Surface-tension-driven flow in a glass melt
NASA Technical Reports Server (NTRS)
Mcneil, Thomas J.; Cole, Robert; Shankar Subramanian, R.
1985-01-01
Motion driven by surface tension gradients was observed in a vertical capillary liquid bridge geometry in a sodium borate melt. The surface tension gradients were introduced by maintaining a temperature gradient on the free melt surface. The flow velocities at the free surface of the melt, which were measured using a tracer technique, were found to be proportional to the applied temperature difference and inversely proportional to the melt viscosity. The experimentally observed velocities were in reasonable accord with predictions from a theoretical model of the system.
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, David J.; Anex, Deon S.; Yan, Chao; Dadoo, Rajeev; Zare, Richard N.
1999-01-01
Method and apparatus for controlling precisely the composition and delivery of liquid at sub-.mu.L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-.mu.L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
Centrifuge in space fluid flow visualization experiment
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Regel, Liya L.; Dunbar, Bonnie J.
1993-01-01
A prototype flow visualization system is constructed to examine buoyancy driven flows during centrifugation in space. An axial density gradient is formed by imposing a thermal gradient between the two ends of the test cell. Numerical computations for this geometry showed that the Prandtl number plays a limited part in determining the flow.
Electro-osmotically driven liquid delivery method and apparatus
Rakestraw, D.J.; Anex, D.S.; Yan, C.; Dadoo, R.; Zare, R.N.
1999-08-24
Method and apparatus are disclosed for controlling precisely the composition and delivery of liquid at sub-{micro}L/min flow rate. One embodiment of such a delivery system is an electro-osmotically driven gradient flow delivery system that generates dynamic gradient flows with sub-{micro}L/min flow rates by merging a plurality of electro-osmotic flows. These flows are delivered by a plurality of delivery arms attached to a mixing connector, where they mix and then flow into a receiving means, preferably a column. Each inlet of the plurality of delivery arms is placed in a corresponding solution reservoir. A plurality of independent programmable high-voltage power supplies is used to apply a voltage program to each of the plurality of solution reservoirs to regulate the electro-osmotic flow in each delivery arm. The electro-osmotic flow rates in the delivery arms are changed with time according to each voltage program to deliver the required gradient profile to the column. 4 figs.
From convection rolls to finger convection in double-diffusive turbulence
Verzicco, Roberto; Lohse, Detlef
2016-01-01
Double-diffusive convection (DDC), which is the buoyancy-driven flow with fluid density depending on two scalar components, is ubiquitous in many natural and engineering environments. Of great interests are scalars' transfer rate and flow structures. Here we systematically investigate DDC flow between two horizontal plates, driven by an unstable salinity gradient and stabilized by a temperature gradient. Counterintuitively, when increasing the stabilizing temperature gradient, the salinity flux first increases, even though the velocity monotonically decreases, before it finally breaks down to the purely diffusive value. The enhanced salinity transport is traced back to a transition in the overall flow pattern, namely from large-scale convection rolls to well-organized vertically oriented salt fingers. We also show and explain that the unifying theory of thermal convection originally developed by Grossmann and Lohse for Rayleigh–Bénard convection can be directly applied to DDC flow for a wide range of control parameters (Lewis number and density ratio), including those which cover the common values relevant for ocean flows. PMID:26699474
NASA Technical Reports Server (NTRS)
Jenkins, James T.; Louge, Michel Y.
1996-01-01
We are interested in collisional granular flows of dry materials in reduced gravity. Because the particles interact through collisions, the energy of the particle velocity fluctuations plays an important role in the physics. Here we focus on the separation of grains by properties - size, for example - that is driven by spatial gradients in the fluctuation energy of the grains. The segregation of grains by size is commonly observed in geophysical flows and industrial processes. Segregation of flowing grains can also take place based on other properties, e.g. shape, mass, friction, and coefficient of restitution. Many mechanisms may be responsible for segregation; most of these are strongly influenced by gravity. Here, we outline a mechanism that is independent of gravity. This mechanism may be important but is often obscured in terrestrial grain flows. It is driven by gradients in fluctuation energy. In microgravity, the separation of grains by property will proceed slowly enough to permit flight observations to provide an unambiguous measurement of the transport coefficients associated with the segregation. In this context, we are planning a microgravity shear cell experiment that contains a mixture of two types of spherical grains. The grains will be driven to interact with two different types of boundaries on either sides of the cell. The resulting separation will be observed visually.
NASA Astrophysics Data System (ADS)
Bandopadhyay, Aditya; Le Borgne, Tanguy; Davy, Philippe
2017-04-01
Topography-driven subsurface flows are thought to play a central role in determining solute turnover and biogeochemical processes at different scales in the critical zone, including river-hyporheic zone exchanges, hillslope solute transport and reactions, and catchment biogeochemical cycles. Hydraulic head gradients, induced by topography gradients at different scales, generate a distribution of streamlines at depth, dictating the spatial distribution of redox sensitive species, the magnitude of surface water - ground water exchanges and ultimately the source/sink function of the subsurface. Flow velocities generally decrease with depth, leading to broad residence time distributions, which have been shown to affect river chemistry and geochemical reactions in catchments. In this presentation, we discuss the impact of topography-driven flows on mixing processes and the formation of localized reactive hotspots. For this, we solve analytically the coupled flow, mixing and reaction equations in two-dimensional vertical cross-sections of subsurface domains with different topography gradients. For a given topography gradient, we derive the spatial distribution of subsurface velocities, the rates of solute mixing accross streamlines and the induced kinetics of redox, precipitation and dissolution reactions using a Lagrangian approach (Le Borgne et al. 2014). We demonstrate that vertical velocity profiles driven by topography variations, act effectively as shear flows, hence stretching continuously the mixing fronts between recently infiltrated and resident water (Bandopadhyay et al. 2017). We thus derive analytical expressions for residence time distributions, mixing rates and kinetics of chemical reactions as a function of the topography gradients. We show that the rates dissolution and precipitation reactions are significantly enhanced by the existence of vertical velocity gradients and that reaction rates reach a maximum in a localized subsurface reactive layer, whose location and intensity depends on topography gradients. As a consequence of these findings, we discuss the links between topography variations, subsurface velocity gradients and biogeochemical processes in the critical zone. References: Bandopadhyay A., T. Le Borgne, Y. Méheust and M. Dentz (2017) Enhanced reaction kinetics and reactive mixing scale dynamics in mixing fronts under shear flow for arbitrary Damkohler numbers, Adv. in Water Resour. Vol. 100, p. 78-95 Le Borgne T., T. Ginn and M. Dentz (2014) Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in Heterogeneous Flows, Geophys. Res. Lett., Vol. 41, 22, p. 7898-790
Heat Transfer Characteristics of Mixed Electroosmotic and Pressure Driven Micro-Flows
NASA Astrophysics Data System (ADS)
Horiuchi, Keisuke; Dutta, Prashanta
We analyze heat transfer characteristics of steady electroosmotic flows with an arbitrary pressure gradient in two-dimensional straight microchannels considering the effects of Joule heating in electroosmotic pumping. Both the temperature distribution and local Nusselt number are mathematically derived in this study. The thermal analysis takes into consideration of the interaction among advective, diffusive, and Joule heating terms to obtain the thermally developing behavior. Unlike macro-scale pipes, axial conduction in micro-scale cannot be negligible, and the governing energy equation is not separable. Thus, a method that considers an extended Graetz problem is introduced. Analytical results show that the Nusselt number of pure electrooosmotic flow is higher than that of plane Poiseulle flow. Moreover, when the electroosmotic flow and pressure driven flow coexist, it is found that adverse pressure gradient to the electroosmotic flow makes the thermal entrance length smaller and the heat transfer ability stronger than pure electroosmotic flow case.
Tidally-driven Surface Flow in a Georgia Estuarine Saltmarsh
NASA Astrophysics Data System (ADS)
Young, D.; Bruder, B. L.; Haas, K. A.; Webster, D. R.
2016-02-01
Estuarine saltmarshes are diverse, valuable, and productive ecosystems. Vegetation dampens wave and current energy, thereby allowing the estuaries to serve as a nursery habitat for shellfish and fish species. Tidally-driven flow transports nutrients into and out of the estuary, nourishing inshore and offshore vegetation and animals. The effects of vegetation on the marsh hydrodynamics and on the estuary creek and channel flow are, unfortunately, poorly understood, and the knowledge that does exist primarily originates from modeling studies. Field studies addressing marsh surface flows are limited due to the difficulty of accurately measuring the water surface elevation and acquiring concurrent velocity measurements in the dense marsh vegetation. This study partially bridges the gap between the model observations of marsh flow driven by water surface elevation gradients and flume studies of flow through vegetation. Three current meters and three pressure transducers were deployed for three days along a transect perpendicular to the main channel (Little Ogeechee River) in a saltmarsh adjacent to Rose Dhu Island (Savannah, Georgia, USA). The pressure transducer locations were surveyed daily with static GPS yielding highly accurate water surface elevation data. During flood and ebb tide, water surface elevation differences between the marsh and Little Ogeechee River were observed up to 15 cm and pressure gradients were observed up to 0.0017 m of water surface elevation drop per m of linear distance. The resulting channel-to-saltmarsh pressure gradients substantially affected tidal currents at all current meters. At one current meter, the velocity was nearly perpendicular to the Little Ogeechee River bank. The velocity at this location was effectively modeled as a balance between the pressure gradient and marsh vegetation-induced drag force using the Darcy-Weisbach/Lindner's equations developed for flow-through-vegetation analysis in open channel flow.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
NASA Astrophysics Data System (ADS)
Yamagishi, Osamu; Sugama, Hideo
2016-03-01
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamagishi, Osamu, E-mail: yamagisi@nifs.ac.jp; Sugama, Hideo
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
The effect of small temperature gradients on flow in a continuous flow electrophoresis chamber
NASA Technical Reports Server (NTRS)
Rhodes, P. H.; Snyder, R. S.
1982-01-01
Continuous flow electrophoresis employs an electric field to separate biological cells suspended in a flowing liquid buffer solution. Good separations based on differences in electrophoretic mobility are obtained only when a unidirectional flow is maintained. The desired flow has a parabolic structure in the narrow dimension of the chamber and is uniform acros the width, except near the edges where the no-slip condition prevails. However, because of buoyancy, very small laterall or axial temperature gradients deform the flow significantly. The results of experiments conducted with a specially instrumented chamber show the origin and structure of the buoyancy-driven perturbations. It is found that very small temperature gradients can disturb the flow significantly, as was predicted by earlier theoretical work.
Barrier island breach evolution: Alongshore transport and bay-ocean pressure gradient interactions
Safak, Ilgar; Warner, John C.; List, Jeffrey
2016-01-01
Physical processes controlling repeated openings and closures of a barrier island breach between a bay and the open ocean are studied using aerial photographs and atmospheric and hydrodynamic observations. The breach site is located on Pea Island along the Outer Banks, separating Pamlico Sound from the Atlantic Ocean. Wind direction was a major control on the pressure gradients between the bay and the ocean to drive flows that initiate or maintain the breach opening. Alongshore sediment flux was found to be a major contributor to breach closure. During the analysis period from 2011 to 2016, three hurricanes had major impacts on the breach. First, Hurricane Irene opened the breach with wind-driven flow from bay to ocean in August 2011. Hurricane Sandy in October 2012 quadrupled the channel width from pressure gradient flows due to water levels that were first higher on the ocean side and then higher on the bay side. The breach closed sometime in Spring 2013, most likely due to an event associated with strong alongshore sediment flux but minimal ocean-bay pressure gradients. Then, in July 2014, Hurricane Arthur briefly opened the breach again from the bay side, in a similar fashion to Irene. In summary, opening and closure of breaches are shown to follow a dynamic and episodic balance between along-channel pressure gradient driven flows and alongshore sediment fluxes.
NASA Astrophysics Data System (ADS)
Lee, Hae June; Mikhailenko, Vladmir; Mikhailenko, Vladimir
2017-10-01
The temporal evolution of the resistive pressure-gradient-driven mode in the sheared flow is investigated by employing the shearing modes approach. It reveals an essential difference in the processes, which occur in the case of the flows with velocity shearing rate less than the growth rate of the instability in the steady plasmas, and in the case of the flows with velocity shear larger than the instability growth rate in steady plasmas. It displays the physical content of the empirical ``quench rule'' which predicts the suppression of the turbulence in the sheared flows when the velocity shearing rate becomes larger than the maximum growth rate of the possible instability. We found that the distortion of the perturbations by the sheared flow with such velocity shear introduces the time dependencies into the governing equations, which prohibits the application of the eigenmodes formalism and requires the solution of the initial value problem.
Demonstration of the role of turbulence-driven poloidal flow generation in the L-H transition
NASA Astrophysics Data System (ADS)
Yu, C. X.; Xu, Y. H.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.; Wan, B. N.; Wan, Y. X.
2000-05-01
This paper presents the evidence for the role of turbulence-driven poloidal flow generation in the L-H transition induced by a turbulent heating pulse on the HT-6M tokamak. It is found that the poloidal flow υθ plays a key role in developing the electric field Er and triggering the transition. The acceleration of υθ across the transition is clearly correlated with the enhancement of the Reynolds stress gradient.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Qingtao; Li, Liyu; Nie, Zimin
We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
NASA Astrophysics Data System (ADS)
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
A simulation of dielectrophoresis force actuated liquid lens
NASA Astrophysics Data System (ADS)
Yao, Xiaoyin; Xia, Jun
2009-11-01
Dielectrophoresis (DEP) and electrowetting on dielectric (EWOD) are based on the electrokinetic mechanisms which have great potential in microfluidic manipulation. DEP dominate the movement of particles induced by polarization effects in nonuniform electric field ,while EWOD has become one of the most widely used tools for manipulating tiny amounts of liquids on solid surfaces. Liquid lens driven by EWOD have been well studied and developed. But liquid lens driven by DEP has not been studied adequately. This paper focuses on modeling liquid lens driven by DEP force. A simulation of DEP driven droplet dynamics was performed by coupling of the electrostatic field and the two-phase flow field. Two incompressible and dielectric liquids with different permittivity were chosen in the two-phase flow field. The DEP force density, in direct proportion to gradient of the square of the electric field intensity, was used as a body force density in Navier-Stokes equation. When voltage applied, the liquid with high permittivity flowed to the place where the gradient of the square of the electric field intensity was higher, and thus change the curvature of interface between two immiscible liquid. The differences between DEP and EWOD liquid lens were also presented.
On-Chip Pressure Generation for Driving Liquid Phase Separations in Nanochannels.
Xia, Ling; Choi, Chiwoong; Kothekar, Shrinivas C; Dutta, Debashis
2016-01-05
In this Article, we describe the generation of pressure gradients on-chip for driving liquid phase separations in submicrometer deep channels. The reported pressure-generation capability was realized by applying an electrical voltage across the interface of two glass channel segments with different depths. A mismatch in the electroosmotic flow rate at this junction led to the generation of pressure-driven flow in our device, a fraction of which was then directed to an analysis channel to carry out the desired separation. Experiments showed the reported strategy to be particularly conducive for miniaturization of pressure-driven separations yielding flow velocities in the separation channel that were nearly unaffected upon scaling down the depth of the entire fluidic network. Moreover, the small dead volume in our system allowed for high dynamic control over this pressure gradient, which otherwise was challenging to accomplish during the sample injection process using external pumps. Pressure-driven velocities up to 3.1 mm/s were realized in separation ducts as shallow as 300 nm using our current design for a maximum applied voltage of 3 kV. The functionality of this integrated device was demonstrated by implementing a pressure-driven ion chromatographic analysis that relied on analyte interaction with the nanochannel surface charges to yield a nonuniform solute concentration across the channel depth. Upon coupling such analyte distribution to the parabolic pressure-driven flow profile in the separation duct, a mixture of amino acids could be resolved. The reported assay yielded a higher separation resolution compared to its electrically driven counterpart in which sample migration was realized using electroosmosis/electrophoresis.
Analytical study of mixed electroosmotic-pressure-driven flow in rectangular micro-channels
NASA Astrophysics Data System (ADS)
Movahed, Saeid; Kamali, Reza; Eghtesad, Mohammad; Khosravifard, Amir
2013-09-01
Operational state of many miniaturized devices deals with flow field in microchannels. Pressure-driven flow (PDF) and electroosmotic flow (EOF) can be recognized as the two most important types of the flow field in such channels. EOF has many advantages in comparison with PDF, such as being vibration free and not requiring any external mechanical pumps or moving parts. However, the disadvantages of this type of flow such as Joule heating, electrophoresis demixing, and not being suitable for mobile devices must be taken into consideration carefully. By using mixed electroosmotic/pressure-driven flow, the role of EOF in producing desired velocity profile will be reduced. In this way, the advantages of EOF can be exploited, and its disadvantages can be prevented. Induced pressure gradient can be utilized in order to control the separation in the system. Furthermore, in many complicated geometries such as T-shape microchannels, turns may induce pressure gradient to the electroosmotic velocity. While analytical formulas are completely essential for analysis and control of any industrial and laboratory microdevices, lack of such formulas in the literature for solving Poisson-Boltzmann equation and predicting electroosmotic velocity field in rectangular domains is evident. In the present study, first a novel method is proposed to solve Poisson-Boltzmann equation (PBE). Subsequently, this solution is utilized to find the electroosmotic and the mixed electroosmotic/pressure-driven velocity profile in a rectangular domain of the microchannels. To demonstrate the accuracy of the presented analytical method in solving PBE and finding electroosmotic velocity, a general nondimensional example is analyzed, and the results are compared with the solution of boundary element method. Additionally, the effects of different nondimensional parameters and also aspect ratio of channels on the electroosmotic part of the flow field will be investigated.
Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis
NASA Astrophysics Data System (ADS)
Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.
2017-10-01
The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.
NASA Technical Reports Server (NTRS)
Jiang, Guang-Liang; White, Charles R.; Stevens, Hazel Y.; Frangos, John A.
2002-01-01
Bone cells are subject to interstitial fluid flow (IFF) driven by venous pressure and mechanical loading. Rapid dynamic changes in mechanical loading cause transient gradients in IFF. The effects of pulsatile flow (temporal gradients in fluid shear) on rat UMR106 cells and rat primary osteoblastic cells were studied. Pulsatile flow induced a 95% increase in S-phase UMR106 cells compared with static controls. In contrast, ramped steady flow stimulated only a 3% increase. Similar patterns of S-phase induction were also observed in rat primary osteoblastic cells. Pulsatile flow significantly increased relative UMR106 cell number by 37 and 62% at 1.5 and 24 h, respectively. Pulsatile flow also significantly increased extracellular signal-regulated kinase (ERK1/2) phosphorylation by 418%, whereas ramped steady flow reduced ERK1/2 activation to 17% of control. Correspondingly, retinoblastoma protein was significantly phosphorylated by pulsatile fluid flow. Inhibition of mitogen-activated protein (MAP)/ERK kinase (MEK)1/2 by U0126 (a specific MEK1/2 inhibitor) reduced shear-induced ERK1/2 phosphorylation and cell proliferation. These findings suggest that temporal gradients in fluid shear stress are potent stimuli of bone cell proliferation.
Abadeh, Aryan; Lew, Roger R
2013-11-01
Movement of nuclei, mitochondria and vacuoles through hyphal trunks of Neurospora crassa were vector-mapped using fluorescent markers and green fluorescent protein tags. The vectorial movements of all three were strongly correlated, indicating the central role of mass (bulk) flow in cytoplasm movements in N. crassa. Profiles of velocity versus distance from the hyphal wall did not match the parabolic shape predicted by the ideal Hagen-Poiseuille model of flow at low Reynolds number. Instead, the profiles were flat, consistent with a model of partial plug flow due to the high concentration of organelles in the flowing cytosol. The intra-hyphal pressure gradients were manipulated by localized external osmotic treatments to demonstrate the dependence of velocity (and direction) on pressure gradients within the hyphae. The data support the concept that mass transport, driven by pressure gradients, dominates intra-hyphal transport. The transport occurs by partial plug flow due to the organelles in the cytosol.
Lagrangian transport in a class of three-dimensional buoyancy-driven flows
NASA Astrophysics Data System (ADS)
Contreras, Sebastian; Speetjens, Michel; Clercx, Herman
2017-11-01
The study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as archetypal configuration for natural-convection flows in which gravity is perpendicular to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure of the Lagrangian flow topology that is described in terms of the Grashof number (Gr) and the Prandtl number (Pr). Gr is the principal control parameter for the flow topology: vanishing Gr yields a state of closed streamlines (integrable state); increasing Gr causes the formation of toroidal coherent structures embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ``smaller'' Gr. A buoyancy-induced bifurcation of the flow topology occurs for ``larger'' Gr and underlies the emergence of ``secondary rolls'' and secondary tori for ``larger'' Pr. Stagnation points and corresponding manifold interactions are key to the dynamics. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).
Stability of magnetohydrodynamic Dean Flow as applied to centrifugally confined plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassam, A.B.
1999-10-01
Dean Flow is the azimuthal flow of fluid between static concentric cylinders. In a magnetized plasma, there may also be radial stratification of the pressure. The ideal magnetohydrodynamic stability of such a flow in the presence of a strong axial magnetic field and an added radial gravitational force is examined. It is shown that both the Kelvin{endash}Helmholtz instability and pressure-gradient-driven interchanges can be stabilized if the flow is driven by a unidirectional external force and if the plasma annulus is sufficiently thin (large aspect ratio). These results find application in schemes using centrifugal confinement of plasma for fusion. {copyright} {italmore » 1999 American Institute of Physics.}« less
Characteristics of Muti-pulsing CHI driven ST plasmas on HIST
NASA Astrophysics Data System (ADS)
Ishihara, M.; Hanao, T.; Ito, K.; Matsumoto, K.; Higashi, T.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.
2011-10-01
The flux amplification and sustainment of the ST configurations by operating in Multi-pulsing Coaxial Helicity Injection (M-CHI) method have been demonstrated on HIST. The multi-pulsing experiment was demonstrated in the SSPX spheromak device at LLNL. In the double pulsing discharges, we have observed that the plasma current has been sustained much longer against the resistive decay as compared to the single CHI. We have measured the radial profiles of the flow velocities by using Ion Doppler Spectrometer and Mach probes. The result shows that poloidal shear flow exists between the open flux column and the most outer closed flux surface. The poloidal velocity shear at the interface may be caused by the ion diamagnetic drift, because of a steep density gradient there. The radial electric field is determined by the flow velocities and the ion pressure gradient through the radial momentum balance equation. We have investigated the contribution of ExB or the ion pressure gradient on the poloidal velocity shear by comparing the impurity ion flow obtained from the IDS with the bulk ion flow from the Mach probe. It should be noted that the diamagnetic drift velocity of the impurity is much smaller than ExB drift velocity. We will discuss characteristics of M-CHI-driven ST plasmas by varying TF coil current and the line averaged electron density.
NASA Astrophysics Data System (ADS)
Hong, R.; Li, J. C.; Chakraborty Thakur, S.; Hajjar, R.; Diamond, P. H.; Tynan, G. R.
2018-05-01
This study traces the emergence of sheared axial flow from collisional drift-wave turbulence with broken symmetry in a linear plasma device—the controlled shear decorrelation experiment. As the density profile steepens, the axial Reynolds stress develops and drives a radially sheared axial flow that is parallel to the magnetic field. Results show that the nondiffusive piece of the Reynolds stress is driven by the density gradient, results from spectral asymmetry of the turbulence, and, thus, is dynamical in origin. Taken together, these findings constitute the first simultaneous demonstration of the causal link between the density gradient, turbulence, and stress with broken spectral symmetry and the mean axial flow.
Geometric effects on bilayer convection in cylindrical containers
NASA Astrophysics Data System (ADS)
Johnson, Duane Thomas
The study of convection in two immiscible fluid layers is of interest for reasons both theoretical as well as applied. Recently, bilayer convection has been used as a model of convection in the earth's mantle. It is also an interesting system to use in the study of pattern formation. Bilayer convection also occurs in a process known as liquid encapsulated crystal growth, which is used to grow compound semiconductors. It is the last application which motivates this study. To analyze bilayer convection, theoretical models, numerical calculations and experiments were used. One theoretical model involves the derivation of the Navier- Stokes and energy equation for two immiscible fluid layers, using the Boussinesq approximation. A weakly nonlinear analysis was also performed to study the behavior of the system slightly beyond the onset of convection. Numerical calculations were necessary to solve both models. The experiments involved a single liquid layer of silicone oil, superposed by a layer of air. The radius and height of each fluid layer were changed to observe different flow patterns at the onset of convection. From the experiments and theory, two major discoveries were made as well as several interesting observations. The first discovery is the existence of codimension-two points-particular aspect ratios where two flow patterns coexist-in cylindrical containers. At these points, dynamic switching between different flow patterns was observed. The second discovery was the effect of air convection on the flow pattern in silicone oil. Historically, air has been considered a passive medium that has no effect on the lower fluid. However, experiments were done to show that for large air heights, convection in the air can cause radial temperature gradients at the liquid interface. These temperature gradients then cause surface tension gradient-driven flows. It was also shown that changing the radius of the container can change the driving force of convection from a surface tension gradient-driven to buoyancy-driven and back again. Finally, the weakly nonlinear analysis was able to give a qualitative description of codimension-two points as well as the change in flow patterns due to the convecting air layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaezi, P.; Holland, C.; Thakur, S. C.
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch
NASA Astrophysics Data System (ADS)
Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.
2017-12-01
The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.
Thermally induced delay and reversal of liquid film dewetting on chemically patterned surfaces.
Kalpathy, Sreeram K; Francis, Lorraine F; Kumar, Satish
2013-10-15
A thin liquid film resting on a solid substrate that is heated or cooled from below experiences surface tension gradients, which lead to Marangoni flows. We explore the behavior of such a film on a chemically patterned substrate which drives film dewetting in order to determine how surface patterning and applied temperature gradients can be designed to influence the behavior of thin-film coatings. A nonlinear partial differential equation for the film height based on lubrication theory is solved numerically for a broad range of problem parameters. Uniform cooling of the substrate is found to significantly delay dewetting that is driven by wettability gradients. Uniform heating speeds up dewetting but can destroy the near-perfect templating imposed by the surface patterning. However, localized heating and cooling together can accelerate dewetting while maintaining templating quality. Localized heating and cooling can also be used to drive liquid onto areas that it would dewet from in the absence of heating. Overall, these results indicate that applied temperature gradients can significantly influence dewetting driven by surface patterning, and suggest strategies for the creation of spatially patterned thin-film coatings and flow control in microfluidic devices. Copyright © 2013 Elsevier Inc. All rights reserved.
Preferential paths in yield stress fluid flow through a porous medium
NASA Astrophysics Data System (ADS)
Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn
2016-11-01
A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.
List, Jeffrey; Benedet, Lindino; Hanes, Daniel M.; Ruggiero, Peter
2009-01-01
Predictions of alongshore transport gradients are critical for forecasting shoreline change. At the previous ICCE conference, it was demonstrated that alongshore transport gradients predicted by the empirical CERC equation can differ substantially from predictions made by the hydrodynamics-based model Delft3D in the case of a simulated borrow pit on the shoreface. Here we use the Delft3D momentum balance to examine the reason for this difference. Alongshore advective flow accelerations in our Delft3D simulation are mainly driven by pressure gradients resulting from alongshore variations in wave height and setup, and Delft3D transport gradients are controlled by these flow accelerations. The CERC equation does not take this process into account, and for this reason a second empirical transport term is sometimes added when alongshore gradients in wave height are thought to be significant. However, our test case indicates that this second term does not properly predict alongshore transport gradients.
Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.
The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less
Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis
Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; ...
2017-11-16
The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formedmore » at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. As a result, we also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.« less
Dutta, Debashis
2017-01-01
Pressure-driven cross-flows can arise in free-flow isoelectric focusing systems (FFIEF) due to a non-uniform electroosmotic flow velocity along the channel width induced by the pH gradient in this direction. In addition, variations in the channel cross-section as well as unwanted differences in hydrostatic heads at the buffer/sample inlet ports can also lead to such pressure-gradients which besides altering the equilibrium position of the sample zones have a tendency to substantially broaden their widths deteriorating the separations. In this situation, a thorough assessment of stream broadening due to transverse pressure-gradients in FFIEF devices is necessary in order to establish accurate design rules for the assay. The present article describes a mathematical framework to estimate the noted zone dispersion in FFIEF separations based on the method-of-moments approach under laminar flow conditions. A closed-form expression has been derived for the spatial variance of the analyte streams at their equilibrium positions as a function of the various operating parameters governing the assay performance. This expression predicts the normalized stream variance under the chosen conditions to be determined by two dimensionless Péclet numbers evaluated based on the transverse pressure-driven and electrophoretic solute velocities in the separation chamber, respectively. Moreover, the analysis shows that while the stream width can be expected to increase with an increase in the value of the first Péclet number, the opposite trend will be followed with respect to the latter. The noted results have been validated using Monte Carlo simulations that also establish a time/length scale over which the predicted equilibrium stream width is attained in the system. PMID:28081900
Characterisation of minimal-span plane Couette turbulence with pressure gradients
NASA Astrophysics Data System (ADS)
Sekimoto, Atsushi; Atkinson, Callum; Soria, Julio
2018-04-01
The turbulence statistics and dynamics in the spanwise-minimal plane Couette flow with pressure gradients, so-called, Couette-Poiseuille (C-P) flow, are investigated using direct numerical simulation. The large-scale motion is limited in the spanwise box dimension as in the minimal-span channel turbulence of Flores & Jiménez (Phys. Fluids, vol. 22, 2010, 071704). The effect of the top wall, where normal pressure-driven Poiseuille flow is realised, is distinguished from the events on the bottom wall, where the pressure gradient results in mild or almost-zero wall-shear stress. A proper scaling of turbulence statistics in minimal-span C-P flows is presented. Also the ‘shear-less’ wall-bounded turbulence, where the Corrsin shear parameter is very weak compared to normal wall-bounded turbulence, represents local separation, which is also observed as spanwise streaks of reversed flow in full-size plane C-P turbulence. The local separation is a multi-scale event, which grows up to the order of the channel height even in the minimal-span geometry.
Calculations of Alfven Wave Driving Forces, Plasma Flow and Current Drive in Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Elfimov, Artur; Galvao, Ricardo; Amarante-Segundo, Gesil; Nascimento, Ivan
2000-10-01
A general form of time-averaged poloidal ponderomotive forces induced by fast and kinetic Alfvin waves by direct numerical calculations and in geometric optics approximation are analyzed on the basis of the collisionless two fluid (ions and electrons) magneto-hydrodynamics equation. Analytical approximations are used to clarify the effect of Larmour radius on radio-frequency (RF) ponderomotive forces and on poloidal flows induced by them in tokamak plasmas.The RF ponderomotive force is expressed as a sum of a gradient part and of a wave momentum transfer force, which is proportional to wave dissipation. The gradient electromagnetic stress force is combined with fluid dynamic (Reynolds) stress force. It is shown that accounting only Reynolds stress term can overestimate the plasma flow and it is found that the finite ion Larmor radius effect play fundamental role in ponderomotive forces that can drive a poloidal flow, which is larger than a flow driven by a wave momentum transfer force. Finally, balancing the RF forces by the electron-ion friction and viscous force the current and plasma flows driven by ponderomotive forces are calculated for tokamak plasmas, using a kinetic code [Phys. Plasmas, v.6 (1999) p.2437]. Strongly sheared current and plasma flow waves is found.
Passive injection control for microfluidic systems
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2004-12-21
Apparatus for eliminating siphoning, "dead" regions, and fluid concentration gradients in microscale analytical devices. In its most basic embodiment, the present invention affords passive injection control for both electric field-driven and pressure-driven systems by providing additional fluid flow channels or auxiliary channels disposed on either side of a sample separation column. The auxiliary channels are sized such that volumetric fluid flow rate through these channels, while sufficient to move the sample away from the sample injection region in a timely fashion, is less than that through the sample separation channel or chromatograph.
Large eddy simulations of time-dependent and buoyancy-driven channel flows
NASA Technical Reports Server (NTRS)
Cabot, William H.
1993-01-01
The primary goal of this work has been to assess the performance of the dynamic SGS model in the large eddy simulation (LES) of channel flows in a variety of situations, viz., in temporal development of channel flow turned by a transverse pressure gradient and especially in buoyancy-driven turbulent flows such as Rayleigh-Benard and internally heated channel convection. For buoyancy-driven flows, there are additional buoyant terms that are possible in the base models, and one objective has been to determine if the dynamic SGS model results are sensitive to such terms. The ultimate goal is to determine the minimal base model needed in the dynamic SGS model to provide accurate results in flows with more complicated physical features. In addition, a program of direct numerical simulation (DNS) of fully compressible channel convection has been undertaken to determine stratification and compressibility effects. These simulations are intended to provide a comparative base for performing the LES of compressible (or highly stratified, pseudo-compressible) convection at high Reynolds number in the future.
Song, Hongjun; Wang, Yi; Pant, Kapil
2013-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space.
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This paper presents an analytical study of the cross-stream diffusion of an analyte in a rectangular microchannel under combined electroosmotic flow (EOF) and pressure driven flow to investigate the heterogeneous transport behavior and spatially-dependent diffusion scaling law. An analytical model capable of accurately describing 3D steady-state convection-diffusion in microchannels with arbitrary aspect ratios is developed based on the assumption of the thin Electric Double Layer (EDL). The model is verified against high-fidelity numerical simulation in terms of flow velocity and analyte concentration profiles with excellent agreement (<0.5% relative error). An extensive parametric analysis is then undertaken to interrogate the effect of the combined flow velocity field on the transport behavior in both the positive pressure gradient (PPG) and negative pressure gradient (NPG) cases. For the first time, the evolution from the spindle-shaped concentration profile in the PPG case, via the stripe-shaped profile (pure EOF), and finally to the butterfly-shaped profile in the PPG case is obtained using the analytical model along with a quantitative depiction of the spatially-dependent diffusion layer thickness and scaling law across a wide range of the parameter space. PMID:23554584
NASA Technical Reports Server (NTRS)
Driver, David M.; Johnston, James P.
