Gradient optimization and nonlinear control
NASA Technical Reports Server (NTRS)
Hasdorff, L.
1976-01-01
The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.
Algorithms for accelerated convergence of adaptive PCA.
Chatterjee, C; Kang, Z; Roychowdhury, V P
2000-01-01
We derive and discuss new adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja, Sanger, and Xu. It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: 1) gradient descent; 2) steepest descent; 3) conjugate direction; and 4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods.We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
RES: Regularized Stochastic BFGS Algorithm
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Ribeiro, Alejandro
2014-12-01
RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.
NASA Astrophysics Data System (ADS)
Peckerar, Martin C.; Marrian, Christie R.
1995-05-01
Standard matrix inversion methods of e-beam proximity correction are compared with a variety of pseudoinverse approaches based on gradient descent. It is shown that the gradient descent methods can be modified using 'regularizers' (terms added to the cost function minimized during gradient descent). This modification solves the 'negative dose' problem in a mathematically sound way. Different techniques are contrasted using a weighted error measure approach. It is shown that the regularization approach leads to the highest quality images. In some cases, ignoring negative doses yields results which are worse than employing an uncorrected dose file.
Momentum-weighted conjugate gradient descent algorithm for gradient coil optimization.
Lu, Hanbing; Jesmanowicz, Andrzej; Li, Shi-Jiang; Hyde, James S
2004-01-01
MRI gradient coil design is a type of nonlinear constrained optimization. A practical problem in transverse gradient coil design using the conjugate gradient descent (CGD) method is that wire elements move at different rates along orthogonal directions (r, phi, z), and tend to cross, breaking the constraints. A momentum-weighted conjugate gradient descent (MW-CGD) method is presented to overcome this problem. This method takes advantage of the efficiency of the CGD method combined with momentum weighting, which is also an intrinsic property of the Levenberg-Marquardt algorithm, to adjust step sizes along the three orthogonal directions. A water-cooled, 12.8 cm inner diameter, three axis torque-balanced gradient coil for rat imaging was developed based on this method, with an efficiency of 2.13, 2.08, and 4.12 mT.m(-1).A(-1) along X, Y, and Z, respectively. Experimental data demonstrate that this method can improve efficiency by 40% and field uniformity by 27%. This method has also been applied to the design of a gradient coil for the human brain, employing remote current return paths. The benefits of this design include improved gradient field uniformity and efficiency, with a shorter length than gradient coil designs using coaxial return paths. Copyright 2003 Wiley-Liss, Inc.
Gradient descent learning algorithm overview: a general dynamical systems perspective.
Baldi, P
1995-01-01
Gives a unified treatment of gradient descent learning algorithms for neural networks using a general framework of dynamical systems. This general approach organizes and simplifies all the known algorithms and results which have been originally derived for different problems (fixed point/trajectory learning), for different models (discrete/continuous), for different architectures (forward/recurrent), and using different techniques (backpropagation, variational calculus, adjoint methods, etc.). The general approach can also be applied to derive new algorithms. The author then briefly examines some of the complexity issues and limitations intrinsic to gradient descent learning. Throughout the paper, the author focuses on the problem of trajectory learning.
A pipeline leakage locating method based on the gradient descent algorithm
NASA Astrophysics Data System (ADS)
Li, Yulong; Yang, Fan; Ni, Na
2018-04-01
A pipeline leakage locating method based on the gradient descent algorithm is proposed in this paper. The method has low computing complexity, which is suitable for practical application. We have built experimental environment in real underground pipeline network. A lot of real data has been gathered in the past three months. Every leak point has been certificated by excavation. Results show that positioning error is within 0.4 meter. Rate of false alarm and missing alarm are both under 20%. The calculating time is not above 5 seconds.
A conjugate gradient method with descent properties under strong Wolfe line search
NASA Astrophysics Data System (ADS)
Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.
2017-09-01
The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.
Steepest descent method implementation on unconstrained optimization problem using C++ program
NASA Astrophysics Data System (ADS)
Napitupulu, H.; Sukono; Mohd, I. Bin; Hidayat, Y.; Supian, S.
2018-03-01
Steepest Descent is known as the simplest gradient method. Recently, many researches are done to obtain the appropriate step size in order to reduce the objective function value progressively. In this paper, the properties of steepest descent method from literatures are reviewed together with advantages and disadvantages of each step size procedure. The development of steepest descent method due to its step size procedure is discussed. In order to test the performance of each step size, we run a steepest descent procedure in C++ program. We implemented it to unconstrained optimization test problem with two variables, then we compare the numerical results of each step size procedure. Based on the numerical experiment, we conclude the general computational features and weaknesses of each procedure in each case of problem.
Method of Real-Time Principal-Component Analysis
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu
2005-01-01
Dominant-element-based gradient descent and dynamic initial learning rate (DOGEDYN) is a method of sequential principal-component analysis (PCA) that is well suited for such applications as data compression and extraction of features from sets of data. In comparison with a prior method of gradient-descent-based sequential PCA, this method offers a greater rate of learning convergence. Like the prior method, DOGEDYN can be implemented in software. However, the main advantage of DOGEDYN over the prior method lies in the facts that it requires less computation and can be implemented in simpler hardware. It should be possible to implement DOGEDYN in compact, low-power, very-large-scale integrated (VLSI) circuitry that could process data in real time.
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2010 CFR
2010-01-01
... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at.... The steady gradient and rate of climb/descent must be determined at each weight, altitude, and ambient...
Stochastic Spectral Descent for Discrete Graphical Models
Carlson, David; Hsieh, Ya-Ping; Collins, Edo; ...
2015-12-14
Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted asmore » gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.« less
Chakrabartty, Shantanu; Shaga, Ravi K; Aono, Kenji
2013-04-01
Analog circuits that are calibrated using digital-to-analog converters (DACs) use a digital signal processor-based algorithm for real-time adaptation and programming of system parameters. In this paper, we first show that this conventional framework for adaptation yields suboptimal calibration properties because of artifacts introduced by quantization noise. We then propose a novel online stochastic optimization algorithm called noise-shaping or ΣΔ gradient descent, which can shape the quantization noise out of the frequency regions spanning the parameter adaptation trajectories. As a result, the proposed algorithms demonstrate superior parameter search properties compared to floating-point gradient methods and better convergence properties than conventional quantized gradient-methods. In the second part of this paper, we apply the ΣΔ gradient descent algorithm to two examples of real-time digital calibration: 1) balancing and tracking of bias currents, and 2) frequency calibration of a band-pass Gm-C biquad filter biased in weak inversion. For each of these examples, the circuits have been prototyped in a 0.5-μm complementary metal-oxide-semiconductor process, and we demonstrate that the proposed algorithm is able to find the optimal solution even in the presence of spurious local minima, which are introduced by the nonlinear and non-monotonic response of calibration DACs.
Fan, Bingfei; Li, Qingguo; Wang, Chao; Liu, Tao
2017-01-01
Magnetic and inertial sensors have been widely used to estimate the orientation of human segments due to their low cost, compact size and light weight. However, the accuracy of the estimated orientation is easily affected by external factors, especially when the sensor is used in an environment with magnetic disturbances. In this paper, we propose an adaptive method to improve the accuracy of orientation estimations in the presence of magnetic disturbances. The method is based on existing gradient descent algorithms, and it is performed prior to sensor fusion algorithms. The proposed method includes stationary state detection and magnetic disturbance severity determination. The stationary state detection makes this method immune to magnetic disturbances in stationary state, while the magnetic disturbance severity determination helps to determine the credibility of magnetometer data under dynamic conditions, so as to mitigate the negative effect of the magnetic disturbances. The proposed method was validated through experiments performed on a customized three-axis instrumented gimbal with known orientations. The error of the proposed method and the original gradient descent algorithms were calculated and compared. Experimental results demonstrate that in stationary state, the proposed method is completely immune to magnetic disturbances, and in dynamic conditions, the error caused by magnetic disturbance is reduced by 51.2% compared with original MIMU gradient descent algorithm. PMID:28534858
A three-term conjugate gradient method under the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
Energy minimization in medical image analysis: Methodologies and applications.
Zhao, Feng; Xie, Xianghua
2016-02-01
Energy minimization is of particular interest in medical image analysis. In the past two decades, a variety of optimization schemes have been developed. In this paper, we present a comprehensive survey of the state-of-the-art optimization approaches. These algorithms are mainly classified into two categories: continuous method and discrete method. The former includes Newton-Raphson method, gradient descent method, conjugate gradient method, proximal gradient method, coordinate descent method, and genetic algorithm-based method, while the latter covers graph cuts method, belief propagation method, tree-reweighted message passing method, linear programming method, maximum margin learning method, simulated annealing method, and iterated conditional modes method. We also discuss the minimal surface method, primal-dual method, and the multi-objective optimization method. In addition, we review several comparative studies that evaluate the performance of different minimization techniques in terms of accuracy, efficiency, or complexity. These optimization techniques are widely used in many medical applications, for example, image segmentation, registration, reconstruction, motion tracking, and compressed sensing. We thus give an overview on those applications as well. Copyright © 2015 John Wiley & Sons, Ltd.
Fractional-order gradient descent learning of BP neural networks with Caputo derivative.
Wang, Jian; Wen, Yanqing; Gou, Yida; Ye, Zhenyun; Chen, Hua
2017-05-01
Fractional calculus has been found to be a promising area of research for information processing and modeling of some physical systems. In this paper, we propose a fractional gradient descent method for the backpropagation (BP) training of neural networks. In particular, the Caputo derivative is employed to evaluate the fractional-order gradient of the error defined as the traditional quadratic energy function. The monotonicity and weak (strong) convergence of the proposed approach are proved in detail. Two simulations have been implemented to illustrate the performance of presented fractional-order BP algorithm on three small datasets and one large dataset. The numerical simulations effectively verify the theoretical observations of this paper as well. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gradient descent for robust kernel-based regression
NASA Astrophysics Data System (ADS)
Guo, Zheng-Chu; Hu, Ting; Shi, Lei
2018-06-01
In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.
A feasible DY conjugate gradient method for linear equality constraints
NASA Astrophysics Data System (ADS)
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
A new family of Polak-Ribiere-Polyak conjugate gradient method with the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
Conjugate gradient (CG) method is an important technique in unconstrained optimization, due to its effectiveness and low memory requirements. The focus of this paper is to introduce a new CG method for solving large scale unconstrained optimization. Theoretical proofs show that the new method fulfills sufficient descent condition if strong Wolfe-Powell inexact line search is used. Besides, computational results show that our proposed method outperforms to other existing CG methods.
A modified form of conjugate gradient method for unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa
2016-06-01
Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.
1994-12-31
By means of the author`s earlier theory of antieigenvalues and antieigenvectors, a new computational approach to iterative methods is presented. This enables an explicit trigonometric understanding of iterative convergence and provides new insights into the sharpness of error bounds. Direct applications to Gradient descent, Conjugate gradient, GCR(k), Orthomin, CGN, GMRES, CGS, and other matrix iterative schemes will be given.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
Convergence Rates of Finite Difference Stochastic Approximation Algorithms
2016-06-01
dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It
A General Method for Solving Systems of Non-Linear Equations
NASA Technical Reports Server (NTRS)
Nachtsheim, Philip R.; Deiss, Ron (Technical Monitor)
1995-01-01
The method of steepest descent is modified so that accelerated convergence is achieved near a root. It is assumed that the function of interest can be approximated near a root by a quadratic form. An eigenvector of the quadratic form is found by evaluating the function and its gradient at an arbitrary point and another suitably selected point. The terminal point of the eigenvector is chosen to lie on the line segment joining the two points. The terminal point found lies on an axis of the quadratic form. The selection of a suitable step size at this point leads directly to the root in the direction of steepest descent in a single step. Newton's root finding method not infrequently diverges if the starting point is far from the root. However, the current method in these regions merely reverts to the method of steepest descent with an adaptive step size. The current method's performance should match that of the Levenberg-Marquardt root finding method since they both share the ability to converge from a starting point far from the root and both exhibit quadratic convergence near a root. The Levenberg-Marquardt method requires storage for coefficients of linear equations. The current method which does not require the solution of linear equations requires more time for additional function and gradient evaluations. The classic trade off of time for space separates the two methods.
Bhaya, Amit; Kaszkurewicz, Eugenius
2004-01-01
It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.
Algorithms for Mathematical Programming with Emphasis on Bi-level Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldfarb, Donald; Iyengar, Garud
2014-05-22
The research supported by this grant was focused primarily on first-order methods for solving large scale and structured convex optimization problems and convex relaxations of nonconvex problems. These include optimal gradient methods, operator and variable splitting methods, alternating direction augmented Lagrangian methods, and block coordinate descent methods.
Cosmic Microwave Background Mapmaking with a Messenger Field
NASA Astrophysics Data System (ADS)
Huffenberger, Kevin M.; Næss, Sigurd K.
2018-01-01
We apply a messenger field method to solve the linear minimum-variance mapmaking equation in the context of Cosmic Microwave Background (CMB) observations. In simulations, the method produces sky maps that converge significantly faster than those from a conjugate gradient descent algorithm with a diagonal preconditioner, even though the computational cost per iteration is similar. The messenger method recovers large scales in the map better than conjugate gradient descent, and yields a lower overall χ2. In the single, pencil beam approximation, each iteration of the messenger mapmaking procedure produces an unbiased map, and the iterations become more optimal as they proceed. A variant of the method can handle differential data or perform deconvolution mapmaking. The messenger method requires no preconditioner, but a high-quality solution needs a cooling parameter to control the convergence. We study the convergence properties of this new method and discuss how the algorithm is feasible for the large data sets of current and future CMB experiments.
Hybrid DFP-CG method for solving unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Osman, Wan Farah Hanan Wan; Asrul Hery Ibrahim, Mohd; Mamat, Mustafa
2017-09-01
The conjugate gradient (CG) method and quasi-Newton method are both well known method for solving unconstrained optimization method. In this paper, we proposed a new method by combining the search direction between conjugate gradient method and quasi-Newton method based on BFGS-CG method developed by Ibrahim et al. The Davidon-Fletcher-Powell (DFP) update formula is used as an approximation of Hessian for this new hybrid algorithm. Numerical result showed that the new algorithm perform well than the ordinary DFP method and proven to posses both sufficient descent and global convergence properties.
NASA Astrophysics Data System (ADS)
Ghani, N. H. A.; Mohamed, N. S.; Zull, N.; Shoid, S.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is one of iterative techniques prominently used in solving unconstrained optimization problems due to its simplicity, low memory storage, and good convergence analysis. This paper presents a new hybrid conjugate gradient method, named NRM1 method. The method is analyzed under the exact and inexact line searches in given conditions. Theoretically, proofs show that the NRM1 method satisfies the sufficient descent condition with both line searches. The computational result indicates that NRM1 method is capable in solving the standard unconstrained optimization problems used. On the other hand, the NRM1 method performs better under inexact line search compared with exact line search.
Coordinated Beamforming for MISO Interference Channel: Complexity Analysis and Efficient Algorithms
2010-01-01
Algorithm The cyclic coordinate descent algorithm is also known as the nonlinear Gauss - Seidel iteration [32]. There are several studies of this type of...vkρ(vi−1). It can be shown that the above BB gradient projection direction is always a descent direction. The R-linear convergence of the BB method has...KKT solution ) of the inexact pricing algorithm for MISO interference channel. The latter is interesting since the convergence of the original pricing
Using a Gradient Vector to Find Multiple Periodic Oscillations in Suspension Bridge Models
ERIC Educational Resources Information Center
Humphreys, L. D.; McKenna, P. J.
2005-01-01
This paper describes how the method of steepest descent can be used to find periodic solutions of differential equations. Applications to two suspension bridge models are discussed, and the method is used to find non-obvious large-amplitude solutions.
Optimization of OT-MACH Filter Generation for Target Recognition
NASA Technical Reports Server (NTRS)
Johnson, Oliver C.; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
An automatic Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter generator for use in a gray-scale optical correlator (GOC) has been developed for improved target detection at JPL. While the OT-MACH filter has been shown to be an optimal filter for target detection, actually solving for the optimum is too computationally intensive for multiple targets. Instead, an adaptive step gradient descent method was tested to iteratively optimize the three OT-MACH parameters, alpha, beta, and gamma. The feedback for the gradient descent method was a composite of the performance measures, correlation peak height and peak to side lobe ratio. The automated method generated and tested multiple filters in order to approach the optimal filter quicker and more reliably than the current manual method. Initial usage and testing has shown preliminary success at finding an approximation of the optimal filter, in terms of alpha, beta, gamma values. This corresponded to a substantial improvement in detection performance where the true positive rate increased for the same average false positives per image.
Online learning in optical tomography: a stochastic approach
NASA Astrophysics Data System (ADS)
Chen, Ke; Li, Qin; Liu, Jian-Guo
2018-07-01
We study the inverse problem of radiative transfer equation (RTE) using stochastic gradient descent method (SGD) in this paper. Mathematically, optical tomography amounts to recovering the optical parameters in RTE using the incoming–outgoing pair of light intensity. We formulate it as a PDE-constraint optimization problem, where the mismatch of computed and measured outgoing data is minimized with same initial data and RTE constraint. The memory and computation cost it requires, however, is typically prohibitive, especially in high dimensional space. Smart iterative solvers that only use partial information in each step is called for thereafter. Stochastic gradient descent method is an online learning algorithm that randomly selects data for minimizing the mismatch. It requires minimum memory and computation, and advances fast, therefore perfectly serves the purpose. In this paper we formulate the problem, in both nonlinear and its linearized setting, apply SGD algorithm and analyze the convergence performance.
3D-Web-GIS RFID location sensing system for construction objects.
Ko, Chien-Ho
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.
3D-Web-GIS RFID Location Sensing System for Construction Objects
2013-01-01
Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency. PMID:23864821
A modified three-term PRP conjugate gradient algorithm for optimization models.
Wu, Yanlin
2017-01-01
The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.
An online supervised learning method based on gradient descent for spiking neurons.
Xu, Yan; Yang, Jing; Zhong, Shuiming
2017-09-01
The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neural networks applications to control and computations
NASA Technical Reports Server (NTRS)
Luxemburg, Leon A.
1994-01-01
Several interrelated problems in the area of neural network computations are described. First an interpolation problem is considered, then a control problem is reduced to a problem of interpolation by a neural network via Lyapunov function approach, and finally a new, faster method of learning as compared with the gradient descent method, was introduced.
A gradient system solution to Potts mean field equations and its electronic implementation.
Urahama, K; Ueno, S
1993-03-01
A gradient system solution method is presented for solving Potts mean field equations for combinatorial optimization problems subject to winner-take-all constraints. In the proposed solution method the optimum solution is searched by using gradient descent differential equations whose trajectory is confined within the feasible solution space of optimization problems. This gradient system is proven theoretically to always produce a legal local optimum solution of combinatorial optimization problems. An elementary analog electronic circuit implementing the presented method is designed on the basis of current-mode subthreshold MOS technologies. The core constituent of the circuit is the winner-take-all circuit developed by Lazzaro et al. Correct functioning of the presented circuit is exemplified with simulations of the circuits implementing the scheme for solving the shortest path problems.
Accelerating deep neural network training with inconsistent stochastic gradient descent.
Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat
2017-09-01
Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Pu; Wang, Xiaolin; Li, Xiao; Chen, Zilum; Xu, Xiaojun; Liu, Zejin
2009-10-01
Coherent summation of fibre laser beams, which can be scaled to a relatively large number of elements, is simulated by using the stochastic parallel gradient descent (SPGD) algorithm. The applicability of this algorithm for coherent summation is analysed and its optimisaton parameters and bandwidth limitations are studied.
Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege
2016-08-15
One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.
New hybrid conjugate gradient methods with the generalized Wolfe line search.
Xu, Xiao; Kong, Fan-Yu
2016-01-01
The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.
Limited-memory fast gradient descent method for graph regularized nonnegative matrix factorization.
Guan, Naiyang; Wei, Lei; Luo, Zhigang; Tao, Dacheng
2013-01-01
Graph regularized nonnegative matrix factorization (GNMF) decomposes a nonnegative data matrix X[Symbol:see text]R(m x n) to the product of two lower-rank nonnegative factor matrices, i.e.,W[Symbol:see text]R(m x r) and H[Symbol:see text]R(r x n) (r < min {m,n}) and aims to preserve the local geometric structure of the dataset by minimizing squared Euclidean distance or Kullback-Leibler (KL) divergence between X and WH. The multiplicative update rule (MUR) is usually applied to optimize GNMF, but it suffers from the drawback of slow-convergence because it intrinsically advances one step along the rescaled negative gradient direction with a non-optimal step size. Recently, a multiple step-sizes fast gradient descent (MFGD) method has been proposed for optimizing NMF which accelerates MUR by searching the optimal step-size along the rescaled negative gradient direction with Newton's method. However, the computational cost of MFGD is high because 1) the high-dimensional Hessian matrix is dense and costs too much memory; and 2) the Hessian inverse operator and its multiplication with gradient cost too much time. To overcome these deficiencies of MFGD, we propose an efficient limited-memory FGD (L-FGD) method for optimizing GNMF. In particular, we apply the limited-memory BFGS (L-BFGS) method to directly approximate the multiplication of the inverse Hessian and the gradient for searching the optimal step size in MFGD. The preliminary results on real-world datasets show that L-FGD is more efficient than both MFGD and MUR. To evaluate the effectiveness of L-FGD, we validate its clustering performance for optimizing KL-divergence based GNMF on two popular face image datasets including ORL and PIE and two text corpora including Reuters and TDT2. The experimental results confirm the effectiveness of L-FGD by comparing it with the representative GNMF solvers.
Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.
2014-12-01
The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazoe, Kenji; Mochi, Iacopo; Goldberg, Kenneth A.
The wavefront retrieval by gradient descent algorithm that is typically applied to coherent or incoherent imaging is extended to retrieve a wavefront from a series of through-focus images by partially coherent illumination. For accurate retrieval, we modeled partial coherence as well as object transmittance into the gradient descent algorithm. However, this modeling increases the computation time due to the complexity of partially coherent imaging simulation that is repeatedly used in the optimization loop. To accelerate the computation, we incorporate not only the Fourier transform but also an eigenfunction decomposition of the image. As a demonstration, the extended algorithm is appliedmore » to retrieve a field-dependent wavefront of a microscope operated at extreme ultraviolet wavelength (13.4 nm). The retrieved wavefront qualitatively matches the expected characteristics of the lens design.« less
A modified conjugate gradient coefficient with inexact line search for unconstrained optimization
NASA Astrophysics Data System (ADS)
Aini, Nurul; Rivaie, Mohd; Mamat, Mustafa
2016-11-01
Conjugate gradient (CG) method is a line search algorithm mostly known for its wide application in solving unconstrained optimization problems. Its low memory requirements and global convergence properties makes it one of the most preferred method in real life application such as in engineering and business. In this paper, we present a new CG method based on AMR* and CD method for solving unconstrained optimization functions. The resulting algorithm is proven to have both the sufficient descent and global convergence properties under inexact line search. Numerical tests are conducted to assess the effectiveness of the new method in comparison to some previous CG methods. The results obtained indicate that our method is indeed superior.
Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.
Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L
2017-10-01
The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.
Accelerating IMRT optimization by voxel sampling
NASA Astrophysics Data System (ADS)
Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.
2007-12-01
This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.
An Approach to Stable Gradient-Descent Adaptation of Higher Order Neural Units.
Bukovsky, Ivo; Homma, Noriyasu
2017-09-01
Stability evaluation of a weight-update system of higher order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on the spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring the stability of the weight-update system (at every single adaptation step) naturally results in the adaptation stability of the whole neural architecture that adapts to the target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters.
A different approach to estimate nonlinear regression model using numerical methods
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Mokeshrayalu, G.; Balasiddamuni, P.
2017-11-01
This research paper concerns with the computational methods namely the Gauss-Newton method, Gradient algorithm methods (Newton-Raphson method, Steepest Descent or Steepest Ascent algorithm method, the Method of Scoring, the Method of Quadratic Hill-Climbing) based on numerical analysis to estimate parameters of nonlinear regression model in a very different way. Principles of matrix calculus have been used to discuss the Gradient-Algorithm methods. Yonathan Bard [1] discussed a comparison of gradient methods for the solution of nonlinear parameter estimation problems. However this article discusses an analytical approach to the gradient algorithm methods in a different way. This paper describes a new iterative technique namely Gauss-Newton method which differs from the iterative technique proposed by Gorden K. Smyth [2]. Hans Georg Bock et.al [10] proposed numerical methods for parameter estimation in DAE’s (Differential algebraic equation). Isabel Reis Dos Santos et al [11], Introduced weighted least squares procedure for estimating the unknown parameters of a nonlinear regression metamodel. For large-scale non smooth convex minimization the Hager and Zhang (HZ) conjugate gradient Method and the modified HZ (MHZ) method were presented by Gonglin Yuan et al [12].
Tripathi, Ashish; McNulty, Ian; Shpyrko, Oleg G
2014-01-27
Ptychographic coherent x-ray diffractive imaging is a form of scanning microscopy that does not require optics to image a sample. A series of scanned coherent diffraction patterns recorded from multiple overlapping illuminated regions on the sample are inverted numerically to retrieve its image. The technique recovers the phase lost by detecting the diffraction patterns by using experimentally known constraints, in this case the measured diffraction intensities and the assumed scan positions on the sample. The spatial resolution of the recovered image of the sample is limited by the angular extent over which the diffraction patterns are recorded and how well these constraints are known. Here, we explore how reconstruction quality degrades with uncertainties in the scan positions. We show experimentally that large errors in the assumed scan positions on the sample can be numerically determined and corrected using conjugate gradient descent methods. We also explore in simulations the limits, based on the signal to noise of the diffraction patterns and amount of overlap between adjacent scan positions, of just how large these errors can be and still be rendered tractable by this method.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.
Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping
2018-04-27
Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.
Chowdhary, J; Keyes, T
2002-02-01
Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.
Mini-batch optimized full waveform inversion with geological constrained gradient filtering
NASA Astrophysics Data System (ADS)
Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai
2018-05-01
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
Analysis of Online Composite Mirror Descent Algorithm.
Lei, Yunwen; Zhou, Ding-Xuan
2017-03-01
We study the convergence of the online composite mirror descent algorithm, which involves a mirror map to reflect the geometry of the data and a convex objective function consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis provides convergence rates in terms of properties of the strongly convex differentiable mirror map and the objective function. For a class of objective functions with Hölder continuous gradients, the convergence rates of the excess (regularized) risk under polynomially decaying step sizes have the order [Formula: see text] after [Formula: see text] iterates. Our results improve the existing error analysis for the online composite mirror descent algorithm by avoiding averaging and removing boundedness assumptions, and they sharpen the existing convergence rates of the last iterate for online gradient descent without any boundedness assumptions. Our methodology mainly depends on a novel error decomposition in terms of an excess Bregman distance, refined analysis of self-bounding properties of the objective function, and the resulting one-step progress bounds.
NASA Technical Reports Server (NTRS)
Kopasakis, George
1997-01-01
Performance Seeking Control (PSC) attempts to find and control the process at the operating condition that will generate maximum performance. In this paper a nonlinear multivariable PSC methodology will be developed, utilizing the Fuzzy Model Reference Learning Control (FMRLC) and the method of Steepest Descent or Gradient (SDG). This PSC control methodology employs the SDG method to find the operating condition that will generate maximum performance. This operating condition is in turn passed to the FMRLC controller as a set point for the control of the process. The conventional SDG algorithm is modified in this paper in order for convergence to occur monotonically. For the FMRLC control, the conventional fuzzy model reference learning control methodology is utilized, with guidelines generated here for effective tuning of the FMRLC controller.
On Nonconvex Decentralized Gradient Descent
2016-08-01
and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math . Program., 116: 5-16, 2009. [2] H...splitting, and regularized Gauss-Seidel methods, Math . Pro- gram., Ser. A, 137: 91-129, 2013. [3] P. Bianchi and J. Jakubowicz, Convergence of a multi-agent...subgradient method under random communication topologies , IEEE J. Sel. Top. Signal Process., 5:754-771, 2011. [11] A. Nedic and A. Ozdaglar, Distributed
Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography.
Matthews, Thomas P; Wang, Kun; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2017-05-01
Ultrasound computed tomography (USCT) holds great promise for breast cancer screening. Waveform inversion-based image reconstruction methods account for higher order diffraction effects and can produce high-resolution USCT images, but are computationally demanding. Recently, a source encoding technique has been combined with stochastic gradient descent (SGD) to greatly reduce image reconstruction times. However, this method bundles the stochastic data fidelity term with the deterministic regularization term. This limitation can be overcome by replacing SGD with a structured optimization method, such as the regularized dual averaging method, that exploits knowledge of the composition of the cost function. In this paper, the dual averaging method is combined with source encoding techniques to improve the effectiveness of regularization while maintaining the reduced reconstruction times afforded by source encoding. It is demonstrated that each iteration can be decomposed into a gradient descent step based on the data fidelity term and a proximal update step corresponding to the regularization term. Furthermore, the regularization term is never explicitly differentiated, allowing nonsmooth regularization penalties to be naturally incorporated. The wave equation is solved by the use of a time-domain method. The effectiveness of this approach is demonstrated through computer simulation and experimental studies. The results suggest that the dual averaging method can produce images with less noise and comparable resolution to those obtained by the use of SGD.
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2013 CFR
2013-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2014 CFR
2014-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2012 CFR
2012-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
14 CFR 23.69 - Enroute climb/descent.
Code of Federal Regulations, 2011 CFR
2011-01-01
... inoperative and its propeller in the minimum drag position; (2) The remaining engine(s) at not more than... climb/descent. (a) All engines operating. The steady gradient and rate of climb must be determined at... applicant with— (1) Not more than maximum continuous power on each engine; (2) The landing gear retracted...
NASA Technical Reports Server (NTRS)
Knox, C. E.; Vicroy, D. D.; Simmon, D. A.
1985-01-01
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, and nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.; Vicroy, D.D.; Simmon, D.A.
A simple, airborne, flight-management descent algorithm was developed and programmed into a small programmable calculator. The algorithm may be operated in either a time mode or speed mode. The time mode was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The speed model was designed for planning fuel-conservative descents when time is not a consideration. The descent path for both modes was calculated for a constant with considerations given for the descent Mach/airspeed schedule, gross weight, wind, wind gradient, andmore » nonstandard temperature effects. Flight tests, using the algorithm on the programmable calculator, showed that the open-loop guidance could be useful to airline flight crews for planning and executing fuel-conservative descents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Y. M., E-mail: ymingy@gmail.com; Bednarz, B.; Svatos, M.
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship withinmore » a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead.« less
Svatos, M.; Zankowski, C.; Bednarz, B.
2016-01-01
Purpose: The future of radiation therapy will require advanced inverse planning solutions to support single-arc, multiple-arc, and “4π” delivery modes, which present unique challenges in finding an optimal treatment plan over a vast search space, while still preserving dosimetric accuracy. The successful clinical implementation of such methods would benefit from Monte Carlo (MC) based dose calculation methods, which can offer improvements in dosimetric accuracy when compared to deterministic methods. The standard method for MC based treatment planning optimization leverages the accuracy of the MC dose calculation and efficiency of well-developed optimization methods, by precalculating the fluence to dose relationship within a patient with MC methods and subsequently optimizing the fluence weights. However, the sequential nature of this implementation is computationally time consuming and memory intensive. Methods to reduce the overhead of the MC precalculation have been explored in the past, demonstrating promising reductions of computational time overhead, but with limited impact on the memory overhead due to the sequential nature of the dose calculation and fluence optimization. The authors propose an entirely new form of “concurrent” Monte Carlo treat plan optimization: a platform which optimizes the fluence during the dose calculation, reduces wasted computation time being spent on beamlets that weakly contribute to the final dose distribution, and requires only a low memory footprint to function. In this initial investigation, the authors explore the key theoretical and practical considerations of optimizing fluence in such a manner. Methods: The authors present a novel derivation and implementation of a gradient descent algorithm that allows for optimization during MC particle transport, based on highly stochastic information generated through particle transport of very few histories. A gradient rescaling and renormalization algorithm, and the concept of momentum from stochastic gradient descent were used to address obstacles unique to performing gradient descent fluence optimization during MC particle transport. The authors have applied their method to two simple geometrical phantoms, and one clinical patient geometry to examine the capability of this platform to generate conformal plans as well as assess its computational scaling and efficiency, respectively. Results: The authors obtain a reduction of at least 50% in total histories transported in their investigation compared to a theoretical unweighted beamlet calculation and subsequent fluence optimization method, and observe a roughly fixed optimization time overhead consisting of ∼10% of the total computation time in all cases. Finally, the authors demonstrate a negligible increase in memory overhead of ∼7–8 MB to allow for optimization of a clinical patient geometry surrounded by 36 beams using their platform. Conclusions: This study demonstrates a fluence optimization approach, which could significantly improve the development of next generation radiation therapy solutions while incurring minimal additional computational overhead. PMID:27277051
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than... tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is safe. The gradient must be established as an operating limitation and the information necessary to...
2017-01-01
In this paper, we propose a new automatic hyperparameter selection approach for determining the optimal network configuration (network structure and hyperparameters) for deep neural networks using particle swarm optimization (PSO) in combination with a steepest gradient descent algorithm. In the proposed approach, network configurations were coded as a set of real-number m-dimensional vectors as the individuals of the PSO algorithm in the search procedure. During the search procedure, the PSO algorithm is employed to search for optimal network configurations via the particles moving in a finite search space, and the steepest gradient descent algorithm is used to train the DNN classifier with a few training epochs (to find a local optimal solution) during the population evaluation of PSO. After the optimization scheme, the steepest gradient descent algorithm is performed with more epochs and the final solutions (pbest and gbest) of the PSO algorithm to train a final ensemble model and individual DNN classifiers, respectively. The local search ability of the steepest gradient descent algorithm and the global search capabilities of the PSO algorithm are exploited to determine an optimal solution that is close to the global optimum. We constructed several experiments on hand-written characters and biological activity prediction datasets to show that the DNN classifiers trained by the network configurations expressed by the final solutions of the PSO algorithm, employed to construct an ensemble model and individual classifier, outperform the random approach in terms of the generalization performance. Therefore, the proposed approach can be regarded an alternative tool for automatic network structure and parameter selection for deep neural networks. PMID:29236718
NASA Astrophysics Data System (ADS)
Antoine, Xavier; Levitt, Antoine; Tang, Qinglin
2017-08-01
We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.
NASA Astrophysics Data System (ADS)
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
Applying Gradient Descent in Convolutional Neural Networks
NASA Astrophysics Data System (ADS)
Cui, Nan
2018-04-01
With the development of the integrated circuit and computer science, people become caring more about solving practical issues via information technologies. Along with that, a new subject called Artificial Intelligent (AI) comes up. One popular research interest of AI is about recognition algorithm. In this paper, one of the most common algorithms, Convolutional Neural Networks (CNNs) will be introduced, for image recognition. Understanding its theory and structure is of great significance for every scholar who is interested in this field. Convolution Neural Network is an artificial neural network which combines the mathematical method of convolution and neural network. The hieratical structure of CNN provides it reliable computer speed and reasonable error rate. The most significant characteristics of CNNs are feature extraction, weight sharing and dimension reduction. Meanwhile, combining with the Back Propagation (BP) mechanism and the Gradient Descent (GD) method, CNNs has the ability to self-study and in-depth learning. Basically, BP provides an opportunity for backwardfeedback for enhancing reliability and GD is used for self-training process. This paper mainly discusses the CNN and the related BP and GD algorithms, including the basic structure and function of CNN, details of each layer, the principles and features of BP and GD, and some examples in practice with a summary in the end.
Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam.
Zhao, Haichuan; Wang, Xiaolin; Ma, Haotong; Zhou, Pu; Ma, Yanxing; Xu, Xiaojun; Zhao, Yijun
2011-08-01
We present a new method for efficiently transforming a high-order mode beam into a nearly Gaussian beam with much higher beam quality. The method is based on modulation of phases of different lobes by stochastic parallel gradient descent algorithm and coherent addition after phase flattening. We demonstrate the method by transforming an LP11 mode into a nearly Gaussian beam. The experimental results reveal that the power in the diffraction-limited bucket in the far field is increased by more than a factor of 1.5.
Kamesh Iyer, Srikant; Tasdizen, Tolga; Likhite, Devavrat; DiBella, Edward
2016-01-01
Purpose: Rapid reconstruction of undersampled multicoil MRI data with iterative constrained reconstruction method is a challenge. The authors sought to develop a new substitution based variable splitting algorithm for faster reconstruction of multicoil cardiac perfusion MRI data. Methods: The new method, split Bregman multicoil accelerated reconstruction technique (SMART), uses a combination of split Bregman based variable splitting and iterative reweighting techniques to achieve fast convergence. Total variation constraints are used along the spatial and temporal dimensions. The method is tested on nine ECG-gated dog perfusion datasets, acquired with a 30-ray golden ratio radial sampling pattern and ten ungated human perfusion datasets, acquired with a 24-ray golden ratio radial sampling pattern. Image quality and reconstruction speed are evaluated and compared to a gradient descent (GD) implementation and to multicoil k-t SLR, a reconstruction technique that uses a combination of sparsity and low rank constraints. Results: Comparisons based on blur metric and visual inspection showed that SMART images had lower blur and better texture as compared to the GD implementation. On average, the GD based images had an ∼18% higher blur metric as compared to SMART images. Reconstruction of dynamic contrast enhanced (DCE) cardiac perfusion images using the SMART method was ∼6 times faster than standard gradient descent methods. k-t SLR and SMART produced images with comparable image quality, though SMART was ∼6.8 times faster than k-t SLR. Conclusions: The SMART method is a promising approach to reconstruct good quality multicoil images from undersampled DCE cardiac perfusion data rapidly. PMID:27036592
Sparse Representation with Spatio-Temporal Online Dictionary Learning for Efficient Video Coding.
Dai, Wenrui; Shen, Yangmei; Tang, Xin; Zou, Junni; Xiong, Hongkai; Chen, Chang Wen
2016-07-27
Classical dictionary learning methods for video coding suer from high computational complexity and interfered coding eciency by disregarding its underlying distribution. This paper proposes a spatio-temporal online dictionary learning (STOL) algorithm to speed up the convergence rate of dictionary learning with a guarantee of approximation error. The proposed algorithm incorporates stochastic gradient descents to form a dictionary of pairs of 3-D low-frequency and highfrequency spatio-temporal volumes. In each iteration of the learning process, it randomly selects one sample volume and updates the atoms of dictionary by minimizing the expected cost, rather than optimizes empirical cost over the complete training data like batch learning methods, e.g. K-SVD. Since the selected volumes are supposed to be i.i.d. samples from the underlying distribution, decomposition coecients attained from the trained dictionary are desirable for sparse representation. Theoretically, it is proved that the proposed STOL could achieve better approximation for sparse representation than K-SVD and maintain both structured sparsity and hierarchical sparsity. It is shown to outperform batch gradient descent methods (K-SVD) in the sense of convergence speed and computational complexity, and its upper bound for prediction error is asymptotically equal to the training error. With lower computational complexity, extensive experiments validate that the STOL based coding scheme achieves performance improvements than H.264/AVC or HEVC as well as existing super-resolution based methods in ratedistortion performance and visual quality.
Learning Structured Classifiers with Dual Coordinate Ascent
2010-06-01
stochastic gradient descent (SGD) [LeCun et al., 1998], and the margin infused relaxed algorithm (MIRA) [ Crammer et al., 2006]. This paper presents a...evaluate these methods on the Prague Dependency Treebank us- ing online large-margin learning tech- niques ( Crammer et al., 2003; McDonald et al., 2005...between two kinds of factors: hard constraint factors, which are used to rule out forbidden par- tial assignments by mapping them to zero potential values
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Statz, C.; Hegler, S.; Herique, A.; Kofman, W. W.
2014-12-01
One of the main scientific objectives of the Comet Nucleus Sounding Experiment by Radiowave Transmission (CONSERT) aboard Rosetta is to perform a dielectric characterization of comet 67P/Chuyurmov-Gerasimenko's nucleus by means of a bi-static sounding between the lander Philae launched onto the comet's surface and the orbiter Rosetta. For the sounding, the lander part of CONSERT will receive and process the radio signal emitted by the orbiter part of the instrument and transmit a signal to the orbiter to be received by CONSERT. CONSERT will also be operated as bi-static RADAR during the descent of the lander Philae onto the comet's surface. From data measured during the descent, we aim at reconstructing a surface permittivity map of the comet at the landing site and along the path below the descent trajectory. This surface permittivity map will give information on the bulk material right below and around the landing site and the surface roughness in areas covered by the instrument along the descent. The proposed method to estimate the surface permittivity distribution is based on a least-squares based inversion approach in frequency domain. The direct problem of simulating the wave-propagation between lander and orbiter at line-of-sight and the signal reflected on the comet's surface is modelled using a dielectric physical optics approximation. Restrictions on the measurement positions by the descent orbitography and limitations on the instrument dynamic range will be dealt with by application of a regularization technique where the surface permittivity distribution and the gradient with regard to the permittivity is projected in a domain defined by a viable model of the spatial material and roughness distribution. The least-squares optimization step of the reconstruction is performed in such domain on a reduced set of parameters yielding stable results. The viability of the proposed method is demonstrated by reconstruction results based on simulated data.
Recursive inverse kinematics for robot arms via Kalman filtering and Bryson-Frazier smoothing
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Scheid, R. E., Jr.
1987-01-01
This paper applies linear filtering and smoothing theory to solve recursively the inverse kinematics problem for serial multilink manipulators. This problem is to find a set of joint angles that achieve a prescribed tip position and/or orientation. A widely applicable numerical search solution is presented. The approach finds the minimum of a generalized distance between the desired and the actual manipulator tip position and/or orientation. Both a first-order steepest-descent gradient search and a second-order Newton-Raphson search are developed. The optimal relaxation factor required for the steepest descent method is computed recursively using an outward/inward procedure similar to those used typically for recursive inverse dynamics calculations. The second-order search requires evaluation of a gradient and an approximate Hessian. A Gauss-Markov approach is used to approximate the Hessian matrix in terms of products of first-order derivatives. This matrix is inverted recursively using a two-stage process of inward Kalman filtering followed by outward smoothing. This two-stage process is analogous to that recently developed by the author to solve by means of spatial filtering and smoothing the forward dynamics problem for serial manipulators.
Fault-tolerant nonlinear adaptive flight control using sliding mode online learning.
Krüger, Thomas; Schnetter, Philipp; Placzek, Robin; Vörsmann, Peter
2012-08-01
An expanded nonlinear model inversion flight control strategy using sliding mode online learning for neural networks is presented. The proposed control strategy is implemented for a small unmanned aircraft system (UAS). This class of aircraft is very susceptible towards nonlinearities like atmospheric turbulence, model uncertainties and of course system failures. Therefore, these systems mark a sensible testbed to evaluate fault-tolerant, adaptive flight control strategies. Within this work the concept of feedback linearization is combined with feed forward neural networks to compensate for inversion errors and other nonlinear effects. Backpropagation-based adaption laws of the network weights are used for online training. Within these adaption laws the standard gradient descent backpropagation algorithm is augmented with the concept of sliding mode control (SMC). Implemented as a learning algorithm, this nonlinear control strategy treats the neural network as a controlled system and allows a stable, dynamic calculation of the learning rates. While considering the system's stability, this robust online learning method therefore offers a higher speed of convergence, especially in the presence of external disturbances. The SMC-based flight controller is tested and compared with the standard gradient descent backpropagation algorithm in the presence of system failures. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jia, Ningning; Y Lam, Edmund
2010-04-01
Inverse lithography technology (ILT) synthesizes photomasks by solving an inverse imaging problem through optimization of an appropriate functional. Much effort on ILT is dedicated to deriving superior masks at a nominal process condition. However, the lower k1 factor causes the mask to be more sensitive to process variations. Robustness to major process variations, such as focus and dose variations, is desired. In this paper, we consider the focus variation as a stochastic variable, and treat the mask design as a machine learning problem. The stochastic gradient descent approach, which is a useful tool in machine learning, is adopted to train the mask design. Compared with previous work, simulation shows that the proposed algorithm is effective in producing robust masks.
Deep kernel learning method for SAR image target recognition
NASA Astrophysics Data System (ADS)
Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao
2017-10-01
With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.
A Gradient Taguchi Method for Engineering Optimization
NASA Astrophysics Data System (ADS)
Hwang, Shun-Fa; Wu, Jen-Chih; He, Rong-Song
2017-10-01
To balance the robustness and the convergence speed of optimization, a novel hybrid algorithm consisting of Taguchi method and the steepest descent method is proposed in this work. Taguchi method using orthogonal arrays could quickly find the optimum combination of the levels of various factors, even when the number of level and/or factor is quite large. This algorithm is applied to the inverse determination of elastic constants of three composite plates by combining numerical method and vibration testing. For these problems, the proposed algorithm could find better elastic constants in less computation cost. Therefore, the proposed algorithm has nice robustness and fast convergence speed as compared to some hybrid genetic algorithms.
