, the clipping problem does not significantly affect methods based on heuristic dynamic programming, temporal differences learning, or policy-gradient learning algorithms.
Mars Pathfinder flight system integration and test.
NASA Astrophysics Data System (ADS)
Muirhead, B. K.
This paper describes the system integration and test experiences, problems and lessons learned during the assembly, test and launch operations (ATLO) phase of the Mars Pathfinder flight system scheduled to land on the surface of Mars on July 4, 1997. The Mars Pathfinder spacecraft consists of three spacecraft systems: cruise stage, entry vehicle and lander. The cruise stage carries the entry and lander vehicles to Mars and is jettisoned prior to entry. The entry vehicle, including aeroshell, parachute and deceleration rockets, protects the lander during the direct entry and reduces its velocity from 7.6 to 0 km/s in stages during the 5 min entry sequence. The lander's touchdown is softened by airbags which are retracted once stopped on the surface. The lander then uprights itself, opens up fully and begins surface operations including deploying its camera and rover. This paper overviews the system design and the results of the system integration and test activities, including the entry, descent and landing subsystem elements. System test experiences including science instruments, the microrover, Sojourner, and software are discussed. The final qualification of the entry, descent and landing subsystems during this period is also discussed.
Descent Equations Starting from High Rank Chern-Simons
NASA Astrophysics Data System (ADS)
Kang, Bei; Pan, Yi; Wu, Ke; Yang, Jie; Yang, Zi-Feng
2018-04-01
In this paper a set of generalized descent equations are proposed. The solutions to those descent equations labeled by r for any r (r ≥ 2, r ɛ ℕ) are forms of degrees varying from 0 to (2r ‑ 1). And the case of r = 2 is mainly discussed. Supported by National Natural Science Foundation of China under Grant Nos. 11475116, 11401400
Mars Science Laboratory Entry, Descent and Landing System Overview
NASA Technical Reports Server (NTRS)
Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tomasso P.; Chen, Allen
2013-01-01
The Mars Science Laboratory project recently places the Curiosity rove on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent and landing capabilities has been extended over the previous state of the art. This paper will present an overview to the MSL entry, descent and landing system design and preliminary flight performance results.
Study of Some Planetary Atmospheres Features by Probe Entry and Descent Simulations
NASA Technical Reports Server (NTRS)
Gil, P. J. S.; Rosa, P. M. B.
2005-01-01
Characterization of planetary atmospheres is analyzed by its effects in the entry and descent trajectories of probes. Emphasis is on the most important variables that characterize atmospheres e.g. density profile with altitude. Probe trajectories are numerically determined with ENTRAP, a developing multi-purpose computational tool for entry and descent trajectory simulations capable of taking into account many features and perturbations. Real data from Mars Pathfinder mission is used. The goal is to be able to determine more accurately the atmosphere structure by observing real trajectories and what changes are to expect in probe descent trajectories if atmospheres have different properties than the ones assumed initially.
Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization
NASA Technical Reports Server (NTRS)
Pinson, Robin; Lu, Ping
2015-01-01
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
NASA aviation safety reporting system
NASA Technical Reports Server (NTRS)
1978-01-01
Reports describing various types of communication problems are presented along with summaries dealing with judgment and decision making. Concerns relating to the ground proximity warning system are summarized and several examples of true terrain proximity warnings are provided. An analytic study of reports relating to profile descents was performed. Problems were found to be associated with charting and graphic presentation of the descents, with lack of uniformity of the descent procedures among facilities using them, and with the flight crew workload engendered by profile descents, particularly when additional requirements are interposed by air traffic control during the execution of the profiles. A selection of alert bulletins and responses to them were reviewed.
Tracer-based Determination of Vortex Descent in the 1999/2000 Arctic Winter
NASA Technical Reports Server (NTRS)
Greenblatt, Jeffrey B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Chrisotopher R.
2002-01-01
A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999/2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for 26 November 1999, whose error bars encompassed the observed variability. High-latitude extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences we inferred descent prior to 26 November: as much as 397 plus or minus 15 K (lsigma) at 30 ppbv N2O and 640 ppbv CH4, and falling to 28 plus or minus 13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from 26 November through 12 March, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between 26 November and 27 January: 0.82 plus or minus 0.20 K/day averaged over 50- 250 ppbv N2O. By late winter (26 February to 12 March), the average rate had decreased to 0.10 plus or minus 0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (26 November to 5 March) descent rate varied from 0.75 plus or minus 0.10 K/day at 50 ppbv to 0.40 plus or minus 0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999/2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
Variational stereo imaging of oceanic waves with statistical constraints.
Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise
2013-11-01
An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.
Material parameter estimation with terahertz time-domain spectroscopy.
Dorney, T D; Baraniuk, R G; Mittleman, D M
2001-07-01
Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.
Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation
NASA Astrophysics Data System (ADS)
Bedi, Amrit Singh; Rajawat, Ketan
2018-05-01
Stochastic network optimization problems entail finding resource allocation policies that are optimum on an average but must be designed in an online fashion. Such problems are ubiquitous in communication networks, where resources such as energy and bandwidth are divided among nodes to satisfy certain long-term objectives. This paper proposes an asynchronous incremental dual decent resource allocation algorithm that utilizes delayed stochastic {gradients} for carrying out its updates. The proposed algorithm is well-suited to heterogeneous networks as it allows the computationally-challenged or energy-starved nodes to, at times, postpone the updates. The asymptotic analysis of the proposed algorithm is carried out, establishing dual convergence under both, constant and diminishing step sizes. It is also shown that with constant step size, the proposed resource allocation policy is asymptotically near-optimal. An application involving multi-cell coordinated beamforming is detailed, demonstrating the usefulness of the proposed algorithm.
Wavefront sensorless adaptive optics ophthalmoscopy in the human eye
Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason
2011-01-01
Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779
NASA Astrophysics Data System (ADS)
Mojica, Edson; Pertuz, Said; Arguello, Henry
2017-12-01
One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.
Monte Carlo-based Reconstruction in Water Cherenkov Detectors using Chroma
NASA Astrophysics Data System (ADS)
Seibert, Stanley; Latorre, Anthony
2012-03-01
We demonstrate the feasibility of event reconstruction---including position, direction, energy and particle identification---in water Cherenkov detectors with a purely Monte Carlo-based method. Using a fast optical Monte Carlo package we have written, called Chroma, in combination with several variance reduction techniques, we can estimate the value of a likelihood function for an arbitrary event hypothesis. The likelihood can then be maximized over the parameter space of interest using a form of gradient descent designed for stochastic functions. Although slower than more traditional reconstruction algorithms, this completely Monte Carlo-based technique is universal and can be applied to a detector of any size or shape, which is a major advantage during the design phase of an experiment. As a specific example, we focus on reconstruction results from a simulation of the 200 kiloton water Cherenkov far detector option for LBNE.
Adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope
NASA Astrophysics Data System (ADS)
Ma, Haotong; Hu, Haojun; Xie, Wenke; Zhao, Haichuan; Xu, Xiaojun; Chen, Jinbao
2013-08-01
We demonstrate the adaptive beam shaping for improving the power coupling of a two-Cassegrain-telescope based on the stochastic parallel gradient descent (SPGD) algorithm and dual phase only liquid crystal spatial light modulators (LC-SLMs). Adaptive pre-compensation the wavefront of projected laser beam at the transmitter telescope is chosen to improve the power coupling efficiency. One phase only LC-SLM adaptively optimizes phase distribution of the projected laser beam and the other generates turbulence phase screen. The intensity distributions of the dark hollow beam after passing through the turbulent atmosphere with and without adaptive beam shaping are analyzed in detail. The influence of propagation distance and aperture size of the Cassegrain-telescope on coupling efficiency are investigated theoretically and experimentally. These studies show that the power coupling can be significantly improved by adaptive beam shaping. The technique can be used in optical communication, deep space optical communication and relay mirror.
NASA Astrophysics Data System (ADS)
Bonavita, M.; Torrisi, L.
2005-03-01
A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
NASA Astrophysics Data System (ADS)
Raburn, Daniel Louis
We have developed a preconditioned, globalized Jacobian-free Newton-Krylov (JFNK) solver for calculating equilibria with magnetic islands. The solver has been developed in conjunction with the Princeton Iterative Equilibrium Solver (PIES) and includes two notable enhancements over a traditional JFNK scheme: (1) globalization of the algorithm by a sophisticated backtracking scheme, which optimizes between the Newton and steepest-descent directions; and, (2) adaptive preconditioning, wherein information regarding the system Jacobian is reused between Newton iterations to form a preconditioner for our GMRES-like linear solver. We have developed a formulation for calculating saturated neoclassical tearing modes (NTMs) which accounts for the incomplete loss of a bootstrap current due to gradients of multiple physical quantities. We have applied the coupled PIES-JFNK solver to calculate saturated island widths on several shots from the Tokamak Fusion Test Reactor (TFTR) and have found reasonable agreement with experimental measurement.