1990-01-01
The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.
Ge, Zhengwei; Wang, Wei; Yang, Chun
2015-02-09
This paper reports rapid microfluidic electrokinetic concentration of deoxyribonucleic acid (DNA) with the Joule heating induced temperature gradient focusing (TGF) by using our proposed combined AC and DC electric field technique. A peak of 480-fold concentration enhancement of DNA sample is achieved within 40s in a simple poly-dimethylsiloxane (PDMS) microfluidic channel of a sudden expansion in cross-section. Compared to a sole DC field, the introduction of an AC field can reduce DC field induced back-pressure and produce sufficient Joule heating effects, resulting in higher concentration enhancement. Within such microfluidic channel structure, negative charged DNA analytes can be concentrated at a location where the DNA electrophoretic motion is balanced with the bulk flow driven by DC electroosmosis under an appropriate temperature gradient field. A numerical model accounting for a combined AC and DC field and back-pressure driven flow effects is developed to describe the complex Joule heating induced TGF processes. The experimental observation of DNA concentration phenomena can be explained by the numerical model. Copyright © 2014 Elsevier B.V. All rights reserved.
A Concept of Cross-Ferroic Plasma Turbulence
Inagaki, S.; Kobayashi, T.; Kosuga, Y.; Itoh, S.-I.; Mitsuzono, T.; Nagashima, Y.; Arakawa, H.; Yamada, T.; Miwa, Y.; Kasuya, N.; Sasaki, M.; Lesur, M.; Fujisawa, A.; Itoh, K.
2016-01-01
The variety of scalar and vector fields in laboratory and nature plasmas is formed by plasma turbulence. Drift-wave fluctuations, driven by density gradients in magnetized plasmas, are known to relax the density gradient while they can generate flows. On the other hand, the sheared flow in the direction of magnetic fields causes Kelvin-Helmholtz type instabilities, which mix particle and momentum. These different types of fluctuations coexist in laboratory and nature, so that the multiple mechanisms for structural formation exist in extremely non-equilibrium plasmas. Here we report the discovery of a new order in plasma turbulence, in which chained structure formation is realized by cross-interaction between inhomogeneities of scalar and vector fields. The concept of cross-ferroic turbulence is developed, and the causal relation in the multiple mechanisms behind structural formation is identified, by measuring the relaxation rate and dissipation power caused by the complex turbulence-driven flux. PMID:26917218
Trapped electron mode turbulence driven intrinsic rotation in Tokamak plasmas.
Wang, W X; Hahm, T S; Ethier, S; Zakharov, L E; Diamond, P H
2011-02-25
Progress from global gyrokinetic simulations in understanding the origin of intrinsic rotation in toroidal plasmas is reported. The turbulence-driven intrinsic torque associated with nonlinear residual stress generation due to zonal flow shear induced asymmetry in the parallel wave number spectrum is shown to scale close to linearly with plasma gradients and the inverse of the plasma current, qualitatively reproducing experimental empirical scalings of intrinsic rotation. The origin of current scaling is found to be enhanced k(∥) symmetry breaking induced by the increased radial variation of the safety factor as the current decreases. The intrinsic torque is proportional to the pressure gradient because both turbulence intensity and zonal flow shear, which are two key ingredients for driving residual stress, increase with turbulence drive, which is R/L(T(e)) and R/L(n(e)) for the trapped electron mode. © 2011 American Physical Society
Jennings, Robert M.; Etter, Ron J.; Ficarra, Lynn
2013-01-01
Ecological speciation probably plays a more prominent role in diversification than previously thought, particularly in marine ecosystems where dispersal potential is great and where few obvious barriers to gene flow exist. This may be especially true in the deep sea where allopatric speciation seems insufficient to account for the rich and largely endemic fauna. Ecologically driven population differentiation and speciation are likely to be most prevalent along environmental gradients, such as those attending changes in depth. We quantified patterns of genetic variation along a depth gradient (1600-3800m) in the western North Atlantic for a protobranch bivalve ( Nuculaatacellana ) to test for population divergence. Multilocus analyses indicated a sharp discontinuity across a narrow depth range, with extremely low gene flow inferred between shallow and deep populations for thousands of generations. Phylogeographical discordance occurred between nuclear and mitochondrial loci as might be expected during the early stages of species formation. Because the geographic distance between divergent populations is small and no obvious dispersal barriers exist in this region, we suggest the divergence might reflect ecologically driven selection mediated by environmental correlates of the depth gradient. As inferred for numerous shallow-water species, environmental gradients that parallel changes in depth may play a key role in the genesis and adaptive radiation of the deep-water fauna. PMID:24098590
Membraneless seawater desalination
Crooks, Richard A.; Knust, Kyle N.; Perdue, Robbyn K.
2018-04-03
Disclosed are microfluidic devices and systems for the desalination of water. The devices and systems can include an electrode configured to generate an electric field gradient in proximity to an intersection formed by the divergence of two microfluidic channels from an inlet channel. Under an applied bias and in the presence of a pressure driven flow of saltwater, the electric field gradient can preferentially direct ions in saltwater into one of the diverging microfluidic channels, while desalted water flows into second diverging channel. Also provided are methods of using the devices and systems described herein to decrease the salinity of water.
Idealized debris flow in flume with bed driven by a conveyor belt
Ling, Chi-Hai; Chen, Cheng-lung
1989-01-01
The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Jackisch, Conrad; Blume, Theresa; Haßler, Sibylle; Allroggen, Niklas; Tronicke, Jens
2013-04-01
The CAOS Research Unit recently proposed a hierarchical classification scheme to subdivide a catchment into what we vaguely name classes of functional entities that puts the gradients driving mass and energy flows and their controls on top of the hierarchy and the arrangement of landscape attributes controlling flow resistances along these driving gradients (for instance soil types and apparent preferential pathways) at the second level. We name these functional entities lead topology classes, to highlight that they are characterized by a spatially ordered arrangement of landscape elements along a superordinate driving gradient. Our idea is that these lead topology classes have a distinct way how their structural and textural architecture controls the interplay of storage dynamics and integral response behavior that is typical for all members of a class, but is dissimilar between different classes. This implies that we might gain exemplary understanding of the typical dynamic behavior of the class, when thoroughly studying a few class members. We propose that the main integral catchment functions mass export and drainage, mass redistribution and storage, energy exchange with the atmosphere, as well as energy redistribution and storage - result from spatially organized interactions of processes within lead topologies that operate at different scale levels and partly dominate during different conditions. We distinguish: 1) Lead topologies controlling the land surface energy balance during radiation driven conditions at the plot/pedon scale level. In this case energy fluxes dominate and deplete a vertical temperature gradient that is build up by depleting a gradient in radiation fluxes. Water is a facilitator in this concert due to the high specific heat of vaporization. Slow vertical water fluxes in soil dominate, which are driven by vertical gradients in atmospheric water potential, chemical potential in the plant and in soil hydraulic potentials. 2) Lead topologies controlling fast drainage and generation stream flow during rainfall events at the hillslope scale level: Fast vertical and lateral mass fluxes dominate. They are driven by vertical and lateral gradients in pressure heads which build up by depleting the kinetic energy/velocity gradient of rainfall when it hits the ground or of vertical subsurface flows that "hit" a layer of low permeability. 3) Lead topologies controlling slow drainage and its supply, and thus creating memory at the catchment scale level: These are the groundwater system and the stream including the riparian zone. Permanent lateral water flows dominate that are driven by permanently active lateral gradients in pressure heads. Event scale stream flow generation and energy exchange with the atmospheric boundary layer are organized by the first two types of lead topologies, and their dominance changes with prevailing type of boundary conditions. We furthermore propose that lead topologies at the plot and the hillslope scale levels can be further subdivided into least functional entities we name call classes of elementary functional units. These classes of elementary functional units co-evolved being exposed to similar superordinate vertical gradients in a self-reinforcing manner. Being located either at the hilltop (sediment source area), midslope (sediment transport area) or hillfoot/riparian zone (sediment deposit area) they experienced similar weathering processes (past water, energy and nutrient flows), causing formation of similar soil texture in different horizons. This implies, depending on hillslope position and aspect, formation of distinct niches (with respect to water, nutrient and sun light availability) and thus "similar filters" to select distinct natural communities of animal and vegetation species. This in turn implies similarity with respect to formation of biotic flow networks (ant-, worm-, mole- and whole burrow systems, as well as root systems), which feeds back on vertical and lateral water/mass and thermal energy flows and so on. The idea is that members of EFU classes interact within lead topologies along a hierarchy of driving potential gradients and that these interactions are mediated by a hierarchy of connected flow networks like macropores, root networks or lateral pipe systems. We hypothesize that members of a functional unit class are similar with respect to the time invariant controls of the vertical gradients (soil hydraulic potentials, soil temperature, plant water potential) and the flow resistances in vertical direction (plant and soil albedo, soil hydraulic and thermal conductivity, vertical macropore networks). This implies that members of an EFU class behave functionally similar at least with respect to vertical flows of water and heat: we may gain exemplary understanding of the typical dynamic behavior of the class, by thoroughly studying a few class members. In the following we will thus use the term "elementary functional units, EFUs" and "elementary functional unit class, EFU class" as synonyms. We propose that a thorough understanding of the behavior of a few representatives of the most important EFU classes and of their interactions within a hierarchy of lead topology classes is sufficient for understanding and distributed modeling of event scale stream flow production under rainfall driven conditions and energy exchange with the atmosphere under radiation driven conditions. Good and not surprising news is that lead topologies controlling stream flow contribution, are an interconnected, ordered arrangement of the lead topologies that control energy exchange. We suggests that a combination of the related model approaches which simplified but physical based approaches to simulate dynamics in the saturated zone, riparian zone and the river network results in a structurally more adequate model framework for catchments of organized complexity. The feasibility of this concept is currently tested in the Attert catchment by setting up pseudo replica of field experiments and a distributed monitoring network in several members of first guess EFUs and superordinate lead topology classes. We combine geophysical and soil physical survey, artificial tracer tests and analysis of stable isotopes and ecological survey with distributed sensor clusters that permanently monitor meteorological variables, soil moisture and matric potential, piezometric heads etc. Within the proposed study we will present first results especially from the sensor clusters and geophysical survey. By using geostatistical methods we will work out to which extend members within a candidate EFU class are similar with respect to subsurface structures like depth to bedrock and soil properties as well as with respect to soil moisture/storage dynamics. Secondly, we will work out whether structurally similar hillslopes produce a similar event scale stream flow contribution, which of course is dependent on the degree of similarity of a) the rainfall forcing they receive and b) of their wetness state. To this end we will perform virtual experiments with the physically based model CATFLOW by perturbing behavioral model structures. These have been shown to portray system behavior and its architecture in a sense that they reproduce distributed observations of soil moisture and subsurface storm flow and represent the observed structural and textural signatures of soils, flow networks and vegetation.
Rip currents and alongshore flows in single channels dredged in the surf zone
NASA Astrophysics Data System (ADS)
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-05-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
Rip currents and alongshore flows in single channels dredged in the surf zone
Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh
2017-01-01
To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.
Vaezi, P.; Holland, C.; Thakur, S. C.; ...
2017-04-01
The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less
Schmidt, Eric; Ros, Maxime; Moyse, Emmanuel; Lorthois, Sylvie; Swider, Pascal
2016-01-01
In line with the first law of thermodynamics, Bernoulli's principle states that the total energy in a fluid is the same at all points. We applied Bernoulli's principle to understand the relationship between intracranial pressure (ICP) and intracranial fluids. We analyzed simple fluid physics along a tube to describe the interplay between pressure and velocity. Bernoulli's equation demonstrates that a fluid does not flow along a gradient of pressure or velocity; a fluid flows along a gradient of energy from a high-energy region to a low-energy region. A fluid can even flow against a pressure gradient or a velocity gradient. Pressure and velocity represent part of the total energy. Cerebral blood perfusion is not driven by pressure but by energy: the blood flows from high-energy to lower-energy regions. Hydrocephalus is related to increased cerebrospinal fluid (CSF) resistance (i.e., energy transfer) at various points. Identification of the energy transfer within the CSF circuit is important in understanding and treating CSF-related disorders. Bernoulli's principle is not an abstract concept far from clinical practice. We should be aware that pressure is easy to measure, but it does not induce resumption of fluid flow. Even at the bedside, energy is the key to understanding ICP and fluid dynamics.
NASA Technical Reports Server (NTRS)
Weaver, J. A.; Viskanta, Raymond
1992-01-01
An investigation of natural convection is presented to examine the influence of a horizontal temperature gradient and a concentration gradient occurring from the bottom to the cold wall in a cavity. As the solutal buoyancy force changes from augmenting to opposing the thermal buoyancy force, the fluid motion switches from unicellular to multicellular flow (fluid motion is up the cold wall and down the hot wall for the bottom counterrotating flow cell). Qualitatively, the agreement between predicted streamlines and smoke flow patterns is generally good. In contrast, agreement between measured and predicted temperature and concentration distributions ranges from fair to poor. Part of the discrepancy can be attributed to experimental error. However, there remains considerable discrepancy between data and predictions due to the idealizations of the mathematical model, which examines only first-order physical effects. An unsteady flow, variable thermophysical properties, conjugate effects, species interdiffusion, and radiation were not accounted for in the model.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
NASA Astrophysics Data System (ADS)
Hong, R.; Li, J. C.; Hajjar, R.; Chakraborty Thakur, S.; Diamond, P. H.; Tynan, G. R.
2018-05-01
Detailed measurements of intrinsic axial flow generation parallel to the magnetic field in the controlled shear decorrelation experiment linear plasma device with no axial momentum input are presented and compared to theory. The results show a causal link from the density gradient to drift-wave turbulence with broken spectral symmetry and development of the axial mean parallel flow. As the density gradient steepens, the axial and azimuthal Reynolds stresses increase and radially sheared azimuthal and axial mean flows develop. A turbulent axial momentum balance analysis shows that the axial Reynolds stress drives the radially sheared axial mean flow. The turbulent drive (Reynolds power) for the azimuthal flow is an order of magnitude greater than that for axial flow, suggesting that the turbulence fluctuation levels are set by azimuthal flow shear regulation. The direct energy exchange between axial and azimuthal mean flows is shown to be insignificant. Therefore, the axial flow is parasitic to the turbulence-zonal flow system and is driven primarily by the axial turbulent stress generated by that system. The non-diffusive, residual part of the axial Reynolds stress is found to be proportional to the density gradient and is formed due to dynamical asymmetry in the drift-wave turbulence.
Direct Numerical Simulation of Fingering Instabilities in Coating Flows
NASA Astrophysics Data System (ADS)
Eres, Murat H.; Schwartz, Leonard W.
1998-11-01
We consider stability and finger formation in free surface flows. Gravity driven downhill drainage and temperature gradient driven climbing flows are two examples of such problems. The former situation occurs when a mound of viscous liquid on a vertical wall is allowed to flow. Constant surface shear stress due to temperature gradients (Marangoni stress) can initiate the latter problem. The evolution equations are derived using the lubrication approximation. We also include the effects of finite-contact angles in the evolution equations using a disjoining pressure model. Evolution equations for both problems are solved using an efficient alternating-direction-implicit method. For both problems a one-dimensional base state is established, that is steady in a moving reference frame. This base state is unstable to transverse perturbations. The transverse wavenumbers for the most rapidly growing modes are found through direct numerical solution of the nonlinear evolution equations, and are compared with published experimental results. For a range of finite equilibrium contact angles, the fingers can grow without limit leading to semi-finite steady fingers in a moving coordinate system. A computer generated movie of the nonlinear simulation results, for several sets of input parameters, will be shown.
Non-Axisymmetric Line Driven Disc Winds II - Full Velocity Gradient
NASA Astrophysics Data System (ADS)
Dyda, Sergei; Proga, Daniel
2018-05-01
We study non-axisymetric features of 3D line driven winds in the Sobolev approximation, where the optical depth is calculated using the full velocity gradient. We find that non-axisymmetric density features, so called clumps, form primarily at the base of the wind on super-Sobolev length scales. The density of clumps differs by a factor of ˜3 from the azimuthal average, the magnitude of their velocity dispersion is comparable to the flow velocity and they produce ˜20% variations in the column density. Clumps may be observable because differences in density produce enhancements in emission and absorption profiles or through their velocity dispersion which enhances line broadening.
Colloidal attraction induced by a temperature gradient.
Di Leonardo, R; Ianni, F; Ruocco, G
2009-04-21
Colloidal crystals are of extreme importance for applied research and for fundamental studies in statistical mechanics. Long-range attractive interactions, such as capillary forces, can drive the spontaneous assembly of such mesoscopic ordered structures. However, long-range attractive forces are very rare in the colloidal realm. Here we report a novel strong, long-ranged attraction induced by a thermal gradient in the presence of a wall. By switching the thermal gradient on and off, we can rapidly and reversibly form stable hexagonal 2D crystals. We show that the observed attraction is hydrodynamic in nature and arises from thermally induced slip flow on particle surfaces. We used optical tweezers to measure the force law directly and compare it to an analytical prediction based on Stokes flow driven by Marangoni-like forces.
NASA Astrophysics Data System (ADS)
Oberparleiter, M.; Jenko, F.; Told, D.; Doerk, H.; Görler, T.
2016-04-01
Neoclassical and turbulent transport in tokamaks has been studied extensively over the past decades, but their possible interaction remains largely an open question. The two are only truly independent if the length scales governing each of them are sufficiently separate, i.e., if the ratio ρ* between ion gyroradius and the pressure gradient scale length is small. This is not the case in particularly interesting regions such as transport barriers. Global simulations of a collisional ion-temperature-gradient-driven microturbulence performed with the nonlinear global gyrokinetic code Gene are presented. In particular, comparisons are made between systems with and without neoclassical effects. In fixed-gradient simulations, the modified radial electric field is shown to alter the zonal flow pattern such that a significant increase in turbulent transport is observed for ρ*≳1 /300 . Furthermore, the dependency of the flux on the collisionality changes. In simulations with fixed power input, we find that the presence of neoclassical effects decreases the frequency and amplitude of intermittent turbulent transport bursts (avalanches) and thus plays an important role for the self-organisation behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghizzo, A., E-mail: alain.ghizzo@univ-lorraine.fr; Palermo, F.
We address the mechanisms underlying low-frequency zonal flow generation in turbulent system and the associated intermittent regime of ion-temperature-gradient (ITG) turbulence. This model is in connection with the recent observation of quasi periodic zonal flow oscillation at a frequency close to 2 kHz, at the low-high transition, observed in the ASDEX Upgrade [Conway et al., Phys. Rev. Lett. 106, 065001 (2011)] and EAST tokamak [Xu et al., Phys. Rev. Lett 107, 125001 (2011)]. Turbulent bursts caused by the coupling of Kelvin-Helmholtz (KH) driven shear flows with trapped ion modes (TIMs) were investigated by means of reduced gyrokinetic simulations. It was foundmore » that ITG turbulence can be regulated by low-frequency meso-scale zonal flows driven by resonant collisionless trapped ion modes (CTIMs), through parametric-type scattering, a process in competition with the usual KH instability.« less
Flux-driven simulations of turbulence collapse
Park, G. Y.; Kim, S. S.; Jhang, Hogun; ...
2015-03-12
In this study, using self-consistent three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally due to mean E x B shear feedback through evolving pressure gradient once input power exceeds a threshold value. The temporal evolution and development of the transition are elucidated. Profiles, turbulence-driven flows and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E x B flow shear. A novel observation of the evolution is that themore » turbulence collapses and the ETB transition begins when R T > 1 at t = t R (R T : normalized Reynolds power), while the conventional transition criterion (ω E x B > γlin) is satisfied only after t = t C (> t R), when the mean ow shear grows due to positive feedback.« less
A pressure-driven flow analysis of gas trapping behavior in nanocomposite thermite films
NASA Astrophysics Data System (ADS)
Sullivan, K. T.; Bastea, S.; Kuntz, J. D.; Gash, A. E.
2013-10-01
This article is in direct response to a recently published article entitled Electrophoretic deposition and mechanistic studies of nano-Al/CuO thermites (K. T. Sullivan et al., J. Appl. Phys., 112(2), 2012), in which we introduced a non-dimensional parameter as the ratio of gas production to gas escape within a thin porous thermite film. In our original analysis, we had treated the problem as Fickian diffusion of gases through the porous network. However, we believe a more physical representation of the problem is to treat this as pressure-driven flow of gases in a porous medium. We offer a new derivation of the non-dimensional parameter which calculates gas velocity using the well-known Poiseuille's Law for pressure-driven flow in a pipe. This updated analysis incorporates the porosity, gas viscosity, and pressure gradient into the equation.
Strbak, Oliver; Kanuchova, Zuzana; Krafcik, Andrej
2016-11-01
A critical phase in the transition from prebiotic chemistry to biological evolution was apparently an asymmetric ion flow across the lipid membrane. Due to imbalance in the ion flow, the early lipid vesicles could selectively take the necessary molecules from the environment, and release the side-products from the vesicle. Natural proton gradients played a definitively crucial role in this process, since they remain the basis of energy transfer in the present-day cells. On the basis of this supposition, and the premise of the early vesicle membrane's impermeability to protons, we have shown that the emergence of the proton gradient in the lipid vesicle could be a key physical factor in the evolution of the forced transport mechanism (pore formation and active transport) across the lipid bilayer. This driven flow of protons across the membrane is the result of the electrochemical proton gradient and osmotic pressures on the integrity of the lipid vesicle. At a critical number of new lipid molecules incorporated into the vesicle, the energies associated with the creation of the proton gradient exceed the bending stiffness of the lipid membrane, and overlap the free energy of the lipid bilayer pore formation.
Heat and mass transfer analogy for condensation of humid air in a vertical channel
NASA Astrophysics Data System (ADS)
Desrayaud, G.; Lauriat, G.
This study examines energy transport associated with liquid film condensation in natural convection flows driven by differences in density due to temperature and concentration gradients. The condensation problem is based on the thin-film assumptions. The most common compositional gradient, which is encountered in humid air at ambient temperature is considered. A steady laminar Boussinesq flow of an ideal gas-vapor mixture is studied for the case of a vertical parallel plate channel. New correlations for the latent and sensible Nusselt numbers are established, and the heat and mass transfer analogy between the sensible Nusselt number and Sherwood number is demonstrated.
Pressure-driven occlusive flow of a confined red blood cell.
Savin, Thierry; Bandi, M M; Mahadevan, L
2016-01-14
When red blood cells (RBCs) move through narrow capillaries in the microcirculation, they deform as they flow. In pathophysiological processes such as sickle cell disease and malaria, RBC motion and flow are severely restricted. To understand this threshold of occlusion, we use a combination of experiment and theory to study the motion of a single swollen RBC through a narrow glass capillary of varying inner diameter. By tracking the movement of the squeezed cell as it is driven by a controlled pressure drop, we measure the RBC velocity as a function of the pressure gradient as well as the local capillary diameter, and find that the effective blood viscosity in this regime increases with both decreasing RBC velocity and tube radius by following a power-law that depends upon the length of the confined cell. Our observations are consistent with a simple elasto-hydrodynamic model and highlight the role of lateral confinement in the occluded pressure-driven slow flow of soft confined objects.
Interactions between solidification and compositional convection in mushy layers
NASA Technical Reports Server (NTRS)
Worster, M. Grae
1994-01-01
Mushy layers are ubiquitous during the solidification of alloys. They are regions of mixed phase wherein solid crystals are bathed in the melt from which they grew. The matrix of crystals forms a porous medium through which the melt can flow, driven either by external forces or by its own buoyancy in a gravitational field. Buoyancy-driven convection of the melt depends both on temperature gradients, which are necessary for solidification, and on compositional gradients, which are generated as certain components of the alloy are preferentially incorporated in the solid phase and the remaining components are expelled into the melt. In fully liquid regions, the combined action of temperature and concentration on the density of the liquid can cause various forms of double-diffusive convection. However, in the interior of mushy regions the temperature and concentration are thermodynamically coupled so only single-diffusive convection can occur. Typically, the effect of composition on the buoyancy of the melt is much greater than the effect of temperature, and thus convection in mushy layers in driven primarily by the computational gradients within them. The rising interstitial liquid is relatively dilute, having come from colder regions of the mushy layer, where the liquidus concentration is lower, and can dissolve the crystal matrix through which it flows. This is the fundamental process by which chimneys are formed. It is a nonlinear process that requires the convective velocities to be sufficiently large, so fully fledged chimneys (narrow channels) might be avoided by means that weaken the flow. Better still would be to prevent convection altogether, since even weak convection will cause lateral, compositional inhomogeneities in castings. This report outlines three studies that examine the onset of convection within mushy layers.
Length and time for development of laminar flow in tubes following a step increase of volume flux
NASA Astrophysics Data System (ADS)
Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.
2015-01-01
Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this level of description, the numerical results reveal interaction between the effects of space and time development and nonlinear Reynolds number effects.
Electrically driving large magnetic Reynolds number flows on the Madison plasma dynamo experiment
NASA Astrophysics Data System (ADS)
Weisberg, David; Wallace, John; Peterson, Ethan; Endrezzi, Douglass; Forest, Cary B.; Desangles, Victor
2015-11-01
Electrically-driven plasma flows, predicted to excite a large-scale dynamo instability, have been generated in the Madison plasma dynamo experiment (MPDX), at the Wisconsin Plasma Astrophysics Laboratory. Numerical simulations show that certain topologies of these simply-connected flows may be optimal for creating a plasma dynamo and predict critical thresholds as low as Rmcrit =μ0 σLV = 250 . MPDX plasmas are shown to exceed this critical Rm , generating large (L = 1 . 4 m), warm (Te > 10 eV), unmagnetized (MA > 1) plasmas where Rm < 600 . Plasma flow is driven using ten thermally emissive LaB6 cathodes which generate a J × B torque in Helium plasmas. Detailed Mach probe measurements of plasma velocity for two flow topologies will be presented: edge-localized drive using the multi-cusp boundary field, and volumetric drive using an axial Helmholtz field. Radial velocity profiles show that edge-driven flow is established via ion viscosity but is limited by a volumetric neutral drag force (χ ~ 1 / (ντin)), and measurements of velocity shear compare favorably to Braginskii transport theory. Volumetric flow drive is shown to produce stronger velocity shear, and is characterized by the radial potential gradient as determined by global charge balance.
Tidally influenced alongshore circulation at an inlet-adjacent shoreline
Hansen, Jeff E.; Elias, Edwin P.L.; List, Jeffrey H.; Erikson, Li H.; Barnard, Patrick L.
2013-01-01
The contribution of tidal forcing to alongshore circulation inside the surfzone is investigated at a 7 km long sandy beach adjacent to a large tidal inlet. Ocean Beach in San Francisco, CA (USA) is onshore of a ∼150 km2 ebb-tidal delta and directly south of the Golden Gate, the sole entrance to San Francisco Bay. Using a coupled flow-wave numerical model, we find that the tides modulate, and in some cases can reverse the direction of, surfzone alongshore flows through two separate mechanisms. First, tidal flow through the inlet results in a barotropic tidal pressure gradient that, when integrated across the surfzone, represents an important contribution to the surfzone alongshore force balance. Even during energetic wave conditions, the tidal pressure gradient can account for more than 30% of the total alongshore pressure gradient (wave and tidal components) and up to 55% during small waves. The wave driven component of the alongshore pressure gradient results from alongshore wave height and corresponding setup gradients induced by refraction over the ebb-tidal delta. Second, wave refraction patterns over the inner shelf are tidally modulated as a result of both tidal water depth changes and strong tidal flows (∼1 m/s), with the effect from currents being larger. These tidally induced changes in wave refraction result in corresponding variability of the alongshore radiation stress and pressure gradients within the surfzone. Our results indicate that tidal contributions to the surfzone force balance can be significant and important in determining the direction and magnitude of alongshore flow.
SAGE: The Self-Adaptive Grid Code. 3
NASA Technical Reports Server (NTRS)
Davies, Carol B.; Venkatapathy, Ethiraj
1999-01-01
The multi-dimensional self-adaptive grid code, SAGE, is an important tool in the field of computational fluid dynamics (CFD). It provides an efficient method to improve the accuracy of flow solutions while simultaneously reducing computer processing time. Briefly, SAGE enhances an initial computational grid by redistributing the mesh points into more appropriate locations. The movement of these points is driven by an equal-error-distribution algorithm that utilizes the relationship between high flow gradients and excessive solution errors. The method also provides a balance between clustering points in the high gradient regions and maintaining the smoothness and continuity of the adapted grid, The latest version, Version 3, includes the ability to change the boundaries of a given grid to more efficiently enclose flow structures and provides alternative redistribution algorithms.
The AGCE related studies of baroclinic flows in spherical geometry
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1983-01-01
Steady state, axisymmetric motions of a Boussineaq fluid continued in rotating spherical anmulus are considered. The motions are driven by latitudinally varying temperature gradient at the shells. Linearized formulations for a narrow gap are derived and the flow field is divided into the Ekman layers and the geostrophic interior. The Ekman layer flows are consistent with the known results for cylindrical geometries. Within the framework of rather restrictive assumptions, the interior flows are solved by a series of associated Legendre polynomials. The solutions show qualitative features valid at midlatitudes.
Two-fluid flowing equilibria of spherical torus sustained by coaxial helicity injection
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Steinhauer, Loren; Nagata, Masayoshi
2007-11-01
Two-dimensional equilibria in helicity-driven systems using two-fluid model were previously computed, showing the existence of an ultra-low-q spherical torus (ST) configuration with diamagnetism and higher beta. However, this computation assumed purely toroidal ion flow and uniform density. The purpose of the present study is to apply the two-fluid model to the two-dimensional equilibria of helicity-driven ST with non-uniform density and both toroidal and poloidal flows for each species by means of the nearby-fluids procedure, and to explore their properties. We focus our attention on the equilibria relevant to the HIST device, which are characterized by either driven or decaying λ profiles. The equilibrium for the driven λ profile has a diamagnetic toroidal field, high-β (βt = 32%), and centrally broad density. By contrast, the decaying equilibrium has a paramagnetic toroidal field, low-β (βt = 10%), and centrally peaked density with a steep gradient in the outer edge region. In the driven case, the toroidal ion and electron flows are in the same direction, and two-fluid effects are less important since the ExB drift is dominant. In the decaying case, the toroidal ion and electron flows are opposite in the outer edge region, and two-fluid effects are significant locally in the edge due to the ion diamagnetic drift.
Sheared-flow induced confinement transition in a linear magnetized plasma
NASA Astrophysics Data System (ADS)
Zhou, S.; Heidbrink, W. W.; Boehmer, H.; McWilliams, R.; Carter, T. A.; Vincena, S.; Friedman, B.; Schaffner, D.
2012-01-01
A magnetized plasma cylinder (12 cm in diameter) is induced by an annular shape obstacle at the Large Plasma Device [W. Gekelman, H. Pfister, Z. Lucky, J. Bamber, D. Leneman, and J. Maggs, Rev. Sci. Instrum. 62, 2875 (1991)]. Sheared azimuthal flow is driven at the edge of the plasma cylinder through edge biasing. Strong fluctuations of density and potential (δn /n~eδφ/kTe~0.5) are observed at the plasma edge, accompanied by a large density gradient (Ln=|∇lnn |-1~2cm) and shearing rate (γ ~300kHz). Edge turbulence and cross-field transport are modified by changing the bias voltage (Vbias) on the obstacle and the axial magnetic field (Bz) strength. In cases with low Vbias and large Bz, improved plasma confinement is observed, along with steeper edge density gradients. The radially sheared flow induced by E ×B drift dramatically changes the cross-phase between density and potential fluctuations, which causes the wave-induced particle flux to reverse its direction across the shear layer. In cases with higher bias voltage or smaller Bz, large radial transport and rapid depletion of the central plasma density are observed. Two-dimensional cross-correlation measurement shows that a mode with azimuthal mode number m =1 and large radial correlation length dominates the outward transport in these cases. Linear analysis based on a two-fluid Braginskii model suggests that the fluctuations are driven by both density gradient (drift wave like) and flow shear (Kelvin-Helmholtz like) at the plasma edge.
Experimental Evaluation of an Isolated Synthetic Jet IN Crossflow
NASA Technical Reports Server (NTRS)
Schaeffler, Norman W.; Jenkins, Luther N.; Hepner, Timothy E.
2007-01-01
The second case for this workshop builds upon the isolated synthetic jet of Case 1 by adding a crossflow, with no streamwise pressure gradient, for the developing jet to interact with. Formally, Case 2 examines the interaction of a single, isolated, synthetic jet and a fully turbulent zero-pressure gradient boundary layer. The resulting flow has many of the characteristics that need to be modeled with fidelity if the results of the calculations are to serve as the basis for research and design with active flow control devices. These include the turbulence in the boundary layer, the time-evolution of the large vortical structure emanating from the jet orifice and its subsequent interaction with and distortion by the boundary layer turbulence, and the effect of the suction cycle on the boundary layer flow. In a synthetic jet, the flow through the orifice and out into the outer flowfield alternates between an exhaust and a suction cycle, driven by the contraction and expansion of a cavity internal to the actuator. In the present experiment, the volume changes in the internal cavity are accomplished by replacing one of the rigid walls of the cavity, the wall opposite the orifice exit, with a deformable wall. This flexible wall is driven by a bottom-mounted moveable piston. The piston is driven electro-mechanically. The synthetic jet issues into the external flow through a circular orifice. In the present experiment, this orifice has a diameter of 0.250 inches (6.35 mm). The flow is conceptually similar to that documented in Schaeffler [1]. To document the flow, several measurement techniques were utilized. The upstream boundary conditions (in-flow conditions), and several key phase-averaged velocity profiles were measured with a 3-component laser-Doppler velocimetry system. Phase-averaged velocity field measurements were made with both stereo digital particle image velocimetry and 2-D digital particle image velocimetry as the primary measurement system. Surface pressure measurements were made utilizing an electronically scanned pressure system.