On the boundary conditions on a shock wave for hypersonic flow around a descent vehicle
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2013-12-01
Stationary hypersonic flow around a descent vehicle is examined by considering equilibrium and nonequilibrium reactions. We study how physical-chemical processes and shock wave conditions for gas species influence the shock-layer structure. It is shown that conservation conditions of species on the shock wave cause high-temperature and concentration gradients in the shock layer when we calculate spacecraft deceleration trajectory in the atmosphere at 75 km altitude.
Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai
2016-06-10
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.
A ℓ2, 1 norm regularized multi-kernel learning for false positive reduction in Lung nodule CAD.
Cao, Peng; Liu, Xiaoli; Zhang, Jian; Li, Wei; Zhao, Dazhe; Huang, Min; Zaiane, Osmar
2017-03-01
The aim of this paper is to describe a novel algorithm for False Positive Reduction in lung nodule Computer Aided Detection(CAD). In this paper, we describes a new CT lung CAD method which aims to detect solid nodules. Specially, we proposed a multi-kernel classifier with a ℓ 2, 1 norm regularizer for heterogeneous feature fusion and selection from the feature subset level, and designed two efficient strategies to optimize the parameters of kernel weights in non-smooth ℓ 2, 1 regularized multiple kernel learning algorithm. The first optimization algorithm adapts a proximal gradient method for solving the ℓ 2, 1 norm of kernel weights, and use an accelerated method based on FISTA; the second one employs an iterative scheme based on an approximate gradient descent method. The results demonstrates that the FISTA-style accelerated proximal descent method is efficient for the ℓ 2, 1 norm formulation of multiple kernel learning with the theoretical guarantee of the convergence rate. Moreover, the experimental results demonstrate the effectiveness of the proposed methods in terms of Geometric mean (G-mean) and Area under the ROC curve (AUC), and significantly outperforms the competing methods. The proposed approach exhibits some remarkable advantages both in heterogeneous feature subsets fusion and classification phases. Compared with the fusion strategies of feature-level and decision level, the proposed ℓ 2, 1 norm multi-kernel learning algorithm is able to accurately fuse the complementary and heterogeneous feature sets, and automatically prune the irrelevant and redundant feature subsets to form a more discriminative feature set, leading a promising classification performance. Moreover, the proposed algorithm consistently outperforms the comparable classification approaches in the literature. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
14 CFR 23.75 - Landing distance.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...
Efficient two-dimensional compressive sensing in MIMO radar
NASA Astrophysics Data System (ADS)
Shahbazi, Nafiseh; Abbasfar, Aliazam; Jabbarian-Jahromi, Mohammad
2017-12-01
Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed received signals and then we propose a new measurement matrix design for our 2D compressive sensing model that is based on minimizing the coherence of sensing matrix using gradient descent algorithm. The simulation results show that our proposed 2D measurement matrix design using gradient decent algorithm (2D-MMDGD) has much lower computational complexity compared to one-dimensional (1D) methods while having better performance in comparison with conventional methods such as Gaussian random measurement matrix.
Error analysis of stochastic gradient descent ranking.
Chen, Hong; Tang, Yi; Li, Luoqing; Yuan, Yuan; Li, Xuelong; Tang, Yuanyan
2013-06-01
Ranking is always an important task in machine learning and information retrieval, e.g., collaborative filtering, recommender systems, drug discovery, etc. A kernel-based stochastic gradient descent algorithm with the least squares loss is proposed for ranking in this paper. The implementation of this algorithm is simple, and an expression of the solution is derived via a sampling operator and an integral operator. An explicit convergence rate for leaning a ranking function is given in terms of the suitable choices of the step size and the regularization parameter. The analysis technique used here is capacity independent and is novel in error analysis of ranking learning. Experimental results on real-world data have shown the effectiveness of the proposed algorithm in ranking tasks, which verifies the theoretical analysis in ranking error.
A new modified conjugate gradient coefficient for solving system of linear equations
NASA Astrophysics Data System (ADS)
Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.
2017-09-01
Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations
Dynamic load balancing algorithm for molecular dynamics based on Voronoi cells domain decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fattebert, J.-L.; Richards, D.F.; Glosli, J.N.
2012-12-01
We present a new algorithm for automatic parallel load balancing in classical molecular dynamics. It assumes a spatial domain decomposition of particles into Voronoi cells. It is a gradient method which attempts to minimize a cost function by displacing Voronoi sites associated with each processor/sub-domain along steepest descent directions. Excellent load balance has been obtained for quasi-2D and 3D practical applications, with up to 440·10 6 particles on 65,536 MPI tasks.
A mesh gradient technique for numerical optimization
NASA Technical Reports Server (NTRS)
Willis, E. A., Jr.
1973-01-01
A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.
NASA Astrophysics Data System (ADS)
Kisi, Ozgur; Shiri, Jalal
2012-06-01
Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.
Dynamic metrology and data processing for precision freeform optics fabrication and testing
NASA Astrophysics Data System (ADS)
Aftab, Maham; Trumper, Isaac; Huang, Lei; Choi, Heejoo; Zhao, Wenchuan; Graves, Logan; Oh, Chang Jin; Kim, Dae Wook
2017-06-01
Dynamic metrology holds the key to overcoming several challenging limitations of conventional optical metrology, especially with regards to precision freeform optical elements. We present two dynamic metrology systems: 1) adaptive interferometric null testing; and 2) instantaneous phase shifting deflectometry, along with an overview of a gradient data processing and surface reconstruction technique. The adaptive null testing method, utilizing a deformable mirror, adopts a stochastic parallel gradient descent search algorithm in order to dynamically create a null testing condition for unknown freeform optics. The single-shot deflectometry system implemented on an iPhone uses a multiplexed display pattern to enable dynamic measurements of time-varying optical components or optics in vibration. Experimental data, measurement accuracy / precision, and data processing algorithms are discussed.
Multigrid one shot methods for optimal control problems: Infinite dimensional control
NASA Technical Reports Server (NTRS)
Arian, Eyal; Taasan, Shlomo
1994-01-01
The multigrid one shot method for optimal control problems, governed by elliptic systems, is introduced for the infinite dimensional control space. ln this case, the control variable is a function whose discrete representation involves_an increasing number of variables with grid refinement. The minimization algorithm uses Lagrange multipliers to calculate sensitivity gradients. A preconditioned gradient descent algorithm is accelerated by a set of coarse grids. It optimizes for different scales in the representation of the control variable on different discretization levels. An analysis which reduces the problem to the boundary is introduced. It is used to approximate the two level asymptotic convergence rate, to determine the amplitude of the minimization steps, and the choice of a high pass filter to be used when necessary. The effectiveness of the method is demonstrated on a series of test problems. The new method enables the solutions of optimal control problems at the same cost of solving the corresponding analysis problems just a few times.
Intelligence system based classification approach for medical disease diagnosis
NASA Astrophysics Data System (ADS)
Sagir, Abdu Masanawa; Sathasivam, Saratha
2017-08-01
The prediction of breast cancer in women who have no signs or symptoms of the disease as well as survivability after undergone certain surgery has been a challenging problem for medical researchers. The decision about presence or absence of diseases depends on the physician's intuition, experience and skill for comparing current indicators with previous one than on knowledge rich data hidden in a database. This measure is a very crucial and challenging task. The goal is to predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system. A framework describes methodology for designing and evaluation of classification performances of two discrete ANFIS systems of hybrid learning algorithms least square estimates with Modified Levenberg-Marquardt and Gradient descent algorithms that can be used by physicians to accelerate diagnosis process. The proposed method's performance was evaluated based on training and test datasets with mammographic mass and Haberman's survival Datasets obtained from benchmarked datasets of University of California at Irvine's (UCI) machine learning repository. The robustness of the performance measuring total accuracy, sensitivity and specificity is examined. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.
Piecewise convexity of artificial neural networks.
Rister, Blaine; Rubin, Daniel L
2017-10-01
Although artificial neural networks have shown great promise in applications including computer vision and speech recognition, there remains considerable practical and theoretical difficulty in optimizing their parameters. The seemingly unreasonable success of gradient descent methods in minimizing these non-convex functions remains poorly understood. In this work we offer some theoretical guarantees for networks with piecewise affine activation functions, which have in recent years become the norm. We prove three main results. First, that the network is piecewise convex as a function of the input data. Second, that the network, considered as a function of the parameters in a single layer, all others held constant, is again piecewise convex. Third, that the network as a function of all its parameters is piecewise multi-convex, a generalization of biconvexity. From here we characterize the local minima and stationary points of the training objective, showing that they minimize the objective on certain subsets of the parameter space. We then analyze the performance of two optimization algorithms on multi-convex problems: gradient descent, and a method which repeatedly solves a number of convex sub-problems. We prove necessary convergence conditions for the first algorithm and both necessary and sufficient conditions for the second, after introducing regularization to the objective. Finally, we remark on the remaining difficulty of the global optimization problem. Under the squared error objective, we show that by varying the training data, a single rectifier neuron admits local minima arbitrarily far apart, both in objective value and parameter space. Copyright © 2017 Elsevier Ltd. All rights reserved.
Manifold regularized discriminative nonnegative matrix factorization with fast gradient descent.
Guan, Naiyang; Tao, Dacheng; Luo, Zhigang; Yuan, Bo
2011-07-01
Nonnegative matrix factorization (NMF) has become a popular data-representation method and has been widely used in image processing and pattern-recognition problems. This is because the learned bases can be interpreted as a natural parts-based representation of data and this interpretation is consistent with the psychological intuition of combining parts to form a whole. For practical classification tasks, however, NMF ignores both the local geometry of data and the discriminative information of different classes. In addition, existing research results show that the learned basis is unnecessarily parts-based because there is neither explicit nor implicit constraint to ensure the representation parts-based. In this paper, we introduce the manifold regularization and the margin maximization to NMF and obtain the manifold regularized discriminative NMF (MD-NMF) to overcome the aforementioned problems. The multiplicative update rule (MUR) can be applied to optimizing MD-NMF, but it converges slowly. In this paper, we propose a fast gradient descent (FGD) to optimize MD-NMF. FGD contains a Newton method that searches the optimal step length, and thus, FGD converges much faster than MUR. In addition, FGD includes MUR as a special case and can be applied to optimizing NMF and its variants. For a problem with 165 samples in R(1600), FGD converges in 28 s, while MUR requires 282 s. We also apply FGD in a variant of MD-NMF and experimental results confirm its efficiency. Experimental results on several face image datasets suggest the effectiveness of MD-NMF.
Optimized computational imaging methods for small-target sensing in lens-free holographic microscopy
NASA Astrophysics Data System (ADS)
Xiong, Zhen; Engle, Isaiah; Garan, Jacob; Melzer, Jeffrey E.; McLeod, Euan
2018-02-01
Lens-free holographic microscopy is a promising diagnostic approach because it is cost-effective, compact, and suitable for point-of-care applications, while providing high resolution together with an ultra-large field-of-view. It has been applied to biomedical sensing, where larger targets like eukaryotic cells, bacteria, or viruses can be directly imaged without labels, and smaller targets like proteins or DNA strands can be detected via scattering labels like micro- or nano-spheres. Automated image processing routines can count objects and infer target concentrations. In these sensing applications, sensitivity and specificity are critically affected by image resolution and signal-to-noise ratio (SNR). Pixel super-resolution approaches have been shown to boost resolution and SNR by synthesizing a high-resolution image from multiple, partially redundant, low-resolution images. However, there are several computational methods that can be used to synthesize the high-resolution image, and previously, it has been unclear which methods work best for the particular case of small-particle sensing. Here, we quantify the SNR achieved in small-particle sensing using regularized gradient-descent optimization method, where the regularization is based on cardinal-neighbor differences, Bayer-pattern noise reduction, or sparsity in the image. In particular, we find that gradient-descent with sparsity-based regularization works best for small-particle sensing. These computational approaches were evaluated on images acquired using a lens-free microscope that we assembled from an off-the-shelf LED array and color image sensor. Compared to other lens-free imaging systems, our hardware integration, calibration, and sample preparation are particularly simple. We believe our results will help to enable the best performance in lens-free holographic sensing.
Pixel-By Estimation of Scene Motion in Video
NASA Astrophysics Data System (ADS)
Tashlinskii, A. G.; Smirnov, P. V.; Tsaryov, M. G.
2017-05-01
The paper considers the effectiveness of motion estimation in video using pixel-by-pixel recurrent algorithms. The algorithms use stochastic gradient decent to find inter-frame shifts of all pixels of a frame. These vectors form shift vectors' field. As estimated parameters of the vectors the paper studies their projections and polar parameters. It considers two methods for estimating shift vectors' field. The first method uses stochastic gradient descent algorithm to sequentially process all nodes of the image row-by-row. It processes each row bidirectionally i.e. from the left to the right and from the right to the left. Subsequent joint processing of the results allows compensating inertia of the recursive estimation. The second method uses correlation between rows to increase processing efficiency. It processes rows one after the other with the change in direction after each row and uses obtained values to form resulting estimate. The paper studies two criteria of its formation: gradient estimation minimum and correlation coefficient maximum. The paper gives examples of experimental results of pixel-by-pixel estimation for a video with a moving object and estimation of a moving object trajectory using shift vectors' field.
An image morphing technique based on optimal mass preserving mapping.
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2007-06-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.
An Image Morphing Technique Based on Optimal Mass Preserving Mapping
Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen
2013-01-01
Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128
Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong
2013-12-07
The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence.
Incoherent beam combining based on the momentum SPGD algorithm
NASA Astrophysics Data System (ADS)
Yang, Guoqing; Liu, Lisheng; Jiang, Zhenhua; Guo, Jin; Wang, Tingfeng
2018-05-01
Incoherent beam combining (ICBC) technology is one of the most promising ways to achieve high-energy, near-diffraction laser output. In this paper, the momentum method is proposed as a modification of the stochastic parallel gradient descent (SPGD) algorithm. The momentum method can improve the speed of convergence of the combining system efficiently. The analytical method is employed to interpret the principle of the momentum method. Furthermore, the proposed algorithm is testified through simulations as well as experiments. The results of the simulations and the experiments show that the proposed algorithm not only accelerates the speed of the iteration, but also keeps the stability of the combining process. Therefore the feasibility of the proposed algorithm in the beam combining system is testified.
Fast and Accurate Poisson Denoising With Trainable Nonlinear Diffusion.
Feng, Wensen; Qiao, Peng; Chen, Yunjin; Wensen Feng; Peng Qiao; Yunjin Chen; Feng, Wensen; Chen, Yunjin; Qiao, Peng
2018-06-01
The degradation of the acquired signal by Poisson noise is a common problem for various imaging applications, such as medical imaging, night vision, and microscopy. Up to now, many state-of-the-art Poisson denoising techniques mainly concentrate on achieving utmost performance, with little consideration for the computation efficiency. Therefore, in this paper we aim to propose an efficient Poisson denoising model with both high computational efficiency and recovery quality. To this end, we exploit the newly developed trainable nonlinear reaction diffusion (TNRD) model which has proven an extremely fast image restoration approach with performance surpassing recent state-of-the-arts. However, the straightforward direct gradient descent employed in the original TNRD-based denoising task is not applicable in this paper. To solve this problem, we resort to the proximal gradient descent method. We retrain the model parameters, including the linear filters and influence functions by taking into account the Poisson noise statistics, and end up with a well-trained nonlinear diffusion model specialized for Poisson denoising. The trained model provides strongly competitive results against state-of-the-art approaches, meanwhile bearing the properties of simple structure and high efficiency. Furthermore, our proposed model comes along with an additional advantage, that the diffusion process is well-suited for parallel computation on graphics processing units (GPUs). For images of size , our GPU implementation takes less than 0.1 s to produce state-of-the-art Poisson denoising performance.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Approximate solution of the p-median minimization problem
NASA Astrophysics Data System (ADS)
Il'ev, V. P.; Il'eva, S. D.; Navrotskaya, A. A.
2016-09-01
A version of the facility location problem (the well-known p-median minimization problem) and its generalization—the problem of minimizing a supermodular set function—is studied. These problems are NP-hard, and they are approximately solved by a gradient algorithm that is a discrete analog of the steepest descent algorithm. A priori bounds on the worst-case behavior of the gradient algorithm for the problems under consideration are obtained. As a consequence, a bound on the performance guarantee of the gradient algorithm for the p-median minimization problem in terms of the production and transportation cost matrix is obtained.
Implementation of a Balance Operator in NCOM
2016-04-07
the background temperature Tb and salinity Sb fields do), f is the Coriolis parameter, k is the vertical unit vector, ∇ is the horizontal gradient, p... effectively used as a natural metric in the space of cost function gradients. The associated geometry inhibits descent in the unbalanced directions and...28) where f is the local Coriolis parameter, ∆yv is the local grid spacing in the y direction at a v point, and the overbars indicates horizontal
Simultaneous digital super-resolution and nonuniformity correction for infrared imaging systems.
Meza, Pablo; Machuca, Guillermo; Torres, Sergio; Martin, Cesar San; Vera, Esteban
2015-07-20
In this article, we present a novel algorithm to achieve simultaneous digital super-resolution and nonuniformity correction from a sequence of infrared images. We propose to use spatial regularization terms that exploit nonlocal means and the absence of spatial correlation between the scene and the nonuniformity noise sources. We derive an iterative optimization algorithm based on a gradient descent minimization strategy. Results from infrared image sequences corrupted with simulated and real fixed-pattern noise show a competitive performance compared with state-of-the-art methods. A qualitative analysis on the experimental results obtained with images from a variety of infrared cameras indicates that the proposed method provides super-resolution images with significantly less fixed-pattern noise.
Kurtosis Approach for Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.
NASA Technical Reports Server (NTRS)
Abrams, M. C.; Manney, G. L.; Gunson, M. R.; Abbas, M. M.; Chang, A. Y.; Goldman, A.; Irion, F. W.; Michelsen, H. A.; Newchurch, M. J.; Rinsland, C. P.;
1996-01-01
Observations of the long-lived tracers N2O, CH4 and HF obtained by the Atmospheric Trace Molecule Spectroscopy (ATMOS) instrument in early November 1994 are used to estimate average descent rates during winter in the Antarctic polar vortex of 0.5 to 1.5 km/month in the lower stratosphere, and 2.5 to 3.5 km/month in the middle and upper stratosphere. Descent rates inferred from ATMOS tracer observations agree well with theoretical estimates obtained using radiative heating calculations. Air of mesospheric origin (N2O less than 5 ppbV) was observed at altitudes above about 25 km within the vortex. Strong horizontal gradients of tracer mixing ratios, the presence of mesospheric air in the vortex in early spring, and the variation with altitude of inferred descent rates indicate that the Antarctic vortex is highly isolated from midlatitudes throughout the winter from approximately 20 km to the stratopause. The 1994 Antarctic vortex remained well isolated between 20 and 30 km through at least mid-November.
NASA Astrophysics Data System (ADS)
Delay, Frederick; Badri, Hamid; Fahs, Marwan; Ackerer, Philippe
2017-12-01
Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are frequently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by some of the authors, as the continuous form is completely new and here fully differentiated for handling all types of model parameters. Adjoint states assist descent methods by calculating the gradient components of the objective function, these being a key to good convergence of inverse solutions. Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwithstanding, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging an inversion toolbox quasi-independent from the code employed for solving the forward problem.
Optimal control of a variable spin speed CMG system for space vehicles. [Control Moment Gyros
NASA Technical Reports Server (NTRS)
Liu, T. C.; Chubb, W. B.; Seltzer, S. M.; Thompson, Z.
1973-01-01
Many future NASA programs require very high accurate pointing stability. These pointing requirements are well beyond anything attempted to date. This paper suggests a control system which has the capability of meeting these requirements. An optimal control law for the suggested system is specified. However, since no direct method of solution is known for this complicated system, a computation technique using successive approximations is used to develop the required solution. The method of calculus of variations is applied for estimating the changes of index of performance as well as those constraints of inequality of state variables and terminal conditions. Thus, an algorithm is obtained by the steepest descent method and/or conjugate gradient method. Numerical examples are given to show the optimal controls.
Implementing a Bayes Filter in a Neural Circuit: The Case of Unknown Stimulus Dynamics.
Sokoloski, Sacha
2017-09-01
In order to interact intelligently with objects in the world, animals must first transform neural population responses into estimates of the dynamic, unknown stimuli that caused them. The Bayesian solution to this problem is known as a Bayes filter, which applies Bayes' rule to combine population responses with the predictions of an internal model. The internal model of the Bayes filter is based on the true stimulus dynamics, and in this note, we present a method for training a theoretical neural circuit to approximately implement a Bayes filter when the stimulus dynamics are unknown. To do this we use the inferential properties of linear probabilistic population codes to compute Bayes' rule and train a neural network to compute approximate predictions by the method of maximum likelihood. In particular, we perform stochastic gradient descent on the negative log-likelihood of the neural network parameters with a novel approximation of the gradient. We demonstrate our methods on a finite-state, a linear, and a nonlinear filtering problem and show how the hidden layer of the neural network develops tuning curves consistent with findings in experimental neuroscience.
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...
14 CFR 23.253 - High speed characteristics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and characteristics include gust upsets, inadvertent control movements, low stick force gradients in relation to control friction, passenger movement, leveling off from climb, and descent from Mach to... normal attitude and its speed reduced to VMO/MMO, without— (1) Exceptional piloting strength or skill; (2...
Nonuniformity correction for an infrared focal plane array based on diamond search block matching.
Sheng-Hui, Rong; Hui-Xin, Zhou; Han-Lin, Qin; Rui, Lai; Kun, Qian
2016-05-01
In scene-based nonuniformity correction algorithms, artificial ghosting and image blurring degrade the correction quality severely. In this paper, an improved algorithm based on the diamond search block matching algorithm and the adaptive learning rate is proposed. First, accurate transform pairs between two adjacent frames are estimated by the diamond search block matching algorithm. Then, based on the error between the corresponding transform pairs, the gradient descent algorithm is applied to update correction parameters. During the process of gradient descent, the local standard deviation and a threshold are utilized to control the learning rate to avoid the accumulation of matching error. Finally, the nonuniformity correction would be realized by a linear model with updated correction parameters. The performance of the proposed algorithm is thoroughly studied with four real infrared image sequences. Experimental results indicate that the proposed algorithm can reduce the nonuniformity with less ghosting artifacts in moving areas and can also overcome the problem of image blurring in static areas.
NASA Astrophysics Data System (ADS)
Dong, Bing; Ren, De-Qing; Zhang, Xi
2011-08-01
An adaptive optics (AO) system based on a stochastic parallel gradient descent (SPGD) algorithm is proposed to reduce the speckle noises in the optical system of a stellar coronagraph in order to further improve the contrast. The principle of the SPGD algorithm is described briefly and a metric suitable for point source imaging optimization is given. The feasibility and good performance of the SPGD algorithm is demonstrated by an experimental system featured with a 140-actuator deformable mirror and a Hartmann-Shark wavefront sensor. Then the SPGD based AO is applied to a liquid crystal array (LCA) based coronagraph to improve the contrast. The LCA can modulate the incoming light to generate a pupil apodization mask of any pattern. A circular stepped pattern is used in our preliminary experiment and the image contrast shows improvement from 10-3 to 10-4.5 at an angular distance of 2λ/D after being corrected by SPGD based AO.
Algorithms for the optimization of RBE-weighted dose in particle therapy.
Horcicka, M; Meyer, C; Buschbacher, A; Durante, M; Krämer, M
2013-01-21
We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.
Algorithms for the optimization of RBE-weighted dose in particle therapy
NASA Astrophysics Data System (ADS)
Horcicka, M.; Meyer, C.; Buschbacher, A.; Durante, M.; Krämer, M.
2013-01-01
We report on various algorithms used for the nonlinear optimization of RBE-weighted dose in particle therapy. Concerning the dose calculation carbon ions are considered and biological effects are calculated by the Local Effect Model. Taking biological effects fully into account requires iterative methods to solve the optimization problem. We implemented several additional algorithms into GSI's treatment planning system TRiP98, like the BFGS-algorithm and the method of conjugated gradients, in order to investigate their computational performance. We modified textbook iteration procedures to improve the convergence speed. The performance of the algorithms is presented by convergence in terms of iterations and computation time. We found that the Fletcher-Reeves variant of the method of conjugated gradients is the algorithm with the best computational performance. With this algorithm we could speed up computation times by a factor of 4 compared to the method of steepest descent, which was used before. With our new methods it is possible to optimize complex treatment plans in a few minutes leading to good dose distributions. At the end we discuss future goals concerning dose optimization issues in particle therapy which might benefit from fast optimization solvers.
Geodesic regression on orientation distribution functions with its application to an aging study.
Du, Jia; Goh, Alvina; Kushnarev, Sergey; Qiu, Anqi
2014-02-15
In this paper, we treat orientation distribution functions (ODFs) derived from high angular resolution diffusion imaging (HARDI) as elements of a Riemannian manifold and present a method for geodesic regression on this manifold. In order to find the optimal regression model, we pose this as a least-squares problem involving the sum-of-squared geodesic distances between observed ODFs and their model fitted data. We derive the appropriate gradient terms and employ gradient descent to find the minimizer of this least-squares optimization problem. In addition, we show how to perform statistical testing for determining the significance of the relationship between the manifold-valued regressors and the real-valued regressands. Experiments on both synthetic and real human data are presented. In particular, we examine aging effects on HARDI via geodesic regression of ODFs in normal adults aged 22 years old and above. © 2013 Elsevier Inc. All rights reserved.
Statistical Physics for Adaptive Distributed Control
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
A viewgraph presentation on statistical physics for distributed adaptive control is shown. The topics include: 1) The Golden Rule; 2) Advantages; 3) Roadmap; 4) What is Distributed Control? 5) Review of Information Theory; 6) Iterative Distributed Control; 7) Minimizing L(q) Via Gradient Descent; and 8) Adaptive Distributed Control.
Efficient Online Learning Algorithms Based on LSTM Neural Networks.
Ergen, Tolga; Kozat, Suleyman Serdar
2017-09-13
We investigate online nonlinear regression and introduce novel regression structures based on the long short term memory (LSTM) networks. For the introduced structures, we also provide highly efficient and effective online training methods. To train these novel LSTM-based structures, we put the underlying architecture in a state space form and introduce highly efficient and effective particle filtering (PF)-based updates. We also provide stochastic gradient descent and extended Kalman filter-based updates. Our PF-based training method guarantees convergence to the optimal parameter estimation in the mean square error sense provided that we have a sufficient number of particles and satisfy certain technical conditions. More importantly, we achieve this performance with a computational complexity in the order of the first-order gradient-based methods by controlling the number of particles. Since our approach is generic, we also introduce a gated recurrent unit (GRU)-based approach by directly replacing the LSTM architecture with the GRU architecture, where we demonstrate the superiority of our LSTM-based approach in the sequential prediction task via different real life data sets. In addition, the experimental results illustrate significant performance improvements achieved by the introduced algorithms with respect to the conventional methods over several different benchmark real life data sets.
Power plant fault detection using artificial neural network
NASA Astrophysics Data System (ADS)
Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul
2018-02-01
The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
A dual estimate method for aeromagnetic compensation
NASA Astrophysics Data System (ADS)
Ma, Ming; Zhou, Zhijian; Cheng, Defu
2017-11-01
Scalar aeromagnetic surveys have played a vital role in prospecting. However, before analysis of the surveys’ aeromagnetic data is possible, the aircraft’s magnetic interference should be removed. The extensively adopted linear model for aeromagnetic compensation is computationally efficient but faces an underfitting problem. On the other hand, the neural model proposed by Williams is more powerful at fitting but always suffers from an overfitting problem. This paper starts off with an analysis of these two models and then proposes a dual estimate method to combine them together to improve accuracy. This method is based on an unscented Kalman filter, but a gradient descent method is implemented over the iteration so that the parameters of the linear model are adjustable during flight. The noise caused by the neural model’s overfitting problem is suppressed by introducing an observation noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qichun; Zhou, Jinglin; Wang, Hong
In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.
Kurtosis Approach Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.
Li, Qu; Yao, Min; Yang, Jianhua; Xu, Ning
2014-01-01
Online friend recommendation is a fast developing topic in web mining. In this paper, we used SVD matrix factorization to model user and item feature vector and used stochastic gradient descent to amend parameter and improve accuracy. To tackle cold start problem and data sparsity, we used KNN model to influence user feature vector. At the same time, we used graph theory to partition communities with fairly low time and space complexity. What is more, matrix factorization can combine online and offline recommendation. Experiments showed that the hybrid recommendation algorithm is able to recommend online friends with good accuracy.
Railway obstacle detection algorithm using neural network
NASA Astrophysics Data System (ADS)
Yu, Mingyang; Yang, Peng; Wei, Sen
2018-05-01
Aiming at the difficulty of detection of obstacle in outdoor railway scene, a data-oriented method based on neural network to obtain image objects is proposed. First, we mark objects of images(such as people, trains, animals) acquired on the Internet. and then use the residual learning units to build Fast R-CNN framework. Then, the neural network is trained to get the target image characteristics by using stochastic gradient descent algorithm. Finally, a well-trained model is used to identify an outdoor railway image. if it includes trains and other objects, it will issue an alert. Experiments show that the correct rate of warning reached 94.85%.
Convergence of fractional adaptive systems using gradient approach.
Gallegos, Javier A; Duarte-Mermoud, Manuel A
2017-07-01
Conditions for boundedness and convergence of the output error and the parameter error for various Caputo's fractional order adaptive schemes based on the steepest descent method are derived in this paper. To this aim, the concept of sufficiently exciting signals is introduced, characterized and related to the concept of persistently exciting signals used in the integer order case. An application is designed in adaptive indirect control of integer order systems using fractional equations to adjust parameters. This application is illustrated for a pole placement adaptive problem. Advantages of using fractional adjustment in control adaptive schemes are experimentally obtained. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.
2005-01-01
We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.
NASA Technical Reports Server (NTRS)
Duong, T. A.
2004-01-01
In this paper, we present a new, simple, and optimized hardware architecture sequential learning technique for adaptive Principle Component Analysis (PCA) which will help optimize the hardware implementation in VLSI and to overcome the difficulties of the traditional gradient descent in learning convergence and hardware implementation.
North Pacific Cloud Feedbacks Inferred from Synoptic-Scale Dynamic and Thermodynamic Relationships
NASA Technical Reports Server (NTRS)
Norris, Joel R.; Iacobellis, Sam F.
2005-01-01
This study analyzed daily satellite cloud observations and reanalysis dynamical parameters to determine how mid-tropospheric vertical velocity and advection over the sea surface temperature gradient control midlatitude North Pacific cloud properties. Optically thick clouds with high tops are generated by synoptic ascent, but two different cloud regimes occur under synoptic descent. When vertical motion is downward during summer, extensive stratocumulus cloudiness is associated with near surface northerly wind, while frequent cloudless pixels occur with southerly wind. Examinations of ship-reported cloud types indicates that midlatitude stratocumulus breaks up as the the boundary level decouples when it is advected equatorward over warmer water. Cumulus is prevalent under conditions of synoptic descent and cold advection during winter. Poleward advection of subtropical air over colder water causes stratification of the near-surface layer that inhibits upward mixing of moisture and suppresses cloudiness until a fog eventually forms. Averaging of cloud and radiation data into intervals of 500-hPa vertical velocity and advection over the SST gradient enables the cloud response to changes in temperature and the stratification of the lower troposphere to be investigated independent of the dynamics.
Understanding and Optimizing Asynchronous Low-Precision Stochastic Gradient Descent
De Sa, Christopher; Feldman, Matthew; Ré, Christopher; Olukotun, Kunle
2018-01-01
Stochastic gradient descent (SGD) is one of the most popular numerical algorithms used in machine learning and other domains. Since this is likely to continue for the foreseeable future, it is important to study techniques that can make it run fast on parallel hardware. In this paper, we provide the first analysis of a technique called Buckwild! that uses both asynchronous execution and low-precision computation. We introduce the DMGC model, the first conceptualization of the parameter space that exists when implementing low-precision SGD, and show that it provides a way to both classify these algorithms and model their performance. We leverage this insight to propose and analyze techniques to improve the speed of low-precision SGD. First, we propose software optimizations that can increase throughput on existing CPUs by up to 11×. Second, we propose architectural changes, including a new cache technique we call an obstinate cache, that increase throughput beyond the limits of current-generation hardware. We also implement and analyze low-precision SGD on the FPGA, which is a promising alternative to the CPU for future SGD systems. PMID:29391770
Separating figure from ground with a parallel network.
Kienker, P K; Sejnowski, T J; Hinton, G E; Schumacher, L E
1986-01-01
The differentiation of figure from ground plays an important role in the perceptual organization of visual stimuli. The rapidity with which we can discriminate the inside from the outside of a figure suggests that at least this step in the process may be performed in visual cortex by a large number of neurons in several different areas working together in parallel. We have attempted to simulate this collective computation by designing a network of simple processing units that receives two types of information: bottom-up input from the image containing the outlines of a figure, which may be incomplete, and a top-down attentional input that biases one part of the image to be the inside of the figure. No presegmentation of the image was assumed. Two methods for performing the computation were explored: gradient descent, which seeks locally optimal states, and simulated annealing, which attempts to find globally optimal states by introducing noise into the computation. For complete outlines, gradient descent was faster, but the range of input parameters leading to successful performance was very narrow. In contrast, simulated annealing was more robust: it worked over a wider range of attention parameters and a wider range of outlines, including incomplete ones. Our network model is too simplified to serve as a model of human performance, but it does demonstrate that one global property of outlines can be computed through local interactions in a parallel network. Some features of the model, such as the role of noise in escaping from nonglobal optima, may generalize to more realistic models.
Bernard, Olivier; Alata, Olivier; Francaux, Marc
2006-03-01
Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic parameters, but a large inaccuracy remains in estimating the parameter values of the second exponential.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
NASA Astrophysics Data System (ADS)
Liu, Peng; Wang, Yanfei
2018-04-01
We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.
Small-Tip-Angle Spokes Pulse Design Using Interleaved Greedy and Local Optimization Methods
Grissom, William A.; Khalighi, Mohammad-Mehdi; Sacolick, Laura I.; Rutt, Brian K.; Vogel, Mika W.
2013-01-01
Current spokes pulse design methods can be grouped into methods based either on sparse approximation or on iterative local (gradient descent-based) optimization of the transverse-plane spatial frequency locations visited by the spokes. These two classes of methods have complementary strengths and weaknesses: sparse approximation-based methods perform an efficient search over a large swath of candidate spatial frequency locations but most are incompatible with off-resonance compensation, multifrequency designs, and target phase relaxation, while local methods can accommodate off-resonance and target phase relaxation but are sensitive to initialization and suboptimal local cost function minima. This article introduces a method that interleaves local iterations, which optimize the radiofrequency pulses, target phase patterns, and spatial frequency locations, with a greedy method to choose new locations. Simulations and experiments at 3 and 7 T show that the method consistently produces single- and multifrequency spokes pulses with lower flip angle inhomogeneity compared to current methods. PMID:22392822
Narayanan, Shrikanth
2009-01-01
We describe a method for unsupervised region segmentation of an image using its spatial frequency domain representation. The algorithm was designed to process large sequences of real-time magnetic resonance (MR) images containing the 2-D midsagittal view of a human vocal tract airway. The segmentation algorithm uses an anatomically informed object model, whose fit to the observed image data is hierarchically optimized using a gradient descent procedure. The goal of the algorithm is to automatically extract the time-varying vocal tract outline and the position of the articulators to facilitate the study of the shaping of the vocal tract during speech production. PMID:19244005
NASA Astrophysics Data System (ADS)
Jiao Ling, LIn; Xiaoli, Yin; Huan, Chang; Xiaozhou, Cui; Yi-Lin, Guo; Huan-Yu, Liao; Chun-YU, Gao; Guohua, Wu; Guang-Yao, Liu; Jin-KUn, Jiang; Qing-Hua, Tian
2018-02-01
Atmospheric turbulence limits the performance of orbital angular momentum-based free-space optical communication (FSO-OAM) system. In order to compensate phase distortion induced by atmospheric turbulence, wavefront sensorless adaptive optics (WSAO) has been proposed and studied in recent years. In this paper a new version of SPGD called MZ-SPGD, which combines the Z-SPGD based on the deformable mirror influence function and the M-SPGD based on the Zernike polynomials, is proposed. Numerical simulations show that the hybrid method decreases convergence times markedly but can achieve the same compensated effect compared to Z-SPGD and M-SPGD.
An optimization-based framework for anisotropic simplex mesh adaptation
NASA Astrophysics Data System (ADS)
Yano, Masayuki; Darmofal, David L.
2012-09-01
We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.
Shape regularized active contour based on dynamic programming for anatomical structure segmentation
NASA Astrophysics Data System (ADS)
Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra
2005-04-01
We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.
Optimum Strategies for Selecting Descent Flight-Path Angles
NASA Technical Reports Server (NTRS)
Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)
2016-01-01
An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.
2016-05-11
AFRL-AFOSR-JP-TR-2016-0046 Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization U Kang Korea...maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect...Designing Feature and Data Parallel Stochastic Coordinate Descent Method for Matrix and Tensor Factorization 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386
Song, Ruizhuo; Lewis, Frank L; Wei, Qinglai
2017-03-01
This paper establishes an off-policy integral reinforcement learning (IRL) method to solve nonlinear continuous-time (CT) nonzero-sum (NZS) games with unknown system dynamics. The IRL algorithm is presented to obtain the iterative control and off-policy learning is used to allow the dynamics to be completely unknown. Off-policy IRL is designed to do policy evaluation and policy improvement in the policy iteration algorithm. Critic and action networks are used to obtain the performance index and control for each player. The gradient descent algorithm makes the update of critic and action weights simultaneously. The convergence analysis of the weights is given. The asymptotic stability of the closed-loop system and the existence of Nash equilibrium are proved. The simulation study demonstrates the effectiveness of the developed method for nonlinear CT NZS games with unknown system dynamics.
Active semi-supervised learning method with hybrid deep belief networks.
Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong
2014-01-01
In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Product Distribution Theory for Control of Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Lee, Chia Fan; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for controlling Multi-Agent Systems (MAS's). First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint stare of the agents. Accordingly we can consider a team game in which the shared utility is a performance measure of the behavior of the MAS. For such a scenario the game is at equilibrium - the Lagrangian is optimized - when the joint distribution of the agents optimizes the system's expected performance. One common way to find that equilibrium is to have each agent run a reinforcement learning algorithm. Here we investigate the alternative of exploiting PD theory to run gradient descent on the Lagrangian. We present computer experiments validating some of the predictions of PD theory for how best to do that gradient descent. We also demonstrate how PD theory can improve performance even when we are not allowed to rerun the MAS from different initial conditions, a requirement implicit in some previous work.
Aviat, Félix; Levitt, Antoine; Stamm, Benjamin; Maday, Yvon; Ren, Pengyu; Ponder, Jay W; Lagardère, Louis; Piquemal, Jean-Philip
2017-01-10
We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is available, one additional Picard fixed point iteration ("peek"), equivalent to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products: three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (three matrix-vector products) and offers new perspectives for long polarizable MD as a production algorithm. The T(P)CG-1(ω) level provides less accurate solutions for inhomogeneous systems, but its applicability to well-conditioned problems such as water is remarkable, with only two matrix-vector product evaluations.
2016-01-01
We introduce a new class of methods, denoted as Truncated Conjugate Gradient(TCG), to solve the many-body polarization energy and its associated forces in molecular simulations (i.e. molecular dynamics (MD) and Monte Carlo). The method consists in a fixed number of Conjugate Gradient (CG) iterations. TCG approaches provide a scalable solution to the polarization problem at a user-chosen cost and a corresponding optimal accuracy. The optimality of the CG-method guarantees that the number of the required matrix-vector products are reduced to a minimum compared to other iterative methods. This family of methods is non-empirical, fully adaptive, and provides analytical gradients, avoiding therefore any energy drift in MD as compared to popular iterative solvers. Besides speed, one great advantage of this class of approximate methods is that their accuracy is systematically improvable. Indeed, as the CG-method is a Krylov subspace method, the associated error is monotonically reduced at each iteration. On top of that, two improvements can be proposed at virtually no cost: (i) the use of preconditioners can be employed, which leads to the Truncated Preconditioned Conjugate Gradient (TPCG); (ii) since the residual of the final step of the CG-method is available, one additional Picard fixed point iteration (“peek”), equivalent to one step of Jacobi Over Relaxation (JOR) with relaxation parameter ω, can be made at almost no cost. This method is denoted by TCG-n(ω). Black-box adaptive methods to find good choices of ω are provided and discussed. Results show that TPCG-3(ω) is converged to high accuracy (a few kcal/mol) for various types of systems including proteins and highly charged systems at the fixed cost of four matrix-vector products: three CG iterations plus the initial CG descent direction. Alternatively, T(P)CG-2(ω) provides robust results at a reduced cost (three matrix-vector products) and offers new perspectives for long polarizable MD as a production algorithm. The T(P)CG-1(ω) level provides less accurate solutions for inhomogeneous systems, but its applicability to well-conditioned problems such as water is remarkable, with only two matrix-vector product evaluations. PMID:28068773
NASA Astrophysics Data System (ADS)
Bhosale, Parag; Staring, Marius; Al-Ars, Zaid; Berendsen, Floris F.
2018-03-01
Currently, non-rigid image registration algorithms are too computationally intensive to use in time-critical applications. Existing implementations that focus on speed typically address this by either parallelization on GPU-hardware, or by introducing methodically novel techniques into CPU-oriented algorithms. Stochastic gradient descent (SGD) optimization and variations thereof have proven to drastically reduce the computational burden for CPU-based image registration, but have not been successfully applied in GPU hardware due to its stochastic nature. This paper proposes 1) NiftyRegSGD, a SGD optimization for the GPU-based image registration tool NiftyReg, 2) random chunk sampler, a new random sampling strategy that better utilizes the memory bandwidth of GPU hardware. Experiments have been performed on 3D lung CT data of 19 patients, which compared NiftyRegSGD (with and without random chunk sampler) with CPU-based elastix Fast Adaptive SGD (FASGD) and NiftyReg. The registration runtime was 21.5s, 4.4s and 2.8s for elastix-FASGD, NiftyRegSGD without, and NiftyRegSGD with random chunk sampling, respectively, while similar accuracy was obtained. Our method is publicly available at https://github.com/SuperElastix/NiftyRegSGD.
Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.
McIntosh, Chris; Hamarneh, Ghassan
2012-01-01
We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.
Image counter-forensics based on feature injection
NASA Astrophysics Data System (ADS)
Iuliani, M.; Rossetto, S.; Bianchi, T.; De Rosa, Alessia; Piva, A.; Barni, M.
2014-02-01
Starting from the concept that many image forensic tools are based on the detection of some features revealing a particular aspect of the history of an image, in this work we model the counter-forensic attack as the injection of a specific fake feature pointing to the same history of an authentic reference image. We propose a general attack strategy that does not rely on a specific detector structure. Given a source image x and a target image y, the adversary processes x in the pixel domain producing an attacked image ~x, perceptually similar to x, whose feature f(~x) is as close as possible to f(y) computed on y. Our proposed counter-forensic attack consists in the constrained minimization of the feature distance Φ(z) =│ f(z) - f(y)│ through iterative methods based on gradient descent. To solve the intrinsic limit due to the numerical estimation of the gradient on large images, we propose the application of a feature decomposition process, that allows the problem to be reduced into many subproblems on the blocks the image is partitioned into. The proposed strategy has been tested by attacking three different features and its performance has been compared to state-of-the-art counter-forensic methods.
Radial basis function network learns ceramic processing and predicts related strength and density
NASA Technical Reports Server (NTRS)
Cios, Krzysztof J.; Baaklini, George Y.; Vary, Alex; Tjia, Robert E.
1993-01-01
Radial basis function (RBF) neural networks were trained using the data from 273 Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135 MOR bars which were tested at 1370 C. Milling time, sintering time, and sintering gas pressure were the processing parameters used as the input features. Flexural strength and density were the outputs by which the RBF networks were assessed. The 'nodes-at-data-points' method was used to set the hidden layer centers and output layer training used the gradient descent method. The RBF network predicted strength with an average error of less than 12 percent and density with an average error of less than 2 percent. Further, the RBF network demonstrated a potential for optimizing and accelerating the development and processing of ceramic materials.
Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H
2014-01-01
To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Accurate modeling of switched reluctance machine based on hybrid trained WNN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shoujun, E-mail: sunnyway@nwpu.edu.cn; Ge, Lefei; Ma, Shaojie
2014-04-15
According to the strong nonlinear electromagnetic characteristics of switched reluctance machine (SRM), a novel accurate modeling method is proposed based on hybrid trained wavelet neural network (WNN) which combines improved genetic algorithm (GA) with gradient descent (GD) method to train the network. In the novel method, WNN is trained by GD method based on the initial weights obtained per improved GA optimization, and the global parallel searching capability of stochastic algorithm and local convergence speed of deterministic algorithm are combined to enhance the training accuracy, stability and speed. Based on the measured electromagnetic characteristics of a 3-phase 12/8-pole SRM, themore » nonlinear simulation model is built by hybrid trained WNN in Matlab. The phase current and mechanical characteristics from simulation under different working conditions meet well with those from experiments, which indicates the accuracy of the model for dynamic and static performance evaluation of SRM and verifies the effectiveness of the proposed modeling method.« less
A Fast Deep Learning System Using GPU
2014-06-01
hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...widely used in data modeling until three decades later when efficient training algorithm for RBM is invented by Hinton [3] and the computing power is...be trained using most of optimization algorithms , such as BP, conjugate gradient descent (CGD) or Levenberg-Marquardt (LM). The advantage of this
NASA Astrophysics Data System (ADS)
Golomazov, M. M.; Ivankov, A. A.
2016-12-01
Methods for calculating the aerodynamic impact of the Martian atmosphere on the descent module "Exomars-2018" intended for solving the problem of heat protection of the descent module during aerodynamic deceleration are presented. The results of the investigation are also given. The flow field and radiative and convective heat exchange are calculated along the trajectory of the descent module until parachute system activation.
Pixel-based OPC optimization based on conjugate gradients.
Ma, Xu; Arce, Gonzalo R
2011-01-31
Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
Natural learning in NLDA networks.
González, Ana; Dorronsoro, José R
2007-07-01
Non Linear Discriminant Analysis (NLDA) networks combine a standard Multilayer Perceptron (MLP) transfer function with the minimization of a Fisher analysis criterion. In this work we will define natural-like gradients for NLDA network training. Instead of a more principled approach, that would require the definition of an appropriate Riemannian structure on the NLDA weight space, we will follow a simpler procedure, based on the observation that the gradient of the NLDA criterion function J can be written as the expectation nablaJ(W)=E[Z(X,W)] of a certain random vector Z and defining then I=E[Z(X,W)Z(X,W)(t)] as the Fisher information matrix in this case. This definition of I formally coincides with that of the information matrix for the MLP or other square error functions; the NLDA J criterion, however, does not have this structure. Although very simple, the proposed approach shows much faster convergence than that of standard gradient descent, even when its costlier complexity is taken into account. While the faster convergence of natural MLP batch training can be also explained in terms of its relationship with the Gauss-Newton minimization method, this is not the case for NLDA training, as we will see analytically and numerically that the hessian and information matrices are different.
Sobel, E.; Lange, K.
1996-01-01
The introduction of stochastic methods in pedigree analysis has enabled geneticists to tackle computations intractable by standard deterministic methods. Until now these stochastic techniques have worked by running a Markov chain on the set of genetic descent states of a pedigree. Each descent state specifies the paths of gene flow in the pedigree and the founder alleles dropped down each path. The current paper follows up on a suggestion by Elizabeth Thompson that genetic descent graphs offer a more appropriate space for executing a Markov chain. A descent graph specifies the paths of gene flow but not the particular founder alleles traveling down the paths. This paper explores algorithms for implementing Thompson's suggestion for codominant markers in the context of automatic haplotyping, estimating location scores, and computing gene-clustering statistics for robust linkage analysis. Realistic numerical examples demonstrate the feasibility of the algorithms. PMID:8651310
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing norm of the patch basis functions coefficients, and a coefficient multiplying the norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography. PMID:25531987
Mirone, Alessandro; Brun, Emmanuel; Coan, Paola
2014-01-01
X-ray based Phase-Contrast Imaging (PCI) techniques have been demonstrated to enhance the visualization of soft tissues in comparison to conventional imaging methods. Nevertheless the delivered dose as reported in the literature of biomedical PCI applications often equals or exceeds the limits prescribed in clinical diagnostics. The optimization of new computed tomography strategies which include the development and implementation of advanced image reconstruction procedures is thus a key aspect. In this scenario, we implemented a dictionary learning method with a new form of convex functional. This functional contains in addition to the usual sparsity inducing and fidelity terms, a new term which forces similarity between overlapping patches in the superimposed regions. The functional depends on two free regularization parameters: a coefficient multiplying the sparsity-inducing L1 norm of the patch basis functions coefficients, and a coefficient multiplying the L2 norm of the differences between patches in the overlapping regions. The solution is found by applying the iterative proximal gradient descent method with FISTA acceleration. The gradient is computed by calculating projection of the solution and its error backprojection at each iterative step. We study the quality of the solution, as a function of the regularization parameters and noise, on synthetic data for which the solution is a-priori known. We apply the method on experimental data in the case of Differential Phase Tomography. For this case we use an original approach which consists in using vectorial patches, each patch having two components: one per each gradient component. The resulting algorithm, implemented in the European Synchrotron Radiation Facility tomography reconstruction code PyHST, has proven to be efficient and well-adapted to strongly reduce the required dose and the number of projections in medical tomography.
Broiler weight estimation based on machine vision and artificial neural network.
Amraei, S; Abdanan Mehdizadeh, S; Salari, S
2017-04-01
1. Machine vision and artificial neural network (ANN) procedures were used to estimate live body weight of broiler chickens in 30 1-d-old broiler chickens reared for 42 d. 2. Imaging was performed two times daily. To localise chickens within the pen, an ellipse fitting algorithm was used and the chickens' head and tail removed using the Chan-Vese method. 3. The correlations between the body weight and 6 physical extracted features indicated that there were strong correlations between body weight and the 5 features including area, perimeter, convex area, major and minor axis length. 5. According to statistical analysis there was no significant difference between morning and afternoon data over 42 d. 6. In an attempt to improve the accuracy of live weight approximation different ANN techniques, including Bayesian regulation, Levenberg-Marquardt, Scaled conjugate gradient and gradient descent were used. Bayesian regulation with R 2 value of 0.98 was the best network for prediction of broiler weight. 7. The accuracy of the machine vision technique was examined and most errors were less than 50 g.
High-Resolution Detection of Identity by Descent in Unrelated Individuals
Browning, Sharon R.; Browning, Brian L.
2010-01-01
Detection of recent identity by descent (IBD) in population samples is important for population-based linkage mapping and for highly accurate genotype imputation and haplotype-phase inference. We present a method for detection of recent IBD in population samples. Our method accounts for linkage disequilibrium between SNPs to enable full use of high-density SNP data. We find that our method can detect segments of a length of 2 cM with moderate power and negligible false discovery rate in Illumina 550K data in Northwestern Europeans. We compare our method with GERMLINE and PLINK, and we show that our method has a level of resolution that is significantly better than these existing methods, thus extending the usefulness of recent IBD in analysis of high-density SNP data. We survey four genomic regions in a sample of UK individuals of European descent and find that on average, at a given location, our method detects IBD in 2.7 per 10,000 pairs of individuals in Illumina 550K data. We also present methodology and results for detection of homozygosity by descent (HBD) and survey the whole genome in a sample of 1373 UK individuals of European descent. We detect HBD in 4.7 individuals per 10,000 on average at a given location. Our methodology is implemented in the freely available BEAGLE software package. PMID:20303063
NASA Astrophysics Data System (ADS)
Bonavita, M.; Torrisi, L.
2005-03-01
A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.
Multi-Sensor Registration of Earth Remotely Sensed Imagery
NASA Technical Reports Server (NTRS)
LeMoigne, Jacqueline; Cole-Rhodes, Arlene; Eastman, Roger; Johnson, Kisha; Morisette, Jeffrey; Netanyahu, Nathan S.; Stone, Harold S.; Zavorin, Ilya; Zukor, Dorothy (Technical Monitor)
2001-01-01
Assuming that approximate registration is given within a few pixels by a systematic correction system, we develop automatic image registration methods for multi-sensor data with the goal of achieving sub-pixel accuracy. Automatic image registration is usually defined by three steps; feature extraction, feature matching, and data resampling or fusion. Our previous work focused on image correlation methods based on the use of different features. In this paper, we study different feature matching techniques and present five algorithms where the features are either original gray levels or wavelet-like features, and the feature matching is based on gradient descent optimization, statistical robust matching, and mutual information. These algorithms are tested and compared on several multi-sensor datasets covering one of the EOS Core Sites, the Konza Prairie in Kansas, from four different sensors: IKONOS (4m), Landsat-7/ETM+ (30m), MODIS (500m), and SeaWIFS (1000m).
Analysis of a New Variational Model to Restore Point-Like and Curve-Like Singularities in Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aubert, Gilles, E-mail: gaubert@unice.fr; Blanc-Feraud, Laure, E-mail: Laure.Blanc-Feraud@inria.fr; Graziani, Daniele, E-mail: Daniele.Graziani@inria.fr
2013-02-15
The paper is concerned with the analysis of a new variational model to restore point-like and curve-like singularities in biological images. To this aim we investigate the variational properties of a suitable energy which governs these pathologies. Finally in order to realize numerical experiments we minimize, in the discrete setting, a regularized version of this functional by fast descent gradient scheme.
Understanding the Convolutional Neural Networks with Gradient Descent and Backpropagation
NASA Astrophysics Data System (ADS)
Zhou, XueFei
2018-04-01
With the development of computer technology, the applications of machine learning are more and more extensive. And machine learning is providing endless opportunities to develop new applications. One of those applications is image recognition by using Convolutional Neural Networks (CNNs). CNN is one of the most common algorithms in image recognition. It is significant to understand its theory and structure for every scholar who is interested in this field. CNN is mainly used in computer identification, especially in voice, text recognition and other aspects of the application. It utilizes hierarchical structure with different layers to accelerate computing speed. In addition, the greatest features of CNNs are the weight sharing and dimension reduction. And all of these consolidate the high effectiveness and efficiency of CNNs with idea computing speed and error rate. With the help of other learning altruisms, CNNs could be used in several scenarios for machine learning, especially for deep learning. Based on the general introduction to the background and the core solution CNN, this paper is going to focus on summarizing how Gradient Descent and Backpropagation work, and how they contribute to the high performances of CNNs. Also, some practical applications will be discussed in the following parts. The last section exhibits the conclusion and some perspectives of future work.
A new fitting method for measurement of the curvature radius of a short arc with high precision
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhong, Hong; Chen, Xiao; Selami, Yassine; Zhao, Hui
2018-07-01
The measurement of an object with a short arc is widely encountered in scientific research and industrial production. As the most classic method of arc fitting, the least squares fitting method suffers from low precision when it is used for measurement of arcs with smaller central angles and fewer sampling points. The shorter the arc, the lower is the measurement accuracy. In order to improve the measurement precision of short arcs, a parameter constrained fitting method based on a four-parameter circle equation is proposed in this paper. The generalized Lagrange function was introduced together with the optimization by gradient descent method to reduce the influence from noise. The simulation and experimental results showed that the proposed method has high precision even when the central angle drops below 4° and it has good robustness when the noise standard deviation rises to 0.4 mm. This new fitting method is suitable for the high precision measurement of short arcs with smaller central angles without any prior information.
A Geometric Perspective on the Method of Descent
NASA Astrophysics Data System (ADS)
Wang, Qian
2018-06-01
We derive a first order representation formula for the tensorial wave equation \\Box_g φ^I=F^I in globally hyperbolic Lorentzian spacetimes {(M^{2+1}, g) by giving a geometric formulation of the method of descent which is applicable for any dimension.
Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad
2016-12-01
Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a control group without symptoms. Three-dimensional endovaginal ultrasonography is a reliable technique for assessment of perineal descent. Using this technique, excessive perineal descent can be defined as displacement of the anorectal junction >1 cm and/or its position below the symphysis pubis on Valsalva maneuver.
Transmit Designs for the MIMO Broadcast Channel With Statistical CSI
NASA Astrophysics Data System (ADS)
Wu, Yongpeng; Jin, Shi; Gao, Xiqi; McKay, Matthew R.; Xiao, Chengshan
2014-09-01
We investigate the multiple-input multiple-output broadcast channel with statistical channel state information available at the transmitter. The so-called linear assignment operation is employed, and necessary conditions are derived for the optimal transmit design under general fading conditions. Based on this, we introduce an iterative algorithm to maximize the linear assignment weighted sum-rate by applying a gradient descent method. To reduce complexity, we derive an upper bound of the linear assignment achievable rate of each receiver, from which a simplified closed-form expression for a near-optimal linear assignment matrix is derived. This reveals an interesting construction analogous to that of dirty-paper coding. In light of this, a low complexity transmission scheme is provided. Numerical examples illustrate the significant performance of the proposed low complexity scheme.
Multiclass Reduced-Set Support Vector Machines
NASA Technical Reports Server (NTRS)
Tang, Benyang; Mazzoni, Dominic
2006-01-01
There are well-established methods for reducing the number of support vectors in a trained binary support vector machine, often with minimal impact on accuracy. We show how reduced-set methods can be applied to multiclass SVMs made up of several binary SVMs, with significantly better results than reducing each binary SVM independently. Our approach is based on Burges' approach that constructs each reduced-set vector as the pre-image of a vector in kernel space, but we extend this by recomputing the SVM weights and bias optimally using the original SVM objective function. This leads to greater accuracy for a binary reduced-set SVM, and also allows vectors to be 'shared' between multiple binary SVMs for greater multiclass accuracy with fewer reduced-set vectors. We also propose computing pre-images using differential evolution, which we have found to be more robust than gradient descent alone. We show experimental results on a variety of problems and find that this new approach is consistently better than previous multiclass reduced-set methods, sometimes with a dramatic difference.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
A network of spiking neurons for computing sparse representations in an energy efficient way
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B.
2013-01-01
Computing sparse redundant representations is an important problem both in applied mathematics and neuroscience. In many applications, this problem must be solved in an energy efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating via low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, such operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We compare the numerical performance of HDA with existing algorithms and show that in the asymptotic regime the representation error of HDA decays with time, t, as 1/t. We show that HDA is stable against time-varying noise, specifically, the representation error decays as 1/t for Gaussian white noise. PMID:22920853
A network of spiking neurons for computing sparse representations in an energy-efficient way.
Hu, Tao; Genkin, Alexander; Chklovskii, Dmitri B
2012-11-01
Computing sparse redundant representations is an important problem in both applied mathematics and neuroscience. In many applications, this problem must be solved in an energy-efficient way. Here, we propose a hybrid distributed algorithm (HDA), which solves this problem on a network of simple nodes communicating by low-bandwidth channels. HDA nodes perform both gradient-descent-like steps on analog internal variables and coordinate-descent-like steps via quantized external variables communicated to each other. Interestingly, the operation is equivalent to a network of integrate-and-fire neurons, suggesting that HDA may serve as a model of neural computation. We show that the numerical performance of HDA is on par with existing algorithms. In the asymptotic regime, the representation error of HDA decays with time, t, as 1/t. HDA is stable against time-varying noise; specifically, the representation error decays as 1/√t for gaussian white noise.
On the efficiency of a randomized mirror descent algorithm in online optimization problems
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Nesterov, Yu. E.; Spokoiny, V. G.
2015-04-01
A randomized online version of the mirror descent method is proposed. It differs from the existing versions by the randomization method. Randomization is performed at the stage of the projection of a subgradient of the function being optimized onto the unit simplex rather than at the stage of the computation of a subgradient, which is common practice. As a result, a componentwise subgradient descent with a randomly chosen component is obtained, which admits an online interpretation. This observation, for example, has made it possible to uniformly interpret results on weighting expert decisions and propose the most efficient method for searching for an equilibrium in a zero-sum two-person matrix game with sparse matrix.
Rotary Wing Deceleration Use on Titan
NASA Technical Reports Server (NTRS)
Young, Larry A.; Steiner, Ted J.
2011-01-01
Rotary wing decelerator (RWD) systems were compared against other methods of atmospheric deceleration and were determined to show significant potential for application to a system requiring controlled descent, low-velocity landing, and atmospheric research capability on Titan. Design space exploration and down-selection results in a system with a single rotor utilizing cyclic pitch control. Models were developed for selection of a RWD descent system for use on Titan and to determine the relationships between the key design parameters of such a system and the time of descent. The possibility of extracting power from the system during descent was also investigated.
Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent
Chang, Bao-Li; Spangler, Elaine; Gallagher, Stephen; Haiman, Christopher A.; Henderson, Brian; Isaacs, William; Benford, Marnita L.; Kidd, LaCreis R.; Cooney, Kathleen; Strom, Sara; Ann Ingles, Sue; Stern, Mariana C.; Corral, Roman; Joshi, Amit D.; Xu, Jianfeng; Giri, Veda N.; Rybicki, Benjamin; Neslund-Dudas, Christine; Kibel, Adam S.; Thompson, Ian M.; Leach, Robin J.; Ostrander, Elaine A.; Stanford, Janet L.; Witte, John; Casey, Graham; Eeles, Rosalind; Hsing, Ann W.; Chanock, Stephen; Hu, Jennifer J.; John, Esther M.; Park, Jong; Stefflova, Klara; Zeigler-Johnson, Charnita; Rebbeck, Timothy R.
2010-01-01
Background Genome-wide association studies (GWAS) have identified numerous prostate cancer susceptibility alleles, but these loci have been identified primarily in men of European descent. There is limited information about the role of these loci in men of African descent. Methods We identified 7,788 prostate cancer cases and controls with genotype data for 47 GWAS-identified loci. Results We identified significant associations for SNP rs10486567 at JAZF1, rs10993994 at MSMB, rs12418451 and rs7931342 at 11q13, and rs5945572 and rs5945619 at NUDT10/11. These associations were in the same direction and of similar magnitude as those reported in men of European descent. Significance was attained at all report prostate cancer susceptibility regions at chromosome 8q24, including associations reaching genome-wide significance in region 2. Conclusion We have validated in men of African descent the associations at some, but not all, prostate cancer susceptibility loci originally identified in European descent populations. This may be due to heterogeneity in genetic etiology or in the pattern of genetic variation across populations. Impact The genetic etiology of prostate cancer in men of African descent differs from that of men of European descent. PMID:21071540
Breast ultrasound computed tomography using waveform inversion with source encoding
NASA Astrophysics Data System (ADS)
Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.
2015-03-01
Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.
NASA Astrophysics Data System (ADS)
Liu, Xiaomei; Li, Shengtao; Zhang, Kanjian
2017-08-01
In this paper, we solve an optimal control problem for a class of time-invariant switched stochastic systems with multi-switching times, where the objective is to minimise a cost functional with different costs defined on the states. In particular, we focus on problems in which a pre-specified sequence of active subsystems is given and the switching times are the only control variables. Based on the calculus of variation, we derive the gradient of the cost functional with respect to the switching times on an especially simple form, which can be directly used in gradient descent algorithms to locate the optimal switching instants. Finally, a numerical example is given, highlighting the validity of the proposed methodology.
Deep neural mapping support vector machines.
Li, Yujian; Zhang, Ting
2017-09-01
The choice of kernel has an important effect on the performance of a support vector machine (SVM). The effect could be reduced by NEUROSVM, an architecture using multilayer perceptron for feature extraction and SVM for classification. In binary classification, a general linear kernel NEUROSVM can be theoretically simplified as an input layer, many hidden layers, and an SVM output layer. As a feature extractor, the sub-network composed of the input and hidden layers is first trained together with a virtual ordinary output layer by backpropagation, then with the output of its last hidden layer taken as input of the SVM classifier for further training separately. By taking the sub-network as a kernel mapping from the original input space into a feature space, we present a novel model, called deep neural mapping support vector machine (DNMSVM), from the viewpoint of deep learning. This model is also a new and general kernel learning method, where the kernel mapping is indeed an explicit function expressed as a sub-network, different from an implicit function induced by a kernel function traditionally. Moreover, we exploit a two-stage procedure of contrastive divergence learning and gradient descent for DNMSVM to jointly training an adaptive kernel mapping instead of a kernel function, without requirement of kernel tricks. As a whole of the sub-network and the SVM classifier, the joint training of DNMSVM is done by using gradient descent to optimize the objective function with the sub-network layer-wise pre-trained via contrastive divergence learning of restricted Boltzmann machines. Compared to the separate training of NEUROSVM, the joint training is a new algorithm for DNMSVM to have advantages over NEUROSVM. Experimental results show that DNMSVM can outperform NEUROSVM and RBFSVM (i.e., SVM with the kernel of radial basis function), demonstrating its effectiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Adaptive filter design using recurrent cerebellar model articulation controller.
Lin, Chih-Min; Chen, Li-Yang; Yeung, Daniel S
2010-07-01
A novel adaptive filter is proposed using a recurrent cerebellar-model-articulation-controller (CMAC). The proposed locally recurrent globally feedforward recurrent CMAC (RCMAC) has favorable properties of small size, good generalization, rapid learning, and dynamic response, thus it is more suitable for high-speed signal processing. To provide fast training, an efficient parameter learning algorithm based on the normalized gradient descent method is presented, in which the learning rates are on-line adapted. Then the Lyapunov function is utilized to derive the conditions of the adaptive learning rates, so the stability of the filtering error can be guaranteed. To demonstrate the performance of the proposed adaptive RCMAC filter, it is applied to a nonlinear channel equalization system and an adaptive noise cancelation system. The advantages of the proposed filter over other adaptive filters are verified through simulations.
NASA Astrophysics Data System (ADS)
Arias, E.; Florez, E.; Pérez-Torres, J. F.
2017-06-01
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu7, Cu9, and Cu11 as benchmark systems, and Cu38 and Ni9 as novel systems. New equilibrium structures for Cu9, Cu11, Cu38, and Ni9 are reported.
Arias, E; Florez, E; Pérez-Torres, J F
2017-06-28
A new algorithm for the determination of equilibrium structures suitable for metal nanoclusters is proposed. The algorithm performs a stochastic search of the minima associated with the nuclear potential energy function restricted to a sphere (similar to the Thomson problem), in order to guess configurations of the nuclear positions. Subsequently, the guessed configurations are further optimized driven by the total energy function using the conventional gradient descent method. This methodology is equivalent to using the valence shell electron pair repulsion model in guessing initial configurations in the traditional molecular quantum chemistry. The framework is illustrated in several clusters of increasing complexity: Cu 7 , Cu 9 , and Cu 11 as benchmark systems, and Cu 38 and Ni 9 as novel systems. New equilibrium structures for Cu 9 , Cu 11 , Cu 38 , and Ni 9 are reported.
Seismic noise attenuation using an online subspace tracking algorithm
NASA Astrophysics Data System (ADS)
Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang
2018-02-01
We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.
Representation learning via Dual-Autoencoder for recommendation.
Zhuang, Fuzhen; Zhang, Zhiqiang; Qian, Mingda; Shi, Chuan; Xie, Xing; He, Qing
2017-06-01
Recommendation has provoked vast amount of attention and research in recent decades. Most previous works employ matrix factorization techniques to learn the latent factors of users and items. And many subsequent works consider external information, e.g., social relationships of users and items' attributions, to improve the recommendation performance under the matrix factorization framework. However, matrix factorization methods may not make full use of the limited information from rating or check-in matrices, and achieve unsatisfying results. Recently, deep learning has proven able to learn good representation in natural language processing, image classification, and so on. Along this line, we propose a new representation learning framework called Recommendation via Dual-Autoencoder (ReDa). In this framework, we simultaneously learn the new hidden representations of users and items using autoencoders, and minimize the deviations of training data by the learnt representations of users and items. Based on this framework, we develop a gradient descent method to learn hidden representations. Extensive experiments conducted on several real-world data sets demonstrate the effectiveness of our proposed method compared with state-of-the-art matrix factorization based methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multigrid optimal mass transport for image registration and morphing
NASA Astrophysics Data System (ADS)
Rehman, Tauseef ur; Tannenbaum, Allen
2007-02-01
In this paper we present a computationally efficient Optimal Mass Transport algorithm. This method is based on the Monge-Kantorovich theory and is used for computing elastic registration and warping maps in image registration and morphing applications. This is a parameter free method which utilizes all of the grayscale data in an image pair in a symmetric fashion. No landmarks need to be specified for correspondence. In our work, we demonstrate significant improvement in computation time when our algorithm is applied as compared to the originally proposed method by Haker et al [1]. The original algorithm was based on a gradient descent method for removing the curl from an initial mass preserving map regarded as 2D vector field. This involves inverting the Laplacian in each iteration which is now computed using full multigrid technique resulting in an improvement in computational time by a factor of two. Greater improvement is achieved by decimating the curl in a multi-resolutional framework. The algorithm was applied to 2D short axis cardiac MRI images and brain MRI images for testing and comparison.
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape comprising two regions: One where the dose to the target is close to prescription and trade-offs can be made between doses to the organs at risk and (small) changes in target dose, and one where very substantial rectal sparing is achieved at the cost of large target underdosage. Plans computed following the approach using a conformal arc and four blocked arcs generally lie close to the Pareto front, although distances of some plans from high gradient regions of the Pareto front can be greater. Only around 12% of plans lie a relative Euclidean distance of 0.15 or greater from the Pareto front. Using the alternative distance measure of Craft ["Calculating and controlling the error of discrete representations of Pareto surfaces in convex multi-criteria optimization," Phys. Medica (to be published)], around 2/5 of plans lie more than 0.05 from the front. Computation of blocked arcs is quite fast, the algorithms requiring 35%-80% of the running time per iteration needed for conventional inverse plan computation. The geometry-based arc approach to multicriteria optimization of rotational therapy allows solutions to be obtained that lie close to the Pareto front. Both the image-reconstruction type and gradient-descent algorithms produce similar modulated arcs, the latter one perhaps being preferred because it is more easily implementable in standard treatment planning systems. Moderate unblocking provides a good way of dealing with OARs which abut the PTV. Optimization of geometry-based arcs is faster than usual inverse optimization of treatment plans, making this approach more rapid than an inverse-based Pareto front reconstruction.
NASA Astrophysics Data System (ADS)
Geng, Xianguo; Liu, Huan
2018-04-01
The Riemann-Hilbert problem for the coupled nonlinear Schrödinger equation is formulated on the basis of the corresponding 3× 3 matrix spectral problem. Using the nonlinear steepest descent method, we obtain leading-order asymptotics for the Cauchy problem of the coupled nonlinear Schrödinger equation.
Rapid Generation of Optimal Asteroid Powered Descent Trajectories Via Convex Optimization
NASA Technical Reports Server (NTRS)
Pinson, Robin; Lu, Ping
2015-01-01
This paper investigates a convex optimization based method that can rapidly generate the fuel optimal asteroid powered descent trajectory. The ultimate goal is to autonomously design the optimal powered descent trajectory on-board the spacecraft immediately prior to the descent burn. Compared to a planetary powered landing problem, the major difficulty is the complex gravity field near the surface of an asteroid that cannot be approximated by a constant gravity field. This paper uses relaxation techniques and a successive solution process that seeks the solution to the original nonlinear, nonconvex problem through the solutions to a sequence of convex optimal control problems.
Nonconvex Sparse Logistic Regression With Weakly Convex Regularization
NASA Astrophysics Data System (ADS)
Shen, Xinyue; Gu, Yuantao
2018-06-01
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $\\ell_0$ pseudo norm is able to better induce sparsity than the commonly used $\\ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.
Arcos-García, Álvaro; Álvarez-García, Juan A; Soria-Morillo, Luis M
2018-03-01
This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer Networks placed at distinct positions within the main neural network are analysed. The recognition rate of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient in terms of memory requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.
Controlling bridging and pinching with pixel-based mask for inverse lithography
NASA Astrophysics Data System (ADS)
Kobelkov, Sergey; Tritchkov, Alexander; Han, JiWan
2016-03-01
Inverse Lithography Technology (ILT) has become a viable computational lithography candidate in recent years as it can produce mask output that results in process latitude and CD control in the fab that is hard to match with conventional OPC/SRAF insertion approaches. An approach to solving the inverse lithography problem as a nonlinear, constrained minimization problem over a domain mask pixels was suggested in the paper by Y. Granik "Fast pixel-based mask optimization for inverse lithography" in 2006. The present paper extends this method to satisfy bridging and pinching constraints imposed on print contours. Namely, there are suggested objective functions expressing penalty for constraints violations, and their minimization with gradient descent methods is considered. This approach has been tested with an ILT-based Local Printability Enhancement (LPTM) tool in an automated flow to eliminate hotspots that can be present on the full chip after conventional SRAF placement/OPC and has been applied in 14nm, 10nm node production, single and multiple-patterning flows.
A multi-resolution approach for optimal mass transport
NASA Astrophysics Data System (ADS)
Dominitz, Ayelet; Angenent, Sigurd; Tannenbaum, Allen
2007-09-01
Optimal mass transport is an important technique with numerous applications in econometrics, fluid dynamics, automatic control, statistical physics, shape optimization, expert systems, and meteorology. Motivated by certain problems in image registration and medical image visualization, in this note, we describe a simple gradient descent methodology for computing the optimal L2 transport mapping which may be easily implemented using a multiresolution scheme. We also indicate how the optimal transport map may be computed on the sphere. A numerical example is presented illustrating our ideas.
The Double Star Orbit Initial Value Problem
NASA Astrophysics Data System (ADS)
Hensley, Hagan
2018-04-01
Many precise algorithms exist to find a best-fit orbital solution for a double star system given a good enough initial value. Desmos is an online graphing calculator tool with extensive capabilities to support animations and defining functions. It can provide a useful visual means of analyzing double star data to arrive at a best guess approximation of the orbital solution. This is a necessary requirement before using a gradient-descent algorithm to find the best-fit orbital solution for a binary system.
2010-05-07
important for deep modular systems is that taking a series of small update steps and stopping before convergence, so called early stopping, is a form of regu...larization around the initial parameters of the system . For example, the stochastic gradient descent 5 1 u + 1 v = 1 6‖x2‖q = ‖x‖22q 22 Chapter 2...Aside from the overall speed of the classifier, no quantitative performance analysis was given, and the role played by the features in the larger system
2009-10-09
trains the coefficients c of a finite impulse response (FIR) filter by gradient descent. The coefficients at iteration k + 1 are computed with the update... absorption . Figure 9 shows the reflection loss as a function of grazing angle for this bottom model. Note that below 30◦ this bottom model predicts...less than 1 dB loss per ray bounce. 11 Figure 9: Jackson bottom reflection loss for sand at 15 kHz Absorption Loss The absorption loss in the medium was
On efficient randomized algorithms for finding the PageRank vector
NASA Astrophysics Data System (ADS)
Gasnikov, A. V.; Dmitriev, D. Yu.
2015-03-01
Two randomized methods are considered for finding the PageRank vector; in other words, the solution of the system p T = p T P with a stochastic n × n matrix P, where n ˜ 107-109, is sought (in the class of probability distributions) with accuracy ɛ: ɛ ≫ n -1. Thus, the possibility of brute-force multiplication of P by the column is ruled out in the case of dense objects. The first method is based on the idea of Markov chain Monte Carlo algorithms. This approach is efficient when the iterative process p {/t+1 T} = p {/t T} P quickly reaches a steady state. Additionally, it takes into account another specific feature of P, namely, the nonzero off-diagonal elements of P are equal in rows (this property is used to organize a random walk over the graph with the matrix P). Based on modern concentration-of-measure inequalities, new bounds for the running time of this method are presented that take into account the specific features of P. In the second method, the search for a ranking vector is reduced to finding the equilibrium in the antagonistic matrix game where S n (1) is a unit simplex in ℝ n and I is the identity matrix. The arising problem is solved by applying a slightly modified Grigoriadis-Khachiyan algorithm (1995). This technique, like the Nazin-Polyak method (2009), is a randomized version of Nemirovski's mirror descent method. The difference is that randomization in the Grigoriadis-Khachiyan algorithm is used when the gradient is projected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P, the method proposed yields noticeably better results.
NASA Astrophysics Data System (ADS)
Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.
2017-09-01
Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.
Model-Free Optimal Tracking Control via Critic-Only Q-Learning.
Luo, Biao; Liu, Derong; Huang, Tingwen; Wang, Ding
2016-10-01
Model-free control is an important and promising topic in control fields, which has attracted extensive attention in the past few years. In this paper, we aim to solve the model-free optimal tracking control problem of nonaffine nonlinear discrete-time systems. A critic-only Q-learning (CoQL) method is developed, which learns the optimal tracking control from real system data, and thus avoids solving the tracking Hamilton-Jacobi-Bellman equation. First, the Q-learning algorithm is proposed based on the augmented system, and its convergence is established. Using only one neural network for approximating the Q-function, the CoQL method is developed to implement the Q-learning algorithm. Furthermore, the convergence of the CoQL method is proved with the consideration of neural network approximation error. With the convergent Q-function obtained from the CoQL method, the adaptive optimal tracking control is designed based on the gradient descent scheme. Finally, the effectiveness of the developed CoQL method is demonstrated through simulation studies. The developed CoQL method learns with off-policy data and implements with a critic-only structure, thus it is easy to realize and overcome the inadequate exploration problem.
Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance
NASA Astrophysics Data System (ADS)
Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes
2017-07-01
We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.
Algorithm for Training a Recurrent Multilayer Perceptron
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Rais, Omar T.; Menon, Sunil K.; Atiya, Amir F.
2004-01-01
An improved algorithm has been devised for training a recurrent multilayer perceptron (RMLP) for optimal performance in predicting the behavior of a complex, dynamic, and noisy system multiple time steps into the future. [An RMLP is a computational neural network with self-feedback and cross-talk (both delayed by one time step) among neurons in hidden layers]. Like other neural-network-training algorithms, this algorithm adjusts network biases and synaptic-connection weights according to a gradient-descent rule. The distinguishing feature of this algorithm is a combination of global feedback (the use of predictions as well as the current output value in computing the gradient at each time step) and recursiveness. The recursive aspect of the algorithm lies in the inclusion of the gradient of predictions at each time step with respect to the predictions at the preceding time step; this recursion enables the RMLP to learn the dynamics. It has been conjectured that carrying the recursion to even earlier time steps would enable the RMLP to represent a noisier, more complex system.
Topology optimization of hyperelastic structures using a level set method
NASA Astrophysics Data System (ADS)
Chen, Feifei; Wang, Yiqiang; Wang, Michael Yu; Zhang, Y. F.
2017-12-01
Soft rubberlike materials, due to their inherent compliance, are finding widespread implementation in a variety of applications ranging from assistive wearable technologies to soft material robots. Structural design of such soft and rubbery materials necessitates the consideration of large nonlinear deformations and hyperelastic material models to accurately predict their mechanical behaviour. In this paper, we present an effective level set-based topology optimization method for the design of hyperelastic structures that undergo large deformations. The method incorporates both geometric and material nonlinearities where the strain and stress measures are defined within the total Lagrange framework and the hyperelasticity is characterized by the widely-adopted Mooney-Rivlin material model. A shape sensitivity analysis is carried out, in the strict sense of the material derivative, where the high-order terms involving the displacement gradient are retained to ensure the descent direction. As the design velocity enters into the shape derivative in terms of its gradient and divergence terms, we develop a discrete velocity selection strategy. The whole optimization implementation undergoes a two-step process, where the linear optimization is first performed and its optimized solution serves as the initial design for the subsequent nonlinear optimization. It turns out that this operation could efficiently alleviate the numerical instability and facilitate the optimization process. To demonstrate the validity and effectiveness of the proposed method, three compliance minimization problems are studied and their optimized solutions present significant mechanical benefits of incorporating the nonlinearities, in terms of remarkable enhancement in not only the structural stiffness but also the critical buckling load.
NASA Astrophysics Data System (ADS)
Sharudin, R. W.; AbdulBari Ali, S.; Zulkarnain, M.; Shukri, M. A.
2018-05-01
This study reports on the integration of Artificial Neural Network (ANNs) with experimental data in predicting the solubility of carbon dioxide (CO2) blowing agent in SEBS by generating highest possible value for Regression coefficient (R2). Basically, foaming of thermoplastic elastomer with CO2 is highly affected by the CO2 solubility. The ability of ANN in predicting interpolated data of CO2 solubility was investigated by comparing training results via different method of network training. Regards to the final prediction result for CO2 solubility by ANN, the prediction trend (output generate) was corroborated with the experimental results. The obtained result of different method of training showed the trend of output generated by Gradient Descent with Momentum & Adaptive LR (traingdx) required longer training time and required more accurate input to produce better output with final Regression Value of 0.88. However, it goes vice versa with Levenberg-Marquardt (trainlm) technique as it produced better output in quick detention time with final Regression Value of 0.91.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Monthly evaporation forecasting using artificial neural networks and support vector machines
NASA Astrophysics Data System (ADS)
Tezel, Gulay; Buyukyildiz, Meral
2016-04-01
Evaporation is one of the most important components of the hydrological cycle, but is relatively difficult to estimate, due to its complexity, as it can be influenced by numerous factors. Estimation of evaporation is important for the design of reservoirs, especially in arid and semi-arid areas. Artificial neural network methods and support vector machines (SVM) are frequently utilized to estimate evaporation and other hydrological variables. In this study, usability of artificial neural networks (ANNs) (multilayer perceptron (MLP) and radial basis function network (RBFN)) and ɛ-support vector regression (SVR) artificial intelligence methods was investigated to estimate monthly pan evaporation. For this aim, temperature, relative humidity, wind speed, and precipitation data for the period 1972 to 2005 from Beysehir meteorology station were used as input variables while pan evaporation values were used as output. The Romanenko and Meyer method was also considered for the comparison. The results were compared with observed class A pan evaporation data. In MLP method, four different training algorithms, gradient descent with momentum and adaptive learning rule backpropagation (GDX), Levenberg-Marquardt (LVM), scaled conjugate gradient (SCG), and resilient backpropagation (RBP), were used. Also, ɛ-SVR model was used as SVR model. The models were designed via 10-fold cross-validation (CV); algorithm performance was assessed via mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R 2). According to the performance criteria, the ANN algorithms and ɛ-SVR had similar results. The ANNs and ɛ-SVR methods were found to perform better than the Romanenko and Meyer methods. Consequently, the best performance using the test data was obtained using SCG(4,2,2,1) with R 2 = 0.905.
2013-01-01
Background Effective population sizes of 140 populations (including 60 dog breeds, 40 sheep breeds, 20 cattle breeds and 20 horse breeds) were computed using pedigree information and six different computation methods. Simple demographical information (number of breeding males and females), variance of progeny size, or evolution of identity by descent probabilities based on coancestry or inbreeding were used as well as identity by descent rate between two successive generations or individual identity by descent rate. Results Depending on breed and method, effective population sizes ranged from 15 to 133 056, computation method and interaction between computation method and species showing a significant effect on effective population size (P < 0.0001). On average, methods based on number of breeding males and females and variance of progeny size produced larger values (4425 and 356, respectively), than those based on identity by descent probabilities (average values between 93 and 203). Since breeding practices and genetic substructure within dog breeds increased inbreeding, methods taking into account the evolution of inbreeding produced lower effective population sizes than those taking into account evolution of coancestry. The correlation level between the simplest method (number of breeding males and females, requiring no genealogical information) and the most sophisticated one ranged from 0.44 to 0.60 according to species. Conclusions When choosing a method to compute effective population size, particular attention should be paid to the species and the specific genetic structure of the population studied. PMID:23281913
Variational stereo imaging of oceanic waves with statistical constraints.
Gallego, Guillermo; Yezzi, Anthony; Fedele, Francesco; Benetazzo, Alvise
2013-11-01
An image processing observational technique for the stereoscopic reconstruction of the waveform of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi-Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired waveform is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained by combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.
Material parameter estimation with terahertz time-domain spectroscopy.
Dorney, T D; Baraniuk, R G; Mittleman, D M
2001-07-01
Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.
Wavefront sensorless adaptive optics ophthalmoscopy in the human eye
Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason
2011-01-01
Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779
NASA Astrophysics Data System (ADS)
Mojica, Edson; Pertuz, Said; Arguello, Henry
2017-12-01
One of the main challenges in Computed Tomography (CT) is obtaining accurate reconstructions of the imaged object while keeping a low radiation dose in the acquisition process. In order to solve this problem, several researchers have proposed the use of compressed sensing for reducing the amount of measurements required to perform CT. This paper tackles the problem of designing high-resolution coded apertures for compressed sensing computed tomography. In contrast to previous approaches, we aim at designing apertures to be used with low-resolution detectors in order to achieve super-resolution. The proposed method iteratively improves random coded apertures using a gradient descent algorithm subject to constraints in the coherence and homogeneity of the compressive sensing matrix induced by the coded aperture. Experiments with different test sets show consistent results for different transmittances, number of shots and super-resolution factors.
Monte Carlo-based Reconstruction in Water Cherenkov Detectors using Chroma
NASA Astrophysics Data System (ADS)
Seibert, Stanley; Latorre, Anthony
2012-03-01
We demonstrate the feasibility of event reconstruction---including position, direction, energy and particle identification---in water Cherenkov detectors with a purely Monte Carlo-based method. Using a fast optical Monte Carlo package we have written, called Chroma, in combination with several variance reduction techniques, we can estimate the value of a likelihood function for an arbitrary event hypothesis. The likelihood can then be maximized over the parameter space of interest using a form of gradient descent designed for stochastic functions. Although slower than more traditional reconstruction algorithms, this completely Monte Carlo-based technique is universal and can be applied to a detector of any size or shape, which is a major advantage during the design phase of an experiment. As a specific example, we focus on reconstruction results from a simulation of the 200 kiloton water Cherenkov far detector option for LBNE.
Shahsavari, Shadab; Rezaie Shirmard, Leila; Amini, Mohsen; Abedin Dokoosh, Farid
2017-01-01
Formulation of a nanoparticulate Fingolimod delivery system based on biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was optimized according to artificial neural networks (ANNs). Concentration of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PVA and amount of Fingolimod is considered as the input value, and the particle size, polydispersity index, loading capacity, and entrapment efficacy as output data in experimental design study. In vitro release study was carried out for best formulation according to statistical analysis. ANNs are employed to generate the best model to determine the relationships between various values. In order to specify the model with the best accuracy and proficiency for the in vitro release, a multilayer percepteron with different training algorithm has been examined. Three training model formulations including Levenberg-Marquardt (LM), gradient descent, and Bayesian regularization were employed for training the ANN models. It is demonstrated that the predictive ability of each training algorithm is in the order of LM > gradient descent > Bayesian regularization. Also, optimum formulation was achieved by LM training function with 15 hidden layers and 20 neurons. The transfer function of the hidden layer for this formulation and the output layer were tansig and purlin, respectively. Also, the optimization process was developed by minimizing the error among the predicted and observed values of training algorithm (about 0.0341). Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Fast Optimization for Aircraft Descent and Approach Trajectory
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Schuet, Stefan; Brenton, J.; Timucin, Dogan; Smith, David; Kaneshige, John
2017-01-01
We address problem of on-line scheduling of the aircraft descent and approach trajectory. We formulate a general multiphase optimal control problem for optimization of the descent trajectory and review available methods of its solution. We develop a fast algorithm for solution of this problem using two key components: (i) fast inference of the dynamical and control variables of the descending trajectory from the low dimensional flight profile data and (ii) efficient local search for the resulting reduced dimensionality non-linear optimization problem. We compare the performance of the proposed algorithm with numerical solution obtained using optimal control toolbox General Pseudospectral Optimal Control Software. We present results of the solution of the scheduling problem for aircraft descent using novel fast algorithm and discuss its future applications.
Chung, Sharon A.; Tian, Chao; Taylor, Kimberly E.; Lee, Annette T.; Ortmann, Ward A.; Hom, Geoffrey; Graham, Robert R.; Nititham, Joanne; Kelly, Jennifer A.; Morrisey, Jean; Wu, Hui; Yin, Hong; Alarcón-Riquelme, Marta E.; Tsao, Betty P.; Harley, John B.; Gaffney, Patrick M.; Moser, Kathy L.; Manzi, Susan; Petri, Michelle; Gregersen, Peter K.; Langefeld, Carl D.; Behrens, Timothy W.; Seldin, Michael F.; Criswell, Lindsey A.
2009-01-01
Objective To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease. Methods SLE patients of European descent (n=1754) from 8 case collections were genotyped for over 1,400 ancestry informative markers that define a north/south gradient of European substructure. Based on these genetic markers, we used the STRUCTURE program to characterize each SLE patient in terms of percent northern (vs. southern) European ancestry. Non-parametric methods, including tests of trend, were used to identify associations between northern European ancestry and specific SLE manifestations. Results In multivariate analyses, increasing levels of northern European ancestry were significantly associated with photosensitivity (ptrend=0.0021, OR for highest quartile of northern European ancestry compared to lowest quartile 1.64, 95% CI 1.13–2.35) and discoid rash (ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98–3.83). In contrast, northern European ancestry was protective for anticardiolipin (ptrend=1.6 × 10−4, ORhigh-low 0.46, 95% CI 0.30–0.69) and anti-dsDNA (ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46–0.96) autoantibody production. Conclusions This study demonstrates that specific SLE manifestations vary according to northern vs. southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure due to genetic ancestry. PMID:19644962
An annealed chaotic maximum neural network for bipartite subgraph problem.