Murray, Tanda; Beaty, Terri H.; Mathias, Rasika A.; Rafaels, Nicholas; Grant, Audrey Virginia; Faruque, Mezbah U.; Watson, Harold R.; Ruczinski, Ingo; Dunston, Georgia M.; Barnes, Kathleen C.
2013-01-01
Admixture is a potential source of confounding in genetic association studies, so it becomes important to detect and estimate admixture in a sample of unrelated individuals. Populations of African descent in the US and the Caribbean share similar historical backgrounds but the distributions of African admixture may differ. We selected 416 ancestry informative markers (AIMs) to estimate and compare admixture proportions using STRUCTURE in 906 unrelated African Americans (AAs) and 294 Barbadians (ACs) from a study of asthma. This analysis showed AAs on average were 72.5% African, 19.6% European and 8% Asian, while ACs were 77.4% African, 15.9% European, and 6.7% Asian which were significantly different. A principal components analysis based on these AIMs yielded one primary eigenvector that explained 54.04% of the variation and captured a gradient from West African to European admixture. This principal component was highly correlated with African vs. European ancestry as estimated by STRUCTURE (r2 = 0.992, r2 = 0.912, respectively). To investigate other African contributions to African American and Barbadian admixture, we performed PCA on ~14,000 (14k) genome-wide SNPs in AAs, ACs, Yorubans, Luhya and Maasai African groups, and estimated genetic distances (FST). We found AAs and ACs were closest genetically (FST = 0.008), and both were closer to the Yorubans than the other East African populations. In our sample of individuals of African descent, ~400 well-defined AIMs were just as good for detecting substructure as ~14,000 random SNPs drawn from a genome-wide panel of markers. PMID:20717976
Lycett, Stephen J
2010-08-01
Some have claimed that wild chimpanzees possess multiple socially learned traditions that might constitute cultural patterns. Others, however, have suggested that even fundamental alternative explanations, such as proximate genetic mechanisms, have not been addressed satisfactorily. Multiple analyses using phylogenetic (cladistic) methods, however, have been shown not to support the genetic proposition. Rather, such analyses are more consistent with the growing body of evidence from studies of both wild and captive animals suggesting that behavioral patterns in wild chimpanzees are socially learned. The question remains, however, as to whether, from a scientific viewpoint, it is useful to term such patterns cultural. It is argued here that cultural mosaics of multiple behaviors that differ intercommunally, both in humans and chimpanzees, are an emergent property of a phylogenetic (i.e., historical) process of descent with modification, mediated by mechanisms of social transmission, variation, and sorting through time. This historical perspective is productive when attempting to consider the phenomenon of culture across species.
Spallek, Jacob; Spix, Claudia; Zeeb, Hajo; Kaatsch, Peter; Razum, Oliver
2008-01-01
Background Cancer risks of migrants might differ from risks of the indigenous population due to differences in socioeconomic status, life style, or genetic factors. The aim of this study was to investigate cancer patterns among children of Turkish descent in Germany. Methods We identified cases with Turkish names (as a proxy of Turkish descent) among the 37,259 cases of childhood cancer registered in the German Childhood Cancer Registry (GCCR) during 1980–2005. As it is not possible to obtain reference population data for children of Turkish descent, the distribution of cancer diagnoses was compared between cases of Turkish descent and all remaining (mainly German) cases in the registry, using proportional cancer incidence ratios (PCIRs). Results The overall distribution of cancer diagnoses was similar in the two groups. The PCIRs in three diagnosis groups were increased for cases of Turkish descent: acute non-lymphocytic leukaemia (PCIR 1.23; CI (95%) 1.02–1.47), Hodgkin's disease (1.34; 1.13–1.59) and Non-Hodgkin/Burkitt lymphoma (1.19; 1.02–1.39). Age, sex, and period of diagnosis showed no influence on the distribution of diagnoses. Conclusion No major differences were found in cancer patterns among cases of Turkish descent compared to all other cases in the GCCR. Slightly higher proportions of systemic malignant diseases indicate that analytical studies involving migrants may help investigating the causes of such cancers. PMID:18462495
Walking and talking the tree of life: Why and how to teach about biodiversity.