Mechanism of nonlinear flow pattern selection in moderately non-Boussinesq mixed convection.
Suslov, Sergey A
2010-02-01
Nonlinear (non-Boussinesq) variations in fluid's density, viscosity, and thermal conductivity caused by a large temperature gradient in a flow domain lead to a wide variety of instability phenomena in mixed convection channel flow of a simple gas such as air. It is known that in strongly nonisothermal flows, the instabilities and the resulting flow patterns are caused by competing buoyancy and shear effects [see S. A. Suslov and S. Paolucci, J. Fluid Mech. 302, 91 (1995)]. However, as is the case in the Boussinesq limit of small temperature gradients, in moderately non-Boussinesq regimes, only a shear instability mechanism is active. Yet in contrast to Boussinesq flows, multiple instability modes are still detected. By reducing the system of full governing Navier-Stokes equations to a dynamical system of coupled Landau-type disturbance amplitude equations we compute a comprehensive parametric map of various shear-driven instabilities observed in a representative moderately non-Boussinesq regime. Subsequently, we analyze nonlinear interaction of unstable modes and reveal physical reasons for their appearance.
The vertical structure of the circulation and dynamics in Hudson Shelf Valley
Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.
2014-01-01
Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Scott; Chen, Yang
This is the Final Technical Report for University of Colorado's portion of the SciDAC project 'Center for Gyrokinetic Particle Simulation of Turbulent Transport.' This is funded as a multi-institutional SciDAC Center and W.W. Lee at the Princeton Plasma Physics Laboratory is the lead Principal Investigator. Scott Parker is the local Principal Investigator for University of Colorado and Yang Chen is a Co-Principal Investigator. This is Cooperative Agreement DE-FC02-05ER54816. Research personnel include Yang Chen (Senior Research Associate), Jianying Lang (Graduate Research Associate, Ph.D. Physics Student) and Scott Parker (Associate Professor). Research includes core microturbulence studies of NSTX, simulation of trapped electronmore » modes, development of efficient particle-continuum hybrid methods and particle convergence studies of electron temperature gradient driven turbulence simulations. Recently, the particle-continuum method has been extended to five-dimensions in GEM. We find that actually a simple method works quite well for the Cyclone base case with either fully kinetic or adiabatic electrons. Particles are deposited on a 5D phase-space grid using nearest-grid-point interpolation. Then, the value of delta-f is reset, but not the particle's trajectory. This has the effect of occasionally averaging delta-f of nearby (in the phase space) particles. We are currently trying to estimate the dissipation (or effective collision operator). We have been using GEM to study turbulence and transport in NSTX with realistic equilibrium density and temperature profiles, including impurities, magnetic geometry and ExB shear flow. Greg Rewoldt, PPPL, has developed a TRANSP interface for GEM that specifies the equilibrium profiles and parameters needed to run realistic NSTX cases. Results were reported at the American Physical Society - Division of Plasma Physics, and we are currently running convergence studies to ensure physical results. We are also studying the effect of parallel shear flows, which can be quite strong in NSTX. Recent long-time simulations of electron temperature gradient driven turbulence, show that zonal flows slowly grow algebraically via the Rosenbluth-Hinton random walk mechanism. Eventually, the zonal flow gets to a level where it shear suppresses the turbulence. We have demonstrated this behavior with Cyclone base-case parameters, except with a 30% lower temperature gradient. We can demonstrate the same phenomena at higher gradients, but so far, have been unable to get a converged result at the higher temperature gradient. We find that electron ion collisions cause the zonal flows to grow at a slower rate and results in a higher heat flux. So, far all ETG simulations that come to a quasi-steady state show continued build up of zonal flow, see it appears to be a universal phenomena (for ETG). Linear and nonlinear simulations of Collisional and Collisionless trapped electron modes are underway. We find that zonal flow is typically important. We can, however, reproduce the Tannert and Jenko result (that zonal flow is unimportant) using their parameters with the electron temperature three times the ion temperature. For a typical weak gradient core value of density gradient and no temperature gradient, the CTEM is dominant. However, for a steeper density gradient (and still no temperature gradient), representative of the edge, higher k drift-waves are dominant. For the weaker density gradient core case, nonlinear simulations using GEM are routine. For the steeper gradient edge case, the nonlinear fluctuations are very high and a stationary state has not been obtained. This provides motivation for the particle-continuum algorithm. We also note that more physics, e.g. profile variation and equilibrium ExB shear flow should be significantly stabilizing, making such simulations feasible using standard delta-f techniques. This research is ongoing.« less
Convection driven generation of long-range material gradients
Du, Yanan; Hancock, Matthew J.; He, Jiankang; Villa-Uribe, Jose; Wang, Ben; Cropek, Donald M.; Khademhosseini, Ali
2009-01-01
Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethyleneglycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interaction. PMID:20035990
LAPD Studies on Kelvin-Helmholtz turbulence and Transport
NASA Astrophysics Data System (ADS)
Perez, Jean; Horton, Wendel; Carter, Troy; Gekelman, Walter; Bengtson, Roger; Gentle, Kenneth
2004-11-01
New results on the partial transport barrier and turbulence produced by a strong E×B jet of plasma shear flow are reported. By controlled biasing of the cathode-anode structure of the 20 m long, 1 m diameter Large Plasma Device at UCLA, a strongly localized shear flow is driven in the steady state. The fluctuations are shown to be well described by 2D electrostatic potential simulations of the Kelvin-Helmholtz instability in preprint IFSR-1002. Now, we exam the transport of particles and report the particle flux data for transport across the plasma jet. The mean ion saturation current shows that there is a steep density gradient on the core side of the jet with the foot of the density gradient near the shear layer . We consider the motion of test particles launched from the core side of the layer and calculate the probablity distribution of the first exit times. The density gradient of driven drift waves is also discussed. Experimentally, we propose to use optical tagging and laser induced fluorescence to follow particle trajectories across the shear layer in LAPD. Work supported by DOE grant DE-FG02-04ER54742. Experimental work was performed at the UCLA Basic Plasma Science Facility which is funded by NSF and DOE.
The ABC protein turned chloride channel whose failure causes cystic fibrosis
NASA Astrophysics Data System (ADS)
Gadsby, David C.; Vergani, Paola; Csanády, László
2006-03-01
CFTR chloride channels are encoded by the gene mutated in patients with cystic fibrosis. These channels belong to the superfamily of ABC transporter ATPases. ATP-driven conformational changes, which in other ABC proteins fuel uphill substrate transport across cellular membranes, in CFTR open and close a gate to allow transmembrane flow of anions down their electrochemical gradient. New structural and biochemical information from prokaryotic ABC proteins and functional information from CFTR channels has led to a unifying mechanism explaining those ATP-driven conformational changes.
NASA Astrophysics Data System (ADS)
Paustian, Joel Scott
Microfluidic technology is playing an ever-expanding role in advanced chemical and biological devices, with diverse applications including medical diagnostics, high throughput research tools, chemical or biological detection, separations, and controlled particle fabrication. Even so, local (microscale) modification of solution properties within microchannels, such as pressure, solute concentration, and voltage remains a challenge, and improved spatiotemporal control would greatly enhance the capabilities of microfluidics. This thesis demonstrates and characterizes two microfluidic tools to enhance local solution control. I first describe a microfluidic pump that uses an electrokinetic effect, Induced-Charge Electroosmosis (ICEO), to generate pressure on-chip. In ICEO, steady flows are driven by AC fields along metal-electrolyte interfaces. I design and microfabricate a pump that exploits this effect to generate on-chip pressures. The ICEO pump is used to drive flow along a microchannel, and the pressure is measured as a function of voltage, frequency, and electrolyte composition. This is the first demonstration of chip-scale flows driven by ICEO, which opens the possibility for ICEO pumping in self-contained microfluidic devices. Next, I demonstrate a method to create thin local membranes between microchannels, which enables local diffusive delivery of solute. These ``Hydrogel Membrane Microwindows'' are made by photopolymerizing a hydrogel which serves as a local ``window'' for solute diffusion and electromigration between channels, but remains a barrier to flow. I demonstrate three novel experimental capabilities enabled by the hydrogel membranes: local concentration gradients, local electric currents, and rapid diffusive composition changes. I conclude by applying the hydrogel membranes to study solvophoresis, the migration of particles in solvent gradients. Solvent gradients are present in many chemical processes, but migration of particles within these gradients is not well understood. An improved understanding would allow solvophoresis to be engineered (e.g. for coatings and thin film deposition) or reduced (e.g. in fouling processes during reactions and separations). Toward this end, I perform velocity measurements of colloidal particles at various ethanol-water concentrations and gradient strengths. The velocity was found to depend on the mole fraction via the equation u = DSP▿ln X, where u is the velocity, DSP is the mobility, and X is the ethanol mole fraction.
Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow
NASA Astrophysics Data System (ADS)
Holden, Matthew A.; Kumar, Saurabh; Beskok, Ali; Cremer, Paul S.
2003-05-01
The bulging of microfluidic systems during pressure-driven flow is potentially a major consideration for polydimethylsiloxane (PDMS)-based devices. Microchannel cross-sectional areas can change drastically as a function of flow rate and downstream microchannel position. Such geometrical flexibility leads to difficulties in predicting convective/diffusive transport for these systems. We have previously introduced a non-dimensional parameter, kappa, for characterizing convection and diffusion behavior for pressure-driven flow in rigid all-glass systems. This paper describes a modification of that concept for application to non-rigid systems, which is accomplished by incorporating an experimental step to account for the bulging in PDMS/glass microsystems. Specifically, an experimental measurement of channel height by fluorescence microscopy is combined with the aforementioned theory to characterize convective/diffusive behavior at a single location in the device. This allowed the parameter kappa to be determined at that point and applied to predict fluid flow in the subsequent portion of the PDMS microsystem. This procedure was applied to a PDMS/glass microfluidic diffusion dilution (muDD) device designed for generating concentration gradients. Theoretically predicted and experimentally measured distributions of concentrations within the microsystem matched well.
Induced charge electroosmosis micropumps using arrays of Janus micropillars.
Paustian, Joel S; Pascall, Andrew J; Wilson, Neil M; Squires, Todd M
2014-09-07
We report on a microfluidic AC-driven electrokinetic pump that uses Induced Charge Electro-Osmosis (ICEO) to generate on-chip pressures. ICEO flows occur when a bulk electric field polarizes a metal object to induce double layer formation, then drives electroosmotic flow. A microfabricated array of metal-dielectric Janus micropillars breaks the symmetry of ICEO flow, so that an AC electric field applied across the array drives ICEO flow along the length of the pump. When pumping against an external load, a pressure gradient forms along the pump length. The design was analyzed theoretically with the reciprocal theorem. The analysis reveals a maximum pressure and flow rate that depend on the ICEO slip velocity and micropillar geometry. We then fabricate and test the pump, validating our design concept by demonstrating non-local pressure driven flow using local ICEO slip flows. We varied the voltage, frequency, and electrolyte composition, measuring pump pressures of 15-150 Pa. We use the pump to drive flows through a high-resistance microfluidic channel. We conclude by discussing optimization routes suggested by our theoretical analysis to enhance the pump pressure.
Wang, W X; Hahm, T S; Ethier, S; Rewoldt, G; Lee, W W; Tang, W M; Kaye, S M; Diamond, P H
2009-01-23
A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also show a significant off-diagonal element associated with the ion temperature gradient in the neoclassical momentum flux, while the overall neoclassical flux is small. In addition, the residual turbulence found in the presence of strong E x B flow shear may account for neoclassical-level ion heat and anomalous momentum transport widely observed in experiments.
Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
Nanev, Christo N; Penkova, Anita; Chayen, Naomi
2004-11-01
Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.
Transverse ac-driven and geometric ratchet effects for vortices in conformal crystal pinning arrays
Reichhardt, Charles; Reichhardt, Cynthia Jane Olsen
2016-02-11
A conformal pinning array is created by taking a conformal transformation of a uniform hexagonal lattice to create a structure in which the sixfold ordering of the original lattice is preserved but which has a spatial gradient in the pinning site density. With a series of conformal arrays it is possible to create asymmetric substrates, and it was previously shown that when an ac drive is applied parallel to the asymmetry direction, a pronounced ratchet effect occurs with a net dc flow of vortices in the same direction as the ac drive. Here, in this article, we show that whenmore » the ac drive is applied perpendicular to the substrate asymmetry direction, it is possible to realize a transverse ratchet effect where a net dc flow of vortices is generated perpendicular to the ac drive. The conformal transverse ratchet effect is distinct from previous versions of transverse ratchets in that it occurs due to the generation of non-Gaussian transverse vortex velocity fluctuations by the plastic motion of vortices, so that the system behaves as a noise correlation ratchet. The transverse ratchet effect is much more pronounced in the conformal arrays than in random gradient arrays and is absent in square gradient arrays due the different nature of the vortex flow in each geometry. We show that a series of reversals can occur in the transverse ratchet effect due to changes in the vortex flow across the pinning gradient as a function of vortex filling, pinning strength, and ac amplitude. We also consider the case where a dc drive applied perpendicular to the substrate asymmetry direction generates a net flow of vortices perpendicular to the dc drive, producing what is known as a geometric or drift ratchet that again arises due to non-Gaussian dynamically generated fluctuations. The drift ratchet is more efficient than the ac driven ratchet and also exhibits a series of reversals for varied parameters. Lastly, our results should be general to a wide class of systems undergoing nonequilibrium dynamics on conformal substrates, such as colloidal particles on optical traps.« less
Multiscale modeling and simulation for polymer melt flows between parallel plates
NASA Astrophysics Data System (ADS)
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for ωτR≲1 , and the crossover between the liquidlike and solidlike regime takes place around ωτα≃1 (where ω is the angular frequency of the plate and τR and τα are Rouse and α relaxation time, respectively).
Multiscale modeling and simulation for polymer melt flows between parallel plates.
Yasuda, Shugo; Yamamoto, Ryoichi
2010-03-01
The flow behaviors of polymer melt composed of short chains with ten beads between parallel plates are simulated by using a hybrid method of molecular dynamics and computational fluid dynamics. Three problems are solved: creep motion under a constant shear stress and its recovery motion after removing the stress, pressure-driven flows, and the flows in rapidly oscillating plates. In the creep/recovery problem, the delayed elastic deformation in the creep motion and evident elastic behavior in the recovery motion are demonstrated. The velocity profiles of the melt in pressure-driven flows are quite different from those of Newtonian fluid due to shear thinning. Velocity gradients of the melt become steeper near the plates and flatter at the middle between the plates as the pressure gradient increases and the temperature decreases. In the rapidly oscillating plates, the viscous boundary layer of the melt is much thinner than that of Newtonian fluid due to the shear thinning of the melt. Three different rheological regimes, i.e., the viscous fluid, viscoelastic liquid, and viscoelastic solid regimes, form over the oscillating plate according to the local Deborah numbers. The melt behaves as a viscous fluid in a region for omegatauR < approximately 1 , and the crossover between the liquidlike and solidlike regime takes place around omegataualpha approximately equal 1 (where omega is the angular frequency of the plate and tauR and taualpha are Rouse and alpha relaxation time, respectively).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, V. V., E-mail: vladimir@pusan.ac.kr; Mikhailenko, V. S.; Lee, Hae June, E-mail: haejune@pusan.ac.kr
2016-06-15
The temporal evolution of the kinetic ion temperature gradient driven instability and of the related anomalous transport of the ion thermal energy of plasma shear flow across the magnetic field is investigated analytically. This instability develops in a steady plasma due to the inverse ion Landau damping and has the growth rate of the order of the frequency when the ion temperature is equal to or above the electron temperature. The investigation is performed employing the non-modal methodology of the shearing modes which are the waves that have a static spatial structure in the frame of the background flow. Themore » solution of the governing linear integral equation for the perturbed potential displays that the instability experiences the non-modal temporal evolution in the shearing flow during which the unstable perturbation becomes very different from a canonical modal form. It transforms into the non-modal structure with vanishing frequency and growth rate with time. The obtained solution of the nonlinear integral equation, which accounts for the random scattering of the angle of the ion gyro-motion due to the interaction of ions with ensemble of shearing waves, reveals similar but accelerated process of the transformations of the perturbations into the zero frequency structures. It was obtained that in the shear flow the anomalous ion thermal conductivity decays with time. It is a strictly non-modal effect, which originates from the temporal evolution of the shearing modes turbulence.« less
A microscale turbine driven by diffusive mass flux.
Yang, Mingcheng; Liu, Rui; Ripoll, Marisol; Chen, Ke
2015-10-07
An external diffusive mass flux is shown to be able to generate a mechanical torque on a microscale object based on anisotropic diffusiophoresis. In light of this finding, we propose a theoretical prototype micro-turbine driven purely by diffusive mass flux, which is in strong contrast to conventional turbines driven by convective mass flows. The rotational velocity of the proposed turbine is determined by the external concentration gradient, the geometry and the diffusiophoretic properties of the turbine. This scenario is validated by performing computer simulations. Our finding thus provides a new type of chemo-mechanical response which could be used to exploit existing chemical energies at small scales.
Generalized two-temperature model for coupled phonon-magnon diffusion.
Liao, Bolin; Zhou, Jiawei; Chen, Gang
2014-07-11
We generalize the two-temperature model [Sanders and Walton, Phys. Rev. B 15, 1489 (1977)] for coupled phonon-magnon diffusion to include the effect of the concurrent magnetization flow, with a particular emphasis on the thermal consequence of the magnon flow driven by a nonuniform magnetic field. Working within the framework of the Boltzmann transport equation, we derive the constitutive equations for coupled phonon-magnon transport driven by gradients of both temperature and external magnetic fields, and the corresponding conservation laws. Our equations reduce to the original Sanders-Walton two-temperature model under a uniform external field, but predict a new magnon cooling effect driven by a nonuniform magnetic field in a homogeneous single-domain ferromagnet. We estimate the magnitude of the cooling effect in an yttrium iron garnet, and show it is within current experimental reach. With properly optimized materials, the predicted cooling effect can potentially supplement the conventional magnetocaloric effect in cryogenic applications in the future.
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less
NASA Astrophysics Data System (ADS)
Žák, Jiří; Klomínský, Josef
2007-08-01
The present paper examines magmatic structures in the Jizera and Liberec granites of the Krkonoše-Jizera Plutonic Complex, Bohemian Massif. The magmatic structures are here interpreted to preserve direct field evidence for highly localized magma flow and other processes in crystal-rich mushes, and to capture the evolution of physical processes in an ancient granitic magma chamber. We propose that after chamber-wide mixing and hybridization, as suggested by recent petrological studies, laminar magma flow became highly localized to weaker channel-like domains within the higher-strength crystal framework. Mafic schlieren formed at flow rims, and their formation presumably involved gravitational settling and velocity gradient flow sorting coupled with interstitial melt escape. Local thermal or compositional convection may have resulted in the formation of vertical schlieren tubes and ladder dikes whereas subhorizontal tubes or channels formed during flow driven by lateral gradients in magma pressure. After the cessation or deceleration of channel flow, gravity-driven processes (settling of crystals and enclaves, gravitational differentiation, development of downward dripping instabilities), accompanied by compaction, filter pressing and melt segregation, dominated in the crystal mush within the flow channels. Subsequently, magmatic folds developed in schlieren layers and the magma chamber recorded complex, late magmatic strains at high magma crystallinities. Late-stage magma pulsing into localized submagmatic cracks represents the latest events of magmatic history of the chamber prior to its final crystallization. We emphasize that the most favorable environments for the formation and preservation of magmatic structures, such as those hosted in the Jizera and Liberec granites, are slowly cooling crystal-rich mushes. Therefore, where preserved in plutons, these structures may lend strong support for a "mush model" of magmatic systems.
Strong wave/mean-flow coupling in baroclinic acoustic streaming
NASA Astrophysics Data System (ADS)
Chini, Greg; Michel, Guillaume
2017-11-01
Recently, Chini et al. demonstrated the potential for large-amplitude acoustic streaming in compressible channel flows subjected to strong background cross-channel density variations. In contrast with classic Rayleigh streaming, standing acoustic waves of O (ɛ) amplitude acquire vorticity owing to baroclinic torques acting throughout the domain rather than via viscous torques acting in Stokes boundary layers. More significantly, these baroclinically-driven streaming flows have a magnitude that also is O (ɛ) , i.e. comparable to that of the sound waves. In the present study, the consequent potential for fully two-way coupling between the waves and streaming flows is investigated using a novel WKBJ analysis. The analysis confirms that the wave-driven streaming flows are sufficiently strong to modify the background density gradient, thereby modifying the leading-order acoustic wave structure. Simulations of the wave/mean-flow system enabled by the WKBJ analysis are performed to illustrate the nature of the two-way coupling, which contrasts sharply with classic Rayleigh streaming, for which the waves can first be determined and the streaming flows subsequently computed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, A. G.; Rath, F.; Buchholz, R.
2016-08-15
It is shown that Ion Temperature Gradient turbulence close to the threshold exhibits a long time behaviour, with smaller heat fluxes at later times. This reduction is connected with the slow growth of long wave length zonal flows, and consequently, the numerical dissipation on these flows must be sufficiently small. Close to the nonlinear threshold for turbulence generation, a relatively small dissipation can maintain a turbulent state with a sizeable heat flux, through the damping of the zonal flow. Lowering the dissipation causes the turbulence, for temperature gradients close to the threshold, to be subdued. The heat flux then doesmore » not go smoothly to zero when the threshold is approached from above. Rather, a finite minimum heat flux is obtained below which no fully developed turbulent state exists. The threshold value of the temperature gradient length at which this finite heat flux is obtained is up to 30% larger compared with the threshold value obtained by extrapolating the heat flux to zero, and the cyclone base case is found to be nonlinearly stable. Transport is subdued when a fully developed staircase structure in the E × B shearing rate forms. Just above the threshold, an incomplete staircase develops, and transport is mediated by avalanche structures which propagate through the marginally stable regions.« less
Zhao, Cunlu; Ge, Zhengwei; Song, Yongxin; Yang, Chun
2017-09-07
Enrichment of colloidal particles in continuous flow has not only numerous applications but also poses a great challenge in controlling physical forces that are required for achieving particle enrichment. Here, we for the first time experimentally demonstrate the electrokinetically-driven continuous-flow enrichment of colloidal particles with Joule heating induced temperature gradient focusing (TGF) in a microfluidic convergent-divergent structure. We consider four mechanisms of particle transport, i.e., advection due to electroosmosis, electrophoresis, dielectrophoresis and, and further clarify their roles in the particle enrichment. It is experimentally determined and numerically verified that the particle thermophoresis plays dominant roles in enrichment of all particle sizes considered in this study and the combined effect of electroosmosis-induced advection and electrophoresis is mainly to transport particles to the zone of enrichment. Specifically, the enrichment of particles is achieved with combined DC and AC voltages rather than a sole DC or AC voltage. A numerical model is formulated with consideration of the abovementioned four mechanisms, and the model can rationalize the experimental observations. Particularly, our analysis of numerical and experimental results indicates that thermophoresis which is usually an overlooked mechanism of material transport is crucial for the successful electrokinetic enrichment of particles with Joule heating induced TGF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacharia, T.; David, S.A.; Vitek, J.M.
1989-12-01
In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTAmore » weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.« less
NASA Astrophysics Data System (ADS)
Muldoon, F. H.
2018-04-01
Hydrothermal waves in flows driven by thermocapillary and buoyancy effects are suppressed by applying a predictive control method. Hydrothermal waves arise in the manufacturing of crystals, including the "open boat" crystal growth process, and lead to undesirable impurities in crystals. The open boat process is modeled using the two-dimensional unsteady incompressible Navier-Stokes equations under the Boussinesq approximation and the linear approximation of the surface thermocapillary force. The flow is controlled by a spatially and temporally varying heat flux density through the free surface. The heat flux density is determined by a conjugate gradient optimization algorithm. The gradient of the objective function with respect to the heat flux density is found by solving adjoint equations derived from the Navier-Stokes ones in the Boussinesq approximation. Special attention is given to heat flux density distributions over small free-surface areas and to the maximum admissible heat flux density.
Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama
Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.
1996-01-01
Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.
Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.
Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang
2016-08-22
Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermodiffusion as a means to manipulate liquid film dynamics on chemically patterned surfaces
Kalpathy, Sreeram K.; Shreyes, Amrita Ravi
2017-01-01
The model problem examined here is the stability of a thin liquid film consisting of two miscible components, resting on a chemically patterned solid substrate and heated from below. In addition to surface tension gradients, the temperature variations also induce gradients in the concentration of the film by virtue of thermodiffusion/Soret effects. We study the stability and dewetting behaviour due to the coupled interplay between thermal gradients, Soret effects, long-range van der Waals forces, and wettability gradient-driven flows. Linear stability analysis is first employed to predict growth rates and the critical Marangoni number for chemically homogeneous surfaces. Then, nonlinear simulations are performed to unravel the interfacial dynamics and possible locations of the film rupture on chemically patterned substrates. Results suggest that appropriate tuning of the Soret parameter and its direction, in conjunction with either heating or cooling, can help manipulate the location and time scales of the film rupture. The Soret effect can either potentially aid or oppose film instability depending on whether the thermal and solutal contributions to flow are cooperative or opposed to each other. PMID:28595391
Kurtz, Bruce E
2014-01-01
The Atlantic meridional overturning circulation (AMOC) is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60-80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO). This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values.
Kurtz, Bruce E.
2014-01-01
The Atlantic meridional overturning circulation (AMOC) is the northward flow of surface water to subpolar latitudes where deepwater is formed, balanced by southward abyssal flow and upwelling in the vicinity of the Southern Ocean. It is generally accepted that AMOC flow oscillates with a period of 60–80 years, creating a regular variation in North Atlantic sea surface temperature known as the Atlantic multidecadal oscillation (AMO). This article attempts to answer two questions: how is the AMOC driven and why does it oscillate? Using methods commonly employed by chemical engineers for analyzing processes involving flowing liquids, apparently not previously applied to trying to understand the AMOC, an equation is developed for AMOC flow as a function of the meridional density gradient or the corresponding temperature gradient. The equation is based on the similarity between the AMOC and an industrial thermosyphon loop cooler, which circulates a heat transfer liquid without using a mechanical pump. Extending this equation with an analogy between the flow of heat and electricity explains why the AMOC flow oscillates and what determines its period. Calculated values for AMOC flow and AMO oscillation period are in good agreement with measured values. PMID:24940739
Zonal flow dynamics and control of turbulent transport in stellarators.
Xanthopoulos, P; Mischchenko, A; Helander, P; Sugama, H; Watanabe, T-H
2011-12-09
The relation between magnetic geometry and the level of ion-temperature-gradient (ITG) driven turbulence in stellarators is explored through gyrokinetic theory and direct linear and nonlinear simulations. It is found that the ITG radial heat flux is sensitive to details of the magnetic configuration that can be understood in terms of the linear behavior of zonal flows. The results throw light on the question of how the optimization of neoclassical confinement is related to the reduction of turbulence.
Gravity-driven soap film dynamics in subcritical regimes
NASA Astrophysics Data System (ADS)
Auliel, M. I.; Castro, F.; Sosa, R.; Artana, G.
2015-10-01
We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions. We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers Me=O(10-1) . Considering the associated set of nondimensional numbers that characterize this flow, we show that the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.
Flow-driven pattern formation in the calcium-oxalate system.
Bohner, Bíborka; Endrődi, Balázs; Horváth, Dezső; Tóth, Ágota
2016-04-28
The precipitation reaction of calcium oxalate is studied experimentally in the presence of spatial gradients by controlled flow of calcium into oxalate solution. The density difference between the reactants leads to strong convection in the form of a gravity current that drives the spatiotemporal pattern formation. The phase diagram of the system is constructed, the evolving precipitate patterns are analyzed and quantitatively characterized by their diameters and the average height of the gravity flow. The compact structures of calcium oxalate monohydrate produced at low flow rates are replaced by the thermodynamically unstable calcium oxalate dihydrate favored in the presence of a strong gravity current.
Numerical Study of the Buoyancy-Driven Flow in a Four-Electrode Rectangular Electrochemical Cell
NASA Astrophysics Data System (ADS)
Sun, Zhanyu; Agafonov, Vadim; Rice, Catherine; Bindler, Jacob
2009-11-01
Two-dimensional numerical simulation is done on the buoyancy-driven flow in a four-electrode rectangular electrochemical cell. Two kinds of electrode layouts, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC) layouts, are studied. In the ACCA layout, the two anodes are placed close to the channel outlets while the two cathodes are located between the two anodes. The CAAC layout can be converted from the ACCA layout by applying higher electric potential on the two middle electrodes. Density gradient was generated by the electrodic reaction I3^-+2e^- =3I^-. When the electrochemical cell is accelerated axially, buoyancy-driven flow occurs. In our model, electro-neutrality is assumed except at the electrodes. The Navier-Stokes equations with the Boussinesq approximation and the Nernst-Planck equations are employed to model the momentum and mass transports, respectively. It is found that under a given axial acceleration, the electrolyte density between the two middle electrodes determines the bulk flow through the electrochemical cell. The cathodic current difference is found to be able to measure the applied acceleration. Other important electro-hydrodynamic characteristics are also discussed.
Azimuthal swirl in liquid metal electrodes and batteries
NASA Astrophysics Data System (ADS)
Ashour, Rakan; Kelley, Douglas
2016-11-01
Liquid metal batteries consist of two molten metals with different electronegativity separated by molten salt. In these batteries, critical performance related factors such as the limiting current density are governed by fluid mixing in the positive electrode. In this work we present experimental results of a swirling flow in a layer of molten lead-bismuth alloy driven by electrical current. Using in-situ ultrasound velocimetery, we show that poloidal circulation appears at low current density, whereas azimuthal swirl becomes dominant at higher current density. The presence of thermal gradients produces buoyant forces, which are found to compete with those produced by current injection. Taking the ratio of the characteristic electromagnetic to buoyant flow velocity, we are able to predict the current density at which the flow becomes electromagnetically driven. Scaling arguments are also used to show that swirl is generated through self-interaction between the electrical current in the electrode with its own magnetic field.
Conductivity detection for monitoring mixing reactions in microfluidic devices.
Liu, Y; Wipf, D O; Henry, C S
2001-08-01
A conductivity detector was coupled to poly(dimethylsiloxane)-glass capillary electrophoresis microchips to monitor microfluidic flow. Electroosmotic flow was investigated with both conductivity detection (CD) and the current monitoring method. No significant variation was observed between these methods, but CD showed a lower relative standard deviation. Gradient mixing experiments were employed to investigate the relationship between the electrolyte conductivity and the electrolyte concentration. A good linear response of conductivity to concentration was obtained for solutions whose difference in concentrations were less than 27 mM. The new system holds great promise for precision mixing in microfluidic devices using electrically driven flows.
Fricke, Wieland
2017-06-01
Water transport in plants occurs along various paths and is driven by gradients in its free energy. It is generally considered that the mode of transport, being either diffusion or bulk flow, is a passive process, although energy may be required to sustain the forces driving water flow. This review aims at putting water flow at the various organisational levels (cell, organ, plant) in the context of the energy that is required to maintain these flows. In addition, the question is addressed (1) whether water can be transported against a difference in its chemical free energy, 'water potential' (Ψ), through, directly or indirectly, active processes; and (2) whether the energy released when water is flowing down a gradient in its energy, for example during day-time transpiration and cell expansive growth, is significant compared to the energy budget of plant and cell. The overall aim of review is not so much to provide a definite 'Yes' and 'No' to these questions, but rather to stimulate discussion and raise awareness that water transport in plants has its real, associated, energy costs and potential energy gains. © 2016 John Wiley & Sons Ltd.
Electroosmotically Driven Liquid Flows in Complex Micro-Geometries
NASA Astrophysics Data System (ADS)
Dutta, Prashanta; Warburton, Timothy C.; Beskok, Ali
1999-11-01
Electroosmotically driven flows in micro-channels are analyzed analytically and numerically by using a high-order h/p type spectral element simulation suite, Nektar. The high-resolution characteristic of the spectral element method enables us to resolve the sharp electric double layers with successive p-type mesh refinements. For electric double layers that are much smaller than the channel height, the Helmholtz Smoluchowski velocity is used to develop semi-analytical relations for the velocity and the pressure distributions in micro channels. Analytical relations for wall shear stress and pressure distributions are also obtained. These relations show amplification of the normal and shear stresses on the micro-channel walls. Finally, flow through a step-channel is analyzed to document the interaction of the electroosmotic forces with the adverse pressure gradients. Depending on the direction and the magnitude of the electroosmotic force, enhancement or elimination of the separation bubble is observed. These findings can be used to develop innovative strategies for flow control with no moving components and for promotion of mixing in micro-scale geometries.
Numerical simulation of gas-phonon coupling in thermal transpiration flows.
Guo, Xiaohui; Singh, Dhruv; Murthy, Jayathi; Alexeenko, Alina A
2009-10-01
Thermal transpiration is a rarefied gas flow driven by a wall temperature gradient and is a promising mechanism for gas pumping without moving parts, known as the Knudsen pump. Obtaining temperature measurements along capillary walls in a Knudsen pump is difficult due to extremely small length scales. Meanwhile, simplified analytical models are not applicable under the practical operating conditions of a thermal transpiration device, where the gas flow is in the transitional rarefied regime. Here, we present a coupled gas-phonon heat transfer and flow model to study a closed thermal transpiration system. Discretized Boltzmann equations are solved for molecular transport in the gas phase and phonon transport in the solid. The wall temperature distribution is the direct result of the interfacial coupling based on mass conservation and energy balance at gas-solid interfaces and is not specified a priori unlike in the previous modeling efforts. Capillary length scales of the order of phonon mean free path result in a smaller temperature gradient along the transpiration channel as compared to that predicted by the continuum solid-phase heat transfer. The effects of governing parameters such as thermal gradients, capillary geometry, gas and phonon Knudsen numbers and, gas-surface interaction parameters on the efficiency of thermal transpiration are investigated in light of the coupled model.