Wang, Jiahai; Tang, Zheng; Wang, Ronglong
2004-04-01
In this paper, based on maximum neural network, we propose a new parallel algorithm that can help the maximum neural network escape from local minima by including a transient chaotic neurodynamics for bipartite subgraph problem. The goal of the bipartite subgraph problem, which is an NP- complete problem, is to remove the minimum number of edges in a given graph such that the remaining graph is a bipartite graph. Lee et al. presented a parallel algorithm using the maximum neural model (winner-take-all neuron model) for this NP- complete problem. The maximum neural model always guarantees a valid solution and greatly reduces the search space without a burden on the parameter-tuning. However, the model has a tendency to converge to a local minimum easily because it is based on the steepest descent method. By adding a negative self-feedback to the maximum neural network, we proposed a new parallel algorithm that introduces richer and more flexible chaotic dynamics and can prevent the network from getting stuck at local minima. After the chaotic dynamics vanishes, the proposed algorithm is then fundamentally reined by the gradient descent dynamics and usually converges to a stable equilibrium point. The proposed algorithm has the advantages of both the maximum neural network and the chaotic neurodynamics. A large number of instances have been simulated to verify the proposed algorithm. The simulation results show that our algorithm finds the optimum or near-optimum solution for the bipartite subgraph problem superior to that of the best existing parallel algorithms.
Non-homogeneous updates for the iterative coordinate descent algorithm
NASA Astrophysics Data System (ADS)
Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang
2007-02-01
Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.
NASA Technical Reports Server (NTRS)
Gaebler, John A.; Tolson, Robert H.
2010-01-01
In the study of entry, descent, and landing, Monte Carlo sampling methods are often employed to study the uncertainty in the designed trajectory. The large number of uncertain inputs and outputs, coupled with complicated non-linear models, can make interpretation of the results difficult. Three methods that provide statistical insights are applied to an entry, descent, and landing simulation. The advantages and disadvantages of each method are discussed in terms of the insights gained versus the computational cost. The first method investigated was failure domain bounding which aims to reduce the computational cost of assessing the failure probability. Next a variance-based sensitivity analysis was studied for the ability to identify which input variable uncertainty has the greatest impact on the uncertainty of an output. Finally, probabilistic sensitivity analysis is used to calculate certain sensitivities at a reduced computational cost. These methods produce valuable information that identifies critical mission parameters and needs for new technology, but generally at a significant computational cost.
Crosswind Shear Gradient Affect on Wake Vortices
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Ahmad, Nashat N.
2011-01-01
Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.
Statistical Mechanics of Node-perturbation Learning with Noisy Baseline
NASA Astrophysics Data System (ADS)
Hara, Kazuyuki; Katahira, Kentaro; Okada, Masato
2017-02-01
Node-perturbation learning is a type of statistical gradient descent algorithm that can be applied to problems where the objective function is not explicitly formulated, including reinforcement learning. It estimates the gradient of an objective function by using the change in the object function in response to the perturbation. The value of the objective function for an unperturbed output is called a baseline. Cho et al. proposed node-perturbation learning with a noisy baseline. In this paper, we report on building the statistical mechanics of Cho's model and on deriving coupled differential equations of order parameters that depict learning dynamics. We also show how to derive the generalization error by solving the differential equations of order parameters. On the basis of the results, we show that Cho's results are also apply in general cases and show some general performances of Cho's model.
Development and implementation of (Q)SAR modeling within the CHARMMing web-user interface.
Weidlich, Iwona E; Pevzner, Yuri; Miller, Benjamin T; Filippov, Igor V; Woodcock, H Lee; Brooks, Bernard R
2015-01-05
Recent availability of large publicly accessible databases of chemical compounds and their biological activities (PubChem, ChEMBL) has inspired us to develop a web-based tool for structure activity relationship and quantitative structure activity relationship modeling to add to the services provided by CHARMMing (www.charmming.org). This new module implements some of the most recent advances in modern machine learning algorithms-Random Forest, Support Vector Machine, Stochastic Gradient Descent, Gradient Tree Boosting, so forth. A user can import training data from Pubchem Bioassay data collections directly from our interface or upload his or her own SD files which contain structures and activity information to create new models (either categorical or numerical). A user can then track the model generation process and run models on new data to predict activity. © 2014 Wiley Periodicals, Inc.
Adaptive Importance Sampling for Control and Inference
NASA Astrophysics Data System (ADS)
Kappen, H. J.; Ruiz, H. C.
2016-03-01
Path integral (PI) control problems are a restricted class of non-linear control problems that can be solved formally as a Feynman-Kac PI and can be estimated using Monte Carlo sampling. In this contribution we review PI control theory in the finite horizon case. We subsequently focus on the problem how to compute and represent control solutions. We review the most commonly used methods in robotics and control. Within the PI theory, the question of how to compute becomes the question of importance sampling. Efficient importance samplers are state feedback controllers and the use of these requires an efficient representation. Learning and representing effective state-feedback controllers for non-linear stochastic control problems is a very challenging, and largely unsolved, problem. We show how to learn and represent such controllers using ideas from the cross entropy method. We derive a gradient descent method that allows to learn feed-back controllers using an arbitrary parametrisation. We refer to this method as the path integral cross entropy method or PICE. We illustrate this method for some simple examples. The PI control methods can be used to estimate the posterior distribution in latent state models. In neuroscience these problems arise when estimating connectivity from neural recording data using EM. We demonstrate the PI control method as an accurate alternative to particle filtering.
Explorations on High Dimensional Landscapes: Spin Glasses and Deep Learning
NASA Astrophysics Data System (ADS)
Sagun, Levent
This thesis deals with understanding the structure of high-dimensional and non-convex energy landscapes. In particular, its focus is on the optimization of two classes of functions: homogeneous polynomials and loss functions that arise in machine learning. In the first part, the notion of complexity of a smooth, real-valued function is studied through its critical points. Existing theoretical results predict that certain random functions that are defined on high dimensional domains have a narrow band of values whose pre-image contains the bulk of its critical points. This section provides empirical evidence for convergence of gradient descent to local minima whose energies are near the predicted threshold justifying the existing asymptotic theory. Moreover, it is empirically shown that a similar phenomenon may hold for deep learning loss functions. Furthermore, there is a comparative analysis of gradient descent and its stochastic version showing that in high dimensional regimes the latter is a mere speedup. The next study focuses on the halting time of an algorithm at a given stopping condition. Given an algorithm, the normalized fluctuations of the halting time follow a distribution that remains unchanged even when the input data is sampled from a new distribution. Two qualitative classes are observed: a Gumbel-like distribution that appears in Google searches, human decision times, and spin glasses and a Gaussian-like distribution that appears in conjugate gradient method, deep learning with MNIST and random input data. Following the universality phenomenon, the Hessian of the loss functions of deep learning is studied. The spectrum is seen to be composed of two parts, the bulk which is concentrated around zero, and the edges which are scattered away from zero. Empirical evidence is presented for the bulk indicating how over-parametrized the system is, and for the edges that depend on the input data. Furthermore, an algorithm is proposed such that it would explore such large dimensional, degenerate landscapes to locate a solution with decent generalization properties. Finally, a demonstration of how the new method can explain the empirical success of some of the recent methods that have been proposed for distributed deep learning. In the second part, two applied machine learning problems are studied that are complementary to the machine learning problems of part I. First, US asylum applications cases are studied using random forests on the data of past twenty years. Using only features up to when the case opens, the algorithm can predict the outcome of the case with 80% accuracy. Next, a particular question and answer system has been studied. The questions are collected from Jeopardy! show and they fed to Google, then the results are parsed into a recurrent neural network to come up with a system that would outcome the answer to the original question. Close to 50% accuracy is achieved where human level benchmark is just a little above 60%.
Soil quality assessment using weighted fuzzy association rules
Xue, Yue-Ju; Liu, Shu-Guang; Hu, Yue-Ming; Yang, Jing-Feng
2010-01-01
Fuzzy association rules (FARs) can be powerful in assessing regional soil quality, a critical step prior to land planning and utilization; however, traditional FARs mined from soil quality database, ignoring the importance variability of the rules, can be redundant and far from optimal. In this study, we developed a method applying different weights to traditional FARs to improve accuracy of soil quality assessment. After the FARs for soil quality assessment were mined, redundant rules were eliminated according to whether the rules were significant or not in reducing the complexity of the soil quality assessment models and in improving the comprehensibility of FARs. The global weights, each representing the importance of a FAR in soil quality assessment, were then introduced and refined using a gradient descent optimization method. This method was applied to the assessment of soil resources conditions in Guangdong Province, China. The new approach had an accuracy of 87%, when 15 rules were mined, as compared with 76% from the traditional approach. The accuracy increased to 96% when 32 rules were mined, in contrast to 88% from the traditional approach. These results demonstrated an improved comprehensibility of FARs and a high accuracy of the proposed method.
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
Peng, Yuan; Qiu, Mengran; Shi, Jianfei; Liu, Liangliang
2018-01-01
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM) was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved. PMID:29780407
Implementation of neural network for color properties of polycarbonates
NASA Astrophysics Data System (ADS)
Saeed, U.; Ahmad, S.; Alsadi, J.; Ross, D.; Rizvi, G.
2014-05-01
In present paper, the applicability of artificial neural networks (ANN) is investigated for color properties of plastics. The neural networks toolbox of Matlab 6.5 is used to develop and test the ANN model on a personal computer. An optimal design is completed for 10, 12, 14,16,18 & 20 hidden neurons on single hidden layer with five different algorithms: batch gradient descent (GD), batch variable learning rate (GDX), resilient back-propagation (RP), scaled conjugate gradient (SCG), levenberg-marquardt (LM) in the feed forward back-propagation neural network model. The training data for ANN is obtained from experimental measurements. There were twenty two inputs including resins, additives & pigments while three tristimulus color values L*, a* and b* were used as output layer. Statistical analysis in terms of Root-Mean-Squared (RMS), absolute fraction of variance (R squared), as well as mean square error is used to investigate the performance of ANN. LM algorithm with fourteen neurons on hidden layer in Feed Forward Back-Propagation of ANN model has shown best result in the present study. The degree of accuracy of the ANN model in reduction of errors is proven acceptable in all statistical analysis and shown in results. However, it was concluded that ANN provides a feasible method in error reduction in specific color tristimulus values.
Khachatryan, Naira; Medeiros, Felipe A.; Sharpsten, Lucie; Bowd, Christopher; Sample, Pamela A.; Liebmann, Jeffrey M.; Girkin, Christopher A.; Weinreb, Robert N.; Miki, Atsuya; Hammel, Na’ama; Zangwill, Linda M.
2015-01-01
Purpose To evaluate racial differences in the development of visual field (VF) damage in glaucoma suspects. Design Prospective, observational cohort study. Methods Six hundred thirty six eyes from 357 glaucoma suspects with normal VF at baseline were included from the multicenter African Descent and Glaucoma Evaluation Study (ADAGES). Racial differences in the development of VF damage were examined using multivariable Cox Proportional Hazard models. Results Thirty one (25.4%) of 122 African descent participants and 47 (20.0%) of 235 European descent participants developed VF damage (p=0.078). In multivariable analysis, worse baseline VF mean deviation, higher mean arterial pressure during follow up, and a race *mean intraocular pressure (IOP) interaction term were significantly associated with the development of VF damage suggesting that racial differences in the risk of VF damage varied by IOP. At higher mean IOP levels, race was predictive of the development of VF damage even after adjusting for potentially confounding factors. At mean IOPs during follow-up of 22, 24 and 26 mmHg, multivariable hazard ratios (95%CI) for the development of VF damage in African descent compared to European descent subjects were 2.03 (1.15–3.57), 2.71 (1.39–5.29), and 3.61 (1.61–8.08), respectively. However, at lower mean IOP levels (below 22 mmHg) during follow-up, African descent was not predictive of the development of VF damage. Conclusion In this cohort of glaucoma suspects with similar access to treatment, multivariate analysis revealed that at higher mean IOP during follow-up, individuals of African descent were more likely to develop VF damage than individuals of European descent. PMID:25597839
van der Stoep, T
Compared to the percentage of ethnic minorities in the general population, ethnic minorities are overrepresented in forensic psychiatry. If these minorities are to be treated successfully, we need to know more about this group. So far, however, little is known about the differences between mental disorders and types of offences associated with patients of non-Dutch descent and those associated with patients of Dutch descent.
AIM: To take the first steps to obtain the information we need in order to provide customised care for patients of non-Dutch descent.
METHOD: It proved possible to identify differences between patients of Dutch and non-Dutch descent with regard to treatment, diagnosis and offences committed within a group of patients who were admitted to the forensic psychiatric centre Oostvaarderskliniek during the period 2001 - 2014.
RESULTS: The treatment of patients of non-Dutch descent lasted longer than the treatment of patients of Dutch descent (8.5 year versus 6.6 year). Furthermore, patients from ethnic minority groups were diagnosed more often with schizophrenia (49.1% versus 21.4%), but less often with pervasive developmental disorders or sexual disorders. Patients of non-Dutch descent were more often convicted for sexual crimes where the victim was aged 16 years or older, whereas patients of Dutch descent were convicted of sexual crimes where the victim was under 16.
CONCLUSION: There are differences between patients of Dutch and non-Dutch descent with regard to treatment duration, diagnosis and offences they commit. Future research needs to investigate whether these results are representative for the entire field of forensic psychiatry and to discover the reasons for these differences.
Fazio, Massimo A.; Grytz, Rafael; Morris, Jeffrey S.; Bruno, Luigi; Girkin, Christopher A.; Downs, J. Crawford
2014-01-01
Purpose. We tested the hypothesis that the variation of peripapillary scleral structural stiffness with age is different in donors of European (ED) and African (AD) descent. Methods. Posterior scleral shells from normal eyes from donors of European (n = 20 pairs; previously reported) and African (n = 9 pairs) descent aged 0 and 90 years old were inflation tested within 48 hours post mortem. Scleral shells were pressurized from 5 to 45 mm Hg and the full-field, 3-dimensional (3D) deformation of the outer surface was recorded at submicrometric accuracy using speckle interferometry (ESPI). Mean maximum principal (tensile) strain of the peripapillary and midperipheral regions surrounding the optic nerve head (ONH) were fit using a functional mixed effects model that accounts for intradonor variability, same-race correlation, and spatial autocorrelation to estimate the effect of race on the age-related changes in mechanical scleral strain. Results. Mechanical tensile strain significantly decreased with age in the peripapillary sclera in the African and European descent groups (P < 0.001), but the age-related stiffening was significantly greater in the African descent group (P < 0.05). Maximum principal strain in the peripapillary sclera was significantly higher than in the midperipheral sclera for both ethnic groups. Conclusions. The sclera surrounding the ONH stiffens more rapidly with age in the African descent group compared to the European group. Stiffening of the peripapillary sclera with age may be related to the higher prevalence of glaucoma in the elderly and persons of African descent. PMID:25237162
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-09-18
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.
Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao
2014-01-01
The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality. PMID:25237902
Representational Distance Learning for Deep Neural Networks
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains. PMID:28082889
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Representational Distance Learning for Deep Neural Networks.
McClure, Patrick; Kriegeskorte, Nikolaus
2016-01-01
Deep neural networks (DNNs) provide useful models of visual representational transformations. We present a method that enables a DNN (student) to learn from the internal representational spaces of a reference model (teacher), which could be another DNN or, in the future, a biological brain. Representational spaces of the student and the teacher are characterized by representational distance matrices (RDMs). We propose representational distance learning (RDL), a stochastic gradient descent method that drives the RDMs of the student to approximate the RDMs of the teacher. We demonstrate that RDL is competitive with other transfer learning techniques for two publicly available benchmark computer vision datasets (MNIST and CIFAR-100), while allowing for architectural differences between student and teacher. By pulling the student's RDMs toward those of the teacher, RDL significantly improved visual classification performance when compared to baseline networks that did not use transfer learning. In the future, RDL may enable combined supervised training of deep neural networks using task constraints (e.g., images and category labels) and constraints from brain-activity measurements, so as to build models that replicate the internal representational spaces of biological brains.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
NASA Astrophysics Data System (ADS)
Xiao, Ying; Michalski, Darek; Censor, Yair; Galvin, James M.
2004-07-01
The efficient delivery of intensity modulated radiation therapy (IMRT) depends on finding optimized beam intensity patterns that produce dose distributions, which meet given constraints for the tumour as well as any critical organs to be spared. Many optimization algorithms that are used for beamlet-based inverse planning are susceptible to large variations of neighbouring intensities. Accurately delivering an intensity pattern with a large number of extrema can prove impossible given the mechanical limitations of standard multileaf collimator (MLC) delivery systems. In this study, we apply Cimmino's simultaneous projection algorithm to the beamlet-based inverse planning problem, modelled mathematically as a system of linear inequalities. We show that using this method allows us to arrive at a smoother intensity pattern. Including nonlinear terms in the simultaneous projection algorithm to deal with dose-volume histogram (DVH) constraints does not compromise this property from our experimental observation. The smoothness properties are compared with those from other optimization algorithms which include simulated annealing and the gradient descent method. The simultaneous property of these algorithms is ideally suited to parallel computing technologies.
Beyond Group: Multiple Person Tracking via Minimal Topology-Energy-Variation.
Gao, Shan; Ye, Qixiang; Xing, Junliang; Kuijper, Arjan; Han, Zhenjun; Jiao, Jianbin; Ji, Xiangyang
2017-12-01
Tracking multiple persons is a challenging task when persons move in groups and occlude each other. Existing group-based methods have extensively investigated how to make group division more accurately in a tracking-by-detection framework; however, few of them quantify the group dynamics from the perspective of targets' spatial topology or consider the group in a dynamic view. Inspired by the sociological properties of pedestrians, we propose a novel socio-topology model with a topology-energy function to factor the group dynamics of moving persons and groups. In this model, minimizing the topology-energy-variance in a two-level energy form is expected to produce smooth topology transitions, stable group tracking, and accurate target association. To search for the strong minimum in energy variation, we design the discrete group-tracklet jump moves embedded in the gradient descent method, which ensures that the moves reduce the energy variation of group and trajectory alternately in the varying topology dimension. Experimental results on both RGB and RGB-D data sets show the superiority of our proposed model for multiple person tracking in crowd scenes.
Multiplexed phase-space imaging for 3D fluorescence microscopy.
Liu, Hsiou-Yuan; Zhong, Jingshan; Waller, Laura
2017-06-26
Optical phase-space functions describe spatial and angular information simultaneously; examples of optical phase-space functions include light fields in ray optics and Wigner functions in wave optics. Measurement of phase-space enables digital refocusing, aberration removal and 3D reconstruction. High-resolution capture of 4D phase-space datasets is, however, challenging. Previous scanning approaches are slow, light inefficient and do not achieve diffraction-limited resolution. Here, we propose a multiplexed method that solves these problems. We use a spatial light modulator (SLM) in the pupil plane of a microscope in order to sequentially pattern multiplexed coded apertures while capturing images in real space. Then, we reconstruct the 3D fluorescence distribution of our sample by solving an inverse problem via regularized least squares with a proximal accelerated gradient descent solver. We experimentally reconstruct a 101 Megavoxel 3D volume (1010×510×500µm with NA 0.4), demonstrating improved acquisition time, light throughput and resolution compared to scanning aperture methods. Our flexible patterning scheme further allows sparsity in the sample to be exploited for reduced data capture.
Approximate N-Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System.
Johnson, Marcus; Kamalapurkar, Rushikesh; Bhasin, Shubhendu; Dixon, Warren E
2015-08-01
An approximate online equilibrium solution is developed for an N -player nonzero-sum game subject to continuous-time nonlinear unknown dynamics and an infinite horizon quadratic cost. A novel actor-critic-identifier structure is used, wherein a robust dynamic neural network is used to asymptotically identify the uncertain system with additive disturbances, and a set of critic and actor NNs are used to approximate the value functions and equilibrium policies, respectively. The weight update laws for the actor neural networks (NNs) are generated using a gradient-descent method, and the critic NNs are generated by least square regression, which are both based on the modified Bellman error that is independent of the system dynamics. A Lyapunov-based stability analysis shows that uniformly ultimately bounded tracking is achieved, and a convergence analysis demonstrates that the approximate control policies converge to a neighborhood of the optimal solutions. The actor, critic, and identifier structures are implemented in real time continuously and simultaneously. Simulations on two and three player games illustrate the performance of the developed method.
Towards exaggerated emphysema stereotypes
NASA Astrophysics Data System (ADS)
Chen, C.; Sørensen, L.; Lauze, F.; Igel, C.; Loog, M.; Feragen, A.; de Bruijne, M.; Nielsen, M.
2012-03-01
Classification is widely used in the context of medical image analysis and in order to illustrate the mechanism of a classifier, we introduce the notion of an exaggerated image stereotype based on training data and trained classifier. The stereotype of some image class of interest should emphasize/exaggerate the characteristic patterns in an image class and visualize the information the employed classifier relies on. This is useful for gaining insight into the classification and serves for comparison with the biological models of disease. In this work, we build exaggerated image stereotypes by optimizing an objective function which consists of a discriminative term based on the classification accuracy, and a generative term based on the class distributions. A gradient descent method based on iterated conditional modes (ICM) is employed for optimization. We use this idea with Fisher's linear discriminant rule and assume a multivariate normal distribution for samples within a class. The proposed framework is applied to computed tomography (CT) images of lung tissue with emphysema. The synthesized stereotypes illustrate the exaggerated patterns of lung tissue with emphysema, which is underpinned by three different quantitative evaluation methods.
Ciaccio, Edward J; Micheli-Tzanakou, Evangelia
2007-07-01
Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.
Evaluating the accuracy performance of Lucas-Kanade algorithm in the circumstance of PIV application
NASA Astrophysics Data System (ADS)
Pan, Chong; Xue, Dong; Xu, Yang; Wang, JinJun; Wei, RunJie
2015-10-01
Lucas-Kanade (LK) algorithm, usually used in optical flow filed, has recently received increasing attention from PIV community due to its advanced calculation efficiency by GPU acceleration. Although applications of this algorithm are continuously emerging, a systematic performance evaluation is still lacking. This forms the primary aim of the present work. Three warping schemes in the family of LK algorithm: forward/inverse/symmetric warping, are evaluated in a prototype flow of a hierarchy of multiple two-dimensional vortices. Second-order Newton descent is also considered here. The accuracy & efficiency of all these LK variants are investigated under a large domain of various influential parameters. It is found that the constant displacement constraint, which is a necessary building block for GPU acceleration, is the most critical issue in affecting LK algorithm's accuracy, which can be somehow ameliorated by using second-order Newton descent. Moreover, symmetric warping outbids the other two warping schemes in accuracy level, robustness to noise, convergence speed and tolerance to displacement gradient, and might be the first choice when applying LK algorithm to PIV measurement.
Comparison of SIRT and SQS for Regularized Weighted Least Squares Image Reconstruction
Gregor, Jens; Fessler, Jeffrey A.
2015-01-01
Tomographic image reconstruction is often formulated as a regularized weighted least squares (RWLS) problem optimized by iterative algorithms that are either inherently algebraic or derived from a statistical point of view. This paper compares a modified version of SIRT (Simultaneous Iterative Reconstruction Technique), which is of the former type, with a version of SQS (Separable Quadratic Surrogates), which is of the latter type. We show that the two algorithms minimize the same criterion function using similar forms of preconditioned gradient descent. We present near-optimal relaxation for both based on eigenvalue bounds and include a heuristic extension for use with ordered subsets. We provide empirical evidence that SIRT and SQS converge at the same rate for all intents and purposes. For context, we compare their performance with an implementation of preconditioned conjugate gradient. The illustrative application is X-ray CT of luggage for aviation security. PMID:26478906
Intelligent voltage control strategy for three-phase UPS inverters with output LC filter
NASA Astrophysics Data System (ADS)
Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.
2015-08-01
This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
A sampling algorithm for segregation analysis
Tier, Bruce; Henshall, John
2001-01-01
Methods for detecting Quantitative Trait Loci (QTL) without markers have generally used iterative peeling algorithms for determining genotype probabilities. These algorithms have considerable shortcomings in complex pedigrees. A Monte Carlo Markov chain (MCMC) method which samples the pedigree of the whole population jointly is described. Simultaneous sampling of the pedigree was achieved by sampling descent graphs using the Metropolis-Hastings algorithm. A descent graph describes the inheritance state of each allele and provides pedigrees guaranteed to be consistent with Mendelian sampling. Sampling descent graphs overcomes most, if not all, of the limitations incurred by iterative peeling algorithms. The algorithm was able to find the QTL in most of the simulated populations. However, when the QTL was not modeled or found then its effect was ascribed to the polygenic component. No QTL were detected when they were not simulated. PMID:11742631
Spallek, Jacob; Spix, Claudia; Zeeb, Hajo; Kaatsch, Peter; Razum, Oliver
2008-01-01
Background Cancer risks of migrants might differ from risks of the indigenous population due to differences in socioeconomic status, life style, or genetic factors. The aim of this study was to investigate cancer patterns among children of Turkish descent in Germany. Methods We identified cases with Turkish names (as a proxy of Turkish descent) among the 37,259 cases of childhood cancer registered in the German Childhood Cancer Registry (GCCR) during 1980–2005. As it is not possible to obtain reference population data for children of Turkish descent, the distribution of cancer diagnoses was compared between cases of Turkish descent and all remaining (mainly German) cases in the registry, using proportional cancer incidence ratios (PCIRs). Results The overall distribution of cancer diagnoses was similar in the two groups. The PCIRs in three diagnosis groups were increased for cases of Turkish descent: acute non-lymphocytic leukaemia (PCIR 1.23; CI (95%) 1.02–1.47), Hodgkin's disease (1.34; 1.13–1.59) and Non-Hodgkin/Burkitt lymphoma (1.19; 1.02–1.39). Age, sex, and period of diagnosis showed no influence on the distribution of diagnoses. Conclusion No major differences were found in cancer patterns among cases of Turkish descent compared to all other cases in the GCCR. Slightly higher proportions of systemic malignant diseases indicate that analytical studies involving migrants may help investigating the causes of such cancers. PMID:18462495
Fan, Bingfei; Li, Qingguo; Liu, Tao
2017-12-28
With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method.
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
On Vehicle Placement to Intercept Moving Targets (Preprint)
2010-03-09
which is feasible only if X1 −X2 = 0 and Y1 − Y2 = 0. We now present the main result for this section. Theorem 3.4 (Minimizing expected cost) From an...Vandenberghe (2004)) leads the vehicle to the unique global minimizer of Cexp. Let V ⊂ [0,W ], and choose φ(x) such that φ(x) = 0,∀x ∈ [0,W ] \\ V. Then, Theorem ...R>0, and following gradient descent with V as the region of integration, the vehicle remains inside [0,W ] × R>0 at all subsequent times. 3 Theorem
Product Distribution Theory and Semi-Coordinate Transformations
NASA Technical Reports Server (NTRS)
Airiau, Stephane; Wolpert, David H.
2004-01-01
Product Distribution (PD) theory is a new framework for doing distributed adaptive control of a multiagent system (MAS). We introduce the technique of "coordinate transformations" in PD theory gradient descent. These transformations selectively couple a few agents with each other into "meta-agents". Intuitively, this can be viewed as a generalization of forming binding contracts between those agents. Doing this sacrifices a bit of the distributed nature of the MAS, in that there must now be communication from multiple agents in determining what joint-move is finally implemented However, as we demonstrate in computer experiments, these transformations improve the performance of the MAS.
Neural network explanation using inversion.
Saad, Emad W; Wunsch, Donald C
2007-01-01
An important drawback of many artificial neural networks (ANN) is their lack of explanation capability [Andrews, R., Diederich, J., & Tickle, A. B. (1996). A survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems, 8, 373-389]. This paper starts with a survey of algorithms which attempt to explain the ANN output. We then present HYPINV, a new explanation algorithm which relies on network inversion; i.e. calculating the ANN input which produces a desired output. HYPINV is a pedagogical algorithm, that extracts rules, in the form of hyperplanes. It is able to generate rules with arbitrarily desired fidelity, maintaining a fidelity-complexity tradeoff. To our knowledge, HYPINV is the only pedagogical rule extraction method, which extracts hyperplane rules from continuous or binary attribute neural networks. Different network inversion techniques, involving gradient descent as well as an evolutionary algorithm, are presented. An information theoretic treatment of rule extraction is presented. HYPINV is applied to example synthetic problems, to a real aerospace problem, and compared with similar algorithms using benchmark problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu
2015-03-31
We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of themore » density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.« less
Arana-Daniel, Nancy; Gallegos, Alberto A; López-Franco, Carlos; Alanís, Alma Y; Morales, Jacob; López-Franco, Adriana
2016-01-01
With the increasing power of computers, the amount of data that can be processed in small periods of time has grown exponentially, as has the importance of classifying large-scale data efficiently. Support vector machines have shown good results classifying large amounts of high-dimensional data, such as data generated by protein structure prediction, spam recognition, medical diagnosis, optical character recognition and text classification, etc. Most state of the art approaches for large-scale learning use traditional optimization methods, such as quadratic programming or gradient descent, which makes the use of evolutionary algorithms for training support vector machines an area to be explored. The present paper proposes an approach that is simple to implement based on evolutionary algorithms and Kernel-Adatron for solving large-scale classification problems, focusing on protein structure prediction. The functional properties of proteins depend upon their three-dimensional structures. Knowing the structures of proteins is crucial for biology and can lead to improvements in areas such as medicine, agriculture and biofuels.
Top-Down Visual Saliency via Joint CRF and Dictionary Learning.
Yang, Jimei; Yang, Ming-Hsuan
2017-03-01
Top-down visual saliency is an important module of visual attention. In this work, we propose a novel top-down saliency model that jointly learns a Conditional Random Field (CRF) and a visual dictionary. The proposed model incorporates a layered structure from top to bottom: CRF, sparse coding and image patches. With sparse coding as an intermediate layer, CRF is learned in a feature-adaptive manner; meanwhile with CRF as the output layer, the dictionary is learned under structured supervision. For efficient and effective joint learning, we develop a max-margin approach via a stochastic gradient descent algorithm. Experimental results on the Graz-02 and PASCAL VOC datasets show that our model performs favorably against state-of-the-art top-down saliency methods for target object localization. In addition, the dictionary update significantly improves the performance of our model. We demonstrate the merits of the proposed top-down saliency model by applying it to prioritizing object proposals for detection and predicting human fixations.
Yang, Xiong; He, Haibo
2018-05-26
In this paper, we develop a novel optimal control strategy for a class of uncertain nonlinear systems with unmatched interconnections. To begin with, we present a stabilizing feedback controller for the interconnected nonlinear systems by modifying an array of optimal control laws of auxiliary subsystems. We also prove that this feedback controller ensures a specified cost function to achieve optimality. Then, under the framework of adaptive critic designs, we use critic networks to solve the Hamilton-Jacobi-Bellman equations associated with auxiliary subsystem optimal control laws. The critic network weights are tuned through the gradient descent method combined with an additional stabilizing term. By using the newly established weight tuning rules, we no longer need the initial admissible control condition. In addition, we demonstrate that all signals in the closed-loop auxiliary subsystems are stable in the sense of uniform ultimate boundedness by using classic Lyapunov techniques. Finally, we provide an interconnected nonlinear plant to validate the present control scheme. Copyright © 2018 Elsevier Ltd. All rights reserved.
Training feed-forward neural networks with gain constraints
Hartman
2000-04-01
Inaccurate input-output gains (partial derivatives of outputs with respect to inputs) are common in neural network models when input variables are correlated or when data are incomplete or inaccurate. Accurate gains are essential for optimization, control, and other purposes. We develop and explore a method for training feedforward neural networks subject to inequality or equality-bound constraints on the gains of the learned mapping. Gain constraints are implemented as penalty terms added to the objective function, and training is done using gradient descent. Adaptive and robust procedures are devised for balancing the relative strengths of the various terms in the objective function, which is essential when the constraints are inconsistent with the data. The approach has the virtue that the model domain of validity can be extended via extrapolation training, which can dramatically improve generalization. The algorithm is demonstrated here on artificial and real-world problems with very good results and has been advantageously applied to dozens of models currently in commercial use.
A Space Affine Matching Approach to fMRI Time Series Analysis.
Chen, Liang; Zhang, Weishi; Liu, Hongbo; Feng, Shigang; Chen, C L Philip; Wang, Huili
2016-07-01
For fMRI time series analysis, an important challenge is to overcome the potential delay between hemodynamic response signal and cognitive stimuli signal, namely the same frequency but different phase (SFDP) problem. In this paper, a novel space affine matching feature is presented by introducing the time domain and frequency domain features. The time domain feature is used to discern different stimuli, while the frequency domain feature to eliminate the delay. And then we propose a space affine matching (SAM) algorithm to match fMRI time series by our affine feature, in which a normal vector is estimated using gradient descent to explore the time series matching optimally. The experimental results illustrate that the SAM algorithm is insensitive to the delay between the hemodynamic response signal and the cognitive stimuli signal. Our approach significantly outperforms GLM method while there exists the delay. The approach can help us solve the SFDP problem in fMRI time series matching and thus of great promise to reveal brain dynamics.
Munabi, Ian Guyton; Luboga, Samuel Abilemech; Mirembe, Florence
2015-01-01
Introduction Fetal head descent is used to demonstrate the maternal pelvis capacity to accommodate the fetal head. This is especially important in low resource settings that have high rates of childbirth related maternal deaths and morbidity. This study looked at maternal height and an additional measure, maternal pelvis height, from automotive engineering. The objective of the study was to determine the associations between maternal: height and pelvis height with the rate of fetal head descent in expectant Ugandan mothers. Methods This was a cross sectional study on 1265 singleton mothers attending antenatal clinics at five hospitals in various parts of Uganda. In addition to the routine antenatal examination, each mother had their pelvis height recorded following informed consent. Survival analysis was done using STATA 12. Results It was found that 27% of mothers had fetal head descent with an incident rate of 0.028 per week after the 25th week of pregnancy. Significant associations were observed between the rate of fetal head descent with: maternal height (Adj Haz ratio 0.93 P < 0.01) and maternal pelvis height (Adj Haz ratio 1.15 P < 0.01). Conclusion The significant associations observed between maternal: height and pelvis height with rate of fetal head descent, demonstrate a need for further study of maternal pelvis height as an additional decision support tool for screening mothers in low resource settings. PMID:26918071
A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation
NASA Astrophysics Data System (ADS)
Vergez, Guillaume; Danaila, Ionut; Auliac, Sylvain; Hecht, Frédéric
2016-12-01
We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily code various numerical algorithms. Two robust and optimized numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are used to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models.
Descent theory for semiorthogonal decompositions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elagin, Alexei D
We put forward a method for constructing semiorthogonal decompositions of the derived category of G-equivariant sheaves on a variety X under the assumption that the derived category of sheaves on X admits a semiorthogonal decomposition with components preserved by the action of the group G on X. This method is used to obtain semiorthogonal decompositions of equivariant derived categories for projective bundles and blow-ups with a smooth centre as well as for varieties with a full exceptional collection preserved by the group action. Our main technical tool is descent theory for derived categories. Bibliography: 12 titles.
Atmospheric observations for STS-1 landing
NASA Technical Reports Server (NTRS)
Turner, R. E.; Arnold, J. E.; Wilson, G. S.
1981-01-01
A summary of synoptic weather conditions existing over the western United States is given for the time of shuttle descent into Edwards Air Force Base, California. The techniques and methods used to furnish synoptic atmospheric data at the surface and aloft for flight verification of the STS-1 orbiter during its descent into Edwards Air Force Base are specified. Examples of the upper level data set are given.
The glucokinase mutation p.T206P is common among MODY patients of Jewish Ashkenazi descent.
Gozlan, Yael; Tenenbaum, Ariel; Shalitin, Shlomit; Lebenthal, Yael; Oron, Tal; Cohen, Ohad; Phillip, Moshe; Gat-Yablonski, Galia
2012-09-01
Maturity-onset diabetes of the young (MODY) is characterized by an autosomal dominant mode of inheritance; a primary defect in insulin secretion with non-ketotic hyperglycemia, age of onset under 25 yr; and lack of autoantibodies. Heterozygous mutations in glucokinase (GCK) are associated with mild fasting hyperglycemia and gestational diabetes mellitus while homozygous or compound heterozygous GCK mutations result in permanent neonatal diabetes mellitus. Given that both the Israeli-Arabic and the various Israeli-Jewish communities tend to maintain ethnic seclusion, we speculated that it would be possible to identify a relatively narrow spectrum of mutations in the Israeli population. To characterize the genetic basis of GCK-MODY in the different ethnic groups of the Israeli population. Patients with clinically identified GCK-MODY and their first degree family members. Molecular analysis of GCK was performed on genomic DNA using polymerase chain reaction, denaturing gradient gel electrophoresis (DGGE), and sequencing. Bioinformatic model was preformed using the NEST program. Mutations in GCK were identified in 25 families and were all family-specific, except c.616A>C. p.T206P. This mutation was identified in six unrelated families, all patients from a Jewish-Ashkenazi descent, thus indicating an ethno-genetic correlation. A simple, fast, and relatively cheap DGGE/restriction-digestion assay was developed. The high incidence of the mutant allele in GCK-MODY patients of Jewish-Ashkenazi descent suggests a founder effect. We propose that clinically identified GCK-MODY patients of Jewish-Ashkenazi origin be first tested for this mutation. © 2011 John Wiley & Sons A/S.
Spread of cattle led to the loss of matrilineal descent in Africa: a coevolutionary analysis.
Holden, Clare Janaki; Mace, Ruth
2003-01-01
Matrilineal descent is rare in human societies that keep large livestock. However, this negative correlation does not provide reliable evidence that livestock and descent rules are functionally related, because human cultures are not statistically independent owing to their historical relationships (Galton's problem). We tested the hypothesis that when matrilineal cultures acquire cattle they become patrilineal using a sample of 68 Bantu- and Bantoid-speaking populations from sub-Saharan Africa. We used a phylogenetic comparative method to control for Galton's problem, and a maximum-parsimony Bantu language tree as a model of population history. We tested for coevolution between cattle and descent. We also tested the direction of cultural evolution--were cattle acquired before matriliny was lost? The results support the hypothesis that acquiring cattle led formerly matrilineal Bantu-speaking cultures to change to patrilineal or mixed descent. We discuss possible reasons for matriliny's association with horticulture and its rarity in pastoralist societies. We outline the daughter-biased parental investment hypothesis for matriliny, which is supported by data on sex, wealth and reproductive success from two African societies, the matrilineal Chewa in Malawi and the patrilineal Gabbra in Kenya. PMID:14667331
Fundamental limitations on V/STOL terminal guidance due to aircraft characteristics
NASA Technical Reports Server (NTRS)
Wolkovitch, J.; Lamont, C. W.; Lochtie, D. W.
1971-01-01
A review is given of limitations on approach flight paths of V/STOL aircraft, including limits on descent angle due to maximum drag/lift ratio. A method of calculating maximum drag/lift ratio of tilt-wing and deflected slipstream aircraft is presented. Derivatives and transfer functions for the CL-84 tilt-wing and X-22A tilt-duct aircraft are presented. For the unaugmented CL-84 in steep descents the transfer function relating descent angle to thrust contains a right-half plane zero. Using optimal control theory, it is shown that this zero causes a serious degradation in the accuracy with which steep flight paths can be followed in the presence of gusts.
Optimization of rotational arc station parameter optimized radiation therapy
Dong, P.; Ungun, B.; Boyd, S.; Xing, L.
2016-01-01
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future. PMID:27587028
Optimization of rotational arc station parameter optimized radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, P.; Ungun, B.
Purpose: To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. Methods: The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trappedmore » in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Results: Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. Conclusions: The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.« less
Prichard, David O; Lee, Taehee; Parthasarathy, Gopanandan; Fletcher, Joel G; Zinsmeister, Alan R; Bharucha, Adil E
2017-03-01
Contrary to conventional wisdom, the rectoanal gradient during evacuation is negative in many healthy people, undermining the utility of anorectal high-resolution manometry (HRM) for diagnosing defecatory disorders. We aimed to compare HRM and magnetic resonance imaging (MRI) for assessing rectal evacuation and structural abnormalities. We performed a retrospective analysis of 118 patients (all female; 51 with constipation, 48 with fecal incontinence, and 19 with rectal prolapse; age, 53 ± 1 years) assessed by HRM, the rectal balloon expulsion test (BET), and MRI at Mayo Clinic, Rochester, Minnesota, from February 2011 through March 2013. Thirty healthy asymptomatic women (age, 37 ± 2 years) served as controls. We used principal components analysis of HRM variables to identify rectoanal pressure patterns associated with rectal prolapse and phenotypes of patients with prolapse. Compared with patients with normal findings from the rectal BET, patients with an abnormal BET had lower median rectal pressure (36 vs 22 mm Hg, P = .002), a more negative median rectoanal gradient (-6 vs -29 mm Hg, P = .006) during evacuation, and a lower proportion of evacuation on the basis of MRI analysis (median of 40% vs 80%, P < .0001). A score derived from rectal pressure and anorectal descent during evacuation and a patulous anal canal was associated (P = .005) with large rectoceles (3 cm or larger). A principal component (PC) logistic model discriminated between patients with and without prolapse with 96% accuracy. Among patients with prolapse, there were 2 phenotypes, which were characterized by high (PC1) or low (PC2) anal pressures at rest and squeeze along with higher rectal and anal pressures (PC1) or a higher rectoanal gradient during evacuation (PC2). In a retrospective analysis of patients assessed by HRM, measurements of rectal evacuation by anorectal HRM, BET, and MRI were correlated. HRM alone and together with anorectal descent during evacuation may identify rectal prolapse and large rectoceles, respectively, and also identify unique phenotypes of rectal prolapse. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
Simon, Noah; Friedman, Jerome; Hastie, Trevor; Tibshirani, Rob
2011-03-01
We introduce a pathwise algorithm for the Cox proportional hazards model, regularized by convex combinations of ℓ 1 and ℓ 2 penalties (elastic net). Our algorithm fits via cyclical coordinate descent, and employs warm starts to find a solution along a regularization path. We demonstrate the efficacy of our algorithm on real and simulated data sets, and find considerable speedup between our algorithm and competing methods.
ERIC Educational Resources Information Center
Amoo-Adare, Epifania
This paper is a brief account and argument for using Built Environment Education Workshops (BEEWs) as a data collection method. The research is based on women of African descent and the connections among their social practices, the spaces that generate them and are generated by them, and the language they use to mediate and/or negotiate those…
A theory for the radiation of magnetohydrodynamic surface waves and body waves into the solar corona
NASA Technical Reports Server (NTRS)
Davila, Joseph M.
1988-01-01
The Green's function for the slab coronal hole is obtained explicitly. The Fourier integral representation for the radiated field inside and outside the coronal hole waveguide is obtained. The radiated field outside the coronal hole is calculated using the method of steepest descents. It is shown that the radiated field can be written as the sum of two contributions: (1) a contribution from the integral along the steepest descent path and (2) a contribution from all the poles of the integrand between the path of the original integral and the steepest descent path. The free oscillations of the waveguide can be associated with the pole contributions in the steepest descent representation for the Green's function. These pole contributions are essentially generalized surface waves with a maximum amplitude near the interface which separates the plasma inside the coronal hole from the surrounding background corona. The path contribution to the integral is essentially the power radiated in body waves.
Direct Temperature Measurements during Netlander Descent on Mars
NASA Astrophysics Data System (ADS)
Colombatti, G.; Angrilli, F.; Ferri, F.; Francesconi, A.; Fulchignoni, M.; Lion Stoppato, P. F.; Saggi, B.
1999-09-01
A new design for a platinum thermoresistance temperature sensor has been developed and tested in Earth's atmosphere and stratosphere. It will be one of the sensors equipping the scientific package ATMIS (Atmospheric and Meteorology Instrument System), which will be devoted to the measurement of the meteorological parameters during both the entry/descent phase and the surface phase, aboard the Netlanders. In particular vertical profiles of temperature, density and pressure will allow the resolution of vertical gradients to investigate the atmospheric structure and dynamics. In view of the future missions to Mars, Netlander represents a unique chance to increase significantly the climate record both in time and in space, doubling the current knowledge of the atmospheric parameters. Furthermore is the only opportunity to conduct direct measurement of temperature and pressure (outside the boundary layer of the airbags used for the landing). The temperature sensor proposed is a platinum thermoresistance, enhancement of HASI TEM (Cassini/Huygens Mission); a substantial improvement of the performances, i.e. a faster dynamic response, has been obtained. Two different prototypes of new design sensor have been built, laboratory test are proceeding and the second one has been already flown aboard a stratospheric balloon.
Designing of deployment sequence for braking and drift systems in atmosphere of Mars and Venus
NASA Astrophysics Data System (ADS)
Vorontsov, Victor
2006-07-01
Analysis of project development and space research using contact method, namely, by means of automatic descent modules and balloons shows that designing formation of entry, descent and landing (EDL) sequence and operation in the atmosphere are of great importance. This process starts at the very beginning of designing, has undergone a lot of iterations and influences processing of normal operation results. Along with designing of descent module systems, including systems of braking in the atmosphere, designing of flight operation sequence and trajectories of motion in the atmosphere is performed. As the entire operation sequence and transfer from one phase to another was correctly chosen, the probability of experiment success on the whole and efficiency of application of various systems vary. By now the most extensive experience of Russian specialists in research of terrestrial planets has been gained with the help of automatic interplanetary stations “Mars”, “Venera”, “Vega” which had descent modules and drifting in the atmosphere balloons. Particular interest and complicity of formation of EDL and drift sequence in the atmosphere of these planets arise from radically different operation conditions, in particular, strongly rarefied atmosphere of the one planet and extremely dense atmosphere of another. Consequently, this determines the choice of braking systems and their parameters and method of EDL consequence formation. At the same time there are general fundamental methods and designed research techniques that allowed taking general technical approach to designing of EDL and drift sequence in the atmosphere.