Ballen, Cissy J; Greene, Harry W
2017-03-01
Taxonomic details of diversity are an essential scaffolding for biology education, yet outdated methods for teaching the tree of life (TOL), as implied by textbook content and usage, are still commonly employed. Here, we show that the traditional approach only vaguely represents evolutionary relationships, fails to denote major events in the history of life, and relies heavily on memorizing near-meaningless taxonomic ranks. Conversely, a clade-based strategy-focused on common ancestry, monophyletic groups, and derived functional traits-is explicitly based on Darwin's "descent with modification," provides students with a rational system for organizing the details of biodiversity, and readily lends itself to active learning techniques. We advocate for a phylogenetic classification that mirrors the TOL, a pedagogical format of increasingly complex but always hierarchical presentations, and the adoption of active learning technologies and tactics.
ERIC Educational Resources Information Center
Gaze, Eric C.
2005-01-01
We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…
Icefall, Lambert Glacier, Antarctica
2017-12-08
Image taken 12/2/2000: The Lambert Glacier in Antarctica, is the world's largest glacier. The focal point of this image is an icefall that feeds into the Lambert glacier from the vast ice sheet covering the polar plateau. Ice flows like water, albeit much more slowly. Cracks can be seen in this icefall as it bends and twists on its slow-motion descent 1300 feet (400 meters) to the glacier below. This Icefall can be found on Landsat 7 WRS Path 42 Row 133/134/135, center: -70.92, 69.15. To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/
Mars Science Laboratory Differential Restraint: The Devil is in the Details
NASA Technical Reports Server (NTRS)
Jordan, Elizabeth
2012-01-01
The Differential Restraint, a mechanism used on the Mars Science Laboratory (MSL) rover to maintain symmetry of the mobility system during the launch, cruise, and entry descent and landing phases of the MSL mission, completed nearly three full design cycles before a finalized successful design was achieved. This paper address the lessons learned through these design cycles, including three major design elements that can easily be overlooked during the design process, including, tolerance stack contribution to load path, the possibility of Martian dirt as a failure mode, and the effects of material properties at temperature extremes.
The Role of la Familia for Women of Mexican Descent Who Are Leaders in Higher Education
ERIC Educational Resources Information Center
Elizondo, Sandra Gray
2012-01-01
The purpose of this qualitative case study was to describe the role of "la familia" for women of Mexican descent as it relates to their development as leaders and their leadership in academia. Purposeful sampling was utilized to reach the goal of 18 participants who were female academic leaders of Mexican descent teaching full time in…
A linear recurrent kernel online learning algorithm with sparse updates.
Fan, Haijin; Song, Qing
2014-02-01
In this paper, we propose a recurrent kernel algorithm with selectively sparse updates for online learning. The algorithm introduces a linear recurrent term in the estimation of the current output. This makes the past information reusable for updating of the algorithm in the form of a recurrent gradient term. To ensure that the reuse of this recurrent gradient indeed accelerates the convergence speed, a novel hybrid recurrent training is proposed to switch on or off learning the recurrent information according to the magnitude of the current training error. Furthermore, the algorithm includes a data-dependent adaptive learning rate which can provide guaranteed system weight convergence at each training iteration. The learning rate is set as zero when the training violates the derived convergence conditions, which makes the algorithm updating process sparse. Theoretical analyses of the weight convergence are presented and experimental results show the good performance of the proposed algorithm in terms of convergence speed and estimation accuracy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Learning Weight Uncertainty with Stochastic Gradient MCMC for Shape Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chunyuan; Stevens, Andrew J.; Chen, Changyou
2016-08-10
Learning the representation of shape cues in 2D & 3D objects for recognition is a fundamental task in computer vision. Deep neural networks (DNNs) have shown promising performance on this task. Due to the large variability of shapes, accurate recognition relies on good estimates of model uncertainty, ignored in traditional training of DNNs, typically learned via stochastic optimization. This paper leverages recent advances in stochastic gradient Markov Chain Monte Carlo (SG-MCMC) to learn weight uncertainty in DNNs. It yields principled Bayesian interpretations for the commonly used Dropout/DropConnect techniques and incorporates them into the SG-MCMC framework. Extensive experiments on 2D &more » 3D shape datasets and various DNN models demonstrate the superiority of the proposed approach over stochastic optimization. Our approach yields higher recognition accuracy when used in conjunction with Dropout and Batch-Normalization.« less
Surface erosion caused on Mars from Viking descent engine plume
Hutton, R.E.; Moore, H.J.; Scott, R.F.; Shorthill, R.W.; Spitzer, C.R.
1980-01-01
During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock. ?? 1980 D. Reidel Publishing Co.
NASA Technical Reports Server (NTRS)
Groce, J. L.; Izumi, K. H.; Markham, C. H.; Schwab, R. W.; Thompson, J. L.