NASA Astrophysics Data System (ADS)
Atlabachew, Abunu; Shu, Longcang; Wu, Peipeng; Zhang, Yongjie; Xu, Yang
2018-03-01
This laboratory study improves the understanding of the impacts of horizontal hydraulic gradient, artificial recharge, and groundwater pumping on solute transport through aquifers. Nine experiments and numerical simulations were carried out using a sand tank. The variable-density groundwater flow and sodium chloride transport were simulated using the three-dimensional numerical model SEAWAT. Numerical modelling results successfully reproduced heads and concentrations observed in the sand tank. A higher horizontal hydraulic gradient enhanced the migration of sodium chloride, particularly in the groundwater flow direction. The application of constant artificial recharge increased the spread of the sodium chloride plume in both the longitudinal and lateral directions. In addition, groundwater pumping accelerated spreading of the sodium chloride plume towards the pumping well. Both higher hydraulic gradient and pumping rate generated oval-shaped plumes in the horizontal plane. However, the artificial recharge process produced stretched plumes. These effects of artificial recharge and groundwater pumping were greater under higher hydraulic gradient. The concentration breakthrough curves indicated that emerging solutions never attained the concentration of the originally injected solution. This is probably because of sorption of sodium chloride onto the silica sand and/or the exchange of sodium chloride between the mobile and immobile liquid domains. The fingering and protruding plume shapes in the numerical models constitute instability zones produced by buoyancy-driven flow. Overall, the results have substantiated the influences of hydraulic gradient, boundary condition, artificial recharge, pumping rate and density differences on solute transport through a homogeneous unconfined aquifer. The implications of these findings are important for managing liquid wastes.
A comparative study of the influence of buoyancy driven fluid flow on GaAs crystal growth
NASA Technical Reports Server (NTRS)
Kafalas, J. A.; Bellows, A. H.
1988-01-01
A systematic investigation of the effect of gravity driven fluid flow on GaAs crystal growth was performed. It includes GaAs crystal growth in the microgravity environment aboard the Space Shuttle. The program involves a controlled comparative study of crystal growth under a variety of earth based conditions with variable orientation and applied magnetic field in addition to the microgravity growth. Earth based growth will be performed under stabilizing as well as destabilizing temperature gradients. The boules grown in space and on earth will be fully characterized to correlate the degree of convection with the distribution of impurities. Both macro- and micro-segregation will be determined. The space growth experiment will be flown in a self-contained payload container through NASA's Get Away Special program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolesnikov, R.A.; Krommes, J.A.
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is considered with a dynamical-systems approach. The importance of systematic analysis for understanding the differences in the bifurcations and dynamics of linearly damped and undamped systems is emphasized. A model with ten degrees of freedom is studied as a concrete example. A four-dimensional center manifold (CM) is analyzed, and fixed points of its dynamics are identified and used to predict a ''Dimits shift'' of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for themore » model; the effects of higher-order truncations on the dynamics are noted. Multiple-scale analysis of the CM equations is used to discuss possible effects of modulational instability on scenarios for the transition to turbulence in both collisional and collisionless cases.« less
Ayron M. Strauch; Richard A. MacKenzie; Ralph W. Tingley
2017-01-01
Climate change is expected to affect air temperature and watershed hydrology, but the degree to which these concurrent changes affect stream temperature is not well documented in the tropics. How stream temperature varies over time under changing hydrologic conditions is difficult to isolate from seasonal changes in air temperature. Groundwater and bank storage...
Particle force model effects in a shock-driven multiphase instability
NASA Astrophysics Data System (ADS)
Black, W. J.; Denissen, N.; McFarland, J. A.
2018-05-01
This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.
MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders
NASA Astrophysics Data System (ADS)
Haq, Rizwan Ul; Shahzad, Faisal; Al-Mdallal, Qasem M.
In this article, thermal performance of engine oil in the presence of both single and multiple wall carbon nanotubes (SWCNTs and MWCNTs) between two concentric cylinders is presented. Flow is driven with oscillatory pressure gradient and magneto-hydrodynamics (MHDs) effects are also introduced to control the random motion of the nanoparticles. Arrived broad, it is perceived that the inclusion of nanoparticles increases the thermal conductivity of working fluid significantly for both turbulent and laminar regimes. Fundamental momentum and energy equations are based upon partial differential equations (PDEs) that contain thermos-physical properties of both SWCNTs and MWCNTs. The solution has been evaluated for each mixture, namely: SWCNT-engine oil and MWCNT-engine oil. Results are determined for each velocity, temperature, pressure and stress gradient. Graphical results for the numerical values of the emerging parameters, namely: Hartmann number (M), the solid volume fraction of the nanoparticles (ϕ), Reynolds number (Reω), and the pulsation parameter based on the periodic pressure gradient are analyzed for pressure difference, frictional forces, velocity profile, temperature profile, crux, streamlines and vorticity phenomena. In addition, the assets of various parameters on the flow quantities of observation are investigated.
Bottom currents and sediment transport in Long Island Sound: A modeling study
Signell, R.P.; List, J.H.; Farris, A.S.
2000-01-01
A high resolution (300-400 m grid spacing), process oriented modeling study was undertaken to elucidate the physical processes affecting the characteristics and distribution of sea-floor sedimentary environments in Long Island Sound. Simulations using idealized forcing and high-resolution bathymetry were performed using a three-dimensional circulation model ECOM (Blumberg and Mellor, 1987) and a stationary shallow water wave model HISWA (Holthuijsen et al., 1989). The relative contributions of tide-, density-, wind- and wave-driven bottom currents are assessed and related to observed characteristics of the sea-floor environments, and simple bedload sediment transport simulations are performed. The fine grid spacing allows features with scales of several kilometers to be resolved. The simulations clearly show physical processes that affect the observed sea-floor characteristics at both regional and local scales. Simulations of near-bottom tidal currents reveal a strong gradient in the funnel-shaped eastern part of the Sound, which parallels an observed gradient in sedimentary environments from erosion or nondeposition, through bedload transport and sediment sorting, to fine-grained deposition. A simulation of estuarine flow driven by the along-axis gradient in salinity shows generally westward bottom currents of 2-4 cm/s that are locally enhanced to 6-8 cm/s along the axial depression of the Sound. Bottom wind-driven currents flow downwind along the shallow margins of the basin, but flow against the wind in the deeper regions. These bottom flows (in opposition to the wind) are strongest in the axial depression and add to the estuarine flow when winds are from the west. The combination of enhanced bottom currents due to both estuarine circulation and the prevailing westerly winds provide an explanation for the relatively coarse sediments found along parts of the axial depression. Climatological simulations of wave-driven bottom currents show that frequent high-energy events occur along the shallow margins of the Sound, explaining the occurrence of relatively coarse sediments in these regions. Bedload sediment transport calculations show that the estuarine circulation coupled with the oscillatory tidal currents result in a net westward transport of sand in much of the eastern Sound. Local departures from this regional westward trend occur around topographic and shoreline irregularities, and there is strong predicted convergence of bedload transport over most of the large, linear sand ridges in the eastern Sound, providing a mechanism which prevents their decay. The strong correlation between the near-bottom current intensity based on the model results and the sediment response, as indicated by the distribution of sedimentary environments, provides a framework for predicting the long-term effects of anthropogenic activities.
NASA Astrophysics Data System (ADS)
Rathore, Prerana; Sharma, Vivek
`Tears of wine' refer to the rows of wine-drops that spontaneously emerge within a glass of strong wine. Evaporation-driven Marangoni flows near the meniscus of water-alcohol mixtures drive liquid upward forming a thin liquid film, and a rim or ridge forms near the moving contact line. Eventually the rim undergoes an instability forming drops, that roll back into bulk reservoir forming so called tears or legs of wine. Most studies in literature argue the evaporation of more volatile, lower surface tension component (alcohol) results in a concentration-dependent surface tension gradient that drives the climbing flow within the thin film. Though it is well-known that evaporative cooling can create temperature gradients that could provide additional contribution to the climbing flows, the role of thermocapillary flows is less well-understood. Furthermore, the patterns, flows and instabilities that occur near the rim, and determine the size and periodicity of tears, are not well-studied. Using experiments and theory, we visualize and analyze the formation and growth of tears of wine. The sliding drops, released from the rim towards the bulk reservoir, show oscillations and a cascade of fascinating flows that are analyzed for the first time.
A data-driven approach for modeling post-fire debris-flow volumes and their uncertainty
Friedel, Michael J.
2011-01-01
This study demonstrates the novel application of genetic programming to evolve nonlinear post-fire debris-flow volume equations from variables associated with a data-driven conceptual model of the western United States. The search space is constrained using a multi-component objective function that simultaneously minimizes root-mean squared and unit errors for the evolution of fittest equations. An optimization technique is then used to estimate the limits of nonlinear prediction uncertainty associated with the debris-flow equations. In contrast to a published multiple linear regression three-variable equation, linking basin area with slopes greater or equal to 30 percent, burn severity characterized as area burned moderate plus high, and total storm rainfall, the data-driven approach discovers many nonlinear and several dimensionally consistent equations that are unbiased and have less prediction uncertainty. Of the nonlinear equations, the best performance (lowest prediction uncertainty) is achieved when using three variables: average basin slope, total burned area, and total storm rainfall. Further reduction in uncertainty is possible for the nonlinear equations when dimensional consistency is not a priority and by subsequently applying a gradient solver to the fittest solutions. The data-driven modeling approach can be applied to nonlinear multivariate problems in all fields of study.
Self-organized stationary states of inductively driven tokamaks
NASA Astrophysics Data System (ADS)
Jardin, S. C.; Ferraro, N.; Krebs, I.; Chen, J.
2014-10-01
We report on a mechanism for preventing the current and temperature profiles from peaking in a stationary state tokamak. For certain parameters, regardless of the initial state, the plasma profiles will evolve into a self-organized state with the safety factor q slightly above 1 and constant in a central volume. This large shear free region is unstable to interchange modes for any pressure gradient, and the instability drives a strong (1,1) helical flow. This flow has the property that V × B is the gradient of a potential, so it does not affect the magnetic field evolution. However, the driven flow appears in the temperature evolution equation and dominates over the thermal conductivity in the center of the discharge. The net effect is to keep the central temperature (and resistivity) profiles flat so that the resistive steady state preserves the self organized state with q slightly above 1 and constant in the central volume. This mechanism was discovered with the M3D-C1 toroidal 3D MHD code, and could possibly explain the mechanism at play in non-sawtoothing discharges with q0 just above 1 such as hybrid modes in DIII-D and ASDEX-U and long-lived modes in NSTX and MAST. This work was supported by US DOE Contract No. DE-AC02-09CHI1446, MPPC, and SciDAC CEMM.
Numerical study on the thermo-chemically driven Geodynamo
NASA Astrophysics Data System (ADS)
Trümper, Tobias; Hansen, Ulrich
2014-05-01
In our numerical study we consider magneto-convection in the Earth's outer core driven by buoyancy induced by heterogeneities both in the thermal and the chemical field. The outer core is thus treated as a self-gravitating, rotating, spherical shell with unstable thermal and chemical gradients across its radius. The thermal gradient is maintained by secular cooling of the core and the release of latent heat at the inner core freezing front. Simultaneously, the concentration of the light constituents of the liquid phase increases at the inner core boundary since only a smaller fraction of the light elements can be incorporated during solidification. Thus, the inner core boundary constitutes a source of compositional buoyancy. The molecular diffusivities of the driving agents differ by some orders of magnitude so that a double-diffusive model is employed in order to study the flow dynamics of this system. We investigate the influence of different thermo-chemical driving scenarios on the structure of the flow and the internal magnetic field. A constant ratio of the diffusivities (Le=10) and a constant Ekman number (Ek=10-4) are adopted. Apart from testing different driving scenarios, the double-diffusive approach also allows to implement distinct boundary conditions on temperature and composition. Isochemical and fixed chemical flux boundary conditions are implemented in order to investigate their respective influence on the flow and magnetic field generation.
Shock formation induced by poloidal flow and its effects on the edge stability in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seol, J.; Aydemir, A. Y.; Shaing, K. C.
2016-04-15
In the high confinement mode of tokamaks, magnitude of the radial electric field increases at the edge. Thus, the poloidal flow inside the transport barrier can be sonic when the edge pressure gradient is not steep enough to make the poloidal flow subsonic. When the poloidal Mach number is close to unity, a shock appears in the low field side and causes a large density perturbation. In this study, we describe a shock induced by the sonic poloidal plasma flow. Then, an entropy production across the shock is calculated. Finally, we introduce a simple model for Type III edge localizedmore » modes using the poloidal density variation driven by the sonic poloidal flow.« less
NASA Astrophysics Data System (ADS)
Qin, Tongran; Grigoriev, Roman
2017-11-01
We consider convection in a layer of binary fluid with free surface subject to a horizontal temperature gradient in the presence of noncondensable gases, which is driven by a combination of three different forces: buoyancy, thermocapillarity, and solutocapillarity. Unlike buoyancy, both thermo- and solutocapillary stresses depend sensitively on the local phase equilibrium at the liquid-gas interface. In particular, thermocapillarity associated with the interfacial temperature gradient is controlled by the vapors' concentration along the interface, and solutocapillarity associated with the interfacial concentration gradient is controlled by differential phase change of two components of the liquid, which is strongly influenced by the presence of noncondensables. Therefore, flows in both phases, phase change, and effect of noncondensables all have to be considered. Numerical simulations based on a comprehensive model taking these effects into account show qualitative agreement with recent experiments which identified a number of flow regimes at various compositions of both phases. In particular,we find that the composition of both the gas and liquid phase have a significant effect on the observed convection patterns; this dependence can be understood using a simple analytical model. This material is based upon work supported by the National Science Foundation under Grant No. 1511470.
Gyrokinetic Particle Simulations of Neoclassical Transport
NASA Astrophysics Data System (ADS)
Lin, Zhihong
A time varying weighting (delta f) scheme based on the small gyro-radius ordering is developed and applied to a steady state, multi-species gyrokinetic particle simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Benchmark simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion -electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. In agreement with the existing analytical neoclassical theory, ion energy flux is enhanced by the toroidal mass flow and the neoclassical viscosity is a Pfirsch-Schluter factor times the classical viscosity in the banana regime. In addition, the poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Modifications of the neoclassical transport by the orbit squeezing effects due to the radial electric field associated with sheared toroidal flow are studied. Simulation results indicate a reduction of both ion thermal flux and neoclassical toroidal rotation. Neoclassical theory in the steep gradient profile regime, where conventional neoclassical theory fails, is examined by taking into account finite banana width effects. The relevance of these studies to interesting experimental conditions in tokamaks is discussed. Finally, the present numerical scheme is extended to general geometry equilibrium. This new formulation will be valuable for the development of new capabilities to address complex equilibria such as advanced stellarator configurations and possibly other alternate concepts for the magnetic confinement of plasmas. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.
Eddies in a bottleneck: an arbitrary Debye length theory for capillary electroosmosis.
Park, Stella Y; Russo, Christopher J; Branton, Daniel; Stone, Howard A
2006-05-15
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (kappa(-1)) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction.
Eddies in a Bottleneck: An Arbitrary Debye Length Theory for Capillary Electroosmosis
Park, Stella Y.; Russo, Christopher J.; Branton, Daniel; Stone, Howard A.
2011-01-01
Using an applied electrical field to drive fluid flows becomes desirable as channels become smaller. Although most discussions of electroosmosis treat the case of thin Debye layers, here electroosmotic flow (EOF) through a constricted cylinder is presented for arbitrary Debye lengths (κ−1) using a long wavelength perturbation of the cylinder radius. The analysis uses the approximation of small potentials. The varying diameter of the cylinder produces radially and axially varying effective electric fields, as well as an induced pressure gradient. We predict the existence of eddies for certain constricted geometries and propose the possibility of electrokinetic trapping in these regions. We also present a leading-order criterion which predicts central eddies in very narrow constrictions at the scale of the Debye length. Eddies can be found both in the center of the channel and along the perimeter, and the presence of the eddies is a consequence of the induced pressure gradient that accompanies electrically driven flow into a narrow constriction. PMID:16376361
Mantle downwelling and crustal convergence - A model for Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Kiefer, Walter S.; Hager, Bradford H.
1991-01-01
Models of viscous crustal flow driven by gradients in topography are presented in order to explore quantitatively the implications of the hypothesis that Ishtar is a crustal convergence zone overlying a downwelling mantle. Assuming a free-slip surface boundary condition, it is found that, if the crustal convergence hypothesis is correct, then the crustal thickness in the plains surrounding Ishtar can be no more than about 25 km thick. If the geothermal gradient is larger or the rheology is weaker, the crust must be even thinner for net crustal convergence to be possible. This upper bound is in good agreement with the several independent estimates of crustal thickness of 15-30 km in the plains of Venus based on modeling of the spacing of tectonic features and of impact crater relaxation. Although Ishtar is treated as a crustal convergence zone, this crustal flow model shows that under some circumstances, near-surface material may actually flow away from Ishtar, providing a possible explanation for the grabenlike structures in Fortuna Tessera.
van der Wulp, Simon A; Damar, Ario; Ladwig, Norbert; Hesse, Karl-J
2016-09-30
The present application of numerical modelling techniques provides an overview of river discharges, nutrient flux and nutrient dispersal in Jakarta Bay. A hydrological model simulated river discharges with a total of 90 to 377m(3)s(-1) entering Jakarta Bay. Daily total nitrogen and total phosphorus loads ranged from 40 to 174tons and 14 to 60tons, respectively. Flow model results indicate that nutrient gradients are subject to turbulent mixing by tides and advective transport through circulation driven by wind, barotropic and baroclinic pressure gradients. The bulk of nutrient loads originate from the Citarum and Cisadane rivers flowing through predominantly rural areas. Despite lower nutrient loads, river discharges from the urban area of Jakarta exhibit the highest impact of nutrient concentrations in the near shore area of Jakarta Bay and show that nutrient concentrations were not only regulated by nutrient loads but were strongly regulated by initial river concentrations and local flow characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Noreen, Saima; Qasim, Muhammad
2015-01-01
In this paper, we study the influence of heat sink (or source) on the peristaltic motion of pseudoplastic fluid in the presence of Hall current, where channel walls are non-conducting in nature. Flow analysis has been carried out under the approximations of a low Reynolds number and long wavelength. Coupled equations are solved using shooting method for numerical solution for the axial velocity function, temperature and pressure gradient distributions. We analyze the influence of various interesting parameters on flow quantities. The present study can be considered as a mathematical presentation of the dynamics of physiological organs with stones.
Marangoni flow on an inkjet nozzle plate
NASA Astrophysics Data System (ADS)
de Jong, Jos; Reinten, Hans; Wijshoff, Herman; van den Berg, Marc; Delescen, Koos; van Dongen, Rini; Mugele, Frieder; Versluis, Michel; Lohse, Detlef
2007-11-01
In piezo inkjet printing, nozzle failures are often caused by an ink layer on the nozzle plate. It is experimentally shown that the ink layer at the nozzle is formed through streamers of ink, emanating from a central ink band on the nozzle plate. The streamers propagate over a wetting nanofilm of 13nm thickness, directed toward the actuated nozzles. The motion of the front end of the streamers follows a power law in time with an exponent 1/2 . The observations are consistent with a surface tension gradient driven flow. The origin of the Marangoni flow is an effective lower surfactant concentration of the ink around the nozzle.
Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks
NASA Astrophysics Data System (ADS)
Malkov, Mikhail; Diamond, Patrick
2008-11-01
Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.
Autogenic dynamics of debris-flow fans
NASA Astrophysics Data System (ADS)
van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten
2015-04-01
Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.
Ductile crustal flow in Europe's lithosphere
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Burov, Evgene B.; Kaban, Mikhail K.; Cloetingh, Sierd A. P. L.
2011-12-01
Potential gravity theory (PGT) predicts the presence of significant gravity-induced horizontal stresses in the lithosphere associated with lateral variations in plate thickness and composition. New high resolution crustal thickness and density data provided by the EuCRUST-07 model are used to compute the associated lateral pressure gradients (LPG), which can drive horizontal ductile flow in the crust. Incorporation of these data in channel flow models allows us to use potential gravity theory to assess horizontal mass transfer and stress transmission within the European crust. We explore implications of the channel flow concept for a possible range of crustal strength, using end-member 'hard' and 'soft' crustal rheologies to estimate strain rates at the bottom of the ductile crustal layers. The models show that the effects of channel flow superimposed on the direct effects of plate tectonic forces might result in additional significant horizontal and vertical movements associated with zones of compression or extension. To investigate relationships between crustal and mantle lithospheric movements, we compare these results with the observed directions of mantle lithospheric anisotropy and GPS velocity vectors. We identify areas whose evolution could have been significantly affected by gravity-driven ductile crustal flow. Large values of the LPG are predicted perpendicular to the axes of European mountain belts, such as the Alps, Pyrenees-Cantabrian Mountains, Dinarides-Hellenic arc and Carpathians. In general, the crustal flow is directed away from orogens towards adjacent weaker areas. Gravitational forces directed from areas of high gravitational potential energy to subsiding basin areas can strongly reduce lithospheric extension in the latter, leading to a gradual late stage inversion of the entire system. Predicted pressure and strain rate gradients suggest that gravity driven flow may play an essential role in European intraplate tectonics. In particular, in a number of regions the predicted strain rates are comparable to tectonically induced strain rates. These results are also important for quantifying the thickness of the low viscosity zones in the lowermost part of the crustal layers.
Turbulent Heat Transfer from a Thermally Forced Boundary in a Stratified Fluid
NASA Astrophysics Data System (ADS)
Burns, K. J.; Wells, A.; Flierl, G.
2017-12-01
When a marine-terminating glacier melts into a stratified ocean, a buoyancy-driven flow develops along the ice surface. The resulting turbulent heat and salt fluxes provide a key feedback on the ice melting rate. To build insight into such flows, we consider direct numerical simulations of an analogue problem with convection driven by a thermally forced sidewall in a stably stratified Boussinesq fluid. Our model considers vertical and inclined periodic channels in 2D with a constant background buoyancy gradient. When the lateral or upper boundary is given a sufficient thermal perturbation relative to the ambient, a confined and homogeneous turbulent plume emerges along the heated wall. We present a scaling analysis for the resulting heat transport across the plume, and compare it to simulations over a range of Rayleigh numbers, Prandtl numbers, and wall-inclination angles.
Zonostrophic instability driven by discrete particle noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Onge, D. A.; Krommes, J. A.
The consequences of discrete particle noise for a system possessing a possibly unstable collective mode are discussed. It is argued that a zonostrophic instability (of homogeneous turbulence to the formation of zonal flows) occurs just below the threshold for linear instability. The scenario provides a new interpretation of the random forcing that is ubiquitously invoked in stochastic models such as the second-order cumulant expansion or stochastic structural instability theory; neither intrinsic turbulence nor coupling to extrinsic turbulence is required. A representative calculation of the zonostrophic neutral curve is made for a simple two-field model of toroidal ion-temperature-gradient-driven modes. To themore » extent that the damping of zonal flows is controlled by the ion-ion collision rate, the point of zonostrophic instability is independent of that rate. Published by AIP Publishing.« less
Zonostrophic instability driven by discrete particle noise
St-Onge, D. A.; Krommes, J. A.
2017-04-01
The consequences of discrete particle noise for a system possessing a possibly unstable collective mode are discussed. It is argued that a zonostrophic instability (of homogeneous turbulence to the formation of zonal flows) occurs just below the threshold for linear instability. The scenario provides a new interpretation of the random forcing that is ubiquitously invoked in stochastic models such as the second-order cumulant expansion or stochastic structural instability theory; neither intrinsic turbulence nor coupling to extrinsic turbulence is required. A representative calculation of the zonostrophic neutral curve is made for a simple two-field model of toroidal ion-temperature-gradient-driven modes. To themore » extent that the damping of zonal flows is controlled by the ion-ion collision rate, the point of zonostrophic instability is independent of that rate. Published by AIP Publishing.« less
Hydrodynamic fabrication of structurally gradient ZnO nanorods.
Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok
2016-02-26
We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.
Evidence for the role of turbulence-induced poloidal flow shear in triggering the L-H transition
NASA Astrophysics Data System (ADS)
Yu, C. X.; Xu, Y. H.; Jiang, Y.; Luo, J. R.; Mao, J. S.; Liu, B. H.; Li, J. G.
1999-11-01
We have studied the role of turbulence-driven Reynolds stress induced poloidal flow shear in triggering the L-H transition induced by turbulent heating (TH) on HT-6M tokamak. This improved confinement regime has a set of features similar to that of H-mode are commonly observed in large tokamaks. The time evolution indicates that V_θ begins to evolve 0.1ms prior to the change in Er which precedes any measurable change in local confinement characteristics. The measurements of the turbulence-driven Reynolds stress S shows that S and its gradient in the edge region evolve sharply after the start of the TH pulse. Moreover, the time evolution and the temporal structure of the poloidal velocity computed from the measured Reynolds stress profile and the directly measured V_θ look remarkably similar. The time behavior and magnitude of the Reynolds stress-induced-V_θ B_φ term are also found to be in good correlation with that of the measured E_r. These results suggest that the turbulence-driven Reynolds stress might be the dominant mechanism to generate the poloidal flow shear which causes the rapid changes in Er and its shear to trigger the transition.
Effects of multi-pulsed coaxial helicity injection on dynamics of spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.; Kagei, Y.
2012-10-01
The mechanism to rebuild the magnetic fields and to amplify the currents in the high-q spherical torus (ST) by the multi-pulsed coaxial helicity injection is investigated using the resistive nonlinear 3D-MHD simulations. During the driven phase, the dynamics is almost axisymmetric because the magnetic fluctuation level of n=0 mode compared with other higher modes is much larger. The toroidal current It is effectively amplified due to the merging of plasmoid ejected from the gun region with the pre-existing ST in the confinement region. The poloidal flux is not significantly amplified because the current sheet generated by the merging process does not rapidly decay. The negative toroidal flow vt is then induced in the direction of It around the central open flux column (OFC) region by inductive toroidal electric field Et (=-vzBr) because of the plasmoid ejection. The strong poloidal flow vz (=ErBt) is also driven from the gun to confinement region due to the Lorentz force. As the result of vz, the flow vortices associated with the dynamo effect are caused around the upper confinement region. During the decay phase, the closed field lines are regenerated due to the dissipation of magnetic fluctuations. The helical distortion of the OFC becomes small, and then ordered magnetic field structures without flows are built. Just after turning off the external electric field, the poloidal flow from the confinement to gun region is caused by the pressure gradients. The parallel current density λ concentrated in the OFC diffuses to the core region, but does not relax in the direction of the Taylor state due to the pressure gradients.
Analysis of microfluidic flow driven by electrokinetic and pressure forces
NASA Astrophysics Data System (ADS)
Chen, Chien-Hsin
2011-12-01
This work presents an analysis of microfluidic flow introduced by mixed electrokinetic force and pressure gradient. Analytical solutions are presented for the case of constant surface heat flux, taking the Joule heating effect into account. The present problem is governed by two scale ratios and the dimensionless source term. The two important ratios are the length scale ratio e (the ratio of Debye length to the tube radius R) and the velocity scale ratio Γ (the ratio of the pressuredriven velocity scale for Poiseuille flow to Helmholtz-Smoluchowski velocity for electroosmotic flow). For mixed electroosmotic and pressure-driven flow, the resulting velocity profile is the superimposed effect of both electroosmotic and Poiseuille flow phenomena. It is found that the velocity profile decreases as e increases and the normalized temperature profiles across the tube increases monotonously form the core to the wall. The maximum dimensionless temperature is observed at the wall and the wall temperature increases with increasing Joule heating. Also, the temperature is increased with increasing the value of ɛ . The fully developed Nusselt number takes the maximum value at the limiting case of ɛ --> 0 , and then decreases with increasing ɛ . Moreover, the Nusselt number decreases with Γ and then goes asymptotically to the limit of Poiseuille flow as Γ --> ∞ , where the flow is dominated by the pressure force.
NASA Astrophysics Data System (ADS)
Cummings, A.; Chang, I.-J.
1988-11-01
Internal mean flow within the pores of a bulk-reacting porous acoustic absorbent, driven by mean static pressure gradients, is shown here to be an important feature of the acoustics of dissipative silencers in flow ducts, particularly in the case of internal combustion engine exhaust silencers. Theoretical treatments are presented here, both to describe the effect of internal flow on the bulk acoustic perties of the porous medium and to find the effect of the absorbent in situ, in the form of the sound transmission loss of the silencer. The measured transmission loss of an experimental silencer is compared to predicted data and good agreement between the two is obtained. The effects of mean fluid flow in the central passage and internal flow in the absorbent are separately demonstrated.
Seasonal and weekly variability of Atlantic inflow into the northern North Sea
NASA Astrophysics Data System (ADS)
Sheehan, Peter; Berx, Bee; Gallego, Alejandro; Hall, Rob; Heywood, Karen
2017-04-01
Quantifying the variability of Atlantic inflow is necessary for managing the North Sea ecosystem and for producing accurate models for forecasting, for example, oil spill trajectories. The JONSIS hydrographic section (2.23°W to 0° at 59.28°N) crosses the path of the main inflow of Atlantic water into the northwestern North Sea. 122 occupations between 1989 and 2015 are examined to determine the annual cycle of thermohaline-driven volume transport into the North Sea. Thermohaline transport is at a minimum (0.1 Sv) during winter when it is driven by a horizontal salinity gradient across a zonal bottom front; it is at a maximum (0.35 Sv) in early autumn when it is driven by a horizontal temperature gradient that develops across the same front. The amplitude of the annual cycle of temperature-driven transport (0.15 Sv) is bigger than the amplitude of the annual cycle of salinity-driven transport (0.025 Sv). The annual cycles are approximately six months out of phase. Our quantitative results are the first to be based on a long-term dataset, and we advance previous understanding by identifying a salinity-driven flow in winter. Week-to-week variability of the Atlantic inflow is examined from ten Seaglider occupations of the JONSIS section in October and November 2013. Tidal ellipses produced from glider dive-average current observations are in good agreement with ellipses produced from tide model predictions. Total transport is derived by referencing geostrophic shear to dive-average-current observations once the tidal component of the flow has been removed. Total transport through the section during the deployment (0.5-1 Sv) is bigger than the thermohaline component (0.1-0.2 Sv), suggesting non-thermohaline forcings (e.g. wind forcing) are important at that time of year. Thermohaline transport during the glider deployment is in agreement with the annual cycle derived from the long-term observations. The addition of the glider-derived barotropic current permits a more accurate estimate of the transport than is possible from long-term hydrographic monitoring, and enables the separation of barotropic and depth-varying components. These results refine our understanding of the variability of Atlantic inflow into the North Sea on key timescales, and of the contribution of frontal flow to shelf sea circulation.
Theory of ion Bernstein wave induced shear suppression of turbulence
NASA Astrophysics Data System (ADS)
Craddock, G. G.; Diamond, P. H.; Ono, M.; Biglari, H.
1994-06-01
The theory of radio frequency induced ion Bernstein wave- (IBW) driven shear flow in the edge is examined, with the goal of application of shear suppression of fluctuations. This work is motivated by the observed confinement improvement on IBW heated tokamaks [Phys. Fluids B 5, 241 (1993)], and by previous low-frequency work on RF-driven shear flows [Phys. Rev. Lett. 67, 1535 (1991)]. It is found that the poloidal shear flow is driven electrostatically by both Reynolds stress and a direct ion momentum source, analogous to the concepts of helicity injection and electron momentum input in current drive, respectively. Flow drive by the former does not necessarily require momentum input to the plasma to induce a shear flow. For IBW, the direct ion momentum can be represented by direct electron momentum input, and a charge separation induced stress that imparts little momentum to the plasma. The derived Er profile due to IBW predominantly points inward, with little possibility of direction change, unlike low-frequency Alfvénic RF drive. The profile scale is set by the edge density gradient and electron dissipation. Due to the electrostatic nature of ion Bernstein waves, the poloidal flow contribution dominates in Er. Finally, the necessary edge power absorbed for shear suppression on Princeton Beta Experiment-Modified (PBX-M) [9th Topical Conference on Radio Frequency Power in Plasmas, Charleston, SC, 1991 (American Institute of Physics, New York, 1991), p. 129] is estimated to be 100 kW distributed over 5 cm.
Salinity-gradient energy driven microbial electrosynthesis of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Li, Xiaohu; Angelidaki, Irini; Zhang, Yifeng
2017-02-01
Hydrogen peroxide (H2O2) as a strong oxidant, is widely used in various chemical industries and environmental remediation processes. In this study, we developed an innovative method for cost-effective production of H2O2 by using a microbial reverse-electrodialysis electrolysis cell (MREC). In the MREC, electrical potential generated by the exoelectrogens and the salinity-gradient between salt and fresh water were utilized to drive the high-rate H2O2 production. Operational parameters such as air flow rate, pH, cathodic potential, flow rate of salt and fresh water were investigated. The optimal H2O2 production was observed at salt and fresh water flow rate of 0.5 mL min-1, air flow rate of 12-20 mL min-1, cathode potential of -0.485 ± 0.025 V (vs Ag/AgCl). The maximum H2O2 accumulated concentration of 778 ± 11 mg L-1 was obtained at corresponding production rate of 11.5 ± 0.5 mg L-1 h-1. The overall energy input for the synthesis process was 0.45 ± 0.03 kWh kg-1 H2O2. Cathode potential was the key factor for H2O2 production, which was mainly affected by the air flow rate. This work for the first time proved the potential of MREC as an efficient platform technology for simultaneous electrosynthesis of valuable chemicals and utilization of salinity-gradient energy.