NASA Technical Reports Server (NTRS)
Kemmerly, Guy T.
1990-01-01
A moving-model ground-effect testing method was used to study the influence of rate-of-descent on the aerodynamic characteristics for the F-15 STOL and Maneuver Technology Demonstrator (S/MTD) configuration for both the approach and roll-out phases of landing. The approach phase was modeled for three rates of descent, and the results were compared to the predictions from the F-15 S/MTD simulation data base (prediction based on data obtained in a wind tunnel with zero rate of descent). This comparison showed significant differences due both to the rate of descent in the moving-model test and to the presence of the ground boundary layer in the wind tunnel test. Relative to the simulation data base predictions, the moving-model test showed substantially less lift increase in ground effect, less nose-down pitching moment, and less increase in drag. These differences became more prominent at the larger thrust vector angles. Over the small range of rates of descent tested using the moving-model technique, the effect of rate of descent on longitudinal aerodynamics was relatively constant. The results of this investigation indicate no safety-of-flight problems with the lower jets vectored up to 80 deg on approach. The results also indicate that this configuration could employ a nozzle concept using lower reverser vector angles up to 110 deg on approach if a no-flare approach procedure were adopted and if inlet reingestion does not pose a problem.
Adjoint shape optimization for fluid-structure interaction of ducted flows
NASA Astrophysics Data System (ADS)
Heners, J. P.; Radtke, L.; Hinze, M.; Düster, A.
2018-03-01
Based on the coupled problem of time-dependent fluid-structure interaction, equations for an appropriate adjoint problem are derived by the consequent use of the formal Lagrange calculus. Solutions of both primal and adjoint equations are computed in a partitioned fashion and enable the formulation of a surface sensitivity. This sensitivity is used in the context of a steepest descent algorithm for the computation of the required gradient of an appropriate cost functional. The efficiency of the developed optimization approach is demonstrated by minimization of the pressure drop in a simple two-dimensional channel flow and in a three-dimensional ducted flow surrounded by a thin-walled structure.
Northern Hemisphere Nitrous Oxide Morphology during the 1989 AASE and the 1991-1992 AASE 2 Campaigns
NASA Technical Reports Server (NTRS)
Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan; Chan, K. Roland
1993-01-01
Nitrous oxide vertical profiles and latitudinal distributions for the 1989 AASE and 1992 AASE II northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occurring poleward of the polar jet. The AASE II morphology shows a mid latitude 'surf zone,' characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.
Northern hemisphere nitrous oxide morphology during the 1989 AASE and the 1991-1992 AASE 2 campaigns
NASA Technical Reports Server (NTRS)
Podolske, James R.; Loewenstein, Max; Weaver, Alex; Strahan, Susan E.; Chan, K. Roland
1993-01-01
Nitrous oxide vertical profiles and latitudinal distributions for the 1989 Airborne Antarctic Ozone Experiment (AASE) and 1992 AASE 2 northern polar winters are developed from the ATLAS N2O dataset, using both potential temperature and pressure as vertical coordinates. Morphologies show strong descent occuring poleward of the polar jet. The AASE 2 morphology shows a mid latitude 'surf zone', characterized by strong horizontal mixing, and a horizontal gradient south of 30 deg N due to the sub-tropical jet. These features are similar to those produced by two-dimensional photochemical models which include coupling between transport, radiation, and chemistry.
Atmospheric tides on Venus. III - The planetary boundary layer
NASA Technical Reports Server (NTRS)
Dobrovolskis, A. R.
1983-01-01
Diurnal solar heating of Venus' surface produces variable temperatures, winds, and pressure gradients within a shallow layer at the bottom of the atmosphere. The corresponding asymmetric mass distribution experiences a tidal torque tending to maintain Venus' slow retrograde rotation. It is shown that including viscosity in the boundary layer does not materially affect the balance of torques. On the other hand, friction between the air and ground can reduce the predicted wind speeds from about 5 to about 1 m/sec in the lower atmosphere, more consistent with the observations from Venus landers and descent probes. Implications for aeolian activity on Venus' surface and for future missions are discussed.
Yang, Ping; Ning, Yu; Lei, Xiang; Xu, Bing; Li, Xinyang; Dong, Lizhi; Yan, Hu; Liu, Wenjing; Jiang, Wenhan; Liu, Lei; Wang, Chao; Liang, Xingbo; Tang, Xiaojun
2010-03-29
We present a slab laser amplifier beam cleanup experimental system based on a 39-actuator rectangular piezoelectric deformable mirror. Rather than use a wave-front sensor to measure distortions in the wave-front and then apply a conjugation wave-front for compensating them, the system uses a Stochastic Parallel Gradient Descent algorithm to maximize the power contained within a far-field designated bucket. Experimental results demonstrate that at the output power of 335W, more than 30% energy concentrates in the 1x diffraction-limited area while the beam quality is enhanced greatly.
Quantum generalisation of feedforward neural networks
NASA Astrophysics Data System (ADS)
Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.
2017-09-01
We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.
A hybrid Gerchberg-Saxton-like algorithm for DOE and CGH calculation
NASA Astrophysics Data System (ADS)
Wang, Haichao; Yue, Weirui; Song, Qiang; Liu, Jingdan; Situ, Guohai
2017-02-01
The Gerchberg-Saxton (GS) algorithm is widely used in various disciplines of modern sciences and technologies where phase retrieval is required. However, this legendary algorithm most likely stagnates after a few iterations. Many efforts have been taken to improve this situation. Here we propose to introduce the strategy of gradient descent and weighting technique to the GS algorithm, and demonstrate it using two examples: design of a diffractive optical element (DOE) to achieve off-axis illumination in lithographic tools, and design of a computer generated hologram (CGH) for holographic display. Both numerical simulation and optical experiments are carried out for demonstration.
A novel highly parallel algorithm for linearly unmixing hyperspectral images
NASA Astrophysics Data System (ADS)
Guerra, Raúl; López, Sebastián.; Callico, Gustavo M.; López, Jose F.; Sarmiento, Roberto
2014-10-01
Endmember extraction and abundances calculation represent critical steps within the process of linearly unmixing a given hyperspectral image because of two main reasons. The first one is due to the need of computing a set of accurate endmembers in order to further obtain confident abundance maps. The second one refers to the huge amount of operations involved in these time-consuming processes. This work proposes an algorithm to estimate the endmembers of a hyperspectral image under analysis and its abundances at the same time. The main advantage of this algorithm is its high parallelization degree and the mathematical simplicity of the operations implemented. This algorithm estimates the endmembers as virtual pixels. In particular, the proposed algorithm performs the descent gradient method to iteratively refine the endmembers and the abundances, reducing the mean square error, according with the linear unmixing model. Some mathematical restrictions must be added so the method converges in a unique and realistic solution. According with the algorithm nature, these restrictions can be easily implemented. The results obtained with synthetic images demonstrate the well behavior of the algorithm proposed. Moreover, the results obtained with the well-known Cuprite dataset also corroborate the benefits of our proposal.
Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2012-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.
Identification of a Candidate Gene for Astigmatism
Lopes, Margarida C.; Hysi, Pirro G.; Verhoeven, Virginie J. M.; Macgregor, Stuart; Hewitt, Alex W.; Montgomery, Grant W.; Cumberland, Phillippa; Vingerling, Johannes R.; Young, Terri L.; van Duijn, Cornelia M.; Oostra, Ben; Uitterlinden, Andre G.; Rahi, Jugnoo S.; Mackey, David A.; Klaver, Caroline C. W.; Andrew, Toby; Hammond, Christopher J.
2013-01-01
Purpose. Astigmatism is a common refractive error that reduces vision, where the curvature and refractive power of the cornea in one meridian are less than those of the perpendicular axis. It is a complex trait likely to be influenced by both genetic and environmental factors. Twin studies of astigmatism have found approximately 60% of phenotypic variance is explained by genetic factors. This study aimed to identify susceptibility loci for astigmatism. Methods. We performed a meta-analysis of seven genome-wide association studies that included 22,100 individuals of European descent, where astigmatism was defined as the number of diopters of cylinder prescription, using fixed effect inverse variance-weighted methods. Results. A susceptibility locus was identified with lead single nucleotide polymorphism rs3771395 on chromosome 2p13.3 (meta-analysis, P = 1.97 × 10−7) in the VAX2 gene. VAX2 plays an important role in the development of the dorsoventral axis of the eye. Animal studies have shown a gradient in astigmatism along the vertical plane, with corresponding changes in refraction, particularly in the ventral field. Conclusions. This finding advances the understanding of refractive error, and provides new potential pathways to be evaluated with regard to the development of astigmatism. PMID:23322567
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1971-01-01
The method of steepest descent used in optimizing one-dimensional layered radiation shields is extended to multidimensional, multiconstraint situations. The multidimensional optimization algorithm and equations are developed for the case of a dose constraint in any one direction being dependent only on the shield thicknesses in that direction and independent of shield thicknesses in other directions. Expressions are derived for one-, two-, and three-dimensional cases (one, two, and three constraints). The precedure is applicable to the optimization of shields where there are different dose constraints and layering arrangements in the principal directions.
Li, Qingguo
2017-01-01
With the advancements in micro-electromechanical systems (MEMS) technologies, magnetic and inertial sensors are becoming more and more accurate, lightweight, smaller in size as well as low-cost, which in turn boosts their applications in human movement analysis. However, challenges still exist in the field of sensor orientation estimation, where magnetic disturbance represents one of the obstacles limiting their practical application. The objective of this paper is to systematically analyze exactly how magnetic disturbances affects the attitude and heading estimation for a magnetic and inertial sensor. First, we reviewed four major components dealing with magnetic disturbance, namely decoupling attitude estimation from magnetic reading, gyro bias estimation, adaptive strategies of compensating magnetic disturbance and sensor fusion algorithms. We review and analyze the features of existing methods of each component. Second, to understand each component in magnetic disturbance rejection, four representative sensor fusion methods were implemented, including gradient descent algorithms, improved explicit complementary filter, dual-linear Kalman filter and extended Kalman filter. Finally, a new standardized testing procedure has been developed to objectively assess the performance of each method against magnetic disturbance. Based upon the testing results, the strength and weakness of the existing sensor fusion methods were easily examined, and suggestions were presented for selecting a proper sensor fusion algorithm or developing new sensor fusion method. PMID:29283432
Quantitative assessment in thermal image segmentation for artistic objects
NASA Astrophysics Data System (ADS)
Yousefi, Bardia; Sfarra, Stefano; Maldague, Xavier P. V.
2017-07-01
The application of the thermal and infrared technology in different areas of research is considerably increasing. These applications involve Non-destructive Testing (NDT), Medical analysis (Computer Aid Diagnosis/Detection- CAD), Arts and Archaeology among many others. In the arts and archaeology field, infrared technology provides significant contributions in term of finding defects of possible impaired regions. This has been done through a wide range of different thermographic experiments and infrared methods. The proposed approach here focuses on application of some known factor analysis methods such as standard Non-Negative Matrix Factorization (NMF) optimized by gradient-descent-based multiplicative rules (SNMF1) and standard NMF optimized by Non-negative least squares (NNLS) active-set algorithm (SNMF2) and eigen decomposition approaches such as Principal Component Thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT) to obtain the thermal features. On one hand, these methods are usually applied as preprocessing before clustering for the purpose of segmentation of possible defects. On the other hand, a wavelet based data fusion combines the data of each method with PCT to increase the accuracy of the algorithm. The quantitative assessment of these approaches indicates considerable segmentation along with the reasonable computational complexity. It shows the promising performance and demonstrated a confirmation for the outlined properties. In particular, a polychromatic wooden statue and a fresco were analyzed using the above mentioned methods and interesting results were obtained.
Measurement of lung expansion with computed tomography and comparison with quantitative histology.
Coxson, H O; Mayo, J R; Behzad, H; Moore, B J; Verburgt, L M; Staples, C A; Paré, P D; Hogg, J C
1995-11-01
The total and regional lung volumes were estimated from computed tomography (CT), and the pleural pressure gradient was determined by using the milliliters of gas per gram of tissue estimated from the X-ray attenuation values and the pressure-volume curve of the lung. The data show that CT accurately estimated the volume of the resected lobe but overestimated its weight by 24 +/- 19%. The volume of gas per gram of tissue was less in the gravity-dependent regions due to a pleural pressure gradient of 0.24 +/- 0.08 cmH2O/cm of descent in the thorax. The proportion of tissue to air obtained with CT was similar to that obtained by quantitative histology. We conclude that the CT scan can be used to estimate total and regional lung volumes and that measurements of the proportions of tissue and air within the thorax by CT can be used in conjunction with quantitative histology to evaluate lung structure.
Adaptive neuro fuzzy inference system-based power estimation method for CMOS VLSI circuits
NASA Astrophysics Data System (ADS)
Vellingiri, Govindaraj; Jayabalan, Ramesh
2018-03-01
Recent advancements in very large scale integration (VLSI) technologies have made it feasible to integrate millions of transistors on a single chip. This greatly increases the circuit complexity and hence there is a growing need for less-tedious and low-cost power estimation techniques. The proposed work employs Back-Propagation Neural Network (BPNN) and Adaptive Neuro Fuzzy Inference System (ANFIS), which are capable of estimating the power precisely for the complementary metal oxide semiconductor (CMOS) VLSI circuits, without requiring any knowledge on circuit structure and interconnections. The ANFIS to power estimation application is relatively new. Power estimation using ANFIS is carried out by creating initial FIS modes using hybrid optimisation and back-propagation (BP) techniques employing constant and linear methods. It is inferred that ANFIS with the hybrid optimisation technique employing the linear method produces better results in terms of testing error that varies from 0% to 0.86% when compared to BPNN as it takes the initial fuzzy model and tunes it by means of a hybrid technique combining gradient descent BP and mean least-squares optimisation algorithms. ANFIS is the best suited for power estimation application with a low RMSE of 0.0002075 and a high coefficient of determination (R) of 0.99961.
Ring-push metric learning for person reidentification
NASA Astrophysics Data System (ADS)
He, Botao; Yu, Shaohua
2017-05-01
Person reidentification (re-id) has been widely studied because of its extensive use in video surveillance and forensics applications. It aims to search a specific person among a nonoverlapping camera network, which is highly challenging due to large variations in the cluttered background, human pose, and camera viewpoint. We present a metric learning algorithm for learning a Mahalanobis distance for re-id. Generally speaking, there exist two forces in the conventional metric learning process, one pulling force that pulls points of the same class closer and the other pushing force that pushes points of different classes as far apart as possible. We argue that, when only a limited number of training data are given, forcing interclass distances to be as large as possible may drive the metric to overfit the uninformative part of the images, such as noises and backgrounds. To alleviate overfitting, we propose the ring-push metric learning algorithm. Different from other metric learning methods that only punish too small interclass distances, in the proposed method, both too small and too large inter-class distances are punished. By introducing the generalized logistic function as the loss, we formulate the ring-push metric learning as a convex optimization problem and utilize the projected gradient descent method to solve it. The experimental results on four public datasets demonstrate the effectiveness of the proposed algorithm.
Adaptive State Predictor Based Human Operator Modeling on Longitudinal and Lateral Control
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.; Hempley, Lucas E.
2015-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to categorize these interactions of the pilot with an adaptive controller compensating during control surface failures. A general linear in-parameter model structure is used to represent a pilot. Three different estimation methods are explored. A gradient descent estimator (GDE), a least squares estimator with exponential forgetting (LSEEF), and a least squares estimator with bounded gain forgetting (LSEBGF) used the experiment data to predict pilot stick input. Previous results have found that the GDE and LSEEF methods are fairly accurate in predicting longitudinal stick input from commanded pitch. This paper discusses the accuracy of each of the three methods - GDE, LSEEF, and LSEBGF - to predict both pilot longitudinal and lateral stick input from the flight director's commanded pitch and bank attitudes.
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2012-01-01
High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project will investigate three methods to fabricate heat shield using extraterrestrial regolith.
Predictability of Top of Descent Location for Operational Idle-Thrust Descents
NASA Technical Reports Server (NTRS)
Stell, Laurel L.
2010-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its uncertainty models, commercial flights executed idle-thrust descents at a specified descent speed, and the recorded data included the specified descent speed profile, aircraft weight, and the winds entered into the FMS as well as the radar data. The FMS computed the intended descent path assuming idle thrust after top of descent (TOD), and the controllers and pilots then endeavored to allow the FMS to fly the descent to the meter fix with minimal human intervention. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location were extracted from the radar data. Using approximately 70 descents each in Boeing 757 and Airbus 319/320 aircraft, multiple regression estimated TOD location as a linear function of the available predictive factors. The cruise and meter fix altitudes, descent speed, and wind clearly improve goodness of fit. The aircraft weight improves fit for the Airbus descents but not for the B757. Except for a few statistical outliers, the residuals have absolute value less than 5 nmi. Thus, these predictive factors adequately explain the TOD location, which indicates the data do not include excessive noise.
Burge, Johannes
2017-01-01
Accuracy Maximization Analysis (AMA) is a recently developed Bayesian ideal observer method for task-specific dimensionality reduction. Given a training set of proximal stimuli (e.g. retinal images), a response noise model, and a cost function, AMA returns the filters (i.e. receptive fields) that extract the most useful stimulus features for estimating a user-specified latent variable from those stimuli. Here, we first contribute two technical advances that significantly reduce AMA’s compute time: we derive gradients of cost functions for which two popular estimators are appropriate, and we implement a stochastic gradient descent (AMA-SGD) routine for filter learning. Next, we show how the method can be used to simultaneously probe the impact on neural encoding of natural stimulus variability, the prior over the latent variable, noise power, and the choice of cost function. Then, we examine the geometry of AMA’s unique combination of properties that distinguish it from better-known statistical methods. Using binocular disparity estimation as a concrete test case, we develop insights that have general implications for understanding neural encoding and decoding in a broad class of fundamental sensory-perceptual tasks connected to the energy model. Specifically, we find that non-orthogonal (partially redundant) filters with scaled additive noise tend to outperform orthogonal filters with constant additive noise; non-orthogonal filters and scaled additive noise can interact to sculpt noise-induced stimulus encoding uncertainty to match task-irrelevant stimulus variability. Thus, we show that some properties of neural response thought to be biophysical nuisances can confer coding advantages to neural systems. Finally, we speculate that, if repurposed for the problem of neural systems identification, AMA may be able to overcome a fundamental limitation of standard subunit model estimation. As natural stimuli become more widely used in the study of psychophysical and neurophysiological performance, we expect that task-specific methods for feature learning like AMA will become increasingly important. PMID:28178266
NASA Technical Reports Server (NTRS)
Stone, Ralph W., Jr.; Hultz, Burton E.
1949-01-01
The characteristics of a cargo-dropping device having extensible rotating blades as load-carrying surfaces have been studied in simulated vertical descent in the Langley 20-foot free-spinning tunnel. The investigation included tests to determine the variation in vertical sinking speed with load. A study of the blade characteristics and of the test results indicated a method of dynamically balancing the blades to permit proper functioning of the device.
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces.
Lu, Jun; McFarland, Dennis J; Wolpaw, Jonathan R
2013-02-01
Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an 'adaptive Laplacian (ALAP) filter', can provide better performance for SMR-based BCIs. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces
NASA Astrophysics Data System (ADS)
Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.
2013-02-01
Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.
Sequentially reweighted TV minimization for CT metal artifact reduction.
Zhang, Xiaomeng; Xing, Lei
2013-07-01
Metal artifact reduction has long been an important topic in x-ray CT image reconstruction. In this work, the authors propose an iterative method that sequentially minimizes a reweighted total variation (TV) of the image and produces substantially artifact-reduced reconstructions. A sequentially reweighted TV minimization algorithm is proposed to fully exploit the sparseness of image gradients (IG). The authors first formulate a constrained optimization model that minimizes a weighted TV of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available projection measurements, with image non-negativity enforced. The authors then solve a sequence of weighted TV minimization problems where weights used for the next iteration are computed from the current solution. Using the complete projection data, the algorithm first reconstructs an image from which a binary metal image can be extracted. Forward projection of the binary image identifies metal traces in the projection space. The metal-free background image is then reconstructed from the metal-trace-excluded projection data by employing a different set of weights. Each minimization problem is solved using a gradient method that alternates projection-onto-convex-sets and steepest descent. A series of simulation and experimental studies are performed to evaluate the proposed approach. Our study shows that the sequentially reweighted scheme, by altering a single parameter in the weighting function, flexibly controls the sparsity of the IG and reconstructs artifacts-free images in a two-stage process. It successfully produces images with significantly reduced streak artifacts, suppressed noise and well-preserved contrast and edge properties. The sequentially reweighed TV minimization provides a systematic approach for suppressing CT metal artifacts. The technique can also be generalized to other "missing data" problems in CT image reconstruction.
NASA Astrophysics Data System (ADS)
Mofavvaz, Shirin; Sohrabi, Mahmoud Reza; Nezamzadeh-Ejhieh, Alireza
2017-07-01
In the present study, artificial neural networks (ANNs) and least squares support vector machines (LS-SVM) as intelligent methods based on absorption spectra in the range of 230-300 nm have been used for determination of antihistamine decongestant contents. In the first step, one type of network (feed-forward back-propagation) from the artificial neural network with two different training algorithms, Levenberg-Marquardt (LM) and gradient descent with momentum and adaptive learning rate back-propagation (GDX) algorithm, were employed and their performance was evaluated. The performance of the LM algorithm was better than the GDX algorithm. In the second one, the radial basis network was utilized and results compared with the previous network. In the last one, the other intelligent method named least squares support vector machine was proposed to construct the antihistamine decongestant prediction model and the results were compared with two of the aforementioned networks. The values of the statistical parameters mean square error (MSE), Regression coefficient (R2), correlation coefficient (r) and also mean recovery (%), relative standard deviation (RSD) used for selecting the best model between these methods. Moreover, the proposed methods were compared to the high- performance liquid chromatography (HPLC) as a reference method. One way analysis of variance (ANOVA) test at the 95% confidence level applied to the comparison results of suggested and reference methods that there were no significant differences between them.
A morphological perceptron with gradient-based learning for Brazilian stock market forecasting.
Araújo, Ricardo de A
2012-04-01
Several linear and non-linear techniques have been proposed to solve the stock market forecasting problem. However, a limitation arises from all these techniques and is known as the random walk dilemma (RWD). In this scenario, forecasts generated by arbitrary models have a characteristic one step ahead delay with respect to the time series values, so that, there is a time phase distortion in stock market phenomena reconstruction. In this paper, we propose a suitable model inspired by concepts in mathematical morphology (MM) and lattice theory (LT). This model is generically called the increasing morphological perceptron (IMP). Also, we present a gradient steepest descent method to design the proposed IMP based on ideas from the back-propagation (BP) algorithm and using a systematic approach to overcome the problem of non-differentiability of morphological operations. Into the learning process we have included a procedure to overcome the RWD, which is an automatic correction step that is geared toward eliminating time phase distortions that occur in stock market phenomena. Furthermore, an experimental analysis is conducted with the IMP using four complex non-linear problems of time series forecasting from the Brazilian stock market. Additionally, two natural phenomena time series are used to assess forecasting performance of the proposed IMP with other non financial time series. At the end, the obtained results are discussed and compared to results found using models recently proposed in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Giavedoni, Pietro
2017-03-01
We address the problem of long-time asymptotics for the solutions of the Korteweg-de Vries equation under low regularity assumptions. We consider decaying initial data admitting only a finite number of moments. For the so-called ‘soliton region’, an improved asymptotic estimate is provided, in comparison with the one in Grunert and Teschl (2009 Math. Phys. Anal. Geom. 12 287-324). Our analysis is based on the dbar steepest descent method proposed by Miller and McLaughlin. Dedicated to Dora, Paolo and Sanja, with deep gratitude for their love and support.
Degni, F; Koivusilta, L; Ojanlatva, A
2006-09-01
To assess attitudes towards and perceptions about contraceptive use among married refugee women of Somali descent living in Finland. A sample of 100 married refugee women of Somali descent (18-50 years of age) were invited to participate in a study on contraceptive use in Finland (30 women refused). Qualitative and quantitative methods were used to collect the data. Questionnaire of the first data set was written in the Somali language. Interviews were conducted in the Somali language. The attitudes and opinions of these women towards contraceptive use (73% did not use contraceptives, 27% did use them) were connected with religious beliefs and issues involving marital relations. Religious or gender issues did not seem to influence those who used contraception. The findings indicated that the majority of the married refugee women of Somali descent living in Finland did not use contraception. The process of starting the use of contraception was possible because of an access to good reproductive health care and family planning services, changes in life situations, and adaptations to Finnish social and cultural norms.
Modeling level change in Lake Urmia using hybrid artificial intelligence approaches
NASA Astrophysics Data System (ADS)
Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali
2017-06-01
The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.
Agyemang, Charles; Addo, Juliet; Bhopal, Raj; de Graft Aikins, Ama; Stronks, Karien
2009-01-01
Background Most European countries are ethnically and culturally diverse. Globally, cardiovascular disease (CVD) is the leading cause of death. The major risk factors for CVD have been well established. This picture holds true for all regions of the world and in different ethnic groups. However, the prevalence of CVD and related risk factors vary among ethnic groups. Methods This article provides a review of current understanding of the epidemiology of vascular disease, principally coronary heart disease (CHD), stroke and related risk factors among populations of Sub-Sahara African descent (henceforth, African descent) in comparison with the European populations in Europe. Results Compared with European populations, populations of African descent have an increased risk of stroke, whereas CHD is less common. They also have higher rates of hypertension and diabetes than European populations. Obesity is highly prevalent, but smoking rate is lower among African descent women. Older people of African descent have more favourable lipid profile and dietary habits than their European counterparts. Alcohol consumption is less common among populations of African descent. The rate of physical activity differs between European countries. Dutch African-Suriname men and women are less physically active than the White-Dutch whereas British African women are more physically active than women in the general population. Literature on psychosocial stress shows inconsistent results. Conclusion Hypertension and diabetes are highly prevalent among African populations, which may explain their high rate of stroke in Europe. The relatively low rate of CHD may be explained by the low rates of other risk factors including a more favourable lipid profile and the low prevalence of smoking. The risk factors are changing, and on the whole, getting worse especially among African women. Cohort studies and clinical trials are therefore needed among these groups to determine the relative contribution of vascular risk factors, and to help guide the prevention efforts. There is a clear need for intervention studies among these populations in Europe. PMID:19671137
NASA Astrophysics Data System (ADS)
Ryan, Niall J.; Kinnison, Douglas E.; Garcia, Rolando R.; Hoffmann, Christoph G.; Palm, Mathias; Raffalski, Uwe; Notholt, Justus
2018-02-01
We investigate the reliability of using trace gas measurements from remote sensing instruments to infer polar atmospheric descent rates during winter within 46-86 km altitude. Using output from the Specified Dynamics Whole Atmosphere Community Climate Model (SD-WACCM) between 2008 and 2014, tendencies of carbon monoxide (CO) volume mixing ratios (VMRs) are used to assess a common assumption of dominant vertical advection of tracers during polar winter. The results show that dynamical processes other than vertical advection are not negligible, meaning that the transport rates derived from trace gas measurements do not represent the mean descent of the atmosphere. The relative importance of vertical advection is lessened, and exceeded by other processes, during periods directly before and after a sudden stratospheric warming, mainly due to an increase in eddy transport. It was also found that CO chemistry cannot be ignored in the mesosphere due to the night-time layer of OH at approximately 80 km altitude. CO VMR profiles from the Kiruna Microwave Radiometer and the Microwave Limb Sounder were compared to SD-WACCM output, and show good agreement on daily and seasonal timescales. SD-WACCM CO profiles are combined with the CO tendencies to estimate errors involved in calculating the mean descent of the atmosphere from remote sensing measurements. The results indicate errors on the same scale as the calculated descent rates, and that the method is prone to a misinterpretation of the direction of air motion. The true
rate of atmospheric descent is seen to be masked by processes, other than vertical advection, that affect CO. We suggest an alternative definition of the rate calculated using remote sensing measurements: not as the mean descent of the atmosphere, but as an effective rate of vertical transport for the trace gas under observation.
Using Riemannian geometry to obtain new results on Dikin and Karmarkar methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliveira, P.; Joao, X.; Piaui, T.
1994-12-31
We are motivated by a 1990 Karmarkar paper on Riemannian geometry and Interior Point Methods. In this talk we show 3 results. (1) Karmarkar direction can be derived from the Dikin one. This is obtained by constructing a certain Z(x) representation of the null space of the unitary simplex (e, x) = 1; then the projective direction is the image under Z(x) of the affine-scaling one, when it is restricted to that simplex. (2) Second order information on Dikin and Karmarkar methods. We establish computable Hessians for each of the metrics corresponding to both directions, thus permitting the generation ofmore » {open_quotes}second order{close_quotes} methods. (3) Dikin and Karmarkar geodesic descent methods. For those directions, we make computable the theoretical Luenberger geodesic descent method, since we are able to explicit very accurate expressions of the corresponding geodesics. Convergence results are given.« less
Zheng, Shiqi; Tang, Xiaoqi; Song, Bao; Lu, Shaowu; Ye, Bosheng
2013-07-01
In this paper, a stable adaptive PI control strategy based on the improved just-in-time learning (IJITL) technique is proposed for permanent magnet synchronous motor (PMSM) drive. Firstly, the traditional JITL technique is improved. The new IJITL technique has less computational burden and is more suitable for online identification of the PMSM drive system which is highly real-time compared to traditional JITL. In this way, the PMSM drive system is identified by IJITL technique, which provides information to an adaptive PI controller. Secondly, the adaptive PI controller is designed in discrete time domain which is composed of a PI controller and a supervisory controller. The PI controller is capable of automatically online tuning the control gains based on the gradient descent method and the supervisory controller is developed to eliminate the effect of the approximation error introduced by the PI controller upon the system stability in the Lyapunov sense. Finally, experimental results on the PMSM drive system show accurate identification and favorable tracking performance. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Coordinated control system modelling of ultra-supercritical unit based on a new T-S fuzzy structure.
Hou, Guolian; Du, Huan; Yang, Yu; Huang, Congzhi; Zhang, Jianhua
2018-03-01
The thermal power plant, especially the ultra-supercritical unit is featured with severe nonlinearity, strong multivariable coupling. In order to deal with these difficulties, it is of great importance to build an accurate and simple model of the coordinated control system (CCS) in the ultra-supercritical unit. In this paper, an improved T-S fuzzy model identification approach is proposed. First of all, the k-means++ algorithm is employed to identify the premise parameters so as to guarantee the number of fuzzy rules. Then, the local linearized models are determined by using the incremental historical data around the cluster centers, which are obtained via the stochastic gradient descent algorithm with momentum and variable learning rate. Finally, with the proposed method, the CCS model of a 1000 MW USC unit in Tai Zhou power plant is developed. The effectiveness of the proposed approach is validated by the given extensive simulation results, and it can be further employed to design the overall advanced controllers for the CCS in an USC unit. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Supervised Learning Based on Temporal Coding in Spiking Neural Networks.
Mostafa, Hesham
2017-08-01
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input-output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
Multi-focus image fusion with the all convolutional neural network
NASA Astrophysics Data System (ADS)
Du, Chao-ben; Gao, She-sheng
2018-01-01
A decision map contains complete and clear information about the image to be fused, which is crucial to various image fusion issues, especially multi-focus image fusion. However, in order to get a satisfactory image fusion effect, getting a decision map is very necessary and usually difficult to finish. In this letter, we address this problem with convolutional neural network (CNN), aiming to get a state-of-the-art decision map. The main idea is that the max-pooling of CNN is replaced by a convolution layer, the residuals are propagated backwards by gradient descent, and the training parameters of the individual layers of the CNN are updated layer by layer. Based on this, we propose a new all CNN (ACNN)-based multi-focus image fusion method in spatial domain. We demonstrate that the decision map obtained from the ACNN is reliable and can lead to high-quality fusion results. Experimental results clearly validate that the proposed algorithm can obtain state-of-the-art fusion performance in terms of both qualitative and quantitative evaluations.
Similarity-based Regularized Latent Feature Model for Link Prediction in Bipartite Networks.
Wang, Wenjun; Chen, Xue; Jiao, Pengfei; Jin, Di
2017-12-05
Link prediction is an attractive research topic in the field of data mining and has significant applications in improving performance of recommendation system and exploring evolving mechanisms of the complex networks. A variety of complex systems in real world should be abstractly represented as bipartite networks, in which there are two types of nodes and no links connect nodes of the same type. In this paper, we propose a framework for link prediction in bipartite networks by combining the similarity based structure and the latent feature model from a new perspective. The framework is called Similarity Regularized Nonnegative Matrix Factorization (SRNMF), which explicitly takes the local characteristics into consideration and encodes the geometrical information of the networks by constructing a similarity based matrix. We also develop an iterative scheme to solve the objective function based on gradient descent. Extensive experiments on a variety of real world bipartite networks show that the proposed framework of link prediction has a more competitive, preferable and stable performance in comparison with the state-of-art methods.
NASA Astrophysics Data System (ADS)
Niu, Chaojun; Han, Xiang'e.
2015-10-01
Adaptive optics (AO) technology is an effective way to alleviate the effect of turbulence on free space optical communication (FSO). A new adaptive compensation method can be used without a wave-front sensor. Artificial bee colony algorithm (ABC) is a population-based heuristic evolutionary algorithm inspired by the intelligent foraging behaviour of the honeybee swarm with the advantage of simple, good convergence rate, robust and less parameter setting. In this paper, we simulate the application of the improved ABC to correct the distorted wavefront and proved its effectiveness. Then we simulate the application of ABC algorithm, differential evolution (DE) algorithm and stochastic parallel gradient descent (SPGD) algorithm to the FSO system and analyze the wavefront correction capabilities by comparison of the coupling efficiency, the error rate and the intensity fluctuation in different turbulence before and after the correction. The results show that the ABC algorithm has much faster correction speed than DE algorithm and better correct ability for strong turbulence than SPGD algorithm. Intensity fluctuation can be effectively reduced in strong turbulence, but not so effective in week turbulence.
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.
Regolith-Derived Heat Shield for Planetary Body Entry and Descent System with In-Situ Fabrication
NASA Technical Reports Server (NTRS)
Hogue, Michael D.; Mueller, Robert P.; Sibille, Laurent; Hintze, Paul E.; Rasky, Daniel J.
2012-01-01
High-mass planetary surface access is one of NASA's Grand Challenges involving entry, descent, and landing (EDL). Heat shields fabricated in-situ can provide a thermal protection system for spacecraft that routinely enter a planetary atmosphere. Fabricating the heat shield from extraterrestrial regolith will avoid the costs of launching the heat shield mass from Earth. This project investigated three methods to fabricate heat shield using extraterrestrial regolith and performed preliminary work on mission architectures.
Jankovic, Marko; Ogawa, Hidemitsu
2004-10-01
Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.
CP decomposition approach to blind separation for DS-CDMA system using a new performance index
NASA Astrophysics Data System (ADS)
Rouijel, Awatif; Minaoui, Khalid; Comon, Pierre; Aboutajdine, Driss
2014-12-01
In this paper, we present a canonical polyadic (CP) tensor decomposition isolating the scaling matrix. This has two major implications: (i) the problem conditioning shows up explicitly and could be controlled through a constraint on the so-called coherences and (ii) a performance criterion concerning the factor matrices can be exactly calculated and is more realistic than performance metrics used in the literature. Two new algorithms optimizing the CP decomposition based on gradient descent are proposed. This decomposition is illustrated by an application to direct-sequence code division multiplexing access (DS-CDMA) systems; computer simulations are provided and demonstrate the good behavior of these algorithms, compared to others in the literature.
2016-01-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel. PMID:27493559
Atrioventricular nonuniformity of pericardial constraint.
Hamilton, Douglas R; Sas, Rozsa; Tyberg, John V
2004-10-01
Physiologists and clinicians commonly refer to "pressure" as a measure of the constraining effects of the pericardium; however, "pericardial pressure" is really a local measurement of epicardial radial stress. During diastole, from the bottom of the y descent to the beginning of the a wave, pericardial pressure over the right atrium (P(pRA)) is approximately equal to that over the right ventricle (P(pRV)). However, in systole, during the interval between the bottom of the x descent and the peak of the v wave, these two pericardial pressures appear to be completely decoupled in that P(pRV) decreases, whereas P(pRA) remains constant or increases. This decoupling indicates considerable mechanical independence between the RA and RV during systole. That is, RV systolic emptying lowers P(pRV), but P(pRA) continues to increase, suggesting that the relation of the pericardium to the RA must allow effective constraint, even though the pericardium over the RV is simultaneously slack. In conclusion, we measured the pericardial pressure responsible for the previously reported nonuniformity of pericardial strain. P(pRA) and P(pRV) are closely coupled during diastole, but during systole they become decoupled. Systolic nonuniformity of pericardial constraint may augment the atrioventricular valve-opening pressure gradient in early diastole and, so, affect ventricular filling.
Flight Management System Execution of Idle-Thrust Descents in Operations
NASA Technical Reports Server (NTRS)
Stell, Laurel L.
2011-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.
Cancer survival among children of Turkish descent in Germany 1980–2005: a registry-based analysis
Spix, Claudia; Spallek, Jacob; Kaatsch, Peter; Razum, Oliver; Zeeb, Hajo
2008-01-01
Background Little is known about the effect of migrant status on childhood cancer survival. We studied cancer survival among children of Turkish descent in the German Cancer Childhood Registry, one of the largest childhood cancer registries worldwide. Methods We identified children of Turkish descent among cancer cases using a name-based approach. We compared 5-year survival probabilities of Turkish and other children in three time periods of diagnosis (1980–87, 1988–95, 1996–2005) using the Kaplan-Meier method and log-rank tests. Results The 5-year survival probability for all cancers among 1774 cases of Turkish descent (4.76% of all 37.259 cases) was 76.9% compared to 77.6% in the comparison group (all other cases; p = 0.15). We found no age- or sex-specific survival differences (p-values between p = 0.18 and p = 0.90). For the period 1980–87, the 5-year survival probability among Turkish children with lymphoid leukaemia was significantly lower (62% versus 75.8%; p < 0.0001), this remains unexplained. For more recently diagnosed leukaemias, we saw no survival differences for Turkish and non-Turkish children. Conclusion Our results suggest that nowadays Turkish migrant status has no bearing on the outcome of childhood cancer therapies in Germany. The inclusion of currently more than 95% of all childhood cancer cases in standardised treatment protocols is likely to contribute to this finding. PMID:19040749
NASA Astrophysics Data System (ADS)
Pinson, Robin Marie
Mission proposals that land spacecraft on asteroids are becoming increasingly popular. However, in order to have a successful mission the spacecraft must reliably and softly land at the intended landing site with pinpoint precision. The problem under investigation is how to design a propellant (fuel) optimal powered descent trajectory that can be quickly computed onboard the spacecraft, without interaction from ground control. The goal is to autonomously design the optimal powered descent trajectory onboard the spacecraft immediately prior to the descent burn for use during the burn. Compared to a planetary powered landing problem, the challenges that arise from designing an asteroid powered descent trajectory include complicated nonlinear gravity fields, small rotating bodies, and low thrust vehicles. The nonlinear gravity fields cannot be represented by a constant gravity model nor a Newtonian model. The trajectory design algorithm needs to be robust and efficient to guarantee a designed trajectory and complete the calculations in a reasonable time frame. This research investigates the following questions: Can convex optimization be used to design the minimum propellant powered descent trajectory for a soft landing on an asteroid? Is this method robust and reliable to allow autonomy onboard the spacecraft without interaction from ground control? This research designed a convex optimization based method that rapidly generates the propellant optimal asteroid powered descent trajectory. The solution to the convex optimization problem is the thrust magnitude and direction, which designs and determines the trajectory. The propellant optimal problem was formulated as a second order cone program, a subset of convex optimization, through relaxation techniques by including a slack variable, change of variables, and incorporation of the successive solution method. Convex optimization solvers, especially second order cone programs, are robust, reliable, and are guaranteed to find the global minimum provided one exists. In addition, an outer optimization loop using Brent's method determines the optimal flight time corresponding to the minimum propellant usage over all flight times. Inclusion of additional trajectory constraints, solely vertical motion near the landing site and glide slope, were evaluated. Through a theoretical proof involving the Minimum Principle from Optimal Control Theory and the Karush-Kuhn-Tucker conditions it was shown that the relaxed problem is identical to the original problem at the minimum point. Therefore, the optimal solution of the relaxed problem is an optimal solution of the original problem, referred to as lossless convexification. A key finding is that this holds for all levels of gravity model fidelity. The designed thrust magnitude profiles were the bang-bang predicted by Optimal Control Theory. The first high fidelity gravity model employed was the 2x2 spherical harmonics model assuming a perfect triaxial ellipsoid and placement of the coordinate frame at the asteroid's center of mass and aligned with the semi-major axes. The spherical harmonics model is not valid inside the Brillouin sphere and this becomes relevant for irregularly shaped asteroids. Then, a higher fidelity model was implemented combining the 4x4 spherical harmonics gravity model with the interior spherical Bessel gravity model. All gravitational terms in the equations of motion are evaluated with the position vector from the previous iteration, creating the successive solution method. Methodology success was shown by applying the algorithm to three triaxial ellipsoidal asteroids with four different rotation speeds using the 2x2 gravity model. Finally, the algorithm was tested using the irregularly shaped asteroid, Castalia.
NASA Astrophysics Data System (ADS)
Shahri, Abbas; Mousavinaseri, Mahsasadat; Naderi, Shima; Espersson, Maria
2015-04-01
Application of Artificial Neural Networks (ANNs) in many areas of engineering, in particular to geotechnical engineering problems such as site characterization has demonstrated some degree of success. The present paper aims to evaluate the feasibility of several various types of ANN models to predict the clay sensitivity of soft clays form piezocone penetration test data (CPTu). To get the aim, a research database of CPTu data of 70 test points around the Göta River near the Lilli Edet in the southwest of Sweden which is a high prone land slide area were collected and considered as input for ANNs. For training algorithms the quick propagation, conjugate gradient descent, quasi-Newton, limited memory quasi-Newton and Levenberg-Marquardt were developed tested and trained using the CPTu data to provide a comparison between the results of field investigation and ANN models to estimate the clay sensitivity. The reason of using the clay sensitivity parameter in this study is due to its relation to landslides in Sweden.A special high sensitive clay namely quick clay is considered as the main responsible for experienced landslides in Sweden which has high sensitivity and prone to slide. The training and testing program was started with 3-2-1 ANN architecture structure. By testing and trying several various architecture structures and changing the hidden layer in order to have a higher output resolution the 3-4-4-3-1 architecture structure for ANN in this study was confirmed. The tested algorithm showed that increasing the hidden layers up to 4 layers in ANN can improve the results and the 3-4-4-3-1 architecture structure ANNs for prediction of clay sensitivity represent reliable and reasonable response. The obtained results showed that the conjugate gradient descent algorithm with R2=0.897 has the best performance among the tested algorithms. Keywords: clay sensitivity, landslide, Artificial Neural Network
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress
2014-01-01
Background Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. Results M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. Conclusions MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress. PMID:24383424
Efficacy of Metarhizium anisopliae isolate MAX-2 from Shangri-la, China under desiccation stress.
Chen, Zi-Hong; Xu, Ling; Yang, Feng-lian; Ji, Guang-Hai; Yang, Jing; Wang, Jian-Yun
2014-01-03
Metarhizium anisopliae, a soil-borne entomopathogen found worldwide, is an interesting fungus for biological control. However, its efficacy in the fields is significantly affected by environmental conditions, particularly moisture. To overcome the weakness of Metarhizium and determine its isolates with antistress capacity, the efficacies of four M. anisopliae isolates, which were collected from arid regions of Yunnan Province in China during the dry season, were determined at different moisture levels, and the efficacy of the isolate MAX-2 from Shangri-la under desiccation stress was evaluated at low moisture level. M. anisopliae isolates MAX-2, MAC-6, MAL-1, and MAQ-28 showed gradient descent efficacies against sterile Tenebrio molitor larvae, and gradient descent capacities against desiccation with the decrease in moisture levels. The efficacy of MAX-2 showed no significant differences at 35% moisture level than those of the other isolates. However, significant differences were found at 8% to 30% moisture levels. The efficacies of all isolates decreased with the decrease in moisture levels. MAX-2 was relatively less affected by desiccation stress. Its efficacy was almost unaffected by the decrease at moisture levels > 25%, but slowly decreased at moisture levels < 25%. By contrast, the efficacies of other isolates rapidly decreased with the decrease in moisture levels. MAX-2 caused different infection characteristics on T. molitor larvae under desiccation stress and in wet microhabitat. Local black patches were found on the cuticles of the insects, and the cadavers dried without fungal growth under desiccation stress. However, dark black internodes and fungal growth were found after death of the insects in the wet microhabitat. MAX-2 showed significantly higher efficacy and superior antistress capacity than the other isolates under desiccation stress. The infection of sterile T. molitor larvae at low moisture level constituted a valid laboratory bioassay system in evaluating M. anisopliae efficacy under desiccation stress.