1986-01-01
The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations.
Integrated Targeting and Guidance for Powered Planetary Descent
NASA Astrophysics Data System (ADS)
Azimov, Dilmurat M.; Bishop, Robert H.
2018-02-01
This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.
Integrated Targeting and Guidance for Powered Planetary Descent
NASA Astrophysics Data System (ADS)
Azimov, Dilmurat M.; Bishop, Robert H.
2018-06-01
This paper presents an on-board guidance and targeting design that enables explicit state and thrust vector control and on-board targeting for planetary descent and landing. These capabilities are developed utilizing a new closed-form solution for the constant thrust arc of the braking phase of the powered descent trajectory. The key elements of proven targeting and guidance architectures, including braking and approach phase quartics, are employed. It is demonstrated that implementation of the proposed solution avoids numerical simulation iterations, thereby facilitating on-board execution of targeting procedures during the descent. It is shown that the shape of the braking phase constant thrust arc is highly dependent on initial mass and propulsion system parameters. The analytic solution process is explicit in terms of targeting and guidance parameters, while remaining generic with respect to planetary body and descent trajectory design. These features increase the feasibility of extending the proposed integrated targeting and guidance design to future cargo and robotic landing missions.
A molecular signature of an arrest of descent in human parturition
MITTAL, Pooja; ROMERO, Roberto; TARCA, Adi L.; DRAGHICI, Sorin; NHAN-CHANG, Chia-Ling; CHAIWORAPONGSA, Tinnakorn; HOTRA, John; GOMEZ, Ricardo; KUSANOVIC, Juan Pedro; LEE, Deug-Chan; KIM, Chong Jai; HASSAN, Sonia S.
2010-01-01
Objective This study was undertaken to identify the molecular basis of an arrest of descent. Study Design Human myometrium was obtained from women in term labor (TL; n=29) and arrest of descent (AODes, n=21). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated t-test and false discovery rate adjustment were applied for analysis. Confirmatory qRT-PCR and immunoblot was performed in an independent sample set. Results 400 genes were differentially expressed between women with an AODes compared to those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of HIF1A, IL-6, and PTGS2 in AODES was confirmed. Conclusion We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach. PMID:21284969
Stable architectures for deep neural networks
NASA Astrophysics Data System (ADS)
Haber, Eldad; Ruthotto, Lars
2018-01-01
Deep neural networks have become invaluable tools for supervised machine learning, e.g. classification of text or images. While often offering superior results over traditional techniques and successfully expressing complicated patterns in data, deep architectures are known to be challenging to design and train such that they generalize well to new data. Critical issues with deep architectures are numerical instabilities in derivative-based learning algorithms commonly called exploding or vanishing gradients. In this paper, we propose new forward propagation techniques inspired by systems of ordinary differential equations (ODE) that overcome this challenge and lead to well-posed learning problems for arbitrarily deep networks. The backbone of our approach is our interpretation of deep learning as a parameter estimation problem of nonlinear dynamical systems. Given this formulation, we analyze stability and well-posedness of deep learning and use this new understanding to develop new network architectures. We relate the exploding and vanishing gradient phenomenon to the stability of the discrete ODE and present several strategies for stabilizing deep learning for very deep networks. While our new architectures restrict the solution space, several numerical experiments show their competitiveness with state-of-the-art networks.
Air-Traffic Controllers Evaluate The Descent Advisor
NASA Technical Reports Server (NTRS)
Tobias, Leonard; Volckers, Uwe; Erzberger, Heinz
1992-01-01
Report describes study of Descent Advisor algorithm: software automation aid intended to assist air-traffic controllers in spacing traffic and meeting specified times or arrival. Based partly on mathematical models of weather conditions and performances of aircraft, it generates suggested clearances, including top-of-descent points and speed-profile data to attain objectives. Study focused on operational characteristics with specific attention to how it can be used for prediction, spacing, and metering.
Design principles of descent vehicles with an inflatable braking device
NASA Astrophysics Data System (ADS)
Alexashkin, S. N.; Pichkhadze, K. M.; Finchenko, V. S.
2013-12-01
A new type of descent vehicle (DVs) is described: a descent vehicle with an inflatable braking device (IBD DV). IBD development issues, as well as materials needed for the design, manufacturing, and testing of an IBD and its thermal protection, are discussed. A list is given of Russian integrated test facilities intended for testing IBD DVs. Progress is described in the development of IBD DVs in Russia and abroad.