Reynolds, Lindsay; Shafroth, Patrick B.
2017-01-01
Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.
Combined electroosmotically and pressure driven flow in soft nanofluidics.
Matin, Meisam Habibi; Ohshima, Hiroyuki
2015-12-15
The present study is devoted to the analysis of mixed electroosmotic and pressure driven flows through a soft charged nanochannel considering boundary slip and constant charge density on the walls of the slit channel. The sources of the fluid flow are the pressure gradient along the channel axis and the electrokinetic effects that trigger an electroosmotic flow under the influence of a uniformly applied electric field. The polyelectrolyte layer (PEL) is denoted as a fixed charge layer (FCL) and the electrolyte ions can be present both inside and outside the PEL i.e., the PEL-electrolyte interface acts as a semi-penetrable membrane. The Poisson-Boltzmann equation is solved assuming the Debye-Hückel linearization for the low electric potential to provide us with analytical closed form solutions for the conservation equations. The conservation equations are solved to obtain the electric potential and velocity distributions in terms of governing dimensionless parameters. The results for the dimensionless electric potential, the dimensionless velocity and Poiseuille number are presented graphically and discussed in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Karam, Pascal; Pennathur, Sumita
2016-11-01
Characterization of the electrophoretic mobility and zeta potential of micro and nanoparticles is important for assessing properties such as stability, charge and size. In electrophoretic techniques for such characterization, the bulk fluid motion due to the interaction between the fluid and the charged surface must be accounted for. Unlike current industrial systems which rely on DLS and oscillating potentials to mitigate electroosmotic flow (EOF), we propose a simple alternative electrophoretic method for optically determining electrophoretic mobility using a DC electric fields. Specifically, we create a system where an adverse pressure gradient counters EOF, and design the geometry of the channel so that the flow profile of the pressure driven flow matches that of the EOF in large regions of the channel (ie. where we observe particle flow). Our specific COMSOL-optimized geometry is two large cross sectional areas adjacent to a central, high aspect ratio channel. We show that this effectively removes EOF from a large region of the channel and allows for the accurate optical characterization of electrophoretic particle mobility, no matter the wall charge or particle size.
Double-diffusive boundary layers along vertical free surfaces
NASA Astrophysics Data System (ADS)
Napolitano, L. G.; Viviani, A.; Savino, R.
1992-05-01
This paper deals with double-diffusive (or thermosolutal) combined free convection, i.e., free convection due to buoyant forces (natural convection) and surface tension gradients (Marangoni convection), which are generated by volume differences and surface gradients of temperature and solute concentration. Attention is focused on boundary layers that form along a vertical liquid-gas interface, when the appropriately defined nondimensional characteristic transport numbers are large enough, in problems of thermosolutal natural and Marangoni convection, such as buoyancy and surface tension driven flows in differentially heated open cavities and liquid bridges. Classes of similar solutions are derived for each class of convection on the basis of a rigorous order of magnitude analysis. Velocity, temperature and concentration profiles are reported in the similarity plane; flow and transport properties at the liquid-gas interface (interfacial velocity, heat and mass transfer bulk coefficients) are obtained for a wide range of Prandtl and Schmidt numbers and different values of the similarity parameter.
NASA Astrophysics Data System (ADS)
Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.
2012-03-01
Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline correlate well with the averaged in-plane pressure gradient and the radial displacement of the peak axial velocity, respectively. We conclude with a discussion of the physiological implications of these results.
`Surface-Layer' momentum fluxes in nocturnal slope flows over steep terrain
NASA Astrophysics Data System (ADS)
Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.
2017-12-01
A common working definition for the `surface layer' is the lowest 10% of the atmospheric boundary layer (ABL) where the turbulent fluxes are essentially constant. The latter part of this definition is a critical assumption that must hold for accurate flux estimations from land-surface models, wall models, similarity theory, flux-gradient relations and bulk transfer methods. We present cases from observed momentum fluxes in nocturnal slope flows over steep (35.5 degree), alpine terrain in Val Ferret, Switzerland that satisfy the classical definitions of the surface layer and other cases where no traditional surface layer is observed. These cases broadly fall into two distinct flow regimes occurring under clear-sky conditions: (1) buoyancy-driven, `katabatic flow', characterized by an elevated velocity maximum (katabatic jet peak) and (2) `downslope winds', for which larger-scale forcing prevents formation of a katabatic jet. Velocity profiles in downslope wind cases are quite similar to logarithmic profiles typically observed over horizontal and homogeneous terrain, and the corresponding momentum fluxes roughly resemble a constant-flux surface-layer. Contrastingly, velocity profiles in the katabatic regime exhibit a jet-like shape. This jet strongly modulates the corresponding momentum fluxes, which exhibit strong gradients over the shallow katabatic layer and usually change sign near the jet peak, where the velocity gradients also change sign. However, a counter-gradient momentum flux is frequently observed near the jet peak (and sometimes at higher levels), suggesting strong non-local turbulent transport within the katabatic jet layer. We compare our observations with katabatic flow theories and observational studies over shallow-angle slopes and use co-spectral analyses to better identify and understand the non-local transport dynamics. Finally, we show that because of the counter-gradient momentum fluxes, surface layer stability and even local stability can be difficult to characterize because the counter-gradient momentum flux represents a sink in the shear term of turbulence kinetic energy budget equation. These results have broad implications for stability-based modeling and general definitions and assumptions used for the ABL and so-called `surface layer' over steep terrain.
NASA Astrophysics Data System (ADS)
Hirsa, Amir H.; Lopez, Juan M.; Miraghaie, Reza
2001-09-01
The coupling between a bulk vortical flow and a surfactant-influenced air/water interface has been examined in a canonical flow geometry through experiments and computations. The flow in an annular region bounded by stationary inner and outer cylinders is driven by the constant rotation of the floor and the free surface is initially covered by a uniformly distributed insoluble monolayer. When driven slowly, this geometry is referred to as the deep-channel surface viscometer and the flow is essentially azimuthal. The only interfacial property that affects the flow in this regime is the surface shear viscosity, [mu]s, which is uniform on the surface due to the vanishingly small concentration gradient. However, when operated at higher Reynolds number, secondary flow drives the surfactant film towards the inner cylinder until the Marangoni stress balances the shear stress on the bulk fluid. In general, the flow can be influenced by the surface tension, [sigma], and the surface dilatational viscosity, [kappa]s, as well as [mu]s. However, because of the small capillary number of the present flow, the effects of surface tension gradients dominate the surface viscosities in the radial stress balance, and the effect of [mu]s can only come through the azimuthal stress. Vitamin K1 was chosen for this study since it forms a well-behaved insoluble monolayer on water and [mu]s is essentially zero in the range of concentration on the surface, c, encountered. Thus the effect of Marangoni elasticity on the interfacial stress could be isolated. The flow near the interface was measured in an optical channel using digital particle image velocimetry. Steady axisymmetric flow was observed at the nominal Reynolds number of 8500. A numerical model has been developed using the axisymmetric Navier Stokes equations to examine the details of the coupling between the bulk and the interface. The nonlinear equation of state, [sigma](c), for the vitamin K1 monolayer was measured and utilized in the computations. Agreement was demonstrated between the measurements and computations, but the flow is critically dependent on the nonlinear equation of state.
Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning
NASA Astrophysics Data System (ADS)
Reichhardt, Charles Michael
1998-12-01
We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming a devil's staircase structure.
Global Well-posedness of the Spatially Homogeneous Kolmogorov-Vicsek Model as a Gradient Flow
NASA Astrophysics Data System (ADS)
Figalli, Alessio; Kang, Moon-Jin; Morales, Javier
2018-03-01
We consider the so-called spatially homogenous Kolmogorov-Vicsek model, a non-linear Fokker-Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.
1990-01-01
The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.
Near-wall similarity in a pressure-driven three-dimensional turbulent boundary layer
NASA Technical Reports Server (NTRS)
Pierce, F. J.; Mcallister, J. E.
1980-01-01
Mean velocity, measured wall pressure and wall shear stress fields were made in a three dimensional pressure-driven turbulent boundary layer created by a cylinder with trailing edge placed normal to a flat plate floor. The direct force wall shear stress measurements were made with floating element direct force sensing shear meter that responded to both the magnitude and direction of the local wall shear stress. The ability of 10 near wall similarity models to describe the near wall velocity field for the measured flow under a wide range of skewing conditions and a variety of pressure gradient and wall shear vector orientations was used.
Noble, M.A.; Ramp, S.R.
2000-01-01
In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current amplitudes of 4-6 cm/s per unit wind stress over the middle shelf. Equatorward, alongshelf winds also caused water from 200-300 m over the slope to upwell onto the shelf as the surface water moved offshore.
ITG modes in the presence of inhomogeneous field-aligned flow
NASA Astrophysics Data System (ADS)
Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.
2010-02-01
In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.
Magnetic activity and radial electric field during I-phase in ASDEX Upgrade plasmas
NASA Astrophysics Data System (ADS)
Birkenmeier, Gregor; Cavedon, Marco; Conway, Garrard; Manz, Peter; Puetterich, Thomas; Stroth, Ulrich; ASDEX Upgrade Team Team
2016-10-01
At the transition from the low (L-mode) to the high (H-mode) confinement regime, so called limit-cycle oscillations (LCOs) can occur at the edge of a fusion plasma. During the LCO evolution, which is also called I-phase, the relative importance of background flows and turbulence-generated zonal flows can change, and it is still unclear whether a large contribution of zonal flows is a necessary condition for triggering the H-mode. At ASDEX Upgrade, I-phases have been studied in a wide range of parameters. The modulation of flows and gradients during I-phase is accompanied by a strong magnetic activity with a specific poloidal and toroidal structure. The magnetic activity increases during the development of an edge pedestal during I-phase, and is preceded by type-III ELM-like precursors. During all phases of the I-phase, the radial electric field Er is found to be close to the neoclassical prediction of the electric field Er , neo. These results suggest that zonal flows do not contribute significantly to the LCO dynamics, and the burst like behavior is reminiscent of a critical-gradient driven instability like edge localized modes. These observations on ASDEX Upgrade seem to be inconsistent with LCO models based on an interaction between zonal flows and turbulence.
Two-dimensional dynamics of a trapped active Brownian particle in a shear flow
NASA Astrophysics Data System (ADS)
Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.
2017-12-01
We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.
Marshburn works with Marangoni Experiment Hardware in Kibo
2013-03-19
ISS035e006147 (19 March 2013) --- NASA astronaut Tom Marshburn, Expedition 35 flight engineer, works on the Marangoni Inside core cleaning in the Kibo Japanese Experiment Module onboard the Earth-orbiting International Space Station. Marangoni convection is the flow driven by the presence of a surface tension gradient which can be produced by temperature difference at a liquid/gas interface. The convection in liquid bridge of silicone oil is generated by heating the one disc higher than the other. Scientists are observing flow patterns of how fluids move to learn more about how heat is transferred in microgravity.
NASA Technical Reports Server (NTRS)
Daudpota, Q. Isa; Zang, Thomas A.; Hall, Philip
1988-01-01
The flow in a two-dimensional curved channel driven by an azimuthal pressure gradient can become linearly unstable due to axisymmetric perturbations and/or nonaxisymmetric perturbations depending on the curvature of the channel and the Reynolds number. For a particular small value of curvature, the critical neighborhood of this curvature value and critical Reynolds number, nonlinear interactions occur between these perturbations. The Stuart-Watson approach is used to derive two coupled Landau equations for the amplitudes of these perturbations. The stability of the various possible states of these perturbations is shown through bifurcation diagrams. Emphasis is given to those cases which have relevance to external flows.
NASA Technical Reports Server (NTRS)
Daudpota, Q. Isa; Hall, Philip; Zang, Thomas A.
1987-01-01
The flow in a two-dimensional curved channel driven by an azimuthal pressure gradient can become linearly unstable due to axisymmetric perturbations and/or nonaxisymmetric perturbations depending on the curvature of the channel and the Reynolds number. For a particular small value of curvature, the critical neighborhood of this curvature value and critical Reynolds number, nonlinear interactions occur between these perturbations. The Stuart-Watson approach is used to derive two coupled Landau equations for the amplitudes of these perturbations. The stability of the various possible states of these perturbations is shown through bifurcation diagrams. Emphasis is given to those cases which have relevance to external flows.
Design for a spin-Seebeck diode based on two-dimensional materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Hua-Hua; Wu, Dan-Dan; Gu, Lei
2015-07-01
Studies of the spin-Seebeck effect (SSE) are very important for the development of fundamental science and novel low-power-consumption technologies. The spin-Seebeck diode (SSD), in which the spin current can be driven by a forward temperature gradient but not by a reverse temperature gradient, is a key unit in spin caloritronic devices. Here, we propose a SSD design using two-dimensional (2D) materials such as silicene and phosphorene nanoribbons as the source and drain. Due to their unique band structures and magnetic states, thermally driven spin-up and spin-down currents flow in opposite directions. This mechanism is different from that of the previousmore » one, which uses two permalloy circular disks [Phys. Rev. Lett. 112, 047203 (2014)], and the SSD in our design can be easily integrated with gate voltage control. Since the concept of this design is rather general and applicable to many 2D materials, it is promising for the realization and exploitation of SSDs in nanodevices.« less
Impurity transport and bulk ion flow in a mixed collisionality stellarator plasma
NASA Astrophysics Data System (ADS)
Newton, S. L.; Helander, P.; Mollén, A.; Smith, H. M.
2017-10-01
The accumulation of impurities in the core of magnetically confined plasmas, resulting from standard collisional transport mechanisms, is a known threat to their performance as fusion energy sources. Whilst the axisymmetric tokamak systems have been shown to benefit from the effect of temperature screening, that is an outward flux of impurities driven by the temperature gradient, impurity accumulation in stellarators was thought to be inevitable, driven robustly by the inward pointing electric field characteristic of hot fusion plasmas. We have shown in Helander et al. (Phys. Rev. Lett., vol. 118, 2017a, 155002) that such screening can in principle also appear in stellarators, in the experimentally relevant mixed collisionality regime, where a highly collisional impurity species is present in a low collisionality bulk plasma. Details of the analytic calculation are presented here, along with the effect of the impurity on the bulk ion flow, which will ultimately affect the bulk contribution to the bootstrap current.
Wharton, S.; Ma, S.; Baldocchi, D. D.; ...
2017-02-07
Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO 2), water vapor (H 2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last source of turbulence on canopy flow characteristics in a closed and open forest canopy is addressed in this paper. We present micrometeorological observations of the lower boundary layer and canopy air space collected on nearly 200 nights using a combination of atmospheric lasermore » detection and ranging (lidar), eddy covariance (EC), and tower profiling instrumentation. Two AmeriFlux/Fluxnet sites in mountain-valley terrain in the Western U.S. are investigated: Wind River, a tall, dense conifer canopy, and Tonzi Ranch, a short, open oak canopy. On roughly 40% of nights lidar detected down-valley or downslope flows above the canopy at both sites. Nights with intermittent strong bursts of “top-down” forced turbulence were also observed above both canopies. The strongest of these bursts increased sub-canopy turbulence and reduced canopy virtual potential temperature (θv) gradient at Tonzi, but did not appear to change the flow characteristics within the dense Wind River canopy. At Tonzi we observed other times when high turbulence (via friction velocity, u*) was found just above the trees, yet CO2 and θv gradients remained large and suggested flow decoupling. These events were triggered by regional downslope flow. Lastly, a set of turbulence parameters is evaluated for estimating canopy turbulence mixing strength. The relationship between turbulence parameters and canopy θv gradients was found to be complex, although better agreement between the canopy θv gradient and turbulence was found for parameters based on the standard deviation of vertical velocity, or ratios of 3-D turbulence to mean flow, than for u*. These findings add evidence that the relationship between canopy turbulence, static stability, and canopy mixing is far from straightforward even within an open canopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, S.; Ma, S.; Baldocchi, D. D.
Stable stratification of the nocturnal lower boundary layer inhibits convective turbulence, such that turbulent vertical transfer of ecosystem carbon dioxide (CO 2), water vapor (H 2O) and energy is driven by mechanically forced turbulence, either from frictional forces near the ground or top of a plant canopy, or from shear generated aloft. The significance of this last source of turbulence on canopy flow characteristics in a closed and open forest canopy is addressed in this paper. We present micrometeorological observations of the lower boundary layer and canopy air space collected on nearly 200 nights using a combination of atmospheric lasermore » detection and ranging (lidar), eddy covariance (EC), and tower profiling instrumentation. Two AmeriFlux/Fluxnet sites in mountain-valley terrain in the Western U.S. are investigated: Wind River, a tall, dense conifer canopy, and Tonzi Ranch, a short, open oak canopy. On roughly 40% of nights lidar detected down-valley or downslope flows above the canopy at both sites. Nights with intermittent strong bursts of “top-down” forced turbulence were also observed above both canopies. The strongest of these bursts increased sub-canopy turbulence and reduced canopy virtual potential temperature (θv) gradient at Tonzi, but did not appear to change the flow characteristics within the dense Wind River canopy. At Tonzi we observed other times when high turbulence (via friction velocity, u*) was found just above the trees, yet CO2 and θv gradients remained large and suggested flow decoupling. These events were triggered by regional downslope flow. Lastly, a set of turbulence parameters is evaluated for estimating canopy turbulence mixing strength. The relationship between turbulence parameters and canopy θv gradients was found to be complex, although better agreement between the canopy θv gradient and turbulence was found for parameters based on the standard deviation of vertical velocity, or ratios of 3-D turbulence to mean flow, than for u*. These findings add evidence that the relationship between canopy turbulence, static stability, and canopy mixing is far from straightforward even within an open canopy.« less
A motor-driven syringe-type gradient maker for forming immobilized pH gradient gels.
Fawcett, J S; Sullivan, J V; Chidakel, B E; Chrambach, A
1988-05-01
A motor driven gradient maker based on the commercial model (Jule Inc., Trumbull, CT) was designed for immobilized pH gradient gels to provide small volumes, rapid stirring and delivery, strict volume and temperature control and air exclusion. The device was constructed and by a convenient procedure yields highly reproducible gradients either in solution or on polyacrylamide gels.
NASA Astrophysics Data System (ADS)
Rajesh, S.
2012-04-01
The Himalaya-Tibet orogen formed as a result of the northward convergence of India into the Asia over the past 55 Ma had caused the north south crustal shortening and Cenozoic upliftment of the Tibetan plateau, which significantly affected the tectonic and climatic framework of the Asia. Geodetic measurements have also shown eastward crustal extrusion of Tibet, especially along major east-southeast strike slip faults at a slip rate of 15-20 mm a-1 and around 40 mm a-1. Such continental scale deformations have been modeled as block rotation by fault boundary stresses developed due to the India-Eurasia collision. However, the Thin Sheet model explained the crustal deformation mechanism by considering varying gravitational potential energy arise out of varying crustal thickness of the viscous lithosphere. The Channel Flow model, which also suggests extrusion is a boundary fault guided flow along the shallow crustal brittle-ductile regime. Although many models have proposed, but no consensus in these models to explain the dynamics of measured surface geodetic deformation of the Tibetan plateau. But what remains conspicuous is the origin of driving forces that cause the observed Tibetan crustal flow towards the South East Asia. Is the crustal flow originated only because of the differential stresses that developed in the shallow crustal brittle-ductile regime? Or should the stress transfer to the shallow crustal layers as a result of gravitational potential energy gradient driven upper mantle flow also to be accounted. In this work, I examine the role of latter in the light of depth distribution of continental geoid anomalies beneath the Himalaya-Tibet across major upper mantle density discontinuities. These discontinuity surfaces in the upper mantle are susceptible to hold the plastic deformation that may occur as a result of the density gradient driven flow. The distribution of geoid anomalies across these density discontinuities at 220, 410 and 660 km depth in the upper mantle beneath the Himalaya-Tibet has been studied by analyzing the geoid undulation data obtained from various satellite geodetic missions along with the recent and old (EGM2008 and EGM2006) Earth Gravity models. Results show that the net geoid anomaly varies from -65 m to -20 m, which signify a density stratified upper mantle beneath the Himalaya-Tibet and the same has been confirmed from the results of regional seismic tomography studies. The density anomaly distribution beneath Tibet from 163 km depth to its upper mantle thickness of 1063 km show a strong NW-SE elliptically oriented positive geoid anomalies of magnitude around 40 meter. Asymmetric density anomaly gradient have been observed along the Himalayan arc from west to east as well as across the arc from north to south. This caused differential gravitational potential gradient and hence an elliptical flow structure of the Tibetan continental mantle along the resultant NW-SE direction, which is in concurrence with the observed present day direction of the Tibetan crustal flow. Thus the geoid anomalies distributed at various depth ranges show how the gradient in the upper mantle gravitational potential energy, especially across the deformed discontinuity surface, is significant in determining the transfer of deviatoric stresses and providing traction to the flow of crustal layers of the Tibetan Plateau. This suggests the viscous flow model could be a preferable choice, which could better accommodate the dynamics of the upper mantle, in explaining the crustal extrusion processes of the Tibetan Plateau.
Capillary-Physics Mechanism of Elastic-Wave Mobilization of Residual Oil
NASA Astrophysics Data System (ADS)
Beresnev, I. A.; Pennington, W. D.; Turpening, R. M.
2003-12-01
Much attention has been given to the possibility of vibratory mobilization of residual oil as a method of enhanced recovery. The common features of the relevant applications have nonetheless been inconsistency in the results of field tests and the lack of understanding of a physical mechanism that would explain variable experiences. Such a mechanism can be found in the physics of capillary trapping of oil ganglia, driven through the pore channels by an external pressure gradient. Entrapping of ganglia occurs due to the capillary pressure building on the downstream meniscus entering a narrow pore throat. The resulting internal-pressure imbalance acts against the external gradient, which needs to exceed a certain threshold to carry the ganglion through. The ganglion flow thus exhibits the properties of the Bingham (yield-stress) flow, not the Darcy flow. The application of vibrations is equivalent to the addition of an oscillatory forcing to the constant gradient. When this extra forcing acts along the gradient, an instant "unplugging" occurs, while, when the vibration reverses direction, the flow is plugged. This asymmetry results in an average non-zero flow over one period of vibration, which explains the mobilization effect. The minimum-amplitude and maximum-frequency thresholds apply for the mobilization to occur. When the vibration amplitude exceeds a certain "saturation" level, the flow returns to the Darcy regime. The criterion of the mobilization of a particular ganglion involves the parameters of both the medium (pore geometry, interfacial and wetting properties, fluid viscosity) and the oscillatory field (amplitude and frequency). The medium parameters vary widely under natural conditions. It follows that an elastic wave with a given amplitude and frequency will always produce a certain mobilization effect, mobilizing some ganglia and leaving others intact. The exact macroscopic effect is hard to predict, as it will represent a response of the populations of ganglia with unknown parameter distributions. The variability of responses to vibratory stimulation should thus be expected.
The evolution of conditional dispersal and reproductive isolation along environmental gradients
Payne, Joshua L.; Mazzucco, Rupert; Dieckmann, Ulf
2011-01-01
Dispersal modulates gene flow throughout a population’s spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. PMID:21194533
The evolution of conditional dispersal and reproductive isolation along environmental gradients.
Payne, Joshua L; Mazzucco, Rupert; Dieckmann, Ulf
2011-03-21
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient. Copyright © 2010 Elsevier Ltd. All rights reserved.
Eddy, drift wave and zonal flow dynamics in a linear magnetized plasma
Arakawa, H.; Inagaki, S.; Sasaki, M.; Kosuga, Y.; Kobayashi, T.; Kasuya, N.; Nagashima, Y.; Yamada, T.; Lesur, M.; Fujisawa, A.; Itoh, K.; Itoh, S.-I.
2016-01-01
Turbulence and its structure formation are universal in neutral fluids and in plasmas. Turbulence annihilates global structures but can organize flows and eddies. The mutual-interactions between flow and the eddy give basic insights into the understanding of non-equilibrium and nonlinear interaction by turbulence. In fusion plasma, clarifying structure formation by Drift-wave turbulence, driven by density gradients in magnetized plasma, is an important issue. Here, a new mutual-interaction among eddy, drift wave and flow in magnetized plasma is discovered. A two-dimensional solitary eddy, which is a perturbation with circumnavigating motion localized radially and azimuthally, is transiently organized in a drift wave – zonal flow (azimuthally symmetric band-like shear flows) system. The excitation of the eddy is synchronized with zonal perturbation. The organization of the eddy has substantial impact on the acceleration of zonal flow. PMID:27628894
Naftalin, R J; Tripathi, S
1985-01-01
Water flows generated by osmotic and hydrostatic pressure and electrical currents were measured in sheets of isolated rabbit ileum at 20 degrees C. Flows across the mucosal and serosal surfaces were monitored continuously by simultaneous measurement of tissue volume change (with an optical lever) and net water flows across one surface of the tissue (with a capacitance transducer). Osmotic gradients were imposed across the mucosal and serosal surfaces of the tissue separately, using probe molecules of various sizes from ethanediol (68 Da) to dextrans (161 000 Da). Flows across each surface were elicited with very short delay. The magnitudes of the flows were proportional to the osmotic gradient and related to the size of the probe molecule. Osmotic flow across the mucosal surface was associated with streaming potentials which were due to electro-osmotic water flow. The mucosal surface is a heteroporous barrier with narrow (0.7 nm radius, Lp (hydraulic conductivity) = (7.6 +/- 1.6) X 10(-9) cm s-1 cmH2O-1) cation-selective channels in parallel with wide neutral pores (ca. 6.5 nm radius, Lp = (2.3 +/- 0.2) X 10(-7) cm s-1 cmH2O-1) which admit large pressure-driven backflows from the submucosa to the lumen. There is additional evidence for a further set of narrow electroneutral pores less than 0.4 nm radius with Lp less than 7 X 10(-9) cm s-1 cmH2O-1. The serosal surface has neutral pores of uniform radius (ca. 6.5 nm), Lp = (7.6 +/- 1.6) X 10(-8) cm s-1 cmH2O-1. Hypertonic serosal solutions (100 mM-sucrose) cause osmotic transfer of fluid from isotonic mucosal solutions into the submucosa, expand it, and elevate the tissue pressure to 19.6 +/- 3.2 cmH2O (n = 4). Conversely, hypertonic mucosal solutions (100 mM-sucrose) draw fluid out of the submucosa in the presence of isotonic serosal solutions, collapse the submucosa, and lower the tissue pressure to -87.7 +/- 4.6 cmH2O (n = 5). Water flows coupled to cation movement could be generated across the mucosal surface in both directions by brief direct current pulses. The short latency of onset and cessation of flow (less than 2 s), absence of polarization potentials, and high electro-osmotic coefficients (range 50-520 mol water F-1), together with the presence of streaming potentials during osmotically generated water flows indicate electro-osmotic water flow through hydrated channels in the tight junctions and/or lateral intercellular spaces.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:3989717
Structure-driven turbulence in ``No man's Land''
NASA Astrophysics Data System (ADS)
Kosuga, Yusuke; Diamond, Patrick
2012-10-01
Structures are often observed in many physical systems. In tokamaks, for example, such structures are observed as density blobs and holes. Such density blobs and holes are generated at the tokamak edge, where strong gradient perturbations generate an outgoing blob and an incoming hole. Since density holes can propagate from the edge to the core, such structures may play an important role in understanding the phenomenology of the edge-core coupling region, so-called ``No Man's Land.'' In this work, we discuss the dynamics of such structures in real space. In particular, we consider the dynamics of density blobs and holes in the Hasegawa-Wakatani system. Specific questions addressed here include: i) how these structures extract free energy and enhance transport? how different is the relaxation driven by such structures from that driven by linear drift waves? ii) how these structures interact with shear flows? In particular, how these structures interact with a shear layer, which can absorb structures resonantly? iii) how can we calculate the coupled evolution of structures and shear flows? Implications for edge-core coupling problem are discussed as well.
Prediction of gravity-driven fingering in porous media
NASA Astrophysics Data System (ADS)
Beljadid, Abdelaziz; Cueto-Felgueroso, Luis; Juanes, Ruben
2017-11-01
Gravity-driven displacement of one fluid by another in porous media is often subject to a hydrodynamic instability, whereby fluid invasion takes the form of preferential flow paths-examples include secondary oil migration in reservoir rocks, and infiltration of rainfall water in dry soil. Here, we develop a continuum model of gravity-driven two-phase flow in porous media within the phase-field framework (Cueto-Felgueroso and Juanes, 2008). We employ pore-scale physics arguments to design the free energy of the system, which notably includes a nonlinear formulation of the high-order (square-gradient) term based on equilibrium considerations in the direction orthogonal to gravity. This nonlocal term plays the role of a macroscopic surface tension, which exhibits a strong link with capillary pressure. Our theoretical analysis shows that the proposed model enforces that fluid saturations are bounded between 0 and 1 by construction, therefore overcoming a serious limitation of previous models. Our numerical simulations show that the proposed model also resolves the pinning behavior at the base of the infiltration front, and the asymmetric behavior of the fingers at material interfaces observed experimentally.
Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U
2010-06-21
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Magnetism of toroidal field in two-fluid equilibrium of CHI driven spherical torus
NASA Astrophysics Data System (ADS)
Kanki, T.; Nagata, M.
2016-10-01
Double-pulsing CHI (D-CHI) experiment has been conducted in the HIST device to achieve a quasi-steady sustainment and good confinement of spherical torus (ST) plasmas. The feature of CHI driven ST such as diamagnetic toroidal field in the central open flux column (OFC) region and strong poloidal flow shear around the separatrix in the high field side suggests the two-fluid effect. The relationship between the magnetism of the toroidal field and the poloidal flow velocity is investigated by modelling the D-CHI (mainly driving the poloidal electron flow along the open flux) in the two-fluid equilibrium calculations. The poloidal component of Ampere's law leads that the toroidal field is related to the difference between the stream functions of ion ψi and electron ψe for the poloidal flow, indicating that the toroidal field with ψe >ψi results in a diamagnetic profile, while that with ψe <ψi results in a paramagnetic one. The gradient of the stream function determines the polarity and the strength of the poloidal flow velocity. It is found that the two-fluid equilibrium of CHI driven ST satisfies ψe > 0 and ψi < 0 in the OFC region, and ψe < 0 and ψi < 0 in the closed flux region. The toroidal field is a diamagnetic profile in the OFC region due to ψe >ψi and |uez | > |uiz | , where uez and uiz denote the poloidal electron and ion flow velocities, respectively. It becomes from a diamagnetic to a paramagnetic profile in the closed flux region, because ψe (uez) approaches ψi (uiz) around the magnetic axis. The poloidal ion flow shear is enhanced in the OFC region due to the ion inertial effect through the toroidal ion flow velocity.
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1988-01-01
Models for the viscous relaxation of impact crater topography are used to constrain the crustal thickness (H) and the mean lithospheric thermal gradient beneath the craters on Venus. A general formulation for gravity-driven flow in a linearly viscous fluid has been obtained which incorporates the densities and temperature-dependent effective viscosities of distinct crust and mantle layers. An upper limit to the crustal volume of Venus of 10 to the 10th cu km is obtained which implies either that the average rate of crustal generation has been much smaller on Venus than on earth or that some form of crustal recycling has occurred on Venus.
Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl
A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less
NASA Astrophysics Data System (ADS)
Namura, Kyoko; Nakajima, Kaoru; Suzuki, Motofumi
2018-02-01
We experimentally investigated Marangoni flows around a microbubble in diluted 1-butanol/water, 2-propanol/water, and ethanol/water mixtures using the thermoplasmonic effect of gold nanoisland film. A laser spot on the gold nanoisland film acted as a highly localized heat source that was utilized to generate stable air microbubbles with diameters of 32-48 μm in the fluid and to induce a steep temperature gradient on the bubble surface. The locally heated bubble has a flow along the bubble surface, with the flow direction showing a clear transition depending on the alcohol concentrations. The fluid is driven from the hot to cold regions when the alcohol concentration is lower than the transition concentration, whereas it is driven from the cold to hot regions when the concentration is higher than the transition concentration. In addition, the transition concentration increases as the carbon number of the alcohol decreases. The observed flow direction transition is explained by the balance of the thermal- and solutal-Marangoni forces that are cancelled out for the transition concentration. The selective evaporation of the alcohol at the locally heated surface allows us to generate stable and rapid thermoplasmonic solutal-Marangoni flows in the alcohol/water mixtures.
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Abid, Syed Ali; Tripathi, Dharmendra; Mir, Nazir Ahmed
2017-03-01
The transport of single-wall carbon nanotube (CNT) nanofluids with temperature-dependent variable viscosity is analyzed by peristaltically driven flow. The main flow problem has been modeled using cylindrical coordinates and flow equations are simplified to ordinary differential equations using long wavelength and low Reynolds' number approximation. Analytical solutions have been obtained for axial velocity, pressure gradient and temperature. Results acquired are discussed graphically for better understanding. It is observed that with an increment in the Grashof number the velocity of the governing fluids starts to decrease significantly and the pressure gradient is higher for pure water as compared to single-walled carbon nanotubes due to low density. As the specific heat is very high for pure water as compared to the multi-wall carbon nanotubes, it raises temperature of the muscles, in the case of pure water, as compared to the multi-walled carbon nanotubes. Furthermore, it is noticed that the trapped bolus starts decreasing in size as the buoyancy forces are dominant as compared to viscous forces. This model may be applicable in biomedical engineering and nanotechnology to design the biomedical devices.
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.
1996-01-01
As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.