NASA Astrophysics Data System (ADS)
Xu, Rui; Zhou, Miaolei
2018-04-01
Piezo-actuated stages are widely applied in the high-precision positioning field nowadays. However, the inherent hysteresis nonlinearity in piezo-actuated stages greatly deteriorates the positioning accuracy of piezo-actuated stages. This paper first utilizes a nonlinear autoregressive moving average with exogenous inputs (NARMAX) model based on the Pi-sigma fuzzy neural network (PSFNN) to construct an online rate-dependent hysteresis model for describing the hysteresis nonlinearity in piezo-actuated stages. In order to improve the convergence rate of PSFNN and modeling precision, we adopt the gradient descent algorithm featuring three different learning factors to update the model parameters. The convergence of the NARMAX model based on the PSFNN is analyzed effectively. To ensure that the parameters can converge to the true values, the persistent excitation condition is considered. Then, a self-adaption compensation controller is designed for eliminating the hysteresis nonlinearity in piezo-actuated stages. A merit of the proposed controller is that it can directly eliminate the complex hysteresis nonlinearity in piezo-actuated stages without any inverse dynamic models. To demonstrate the effectiveness of the proposed model and control methods, a set of comparative experiments are performed on piezo-actuated stages. Experimental results show that the proposed modeling and control methods have excellent performance.
Kumar, M Senthil; Schwartz, Russell
2010-12-09
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
NASA Astrophysics Data System (ADS)
Senthil Kumar, M.; Schwartz, Russell
2010-12-01
Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.
Liu, Yan-Jun; Tong, Shaocheng
2016-11-01
In this paper, we propose an optimal control scheme-based adaptive neural network design for a class of unknown nonlinear discrete-time systems. The controlled systems are in a block-triangular multi-input-multi-output pure-feedback structure, i.e., there are both state and input couplings and nonaffine functions to be included in every equation of each subsystem. The design objective is to provide a control scheme, which not only guarantees the stability of the systems, but also achieves optimal control performance. The main contribution of this paper is that it is for the first time to achieve the optimal performance for such a class of systems. Owing to the interactions among subsystems, making an optimal control signal is a difficult task. The design ideas are that: 1) the systems are transformed into an output predictor form; 2) for the output predictor, the ideal control signal and the strategic utility function can be approximated by using an action network and a critic network, respectively; and 3) an optimal control signal is constructed with the weight update rules to be designed based on a gradient descent method. The stability of the systems can be proved based on the difference Lyapunov method. Finally, a numerical simulation is given to illustrate the performance of the proposed scheme.
Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2006-09-01
This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.
Smoothing of cost function leads to faster convergence of neural network learning
NASA Astrophysics Data System (ADS)
Xu, Li-Qun; Hall, Trevor J.
1994-03-01
One of the major problems in supervised learning of neural networks is the inevitable local minima inherent in the cost function f(W,D). This often makes classic gradient-descent-based learning algorithms that calculate the weight updates for each iteration according to (Delta) W(t) equals -(eta) (DOT)$DELwf(W,D) powerless. In this paper we describe a new strategy to solve this problem, which, adaptively, changes the learning rate and manipulates the gradient estimator simultaneously. The idea is to implicitly convert the local- minima-laden cost function f((DOT)) into a sequence of its smoothed versions {f(beta t)}Ttequals1, which, subject to the parameter (beta) t, bears less details at time t equals 1 and gradually more later on, the learning is actually performed on this sequence of functionals. The corresponding smoothed global minima obtained in this way, {Wt}Ttequals1, thus progressively approximate W-the desired global minimum. Experimental results on a nonconvex function minimization problem and a typical neural network learning task are given, analyses and discussions of some important issues are provided.
A hybrid neural network model for noisy data regression.
Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M
2004-04-01
A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.
Adaptation to Space: An Introduction
NASA Technical Reports Server (NTRS)
Hargens, Alan R.
1995-01-01
The cardiovascular and musculoskeletal systems are normally exposed to gradients of blood pressure and weight on Earth. These gradients increase blood pressure and tissue weight in dependent tissues of the body. Exposure to actual and simulated microgravity causes blood and tissue fluid to shift from the legs to the head. Studies of humans in space have documented facial edema, space motion sickness, decreased plasma volume, muscle atrophy, and loss of bone strength. Return of astronauts to Earth is accompanied by orthostatic intolerance, decreased neuromuscular coordination, and reduced exercise capacity. These factors decrease performance during descent from orbit and increase risk during emergency egress from the spacecraft. Models of simulated microgravity include 6 deg head-down tilt, immersion, and prolonged horizontal bedrest. Head-down tilt is the most accepted model and studies using this model of up to one year have been performed in Russia. Animal models which offer clear insights into the role of gravity on vertebrates include the developing giraffe and snakes from various habitats. Finally, possible countermeasures to speed readaptation of astronauts to gravity after prolonged space flight will be discussed.
One Giant Leap for Categorizers: One Small Step for Categorization Theory
Smith, J. David; Ell, Shawn W.
2015-01-01
We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587
3D craniofacial registration using thin-plate spline transform and cylindrical surface projection
Chen, Yucong; Deng, Qingqiong; Duan, Fuqing
2017-01-01
Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate. PMID:28982117
3D craniofacial registration using thin-plate spline transform and cylindrical surface projection.
Chen, Yucong; Zhao, Junli; Deng, Qingqiong; Duan, Fuqing
2017-01-01
Craniofacial registration is used to establish the point-to-point correspondence in a unified coordinate system among human craniofacial models. It is the foundation of craniofacial reconstruction and other craniofacial statistical analysis research. In this paper, a non-rigid 3D craniofacial registration method using thin-plate spline transform and cylindrical surface projection is proposed. First, the gradient descent optimization is utilized to improve a cylindrical surface fitting (CSF) for the reference craniofacial model. Second, the thin-plate spline transform (TPST) is applied to deform a target craniofacial model to the reference model. Finally, the cylindrical surface projection (CSP) is used to derive the point correspondence between the reference and deformed target models. To accelerate the procedure, the iterative closest point ICP algorithm is used to obtain a rough correspondence, which can provide a possible intersection area of the CSP. Finally, the inverse TPST is used to map the obtained corresponding points from the deformed target craniofacial model to the original model, and it can be realized directly by the correspondence between the original target model and the deformed target model. Three types of registration, namely, reflexive, involutive and transitive registration, are carried out to verify the effectiveness of the proposed craniofacial registration algorithm. Comparison with the methods in the literature shows that the proposed method is more accurate.
An analytical SMASH procedure (ASP) for sensitivity-encoded MRI.
Lee, R F; Westgate, C R; Weiss, R G; Bottomley, P A
2000-05-01
The simultaneous acquisition of spatial harmonics (SMASH) method of imaging with detector arrays can reduce the number of phase-encoding steps, and MRI scan time several-fold. The original approach utilized numerical gradient-descent fitting with the coil sensitivity profiles to create a set of composite spatial harmonics to replace the phase-encoding steps. Here, an analytical approach for generating the harmonics is presented. A transform is derived to project the harmonics onto a set of sensitivity profiles. A sequence of Fourier, Hilbert, and inverse Fourier transform is then applied to analytically eliminate spatially dependent phase errors from the different coils while fully preserving the spatial-encoding. By combining the transform and phase correction, the original numerical image reconstruction method can be replaced by an analytical SMASH procedure (ASP). The approach also allows simulation of SMASH imaging, revealing a criterion for the ratio of the detector sensitivity profile width to the detector spacing that produces optimal harmonic generation. When detector geometry is suboptimal, a group of quasi-harmonics arises, which can be corrected and restored to pure harmonics. The simulation also reveals high-order harmonic modulation effects, and a demodulation procedure is presented that enables application of ASP to a large numbers of detectors. The method is demonstrated on a phantom and humans using a standard 4-channel phased-array MRI system. Copyright 2000 Wiley-Liss, Inc.
Stable modeling based control methods using a new RBF network.
Beyhan, Selami; Alci, Musa
2010-10-01
This paper presents a novel model with radial basis functions (RBFs), which is applied successively for online stable identification and control of nonlinear discrete-time systems. First, the proposed model is utilized for direct inverse modeling of the plant to generate the control input where it is assumed that inverse plant dynamics exist. Second, it is employed for system identification to generate a sliding-mode control input. Finally, the network is employed to tune PID (proportional + integrative + derivative) controller parameters automatically. The adaptive learning rate (ALR), which is employed in the gradient descent (GD) method, provides the global convergence of the modeling errors. Using the Lyapunov stability approach, the boundedness of the tracking errors and the system parameters are shown both theoretically and in real time. To show the superiority of the new model with RBFs, its tracking results are compared with the results of a conventional sigmoidal multi-layer perceptron (MLP) neural network and the new model with sigmoid activation functions. To see the real-time capability of the new model, the proposed network is employed for online identification and control of a cascaded parallel two-tank liquid-level system. Even though there exist large disturbances, the proposed model with RBFs generates a suitable control input to track the reference signal better than other methods in both simulations and real time. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Robust Gaussian Graphical Modeling via l1 Penalization
Sun, Hokeun; Li, Hongzhe
2012-01-01
Summary Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l1 penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso. PMID:23020775
Jung, Myung-Chul; Chung, Jun Young; Son, Kwang-Hyun; Wang, Hui; Hwang, Jaejin; Kim, Jay Joong; Kim, Joon Ho; Min, Byoung-Hyun
2014-08-01
The purpose of this study was to compare knee kinematics during stair walking in patients with simultaneous total knee arthroplasty (TKA) and unicompartmental knee arthroplasties (UKA). It was hypothesized that UKA would reproduce more normalized knee kinematics than TKA during stair ascent and descent. Six patients who received UKA in one knee and TKA in the other knee were included in the study. For this study, a four-step staircase was assembled with two force platforms being positioned at the centre of the second and third steps. Each patient was attached with 16 reflective markers at both lower extremities and was asked to perform five roundtrip trials of stair climbing. Kinematic parameters including stance duration, knee angle, vertical ground reaction force (GRF), joint reaction force, and moments were obtained and analysed using a10-camera motion system (VICON, Oxford, UK). Nonparametric Friedman test was used to compare the results between two arthroplasty methods and between stair ascent and descent. Compared to TKA, UKA knees exhibited significantly greater degree of rotation in transverse planes (5.0 degrees during ascent and 6.0 degrees during descent on average), but showed no difference in terms of the other parameters. When comparing the results during stair ascent with descent, overall greater knee angle, vertical GRF, joint reaction force, and moment were observed during stair descent. Both UKA and TKA knees have shown overall similar knee kinematics, though UKA knee may allow greater degree of rotation freedom, which resembles normal knee kinematics during stair walking.
NASA Technical Reports Server (NTRS)
Castles, Walter, Jr.; Gray, Robin B.
1951-01-01
The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.
NASA Technical Reports Server (NTRS)
Castles, Walter, Jr; Gray, Robin B
1951-01-01
The empirical relation between the induced velocity, thrust, and rate of vertical descent of a helicopter rotor was calculated from wind tunnel force tests on four model rotors by the application of blade-element theory to the measured values of the thrust, torque, blade angle, and equivalent free-stream rate of descent. The model tests covered the useful range of C(sub t)/sigma(sub e) (where C(sub t) is the thrust coefficient and sigma(sub e) is the effective solidity) and the range of vertical descent from hovering to descent velocities slightly greater than those for autorotation. The three bladed models, each of which had an effective solidity of 0.05 and NACA 0015 blade airfoil sections, were as follows: (1) constant-chord, untwisted blades of 3-ft radius; (2) untwisted blades of 3-ft radius having a 3/1 taper; (3) constant-chord blades of 3-ft radius having a linear twist of 12 degrees (washout) from axis of rotation to tip; and (4) constant-chord, untwisted blades of 2-ft radius. Because of the incorporation of a correction for blade dynamic twist and the use of a method of measuring the approximate equivalent free-stream velocity, it is believed that the data obtained from this program are more applicable to free-flight calculations than the data from previous model tests.
Smart-Divert Powered Descent Guidance to Avoid the Backshell Landing Dispersion Ellipse
NASA Technical Reports Server (NTRS)
Carson, John M.; Acikmese, Behcet
2013-01-01
A smart-divert capability has been added into the Powered Descent Guidance (PDG) software originally developed for Mars pinpoint and precision landing. The smart-divert algorithm accounts for the landing dispersions of the entry backshell, which separates from the lander vehicle at the end of the parachute descent phase and prior to powered descent. The smart-divert PDG algorithm utilizes the onboard fuel and vehicle thrust vectoring to mitigate landing error in an intelligent way: ensuring that the lander touches down with minimum- fuel usage at the minimum distance from the desired landing location that also avoids impact by the descending backshell. The smart-divert PDG software implements a computationally efficient, convex formulation of the powered-descent guidance problem to provide pinpoint or precision-landing guidance solutions that are fuel-optimal and satisfy physical thrust bound and pointing constraints, as well as position and speed constraints. The initial smart-divert implementation enforced a lateral-divert corridor parallel to the ground velocity vector; this was based on guidance requirements for MSL (Mars Science Laboratory) landings. This initial method was overly conservative since the divert corridor was infinite in the down-range direction despite the backshell landing inside a calculable dispersion ellipse. Basing the divert constraint instead on a local tangent to the backshell dispersion ellipse in the direction of the desired landing site provides a far less conservative constraint. The resulting enhanced smart-divert PDG algorithm avoids impact with the descending backshell and has reduced conservatism.
Field evaluation of flight deck procedures for flying CTAS descents
DOT National Transportation Integrated Search
1997-01-01
Flight deck descent procedures were developed for a field evaluation of the CTAS Descent Advisor conducted in the fall of 1995. During this study, CTAS descent clearances were issued to 185 commercial flights at Denver International Airport. Data col...
Development of advanced avionics systems applicable to terminal-configured vehicles
NASA Technical Reports Server (NTRS)
Heimbold, R. L.; Lee, H. P.; Leffler, M. F.
1980-01-01
A technique to add the time constraint to the automatic descent feature of the existing L-1011 aircraft Flight Management System (FMS) was developed. Software modifications were incorporated in the FMS computer program and the results checked by lab simulation and on a series of eleven test flights. An arrival time dispersion (2 sigma) of 19 seconds was achieved. The 4 D descent technique can be integrated with the time-based metering method of air traffic control. Substantial reductions in delays at today's busy airports should result.
How to define pathologic pelvic floor descent in MR defecography during defecation?
Schawkat, Khoschy; Heinrich, Henriette; Parker, Helen L; Barth, Borna K; Mathew, Rishi P; Weishaupt, Dominik; Fox, Mark; Reiner, Caecilia S
2018-06-01
To assess the extents of pelvic floor descent both during the maximal straining phase and the defecation phase in healthy volunteers and in patients with pelvic floor disorders, studied with MR defecography (MRD), and to define specific threshold values for pelvic floor descent during the defecation phase. Twenty-two patients (mean age 51 ± 19.4) with obstructed defecation and 20 healthy volunteers (mean age 33.4 ± 11.5) underwent 3.0T MRD in supine position using midsagittal T2-weighted images. Two radiologists performed measurements in reference to PCL-lines in straining and during defecation. In order to identify cutoff values of pelvic floor measurements for diagnosis of pathologic pelvic floor descent [anterior, middle, and posterior compartments (AC, MC, PC)], receiver-operating characteristic (ROC) curves were plotted. Pelvic floor descent of all three compartments was significantly larger during defecation than at straining in patients and healthy volunteers (p < 0.002). When grading pelvic floor descent in the straining phase, only two healthy volunteers showed moderate PC descent (10%), which is considered pathologic. However, when applying the grading system during defecation, PC descent was overestimated with 50% of the healthy volunteers (10 of 20) showing moderate PC descent. The AUC for PC measurements during defecation was 0.77 (p = 0.003) and suggests a cutoff value of 45 mm below the PCL to identify patients with pathologic PC descent. With the adapted cutoff, only 15% of healthy volunteers show pathologic PC descent during defecation. MRD measurements during straining and defecation can be used to differentiate patients with pelvic floor dysfunction from healthy volunteers. However, different cutoff values should be used during straining and during defecation to define normal or pathologic PC descent.
Evaluation of pelvic descent disorders by dynamic contrast roentgenography.
Takano, M; Hamada, A
2000-10-01
For precise diagnosis and rational treatment of the increasing number of patients with descent of intrapelvic organ(s) and anatomic plane(s), dynamic contrast roentgenography of multiple intrapelvic organs and planes is described. Sixty-six patients, consisting of 11 males, with a mean age (+/- standard deviation) of 65.6+/-14.2 years and with chief complaints of intrapelvic organ and perineal descent or defecation problems, were examined in this study. Dynamic contrast roentgenography was obtained by opacifying the ileum, urinary bladder, vagina, rectum, and the perineum. Films were taken at both squeeze and strain phases. On the films the lowest points of each organ and plane were plotted, and the distances from the standard line drawn at the upper surface of the sacrum were measured. The values were corrected to percentages according to the height of the sacrococcygeal bone of each patient. From these corrected values, organ or plane descents at strain and squeeze were diagnosed and graphically demonstrated as a descentgram in each patient. Among 17 cases with subjective symptoms of bladder descent, 9 cases (52.9 percent) showed roentgenographic descent. By the same token, among the cases with subjective feeling of descent of the vagina, uterus, peritoneum, perineum, rectum, and anus, roentgenographic descent was confirmed in 15 of 20 (75 percent), 7 of 9 (77.8 percent), 6 of 16 (37.5 percent), 33 of 33 (100 percent), 25 of 37 (67.6 percent), and 22 of 36 (61.6 percent), respectively. The descentgrams were divided into three patterns: anorectal descent type, female genital descent type, and total organ descent type. Dynamic contrast roentgenography and successive descentgraphy of multiple intrapelvic organs and planes are useful for objective diagnosis and rational treatment of patients with descent disorders of the intrapelvic organ(s) and plane(s).
Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1975-01-01
The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.
A piloted simulator evaluation of a ground-based 4-D descent advisor algorithm
NASA Technical Reports Server (NTRS)
Davis, Thomas J.; Green, Steven M.; Erzberger, Heinz
1990-01-01
A ground-based, four dimensional (4D) descent-advisor algorithm is under development at NASA-Ames. The algorithm combines detailed aerodynamic, propulsive, and atmospheric models with an efficient numerical integration scheme to generate 4D descent advisories. The ability is investigated of the 4D descent advisor algorithm to provide adequate control of arrival time for aircraft not equipped with on-board 4D guidance systems. A piloted simulation was conducted to determine the precision with which the descent advisor could predict the 4D trajectories of typical straight-in descents flown by airline pilots under different wind conditions. The effects of errors in the estimation of wind and initial aircraft weight were also studied. A description of the descent advisor as well as the result of the simulation studies are presented.
NASA Technical Reports Server (NTRS)
1980-01-01
The results of three nonlinear the Monte Carlo dispersion analyses for the Space Transportation System 1 Flight (STS-1) Orbiter Descent Operational Flight Profile, Cycle 3 are presented. Fifty randomly selected simulation for the end of mission (EOM) descent, the abort once around (AOA) descent targeted line are steep target line, and the AOA descent targeted to the shallow target line are analyzed. These analyses compare the flight environment with system and operational constraints on the flight environment and in some cases use simplified system models as an aid in assessing the STS-1 descent flight profile. In addition, descent flight envelops are provided as a data base for use by system specialists to determine the flight readiness for STS-1. The results of these dispersion analyses supersede results of the dispersion analysis previously documented.
Frequency-domain ultrasound waveform tomography breast attenuation imaging
NASA Astrophysics Data System (ADS)
Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb
2016-04-01
Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.
Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7 km.
Weyrauch, Thomas; Vorontsov, Mikhail; Mangano, Joseph; Ovchinnikov, Vladimir; Bricker, David; Polnau, Ernst; Rostov, Andrey
2016-02-15
We demonstrate coherent beam combining and adaptive mitigation of atmospheric turbulence effects over 7 km under strong scintillation conditions using a coherent fiber array laser transmitter operating in a target-in-the-loop setting. The transmitter system is composed of a densely packed array of 21 fiber collimators with integrated capabilities for piston, tip, and tilt control of the outgoing beams wavefront phases. A small cat's-eye retro reflector was used for evaluation of beam combining and turbulence compensation performance at the target plane, and to provide the feedback signal for control of piston and tip/tilt phases of the transmitted beams using the stochastic parallel gradient descent maximization of the power-in-the-bucket metric.
WS-BP: An efficient wolf search based back-propagation algorithm
NASA Astrophysics Data System (ADS)
Nawi, Nazri Mohd; Rehman, M. Z.; Khan, Abdullah
2015-05-01
Wolf Search (WS) is a heuristic based optimization algorithm. Inspired by the preying and survival capabilities of the wolves, this algorithm is highly capable to search large spaces in the candidate solutions. This paper investigates the use of WS algorithm in combination with back-propagation neural network (BPNN) algorithm to overcome the local minima problem and to improve convergence in gradient descent. The performance of the proposed Wolf Search based Back-Propagation (WS-BP) algorithm is compared with Artificial Bee Colony Back-Propagation (ABC-BP), Bat Based Back-Propagation (Bat-BP), and conventional BPNN algorithms. Specifically, OR and XOR datasets are used for training the network. The simulation results show that the WS-BP algorithm effectively avoids the local minima and converge to global minima.
Aeroassisted orbital maneuvering using Lyapunov optimal feedback control
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Lee, Byoung-Soo
1987-01-01
A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.
An experimental trip to the Calculus of Variations
NASA Astrophysics Data System (ADS)
Arroyo, Josu
2008-04-01
This paper presents a collection of experiments in the Calculus of Variations. The implementation of the Gradient Descent algorithm built on cubic-splines acting as "numerically friendly" elementary functions, give us ways to solve variational problems by constructing the solution. It wins a pragmatic point of view: one gets solutions sometimes as fast as possible, sometimes as close as possible to the true solutions. The balance speed/precision is not always easy to achieve. Starting from the most well-known, classic or historical formulation of a variational problem, section 2 describes briefly the bridge between theoretical and computational formulations. The next sections show the results of several kind of experiments; from the most basics, as those about geodesics, to the most complex, as those about vesicles.
Karayiannis, N B
2000-01-01
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functions. Minimization of admissible reformulation functions based on ordered weighted aggregation operators produces a family of soft LVQ and clustering algorithms, which includes fuzzy LVQ and clustering algorithms as special cases. The proposed LVQ and clustering algorithms are used to perform segmentation of magnetic resonance (MR) images of the brain. The diagnostic value of the segmented MR images provides the basis for evaluating a variety of ordered weighted LVQ and clustering algorithms.
Quantitative characterization of turbidity by radiative transfer based reflectance imaging
Tian, Peng; Chen, Cheng; Jin, Jiahong; Hong, Heng; Lu, Jun Q.; Hu, Xin-Hua
2018-01-01
A new and noncontact approach of multispectral reflectance imaging has been developed to inversely determine the absorption coefficient of μa, the scattering coefficient of μs and the anisotropy factor g of a turbid target from one measured reflectance image. The incident beam was profiled with a diffuse reflectance standard for deriving both measured and calculated reflectance images. A GPU implemented Monte Carlo code was developed to determine the parameters with a conjugate gradient descent algorithm and the existence of unique solutions was shown. We noninvasively determined embedded region thickness in heterogeneous targets and estimated in vivo optical parameters of nevi from 4 patients between 500 and 950nm for melanoma diagnosis to demonstrate the potentials of quantitative reflectance imaging. PMID:29760971
NASA Technical Reports Server (NTRS)
Lahti, G. P.
1972-01-01
A two- or three-constraint, two-dimensional radiation shield weight optimization procedure and a computer program, DOPEX, is described. The DOPEX code uses the steepest descent method to alter a set of initial (input) thicknesses for a shield configuration to achieve a minimum weight while simultaneously satisfying dose constaints. The code assumes an exponential dose-shield thickness relation with parameters specified by the user. The code also assumes that dose rates in each principal direction are dependent only on thicknesses in that direction. Code input instructions, FORTRAN 4 listing, and a sample problem are given. Typical computer time required to optimize a seven-layer shield is about 0.1 minute on an IBM 7094-2.
Entry, Descent, and Landing for Human Mars Missions
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; DwyerCianciolo, Alicia M.
2012-01-01
One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.
Cervical Cancer Screening with AMIGAS
Lairson, David R.; Chang, Yu-Chia; Byrd, Theresa L.; Smith, Judith Lee; Fernandez, Maria E.; Wilson, Katherine M.
2015-01-01
Background Hispanic women have a higher incidence of cervical cancer than all other races and ethnicities. In Hispanic subgroups, Mexican American women were among the least likely to have received cervical cancer screening. In a recent RCT, Ayudando a las Mujeres con Información, Guia, y Amor para su Salud (AMIGAS) was shown to increase cervical cancer screening rates among women of Mexican descent at 6 months in all intervention arms compared to the control arm. Limited information exists about the economics of interventions to increase cervical cancer screening rates among women of Mexican descent. Purpose This study aims to estimate the cost-effectiveness of the alternative AMIGAS intervention methods for increasing cervical cancer screening among low-income women of Mexican descent in three U.S. communities. Methods Cost data were collected from 2008 to 2011 alongside the AMIGAS study of 613 women. Receipt of Pap test within 6 months of intervention was the primary outcome measure in the cost-effectiveness analysis, conducted during 2012–2013. Results The cost per additional woman screened comparing the video-only intervention to usual care was $980. The cost increased to $1,309 with participant time cost included. With an additional cost per participant of $3.90 compared to flipchart only, the full AMIGAS program (video plus flipchart) yielded 6.8% additional women screened. Conclusions Results on the average and incremental cost-effectiveness of the AMIGAS program elements may assist health policymakers and program managers to select and appropriately budget for interventions shown to increase cervical cancer screening among low-income women of Mexican descent. PMID:24842738
Powered Descent Guidance with General Thrust-Pointing Constraints
NASA Technical Reports Server (NTRS)
Carson, John M., III; Acikmese, Behcet; Blackmore, Lars
2013-01-01
The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.
Optimization of rotational arc station parameter optimized radiation therapy.
Dong, P; Ungun, B; Boyd, S; Xing, L
2016-09-01
To develop a fast optimization method for station parameter optimized radiation therapy (SPORT) and show that SPORT is capable of matching VMAT in both plan quality and delivery efficiency by using three clinical cases of different disease sites. The angular space from 0° to 360° was divided into 180 station points (SPs). A candidate aperture was assigned to each of the SPs based on the calculation results using a column generation algorithm. The weights of the apertures were then obtained by optimizing the objective function using a state-of-the-art GPU based proximal operator graph solver. To avoid being trapped in a local minimum in beamlet-based aperture selection using the gradient descent algorithm, a stochastic gradient descent was employed here. Apertures with zero or low weight were thrown out. To find out whether there was room to further improve the plan by adding more apertures or SPs, the authors repeated the above procedure with consideration of the existing dose distribution from the last iteration. At the end of the second iteration, the weights of all the apertures were reoptimized, including those of the first iteration. The above procedure was repeated until the plan could not be improved any further. The optimization technique was assessed by using three clinical cases (prostate, head and neck, and brain) with the results compared to that obtained using conventional VMAT in terms of dosimetric properties, treatment time, and total MU. Marked dosimetric quality improvement was demonstrated in the SPORT plans for all three studied cases. For the prostate case, the volume of the 50% prescription dose was decreased by 22% for the rectum and 6% for the bladder. For the head and neck case, SPORT improved the mean dose for the left and right parotids by 15% each. The maximum dose was lowered from 72.7 to 71.7 Gy for the mandible, and from 30.7 to 27.3 Gy for the spinal cord. The mean dose for the pharynx and larynx was reduced by 8% and 6%, respectively. For the brain case, the doses to the eyes, chiasm, and inner ears were all improved. SPORT shortened the treatment time by ∼1 min for the prostate case, ∼0.5 min for brain case, and ∼0.2 min for the head and neck case. The dosimetric quality and delivery efficiency presented here indicate that SPORT is an intriguing alternative treatment modality. With the widespread adoption of digital linac, SPORT should lead to improved patient care in the future.
Selecting registration schemes in case of interstitial lung disease follow-up in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlachopoulos, Georgios; Korfiatis, Panayiotis; Skiadopoulos, Spyros
Purpose: Primary goal of this study is to select optimal registration schemes in the framework of interstitial lung disease (ILD) follow-up analysis in CT. Methods: A set of 128 multiresolution schemes composed of multiresolution nonrigid and combinations of rigid and nonrigid registration schemes are evaluated, utilizing ten artificially warped ILD follow-up volumes, originating from ten clinical volumetric CT scans of ILD affected patients, to select candidate optimal schemes. Specifically, all combinations of four transformation models (three rigid: rigid, similarity, affine and one nonrigid: third order B-spline), four cost functions (sum-of-square distances, normalized correlation coefficient, mutual information, and normalized mutual information),more » four gradient descent optimizers (standard, regular step, adaptive stochastic, and finite difference), and two types of pyramids (recursive and Gaussian-smoothing) were considered. The selection process involves two stages. The first stage involves identification of schemes with deformation field singularities, according to the determinant of the Jacobian matrix. In the second stage, evaluation methodology is based on distance between corresponding landmark points in both normal lung parenchyma (NLP) and ILD affected regions. Statistical analysis was performed in order to select near optimal registration schemes per evaluation metric. Performance of the candidate registration schemes was verified on a case sample of ten clinical follow-up CT scans to obtain the selected registration schemes. Results: By considering near optimal schemes common to all ranking lists, 16 out of 128 registration schemes were initially selected. These schemes obtained submillimeter registration accuracies in terms of average distance errors 0.18 ± 0.01 mm for NLP and 0.20 ± 0.01 mm for ILD, in case of artificially generated follow-up data. Registration accuracy in terms of average distance error in clinical follow-up data was in the range of 1.985–2.156 mm and 1.966–2.234 mm, for NLP and ILD affected regions, respectively, excluding schemes with statistically significant lower performance (Wilcoxon signed-ranks test, p < 0.05), resulting in 13 finally selected registration schemes. Conclusions: Selected registration schemes in case of ILD CT follow-up analysis indicate the significance of adaptive stochastic gradient descent optimizer, as well as the importance of combined rigid and nonrigid schemes providing high accuracy and time efficiency. The selected optimal deformable registration schemes are equivalent in terms of their accuracy and thus compatible in terms of their clinical outcome.« less
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
NASA Astrophysics Data System (ADS)
Martinec, Zdeněk; Fullea, Javier
2015-03-01
We aim to interpret the vertical gravity and vertical gravity gradient of the GOCE-GRACE combined gravity model over the southeastern part of the Congo basin to refine the published model of sedimentary rock cover. We use the GOCO03S gravity model and evaluate its spherical harmonic representation at or near the Earth's surface. In this case, the gradiometry signals are enhanced as compared to the original measured GOCE gradients at satellite height and better emphasize the spatial pattern of sedimentary geology. To avoid aliasing, the omission error of the modelled gravity induced by the sedimentary rocks is adjusted to that of the GOCO03S gravity model. The mass-density Green's functions derived for the a priori structure of the sediments show a slightly greater sensitivity to the GOCO03S vertical gravity gradient than to the vertical gravity. Hence, the refinement of the sedimentary model is carried out for the vertical gravity gradient over the basin, such that a few anomalous values of the GOCO03S-derived vertical gravity gradient are adjusted by refining the model. We apply the 5-parameter Helmert's transformation, defined by 2 translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent method. The refined sedimentary model is only slightly changed with respect to the original map, but it significantly improves the fit of the vertical gravity and vertical gravity gradient over the basin. However, there are still spatial features in the gravity and gradiometric data that remain unfitted by the refined model. These may be due to lateral density variation that is not contained in the model, a density contrast at the Moho discontinuity, lithospheric density stratifications or mantle convection. In a second step, the refined sedimentary model is used to find the vertical density stratification of sedimentary rocks. Although the gravity data can be interpreted by a constant sedimentary density, such a model does not correspond to the gravitational compaction of sedimentary rocks. Therefore, the density model is extended by including a linear increase in density with depth. Subsequent L2 and L∞ norm minimization procedures are applied to find the density parameters by adjusting both the vertical gravity and the vertical gravity gradient. We found that including the vertical gravity gradient in the interpretation of the GOCO03S-derived data reduces the non-uniqueness of the inverse gradiometric problem for density determination. The density structure of the sedimentary formations that provide the optimum predictions of the GOCO03S-derived gravity and vertical gradient of gravity consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case where the sedimentary rocks are gravitationally completely compacted in the deepest parts of the basin is supported by L∞ norm minimization. However, this minimization also allows a remaining density contrast at the deepest parts of the sedimentary basin of about 0.1 g/cm3.
NASA Technical Reports Server (NTRS)
Vicroy, D. D.; Knox, C. E.
1983-01-01
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modeling required for the DC-10 airplane is described.
The Yearly Variation in Fall-Winter Arctic Winter Vortex Descent
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Newman, Paul A.
1999-01-01
Using the change in HALOE methane profiles from early September to late March, we have estimated the minimum amount of diabatic descent within the polar which takes place during Arctic winter. The year to year variations are a result in the year to year variations in stratospheric wave activity which (1) modify the temperature of the vortex and thus the cooling rate; (2) reduce the apparent descent by mixing high amounts of methane into the vortex. The peak descent amounts from HALOE methane vary from l0km -14km near the arrival altitude of 25 km. Using a diabatic trajectory calculation, we compare forward and backward trajectories over the course of the winter using UKMO assimilated stratospheric data. The forward calculation agrees fairly well with the observed descent. The backward calculation appears to be unable to produce the observed amount of descent, but this is only an apparent effect due to the density decrease in parcels with altitude. Finally we show the results for unmixed descent experiments - where the parcels are fixed in latitude and longitude and allowed to descend based on the local cooling rate. Unmixed descent is found to always exceed mixed descent, because when normal parcel motion is included, the path average cooling is always less than the cooling at a fixed polar point.
Factors Influencing Central Lamina Cribrosa Depth: A Multicenter Study
Luo, Haomin; Yang, Hongli; Gardiner, Stuart K.; Hardin, Christy; Sharpe, Glen P.; Caprioli, Joseph; Demirel, Shaban; Girkin, Christopher A.; Liebmann, Jeffrey M.; Mardin, Christian Y.; Quigley, Harry A.; Scheuerle, Alexander F.; Fortune, Brad; Chauhan, Balwantray C.; Burgoyne, Claude F.
2018-01-01
Purpose To quantify the influence of ocular and demographic factors on central laminar depth (LD) in healthy participants. Methods A total of 362 normal subjects underwent optical coherence tomography (OCT) enhanced depth imaging of the optic nerve head (ONH) with a 24 radial B-scan pattern aligned to the fovea–to–Bruch's membrane opening (BMO) axis. BMO, anterior lamina, anterior scleral canal opening (ASCO), Bruch's membrane (BM), and the peripapillary scleral surface were manually segmented. The extent of laminar segmentation was quantified within 72 ASCO subsectors. Central LD was quantified relative to four reference planes: BMO, ASCO, BM, and scleral. The effects of age, sex, ethnicity, IOP, BMO area, ASCO area, and axial length on LD were assessed. Results Laminar visibility was most consistent within the central ASCO (median 89%, range, 69%–95%). LDBMO and LDBM were significantly shallower in eyes with greater age, BMO area, and axial length and in females. LDASCO was shallower in eyes with greater ASCO area and axial length and in European and Hispanic descent compared to African descent eyes. LDSclera behaved similarly, but was not associated with axial length. BMO and ASCO area were not different between African descent and European descent eyes. Conclusions Central LD was deeper in African descent eyes and influenced least by age, axial length, and sex, but more by ASCO area, when measured relative to the ASCO and sclera. However, the magnitude of these effects for all four reference planes was small, and their clinical importance in the detection of glaucoma and its progression remains to be determined. PMID:29847642
Automatic toilet seat lowering apparatus
Guerty, Harold G.
1994-09-06
A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat. A toilet seat lowering apparatus includes a housing defining an internal cavity for receiving water from the water supply line to the toilet holding tank. A descent delay assembly of the apparatus can include a stationary dam member and a rotating dam member for dividing the internal cavity into an inlet chamber and an outlet chamber and controlling the intake and evacuation of water in a delayed fashion. A descent initiator is activated when the internal cavity is filled with pressurized water and automatically begins the lowering of the toilet seat from its upright position, which lowering is also controlled by the descent delay assembly. In an alternative embodiment, the descent initiator and the descent delay assembly can be combined in a piston linked to the rotating dam member and provided with a water channel for creating a resisting pressure to the advancing piston and thereby slowing the associated descent of the toilet seat.
NASA Astrophysics Data System (ADS)
Liou, Jyun-you; Smith, Elliot H.; Bateman, Lisa M.; McKhann, Guy M., II; Goodman, Robert R.; Greger, Bradley; Davis, Tyler S.; Kellis, Spencer S.; House, Paul A.; Schevon, Catherine A.
2017-08-01
Objective. Epileptiform discharges, an electrophysiological hallmark of seizures, can propagate across cortical tissue in a manner similar to traveling waves. Recent work has focused attention on the origination and propagation patterns of these discharges, yielding important clues to their source location and mechanism of travel. However, systematic studies of methods for measuring propagation are lacking. Approach. We analyzed epileptiform discharges in microelectrode array recordings of human seizures. The array records multiunit activity and local field potentials at 400 micron spatial resolution, from a small cortical site free of obstructions. We evaluated several computationally efficient statistical methods for calculating traveling wave velocity, benchmarking them to analyses of associated neuronal burst firing. Main results. Over 90% of discharges met statistical criteria for propagation across the sampled cortical territory. Detection rate, direction and speed estimates derived from a multiunit estimator were compared to four field potential-based estimators: negative peak, maximum descent, high gamma power, and cross-correlation. Interestingly, the methods that were computationally simplest and most efficient (negative peak and maximal descent) offer non-inferior results in predicting neuronal traveling wave velocities compared to the other two, more complex methods. Moreover, the negative peak and maximal descent methods proved to be more robust against reduced spatial sampling challenges. Using least absolute deviation in place of least squares error minimized the impact of outliers, and reduced the discrepancies between local field potential-based and multiunit estimators. Significance. Our findings suggest that ictal epileptiform discharges typically take the form of exceptionally strong, rapidly traveling waves, with propagation detectable across millimeter distances. The sequential activation of neurons in space can be inferred from clinically-observable EEG data, with a variety of straightforward computation methods available. This opens possibilities for systematic assessments of ictal discharge propagation in clinical and research settings.
Novel maximum-margin training algorithms for supervised neural networks.
Ludwig, Oswaldo; Nunes, Urbano
2010-06-01
This paper proposes three novel training methods, two of them based on the backpropagation approach and a third one based on information theory for multilayer perceptron (MLP) binary classifiers. Both backpropagation methods are based on the maximal-margin (MM) principle. The first one, based on the gradient descent with adaptive learning rate algorithm (GDX) and named maximum-margin GDX (MMGDX), directly increases the margin of the MLP output-layer hyperplane. The proposed method jointly optimizes both MLP layers in a single process, backpropagating the gradient of an MM-based objective function, through the output and hidden layers, in order to create a hidden-layer space that enables a higher margin for the output-layer hyperplane, avoiding the testing of many arbitrary kernels, as occurs in case of support vector machine (SVM) training. The proposed MM-based objective function aims to stretch out the margin to its limit. An objective function based on Lp-norm is also proposed in order to take into account the idea of support vectors, however, overcoming the complexity involved in solving a constrained optimization problem, usually in SVM training. In fact, all the training methods proposed in this paper have time and space complexities O(N) while usual SVM training methods have time complexity O(N (3)) and space complexity O(N (2)) , where N is the training-data-set size. The second approach, named minimization of interclass interference (MICI), has an objective function inspired on the Fisher discriminant analysis. Such algorithm aims to create an MLP hidden output where the patterns have a desirable statistical distribution. In both training methods, the maximum area under ROC curve (AUC) is applied as stop criterion. The third approach offers a robust training framework able to take the best of each proposed training method. The main idea is to compose a neural model by using neurons extracted from three other neural networks, each one previously trained by MICI, MMGDX, and Levenberg-Marquard (LM), respectively. The resulting neural network was named assembled neural network (ASNN). Benchmark data sets of real-world problems have been used in experiments that enable a comparison with other state-of-the-art classifiers. The results provide evidence of the effectiveness of our methods regarding accuracy, AUC, and balanced error rate.
NASA Astrophysics Data System (ADS)
Bhawre, Purushottam
2016-07-01
Ionospheric anomaly crest regions are most challenging for scientific community to understand its mechanism and investigation, for this purpose we are investigating some inospheric result for this region. The study is based on the ionogram data recorded by IPS-71 Digital Ionosonde installed over anomaly crust region Bhopal (Geo.Lat.23.2° N, Geo. Long77.4° E, Dip latitude18.4°) over a four year period from January 2007 to December 2010, covering the ending phase of 23rd Solar Cycle and starting phase of 24th solar cycle. This particular period is felt to be very suitable for examining the sunspot number and it encompasses periods of low solar activities. Quarterly ionograms are analyzed for 24 hours during these study years and have been carefully examined to note down the presence of sporadic- E. We also note down the space weather activities along with the study. The studies are divided in mainly four parts with space and geomagnetic activities during these periods. The occurrence probability of this layer is highest in summer solstice, moderate during equinox and low during winter solstice. Remarkable occurrence peaks appear from June to July in summer and from December to January in winter. The layer occurrence showed a double peak variation with distinct layer groups, in the morning (0200 LT) and the other during evening (1800 LT).The morning layer descent was associated with layer density increase indicating the strengthening of the layer while it decreased during the evening layer descent. The result indicates the presence of semi-diurnal tide over the location while the higher descent velocities could be due to the modulation of the ionization by gravity waves along with the tides. The irregularities associated with the gradient-drift instability disappear during the counter electrojet and the current flow is reversed in westward.
A new approach to blind deconvolution of astronomical images
NASA Astrophysics Data System (ADS)
Vorontsov, S. V.; Jefferies, S. M.
2017-05-01
We readdress the strategy of finding approximate regularized solutions to the blind deconvolution problem, when both the object and the point-spread function (PSF) have finite support. Our approach consists in addressing fixed points of an iteration in which both the object x and the PSF y are approximated in an alternating manner, discarding the previous approximation for x when updating x (similarly for y), and considering the resultant fixed points as candidates for a sensible solution. Alternating approximations are performed by truncated iterative least-squares descents. The number of descents in the object- and in the PSF-space play a role of two regularization parameters. Selection of appropriate fixed points (which may not be unique) is performed by relaxing the regularization gradually, using the previous fixed point as an initial guess for finding the next one, which brings an approximation of better spatial resolution. We report the results of artificial experiments with noise-free data, targeted at examining the potential capability of the technique to deconvolve images of high complexity. We also show the results obtained with two sets of satellite images acquired using ground-based telescopes with and without adaptive optics compensation. The new approach brings much better results when compared with an alternating minimization technique based on positivity-constrained conjugate gradients, where the iterations stagnate when addressing data of high complexity. In the alternating-approximation step, we examine the performance of three different non-blind iterative deconvolution algorithms. The best results are provided by the non-negativity-constrained successive over-relaxation technique (+SOR) supplemented with an adaptive scheduling of the relaxation parameter. Results of comparable quality are obtained with steepest descents modified by imposing the non-negativity constraint, at the expense of higher numerical costs. The Richardson-Lucy (or expectation-maximization) algorithm fails to locate stable fixed points in our experiments, due apparently to inappropriate regularization properties.
Frequency-domain full-waveform inversion with non-linear descent directions
NASA Astrophysics Data System (ADS)
Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.
2018-05-01
Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a benchmark FWI approach involving the standard gradient.
Study of fail-safe abort system for an actively cooled hypersonic aircraft, volume 2
NASA Technical Reports Server (NTRS)
Peeples, M. E.; Herring, R. L.
1976-01-01
Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.
NASA Technical Reports Server (NTRS)
Knox, C. E.
1983-01-01
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight tests flown with a T-39A (Sabreliner) airplane are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicroy, D.D.; Knox, C.E.
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight management descent algorithm and the vertical performance modelingmore » required for the DC-10 airplane is described.« less
Iterative CT reconstruction using coordinate descent with ordered subsets of data
NASA Astrophysics Data System (ADS)
Noo, F.; Hahn, K.; Schöndube, H.; Stierstorfer, K.