Synonymous ABCA3 Variants Do Not Increase Risk for Neonatal Respiratory Distress Syndrome
Wambach, Jennifer A.; Wegner, Daniel J.; Heins, Hillary B.; Druley, Todd E.; Mitra, Robi D.; Hamvas, Aaron; Cole, F. Sessions
2014-01-01
Objective To determine whether synonymous variants in the adenosine triphosphate-binding cassette A3 transporter (ABCA3) gene increase the risk for neonatal respiratory distress syndrome (RDS) in term and late preterm infants of European and African descent. Study design Using next-generation pooled sequencing of race-stratified DNA samples from infants of European and African descent at $34 weeks gestation with and without RDS (n = 503), we scanned all exons of ABCA3, validated each synonymous variant with an independent genotyping platform, and evaluated race-stratified disease risk associated with common synonymous variants and collapsed frequencies of rare synonymous variants. Results The synonymous ABCA3 variant frequency spectrum differs between infants of European descent and those of African descent. Using in silico prediction programs and statistical strategies, we found no potentially disruptive synonymous ABCA3 variants or evidence of selection pressure. Individual common synonymous variants and collapsed frequencies of rare synonymous variants did not increase disease risk in term and late-preterm infants of European or African descent. Conclusion In contrast to rare, nonsynonymous ABCA3 mutations, synonymous ABCA3 variants do not increase the risk for neonatal RDS among term and late-preterm infants of European or African descent. PMID:24657120
Li, Tao; Gao, Liang; Chen, Peng; Bu, Siyuan; Cao, Dehong; Yang, Lu; Wei, Qiang
2016-05-01
To assess the efficacy of intranasal luteinizing hormone-releasing hormone (LHRH) therapy for cryptorchidism. Eligible studies were identified by two reviewers using PubMed, Embase, and Web of Science databases. Primary outcomes were complete testicular descent rate, complete testicular descent rate for nonpalpable testis, and pre-scrotal and inguinal testis. Secondary outcomes included testicular descent with different medicines strategy and a subgroup analysis. Pooled data including the 1255 undescended testes showed that complete testicular descent rate was 20.9 % in LHRH group versus 5.6 % in the placebo group, which was significantly different [relative risk (RR) 3.94, 95 % confidence interval (CI) 2.14-7.28, P < 0.0001]. There was also a significant difference in the incidence of pre-scrotal and inguinal position testis descent, with 22.8 % in the LHRH group versus 3.6 % in the placebo group (RR 5.79, 95 % CI 2.94-11.39, P < 0.00001). However, side effects were more frequent in the LHRH group (RR 2.61, 95 % CI 1.52-4.49, P = 0.0005). There were no significant differences for nonpalpable testes. LHRH had significant benefits on testicular descent, particularly for inguinal and pre-scrotal testes, which was also accompanied by temporary slight side effects.
Rebbeck, Timothy R.; Devesa, Susan S.; Chang, Bao-Li; Bunker, Clareann H.; Cheng, Iona; Cooney, Kathleen; Eeles, Rosalind; Fernandez, Pedro; Giri, Veda N.; Gueye, Serigne M.; Haiman, Christopher A.; Henderson, Brian E.; Heyns, Chris F.; Hu, Jennifer J.; Ingles, Sue Ann; Isaacs, William; Jalloh, Mohamed; John, Esther M.; Kibel, Adam S.; Kidd, LaCreis R.; Layne, Penelope; Leach, Robin J.; Neslund-Dudas, Christine; Okobia, Michael N.; Ostrander, Elaine A.; Park, Jong Y.; Patrick, Alan L.; Phelan, Catherine M.; Ragin, Camille; Roberts, Robin A.; Rybicki, Benjamin A.; Stanford, Janet L.; Strom, Sara; Thompson, Ian M.; Witte, John; Xu, Jianfeng; Yeboah, Edward; Hsing, Ann W.; Zeigler-Johnson, Charnita M.
2013-01-01
Prostate cancer (CaP) is the leading cancer among men of African descent in the USA, Caribbean, and Sub-Saharan Africa (SSA). The estimated number of CaP deaths in SSA during 2008 was more than five times that among African Americans and is expected to double in Africa by 2030. We summarize publicly available CaP data and collected data from the men of African descent and Carcinoma of the Prostate (MADCaP) Consortium and the African Caribbean Cancer Consortium (AC3) to evaluate CaP incidence and mortality in men of African descent worldwide. CaP incidence and mortality are highest in men of African descent in the USA and the Caribbean. Tumor stage and grade were highest in SSA. We report a higher proportion of T1 stage prostate tumors in countries with greater percent gross domestic product spent on health care and physicians per 100,000 persons. We also observed that regions with a higher proportion of advanced tumors reported lower mortality rates. This finding suggests that CaP is underdiagnosed and/or underreported in SSA men. Nonetheless, CaP incidence and mortality represent a significant public health problem in men of African descent around the world. PMID:23476788
Learning and coding in biological neural networks
NASA Astrophysics Data System (ADS)
Fiete, Ila Rani
How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.