Gorbacheva, E V; Ganchenko, G S; Demekhin, E A
2018-03-27
The stability of the electroosmotic flow of electrolyte-dielectric viscous liquids under the influence of the DC and AC electric fields along with the external pressure gradient is studied theoretically. Liquids are bounded by two infinite parallel plates. The lower wall bordering the electrolyte is assumed to be a charged surface, and the upper wall is electrically isolated. The charge at the lower boundary is assumed to be immobile, while the surface charge at the free surface is assumed to be mobile. In this paper, we study the micro- and nanosized liquid layers. The mathematical model is described by a nonlinear system of the Nernst-Planck-Poisson-Stokes partial differential equations with the appropriate boundary conditions on the solid surface, the electrolyte/dielectric interface, and on the upper wall. The pressure gradient is highly important for the stability of the flow. For the DC case, the external pressure could either stabilize and destabilize the flow depending on the relative directions of the electroosmotic flow and the pressure-driven flow. For the AC case, the dependence on the value of the external pressure is not monotonous for different wave numbers of perturbations, but, as a rule, the external pressure destabilizes the flow. As the frequency of the electric field increases, the one-dimensional solution of the problem becomes stable.
Murine intracochlear drug delivery: reducing concentration gradients within the cochlea.
Borkholder, David A; Zhu, Xiaoxia; Hyatt, Brad T; Archilla, Alfredo S; Livingston, William J; Frisina, Robert D
2010-09-01
Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8 to 49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Murine Intracochlear Drug Delivery: Reducing Concentration Gradients within the Cochlea
Borkholder, David A.; Zhu, Xiaoxia; Hyatt, Brad T.; Archilla, Alfredo S.; Livingston, William J.; Frisina, Robert D.
2010-01-01
Direct delivery of compounds to the mammalian inner ear is most commonly achieved by absorption or direct injection through the round window membrane (RWM), or infusion through a basal turn cochleostomy. These methods provide direct access to cochlear structures, but with a strong basal-to-apical concentration gradient consistent with a diffusion-driven distribution. This gradient limits the efficacy of therapeutic approaches for apical structures, and puts constraints on practical therapeutic dose ranges. A surgical approach involving both a basal turn cochleostomy and a posterior semicircular canal canalostomy provides opportunities for facilitated perfusion of cochlear structures to reduce concentration gradients. Infusion of fixed volumes of artificial perilymph (AP) and sodium salicylate were used to evaluate two surgical approaches in the mouse: cochleostomy-only (CO), or cochleostomy-plus-canalostomy (C+C). Cochlear function was evaluated via closed-system distortion product otoacoustic emissions (DPOAE) threshold level measurements from 8-49 kHz. AP infusion confirmed no surgical impact to auditory function, while shifts in DPOAE thresholds were measured during infusion of salicylate and AP (washout). Frequency dependent shifts were compared for the CO and C+C approaches. Computer simulations modeling diffusion, volume flow, interscala transport, and clearance mechanisms provided estimates of drug concentration as a function of cochlear position. Simulated concentration profiles were compared to frequency-dependent shifts in measured auditory responses using a cochlear tonotopic map. The impact of flow rate on frequency dependent DPOAE threshold shifts was also evaluated for both surgical approaches. Both the C+C approach and a flow rate increase were found to provide enhanced response for lower frequencies, with evidence suggesting the C+C approach reduces concentration gradients within the cochlea. PMID:20451593
Measurement of Zeta-Potential at Microchannel Wall by a Nanoscale Laser Induced Fluorescence Imaging
NASA Astrophysics Data System (ADS)
Kazoe, Yutaka; Sato, Yohei
A nanoscale laser induced fluorescence imaging was proposed by using fluorescent dye and the evanescent wave with total internal reflection of a laser beam. The present study focused on the two-dimensional measurement of zeta-potential at the microchannel wall, which is an electrostatic potential at the wall surface and a dominant parameter of electroosmotic flow. The evanescent wave, which decays exponentially from the wall, was used as an excitation light of the fluorescent dye. The fluorescent intensity detected by a CCD camera is closely related to the zeta-potential. Two kinds of fluorescent dye solution at different ionic concentrations were injected into a T-shaped microchannel, and formed a mixing flow field in the junction area. The two-dimensional distribution of zeta-potential at the microchannel wall in the pressure-driven flow field was measured. The obtained zeta-potential distribution has a transverse gradient toward the mixing flow field and was changed by the difference in the averaged velocity of pressure-driven flow. To understand the ion motion in the mixing flow field, the three-dimensional flow structure was analyzed by the velocity measurement using micron-resolution particle image velocimetry and the numerical simulation. It is concluded that the two-dimensional distribution of zeta-potential at the microchannel wall was dependent on the ion motion in the flow field, which was governed by the convection and molecular diffusion.
A compact model for electroosmotic flows in microfluidic devices
NASA Astrophysics Data System (ADS)
Qiao, R.; Aluru, N. R.
2002-09-01
A compact model to compute flow rate and pressure in microfluidic devices is presented. The microfluidic flow can be driven by either an applied electric field or a combined electric field and pressure gradient. A step change in the ζ-potential on a channel wall is treated by a pressure source in the compact model. The pressure source is obtained from the pressure Poisson equation and conservation of mass principle. In the proposed compact model, the complex fluidic network is simplified by an electrical circuit. The compact model can predict the flow rate, pressure distribution and other basic characteristics in microfluidic channels quickly with good accuracy when compared to detailed numerical simulation. Using the compact model, fluidic mixing and dispersion control are studied in a complex microfluidic network.
NASA Astrophysics Data System (ADS)
Chitaru, George; Berville, Charles; Dogeanu, Angel
2018-02-01
This paper presents a comparison between a displacement ventilation method and a mixed flow ventilation method using computational fluid dynamics (CFD) approach. The paper analyses different aspects of the two systems, like the draft effect in certain areas, the air temperatureand velocity distribution in the occupied zone. The results highlighted that the displacement ventilation system presents an advantage for the current scenario, due to the increased buoyancy driven flows caused by the interior heat sources. For the displacement ventilation case the draft effect was less prone to appear in the occupied zone but the high heat emissions from the interior sources have increased the temperature gradient in the occupied zone. Both systems have been studied in similar conditions, concentrating only on the flow patterns for each case.
Droplet microfluidics driven by gradients of confinement.
Dangla, Rémi; Kayi, S Cagri; Baroud, Charles N
2013-01-15
The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices.
Droplet microfluidics driven by gradients of confinement
Dangla, Rémi; Kayi, S. Cagri; Baroud, Charles N.
2013-01-01
The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices. PMID:23284169
Tóta, Julio; Fitzjarrald, David Roy; da Silva Dias, Maria A F
2012-01-01
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras--ZF2--02°36'17.1'' S, 60°12'24.4'' W), subcanopy horizontal and vertical gradients of the air temperature, CO(2) concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO(2) sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO(2)) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO(2) into those estimates.
Tóta, Julio; Roy Fitzjarrald, David; da Silva Dias, Maria A. F.
2012-01-01
On the moderately complex terrain covered by dense tropical Amazon Rainforest (Reserva Biologica do Cuieiras—ZF2—02°36′17.1′′ S, 60°12′24.4′′ W), subcanopy horizontal and vertical gradients of the air temperature, CO2 concentration and wind field were measured for the dry and wet periods in 2006. We tested the hypothesis that horizontal drainage flow over this study area is significant and can affect the interpretation of the high carbon uptake rates reported by previous works at this site. A similar experimental design as the one by Tóta et al. (2008) was used with a network of wind, air temperature, and CO2 sensors above and below the forest canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) was observed. The microcirculations observed above the canopy (38 m) over the sloping area during nighttime presents a downward motion indicating vertical convergence and correspondent horizontal divergence toward the valley area. During the daytime an inverse pattern was observed. The micro-circulations above the canopy were driven mainly by buoyancy balancing the pressure gradient forces. In the subcanopy space the microcirculations were also driven by the same physical mechanisms but probably with the stress forcing contribution. The results also indicated that the horizontal and vertical scalar gradients (e.g., CO2) were modulated by these micro-circulations above and below the canopy, suggesting that estimates of advection using previous experimental approaches are not appropriate due to the tridimensional nature of the vertical and horizontal transport locally. This work also indicates that carbon budget from tower-based measurement is not enough to close the system, and one needs to include horizontal and vertical advection transport of CO2 into those estimates. PMID:22619608
Mechanisms of cooperation and competition of two-species transport in narrow nanochannels
NASA Astrophysics Data System (ADS)
Bauer, Wolfgang Rudolf
2017-12-01
Flow of particles of two different species through a narrow channel with solely two discrete spatial positions is analyzed with respect to the species' capability to cooperate or compete for transport. The origin of the latter arises from particle-channel and interparticle interactions within the channel, i.e., blocking the position of a particle, and its interaction with its neighbors in the channel. The variety of occupation options within the channel defines the state space. The transition dynamics within is considered as a continuous Markov process, which, in contrast to mean-field approaches, conserves explicitly spatial correlations. A strong repulsive interaction between particles of the same kind and a very attractive empty channel imply a strong entanglement of transport of both species. In the limiting case of perfect coupling, flows in state space are restricted to a cyclic subspace, where they become all equivalent in the steady state. In particular, this implies equal particle flows of the two species. Entanglement of transport implies that the species mutually exert entropic forces on each other. For parallel directed concentration gradients this implies that the species' ability to cooperate increases with the degree of entanglement. Thus, the gradient of one species reciprocally induces a higher flow of the other species when compared to that in its absence. The opposite holds for antiparallel gradients where species mutually hamper their transport. For a sufficient strong coupling, the species under the influence of the stronger concentration gradient drives the other against its gradient, i.e., the positive mixing entropy production of the driving species becomes the motor for the negative mixing entropy production of the driven one. The degree of effectiveness by which negative entropy production emerges at the cost of positive entropy production increases with the coupling strength. This becomes evident from location and connectivity of the sources of entropy production in state space.
NASA Astrophysics Data System (ADS)
Anderson, William; Yang, Jianzhi
2017-11-01
Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
NASA Astrophysics Data System (ADS)
Roth, M.; MacMahan, J.; Reniers, A.; Ozgokmen, T. M.
2016-02-01
Recent work has demonstrated that wind and waves are important forcing mechanisms for the inner shelf vertical current structure. Here, the inner shelf flows are evaluated away from an adjacent inlet where a small-scale buoyant plume emerges. The plume's nearshore extent, speed, vertical thickness, and density are controlled by the passage of low-pressure extratropical cyclones that are common in the northern Gulf of Mexico. The colder, brackish plume water provides vertical stratification and a cross-shore density gradient with the warmer, saline oceanic water. An Acoustic Doppler Current Profiler (ADCP) was deployed in 10m water depth as part of an intensive 2-week experiment (SCOPE), which also obtained wind and cross-shelf temperature, salinity, and velocity. The 10m ADCP remained collecting an additional year of velocity observations. The plume was not always present, but episodically influenced the experiment site. When the plume reached the site, the alongshore surface and subsurface typically flowed in opposite directions, likely caused by plume-induced pressure gradients. Plumes that extended into the subsurface appear to have caused depth-averaged onshore flow above that expected from wind and wave-driven forcing. Observations from SCOPE and the 1-year ADCP are used to describe seasonal full-depth flow patterns influenced by wind, waves, and plume presence.
Nonlinear Reynolds stress model for turbulent shear flows
NASA Technical Reports Server (NTRS)
Barton, J. Michael; Rubinstein, R.; Kirtley, K. R.
1991-01-01
A nonlinear algebraic Reynolds stress model, derived using the renormalization group, is applied to equilibrium homogeneous shear flow and fully developed flow in a square duct. The model, which is quadratically nonlinear in the velocity gradients, successfully captures the large-scale inhomogeneity and anisotropy of the flows studied. The ratios of normal stresses, as well as the actual magnitudes of the stresses are correctly predicted for equilibrium homogeneous shear flow. Reynolds normal stress anisotropy and attendant turbulence driven secondary flow are predicted for a square duct. Profiles of mean velocity and normal stresses are in good agreement with measurements. Very close to walls, agreement with measurements diminishes. The model has the benefit of containing no arbitrary constants; all values are determined directly from the theory. It seems that near wall behavior is influenced by more than the large scale anisotropy accommodated in the current model. More accurate near wall calculations may well require a model for anisotropic dissipation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootton, K. P.; Wu, Z.; Cowan, B. M.
Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.
Turbulent flow separation in three-dimensional asymmetric diffusers
NASA Astrophysics Data System (ADS)
Jeyapaul, Elbert
2011-12-01
Turbulent three-dimensional flow separation is more complicated than 2-D. The physics of the flow is not well understood. Turbulent flow separation is nearly independent of the Reynolds number, and separation in 3-D occurs at singular points and along convergence lines emanating from these points. Most of the engineering turbulence research is driven by the need to gain knowledge of the flow field that can be used to improve modeling predictions. This work is motivated by the need for a detailed study of 3-D separation in asymmetric diffusers, to understand the separation phenomena using eddy-resolving simulation methods, assess the predictability of existing RANS turbulence models and propose modeling improvements. The Cherry diffuser has been used as a benchmark. All existing linear eddy-viscosity RANS models k--o SST,k--epsilon and v2- f fail in predicting such flows, predicting separation on the wrong side. The geometry has a doubly-sloped wall, with the other two walls orthogonal to each other and aligned with the diffuser inlet giving the diffuser an asymmetry. The top and side flare angles are different and this gives rise to different pressure gradient in each transverse direction. Eddyresolving simulations using the Scale adaptive simulation (SAS) and Large Eddy Simulation (LES) method have been used to predict separation in benchmark diffuser and validated. A series of diffusers with the same configuration have been generated, each having the same streamwise pressure gradient and parametrized only by the inlet aspect ratio. The RANS models were put to test and the flow physics explored using SAS-generated flow field. The RANS model indicate a transition in separation surface from top sloped wall to the side sloped wall at an inlet aspect ratio much lower than observed in LES results. This over-sensitivity of RANS models to transverse pressure gradients is due to lack of anisotropy in the linear Reynolds stress formulation. The complexity of the flow separation is due to effects of lateral straining, streamline curvature, secondary flow of second kind, transverse pressure gradient on turbulence. Resolving these effects is possible with anisotropy turbulence models as the Explicit Algebraic Reynolds stress model (EARSM). This model has provided accurate prediction of streamwise and transverse velocity, however the wall pressure is under predicted. An improved EARSM model is developed by correcting the coefficients, which predicts a more accurate wall pressure. There exists scope for improvement of this model, by including convective effects and dynamics of velocity gradient invariants.
The potential for free and mixed convection in sedimentary basins
Raffensperger, Jeff P.; Vlassopoulos, D.
1999-01-01
Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.
Halpern, Federico D.; Ricci, Paolo
2016-12-19
The narrow power decay-length (λ q), recently found in the scrape-off layer (SOL) of inner wall limited (IWL) discharges in tokamaks, is studied using 3D, flux-driven, global two fluid turbulence simulations. The formation of the steep plasma profiles is found to arise due to radially sheared E×B poloidal flows. A complex interaction between sheared flows and parallel plasma currents outflowing into the sheath regulates the turbulent saturation, determining the transport levels. We quantify the effects of sheared flows, obtaining theoretical estimates in agreement with our non-linear simulations. As a result, analytical calculations suggest that the IWL λ q is roughlymore » equal to the turbulent correlation length.« less
NASA Technical Reports Server (NTRS)
Ostrach, S.
1982-01-01
The behavior of fluids in micro-gravity conditions is examined, with particular regard to applications in the growth of single crystals. The effects of gravity on fluid behavior are reviewed, and the advent of Shuttle flights are noted to offer extended time for experimentation and processing in a null-gravity environment, with accelerations resulting solely from maneuvering rockets. Buoyancy driven flows are considered for the cases stable-, unstable-, and mixed-mode convection. Further discussion is presented on g-jitter, surface-tension gradient, thermoacoustic, and phase-change convection. All the flows are present in both gravity and null gravity conditions, although the effects of buoyancy and g-jitter convection usually overshadow the other effects while in a gravity field. Further work is recommended on critical-state and sedimentation processes in microgravity conditions.
Interaction of Gortler vortices and Tollmien-Schlichting waves in curved channel flow
NASA Technical Reports Server (NTRS)
Daudpota, Q. Isa; Zang, Thomas A.; Hall, Philip
1987-01-01
The flow in a two-dimensional curved channel driven by an azimuthal pressure gradient can become linearly unstable due to axisymmetric perturbations and/or nonaxisymmetric perturbations depending on the curvature of the channel and the Reynolds number. For a particular small value of curvature, the critical Reynolds number for both these perturbations becomes identical. In the neighborhood of this curvature value and critical Reynolds number, nonlinear interactions occur between these perturbations. The Stuart-Watson approach is used to derive two coupled Landau equations for the amplitudes of these perturbations. The stability of the various possible states of these perturbations is shown through bifurcation diagrams. Emphasis is given to those cases which have relevance to external flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, Mark Allen
Turbulence, and turbulence-driven transport are ubiquitous in magnetically confined plasmas, where there is an intimate relationship between turbulence, transport, instability driving mechanisms (such as gradients), plasma flows, and flow shear. Though many of the detailed physics of the interrelationship between turbulence, transport, drive mechanisms, and flow remain unclear, there have been many demonstrations that transport and/or turbulence can be suppressed or reduced via manipulations of plasma flow profiles. This is well known in magnetic fusion plasmas [e.g., high confinement mode (H-mode) and internal transport barriers (ITB’s)], and has also been demonstrated in laboratory plasmas. However, it may be that themore » levels of particle transport obtained in such cases [e.g. H-mode, ITB’s] are actually lower than is desirable for a practical fusion device. Ideally, one would be able to actively feedback control the turbulent transport, via manipulation of the flow profiles. The purpose of this research was to investigate the feasibility of using both advanced model-based control algorithms, as well as non-model-based algorithms, to control cross-field turbulence-driven particle transport through appropriate manipulation of radial plasma flow profiles. The University of New Mexico was responsible for the experimental portion of the project, while our collaborators at the University of Montana provided plasma transport modeling, and collaborators at Lehigh University developed and explored control methods.« less
NASA Astrophysics Data System (ADS)
Maqueda, A.; Renard, P.
2016-12-01
Water exchange between karst features and the porous matrix around them has been observed in karst aquifers by previous research. The exchange is driven by hydraulic head gradients caused by stormwater runoff or sea tides and may cause mineral dissolution. The authors of this work proposed a conceptual model of porosity development under tidal variations of hydraulic head is proposed. Simulations of reactive transport and porosity evolution were conducted to explore the porosity gradient development around a karst feature. Simulations account for petrophysical properties of porous media and groundwater geochemical characteristics. Data used in simulations corresponds to an eogenetic karst aquifer found on the eastern coast of Yucatan Peninsula in Mexico. Simulations include both analytical and numerical solutions of porosity increase caused by mineral dissolution. The estimated rate of porosity development and associated wall retreat (3-30 cm/100 yr) are large enough to develop karst cavities on time periods relevant to karst formation in the study area (10K yr). The analytical solution could be used to assess porosity increase in rock samples and can be also applied to model slow reactions in porous media under flow driven by sinusoidal hydraulic boundary conditions. The results show a possible alternative mechanism of karst cavity development in a high conductive limestone rock matrix aquifer.
Control of bootstrap current in the pedestal region of tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.; Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53796; Lai, A. L.
2013-12-15
The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by themore » electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.« less
Three-dimensional hydrodynamic modelling study of reverse estuarine circulation: Kuwait Bay.
Alosairi, Y; Pokavanich, T; Alsulaiman, N
2018-02-01
Hydrodynamics and associated environmental processes have always been of major concern to coastal-dependent countries, such as Kuwait. This is due to the environmental impact that accompanies the economic and commercial activities along the coastal areas. In the current study, a three-dimensional numerical model is utilized to unveil the main dynamic and physical properties of Kuwait Bay during the critical season. The model performance over the summer months (June, July and August 2012) is assessed against comprehensive field measurements of water levels, velocity, temperature and salinity data before using the model to describe the circulation as driven by tides, gravitational convection and winds. The results showed that the baroclinic conditions in the Bay are mainly determined by the horizontal salinity gradient and to much less extent temperature gradient. The gradients stretched over the southern coast of the Bay where dense water is found at the inner and enclosed areas, while relatively lighter waters are found near the mouth of the Bay. This gradient imposed a reversed estuarine circulation at the main axis of the Bay, particularly during neap tides when landward flow near the surface and seaward flow near the bed are most evident. The results also revealed that the shallow areas, including Sulaibikhat and Jahra Bays, are well mixed and generally flow in the counter-clockwise direction. Clockwise circulations dominated the northern portion of the Bay, forming a sort of large eddy, while turbulent fields associated with tidal currents were localized near the headlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparison of superhydrophobic drag reduction between turbulent pipe and channel flows
NASA Astrophysics Data System (ADS)
Im, Hyung Jae; Lee, Jae Hwa
2017-09-01
It has been known over several decades that canonical wall-bounded internal flows of a pipe and channel share flow similarities, in particular, close to the wall due to the negligible curvature effect. In the present study, direct numerical simulations of fully developed turbulent pipe and channel flows are performed to investigate the influence of the superhydrophobic surfaces (SHSs) on the turbulence dynamics and the resultant drag reduction (DR) of the flows under similar conditions. SHSs at the wall are modeled in spanwise-alternating longitudinal regions with a boundary with no-slip and shear-free conditions, and the two parameters of the spanwise periodicity (P/δ) and SHS fraction (GF) within a pitch are considered. It is shown, in agreement with previous investigations in channels, that the turbulent drag for the pipe and channel flows over SHSs is continuously decreased with increases in P/δ and GF. However, the DR rate in the pipe flows is greater than that in the channel flows with an accompanying reduction of the Reynolds stress. The enhanced performance of the DR for the pipe flow is attributed to the increased streamwise slip and weakened Reynolds shear stress contributions. In addition, a mathematical analysis of the spanwise mean vorticity equation suggests that the presence of a strong secondary flow due to the increased spanwise slip of the pipe flows makes a greater negative contribution of advective vorticity transport than the channel flows, resulting in a higher DR value. Finally, an inspection of the origin of the mean secondary flow in turbulent flows over SHSs based on the spatial gradients of the turbulent kinetic energy demonstrates that the secondary flow is both driven and sustained by spatial gradients in the Reynolds stress components, i.e., Prandtl's secondary flow of the second kind.
Off-Axis Driven Current Effects on ETB and ITB Formations based on Bifurcation Concept
NASA Astrophysics Data System (ADS)
Pakdeewanich, J.; Onjun, T.; Chatthong, B.
2017-09-01
This research studies plasma performance in fusion Tokamak system by investigating parameters such as plasma pressure in the presence of an edge transport barrier (ETB) and an internal transport barrier (ITB) as the off-axis driven current position is varied. The plasma is modeled based on the bifurcation concept using a suppression function that can result in formation of transport barriers. In this model, thermal and particle transport equations, including both neoclassical and anomalous effects, are solved simultaneously in slab geometry. The neoclassical coefficients are assumed to be constant while the anomalous coefficients depend on gradients of local pressure and density. The suppression function, depending on flow shear and magnetic shear, is assumed to affect only on the anomalous channel. The flow shear can be calculated from the force balance equation, while the magnetic shear is calculated from the given plasma current. It is found that as the position of driven current peak is moved outwards from the plasma center, the central pressure is increased. But at some point it stars to decline, mostly when the driven current peak has reached the outer half of the plasma. The higher pressure value results from the combination of ETB and ITB formations. The drop in central pressure occurs because ITB stats to disappear.
Lopez; Hirsa
1998-10-01
Recent developments in nonlinear optical techniques for noninvasive probing of a surfactant influenced gas/liquid interface allow for the measurement of the surfactant surface concentration, c, and thus provide new opportunities for the direct determination of its intrinsic viscosities. Here, we present the theoretical foundations, based on the Boussinesq-Scriven surface model without the usual simplification of constant viscosities, for an experimental technique to directly measure the surface shear (µs) and dilatational (kappas) viscosities of a Newtonian interface as functions of the surfactant surface concentration. This ability to directly measure the surfactant concentration permits the use of a simple surface flow for the measurement of the surface viscosities. The requirements are that the interface must be nearly flat, and the flow steady, axisymmetric, and swirling; these flow conditions can be achieved in the deep-channel viscometer driven at relatively fast rates. The tangential stress balance on such an interface leads to two equations; the balance in the azimuthal direction involves only µs and its gradients, and the balance in the radial direction involves both µs and kappas and their gradients. By further exploiting recent developments in laser-based flow measuring techniques, the surface velocities and their gradients which appear in the two equations can be measured directly. The surface tension gradient, which appears in the radial balance equation, is incorporated from the equation of state for the surfactant system and direct measurements of the surfactant surface concentration distribution. The stress balance equations are then ordinary differential equations in the surface viscosities as functions of radial position, which can be readily integrated. Since c is measured as a function of radial position, we then have a direct measurement of µs and kappas as functions of c. Numerical computations of the Navier-Stokes equations are performed to determine the appropriate conditions to achieve the requisite secondary flow. Copyright 1998 Academic Press.
Modeling Thermally Driven Flow Problems with a Grid-Free Vortex Filament Scheme: Part 1
2018-02-01
provision has been made to include grid-free energy particles and thus a capability of capturing 2-way coupling between momentum and energy via barotropic...vorticity generation associated with thermal gradients. The validation studies have focused on natural convection following a release of energy into...a stagnant field and show that this new method is capable of capturing the correct physics of 3-D natural convection problems. vortex filament, energy
Maria, M Sneha; Rakesh, P E; Chandra, T S; Sen, A K
2017-03-03
We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a 'self-built-in filter' and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour's model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from <10 μl whole blood) in 15 min with a purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks.
Maria, M. Sneha; Rakesh, P. E.; Chandra, T. S.; Sen, A. K.
2017-01-01
We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a ‘self-built-in filter’ and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour’s model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from <10 μl whole blood) in 15 min with a purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks. PMID:28256564
A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis
2012-10-01
The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.
NASA Astrophysics Data System (ADS)
Davoust, L.; Moreau, R.; Cowley, M. D.; Tanguy, P. A.; Bertrand, F.
1997-10-01
We present analytical and numerical models of magnetohydrodynamic(MHD) buoyancy-driven flow within the liquid pool of a horizontal Bridgman crystal growth furnace, under the influence of a uniform vertical magnetic field B0. A horizontal differentially heated cylinder, whose aspect ratio (radius to length) is small enough for a fully developed regime to be established in the central core, is considered. With Hartmann layers remaining electrically inactive, a modified Rayleigh number RaG, which is the ration of the ordinary Rayleigh number to the square of the Hartmann number, is found to control the MHD reorganisation of the flow. This modified Rayleigh number is a measure of the importance of thermal convection relative to diffusion if velocity is estimated from the balance between the torques of buoyancy and the Laplace force. When RaG is much smaller than unity (quasi-diffusive regime), an analytical modelling of the flow, based on a power series of RaG, demonstrates that this balance requires secondary vortices within vertical mid-planes of the cylinder, both within the core flow and near the end walls. A 3-D numerical calculation of the flow provides evidence of the transition from a convective MHD flow (when RaG is still of the order of unity) to the quasi-diffusive flow, analytically studied. Indeed, this transition takes the form of a rather complex 3-D MHD organisation of the flow which is due to the nonuniformity of the axial temperature gradient along the cylinder.
NASA Astrophysics Data System (ADS)
Cantero, Mariano I.; Balachandar, S.; Cantelli, Alessandro; Pirmez, Carlos; Parker, Gary
2009-03-01
In this work we present direct numerical simulations (DNS) of sediment-laden channel flows. In contrast to previous studies, where the flow has been driven by a constant, uniform pressure gradient, our flows are driven by the excess density imposed by suspended sediment. This configuration provides a simplified model of a turbidity current and is thus called the turbidity current with a roof configuration. Our calculations elucidate with DNS for the first time several fascinating features of sediment-laden flows, which may be summarized as follows. First, the presence of sediment breaks the symmetry of the flow because of a tendency to self-stratify. More specifically, this self-stratification is manifested in terms of a Reynolds-averaged suspended sediment concentration that declines in the upward normal direction and a Reynolds-averaged velocity profile with a maximum that is below the channel centerline. Second, this self-stratification damps the turbulence, particularly near the bottom wall. Two regimes are observed, one in which the flow remains turbulent but the level of turbulence is reduced and another in which the flow relaminarizes in a region near the bottom wall, i.e., bed. Third, the analysis allows the determination of a criterion for the break between these two regimes in terms of an appropriately defined dimensionless settling velocity. The results provide guidance for the improvement of Reynolds-averaged closures for turbulent flow in regard to stratification effects. Although the analysis reported here is not performed at the scale of large oceanic turbidity currents, which have sufficiently large Reynolds numbers to be inaccessible via DNS at this time, the implication of flow relaminarization is of considerable importance. Even a swift oceanic turbidity current which at some point crosses the threshold into the regime of relaminarization may lose the capacity to reentrain sediment that settles on the bed and thus may quickly die as it loses its driving force.
Interaction of lateral baroclinic forcing and turbulence in an estuary
Lacy, J.R.; Stacey, M.T.; Burau, J.R.; Monismith, Stephen G.
2003-01-01
Observations of density and velocity in a channel in northern San Francisco Bay show that the onset of vertical density stratification during flood tides is controlled by the balance between the cross-channel baroclinic pressure gradient and vertical mixing due to turbulence. Profiles of velocity, salinity, temperature, and suspended sediment concentration were measured in transects across Suisun Cutoff, in northern San Francisco Bay, on two days over the 12.5-hour tidal cycle. During flood tides an axial density front developed between fresher water flowing from the shallows of Grizzly Bay into the northern side of Suisun Cutoff and saltier water flowing up the channel. North of the front, transverse currents were driven by the lateral salinity gradient, with a top-to-bottom velocity difference greater than 30 cm/s. South of the front, the secondary circulation was weak, and along-channel velocities were greater than to the north. The gradient Richardson number shows that stratification was stable north of the front, while the water column was turbulently mixed south of the front. Time-series measurements of velocity and salinity demonstrate that the front develops during each tidal cycle. In estuaries, longitudinal dynamics predict less stratification during flood than ebb tides. These data show that stratification can develop during flood tides due to a lateral baroclinic pressure gradient in estuaries with complex bathymetry.
Unsteady Computational Tests of a Non-Equilibrium
NASA Astrophysics Data System (ADS)
Jirasek, Adam; Hamlington, Peter; Lofthouse, Andrew; Usafa Collaboration; Cu Boulder Collaboration
2017-11-01
A non-equilibrium turbulence model is assessed on simulations of three practically-relevant unsteady test cases; oscillating channel flow, transonic flow around an oscillating airfoil, and transonic flow around the Benchmark Super-Critical Wing. The first case is related to piston-driven flows while the remaining cases are relevant to unsteady aerodynamics at high angles of attack and transonic speeds. Non-equilibrium turbulence effects arise in each of these cases in the form of a lag between the mean strain rate and Reynolds stresses, resulting in reduced kinetic energy production compared to classical equilibrium turbulence models that are based on the gradient transport (or Boussinesq) hypothesis. As a result of the improved representation of unsteady flow effects, the non-equilibrium model provides substantially better agreement with available experimental data than do classical equilibrium turbulence models. This suggests that the non-equilibrium model may be ideally suited for simulations of modern high-speed, high angle of attack aerodynamics problems.
Kinematics and dynamics of Nubia-Somalia divergence along the East African rift
NASA Astrophysics Data System (ADS)
Stamps, Dorothy Sarah
Continental rifting is fundamental to the theory of plate tectonics, yet the force balance driving Earth's largest continental rift system, the East African Rift (EAR), remains debated. The EAR actively diverges the Nubian and Somalian plates spanning ˜5000 km N-S from the Red Sea to the Southwest Indian Ridge and ˜3000 km NW-SE from eastern Congo to eastern Madagascar. Previous studies suggest either lithospheric buoyancy forces or horizontal tractions dominate the force balance acting to rupture East Africa. In this work, we investigate the large-scale dynamics of Nubia-Somalia divergence along the EAR driving present-day kinematics. Because Africa is largely surrounded by spreading ridges, we assume plate-plate interactions are minimal and that the major driving forces are gradients in gravitational potential energy (GPE), which includes the effect of vertical mantle tractions, and horizontal basal tractions arising from viscous coupling to horizontal mantle flow. We quantify a continuous strain rate and velocity field based on kinematic models, an updated GPS velocity solution, and the style of earthquake focal mechanisms, which we use as an observational constraint on surface deformation. We solve the 3D force balance equations and calculate vertically averaged deviatoric stress for a 100 km thick lithosphere constrained by the CRUST2.0 crustal density and thickness model. By comparing vertically integrated deviatoric stress with integrated lithospheric strength we demonstrate forces arising from gradients in gravitational potential energy are insufficient to rupture strong lithosphere, hence weakening mechanisms are required to initiate continental rupture. The next step involves inverting for a stress field boundary condition that is the long-wavelength minimum energy deviatoric stress field required to best-fit the style of our continuous strain rate field in addition to deviatoric stress from gradients in GPE. We infer the stress field boundary condition is an estimate of basal shear stress from viscous coupling to horizontal mantle flow. The stress field boundary condition is small (˜1.6 MPa) compared to deviatoric stress from GPE gradients (8-20 MPa) and does not improve the fit to surface deformation indicators more than 8% when combined with deviatoric stress from GPE gradients. Hence we suggest the style of deformation across the EAR can be explained by forces derived from gradients in GPE. We then calculate dynamic velocities using two types of forward models to solve the instantaneous momentum equations. One method is regional and requires vertically averaged effective viscosity to define lithospheric structure with velocity boundary conditions and a free-slip basal boundary condition. The second is a global model that accounts for a brittle upper crust and viscous mantle lithosphere with velocity boundary conditions imposed at the base of the lithosphere from 5 mantle flow models. With both methods we find deformation driven by internal lithospheric buoyancy forces provides the best-fit to GPS observations of surface velocities on the Somalian plate. We find that any additional contribution from horizontal tractions results in overpredicting surface velocities. This work indicates horizontal mantle flow plays a minimal role in Nubia-Somalia divergence and the EAR is driven largely by gradients in GPE.