2016-04-01
Image reconstruction based on iterative minimization of a penalized weighted least-square criteria has become an important topic of research in X-ray computed tomography. This topic is motivated by increasing evidence that such a formalism may enable a significant reduction in dose imparted to the patient while maintaining or improving image quality. One important issue associated with this iterative image reconstruction concept is slow convergence and the associated computational effort. For this reason, there is interest in finding methods that produce approximate versions of the targeted image with a small number of iterations and an acceptable level of discrepancy. We introduce here a novel method to produce such approximations: ordered subsets in combination with iterative coordinate descent. Preliminary results demonstrate that this method can produce, within 10 iterations and using only a constant image as initial condition, satisfactory reconstructions that retain the noise properties of the targeted image.
An approach to unbiased subsample interpolation for motion tracking.
McCormick, Matthew M; Varghese, Tomy
2013-04-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder-Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique.
Blind beam-hardening correction from Poisson measurements
NASA Astrophysics Data System (ADS)
Gu, Renliang; Dogandžić, Aleksandar
2016-02-01
We develop a sparse image reconstruction method for Poisson-distributed polychromatic X-ray computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. We employ our mass-attenuation spectrum parameterization of the noiseless measurements and express the mass- attenuation spectrum as a linear combination of B-spline basis functions of order one. A block coordinate-descent algorithm is developed for constrained minimization of a penalized Poisson negative log-likelihood (NLL) cost function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and nonnegativity and sparsity of the density map image; the image sparsity is imposed using a convex total-variation (TV) norm penalty term. This algorithm alternates between a Nesterov's proximal-gradient (NPG) step for estimating the density map image and a limited-memory Broyden-Fletcher-Goldfarb-Shanno with box constraints (L-BFGS-B) step for estimating the incident-spectrum parameters. To accelerate convergence of the density- map NPG steps, we apply function restart and a step-size selection scheme that accounts for varying local Lipschitz constants of the Poisson NLL. Real X-ray CT reconstruction examples demonstrate the performance of the proposed scheme.
Vectorial mask optimization methods for robust optical lithography
NASA Astrophysics Data System (ADS)
Ma, Xu; Li, Yanqiu; Guo, Xuejia; Dong, Lisong; Arce, Gonzalo R.
2012-10-01
Continuous shrinkage of critical dimension in an integrated circuit impels the development of resolution enhancement techniques for low k1 lithography. Recently, several pixelated optical proximity correction (OPC) and phase-shifting mask (PSM) approaches were developed under scalar imaging models to account for the process variations. However, the lithography systems with larger-NA (NA>0.6) are predominant for current technology nodes, rendering the scalar models inadequate to describe the vector nature of the electromagnetic field that propagates through the optical lithography system. In addition, OPC and PSM algorithms based on scalar models can compensate for wavefront aberrations, but are incapable of mitigating polarization aberrations in practical lithography systems, which can only be dealt with under the vector model. To this end, we focus on developing robust pixelated gradient-based OPC and PSM optimization algorithms aimed at canceling defocus, dose variation, wavefront and polarization aberrations under a vector model. First, an integrative and analytic vector imaging model is applied to formulate the optimization problem, where the effects of process variations are explicitly incorporated in the optimization framework. A steepest descent algorithm is then used to iteratively optimize the mask patterns. Simulations show that the proposed algorithms can effectively improve the process windows of the optical lithography systems.
NASA Astrophysics Data System (ADS)
Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun
2017-11-01
The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.
All God's Chillun Got a Mama and a Papa?
ERIC Educational Resources Information Center
Hollander, Willard F.
1972-01-01
Describes alternate methods of schematically representing genetic lines of descent, and illustrates the different patterns obtained with random mating, line breeding, parthanogentic males, cloning, and grafting. (AL)
Studies of the hormonal control of postnatal testicular descent in the rat.
Spencer, J R; Vaughan, E D; Imperato-McGinley, J
1993-03-01
Dihydrotestosterone is believed to control the transinguinal phase of testicular descent based on hormonal manipulation studies performed in postnatal rats. In the present study, these hormonal manipulation experiments were repeated, and the results were compared with those obtained using the antiandrogens flutamide and cyproterone acetate. 17 beta-estradiol completely blocked testicular descent, but testosterone and dihydrotestosterone were equally effective in reversing this inhibition. Neither flutamide nor cyproterone acetate prevented testicular descent in postnatal rats despite marked peripheral antiandrogenic action. Further analysis of the data revealed a correlation between testicular size and descent. Androgen receptor blockade did not produce a marked reduction in testicular size and consequently did not prevent testicular descent, whereas estradiol alone caused marked testicular atrophy and testicular maldescent. Reduction of the estradiol dosage or concomitant administration of androgens or human chorionic gonadotropin resulted in both increased testicular size and degree of descent. These data suggest that growth of the neonatal rat testis may contribute to its passage into the scrotum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Wang, Chenyu; Li, Mingjie
In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) can not fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First,more » the modeling error PDF by the tradional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. Furthermore, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Ping; Wang, Chenyu; Li, Mingjie
In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less
Zhou, Ping; Wang, Chenyu; Li, Mingjie; ...
2018-01-31
In general, the modeling errors of dynamic system model are a set of random variables. The traditional performance index of modeling such as means square error (MSE) and root means square error (RMSE) cannot fully express the connotation of modeling errors with stochastic characteristics both in the dimension of time domain and space domain. Therefore, the probability density function (PDF) is introduced to completely describe the modeling errors in both time scales and space scales. Based on it, a novel wavelet neural network (WNN) modeling method is proposed by minimizing the two-dimensional (2D) PDF shaping of modeling errors. First, themore » modeling error PDF by the traditional WNN is estimated using data-driven kernel density estimation (KDE) technique. Then, the quadratic sum of 2D deviation between the modeling error PDF and the target PDF is utilized as performance index to optimize the WNN model parameters by gradient descent method. Since the WNN has strong nonlinear approximation and adaptive capability, and all the parameters are well optimized by the proposed method, the developed WNN model can make the modeling error PDF track the target PDF, eventually. Simulation example and application in a blast furnace ironmaking process show that the proposed method has a higher modeling precision and better generalization ability compared with the conventional WNN modeling based on MSE criteria. However, the proposed method has more desirable estimation for modeling error PDF that approximates to a Gaussian distribution whose shape is high and narrow.« less
Frequency Domain Ultrasound Waveform Tomography: Breast Imaging Using a Ring Transducer
Sandhu, G Y; Li, C; Roy, O; Schmidt, S; Duric, N
2016-01-01
Application of the frequency domain acoustic wave equation on data acquired from ultrasound tomography scans is shown to yield high resolution sound speed images on the order of the wavelength of the highest reconstructed frequency. Using a signal bandwidth of 0.4–1 MHz and an average sound speed of 1500 m/s, the resolution is approximately 1.5 mm. The quantitative sound speed values and morphology provided by these images have the potential to inform diagnosis and classification of breast disease. In this study, we present the formalism, practical application, and in vivo results of waveform tomography applied to breast data gathered by two different ultrasound tomography scanners that utilize ring transducers. The formalism includes a review of frequency domain modeling of the wave equation using finite difference operators as well as a review of the gradient descent method for the iterative reconstruction scheme. It is shown that the practical application of waveform tomography requires an accurate starting model, careful data processing, and a method to gradually incorporate higher frequency information into the sound speed reconstruction. Following these steps resulted in high resolution quantitative sound speed images of the breast. These images show marked improvement relative to commonly used ray tomography reconstruction methods. The robustness of the method is demonstrated by obtaining similar results from two different ultrasound tomography devices. We also compare our method to MRI to demonstrate concordant findings. The clinical data used in this work was obtained from a HIPAA compliant clinical study (IRB 040912M1F). PMID:26110909
Recursive least-squares learning algorithms for neural networks
NASA Astrophysics Data System (ADS)
Lewis, Paul S.; Hwang, Jenq N.
1990-11-01
This paper presents the development of a pair of recursive least squares (ItLS) algorithms for online training of multilayer perceptrons which are a class of feedforward artificial neural networks. These algorithms incorporate second order information about the training error surface in order to achieve faster learning rates than are possible using first order gradient descent algorithms such as the generalized delta rule. A least squares formulation is derived from a linearization of the training error function. Individual training pattern errors are linearized about the network parameters that were in effect when the pattern was presented. This permits the recursive solution of the least squares approximation either via conventional RLS recursions or by recursive QR decomposition-based techniques. The computational complexity of the update is 0(N2) where N is the number of network parameters. This is due to the estimation of the N x N inverse Hessian matrix. Less computationally intensive approximations of the ilLS algorithms can be easily derived by using only block diagonal elements of this matrix thereby partitioning the learning into independent sets. A simulation example is presented in which a neural network is trained to approximate a two dimensional Gaussian bump. In this example RLS training required an order of magnitude fewer iterations on average (527) than did training with the generalized delta rule (6 1 BACKGROUND Artificial neural networks (ANNs) offer an interesting and potentially useful paradigm for signal processing and pattern recognition. The majority of ANN applications employ the feed-forward multilayer perceptron (MLP) network architecture in which network parameters are " trained" by a supervised learning algorithm employing the generalized delta rule (GDIt) [1 2]. The GDR algorithm approximates a fixed step steepest descent algorithm using derivatives computed by error backpropagatiori. The GDII algorithm is sometimes referred to as the backpropagation algorithm. However in this paper we will use the term backpropagation to refer only to the process of computing error derivatives. While multilayer perceptrons provide a very powerful nonlinear modeling capability GDR training can be very slow and inefficient. In linear adaptive filtering the analog of the GDR algorithm is the leastmean- squares (LMS) algorithm. Steepest descent-based algorithms such as GDR or LMS are first order because they use only first derivative or gradient information about the training error to be minimized. To speed up the training process second order algorithms may be employed that take advantage of second derivative or Hessian matrix information. Second order information can be incorporated into MLP training in different ways. In many applications especially in the area of pattern recognition the training set is finite. In these cases block learning can be applied using standard nonlinear optimization techniques [3 4 5].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knox, C.E.
A simplified flight-management descent algorithm, programmed on a small programmable calculator, was developed and flight tested. It was designed to aid the pilot in planning and executing a fuel-conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel-conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. The flight-management descent algorithm is described. The results of flight testsmore » flown with a T-39A (Sabreliner) airplane are presented.« less
Mars Exploration Rover Terminal Descent Mission Modeling and Simulation
NASA Technical Reports Server (NTRS)
Raiszadeh, Behzad; Queen, Eric M.
2004-01-01
Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.
Stereotypes of women of Asian descent in midwifery: some evidence.
Bowler, I M
1993-03-01
The subject of this paper is part of a larger study which investigated the delivery of maternity care to women of South Asian descent in Britain (Bowler, 1990). An ethnographic approach was used and the main method of data collection was non-participant observation in antenatal clinics, labour and postnatal wards in a teaching hospital maternity unit. These observations were supported by data from interviews with midwives. It was found that the midwives commonly use stereotypes of women in order to help them to provide care. These stereotypes are particularly likely to be used in situations where the midwife has difficulty (through pressure of time or other circumstances) in getting to know an individual woman. The stereotype of women of Asian descent contained four main themes: communication problems; failure to comply with care and service abuse; making a fuss about nothing; a lack of normal maternal instinct. Reasons for stereotyping are explored. Effects on service provision in the areas of family planning and breast feeding are highlighted.
Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.
De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher
2015-12-01
Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.
Optimal landing of a helicopter in autorotation
NASA Technical Reports Server (NTRS)
Lee, A. Y. N.
1985-01-01
Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.
A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.
Dang, Chuangyin; Xu, Lei
2002-02-01
A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.
NASA Astrophysics Data System (ADS)
Sagir, Abdu Masanawa; Sathasivam, Saratha
2017-08-01
Medical diagnosis is the process of determining which disease or medical condition explains a person's determinable signs and symptoms. Diagnosis of most of the diseases is very expensive as many tests are required for predictions. This paper aims to introduce an improved hybrid approach for training the adaptive network based fuzzy inference system with Modified Levenberg-Marquardt algorithm using analytical derivation scheme for computation of Jacobian matrix. The goal is to investigate how certain diseases are affected by patient's characteristics and measurement such as abnormalities or a decision about presence or absence of a disease. To achieve an accurate diagnosis at this complex stage of symptom analysis, the physician may need efficient diagnosis system to classify and predict patient condition by using an adaptive neuro fuzzy inference system (ANFIS) pre-processed by grid partitioning. The proposed hybridised intelligent system was tested with Pima Indian Diabetes dataset obtained from the University of California at Irvine's (UCI) machine learning repository. The proposed method's performance was evaluated based on training and test datasets. In addition, an attempt was done to specify the effectiveness of the performance measuring total accuracy, sensitivity and specificity. In comparison, the proposed method achieves superior performance when compared to conventional ANFIS based gradient descent algorithm and some related existing methods. The software used for the implementation is MATLAB R2014a (version 8.3) and executed in PC Intel Pentium IV E7400 processor with 2.80 GHz speed and 2.0 GB of RAM.
Luo, Biao; Liu, Derong; Wu, Huai-Ning
2018-06-01
Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.
ACIR: automatic cochlea image registration
NASA Astrophysics Data System (ADS)
Al-Dhamari, Ibraheem; Bauer, Sabine; Paulus, Dietrich; Lissek, Friedrich; Jacob, Roland
2017-02-01
Efficient Cochlear Implant (CI) surgery requires prior knowledge of the cochlea's size and its characteristics. This information helps to select suitable implants for different patients. To get these measurements, a segmentation method of cochlea medical images is needed. An important pre-processing step for good cochlea segmentation involves efficient image registration. The cochlea's small size and complex structure, in addition to the different resolutions and head positions during imaging, reveals a big challenge for the automated registration of the different image modalities. In this paper, an Automatic Cochlea Image Registration (ACIR) method for multi- modal human cochlea images is proposed. This method is based on using small areas that have clear structures from both input images instead of registering the complete image. It uses the Adaptive Stochastic Gradient Descent Optimizer (ASGD) and Mattes's Mutual Information metric (MMI) to estimate 3D rigid transform parameters. The use of state of the art medical image registration optimizers published over the last two years are studied and compared quantitatively using the standard Dice Similarity Coefficient (DSC). ACIR requires only 4.86 seconds on average to align cochlea images automatically and to put all the modalities in the same spatial locations without human interference. The source code is based on the tool elastix and is provided for free as a 3D Slicer plugin. Another contribution of this work is a proposed public cochlea standard dataset which can be downloaded for free from a public XNAT server.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A
2017-12-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction.
Ravishankar, Saiprasad; Nadakuditi, Raj Rao; Fessler, Jeffrey A.
2017-01-01
The sparsity of signals in a transform domain or dictionary has been exploited in applications such as compression, denoising and inverse problems. More recently, data-driven adaptation of synthesis dictionaries has shown promise compared to analytical dictionary models. However, dictionary learning problems are typically non-convex and NP-hard, and the usual alternating minimization approaches for these problems are often computationally expensive, with the computations dominated by the NP-hard synthesis sparse coding step. This paper exploits the ideas that drive algorithms such as K-SVD, and investigates in detail efficient methods for aggregate sparsity penalized dictionary learning by first approximating the data with a sum of sparse rank-one matrices (outer products) and then using a block coordinate descent approach to estimate the unknowns. The resulting block coordinate descent algorithms involve efficient closed-form solutions. Furthermore, we consider the problem of dictionary-blind image reconstruction, and propose novel and efficient algorithms for adaptive image reconstruction using block coordinate descent and sum of outer products methodologies. We provide a convergence study of the algorithms for dictionary learning and dictionary-blind image reconstruction. Our numerical experiments show the promising performance and speedups provided by the proposed methods over previous schemes in sparse data representation and compressed sensing-based image reconstruction. PMID:29376111
Sliding Window Generalized Kernel Affine Projection Algorithm Using Projection Mappings
NASA Astrophysics Data System (ADS)
Slavakis, Konstantinos; Theodoridis, Sergios
2008-12-01
Very recently, a solution to the kernel-based online classification problem has been given by the adaptive projected subgradient method (APSM). The developed algorithm can be considered as a generalization of a kernel affine projection algorithm (APA) and the kernel normalized least mean squares (NLMS). Furthermore, sparsification of the resulting kernel series expansion was achieved by imposing a closed ball (convex set) constraint on the norm of the classifiers. This paper presents another sparsification method for the APSM approach to the online classification task by generating a sequence of linear subspaces in a reproducing kernel Hilbert space (RKHS). To cope with the inherent memory limitations of online systems and to embed tracking capabilities to the design, an upper bound on the dimension of the linear subspaces is imposed. The underlying principle of the design is the notion of projection mappings. Classification is performed by metric projection mappings, sparsification is achieved by orthogonal projections, while the online system's memory requirements and tracking are attained by oblique projections. The resulting sparsification scheme shows strong similarities with the classical sliding window adaptive schemes. The proposed design is validated by the adaptive equalization problem of a nonlinear communication channel, and is compared with classical and recent stochastic gradient descent techniques, as well as with the APSM's solution where sparsification is performed by a closed ball constraint on the norm of the classifiers.
Efficient methods for overlapping group lasso.
Yuan, Lei; Liu, Jun; Ye, Jieping
2013-09-01
The group Lasso is an extension of the Lasso for feature selection on (predefined) nonoverlapping groups of features. The nonoverlapping group structure limits its applicability in practice. There have been several recent attempts to study a more general formulation where groups of features are given, potentially with overlaps between the groups. The resulting optimization is, however, much more challenging to solve due to the group overlaps. In this paper, we consider the efficient optimization of the overlapping group Lasso penalized problem. We reveal several key properties of the proximal operator associated with the overlapping group Lasso, and compute the proximal operator by solving the smooth and convex dual problem, which allows the use of the gradient descent type of algorithms for the optimization. Our methods and theoretical results are then generalized to tackle the general overlapping group Lasso formulation based on the l(q) norm. We further extend our algorithm to solve a nonconvex overlapping group Lasso formulation based on the capped norm regularization, which reduces the estimation bias introduced by the convex penalty. We have performed empirical evaluations using both a synthetic and the breast cancer gene expression dataset, which consists of 8,141 genes organized into (overlapping) gene sets. Experimental results show that the proposed algorithm is more efficient than existing state-of-the-art algorithms. Results also demonstrate the effectiveness of the nonconvex formulation for overlapping group Lasso.
Dependence of image quality on image operator and noise for optical diffusion tomography
NASA Astrophysics Data System (ADS)
Chang, Jenghwa; Graber, Harry L.; Barbour, Randall L.
1998-04-01
By applying linear perturbation theory to the radiation transport equation, the inverse problem of optical diffusion tomography can be reduced to a set of linear equations, W(mu) equals R, where W is the weight function, (mu) are the cross- section perturbations to be imaged, and R is the detector readings perturbations. We have studied the dependence of image quality on added systematic error and/or random noise in W and R. Tomographic data were collected from cylindrical phantoms, with and without added inclusions, using Monte Carlo methods. Image reconstruction was accomplished using a constrained conjugate gradient descent method. Result show that accurate images containing few artifacts are obtained when W is derived from a reference states whose optical thickness matches that of the unknown teste medium. Comparable image quality was also obtained for unmatched W, but the location of the target becomes more inaccurate as the mismatch increases. Results of the noise study show that image quality is much more sensitive to noise in W than in R, and the impact of noise increase with the number of iterations. Images reconstructed after pure noise was substituted for R consistently contain large peaks clustered about the cylinder axis, which was an initially unexpected structure. In other words, random input produces a non- random output. This finding suggests that algorithms sensitive to the evolution of this feature could be developed to suppress noise effects.
A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis.
Liu, Zitao; Hauskrecht, Milos
2015-01-01
Linear Dynamical System (LDS) is an elegant mathematical framework for modeling and learning Multivariate Time Series (MTS). However, in general, it is difficult to set the dimension of an LDS's hidden state space. A small number of hidden states may not be able to model the complexities of a MTS, while a large number of hidden states can lead to overfitting. In this paper, we study learning methods that impose various regularization penalties on the transition matrix of the LDS model and propose a regularized LDS learning framework (rLDS) which aims to (1) automatically shut down LDSs' spurious and unnecessary dimensions, and consequently, address the problem of choosing the optimal number of hidden states; (2) prevent the overfitting problem given a small amount of MTS data; and (3) support accurate MTS forecasting. To learn the regularized LDS from data we incorporate a second order cone program and a generalized gradient descent method into the Maximum a Posteriori framework and use Expectation Maximization to obtain a low-rank transition matrix of the LDS model. We propose two priors for modeling the matrix which lead to two instances of our rLDS. We show that our rLDS is able to recover well the intrinsic dimensionality of the time series dynamics and it improves the predictive performance when compared to baselines on both synthetic and real-world MTS datasets.
Axial compartmentation of descending and ascending thin limbs of Henle's loops
Westrick, Kristen Y.; Serack, Bradley; Dantzler, William H.
2013-01-01
In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss. PMID:23195680
Axial compartmentation of descending and ascending thin limbs of Henle's loops.
Westrick, Kristen Y; Serack, Bradley; Dantzler, William H; Pannabecker, Thomas L
2013-02-01
In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss.
14 CFR 121.420 - Flight navigators: Initial and transition ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... indicating instruments or systems. (5) Compass limitations and methods of compensation. (6) Cruise control..., cruise, and descent speeds. (2) Each item of navigational equipment installed including appropriate radio...
Effects of flutamide and finasteride on rat testicular descent.
Spencer, J R; Torrado, T; Sanchez, R S; Vaughan, E D; Imperato-McGinley, J
1991-08-01
The endocrine control of descent of the testis in mammalian species is poorly understood. The androgen dependency of testicular descent was studied in the rat using an antiandrogen (flutamide) and an inhibitor of the enzyme 5 alpha-reductase (finasteride). Androgen receptor blockade inhibited testicular descent more effectively than inhibition of 5 alpha-reductase activity. Moreover, its inhibitory effect was limited to the outgrowth phase of the gubernaculum testis, particularly the earliest stages of outgrowth. Gubernacular size was also significantly reduced in fetuses exposed to flutamide during the outgrowth period. In contrast, androgen receptor blockade or 5 alpha-reductase inhibition applied after the initiation of gubernacular outgrowth or during the regression phase did not affect testicular descent. Successful inhibition of the development of epididymis and vas by prenatal flutamide did not correlate with ipsilateral testicular maldescent, suggesting that an intact epididymis is not required for descent of the testis. Plasma androgen assays confirmed significant inhibition of dihydrotestosterone formation in finasteride-treated rats. These data suggest that androgens, primarily testosterone, are required during the early phases of gubernacular outgrowth for subsequent successful completion of testicular descent.
NASA Technical Reports Server (NTRS)
Pirello, C. J.; Herring, R. L.
1976-01-01
Conceptual designs of a fail-safe abort system for hydrogen fueled actively cooled high speed aircraft are examined. The fail-safe concept depends on basically three factors: (1) a reliable method of detecting a failure or malfunction in the active cooling system, (2) the optimization of abort trajectories which minimize the descent heat load to the aircraft, and (3) fail-safe thermostructural concepts to minimize both the weight and the maximum temperature the structure will reach during descent. These factors are examined and promising approaches are evaluated based on weight, reliability, ease of manufacture and cost.
Testicular descent related to growth hormone treatment.
Papadimitriou, Anastasios; Fountzoula, Ioanna; Grigoriadou, Despina; Christianakis, Stratos; Tzortzatou, Georgia
2003-01-01
An 8.7 year-old boy with cryptorchidism and growth hormone (GH) deficiency due to septooptic dysplasia presented testicular descent related to the commencement of hGH treatment. This case suggests a role for GH in testicular descent.
Aircraft Vortex Wake Descent and Decay under Real Atmospheric Effects
DOT National Transportation Integrated Search
1973-10-01
Aircraft vortex wake descent and decay in a real atmosphere is studied analytically. Factors relating to encounter hazard, wake generation, wake descent and stability, and atmospheric dynamics are considered. Operational equations for encounter hazar...
NASA Technical Reports Server (NTRS)
Klumpp, A. R.
1974-01-01
Apollo lunar-descent guidance transfers the Lunar Module from a near-circular orbit to touchdown, traversing a 17 deg central angle and a 15 km altitude in 11 min. A group of interactive programs in an onboard computer guide the descent, controlling altitude and the descent propulsion system throttle. A ground-based program pre-computes guidance targets. The concepts involved in this guidance are described. Explicit and implicit guidance are discussed, guidance equations are derived, and the earlier Apollo explicit equation is shown to be an inferior special case of the later implicit equation. Interactive guidance, by which the two-man crew selects a landing site in favorable terrain and directs the trajectory there, is discussed. Interactive terminal-descent guidance enables the crew to control the essentially vertical descent rate in order to land in minimum time with safe contact speed. The altitude maneuver routine uses concepts that make gimbal lock inherently impossible.
NASA Technical Reports Server (NTRS)
Smith, Charlee C., Jr.; Lovell, Powell M., Jr.
1954-01-01
An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.
14 CFR 121.420 - Flight navigators: Initial and transition ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... limitations and methods of compensation. (6) Cruise control charts and data, including fuel consumption rates... type airplane: (1) Limitations on climb, cruise, and descent speeds. (2) Each item of navigational...
14 CFR 121.420 - Flight navigators: Initial and transition ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... limitations and methods of compensation. (6) Cruise control charts and data, including fuel consumption rates... type airplane: (1) Limitations on climb, cruise, and descent speeds. (2) Each item of navigational...
Magnetotelluric inversion via reverse time migration algorithm of seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Taeyoung; Shin, Changsoo
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less
[Usefullness of the Kramer's index in the diagnosis of hyperbilirubinemia of the newborn].
Acosta-Torres, Sara M; Torres-Espina, Marco T; Colina-Araujo, José A; Colina-Chourio, José A
2012-06-01
The objective of the present study was to correlate seric values of bilirubin with the Kramer's index in a group of newborns with neonatal jaundice, from three different ethnic groups. This was a prospective, randomized, observational, descriptive-analytical, longitudinal, comparative and controlled study of 50 newborns with neonatal jaundice, without complications. They were divided into three groups: A (Control), n = 25, of Caucasian descent; B, n = 15, of local indigenous descent (Wayúu) and C, n = 10, of Afro-American descent. Each newborn was screened at the start of the study for their Kramer's dermic areas and simultaneously, a venous blood sample from the arm was taken for bilirubin quantification. They were compared through a correlation-regression analysis. Values at the beginning of the study were: serum bilirubin 12.02 +/- 3.41 mg/dL, and 62.8% of neonates were at Kramer's level 3. There were no differences among the ethnic groups studied and the correlation bilirubin/Kramer's index was r= 0.93 (p < 0.005). At the third day, both bilirubin and Kramer's indexes started to decrease. There were no ethnic differences. In conclusion, the Kramer's method offers multiple advantages to evaluate a jaundiced newborn; it is a safe, non-invasive method with no cost. Besides, it is of great help in the prevention of the kernicterus. It is recommended to implement the use of the Kramer method in all the newborns units in our Hospitals, preferably in those lacking transcutaneous bilirubinometers.
Native South American genetic structure and prehistory inferred from hierarchical modeling of mtDNA.
Lewis, Cecil M; Long, Jeffrey C
2008-03-01
Genetic diversity in Native South Americans forms a complex pattern at both the continental and local levels. In comparing the West to the East, there is more variation within groups and smaller genetic distances between groups. From this pattern, researchers have proposed that there is more variation in the West and that a larger, more genetically diverse, founding population entered the West than the East. Here, we question this characterization of South American genetic variation and its interpretation. Our concern arises because others have inferred regional variation from the mean variation within local populations without taking into account the variation among local populations within the same region. This failure produces a biased view of the actual variation in the East. In this study, we analyze the mitochondrial DNA sequence between positions 16040 and 16322 of the Cambridge reference sequence. Our sample represents a total of 886 people from 27 indigenous populations from South (22), Central (3), and North America (2). The basic unit of our analyses is nucleotide identity by descent, which is easily modeled and proportional to nucleotide diversity. We use a forward modeling strategy to fit a series of nested models to identity by descent within and between all pairs of local populations. This method provides estimates of identity by descent at different levels of population hierarchy without assuming homogeneity within populations, regions, or continents. Our main discovery is that Eastern South America harbors more genetic variation than has been recognized. We find no evidence that there is increased identity by descent in the East relative to the total for South America. By contrast, we discovered that populations in the Western region, as a group, harbor more identity by descent than has been previously recognized, despite the fact that average identity by descent within groups is lower. In this light, there is no need to postulate separate founding populations for the East and the West because the variability in the East could serve as a source for the Western gene pools.
Evaluation of vertical profiles to design continuous descent approach procedure
NASA Astrophysics Data System (ADS)
Pradeep, Priyank
The current research focuses on predictability, variability and operational feasibility aspect of Continuous Descent Approach (CDA), which is among the key concepts of the Next Generation Air Transportation System (NextGen). The idle-thrust CDA is a fuel economical, noise and emission abatement procedure, but requires increased separation to accommodate for variability and uncertainties in vertical and speed profiles of arriving aircraft. Although a considerable amount of researches have been devoted to the estimation of potential benefits of the CDA, only few have attempted to explain the predictability, variability and operational feasibility aspect of CDA. The analytical equations derived using flight dynamics and Base of Aircraft and Data (BADA) Total Energy Model (TEM) in this research gives insight into dependency of vertical profile of CDA on various factors like wind speed and gradient, weight, aircraft type and configuration, thrust settings, atmospheric factors (deviation from ISA (DISA), pressure and density of the air) and descent speed profile. Application of the derived equations to idle-thrust CDA gives an insight into sensitivity of its vertical profile to multiple factors. This suggests fixed geometric flight path angle (FPA) CDA has higher degree of predictability and lesser variability at the cost of non-idle and low thrust engine settings. However, with optimized design this impact can be overall minimized. The CDA simulations were performed using Future ATM Concept Evaluation Tool (FACET) based on radar-track and aircraft type data (BADA) of the real air-traffic to some of the busiest airports in the USA (ATL, SFO and New York Metroplex (JFK, EWR and LGA)). The statistical analysis of the vertical profiles of CDA shows 1) mean geometric FPAs derived from various simulated vertical profiles are consistently shallower than 3° glideslope angle and 2) high level of variability in vertical profiles of idle-thrust CDA even in absence of uncertainties in external factors. Analysis from operational feasibility perspective suggests that two key features of the performance based Flight Management System (FMS) i.e. required time of arrival (RTA) and geometric descent path would help in reduction of unpredictability associated with arrival time and vertical profile of aircraft guided by the FMS coupled with auto-pilot (AP) and auto-throttle (AT). The statistical analysis of the vertical profiles of CDA also suggests that for procedure design window type, 'AT or above' and 'AT or below' altitude and FPA constraints are more realistic and useful compared to obsolete 'AT' type altitude constraint.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presles, Benoît, E-mail: benoit.presles@creatis.insa-lyon.fr; Rit, Simon; Sarrut, David
2014-12-15
Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computedmore » from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively. The latter are inferior to the interoperator registration variabilities which are of 2.5, 2.5, and 3.5 mm in LR, SI, and AP directions, respectively. Failures occur in 5%, 18%, and 10% of cases in LR, SI, and AP directions, respectively. 69% of the sessions have no failure. Conclusions: Results of the best proposed registration algorithm of 3D-TA-US images for postprostatectomy treatment have no bias and are in the same variability range as manual registration. As the algorithm requires a short computation time, it could be used in clinical practice provided that a visual review is performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qiaofeng; Sawatzky, Alex; Anastasio, Mark A., E-mail: anastasio@wustl.edu
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that ismore » solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets.« less
Xu, Qiaofeng; Yang, Deshan; Tan, Jun; Sawatzky, Alex; Anastasio, Mark A.
2016-01-01
Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation therapy (IGRT). In this work, two variants of the fast iterative shrinkage thresholding algorithm (FISTA) are proposed and investigated for accelerated iterative image reconstruction in CBCT. Methods: Algorithm acceleration was achieved by replacing the original gradient-descent step in the FISTAs by a subproblem that is solved by use of the ordered subset simultaneous algebraic reconstruction technique (OS-SART). Due to the preconditioning matrix adopted in the OS-SART method, two new weighted proximal problems were introduced and corresponding fast gradient projection-type algorithms were developed for solving them. We also provided efficient numerical implementations of the proposed algorithms that exploit the massive data parallelism of multiple graphics processing units. Results: The improved rates of convergence of the proposed algorithms were quantified in computer-simulation studies and by use of clinical projection data corresponding to an IGRT study. The accelerated FISTAs were shown to possess dramatically improved convergence properties as compared to the standard FISTAs. For example, the number of iterations to achieve a specified reconstruction error could be reduced by an order of magnitude. Volumetric images reconstructed from clinical data were produced in under 4 min. Conclusions: The FISTA achieves a quadratic convergence rate and can therefore potentially reduce the number of iterations required to produce an image of a specified image quality as compared to first-order methods. We have proposed and investigated accelerated FISTAs for use with two nonsmooth penalty functions that will lead to further reductions in image reconstruction times while preserving image quality. Moreover, with the help of a mixed sparsity-regularization, better preservation of soft-tissue structures can be potentially obtained. The algorithms were systematically evaluated by use of computer-simulated and clinical data sets. PMID:27036582
A Descent Rate Control Approach to Developing an Autonomous Descent Vehicle
NASA Astrophysics Data System (ADS)
Fields, Travis D.
Circular parachutes have been used for aerial payload/personnel deliveries for over 100 years. In the past two decades, significant work has been done to improve the landing accuracies of cargo deliveries for humanitarian and military applications. This dissertation discusses the approach developed in which a circular parachute is used in conjunction with an electro-mechanical reefing system to manipulate the landing location. Rather than attempt to steer the autonomous descent vehicle directly, control of the landing location is accomplished by modifying the amount of time spent in a particular wind layer. Descent rate control is performed by reversibly reefing the parachute canopy. The first stage of the research investigated the use of a single actuation during descent (with periodic updates), in conjunction with a curvilinear target. Simulation results using real-world wind data are presented, illustrating the utility of the methodology developed. Additionally, hardware development and flight-testing of the single actuation autonomous descent vehicle are presented. The next phase of the research focuses on expanding the single actuation descent rate control methodology to incorporate a multi-actuation path-planning system. By modifying the parachute size throughout the descent, the controllability of the system greatly increases. The trajectory planning methodology developed provides a robust approach to accurately manipulate the landing location of the vehicle. The primary benefits of this system are the inherent robustness to release location errors and the ability to overcome vehicle uncertainties (mass, parachute size, etc.). A separate application of the path-planning methodology is also presented. An in-flight path-prediction system was developed for use in high-altitude ballooning by utilizing the path-planning methodology developed for descent vehicles. The developed onboard system improves landing location predictions in-flight using collected flight information during the ascent and descent. Simulation and real-world flight tests (using the developed low-cost hardware) demonstrate the significance of the improvements achievable when flying the developed system.
An evaluation of descent strategies for TNAV-equipped aircraft in an advanced metering environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Schwab, R. W.; Groce, J. L.; Coote, M. A.
1986-01-01
Investigated were the effects on system throughput and fleet fuel usage of arrival aircraft utilizing three 4D RNAV descent strategies (cost optimal, clean-idle Mach/CAS and constant descent angle Mach/CAS), both individually and in combination, in an advanced air traffic control metering environment. Results are presented for all mixtures of arrival traffic consisting of three Boeing commercial jet types and for all combinations of the three descent strategies for a typical en route metering airport arrival distribution.
The impact of Asian descent on the incidence of acquired severe aplastic anaemia in children.
McCahon, Emma; Tang, Keith; Rogers, Paul C J; McBride, Mary L; Schultz, Kirk R
2003-04-01
Previous studies have suggested an increased incidence of acquired severe aplastic anaemia in Asian populations. We evaluated the incidence of aplastic anaemia in people of Asian descent, using a well-defined paediatric (0-14 years) population in British Columbia, Canada to minimize environmental factors. The incidence in children of East/South-east Asian descent (6.9/million/year) and South Asian (East Indian) descent (7.3/million/year) was higher than for those of White/mixed ethnic descent (1.7/million/year). There appeared to be no contribution by environmental factors. This study shows that Asian children have an increased incidence of severe aplastic anaemia possibly as a result of a genetic predisposition.
Intrascrotal CGRP 8-37 causes a delay in testicular descent in mice.
Samarakkody, U K; Hutson, J M
1992-07-01
The genitofemoral nerve is a key factor in the inguinoscrotal descent of the testis. The effect of androgens may be mediated via the central nervous system, which in turn secretes the neurotransmitter calcitonin gene-related peptide (CGRP) at the genitofemoral nerve endings, to cause testicular descent. The effect of endogenous CGRP was examined by weekly injections of a vehicle with or without synthetic antagonist (CGRP 8-37) into the developing scrotum of neonatal mice. The descent of the testis was delayed in the experimental group compared with the control group. At 2 weeks of age 43% of controls had descended testes compared with 0% of experimental animals. At 3 weeks of age 17% of experimentals still had undescended testes, whereas all testes were descended in controls. At 4 weeks 3 testes remained undescended in the experimental group. It is concluded that the CGRP antagonist can retard testicular descent. This result is consistent with the hypothesis that CGRP is an important intermediary in testicular descent.
A time-based concept for terminal-area traffic management
NASA Technical Reports Server (NTRS)
Erzberger, Heinz; Tobias, Leonard
1986-01-01
An automated air-traffic-management concept that has the potential for significantly increasing the efficiency of traffic flows in high-density terminal areas is discussed. The concept's implementation depends on techniques for controlling the landing time of all aircraft entering the terminal area, both those that are equipped with on-board four-dimensional (4D) guidance systems as well as those aircraft types that are conventionally equipped. The two major ground-based elements of the system are a scheduler which assigns conflict-free landing times and a profile descent advisor. Landing time provided by the scheduler is uplinked to equipped aircraft and translated into the appropriate 4D trajectory by the-board flight-management system. The controller issues descent advisories to unequipped aircraft to help them achieve the assigned landing times. Air traffic control simulations have established that the concept provides an efficient method for controlling various mixes of 4D-equipped and unequipped, as well as low- and high-performance, aircraft. Piloted simulations of profiles flown with the aid of advisories have verified the ability to meet specified descent times with prescribed accuracy.
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
Houle, A M; Gagné, D
1995-01-01
The androgen-regulated paracrine factor, calcitonin gene-related peptide (CGRP), has been proposed as a possible mediator of testicular descent. This peptide has been found to increase rhythmic contractions of gubernaculae and is known to be released by the genitofemoral nerve. We have investigated the ability of CGRP to induce premature testicular descent. CGRP was administered alone, or in combination with human chorionic gonadotropin (hCG) to C57BL/6 male mice postnatally. The extent of testicular descent at 18 days postpartum was then ascertained. The potential relationship between testicular weight and descent was also examined. Our results show that testes of mice treated with either hCG alone, or in combination with 500 ng CGRP, were at a significantly lower position than those of controls by 16% and 17%, respectively. In contrast, mice treated with 500 ng of CGRP alone had testes at a higher position when compared to those of controls, by 19%. In mice treated with 50 ng of CGRP alone or in combination with hCG, testes were at a position similar to those in controls. Furthermore, testicular descent was analyzed in relation to testicular weight, and we found that significantly smaller testes per gram of body weight than those of controls were at a significantly lower position compared to those of controls. Our data demonstrate that CGRP had no effect on postnatal testicular descent and that there is no relationship between postnatal descent and testicular weight.
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-05-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
A guidance law for hypersonic descent to a point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisler, G.R.; Hull, D.G.
1992-01-01
A neighboring external control problem is formulated for a hypersonic glider to execute a maximum-terminal-velocity descent to a stationary target. The resulting two-part, feedback control scheme initially solves a nonlinear algebraic problem to generate a nominal trajectory to the target altitude. Secondly, a neighboring optimal path computation about the nominal provides a lift and side-force perturbations necessary to achieve the target downrange and crossrange. On-line feedback simulations of the proposed scheme and a form of proportional navigation are compared with an off-line parameter optimization method. The neighboring optimal terminal velocity compares very well with the parameter optimization solution and ismore » far superior to proportional navigation. 8 refs.« less
Transformable descent vehicles
NASA Astrophysics Data System (ADS)
Pichkhadze, K. M.; Finchenko, V. S.; Aleksashkin, S. N.; Ostreshko, B. A.
2016-12-01
This article presents some types of planetary descent vehicles, the shape of which varies in different flight phases. The advantages of such vehicles over those with unchangeable form (from launch to landing) are discussed. It is shown that the use of transformable descent vehicles widens the scope of possible tasks to solve.
43 CFR 10.14 - Lineal descent and cultural affiliation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... evidence sufficient to: (i) Establish the identity and cultural characteristics of the earlier group, (ii... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Lineal descent and cultural affiliation... GRAVES PROTECTION AND REPATRIATION REGULATIONS General § 10.14 Lineal descent and cultural affiliation...
43 CFR 10.14 - Lineal descent and cultural affiliation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... evidence sufficient to: (i) Establish the identity and cultural characteristics of the earlier group, (ii... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Lineal descent and cultural affiliation... GRAVES PROTECTION AND REPATRIATION REGULATIONS General § 10.14 Lineal descent and cultural affiliation...
Rocket measurements of electron density irregularities during MAC/SINE
NASA Technical Reports Server (NTRS)
Ulwick, J. C.
1989-01-01
Four Super Arcas rockets were launched at the Andoya Rocket Range, Norway, as part of the MAC/SINE campaign to measure electron density irregularities with high spatial resolution in the cold summer polar mesosphere. They were launched as part of two salvos: the turbulent/gravity wave salvo (3 rockets) and the EISCAT/SOUSY radar salvo (one rocket). In both salvos meteorological rockets, measuring temperature and winds, were also launched and the SOUSY radar, located near the launch site, measured mesospheric turbulence. Electron density irregularities and strong gradients were measured by the rocket probes in the region of most intense backscatter observed by the radar. The electron density profiles (8 to 4 on ascent and 4 on descent) show very different characteristics in the peak scattering region and show marked spatial and temporal variability. These data are intercompared and discussed.
Ellipsoidal fuzzy learning for smart car platoons
NASA Astrophysics Data System (ADS)
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Vorontsov, Mikhail; Weyrauch, Thomas; Lachinova, Svetlana; Gatz, Micah; Carhart, Gary
2012-07-15
Maximization of a projected laser beam's power density at a remotely located extended object (speckle target) can be achieved by using an adaptive optics (AO) technique based on sensing and optimization of the target-return speckle field's statistical characteristics, referred to here as speckle metrics (SM). SM AO was demonstrated in a target-in-the-loop coherent beam combining experiment using a bistatic laser beam projection system composed of a coherent fiber-array transmitter and a power-in-the-bucket receiver. SM sensing utilized a 50 MHz rate dithering of the projected beam that provided a stair-mode approximation of the outgoing combined beam's wavefront tip and tilt with subaperture piston phases. Fiber-integrated phase shifters were used for both the dithering and SM optimization with stochastic parallel gradient descent control.
Online selective kernel-based temporal difference learning.
Chen, Xingguo; Gao, Yang; Wang, Ruili
2013-12-01
In this paper, an online selective kernel-based temporal difference (OSKTD) learning algorithm is proposed to deal with large scale and/or continuous reinforcement learning problems. OSKTD includes two online procedures: online sparsification and parameter updating for the selective kernel-based value function. A new sparsification method (i.e., a kernel distance-based online sparsification method) is proposed based on selective ensemble learning, which is computationally less complex compared with other sparsification methods. With the proposed sparsification method, the sparsified dictionary of samples is constructed online by checking if a sample needs to be added to the sparsified dictionary. In addition, based on local validity, a selective kernel-based value function is proposed to select the best samples from the sample dictionary for the selective kernel-based value function approximator. The parameters of the selective kernel-based value function are iteratively updated by using the temporal difference (TD) learning algorithm combined with the gradient descent technique. The complexity of the online sparsification procedure in the OSKTD algorithm is O(n). In addition, two typical experiments (Maze and Mountain Car) are used to compare with both traditional and up-to-date O(n) algorithms (GTD, GTD2, and TDC using the kernel-based value function), and the results demonstrate the effectiveness of our proposed algorithm. In the Maze problem, OSKTD converges to an optimal policy and converges faster than both traditional and up-to-date algorithms. In the Mountain Car problem, OSKTD converges, requires less computation time compared with other sparsification methods, gets a better local optima than the traditional algorithms, and converges much faster than the up-to-date algorithms. In addition, OSKTD can reach a competitive ultimate optima compared with the up-to-date algorithms.