Dhiman, Nitesh; Markandeya; Singh, Amrita; Verma, Neeraj K; Ajaria, Nidhi; Patnaik, Satyakam
2017-05-01
ZnO NPs were synthesized by a prudent green chemistry approach in presence of polyacrylamide grafted guar gum polymer (pAAm-g-GG) to ensure uniform morphology, and functionality and appraised for their ability to degrade photocatalytically Acridine Orange (AO) dye. These ZnO@pAAm-g-GG NPs were thoroughly characterized by various spectroscopic, XRD and electron microscopic techniques. The relative quantity of ZnO NPs in polymeric matrix has been estimated by spectro-analytical procedure; AAS and TGA analysis. The impact of process parameters viz. NP's dose, contact time and AO dye concentration on percentage photocatalytic degradation of AO dyes were evaluated using multivariate optimizing tools, Response Surface Methodology (RSM) involving Box-Behnken Design (BBD) and Artificial Neural Network (ANN). Congruity of the BBD statistical model was implied by R 2 value 0.9786 and F-value 35.48. At RSM predicted optimal condition viz. ZnO@pAAm-g-GG NP's dose of 0.2g/L, contact time of 210min and AO dye concentration 10mg/L, a maximum of 98% dye degradation was obtained. ANOVA indicated appropriateness of the model for dye degradation owing to "Prob.>F" less than 0.05 for variable parameters. We further, employed three layers feed forward ANN model for validating the BBD process parameters and suitability of our chosen model. The evaluation of Levenberg-Marquardt algorithm (ANN1) and Gradient Descent with adaptive learning rate (ANN2) model employed to scrutinize the best method and found experimental values of AO dye degradation were in close to those with predicated value of ANN 2 modeling with minimum error. Copyright © 2017 Elsevier Inc. All rights reserved.
Evolutionary analyses of non-genealogical bonds produced by introgressive descent.
Bapteste, Eric; Lopez, Philippe; Bouchard, Frédéric; Baquero, Fernando; McInerney, James O; Burian, Richard M
2012-11-06
All evolutionary biologists are familiar with evolutionary units that evolve by vertical descent in a tree-like fashion in single lineages. However, many other kinds of processes contribute to evolutionary diversity. In vertical descent, the genetic material of a particular evolutionary unit is propagated by replication inside its own lineage. In what we call introgressive descent, the genetic material of a particular evolutionary unit propagates into different host structures and is replicated within these host structures. Thus, introgressive descent generates a variety of evolutionary units and leaves recognizable patterns in resemblance networks. We characterize six kinds of evolutionary units, of which five involve mosaic lineages generated by introgressive descent. To facilitate detection of these units in resemblance networks, we introduce terminology based on two notions, P3s (subgraphs of three nodes: A, B, and C) and mosaic P3s, and suggest an apparatus for systematic detection of introgressive descent. Mosaic P3s correspond to a distinct type of evolutionary bond that is orthogonal to the bonds of kinship and genealogy usually examined by evolutionary biologists. We argue that recognition of these evolutionary bonds stimulates radical rethinking of key questions in evolutionary biology (e.g., the relations among evolutionary players in very early phases of evolutionary history, the origin and emergence of novelties, and the production of new lineages). This line of research will expand the study of biological complexity beyond the usual genealogical bonds, revealing additional sources of biodiversity. It provides an important step to a more realistic pluralist treatment of evolutionary complexity.