A groundwater convection model for Rio Grande rift geothermal resources
NASA Technical Reports Server (NTRS)
Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.
1981-01-01
It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.
Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.
Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed
2016-11-01
With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dynamics of groundwater-surface water interactions in urban streams
NASA Astrophysics Data System (ADS)
Musolff, A.; Schmidt, C.; Fleckenstein, J. H.
2010-12-01
In industrialized countries the majority of streams and rivers have been subject to changes in the hydrological regime and alteration of the channel morphology. Urban streams are typically characterized by “flashier” hydrographs as a result of more direct runoff from impervious surfaces. Channel structure and complexity are often impaired compared to pristine streams. As a consequence the potential for bedform-driven water flow in the streambed is reduced. The downward transport of oxygen by advective flow in the streambed is known to be of great ecological importance for the hyporheic macro and micro fauna and facilitates nutrient cycling and the degradation of organic pollutants. We studied the dynamics of groundwater-surface water exchange of two anthropogenically impacted streams in urban areas to examine the effects of variable hydrologic boundary conditions on water flux and redox conditions in the streambed. The first stream is fed by groundwater as well as storm-water from a large industrial area. Here, we monitored the variability of vertical hydraulic gradients, streambed temperature and redox conditions in the streambed over the course of 5 months. The second stream is frequently polluted by combined sewer overflows (CSO) from an urban watershed. Here, we measured the vertical hydraulic gradients, streambed temperature and electrical conductivity (EC) in the stream, the streambed and in the adjacent aquifer. Both streams are characterized by strong variations in hydraulic gradients due to the dynamic hydrographs as well as the variations in total head in the shallow aquifer. Therefore, magnitude and direction of water flux through the streambed changed significantly over time. At the first site long-term variations of redox conditions in the shallow streambed (0.1 m) were related to the direction of water fluxes. Downward water flow resulted in increased redox potentials. However, the high short-term variability of redox conditions could not be directly attributed to changes in the hydraulic conditions. At the second site, increased EC in the shallow aquifer was related to seasonally losing conditions (associated with low water tables in summer) and the resulting groundwater recharge. Sudden increases in stream stage due to rain events and subsequent CSO resulted in altered streambed water fluxes, as evidenced by the disturbance of vertical streambed temperature profiles down to a depth of 0.3 m. Both, short-term and long-term variations in hydraulic gradients between the stream, the streambed and the groundwater were found to influence the magnitude and direction of water fluxes. Flashy flow events influence the water flux in the streambed very rapidly. However, changes in redox potential in the streambed require losing conditions over time scales longer than the duration of a typical high flow event. As a consequence, the complexity of water exchange in the streambed should be carefully monitored, both in space and time. Our results indicate that variable hydraulic gradients may induce intense exchange fluxes between the stream and streambed in urban streams and may compensate some of the negative consequences of degraded channels with limited bedform-driven flow.
The dynamics of subtidal poleward flows over a narrow continental shelf, Palos Verdes, CA
Noble, M.A.; Ryan, H.F.; Wiberg, P.L.
2002-01-01
The Palos Verdes peninsula is a short, very narrow (< 3 km) shelf in southern California that is bracketed by two large embayments. In May 1992, arrays of up to 4 moorings and 2 benthic tripods were deployed in a yearlong study of the circulation processes over this shelf and the adjacent slope. Wind stress, coastal sea level, atmospheric pressure and wave records were obtained from offshore sites and from coastal stations surrounding Palos Verdes. Bottom stress calculated for the mid-shelf sites using a boundary-layer model and data from the above instruments indicated the bottom drag coefficient over this shelf is about 0.003 Currents flow toward the northwest along the shelf and upper slope. Speeds are generally around 20-30 cm/s. There was no obvious seasonal structure in the flow. The first EOF for subtidal alongshelf current accounted for nearly 70% of the variance at sites on the shelf and upper slope. The dominant fluctuations had periods between 5 and 20 days, periods longer than seen in the regional wind stress field. Coastal sea level and the alongshore gradient in sea level had a similar concentration of energy in the 5-20 day frequency band. About 30% of the alongshelf flow was coherent with the alongshelf pressure gradient; currents flowed down the pressure gradient with minimal phase lag. Winds accounted for only 15-20% of the variance in subtidal currents, but the measured effect of wind stress was large. A 1 dyne/cm2 wind stress was associated with a 20-30 cm/s alongshore current. Both the regional wind stress and the alongshelf pressure gradients had spatial scales much larger than found on this small shelf. Subtidal flows forced by these regional fields were set up in the adjacent, much broader basins. The currents amplified as they moved onto the narrow shelf between the basins. Hence, local wind-driven currents had anomalously large amplitudes. The momentum equations for alongshelf wind or pressure gradients did not balance because some of the measured terms were associated with regional fields, others with local process. Our observations suggest that it is more difficult to determine which measured fields reflect the local processes in regions with rapidly changing topography. ?? 2002 Elsevier Science Ltd. All rights reserved.
Transition to subcritical turbulence in a tokamak plasma
NASA Astrophysics Data System (ADS)
van Wyk, F.; Highcock, E. G.; Schekochihin, A. A.; Roach, C. M.; Field, A. R.; Dorland, W.
2016-12-01
Tokamak turbulence, driven by the ion-temperature gradient and occurring in the presence of flow shear, is investigated by means of local, ion-scale, electrostatic gyrokinetic simulations (with both kinetic ions and electrons) of the conditions in the outer core of the Mega-Ampere Spherical Tokamak (MAST). A parameter scan in the local values of the ion-temperature gradient and flow shear is performed. It is demonstrated that the experimentally observed state is near the stability threshold and that this stability threshold is nonlinear: sheared turbulence is subcritical, i.e. the system is formally stable to small perturbations, but, given a large enough initial perturbation, it transitions to a turbulent state. A scenario for such a transition is proposed and supported by numerical results: close to threshold, the nonlinear saturated state and the associated anomalous heat transport are dominated by long-lived coherent structures, which drift across the domain, have finite amplitudes, but are not volume filling; as the system is taken away from the threshold into the more unstable regime, the number of these structures increases until they overlap and a more conventional chaotic state emerges. Whereas this appears to represent a new scenario for transition to turbulence in tokamak plasmas, it is reminiscent of the behaviour of other subcritically turbulent systems, e.g. pipe flows and Keplerian magnetorotational accretion flows.
An electrochemical pumping system for on-chip gradient generation.
Xie, Jun; Miao, Yunan; Shih, Jason; He, Qing; Liu, Jun; Tai, Yu-Chong; Lee, Terry D
2004-07-01
Within the context of microfluidic systems, it has been difficult to devise pumping systems that can deliver adequate flow rates at high pressure for applications such as HPLC. An on-chip electrochemical pumping system based on electrolysis that offers certain advantages over designs that utilize electroosmotic driven flow has been fabricated and tested. The pump was fabricated on both silicon and glass substrates using photolithography. The electrolysis electrodes were formed from either platinum or gold, and SU8, an epoxy-based photoresist, was used to form the pump chambers. A glass cover plate and a poly(dimethylsiloxane) (PDMS) gasket were used to seal the chambers. Filling of the chambers was accomplished by using a syringe to inject liquid via filling ports, which were later sealed using a glass cover plate. The current supplied to the electrodes controlled the rate of gas formation and, thus, the resulting fluid flow rate. At low backpressures, flow rates >1 microL/min have been demonstrated using <1 mW of power. Pumping at backpressures as high as 200 psi have been demonstrated, with 20 nL/min having been observed using <4 mW. By integrating two electrochemical pumps with a polymer electrospray nozzle, we have confirmed the successful generation of a solvent gradient via a mass spectrometer.
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-01-01
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
Nonlinear Electromagnetic Stabilization of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Whelan, G. G.; Pueschel, M. J.; Terry, P. W.
2018-04-01
The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.
A gas-puff-driven theta pinch for plasma-surface interaction studies
NASA Astrophysics Data System (ADS)
Jung, Soonwook; Kesler, Leigh; Yun, Hyun-Ho; Curreli, Davide; Andruczyk, Daniel; Ruzic, David
2012-10-01
DEVeX is a theta pinch device used to investigate fusion-related material interaction such as vapor shielding and ICRF antenna interactions with plasma-pulses in a laboratory setting. The simulator is required to produce high heat-flux plasma enough to induce temperature gradient high enough to study extreme conditions happened in a plasma fusion reactor. In order to achieve it, DEVeX is reconfigured to be combined with gas puff system as gas puffing may reduce heat flux loss resulting from collisions with neutral. A gas puff system as well as a conical gas nozzle is manufactured and several diagnostics including hot wire anemometer and fast ionization gauge are carried out to quantitatively estimate the supersonic flow of gas. Energy deposited on the target for gas puffing and static-filled conditions is measured with thermocouples and its application to TELS, an innovative concept utilizing a thermoelectric-driven liquid metal flow for plasma facing component, is discussed.
Interacting vegetative and thermal contributions to water movement in desert soil
Garcia, C.A.; Andraski, Brian J.; Stonestrom, David A.; Cooper, C.A.; Šimůnek, J.; Wheatcraft, S.W.
2011-01-01
Thermally driven water-vapor flow can be an important component of total water movement in bare soil and in deep unsaturated zones, but this process is often neglected when considering the effects of soil–plant–atmosphere interactions on shallow water movement. The objectives of this study were to evaluate the coupled and separate effects of vegetative and thermal-gradient contributions to soil water movement in desert environments. The evaluation was done by comparing a series of simulations with and without vegetation and thermal forcing during a 4.7-yr period (May 2001–December 2005). For vegetated soil, evapotranspiration alone reduced root-zone (upper 1 m) moisture to a minimum value (25 mm) each year under both isothermal and nonisothermal conditions. Variations in the leaf area index altered the minimum storage values by up to 10 mm. For unvegetated isothermal and nonisothermal simulations, root-zone water storage nearly doubled during the simulation period and created a persistent driving force for downward liquid fluxes below the root zone (total net flux ~1 mm). Total soil water movement during the study period was dominated by thermally driven vapor fluxes. Thermally driven vapor flow and condensation supplemented moisture supplies to plant roots during the driest times of each year. The results show how nonisothermal flow is coupled with plant water uptake, potentially influencing ecohydrologic relations in desert environments.
Bhardwaj, Rajneesh; Fang, Xiaohua; Somasundaran, Ponisseril; Attinger, Daniel
2010-06-01
The shape of deposits obtained from drying drops containing colloidal particles matters for technologies such as inkjet printing, microelectronics, and bioassay manufacturing. In this work, the formation of deposits during the drying of nanoliter drops containing colloidal particles is investigated experimentally with microscopy and profilometry, and theoretically with an in-house finite-element code. The system studied involves aqueous drops containing titania nanoparticles evaporating on a glass substrate. Deposit shapes from spotted drops at different pH values are measured using a laser profilometer. Our results show that the pH of the solution influences the dried deposit pattern, which can be ring-like or more uniform. The transition between these patterns is explained by considering how DLVO interactions such as the electrostatic and van der Waals forces modify the particle deposition process. Also, a phase diagram is proposed to describe how the shape of a colloidal deposit results from the competition among three flow patterns: a radial flow driven by evaporation at the wetting line, a Marangoni recirculating flow driven by surface tension gradients, and the transport of particles toward the substrate driven by DLVO interactions. This phase diagram explains three types of deposits commonly observed experimentally, such as a peripheral ring, a small central bump, or a uniform layer. Simulations and experiments are found in very good agreement.
Effect of external plasma flows on the interaction between turbulence and convective cells
NASA Astrophysics Data System (ADS)
Uzawa, Ken; Li, Jiquan
2005-10-01
It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)
Interface Shape and Convection During Solidification and Melting of Succinonitrile
NASA Technical Reports Server (NTRS)
Degroh, Henry C., III; Lindstrom, Tiffany
1994-01-01
An experimental study was conducted of the crystal growth of succinonitrile during solidification, melting, and no-growth conditions using a horizontal Bridgman furnace and square glass ampoule. For use as input boundary conditions to numerical codes, thermal profiles on the outside of the ampoule at five locations around its periphery were measured along the ampoule's length. Temperatures inside the ampoule were also measured. The shapes of the s/l interface in various two dimensional planes were quantitatively determined. Though interfaces were nondendritic and noncellular, they were not flat, but were highly curved and symmetric in only one unique longitudinal y-z plane (at x=O). The shapes of the interface were dominated by the primary longitudinal flow cell characteristic of shallow cavity flow in horizontal Bridgman; this flow cell was driven by the imposed furnace temperature gradient and caused a 'radical' thermal gradient such that the upper half of the ampoule was hotter than the bottom half. We believe that due to the strong convection, the release of latent heat does not significantly influence the thermal conditions near the interface. We hope that the interface shape and thermal data presented in this paper can be used to optimize crystal growth processes and validate numerical models.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli
2018-05-01
Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.
NASA Astrophysics Data System (ADS)
Hillesheim, Jon
2015-11-01
High spatial resolution measurements with Doppler backscattering in JET have provided new insights into the development of the edge radial electric field during pedestal formation. The characteristics of Er have been studied as a function of density at 2.5 MA plasma current and 3 T toroidal magnetic field. We observe fine-scale spatial structure in the edge Er well prior to the LH transition, consistent with stationary zonal flows. Zonal flows are a fundamental mechanism for the saturation of turbulence and this is the first direct evidence of stationary zonal flows in a tokamak. The radial wavelength of the zonal flows systematically decreases with density. The zonal flows are clearest in Ohmic conditions, weaker in L-mode, and absent in H-mode. Measurements also show that after neutral beam heating is applied, the edge Er builds up at a constant gradient into the core during L-mode, at radii where Er is mainly due to toroidal velocity. The local stability of velocity shear driven turbulence, such as the parallel velocity gradient mode, will be assessed with gyrokinetic simulations. This critical Er shear persists across the LH transition into H-mode. Surprisingly, a reduction in the apparent magnitude of the Er well depth is observed directly following the LH transition at high densities. Establishing the physics basis for the LH transition is important for projecting scalings to ITER and these observations challenge existing models based on increased Er shear or strong zonal flows as the trigger for the transition. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Investigation of Vibrational Control of the Bridgman Crystal Growth Technique
NASA Technical Reports Server (NTRS)
Fedoseyev, Alexandre I.; Alexander, J. I. D.; Feigelson, R. S.; Zharikov, E. V.; Ostrogorsky, A. G.; Marin, C.; Volz, M. P.; Kansa, E. J.; Friedman, M. J.
2001-01-01
The character of natural buoyant convection in rigidly contained inhomogeneous fluids can be drastically altered by vibrating the container. Vibrations are expected to play a crucial influence on heat and mass transfer onboard the International Space Station (ISS). It is becoming evident that substantial vibrations will exist on the ISS in the wide frequency spectrum. In general, vibrational flows are very complex and governed by many parameters. In many terrestrial crystal growth situations, convective transport of heat and constituent components is dominated by buoyancy driven convection arising from compositional and thermal gradients. Thus, it may be concluded that vibro-convective flow can potentially be used to influence and even control transport in some crystal growth situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Eric M.; Waltz, R. E.
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Bass, Eric M.; Waltz, R. E.
2017-12-08
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
NASA Technical Reports Server (NTRS)
Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.
2000-01-01
Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.
Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.
NASA Astrophysics Data System (ADS)
Kabantsev, A. A.; Driscoll, C. F.
2000-10-01
The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.
Subtidal circulation on the Alabama shelf during the Deepwater Horizon oil spill
NASA Astrophysics Data System (ADS)
Dzwonkowski, Brian; Park, Kyeong
2012-03-01
Water column velocity and hydrographic measurements on the inner Alabama shelf are used to examine the flow field and its forcing dynamics during the Deepwater Horizon oil spill disaster in the spring and summer of 2010. Comparison between two sites provides insight into the flow variability and dynamics of a shallow, highly stratified shelf in the presence of complicating geographic and bathymetric features. Seasonal currents reveal a convergent flow with strong, highly sheared offshore flow near a submarine bank just outside of Mobile Bay. At synoptic time scales, the flow is relatively consistent with typical characteristics of wind-driven Ekman coastal circulation. Analysis of the depth-averaged along-shelf momentum balance indicates that both bottom stress and along-shelf pressure gradient act to counter wind stress. As a consequence of the along-shelf pressure gradient and thermal wind shear, flow reversals in the bottom currents can occur during periods of transitional winds. Despite the relatively short distance between the two sites (14 km), significant spatial variability is observed. This spatial variability is argued to be a result of local variations in the bathymetry and density field as the study region encompasses a submarine bank near the mouth of a major freshwater source. Given the physical parameters of the system, along-shelf flow in this region would be expected to separate from the local isobaths, generating a mean offshore flow. The local, highly variable density field is expected to be, in part, responsible for the differences in the vertical variability in the current profiles.
Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.
Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D
2018-08-24
By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.
Fluid flow analysis and vertical gradient freeze crystal growth in a travelling magnetic field
NASA Astrophysics Data System (ADS)
Lantzsch, R.; Grants, I.; Galindo, V.; Patzold, O.; Gerbeth, G.; Stelter, M.; Croll, A.
2006-12-01
In bulk crystal growth of semiconductors the concept of remote flow control by means of alternating magnetic fields has attracted considerable interest (see, e.g., te{1,2,3,4,5,6}). In this way the melt flow can be tailored for growth under optimised conditions to improve the crystal properties and/or the growth yield. A promising option is to apply an axially travelling magnetic wave to the melt (Travelling Magnetic Field - TMF). It introduces a mainly axial Lorentz force, which leads to meridional flow patterns. In recent numerical studies te{3}, te{6} the TMF has been recognised to be a versatile and efficient tool to control the heat and mass transport in the melt. For the Vertical Bridgman/Vertical Gradient Freeze (VB/VGF) growth, the beneficial effect of an adequately adjusted TMF-induced flow was clearly demonstrated in te{6} in terms of the reduction of thermal shear stress at the solid-liquid interface. In this paper, we present experimental and numerical results on the TMF driven convection in an isothermal model fluid as well as first VGF-TMF crystal growth experiments. The model investigations are focused on the transition from laminar to instationary flow conditions that should be avoided in crystal growth applications. The VGF experiments were aimed at growing Ga doped germanium single crystals under the influence of the travelling field in a newly developed VGF-TMF equipment. Figs 4, Refs 10.
NASA Technical Reports Server (NTRS)
Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.
2012-01-01
Geothermal heat flow is obtained as a product of the geothermal gradient and the thermal conductivity of the vertical soil/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey and previously the International Lunar Network. One of the difficulties associated with lunar heat flow measurement on a robotic mission is that it requires excavation of a relatively deep (approx 3 m) hole in order to avoid the long-term temporal changes in lunar surface thermal environment affecting the subsurface temperature measurements. Such changes may be due to the 18.6-year-cylcle lunar precession, or may be initiated by presence of the lander itself. Therefore, a key science requirement for heat flow instruments for future lunar missions is to penetrate 3 m into the regolith and to measure both thermal gradient and thermal conductivity. Engineering requirements are that the instrument itself has minimal impact on the subsurface thermal regime and that it must be a low-mass and low-power system like any other science instrumentation on planetary landers. It would be very difficult to meet the engineering requirements, if the instrument utilizes a long (> 3 m) probe driven into the ground by a rotary or percussive drill. Here we report progress in our efforts to develop a new, compact lunar heat flow instrumentation that meets all of these science and engineering requirements.
Rarefaction effects in microchannel gas flow driven by rhythmic wall contractions
NASA Astrophysics Data System (ADS)
Chatterjee, Krishnashis; Staples, Anne; Department of Biomedical Engineering; Mechanics, Virginia Tech Collaboration
2015-11-01
Current state of the art microfluidic devices employ precise and timely operation of a complex arrangement of micropumps and valves for fluid transport. A much more novel flow transport mechanism is found in entomological respiratory systems, which involve rhythmic wall contractions for driving the fluid flow. The practical viability of using this technique in future microfluidic devices has been studied earlier. The present study investigates the incorporation of rarefaction effects in the above model of microscale gas flow by including slip boundary conditions. The Navier Stokes equations for gas flow in rectangular microchannel are solved analytically with microscale and lubrication theory assumptions. First order slip boundary conditions are incorporated to account for the rarefaction effects. The dependence of fluid velocities and pressure gradient on the slip boundary conditions is studied. Time averaged unidirectional fluid flow rates are plotted for different phase lags between the contractions, with and without slip in order to obtain an optimum range under different conditions.
NASA Technical Reports Server (NTRS)
Taylor, Arthur C., III; Hou, Gene W.; Korivi, Vamshi M.
1991-01-01
A gradient-based design optimization strategy for practical aerodynamic design applications is presented, which uses the 2D thin-layer Navier-Stokes equations. The strategy is based on the classic idea of constructing different modules for performing the major tasks such as function evaluation, function approximation and sensitivity analysis, mesh regeneration, and grid sensitivity analysis, all driven and controlled by a general-purpose design optimization program. The accuracy of aerodynamic shape sensitivity derivatives is validated on two viscous test problems: internal flow through a double-throat nozzle and external flow over a NACA 4-digit airfoil. A significant improvement in aerodynamic performance has been achieved in both cases. Particular attention is given to a consistent treatment of the boundary conditions in the calculation of the aerodynamic sensitivity derivatives for the classic problems of external flow over an isolated lifting airfoil on 'C' or 'O' meshes.
Shear-induced migration and orientation of rigid fibers
NASA Astrophysics Data System (ADS)
Butler, Jason; Strednak, Scott; Shaikh, Saif; Guazzelli, Elisabeth
2017-11-01
The spatial and orientation distributions are measured for a suspension of fibers during pressure-driven flow. The fibers are rigid and non-colloidal, and two aspect ratios (length to diameter ratios) of 12 and 24 were tested; the suspending fluid is viscous, Newtonian, and density matched to the particles. As with the migration of spheres in parabolic flows, the fibers migrate toward the centerline of the channel if the concentration is sufficiently high. Migration is not observed for concentrations below a volume fraction of 0.035 for aspect ratio 24 and 0.07 for aspect ratio 12. The orientation distribution of the fibers is spatially dependent. Fibers near the center of the channel align closely with the flow direction, but fibers near the wall are observed to preferentially align in the vorticity (perpendicular to the flow and gradient) direction. National Science Foundation (Grants #1511787 and #1362060).
NASA Technical Reports Server (NTRS)
Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.
2001-01-01
The elimination of convection is essential in experimental investigations of diffusive transport (of heat and matter) during solidification. One classical approach to damping convection in a conducting liquid is the application of a magnetic field. The damping phenomenon is the induction, by the motion of a conductor in a magnetic field, of currents which interact with the field to produce Lorentz forces that oppose the flow. However, there are many liquids which are not sufficiently conducting to exploit this phenomenon; examples include the transparent liquids (such as succinonitrile-acetone) that are used as "model alloys" in fundamental solidification studies. There have been several investigations of the solidification of these liquids that have been carried out in orbiting laboratories to eliminate natural convection. The paper describes an investigation of an alternative approach whereby a magnetic field gradient is applied to the liquid. A magnetic body force then arises which is dependent on the susceptibility of the liquid and thereby on the temperature and or concentration. With the field gradient aligned vertically and of correct magnitude, the variation of gravitational body force due to temperature/concentration dependent density can be counterbalanced by a variation in magnetic body force. Experiments have been carried out in a super-conducting magnet at Marshall Space Flight Center to measure velocities in an aqueous manganese chloride solution. The solution was contained in a chamber with temperature controlled end walls and glass side walls. Velocities were measured by particle image velocimetry. Starting from zero current in the magnet (zero field gradient) flow driven by the temperature difference between the end walls was measured. At a critical current the flow was halted. At higher currents the normal convection was reversed. The experiments included ones where the solution was solidified and were accompanied by solution of the flow/transport equations using the software package FLUENT.
Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary
Lacy, Jessica R.; Gladding, Steve; Brand, Andreas; Collignon, Audric; Stacey, Mark
2014-01-01
We investigate the dynamics governing exchange of sediment between estuarine shallows and the channel based on field measurements at eight stations spanning the interface between the channel and the extensive eastern shoals of South San Francisco Bay. The study site is characterized by longitudinally homogeneous bathymetry and a straight channel, with friction more important than the Coriolis forcing. Data were collected for 3 weeks in the winter and 4 weeks in the late summer of 2009, to capture a range of hydrologic and meteorologic conditions. The greatest sediment transport from shallows to channel occurred during a pair of strong, late-summer wind events, with westerly winds exceeding 10 m/s for more than 24 h. A combination of wind-driven barotropic return flow and lateral baroclinic circulation caused the transport. The lateral density gradient was produced by differences in temperature and suspended sediment concentration (SSC). During the wind events, SSC-induced vertical density stratification limited turbulent mixing at slack tides in the shallows, increasing the potential for two-layer exchange. The temperature- and SSC-induced lateral density gradient was comparable in strength to salinity-induced gradients in South Bay produced by seasonal freshwater inflows, but shorter in duration. In the absence of a lateral density gradient, suspended sediment flux at the channel slope was directed towards the shallows, both in winter and during summer sea breeze conditions, indicating the importance of baroclinically driven exchange to supply of sediment from the shallows to the channel in South San Francisco Bay and systems with similar bathymetry.
Influence of Marangoni flows on the dynamics of isothermal A + B → C reaction fronts.
Tiani, R; Rongy, L
2016-09-28
The nonlinear dynamics of A + B → C fronts is analyzed both numerically and theoretically in the presence of Marangoni flows, i.e., convective motions driven by surface tension gradients. We consider horizontal aqueous solutions where the three species A, B, and C can affect the surface tension of the solution, thereby driving Marangoni flows. The resulting dynamics is studied by numerically integrating the incompressible Navier-Stokes equations coupled to reaction-diffusion-convection (RDC) equations for the three chemical species. We show that the dynamics of the front cannot be predicted solely on the basis of the one-dimensional reaction-diffusion profiles as is the case for buoyancy-driven convection around such fronts. We relate this observation to the structure of Marangoni flows which lead to more complex and exotic dynamics. We find in particular the surprising possibility of a reversal of the front propagation direction in time for some sets of Marangoni numbers, quantifying the influence of each chemical species concentration on the solution surface tension. We explain this reversal analytically and propose a new classification of the convective effects on A + B → C reaction fronts as a function of the Marangoni numbers. The influence of the layer thickness on the RDC dynamics is also presented. Those results emphasize the importance of flow symmetry properties when studying convective front dynamics in a given geometry.
Sub-tidal Circulation in a deep-silled fjord: Douglas Channel, British Columbia (Canada)
NASA Astrophysics Data System (ADS)
Wan, Di; Hannah, Charles; Foreman, Mike
2016-04-01
Douglas Channel, a deep fjord on the west coast of British Columbia, Canada, is the main waterway in Kitimat fjord system that opens to Queen Charlotte Sound and Hecate Strait. The fjord is separated from the open shelf by a broad sill that is about 150 m deep, and there is another sill (200 m) that separates the fjord into an outer and an inner basin. This study examines the low-frequency (from seasonal to meteorological bands) circulation in Douglas Channel from data collected from three moorings deployed during 2013-2015, and the water property observations collected during six cruises (2014 and 2015). Estuarine flow dominates the circulation above the sill-depth. The deep flows are dominated by a yearly renewal that takes place from early June to September, and this dense water renews both basins in the form of gravity currents at 0.1 - 0.2 m/s with a thickness of 100 m. At other times of the year, the deep flow structures and water properties suggest horizontal and vertical processes and support the re-circulation idea in the inner and the outer basins. The near surface current velocity fluctuations are dominated by the along-channel wind. Overall, the circulation in the meteorological band is a mix of the estuarine flow, direct wind driven flow, and the baroclinic response to changes to the surface pressure gradient caused by the wind driven currents.
NASA Astrophysics Data System (ADS)
Pond, Ian; Edabi, Alireza; Dubief, Yves; White, Christopher
2015-11-01
Reynolds Average Navier Stokes (RANS) modeling has established itself as a critical design tool in many engineering applications, thanks to its superior computational efficiency. The drawbacks of RANS models are well known, but not necessarily well understood: poor prediction of transition, non equilibrium flows, mixing and heat transfer, to name the ones relevant to our study. In the present study, we use a DNS of a reciprocating channel flow driven by an oscillating pressure gradient to test several low- and high-Reynolds RANS models. Temperature is introduced as a passive scalar to study heat transfer modeling. Low-Reynolds models manage to capture the overall physics of wall shear and heat flux well, yet with some phase discrepancies, whereas high Reynolds models fail. Under the microscope of the integral method for wall shear and wall heat flux, the qualitative agreement appears more serendipitous than driven by the ability of the models to capture the correct physics. The integral method is shown to be more insightful in the benchmarking of RANS models than the typical comparisons of statistical quantities. The authors acknowledges the support of NSF and DOE under grant NSF/DOE 1258697 (VT) and 1258702 (NH).
Cervantes, Barbara; Kirschke, Jan S; Klupp, Elizabeth; Kooijman, Hendrik; Börnert, Peter; Haase, Axel; Rummeny, Ernst J; Karampinos, Dimitrios C
2018-01-01
To design a preparation module for vessel signal suppression in MR neurography of the extremities, which causes minimal attenuation of nerve signal and is highly insensitive to eddy currents and motion. The orthogonally combined motion- and diffusion-sensitized driven equilibrium (OC-MDSDE) preparation was proposed, based on the improved motion- and diffusion-sensitized driven equilibrium methods (iMSDE and FC-DSDE, respectively), with specific gradient design and orientation. OC-MDSDE was desensitized against eddy currents using appropriately designed gradient prepulses. The motion sensitivity and vessel signal suppression capability of OC-MDSDE and its components were assessed in vivo in the knee using 3D turbo spin echo (TSE). Nerve-to-vessel signal ratios were measured for iMSDE and OC-MDSDE in 7 subjects. iMSDE was shown to be highly sensitive to motion with increasing flow sensitization. FC-DSDE showed robustness against motion, but resulted in strong nerve signal loss with diffusion gradients oriented parallel to the nerve. OC-MDSDE showed superior vessel suppression compared to iMSDE and FC-DSDE and maintained high nerve signal. Mean nerve-to-vessel signal ratios in 7 subjects were 0.40 ± 0.17 for iMSDE and 0.63 ± 0.37 for OC-MDSDE. OC-MDSDE combined with 3D TSE in the extremities allows high-near-isotropic-resolution imaging of peripheral nerves with reduced vessel contamination and high nerve signal. Magn Reson Med 79:407-415, 2018. © 2017 Wiley Periodicals, Inc. © 2017 International Society for Magnetic Resonance in Medicine.
Combinational concentration gradient confinement through stagnation flow.
Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung
2016-01-21
Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.
Choudoir, Mallory J; Buckley, Daniel H
2018-06-07
The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.
König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen
2013-03-19
To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi
The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed tomore » sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.« less
Thin film instabilities: Rayleigh-Taylor with thermocapillarity and Kolmogorov flow in a soap film
NASA Astrophysics Data System (ADS)
Burgess, John Matthew
The Rayleigh-Taylor instability occurs when a more dense fluid layer is suspended above a less dense fluid layer in a gravitational field. The horizontal interface between the two fluids is unstable to infinitesimal deformations and the dense fluid falls. To counteract the destabilizing effects of gravity on the interface between two thin fluid layers, we apply a vertical temperature gradient, heating from below. The dependence of surface tension on temperature (``thermocapillarity'') can cause spatially-varying interfacial forces between two immiscible fluid layers if a variation in temperature along the interface is introduced. With an applied vertical temperature gradient, the deforming interface spontaneously develops temperature variations which locally adjust the surface tension to restore a flat interface. We find that these surface tension gradients can stabilize a more dense thin fluid layer (silicone oil, 0.015 cm thick) above a less dense thin fluid layer (air, 0.025 cm thick) in a gravitational field, in qualitative agreement with linear stability analysis. This is the first experimental observation of the stabilization of Rayleigh-Taylor instability by thermocapillary forces. We also examine the instability of a soap film flow driven by a time-independent force that is spatially periodic in the direction perpendicular to the forcing (Kolmogorov flow). The film is in the x- y plane, where the forcing approximates a shape sin (y)x̂. Linear stability analysis of an idealized model of this flow predicts a critical Reynolds number Rc~
a Numerical Study of Basic Coastal Upwelling Processes.
NASA Astrophysics Data System (ADS)
Li, Zhihong
Available from UMI in association with The British Library. Two-dimensional (2-D) and three-dimensional (3 -D) numerical models with a second order turbulence closure are developed for the study of coastal upwelling processes. A logarithmic coordinate system is introduced to obtain increased resolution in the regions near the surface and bottom where high velocity shear occurs and in the upwelling zone where its width is confined to the coast. In the experiments performed in the 2-D model an ocean initially at rest is driven by a spatially uniform alongshore wind-stress. There is a development of an offshore flow in the surface layer and an onshore flow below the surface layer. In the wind-stress direction there is a development of a coastal surface jet. The neglect of the alongshore pressure gradient leads to the intensification of the jet, and the concentration of the onshore flow in an over-developed Ekman layer yielding an unrealistic deepening of a bottom mixed layer. When bathymetric variations are introduced, some modifications in the dynamics of upwelling are observed. On the shelf region there is another upwelling zone and isotherms are interested with the bottom topography. When an alongshore pressure gradient is added externally into the model, the strength of the coastal jet decreases and a coastal undercurrent exists at greater depth. In addition the return onshore flow is largely independent of depth and the deepening of the bottom mixed layer disappears. In the experiments performed in the 3-D model a wind-stress with limited domain is used. Coastally trapped waves are generated and propagate along the coastline leading to a development of an alongshore pressure gradient, which has a significant effect on upwelling. The evolution of the alongshore flow, vertical velocity and the temperature is determined by both remote and local wind due to the propagation of waves. As the integration proceeds, the flow pattern becomes remarkably 3-dimensional. Finally the influence of bathymetric variations on upwelling processes is examined.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
NASA Astrophysics Data System (ADS)
Gutierrez, Benjamin T.; Voulgaris, George; Work, Paul A.