Verdini, Federica; Zara, Claudio; Leo, Tommaso; Mengarelli, Alessandro; Cardarelli, Stefano; Innocenti, Bernardo
2017-01-01
Summary Background In this paper, squat named by Authors unconstrained because performed without constrains related to feet position, speed, knee maximum angle to be reached, was tested as motor task revealing differences in functional performance after knee arthroplasty. It involves large joints ranges of motion, does not compromise joint safety and requires accurate control strategies to maintain balance. Methods Motion capture techniques were used to study squat on a healthy control group (CTR) and on three groups, each characterised by a specific knee arthroplasty design: a Total Knee Arthroplasty (TKA), a Mobile Bearing and a Fixed Bearing Unicompartmental Knee Arthroplasty (respectively MBUA and FBUA). Squat was analysed during descent, maintenance and ascent phase and described by speed, angular kinematics of lower and upper body, the Center of Pressure (CoP) trajectory and muscle activation timing of quadriceps and biceps femoris. Results Compared to CTR, for TKA and MBUA knee maximum flexion was lower, vertical speed during descent and ascent reduced and the duration of whole movement was longer. CoP mean distance was higher for all arthroplasty groups during descent as higher was, CoP mean velocity for MBUA and TKA during ascent and descent. Conclusions Unconstrained squat is able to reveal differences in the functional performance among control and arthroplasty groups and between different arthroplasty designs. Considering the similarity index calculated for the variables showing statistically significance, FBUA performance appears to be closest to that of the CTR group. Level of evidence III a. PMID:29387646
Overview of the Phoenix Entry, Descent and Landing System
NASA Technical Reports Server (NTRS)
Grover, Rob
2005-01-01
A viewgraph presentation on the entry, descent and landing system of Phoenix is shown. The topics include: 1) Phoenix Mission Goals; 2) Payload; 3) Aeroshell/Entry Comparison; 4) Entry Trajectory Comparison; 5) Phoenix EDL Timeline; 6) Hypersonic Phase; 7) Parachute Phase; 8) Terminal Descent Phase; and 9) EDL Communications.
NASA Technical Reports Server (NTRS)
Brown, Charles; Andrew, Robert; Roe, Scott; Frye, Ronald; Harvey, Michael; Vu, Tuan; Balachandran, Krishnaiyer; Bly, Ben
2012-01-01
The Ascent/Descent Software Suite has been used to support a variety of NASA Shuttle Program mission planning and analysis activities, such as range safety, on the Integrated Planning System (IPS) platform. The Ascent/Descent Software Suite, containing Ascent Flight Design (ASC)/Descent Flight Design (DESC) Configuration items (Cis), lifecycle documents, and data files used for shuttle ascent and entry modeling analysis and mission design, resides on IPS/Linux workstations. A list of tools in Navigation (NAV)/Prop Software Suite represents tool versions established during or after the IPS Equipment Rehost-3 project.
Descent Stage of Mars Science Laboratory During Assembly
NASA Technical Reports Server (NTRS)
2008-01-01
This image from early October 2008 shows personnel working on the descent stage of NASA's Mars Science Laboratory inside the Spacecraft Assembly Facility at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The descent stage will provide rocket-powered deceleration for a phase of the arrival at Mars after the phases using the heat shield and parachute. When it nears the surface, the descent stage will lower the rover on a bridle the rest of the way to the ground. The larger three of the orange spheres in the descent stage are fuel tanks. The smaller two are tanks for pressurant gas used for pushing the fuel to the rocket engines. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.Dynamics of the Venera 13 and 14 descent modules in the parachute segment of descent
NASA Astrophysics Data System (ADS)
Vishniak, A. A.; Kariagin, V. P.; Kovtunenko, V. M.; Kotov, B. B.; Kuznetsov, V. V.; Lopatkin, A. I.; Perov, O. V.; Pichkhadze, K. M.; Rysev, O. V.
1983-05-01
The parachute system for the Venera 13 and 14 descent modules was designed to assure the prescribed duration of descent in the Venus cloud layer as well as the separation of heat-shield elements from the module. A mathematical model is developed which makes possible a numerical analysis of the dynamics of the module-parachute system with allowance for parachute inertia, atmospheric turbulence, the means by which the parachute is attachead to the module, and the elasticity and damping of the suspended system. A formula is derived for determining the period of oscillations of the module in the parachute segment of descent. A comparison of theoretical and experimental results shows that this formula can be used in the design calculations, especially at the early stage of module development.
Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace
NASA Technical Reports Server (NTRS)
Coopenbarger, Richard A.
2010-01-01
Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vicroy, D.D.
A simplified flight management descent algorithm was developed and programmed on a small programmable calculator. It was designed to aid the pilot in planning and executing a fuel conservative descent to arrive at a metering fix at a time designated by the air traffic control system. The algorithm may also be used for planning fuel conservative descents when time is not a consideration. The descent path was calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard temperature effects. An explanation and examples of how the algorithm is used,more » as well as a detailed flow chart and listing of the algorithm are contained.« less
On the Convergence Analysis of the Optimized Gradient Method.
Kim, Donghwan; Fessler, Jeffrey A
2017-01-01
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov's fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization.
On the Convergence Analysis of the Optimized Gradient Method
Kim, Donghwan; Fessler, Jeffrey A.
2016-01-01
This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization. PMID:28461707
Tracer-Based Determination of Vortex Descent in the 1999-2000 Arctic Winter
NASA Technical Reports Server (NTRS)
Greenblatt, Jeffery B.; Jost, Hans-Juerg; Loewenstein, Max; Podolske, James R.; Hurst, Dale F.; Elkins, James W.; Schauffler, Sue M.; Atlas, Elliot L.; Herman, Robert L.; Webster, Christopher R.
2001-01-01
A detailed analysis of available in situ and remotely sensed N2O and CH4 data measured in the 1999-2000 winter Arctic vortex has been performed in order to quantify the temporal evolution of vortex descent. Differences in potential temperature (theta) among balloon and aircraft vertical profiles (an average of 19-23 K on a given N2O or CH4 isopleth) indicated significant vortex inhomogeneity in late fall as compared with late winter profiles. A composite fall vortex profile was constructed for November 26, 1999, whose error bars encompassed the observed variability. High-latitude, extravortex profiles measured in different years and seasons revealed substantial variability in N2O and CH4 on theta surfaces, but all were clearly distinguishable from the first vortex profiles measured in late fall 1999. From these extravortex-vortex differences, we inferred descent prior to November 26: 397+/-15 K (1sigma) at 30 ppbv N2O and 640 ppbv CH4, and 28+/-13 K above 200 ppbv N2O and 1280 ppbv CH4. Changes in theta were determined on five N2O and CH4 isopleths from November 26 through March 12, and descent rates were calculated on each N2O isopleth for several time intervals. The maximum descent rates were seen between November 26 and January 27: 0.82+/-0.20 K/day averaged over 50-250 ppbv N2O. By late winter (February 26-March 12), the average rate had decreased to 0.10+/-0.25 K/day. Descent rates also decreased with increasing N2O; the winter average (November 26-March 5) descent rate varied from 0.75+/-0.10 K/day at 50 ppbv to 0.40+/-0.11 K/day at 250 ppbv. Comparison of these results with observations and models of descent in prior years showed very good overall agreement. Two models of the 1999-2000 vortex descent, SLIMCAT and REPROBUS, despite theta offsets with respect to observed profiles of up to 20 K on most tracer isopleths, produced descent rates that agreed very favorably with the inferred rates from observation.
Aliberti, Sandra; Mezêncio, Bruno; Amadio, Alberto Carlos; Serrão, Julio Cerca; Mochizuki, Luis
2018-05-23
Knee pain during stair managing is a common complaint among individuals with PFP and can negatively affect their activities of daily living. Gait modification programs can be used to decrease patellofemoral pain. Immediate effects of a stair descent distal gait modification session that intended to emphasize forefoot landing during stair descent are described in this study. To analyze the immediate effects of a distal gait modification session on lower extremity movements and intensity of pain in women with patellofemoral pain during stair descent. Nonrandomized controlled trial. Sixteen women with patellofemoral pain were allocated into two groups: (1) Gait Modification Group (n = 8); and 2) Control Group (n = 8). The intensity of pain (visual analog scale) and kinematics of knee, ankle, and forefoot (multi-segmental foot model) during stair descent were assessed before and after the intervention. After the gait modification session, there was an increase of forefoot eversion and ankle plantarflexion as well as a decrease of knee flexion. An immediate decrease in patellofemoral pain intensity during stair descent was also observed. The distal gait modification session changed the lower extremity kinetic chain strategy of movement, increasing foot and ankle movement contribution and decreasing knee contribution to the task. An immediate decrease in patellofemoral pain intensity during stair descent was also observed. To emphasize forefoot landing may be a useful intervention to immediately relieve pain in patients with patellofemoral pain during stair descent. Clinical studies are needed to verify the gait modification session effects in medium and long terms.
Fazio, Massimo A; Grytz, Rafael; Morris, Jeffrey S; Bruno, Luigi; Girkin, Christopher A; Downs, J Crawford
2014-09-18
We tested the hypothesis that the variation of peripapillary scleral structural stiffness with age is different in donors of European (ED) and African (AD) descent. Posterior scleral shells from normal eyes from donors of European (n = 20 pairs; previously reported) and African (n = 9 pairs) descent aged 0 and 90 years old were inflation tested within 48 hours post mortem. Scleral shells were pressurized from 5 to 45 mm Hg and the full-field, 3-dimensional (3D) deformation of the outer surface was recorded at submicrometric accuracy using speckle interferometry (ESPI). Mean maximum principal (tensile) strain of the peripapillary and midperipheral regions surrounding the optic nerve head (ONH) were fit using a functional mixed effects model that accounts for intradonor variability, same-race correlation, and spatial autocorrelation to estimate the effect of race on the age-related changes in mechanical scleral strain. Mechanical tensile strain significantly decreased with age in the peripapillary sclera in the African and European descent groups (P < 0.001), but the age-related stiffening was significantly greater in the African descent group (P < 0.05). Maximum principal strain in the peripapillary sclera was significantly higher than in the midperipheral sclera for both ethnic groups. The sclera surrounding the ONH stiffens more rapidly with age in the African descent group compared to the European group. Stiffening of the peripapillary sclera with age may be related to the higher prevalence of glaucoma in the elderly and persons of African descent. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-01-01
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation. PMID:26404292
Dong, Feihong; Li, Hongjun; Gong, Xiangwu; Liu, Quan; Wang, Jingchao
2015-09-03
A typical application scenario of remote wireless sensor networks (WSNs) is identified as an emergency scenario. One of the greatest design challenges for communications in emergency scenarios is energy-efficient transmission, due to scarce electrical energy in large-scale natural and man-made disasters. Integrated high altitude platform (HAP)/satellite networks are expected to optimally meet emergency communication requirements. In this paper, a novel integrated HAP/satellite (IHS) architecture is proposed, and three segments of the architecture are investigated in detail. The concept of link-state advertisement (LSA) is designed in a slow flat Rician fading channel. The LSA is received and processed by the terminal to estimate the link state information, which can significantly reduce the energy consumption at the terminal end. Furthermore, the transmission power requirements of the HAPs and terminals are derived using the gradient descent and differential equation methods. The energy consumption is modeled at both the source and system level. An innovative and adaptive algorithm is given for the energy-efficient path selection. The simulation results validate the effectiveness of the proposed adaptive algorithm. It is shown that the proposed adaptive algorithm can significantly improve energy efficiency when combined with the LSA and the energy consumption estimation.
An Approach to Unbiased Subsample Interpolation for Motion Tracking
McCormick, Matthew M.; Varghese, Tomy
2013-01-01
Accurate subsample displacement estimation is necessary for ultrasound elastography because of the small deformations that occur and the subsequent application of a derivative operation on local displacements. Many of the commonly used subsample estimation techniques introduce significant bias errors. This article addresses a reduced bias approach to subsample displacement estimations that consists of a two-dimensional windowed-sinc interpolation with numerical optimization. It is shown that a Welch or Lanczos window with a Nelder–Mead simplex or regular-step gradient-descent optimization is well suited for this purpose. Little improvement results from a sinc window radius greater than four data samples. The strain signal-to-noise ratio (SNR) obtained in a uniformly elastic phantom is compared with other parabolic and cosine interpolation methods; it is found that the strain SNR ratio is improved over parabolic interpolation from 11.0 to 13.6 in the axial direction and 0.7 to 1.1 in the lateral direction for an applied 1% axial deformation. The improvement was most significant for small strains and displacement tracking in the lateral direction. This approach does not rely on special properties of the image or similarity function, which is demonstrated by its effectiveness with the application of a previously described regularization technique. PMID:23493609
Shape optimisation of an underwater Bernoulli gripper
NASA Astrophysics Data System (ADS)
Flint, Tim; Sellier, Mathieu
2015-11-01
In this work, we are interested in maximising the suction produced by an underwater Bernoulli gripper. Bernoulli grippers work by exploiting low pressure regions caused by the acceleration of a working fluid through a narrow channel, between the gripper and a surface, to provide a suction force. This mechanism allows for non-contact adhesion to various surfaces and may be used to hold a robot to the hull of a ship while it inspects welds for example. A Bernoulli type pressure analysis was used to model the system with a Darcy friction factor approximation to include the effects of frictional losses. The analysis involved a constrained optimisation in order to avoid cavitation within the mechanism which would result in decreased performance and damage to surfaces. A sensitivity based method and gradient descent approach was used to find the optimum shape of a discretised surface. The model's accuracy has been quantified against finite volume computational fluid dynamics simulation (ANSYS CFX) using the k- ω SST turbulence model. Preliminary results indicate significant improvement in suction force when compared to a simple geometry by retaining a pressure just above that at which cavitation would occur over as much surface area as possible. Doctoral candidate in the Mechanical Engineering Department of the University of Canterbury, New Zealand.
PSO-Assisted Development of New Transferable Coarse-Grained Water Models.
Bejagam, Karteek K; Singh, Samrendra; An, Yaxin; Berry, Carter; Deshmukh, Sanket A
2018-02-15
We have employed two-to-one mapping scheme to develop three coarse-grained (CG) water models, namely, 1-, 2-, and 3-site CG models. Here, for the first time, particle swarm optimization (PSO) and gradient descent methods were coupled to optimize the force-field parameters of the CG models to reproduce the density, self-diffusion coefficient, and dielectric constant of real water at 300 K. The CG MD simulations of these new models conducted with various timesteps, for different system sizes, and at a range of different temperatures are able to predict the density, self-diffusion coefficient, dielectric constant, surface tension, heat of vaporization, hydration free energy, and isothermal compressibility of real water with excellent accuracy. The 1-site model is ∼3 and ∼4.5 times computationally more efficient than 2- and 3-site models, respectively. To utilize the speed of 1-site model and electrostatic interactions offered by 2- and 3-site models, CG MD simulations of 1:1 combination of 1- and 2-/3-site models were performed at 300 K. These mixture simulations could also predict the properties of real water with good accuracy. Two new CG models of benzene, consisting of beads with and without partial charges, were developed. All three water models showed good capacity to solvate these benzene models.
Boosting structured additive quantile regression for longitudinal childhood obesity data.
Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael
2013-07-25
Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.
On the use of harmony search algorithm in the training of wavelet neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
Decoding English Alphabet Letters Using EEG Phase Information
Wang, YiYan; Wang, Pingxiao; Yu, Yuguo
2018-01-01
Increasing evidence indicates that the phase pattern and power of the low frequency oscillations of brain electroencephalograms (EEG) contain significant information during the human cognition of sensory signals such as auditory and visual stimuli. Here, we investigate whether and how the letters of the alphabet can be directly decoded from EEG phase and power data. In addition, we investigate how different band oscillations contribute to the classification and determine the critical time periods. An English letter recognition task was assigned, and statistical analyses were conducted to decode the EEG signal corresponding to each letter visualized on a computer screen. We applied support vector machine (SVM) with gradient descent method to learn the potential features for classification. It was observed that the EEG phase signals have a higher decoding accuracy than the oscillation power information. Low-frequency theta and alpha oscillations have phase information with higher accuracy than do other bands. The decoding performance was best when the analysis period began from 180 to 380 ms after stimulus presentation, especially in the lateral occipital and posterior temporal scalp regions (PO7 and PO8). These results may provide a new approach for brain-computer interface techniques (BCI) and may deepen our understanding of EEG oscillations in cognition. PMID:29467615
A Convex Formulation for Learning a Shared Predictive Structure from Multiple Tasks
Chen, Jianhui; Tang, Lei; Liu, Jun; Ye, Jieping
2013-01-01
In this paper, we consider the problem of learning from multiple related tasks for improved generalization performance by extracting their shared structures. The alternating structure optimization (ASO) algorithm, which couples all tasks using a shared feature representation, has been successfully applied in various multitask learning problems. However, ASO is nonconvex and the alternating algorithm only finds a local solution. We first present an improved ASO formulation (iASO) for multitask learning based on a new regularizer. We then convert iASO, a nonconvex formulation, into a relaxed convex one (rASO). Interestingly, our theoretical analysis reveals that rASO finds a globally optimal solution to its nonconvex counterpart iASO under certain conditions. rASO can be equivalently reformulated as a semidefinite program (SDP), which is, however, not scalable to large datasets. We propose to employ the block coordinate descent (BCD) method and the accelerated projected gradient (APG) algorithm separately to find the globally optimal solution to rASO; we also develop efficient algorithms for solving the key subproblems involved in BCD and APG. The experiments on the Yahoo webpages datasets and the Drosophila gene expression pattern images datasets demonstrate the effectiveness and efficiency of the proposed algorithms and confirm our theoretical analysis. PMID:23520249
Acute toxicity and inactivation tests of CO2 on invertebrates in drinking water treatment systems.
Yin, Wen-Chao; Zhang, Jin-Song; Liu, Li-Jun; Zhao, Jian-Shu; Li, Tuo
2011-01-01
In addition to the esthetic problem caused by invertebrates, researchers are recently starting to be more aware of their potential importance in terms of public health. However, the inactivation methods of invertebrates which could proliferate in drinking water treatment systems are not well developed. The objective of this study is to assess the acute toxicity and inactivation effects of CO2 on familiar invertebrates in water treatment processes. The results of this study revealed that CO2 has a definite toxicity to familiar invertebrates. The values of 24-h LC50 (median lethal concentration) were calculated for each test with six groups of invertebrates. The toxicity of CO2 was higher with increasing concentrations in solution but was lower with the increase in size of the invertebrates. Above the concentration of 1,000 mg/L for the CO2 solution, the 100% inactivation time of all the invertebrates was less than 5 s, and in 15 min, the inactivation ratio showed a gradient descent with a decline in concentration. As seen for Mesocyclops thermocyclopoides, by dosing with a sodium bicarbonate solution first and adding a dilute hydrochloric acid solution 5 min later, it is possible to obtain a satisfactory inactivation effect in the GAC (granular activated carbon) filters.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration
NASA Technical Reports Server (NTRS)
Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert
2016-01-01
Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx. 75 t that could deliver approx. 28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx. 24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx. 20 t of propellant (including residuals) and the descent stage would require approx. 21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.
Latin American Immigrant Women and Intergenerational Sex Education
ERIC Educational Resources Information Center
Alcalde, Maria Cristina; Quelopana, Ana Maria
2013-01-01
People of Latin American descent make up the largest and fastest-growing minority group in the USA. Rates of pregnancy, childbirth, and sexually transmitted infections among people of Latin American descent are higher than among other ethnic groups. This paper builds on research that suggests that among families of Latin American descent, mothers…
Analysis of foot clearance in firefighters during ascent and descent of stairs.
Kesler, Richard M; Horn, Gavin P; Rosengren, Karl S; Hsiao-Wecksler, Elizabeth T
2016-01-01
Slips, trips, and falls are a leading cause of injury to firefighters with many injuries occurring while traversing stairs, possibly exaggerated by acute fatigue from firefighting activities and/or asymmetric load carriage. This study examined the effects that fatigue, induced by simulated firefighting activities, and hose load carriage have on foot clearance while traversing stairs. Landing and passing foot clearances for each stair during ascent and descent of a short staircase were investigated. Clearances decreased significantly (p < 0.05) post-exercise for nine of 12 ascent parameters and increased for two of eight descent parameters. Load carriage resulted in significantly decreased (p < 0.05) clearance over three ascent parameters, and one increase during descent. Decreased clearances during ascent caused by fatigue or load carriage may result in an increased trip risk. Increased clearances during descent may suggest use of a compensation strategy to ensure stair clearance or an increased risk of over-stepping during descent. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Toward a Caribbean psychology: an African-centered approach.
Sutherland, Marcia Elizabeth
2011-01-01
Although the Americas and Caribbean region are purported to comprise different ethnic groups, this article’s focus is on people of African descent, who represent the largest ethnic group in many countries. The emphasis on people of African descent is related to their family structure, ethnic identity, cultural, psychohistorical, and contemporary psychosocial realities. This article discusses the limitations of Western psychology for theory, research, and applied work on people of African descent in the Americas and Caribbean region. In view of the adaptations that some people of African descent have made to slavery, colonialism, and more contemporary forms of cultural intrusions, it is argued that when necessary, notwithstanding Western psychology’s limitations, Caribbean psychologists should reconstruct mainstream psychology to address the psychological needs of these Caribbean people. The relationship between theory and psychological interventions for the optimal development of people of African descent is emphasized throughout this article. In this regard, the African-centered and constructionist viewpoint is argued to be of utility in addressing the psychological growth and development of people of African descent living in the Americas and Caribbean region.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1984-01-01
Concepts to save fuel while preserving airport capacity by combining time based metering with profile descent procedures were developed. A computer algorithm is developed to provide the flight crew with the information needed to fly from an entry fix to a metering fix and arrive there at a predetermined time, altitude, and airspeed. The flight from the metering fix to an aim point near the airport was calculated. The flight path is divided into several descent and deceleration segments. Descents are performed at constant Mach numbers or calibrated airspeed, whereas decelerations occur at constant altitude. The time and distance associated with each segment are calculated from point mass equations of motion for a clean configuration with idle thrust. Wind and nonstandard atmospheric properties have a large effect on the flight path. It is found that uncertainty in the descent Mach number has a large effect on the predicted flight time. Of the possible combinations of Mach number and calibrated airspeed for a descent, only small changes were observed in the fuel consumed.
Ascent/descent ancillary data production user's guide
NASA Technical Reports Server (NTRS)
Brans, H. R.; Seacord, A. W., II; Ulmer, J. W.
1986-01-01
The Ascent/Descent Ancillary Data Product, also called the A/D BET because it contains a Best Estimate of the Trajectory (BET), is a collection of trajectory, attitude, and atmospheric related parameters computed for the ascent and descent phases of each Shuttle Mission. These computations are executed shortly after the event in a post-flight environment. A collection of several routines including some stand-alone routines constitute what is called the Ascent/Descent Ancillary Data Production Program. A User's Guide for that program is given. It is intended to provide the reader with all the information necessary to generate an Ascent or a Descent Ancillary Data Product. It includes descriptions of the input data and output data for each routine, and contains explicit instructions on how to run each routine. A description of the final output product is given.
Time-specific androgen blockade with flutamide inhibits testicular descent in the rat.
Husmann, D A; McPhaul, M J
1991-09-01
Inhibition of androgen action by flutamide, a nonsteroidal antiandrogen, blocked testicular descent in 40% of the testes exposed to this agent continuously from gestational day 13 through postpartal day 28. By contrast, only 11% of the testes failed to descend when blocked by 5 alpha-reductase inhibitors during the same period. Flutamide administration over narrower time intervals (gestational day 13-15, 16-17, or 18-19) revealed maximal interference with testicular descent after androgen inhibition during gestational days 16-17. No significant differences in testicular or epididymal weights were evident between descended and undescended testes; furthermore, no correlation was detected between the presence of epididymal abnormalities and testicular descent. These findings indicate that androgen inhibition during a brief period of embryonic development can block testicular descent. The mechanism through which this inhibition occurs remains to be elucidated.
A conflict analysis of 4D descent strategies in a metered, multiple-arrival route environment
NASA Technical Reports Server (NTRS)
Izumi, K. H.; Harris, C. S.
1990-01-01
A conflict analysis was performed on multiple arrival traffic at a typical metered airport. The Flow Management Evaluation Model (FMEM) was used to simulate arrival operations using Denver Stapleton's arrival route structure. Sensitivities of conflict performance to three different 4-D descent strategies (clear-idle Mach/Constant AirSpeed (CAS), constant descent angle Mach/CAS and energy optimal) were examined for three traffic mixes represented by those found at Denver Stapleton, John F. Kennedy and typical en route metering (ERM) airports. The Monte Carlo technique was used to generate simulation entry point times. Analysis results indicate that the clean-idle descent strategy offers the best compromise in overall performance. Performance measures primarily include susceptibility to conflict and conflict severity. Fuel usage performance is extrapolated from previous descent strategy studies.
Analysis of Flight Management System Predictions of Idle-Thrust Descents
NASA Technical Reports Server (NTRS)
Stell, Laurel
2010-01-01
To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the predictor and its uncertainty models, descents from cruise to the meter fix were executed using vertical navigation in a B737-700 simulator and a B777-200 simulator, both with commercial FMSs. For both aircraft types, the FMS computed the intended descent path for a specified speed profile assuming idle thrust after top of descent (TOD), and then it controlled the avionics without human intervention. The test matrix varied aircraft weight, descent speed, and wind conditions. The first analysis in this paper determined the effect of the test matrix parameters on the FMS computation of TOD location, and it compared the results to those for the current ground predictor in the Efficient Descent Advisor (EDA). The second analysis was similar but considered the time to fly a specified distance to the meter fix. The effects of the test matrix variables together with the accuracy requirements for the predictor will determine the allowable error for the predictor inputs. For the B737, the EDA prediction of meter fix crossing time agreed well with the FMS; but its prediction of TOD location probably was not sufficiently accurate to enable idle-thrust descents in congested airspace, even though the FMS and EDA gave similar shapes for TOD location as a function of the test matrix variables. For the B777, the FMS and EDA gave different shapes for the TOD location function, and the EDA prediction of the TOD location is not accurate enough to fully enable the concept. Furthermore, the differences between the FMS and EDA predictions of meter fix crossing time for the B777 indicated that at least one of them was not sufficiently accurate.
Ground simulation of wide frequency band angular vibration for Lander's optic sensors
NASA Astrophysics Data System (ADS)
Xing, Zhigang; Xiang, Jianwei; Zheng, Gangtie
2017-11-01
To guide a lander of Moon or Mars exploration spacecraft during the stage of descent onto a desired place, optic sensors have been chosen to take the task, which include optic cameras and laser distance meters. However, such optic sensors are sensitive to vibrations, especially angular vibrations, from the lander. To reduce the risk of abnormal function and ensure the performance of optic sensors, ground simulations are necessary. More importantly, the simulations can be used as a method for examining the sensor performance and finding possible improvement on the sensor design. In the present paper, we proposed an angular vibration simulation method during the landing. This simulation method has been realized into product and applied to optic sensor tests for the moon lander. This simulator can generate random angular vibration in a frequency range from 0 to 2000Hz, the control precision is +/-1dB, and the linear translational speed can be set to the required descent speed. The operation and data processing methods of this developed simulator are the same as a normal shake table. The analysis and design methods are studied in the present paper, and test results are also provided.
The Dropout Learning Algorithm
Baldi, Pierre; Sadowski, Peter
2014-01-01
Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analysis of the ensemble averaging properties of dropout in linear networks, which is useful to understand the non-linear case. The ensemble averaging properties of dropout in non-linear logistic networks result from three fundamental equations: (1) the approximation of the expectations of logistic functions by normalized geometric means, for which bounds and estimates are derived; (2) the algebraic equality between normalized geometric means of logistic functions with the logistic of the means, which mathematically characterizes logistic functions; and (3) the linearity of the means with respect to sums, as well as products of independent variables. The results are also extended to other classes of transfer functions, including rectified linear functions. Approximation errors tend to cancel each other and do not accumulate. Dropout can also be connected to stochastic neurons and used to predict firing rates, and to backpropagation by viewing the backward propagation as ensemble averaging in a dropout linear network. Moreover, the convergence properties of dropout can be understood in terms of stochastic gradient descent. Finally, for the regularization properties of dropout, the expectation of the dropout gradient is the gradient of the corresponding approximation ensemble, regularized by an adaptive weight decay term with a propensity for self-consistent variance minimization and sparse representations. PMID:24771879
Full-waveform inversion for the Iranian plateau
NASA Astrophysics Data System (ADS)
Masouminia, N.; Fichtner, A.; Rahimi, H.
2017-12-01
We aim to obtain a detailed tomographic model for the Iranian plateau facilitated by full-waveform inversion. By using this method, we intend to better constrain the 3-D structure of the crust and the upper mantle in the region. The Iranian plateau is a complex tectonic area resulting from the collision of the Arabian and Eurasian tectonic plates. This region is subject to complex tectonic processes such as Makran subduction zone, which runs along the southeastern coast of Iran, and the convergence of the Arabian and- Eurasian plates, which itself led to another subduction under Central Iran. This continent-continent collision has also caused shortening and crustal thickening, which can be seen today as Zagros mountain range in the south and Kopeh Dagh mountain range in the northeast. As a result of such a tectonic activity, the crust and the mantle beneath the region are expected to be highly heterogeneous. To further our understanding of the region and its tectonic history, a detailed 3-D velocity model is required.To construct a 3-D model, we propose to use full-waveform inversion, which allows us to incorporate all types of waves recorded in the seismogram, including body waves as well as fundamental- and higher-mode surface waves. Exploiting more information from the observed data using this approach is likely to constrain features which have not been found by classical tomography studies so far. We address the forward problem using Salvus - a numerical wave propagation solver, based on spectral-element method and run on high-performance computers. The solver allows us to simulate wave field propagating in highly heterogeneous, attenuating and anisotropic media, respecting the surface topography. To improve the model, we solve the optimization problem. Solution of this optimization problem is based on an iterative approach which employs adjoint methods to calculate the gradient and uses steepest descent and conjugate-gradient methods to minimize the objective function. Each iteration of such an approach is expected to bring the model closer to the true model.Our model domain extends between 25°N and 40°N in latitude and 42°E and 63°E in longitude. To constrain the 3-D structure of the area we use 83 broadband seismic stations and 146 earthquakes with magnitude Mw>4.5 -that occurred in the region between 2012 and 2017.
An Impacting Descent Probe for Europa and the Other Galilean Moons of Jupiter
NASA Astrophysics Data System (ADS)
Wurz, P.; Lasi, D.; Thomas, N.; Piazza, D.; Galli, A.; Jutzi, M.; Barabash, S.; Wieser, M.; Magnes, W.; Lammer, H.; Auster, U.; Gurvits, L. I.; Hajdas, W.
2017-08-01
We present a study of an impacting descent probe that increases the science return of spacecraft orbiting or passing an atmosphere-less planetary bodies of the solar system, such as the Galilean moons of Jupiter. The descent probe is a carry-on small spacecraft (<100 kg), to be deployed by the mother spacecraft, that brings itself onto a collisional trajectory with the targeted planetary body in a simple manner. A possible science payload includes instruments for surface imaging, characterisation of the neutral exosphere, and magnetic field and plasma measurement near the target body down to very low-altitudes ( 1 km), during the probe's fast ( km/s) descent to the surface until impact. The science goals and the concept of operation are discussed with particular reference to Europa, including options for flying through water plumes and after-impact retrieval of very-low altitude science data. All in all, it is demonstrated how the descent probe has the potential to provide a high science return to a mission at a low extra level of complexity, engineering effort, and risk. This study builds upon earlier studies for a Callisto Descent Probe for the former Europa-Jupiter System Mission of ESA and NASA, and extends them with a detailed assessment of a descent probe designed to be an additional science payload for the NASA Europa Mission.
ERIC Educational Resources Information Center
Mahavier, W. Ted
2002-01-01
Describes a two-semester numerical methods course that serves as a research experience for undergraduate students without requiring external funding or the modification of current curriculum. Uses an engineering problem to introduce students to constrained optimization via a variation of the traditional isoperimetric problem of finding the curve…
A study on the performance comparison of metaheuristic algorithms on the learning of neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2017-08-01
The learning or training process of neural networks entails the task of finding the most optimal set of parameters, which includes translation vectors, dilation parameter, synaptic weights, and bias terms. Apart from the traditional gradient descent-based methods, metaheuristic methods can also be used for this learning purpose. Since the inception of genetic algorithm half a century ago, the last decade witnessed the explosion of a variety of novel metaheuristic algorithms, such as harmony search algorithm, bat algorithm, and whale optimization algorithm. Despite the proof of the no free lunch theorem in the discipline of optimization, a survey in the literature of machine learning gives contrasting results. Some researchers report that certain metaheuristic algorithms are superior to the others, whereas some others argue that different metaheuristic algorithms give comparable performance. As such, this paper aims to investigate if a certain metaheuristic algorithm will outperform the other algorithms. In this work, three metaheuristic algorithms, namely genetic algorithms, particle swarm optimization, and harmony search algorithm are considered. The algorithms are incorporated in the learning of neural networks and their classification results on the benchmark UCI machine learning data sets are compared. It is found that all three metaheuristic algorithms give similar and comparable performance, as captured in the average overall classification accuracy. The results corroborate the findings reported in the works done by previous researchers. Several recommendations are given, which include the need of statistical analysis to verify the results and further theoretical works to support the obtained empirical results.
Joint estimation of motion and illumination change in a sequence of images
NASA Astrophysics Data System (ADS)
Koo, Ja-Keoung; Kim, Hyo-Hun; Hong, Byung-Woo
2015-09-01
We present an algorithm that simultaneously computes optical flow and estimates illumination change from an image sequence in a unified framework. We propose an energy functional consisting of conventional optical flow energy based on Horn-Schunck method and an additional constraint that is designed to compensate for illumination changes. Any undesirable illumination change that occurs in the imaging procedure in a sequence while the optical flow is being computed is considered a nuisance factor. In contrast to the conventional optical flow algorithm based on Horn-Schunck functional, which assumes the brightness constancy constraint, our algorithm is shown to be robust with respect to temporal illumination changes in the computation of optical flows. An efficient conjugate gradient descent technique is used in the optimization procedure as a numerical scheme. The experimental results obtained from the Middlebury benchmark dataset demonstrate the robustness and the effectiveness of our algorithm. In addition, comparative analysis of our algorithm and Horn-Schunck algorithm is performed on the additional test dataset that is constructed by applying a variety of synthetic bias fields to the original image sequences in the Middlebury benchmark dataset in order to demonstrate that our algorithm outperforms the Horn-Schunck algorithm. The superior performance of the proposed method is observed in terms of both qualitative visualizations and quantitative accuracy errors when compared to Horn-Schunck optical flow algorithm that easily yields poor results in the presence of small illumination changes leading to violation of the brightness constancy constraint.
Hands-on parameter search for neural simulations by a MIDI-controller.
Eichner, Hubert; Borst, Alexander
2011-01-01
Computational neuroscientists frequently encounter the challenge of parameter fitting--exploring a usually high dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is using automated search algorithms such as gradient descent or genetic algorithms. However, these approaches suffer several shortcomings related to their lack of understanding the underlying question, such as defining a suitable error function or getting stuck in local minima. Another widespread approach is manual parameter fitting using a keyboard or a mouse, evaluating different parameter sets following the users intuition. However, this process is often cumbersome and time-intensive. Here, we present a new method for manual parameter fitting. A MIDI controller provides input to the simulation software, where model parameters are then tuned according to the knob and slider positions on the device. The model is immediately updated on every parameter change, continuously plotting the latest results. Given reasonably short simulation times of less than one second, we find this method to be highly efficient in quickly determining good parameter sets. Our approach bears a close resemblance to tuning the sound of an analog synthesizer, giving the user a very good intuition of the problem at hand, such as immediate feedback if and how results are affected by specific parameter changes. In addition to be used in research, our approach should be an ideal teaching tool, allowing students to interactively explore complex models such as Hodgkin-Huxley or dynamical systems.
Hands-On Parameter Search for Neural Simulations by a MIDI-Controller
Eichner, Hubert; Borst, Alexander
2011-01-01
Computational neuroscientists frequently encounter the challenge of parameter fitting – exploring a usually high dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is using automated search algorithms such as gradient descent or genetic algorithms. However, these approaches suffer several shortcomings related to their lack of understanding the underlying question, such as defining a suitable error function or getting stuck in local minima. Another widespread approach is manual parameter fitting using a keyboard or a mouse, evaluating different parameter sets following the users intuition. However, this process is often cumbersome and time-intensive. Here, we present a new method for manual parameter fitting. A MIDI controller provides input to the simulation software, where model parameters are then tuned according to the knob and slider positions on the device. The model is immediately updated on every parameter change, continuously plotting the latest results. Given reasonably short simulation times of less than one second, we find this method to be highly efficient in quickly determining good parameter sets. Our approach bears a close resemblance to tuning the sound of an analog synthesizer, giving the user a very good intuition of the problem at hand, such as immediate feedback if and how results are affected by specific parameter changes. In addition to be used in research, our approach should be an ideal teaching tool, allowing students to interactively explore complex models such as Hodgkin-Huxley or dynamical systems. PMID:22066027
Hair Breakage in Patients of African Descent: Role of Dermoscopy
Quaresma, Maria Victória; Martinez Velasco, María Abril; Tosti, Antonella
2015-01-01
Dermoscopy represents a useful technique for the diagnosis and follow-up of hair and scalp disorders. To date, little has been published regarding dermoscopy findings of hair disorders in patients of African descent. This article illustrates how dermoscopy allows fast diagnosis of hair breakage due to intrinsic factors and chemical damage in African descent patients. PMID:27170942
Ethnic Identity and Acculturative Stress as Mediators of Depression in Students of Asian Descent
ERIC Educational Resources Information Center
Lantrip, Crystal; Mazzetti, Francesco; Grasso, Joseph; Gill, Sara; Miller, Janna; Haner, Morgynn; Rude, Stephanie; Awad, Germine
2015-01-01
This study underscored the importance of addressing the well-being of college students of Asian descent, because these students had higher rates of depression and lower positive feelings about their ethnic group compared with students of European descent, as measured by the Affirmation subscale of the Ethnic Identity Scale. Affirmation mediated…
2010-01-01
Background The offspring of consanguineous relations have an increased risk of congenital/genetic disorders and early mortality. Consanguineous couples and their offspring account for approximately 10% of the global population. The increased risk for congenital/genetic disorders is most marked for autosomal recessive disorders and depends on the degree of relatedness of the parents. For children of first cousins the increased risk is 2-4%. For individual couples, however, the extra risk can vary from zero to 25% or higher, with only a minority of these couples having an increased risk of at least 25%. It is currently not possible to differentiate between high-and low-risk couples. The quantity of DNA identical-by-descent between couples with the same degree of relatedness shows a remarkable variation. Here we hypothesize that consanguineous partners with children affected by an autosomal recessive disease have more DNA identical-by-descent than similarly-related partners who have only healthy children. The aim of the study is thus to establish whether the amount of DNA identical-by-descent in consanguineous parents of children with an autosomal recessive disease is indeed different from its proportion in consanguineous parents who have healthy children only. Methods/Design This project is designed as a case-control study. Cases are defined as consanguineous couples with one or more children with an autosomal recessive disorder and controls as consanguineous couples with at least three healthy children and no affected child. We aim to include 100 case couples and 100 control couples. Control couples are matched by restricting the search to the same family, clan or ethnic origin as the case couple. Genome-wide SNP arrays will be used to test our hypothesis. Discussion This study contains a new approach to risk assessment in consanguineous couples. There is no previous study on the amount of DNA identical-by-descent in consanguineous parents of affected children compared to the consanguineous parents of healthy children. If our hypothesis proves to be correct, further studies are needed to obtain different risk figure estimates for the different proportions of DNA identical-by-descent. With more precise information about their risk status, empowerment of couples can be improved when making reproductive decisions. PMID:20637082
Darwinian perspectives on the evolution of human languages.
Pagel, Mark
2017-02-01
Human languages evolve by a process of descent with modification in which parent languages give rise to daughter languages over time and in a manner that mimics the evolution of biological species. Descent with modification is just one of many parallels between biological and linguistic evolution that, taken together, offer up a Darwinian perspective on how languages evolve. Combined with statistical methods borrowed from evolutionary biology, this Darwinian perspective has brought new opportunities to the study of the evolution of human languages. These include the statistical inference of phylogenetic trees of languages, the study of how linguistic traits evolve over thousands of years of language change, the reconstruction of ancestral or proto-languages, and using language change to date historical events.
Device for Lowering Mars Science Laboratory Rover to the Surface
NASA Technical Reports Server (NTRS)
2008-01-01
This is hardware for controlling the final lowering of NASA's Mars Science Laboratory rover to the surface of Mars from the spacecraft's hovering, rocket-powered descent stage. The photo shows the bridle device assembly, which is about two-thirds of a meter, or 2 feet, from end to end, and has two main parts. The cylinder on the left is the descent brake. On the right is the bridle assembly, including a spool of nylon and Vectran cords that will be attached to the rover. When pyrotechnic bolts fire to sever the rigid connection between the rover and the descent stage, gravity will pull the tethered rover away from the descent stage. The bridle or tether, attached to three points on the rover, will unspool from the bridle assembly, beginning from the larger-diameter portion of the spool at far right. The rotation rate of the assembly, hence the descent rate of the rover, will be governed by the descent brake. Inside the housing of that brake are gear boxes and banks of mechanical resistors engineered to prevent the bridle from spooling out too quickly or too slowly. The length of the bridle will allow the rover to be lowered about 7.5 meters (25 feet) while still tethered to the descent stage. The Starsys division of SpaceDev Inc., Poway, Calif., provided the descent brake. NASA's Jet Propulsion Laboratory, Pasadena, Calif., built the bridle assembly. Vectran is a product of Kuraray Co. Ltd., Tokyo. JPL, a division of the California Institute of Technology, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington.Designing single- and multiple-shell sampling schemes for diffusion MRI using spherical code.
Cheng, Jian; Shen, Dinggang; Yap, Pew-Thian
2014-01-01
In diffusion MRI (dMRI), determining an appropriate sampling scheme is crucial for acquiring the maximal amount of information for data reconstruction and analysis using the minimal amount of time. For single-shell acquisition, uniform sampling without directional preference is usually favored. To achieve this, a commonly used approach is the Electrostatic Energy Minimization (EEM) method introduced in dMRI by Jones et al. However, the electrostatic energy formulation in EEM is not directly related to the goal of optimal sampling-scheme design, i.e., achieving large angular separation between sampling points. A mathematically more natural approach is to consider the Spherical Code (SC) formulation, which aims to achieve uniform sampling by maximizing the minimal angular difference between sampling points on the unit sphere. Although SC is well studied in the mathematical literature, its current formulation is limited to a single shell and is not applicable to multiple shells. Moreover, SC, or more precisely continuous SC (CSC), currently can only be applied on the continuous unit sphere and hence cannot be used in situations where one or several subsets of sampling points need to be determined from an existing sampling scheme. In this case, discrete SC (DSC) is required. In this paper, we propose novel DSC and CSC methods for designing uniform single-/multi-shell sampling schemes. The DSC and CSC formulations are solved respectively by Mixed Integer Linear Programming (MILP) and a gradient descent approach. A fast greedy incremental solution is also provided for both DSC and CSC. To our knowledge, this is the first work to use SC formulation for designing sampling schemes in dMRI. Experimental results indicate that our methods obtain larger angular separation and better rotational invariance than the generalized EEM (gEEM) method currently used in the Human Connectome Project (HCP).
Dong, Yi; Mihalas, Stefan; Russell, Alexander; Etienne-Cummings, Ralph; Niebur, Ernst
2012-01-01
When a neuronal spike train is observed, what can we say about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then to choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate and fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that its unique global minimum can thus be found by gradient descent techniques. The global minimum property requires independence of spike time intervals. Lack of history dependence is, however, an important constraint that is not fulfilled in many biological neurons which are known to generate a rich repertoire of spiking behaviors that are incompatible with history independence. Therefore, we expanded the integrate and fire model by including one additional variable, a variable threshold (Mihalas & Niebur, 2009) allowing for history-dependent firing patterns. This neuronal model produces a large number of spiking behaviors while still being linear. Linearity is important as it maintains the distribution of the random variables and still allows for maximum likelihood methods to be used. In this study we show that, although convexity of the negative log-likelihood is not guaranteed for this model, the minimum of the negative log-likelihood function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) frequently reaches the global minimum. PMID:21851282
Antarctic Polar Descent and Planetary Wave Activity Observed in ISAMS CO from April to July 1992
NASA Technical Reports Server (NTRS)
Allen, D. R.; Stanford, J. L.; Nakamura, N.; Lopez-Valverde, M. A.; Lopez-Puertas, M.; Taylor, F. W.; Remedios, J. J.
2000-01-01
Antarctic polar descent and planetary wave activity in the upper stratosphere and lower mesosphere are observed in ISAMS CO data from April to July 1992. CO-derived mean April-to-May upper stratosphere descent rates of 15 K/day (0.25 km/day) at 60 S and 20 K/day (0.33 km/day) at 80 S are compared with descent rates from diabatic trajectory analyses. At 60 S there is excellent agreement, while at 80 S the trajectory-derived descent is significantly larger in early April. Zonal wavenumber 1 enhancement of CO is observed on 9 and 28 May, coincident with enhanced wave 1 in UKMO geopotential height. The 9 May event extends from 40 to 70 km and shows westward phase tilt with height, while the 28 May event extends from 40 to 50 km and shows virtually no phase tilt with height.