Design of automation tools for management of descent traffic
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Nedell, William
1988-01-01
The design of an automated air traffic control system based on a hierarchy of advisory tools for controllers is described. Compatibility of the tools with the human controller, a key objective of the design, is achieved by a judicious selection of tasks to be automated and careful attention to the design of the controller system interface. The design comprises three interconnected subsystems referred to as the Traffic Management Advisor, the Descent Advisor, and the Final Approach Spacing Tool. Each of these subsystems provides a collection of tools for specific controller positions and tasks. This paper focuses primarily on the Descent Advisor which provides automation tools for managing descent traffic. The algorithms, automation modes, and graphical interfaces incorporated in the design are described. Information generated by the Descent Advisor tools is integrated into a plan view traffic display consisting of a high-resolution color monitor. Estimated arrival times of aircraft are presented graphically on a time line, which is also used interactively in combination with a mouse input device to select and schedule arrival times. Other graphical markers indicate the location of the fuel-optimum top-of-descent point and the predicted separation distances of aircraft at a designated time-control point. Computer generated advisories provide speed and descent clearances which the controller can issue to aircraft to help them arrive at the feeder gate at the scheduled times or with specified separation distances. Two types of horizontal guidance modes, selectable by the controller, provide markers for managing the horizontal flightpaths of aircraft under various conditions. The entire system consisting of descent advisor algorithm, a library of aircraft performance models, national airspace system data bases, and interactive display software has been implemented on a workstation made by Sun Microsystems, Inc. It is planned to use this configuration in operational evaluations at an en route center.
NASA Astrophysics Data System (ADS)
Ghafoor, N.; Zarnecki, J.
When the ESA Huygens Probe arrives at Titan in 2005, measurements taken during and after the descent through the atmosphere are likely to revolutionise our under- standing of SaturnSs most enigmatic moon. The accurate atmospheric profiling of Titan from these measurements will require knowledge of the probe descent trajectory and in some cases attitude history, whilst certain atmospheric information (e.g. wind speeds) may be inferred directly from the probe dynamics during descent. Two of the instruments identified as contributing valuable information for the reconstruction of the probeSs parachute descent dynamics are the Surface Science Package Tilt sensor (SSP-TIL) and the Huygens Atmospheric Structure Instrument servo accelerometer (HASI-ACC). This presentation provides an overview of these sensors and their static calibration before describing an investigation into their real-life dynamic performance under simulated Titan-gravity conditions via a low-cost parabolic flight opportunity. The combined use of SSP-TIL and HASI-ACC in characterising the aircraft dynam- ics is also demonstrated and some important challenges are highlighted. Results from some simple spin tests are also presented. Finally, having validated the performance of the sensors under simulated Titan conditions, estimates are made as to the output of SSP-TIL and HASI-ACC under a variety of probe dynamics, ranging from verti- cal descent with spin to a simple 3 degree-of-freedom parachute descent model with horizontal gusting. It is shown how careful consideration must be given to the instru- mentsS principles of operation in each case, and also the impact of the sampling rates and resolutions as selected for the Huygens mission. The presentation concludes with a discussion of ongoing work on more advanced descent modelling and surface dy- namics modelling, and also of a proposal for the testing of the sensors on a sea-surface.
Mars Descent Imager (MARDI) on the Mars Polar Lander
Malin, M.C.; Caplinger, M.A.; Carr, M.H.; Squyres, S.; Thomas, P.; Veverka, J.
2001-01-01
The Mars Descent Imager, or MARDI, experiment on the Mars Polar Lander (MPL) consists of a camera characterized by small physical size and mass (???6 ?? 6 ?? 12 cm, including baffle; <500 gm), low power requirements (<2.5 W, including power supply losses), and high science performance (1000 x 1000 pixel, low noise). The intent of the investigation is to acquire nested images over a range of resolutions, from 8 m/pixel to better than 1 cm/pixel, during the roughly 2 min it takes the MPL to descend from 8 km to the surface under parachute and rocket-powered deceleration. Observational goals will include studies of (1) surface morphology (e.g., nature and distribution of landforms indicating past and present environmental processes); (2) local and regional geography (e.g., context for other lander instruments: precise location, detailed local relief); and (3) relationships to features seen in orbiter data. To accomplish these goals, MARDI will collect three types of images. Four small images (256 x 256 pixels) will be acquired on 0.5 s centers beginning 0.3 s before MPL's heatshield is jettisoned. Sixteen full-frame images (1024 X 1024, circularly edited) will be acquired on 5.3 s centers thereafter. Just after backshell jettison but prior to the start of powered descent, a "best final nonpowered descent image" will be acquired. Five seconds after the start of powered descent, the camera will begin acquiring images on 4 s centers. Storage for as many as ten 800 x 800 pixel images is available during terminal descent. A number of spacecraft factors are likely to impact the quality of MARDI images, including substantial motion blur resulting from large rates of attitude variation during parachute descent and substantial rocket-engine-induced vibration during powered descent. In addition, the mounting location of the camera places the exhaust plume of the hydrazine engines prominently in the field of view. Copyright 2001 by the American Geophysical Union.