2006-03-01
The cross-shore structure of subtidal flows on the inner shelf (7 to 12 m water depth) of Long Bay, South Carolina, a concave-shaped bay, is examined through the analysis of nearly 80 days of near-bed (1.7-2.2 m above bottom) current observations acquired during the spring and fall of 2001. In the spring and under northeastward winds (upwelling favorable) a two-layered flow was observed at depths greater than 10 m, while closer to the shore the currents were aligned with the wind. The two-layered flow is attributed to the presence of stratification, which has been observed under similar conditions in the South Atlantic Bight. When the wind stress was southwestward (downwelling favorable) and exceeded 0.1 N/m2, vertical mixing occurred, the two-layered flow pattern disappeared, and currents were directed alongshore with the wind at all sites and throughout the water column. In the fall, near-bed flows close to the shore (water depth <7 m) were often reduced compared to or opposed those measured farther offshore under southwestward winds. A simplified analysis of the depth-averaged, alongshore momentum balance illustrates that the alongshore pressure gradient approached or exceeded the magnitude of the alongshore wind stress at the same time that the nearshore alongshore current opposed the wind stress and alongshore currents farther offshore. In addition, the analysis suggests that the wind stress is reduced closer to shore so that the alongshore pressure gradient is large enough to drive the flow against the wind.
Exact solutions of the Navier-Stokes equations generalized for flow in porous media
NASA Astrophysics Data System (ADS)
Daly, Edoardo; Basser, Hossein; Rudman, Murray
2018-05-01
Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.
Double Diffusive Convection in Materials Processing
NASA Technical Reports Server (NTRS)
Ramachandra, Narayanan; Leslie, Fred W.
1999-01-01
A great number of crystals grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity (g-jitter). As a specific example, past HgCdTe crystal growth space experiments by Lehoczky and co-workers indicate radial compositional asymmetry in the grown crystals. In the case of HgCdTe the rejected component into the melt upon solidification is HgTe which is denser than the melt. The space grown crystals indicate the presence of three dimensional flow with the heavier HgTe-rich material clearly aligned with the residual gravity (0.55-1.55 micro g) vector. This flow stems from double-diffusive convection, namely, thermal and solutal buoyancy driven flow in the melt. The study of double-diffusive convection is multi-faceted and rather vast. In our investigation, we seek to focus on one specific aspect of this discipline that is of direct relevance to materials processing especially crystal growth, namely, the side ways heating regime. This problem has been widely studied, both experimentally and numerically, in the context of solar ponds wherein the system is characterized by a linear salt (solutal) gradient with an imposed lateral temperature gradient. The induced flow instabilities arise from the wide disparity between the fluid thermal diffusivity and the solute diffusivity. The extension of the analysis to practical crystal growth applications has however not been rigorously made and understood. One subtle but important difference in crystal growth systems is the fact that die system solute gradient is non-linear (typically exponential). Besides, the crystal growth problem has the added complexities of solidification, both lateral and longitudinal thermal gradients and segregation phenomena in systems where binary and ternary compounds are being grown. This paper treats the side ways heating problem alone in a model fluid system. Results from detailed numerical calculations, mainly two dimensional are provided. The interactions between a non-linear solute gradient and an imposed transverse thermal gradient are investigated. The buoyancy effects are treated in the traditional Boussinesq approximation and also in a more complete density formulation to address recent concerns of the first approach especially in simulations of the system response in a reduced gravity environment. Detailed flow, temperature and solute field plots along with heat and mass transfer results are presented in the paper. Implications to practical crystal growth systems as discerned from the modeling results are also explored and reported.
Mechanism behind Erosive Bursts In Porous Media.
Jäger, R; Mendoza, M; Herrmann, H J
2017-09-22
Erosion and deposition during flow through porous media can lead to large erosive bursts that manifest as jumps in permeability and pressure loss. Here we reveal that the cause of these bursts is the reopening of clogged pores when the pressure difference between two opposite sites of the pore surpasses a certain threshold. We perform numerical simulations of flow through porous media and compare our predictions to experimental results, recovering with excellent agreement shape and power-law distribution of pressure loss jumps, and the behavior of the permeability jumps as a function of particle concentration. Furthermore, we find that erosive bursts only occur for pressure gradient thresholds within the range of two critical values, independent of how the flow is driven. Our findings provide a better understanding of sudden sand production in oil wells and breakthrough in filtration.
Marangoni-driven chemotaxis, chemotactic collapse, and the Keller-Segel equation
NASA Astrophysics Data System (ADS)
Shelley, Michael; Masoud, Hassan
2013-11-01
Almost by definition, chemotaxis involves the biased motion of motile particles along gradients of a chemical concentration field. Perhaps the most famous model for collective chemotaxis in mathematical biology is the Keller-Segel model, conceived to describe collective aggregation of slime mold colonies in response to an intrinsically produced, and diffusing, chemo-attractant. Heavily studied, particularly in 2D where the system is ``super-critical'', it has been proved that the KS model can develop finite-time singularities - so-called chemotactic collapse - of delta-function type. Here, we study the collective dynamics of immotile particles bound to a 2D interface above a 3D fluid. These particles are chemically active and produce a diffusing field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. Remarkably, we show that this system involving 3D diffusion and fluid dynamics, exactly yields the 2D Keller-Segel model for the surface-flow of active particles. We discuss the consequences of collapse on the 3D fluid dynamics, and generalizations of the fluid-dynamical model.
Measurement of gas viscosity using photonic crystal fiber
NASA Astrophysics Data System (ADS)
Gao, R.-K.; Sheehe, S. L.; Kurtz, J.; O'Byrne, S.
2016-11-01
A new measurement technique for gas viscosity coefficient is designed and demonstrated using the technique of tunable diode laser absorption spectroscopy (TDLAS). Gas flow is driven by a pressure gradient between two gas cells, through a photonic crystal fiber (PCF) surrounded by a furnace for temperature adjustment. PCF with 20-micron diameter affords physical space for gas-light interaction and provides a basis for gas viscosity measurement by determining the time for flow to exit a capillary tube under the influence of a pressure gradient. Infrared radiation from a diode laser is coupled into the fiber to be guided through the gas, and the light attenuation due to absorption from the molecular absorbing species is measured by a photo detector placed at the exit of the fiber. A numerical model from Sharipov and Graur describing local number density distribution in a unsteady state is applied for the determination of gas viscosity, based on the number density of gas measured by the absorption of the laser light, using the Beer-Lambert law. The measurement system is confirmed by measuring the viscosity of CO2 as a reference gas.
On the tertiary instability formalism of zonal flows in magnetized plasmas
NASA Astrophysics Data System (ADS)
Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.
2018-05-01
This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZF
Numerical analysis of flows of rarefied gases in long channels with octagonal cross section shapes
NASA Astrophysics Data System (ADS)
Szalmas, L.
2014-12-01
Isothermal, pressure driven rarefied gas flows through long channels with octagonal cross section shapes are analyzed computationally. The capillary is between inlet and outlet reservoirs. The cross section is constant along the axial direction. The boundary condition at the solid-gas interface is assumed to be diffuse reflection. Since the channel is long, the gaseous velocity is small compared to the average molecular speed. Consequently, a linearized description can be used. The flow is described by the linearized Bhatnagar-Gross-Krook kinetic model. The solution of the problem is divided into two stages. First, the local flow field is determined by assuming the local pressure gradient. Secondly, the global flow behavior is deduced by the consideration of the conservation of the mass along the axis of the capillary. The kinetic equation is solved by the discrete velocity method on the cross section. Both spatial and velocity spaces are discretized. A body fitted rectangular grid is used for the spatial space. Near the boundary, first-order, while in the interior part of the flow domain, second-order finite-differences are applied to approximate the spatial derivatives. This combination results into an efficient and straightforward numerical treatment. The velocity space is represented by a Gauss-Legendre quadrature. The kinetic equation is solved in an iterative manner. The local dimensionless flow rate is calculated and tabulated for a wide range of the gaseous rarefaction for octagonal cross sections with various geometrical parameters. It exhibits the Knudsen minimum phenomenon. The flow rates in the octagonal channel are compared to those through capillaries with circular and square cross sections. Typical velocity profiles are also shown. The mass flow rate and the distribution of the pressure are determined and presented for global pressure driven flows.
Fast Solar Wind from Slowly Expanding Magnetic Flux Tubes (P54)
NASA Astrophysics Data System (ADS)
Srivastava, A. K.; Dwivedi, B. N.
2006-11-01
aks.astro.itbhu@gmail.com We present an empirical model of the fast solar wind, emanating from radially oriented slowly expanding magnetic flux tubes. We consider a single-fluid, steady state model in which the flow is driven by thermal and non-thermal pressure gradients. We apply a non-Alfvénic energy correction at the coronal base and find that specific relations correlate solar wind speed and non-thermal energy flux with the aerial expansion factor. The results are compared with the previously reported ones.
Rauscher, Evelin; Schuszter, Gábor; Bohner, Bíborka; Tóth, Ágota; Horváth, Dezső
2018-02-21
We have produced hollow copper-containing precipitate tubes using a flow-injection technique, and characterized their linear and volume growth. It is shown that the ratio of the volume increase rate to that of pumping is constant independent of the chemical composition. It is also found that osmosis significantly contributes to the tube growth, since the inward flux of chemical species dominates during the precipitate pattern formation. The asymmetric hydrodynamic field coupled with the inherent concentration and pH gradients results in different particle morphology on the two sides of the precipitate membrane. While the tubes have a smooth outer surface, the inner walls are covered with nanoflowers for copper phosphate and with nanoballs for copper silicate.
Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.
1992-01-01
Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.
2014-04-24
Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less
NASA Astrophysics Data System (ADS)
Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.
2014-07-01
We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.
Scaling laws and bulk-boundary decoupling in heat flow.
del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I
2015-03-01
When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.
Subtidal hydrodynamics in a tropical lagoon: A dimensionless numbers approach
NASA Astrophysics Data System (ADS)
Tenorio-Fernandez, L.; Valle-Levinson, A.; Gomez-Valdes, J.
2018-01-01
Observations in a tropical lagoon of the Yucatan peninsula motivated a non-dimensional number analysis to examine the relative influence of tidal stress, density gradients and wind stress on subtidal hydrodynamics. A two-month observation period in Chelem Lagoon covered the transition from the dry to the wet season. Chelem Lagoon is influenced by groundwater inputs and exhibits a main sub-basin (central sub-basin), a west sub-basin and an east sub-basin. Subtidal hydrodynamics were associated with horizontal density gradients that were modified seasonally by evaporation, precipitation, and groundwater discharge. A tidal Froude number (Fr0), a Wedderburn number (W), and a Stress ratio (S0) were used to diagnose the relative importance of dominant subtidal driving forces. The Froude number (Fr0) compares tidal forcing and baroclinic forcing through the ratio of tidal stress to longitudinal baroclinic pressure gradient. The Wedderburn number (W) relates wind stress to baroclinicity. The stress ratio (S0) sizes tidal stress and wind stress. S0 is a new diagnostic tool for systems influenced by tides and winds, and represents the main contribution of this research. Results show that spring-tide subtidal flows in the tropical lagoon had log(Fr0) ≫ 0 and log(S0) > 0 , i.e., driven mainly by tidal stresses (advective accelerations). Neap tides showed log(Fr0) ≪ 0 and log(S0) < 0) , i.e., flows driven by baroclinicity, especially at the lagoon heads of the east and west sub-basins. However, when the wind stress intensified over the lagoon, the relative importance of baroclinicity decreased and the wind stress controlled the dynamics (log(W) ≫ 0). Each sub-basin exhibited a different subtidal response, according to the dimensionless numbers. The response depended on the fortnightly tidal cycle, the location and magnitude of groundwater input, and the direction and magnitude of the wind stress.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.
The role of the winter residual circulation in the summer mesopause regions in WACCM
NASA Astrophysics Data System (ADS)
Sanne Kuilman, Maartje; Karlsson, Bodil
2018-03-01
High winter planetary wave activity warms the summer polar mesopause via a link between the two hemispheres. Complex wave-mean-flow interactions take place on a global scale, involving sharpening and weakening of the summer zonal flow. Changes in the wind shear occasionally generate flow instabilities. Additionally, an altering zonal wind modifies the breaking of vertically propagating gravity waves. A crucial component for changes in the summer zonal flow is the equatorial temperature, as it modifies latitudinal gradients. Since several mechanisms drive variability in the summer zonal flow, it can be hard to distinguish which one is dominant. In the mechanism coined interhemispheric coupling, the mesospheric zonal flow is suggested to be a key player for how the summer polar mesosphere responds to planetary wave activity in the winter hemisphere. We here use the Whole Atmosphere Community Climate Model (WACCM) to investigate the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. Using composite analyses, we show that in the absence of an anomalous summer mesospheric temperature gradient between the equator and the polar region, weak planetary wave forcing in the winter would lead to a warming of the summer mesosphere region instead of a cooling, and vice versa. This is opposing the temperature signal of the interhemispheric coupling that takes place in the mesosphere, in which a cold and calm winter stratosphere goes together with a cold summer mesopause. We hereby strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
NASA Astrophysics Data System (ADS)
Fraggedakis, D.; Kouris, Ch.; Dimakopoulos, Y.; Tsamopoulos, J.
2015-08-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our volume-of-fluid algorithm is used to solve the governing equations. First, the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then, it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow, or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray, and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results [I. Cohen et al., "Two fluid drop snap-off problem: Experiments and theory," Phys. Rev. Lett. 83, 1147-1150 (1999)]. Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our result provides deeper insights into the mechanism of the pattern transitions and is in agreement with previous studies on core-annular flow [Ch. Kouris and J. Tsamopoulos, "Core-annular flow in a periodically constricted circular tube, I. Steady state, linear stability and energy analysis," J. Fluid Mech. 432, 31-68 (2001) and Ch. Kouris et al., "Comparison of spectral and finite element methods applied to the study of interfacial instabilities of the core-annular flow in an undulating tube," Int. J. Numer. Methods Fluids 39(1), 41-73 (2002)], segmented flow [E. Lac and J. D. Sherwood, "Motion of a drop along the centreline of a capillary in a pressure-driven flow," J. Fluid Mech. 640, 27-54 (2009)], and churn flow [R. Y. Bai et al., "Lubricated pipelining—Stability of core annular-flow. 5. Experiments and comparison with theory," J. Fluid Mech. 240, 97-132 (1992)].
Behavior of Caulobacter Crescentus Diagnosed Using a 3-Channel Microfluidic Device
NASA Astrophysics Data System (ADS)
Tang, Jay; Morse, Michael; Colin, Remy; Wilson, Laurence
2015-03-01
Many motile microorganisms are able to detect chemical gradients in their surroundings in order to bias their motion towards more favorable conditions. We study the biased motility of Caulobacter crescentus, a singly flagellated bacteria, which alternate between forward and backward swimming, driven by its flagella motor, which switches in rotation direction. We observe the swimming patterns of C. crescents in an oxygen gradient, which is established by flowing atmospheric air and pure nitrogen through a 3 parallel channel microfluidic device. In this setup, oxygen diffuses through the PDMS device and the bacterial medium, creating a linear gradient. Using low magnification, dark field microscopy, individual cells are tracked over a large field of view, with particular interest in the cells' motion relative to the oxygen gradient. Utilizing observable differences between backward and forward swimming motion, motor switching events can be identified. By analyzing these run time intervals between motor switches as a function of a cell's local oxygen level, we demonstrate that C. crescentus displays aerotacitc behavior by extending forward swimming run times while moving up an oxygen gradient, resulting in directed motility towards oxygen sources. Additionally, motor switching response is sensitive to both the steepness of the gradient experienced and background oxygen levels with cells exhibiting a logarithmic response to oxygen levels. Work funded by the United States National Science Foundation and by the Rowland Institute at Harvard University.
Ion temperature gradient mode driven solitons and shocks
NASA Astrophysics Data System (ADS)
Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.
2016-04-01
Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films studied in a wide variety of materials using a power law and we examine the consequent evolution of the elastic wall. We treat (i) a range of interactions that are known to underlie interfacial premelting and (ii) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at larger temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Confinement effects in premelting dynamics
NASA Astrophysics Data System (ADS)
Pramanik, Satyajit; Wettlaufer, John S.
2017-11-01
We examine the effects of confinement on the dynamics of premelted films driven by thermomolecular pressure gradients. Our approach is to modify a well-studied setting in which the thermomolecular pressure gradient is driven by a temperature gradient parallel to an interfacially premelted elastic wall. The modification treats the increase in viscosity associated with the thinning of films, studied in a wide variety of materials, using a power law and we examine the consequent evolution of the confining elastic wall. We treat (1) a range of interactions that are known to underlie interfacial premelting and (2) a constant temperature gradient wherein the thermomolecular pressure gradient is a constant. The difference between the cases with and without the proximity effect arises in the volume flux of premelted liquid. The proximity effect increases the viscosity as the film thickness decreases thereby requiring the thermomolecular pressure driven flux to be accommodated at higher temperatures where the premelted film thickness is the largest. Implications for experiment and observations of frost heave are discussed.
Haidekker, M A; White, C R; Frangos, J A
2001-10-01
Endothelial cells in blood vessels are exposed to bloodflow and thus fluid shear stress. In arterial bifurcations and stenoses, disturbed flow causes zones of recirculation and stagnation, which are associated with both spatial and temporal gradients of shear stress. Such gradients have been linked to the generation of atherosclerotic plaques. For in-vitro studies of endothelial cell responses, the sudden-expansion flow chamber has been widely used and described. A two-dimensional numerical simulation of the onset phase of flow through the chamber was performed. The wall shear stress action on the bottom plate was computed as a function of time and distance from the sudden expansion. The results showed that depending on the time for the flow to be established, significant temporal gradients occurred close to the second stagnation point of flow. Slowly ramping the flow over 15 s instead of 200 ms reduces the temporal gradients by a factor of 300, while spatial gradients are reduced by 23 percent. Thus, the effects of spatial and temporal gradients can be observed separately. In experiments on endothelial cells, disturbed flow stimulated cell proliferation only when flow onset was sudden. The spatial patterns of proliferation rate match the exposure to temporal gradients. This study provides information on the dynamics of spatial and temporal gradients to which the cells are exposed in a sudden-expansion flow chamber and relates them to changes in the onset phase of flow.
Seawater circulation in sediments driven by interactions between seabed topography and fluid density
Konikow, Leonard F.; Akhavan, M.; Langevin, C.D.; Michael, H.A.; Sawyer, A.H.
2013-01-01
Measurements of submarine groundwater discharge (SGD) in coastal areas often show that the saltwater discharge component is substantially greater than the freshwater discharge. Several mechanisms have been proposed to explain these high saltwater discharge values, including saltwater circulation driven by wave and tidal pumping, wave and tidal setup in intertidal areas, currents over bedforms, and density gradients resulting from mixing along the freshwater-saltwater interface. In this study, a new mechanism for saltwater circulation and discharge is proposed and evaluated. The process results from interaction between bedform topography and buoyancy forces, even without flow or current over the bedform. In this mechanism, an inverted salinity (and density) profile in the presence of both a bedform on the seafloor and an upward flow of fresher groundwater from depth induces a downward flow of saline pore water under the troughs and upward flow under the adjacent crest of the bedform. The magnitude and occurrence of the mechanism were tested using numerical methods. The results indicate that this mechanism could drive seawater circulation under a limited range of conditions and contribute 20%–30% of local SGD when and where the process is operative. Bedform shape, hydraulic conductivity, hydraulic head, and salinity at depth in the porous media, aquifer thickness, effective porosity, and hydrodynamic dispersion are among the factors that control the occurrence and magnitude of the circulation of seawater by this mechanism.
Gradient flows without blow-up for Lefschetz thimbles
Tanizaki, Yuya; Nishimura, Hiromichi; Verbaarschot, Jacobus J. M.
2017-10-16
We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.
NASA Astrophysics Data System (ADS)
Wang, W.; Kishimoto, Y.; Imadera, K.; Li, J. Q.; Wang, Z. X.
2018-05-01
The mechanism for the formation and sustainment of a self-organized global profile and the ‘ E × B staircase’ are investigated through simulations of a flux-driven ion temperature gradient (ITG) turbulence based on GKNET, a 5D global gyrokinetic code. The staircase is found to be initiated from the radially extended ITG mode structures with nearly up-down symmetry during the saturation phase, and is established as it evolves into a quasi-steady turbulence, leading to a self-organized global temperature profile and to meso-scale isomorphic profiles of the radial electric field and the temperature gradient. It is found that the quasi-regular E × B shear flow pattern is primarily originated from an even-symmetrical zonal flow produced by the extended ITG mode, which flow pattern exhibits an in-phase relation with the mean flow variation induced by the temperature relaxation. Consequently, the staircase is initiated through the profiles of total electric field and temperature gradient with a self-organized manner. Since the sign of E × B shear flow at the central part are opposite to that at both edges, it disintegrates the ITG mode into smaller scale eddies. Meanwhile, smaller scale eddies tend to be aligned radially by spontaneous phase matching, which can provide the growth of mode amplitude and the formation of radially extended mode structures, leading to the bursty heat transport. This process is repeated quasi-periodically, sustaining self-organized structures and the E × B staircase. Moreover, the equilibrium mean field is found to be of specific importance in causing the structures and dynamics from meso- to macro scales in toroidal plasmas.
Hemodynamic transition driven by stent porosity in sidewall aneurysms.
Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes
2015-05-01
The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.
Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A
2013-02-01
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Texas A&M vortex type phase separator
NASA Astrophysics Data System (ADS)
Best, Frederick
2000-01-01
Phase separation is required for regenerative biological and chemical process systems as well as thermal transport and rejection systems. Liquid and gas management requirements for future spacecraft will demand small, passive systems able to operate over wide ranges of inlet qualities. Conservation and recycling of air and water is a necessary part of the construction and operation of the International Space Station as well as future long duration space missions. Space systems are sensitive to volume, mass, and power. Therefore, it is necessary to develop a method to recycle wastewater with minimal power consumption. Regenerative life support systems currently being investigated require phase separation to separate the liquid from the gas produced. The microgravity phase separator designed and fabricated at Texas A&M University relies on centripetal driven buoyancy forces to form a gas-liquid vortex within a fixed, right-circular cylinder. Two-phase flow is injected tangentially along the inner wall of this cylinder producing a radial acceleration gradient. The gradient produced from the intrinsic momentum of the injected mixture results in a rotating flow that drives the buoyancy process by the production of a hydrostatic pressure gradient. Texas A&M has flown several KC-135 flights with separator. These flights have included scaling studies, stability and transient investigations, and tests for inventory instrumentation. Among the hardware tested have been passive devices for separating mixed vapor/liquid streams into single-phase streams of vapor only and liquid only. .
Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow
NASA Astrophysics Data System (ADS)
Nunn, J. A.
2008-12-01
Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.
Controlling microtube permeability via grafted polymers and solvent quality.
Suo, Tongchuan; Whitmore, Mark D
2014-03-21
We examine pressure-driven flow through a microtube with grafted polymers using a "doubly self-consistent field" steady-state theory. Our focus is on the structure of the polymer layer, the tube permeability, and the effects of solvent quality, for different regimes of open and closed tubes. We find that, within experimentally attainable pressure gradients, the flow has very little effect on the grafted layer. However, the polymers, and in particular variations in the solvent quality and cylinder radii, can have large effects on the flow. We find that the permeability can either increase or decrease with either the radius or solvent quality, and we identify the regimes for different behaviors in terms of general parameters that can be used to generalize to other systems. This allows us to identify regimes where the systems are most sensitive to these "tuning" parameters, and we find that they correspond to the boundaries between open and closed tubes identified earlier.
Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
Baigl, Damien
2012-10-07
Using light to control liquid motion is a new paradigm for the actuation of microfluidic systems. We review here the different principles and strategies to induce or control liquid motion using light, which includes the use of radiation pressure, optical tweezers, light-induced wettability gradients, the thermocapillary effect, photosensitive surfactants, the chromocapillary effect, optoelectrowetting, photocontrolled electroosmotic flows and optical dielectrophoresis. We analyze the performance of these approaches to control using light many kinds of microfluidic operations involving discrete pL- to μL-sized droplets (generation, driving, mixing, reaction, sorting) or fluid flows in microchannels (valve operation, injection, pumping, flow rate control). We show that a complete toolbox is now available to control microfluidic systems by light. We finally discuss the perspectives of digital optofluidics as well as microfluidics based on all optical fluidic chips and optically reconfigurable devices.
Linear and nonlinear dynamics of current-driven waves in dusty plasmas
NASA Astrophysics Data System (ADS)
Ahmad, Ali; Ali Shan, S.; Haque, Q.; Saleem, H.
2012-09-01
The linear and nonlinear dynamics of a recently proposed plasma mode of dusty plasma is studied using kappa distribution for electrons. This electrostatic wave can propagate in the plasma due to the sheared flow of electrons and ions parallel to the external magnetic field in the presence of stationary dust. The coupling of this wave with the usual drift wave and ion acoustic wave is investigated. D'Angelo's mode is also modified in the presence of superthermal electrons. In the nonlinear regime, the wave can give rise to dipolar vortex structures if the shear in flow is weaker and tripolar vortices if the flow has steeper gradient. The results have been applied to Saturn's magnetosphere corresponding to negatively charged dust grains. But the theoretical model is applicable for positively charged dust as well. This work will be useful for future observations and studies of dusty environments of planets and comets.
High-Beta Electromagnetic Turbulence in LAPD Plasmas
NASA Astrophysics Data System (ADS)
Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.
2015-11-01
The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.
Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops
NASA Astrophysics Data System (ADS)
Marin, Alvaro; Karpitschka, Stefan; Rossi, Massimiliano; Kaehler, Christian J.; Noguera-Marin, Diego; Rodriguez-Valverde, Miguel A.
2017-11-01
Salts can be found in different forms in almost any evaporating droplet in nature, our homes and in laboratories. The transport processes in such apparently simple systems differ strongly from `sweet' evaporating droplets since the liquid flows in the inverse direction due to Marangoni stresses at the surface. Such an effect has crucial consequences to salt crystallization processes and to the evaporation itself. In this work we show measurements that not only confirm clearly the details of the inverted flow patterns, but also permit us to calculate the surface tension gradients responsible for the reversal. Such a reversal does not prevent the coffee-stain effect; on the contrary, particles accumulate and get trapped at the liquid-air interface driven by the surface flow. In order to prove this, we show measurements of the full three-dimensional flow inside the evaporating salty droplet, confocal imaging is used to quantify the growth of the particle deposits for different salt concentrations, and we compare the experimental results with numerical simulations that capture the solvent evaporation, the evaporation-induced liquid flow and the quasi-equilibrium liquid-gas interface.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C.
2001-01-01
As shown in space flight experiments, g-jitter is a critical issue affecting solidification processing of materials in microgravity. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. Analytical solutions and 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without the presence of an applied magnetic field have been developed and extensive analyses were carried out. A physical model was also constructed and PIV measurements compared reasonably well with predictions from numerical models. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow oscillates at approximately the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes developing numerical models for solidification phenomena with the presence of both g-jitter and magnetic fields and developing a ground-based physical model to verify numerical predictions.
Yu, David U. L.
1990-01-01
A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.
Large-scale solar wind flow around Saturn's nonaxisymmetric magnetosphere
NASA Astrophysics Data System (ADS)
Sulaiman, A. H.; Jia, X.; Achilleos, N.; Sergis, N.; Gurnett, D. A.; Kurth, W. S.
2017-09-01
The interaction between the solar wind and a magnetosphere is central to the dynamics of a planetary system. Here we address fundamental questions on the large-scale magnetosheath flow around Saturn using a 3-D magnetohydrodynamic (MHD) simulation. We find Saturn's polar-flattened magnetosphere to channel 20% more flow over the poles than around the flanks at the terminator. Further, we decompose the MHD forces responsible for accelerating the magnetosheath plasma to find the plasma pressure gradient as the dominant driver. This is by virtue of a high-β magnetosheath and, in turn, the high-MA bow shock. Together with long-term magnetosheath data by the Cassini spacecraft, we present evidence of how nonaxisymmetry substantially alters the conditions further downstream at the magnetopause, crucial for understanding solar wind-magnetosphere interactions such as reconnection and shear flow-driven instabilities. We anticipate our results to provide a more accurate insight into the global conditions upstream of Saturn and the outer planets.
Homogeneous purely buoyancy driven turbulent flow
NASA Astrophysics Data System (ADS)
Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant
2010-11-01
An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.
NASA Technical Reports Server (NTRS)
Parrott, Tony L.; Zorumski, William E.; Rawls, John W., Jr.
1990-01-01
The feasibility is discussed for an experimental program for studying the behavior of acoustic wave propagation in the presence of strong gradients of pressure, temperature, and flow. Theory suggests that gradients effects can be experimentally observed as resonant frequency shifts and mode shape changes in a waveguide. A convenient experimental geometry for such experiments is the annular region between two co-rotating cylinders. Radial temperature gradients in a spinning annulus can be generated by differentially heating the two cylinders via electromagnetic induction. Radial pressure gradients can be controlled by varying the cylinder spin rates. Present technology appears adequate to construct an apparatus to allow independent control of temperature and pressure gradients. A complicating feature of a more advanced experiment, involving flow gradients, is the requirement for independently controlled cylinder spin rates. Also, the boundary condition at annulus terminations must be such that flow gradients are minimally disturbed. The design and construction of an advanced apparatus to include flow gradients will require additional technology development.
Hydrologic regimes as potential drivers of morphologic divergence in fish
Bruckerhoff, Lindsey; Magoulick, Daniel D.
2017-01-01
Fishes often exhibit phenotypic divergence across gradients of abiotic and biotic selective pressures. In streams, many of the known selective pressures driving phenotypic differentiation are largely influenced by hydrologic regimes. Because flow regimes drive so many attributes of lotic systems, we hypothesized fish exhibit phenotypic divergence among streams with different flow regimes. We used a comparative field study to investigate the morphological divergence of Campostoma anomalom (central stonerollers) among streams characterized by highly variable, intermittent flow regimes and streams characterized by relatively stable, groundwater flow regimes. We also conducted a mesocosm experiment to compare the plastic effects of one component of flow regimes, water velocity, on morphology of fish from different flow regimes. We observed differences in shape between flow regimes likely driven by differences in allometric growth patterns. Although we observed differences in morphology across flow regimes in the field, C. anomalum did not exhibit morphologic plasticity in response to water velocity alone. This study contributes to the understanding of how complex environmental factors drive phenotypic divergence and may provide insight into the evolutionary consequences of disrupting natural hydrologic patterns, which are increasingly threatened by climate change and anthropogenic alterations.
NASA Astrophysics Data System (ADS)
Mondal, A.; Shit, G. C.
2017-11-01
In this paper, we have examined the motion of magnetic-nanoparticles and the flow characteristics of biofluid in a micro-tube in the presence of externally applied magnetic field and electrokinetic effects. In the drug delivery system, the motion of the magnetic nanoparticles as carriers is important for therapeutic procedure in the treatment of tumor cells, infections and removing blood clots. The unidirectional electro-osmotic flow of biofluid is driven by the combined effects of pulsatile pressure gradient and electrokinetic force. The governing equation for unsteady electromagnetohydrodynamic flow subject to the no-slip boundary condition has been solved numerically by using Crank-Nicolson implicit finite difference scheme. We have analyzed the variation of axial velocity, velocity distribution of magnetic nanoparticles, volumetric flow rate and wall shear stress for various values of the non-dimensional parameters. The study reveals that blood flow velocity, carriers velocity and flow rate are strongly influenced by the electro-osmotic parameter as well as the Hartmann number. The particle mass parameter as well as the particle concentration parameter have efficient capturing effect on magnetic nanoparticles during blood flow through a micro-tube for drug delivery.
The effect of flow recirculation on abdominal aortic aneurysm
NASA Astrophysics Data System (ADS)
Taib, Ishkrizat; Amirnordin, Shahrin Hisham; Madon, Rais Hanizam; Mustafa, Norrizal; Osman, Kahar
2012-06-01
The presences of flow recirculation at the abdominal aortic aneurysm (AAA) region yield the unpredictable failure of aneurismal wall. The failure of the aneurismal wall is closely related to the hemodynamic factor. Hemodynamic factor such as pressure and velocity distribution play a significance role of aneurysm growth and rupture. By using the computational approach, the influence of hemodynamic factor is investigated using computational fluid dynamic (CFD) method on the virtual AAA model. The virtual 3D AAAs model was reconstructed from Spiral Computed Tomography scan (CT-scan). The blood flow is assumed as being transient, laminar and Newtonian within a rigid section of the vessel. The blood flow also driven by an imposed of pressure gradient in the form of physiological waveform. The pulsating blood flow is also considered in this simulation. The results on pressure distribution and velocity profile are analyzed to interpret the behaviour of flow recirculation. The results show the forming of vortices is seen at the aneurysm bulge. This vortices is form at the aneurysm region then destroyed rapidly by flow recirculation. Flow recirculation is point out much higher at distal end of aneurysm closed to iliac bifurcation. This phenomenon is managed to increase the possibility of aneurysm growth and rupture.
Mechanical models for dikes: A third school of thought
NASA Astrophysics Data System (ADS)
Townsend, Meredith R.; Pollard, David D.; Smith, Richard P.
2017-04-01
Geological and geophysical data from continental volcanic centers and giant radial swarms, and from oceanic shield volcanoes and rift zones, indicate that dikes propagate laterally for distances that can be 10 to over 100 times their height. What traps dikes within the shallow lithosphere and promotes these highly eccentric shapes? Gravity-induced stress gradients in the surrounding rock and pressure gradients in the magma are the primary loading mechanisms; pressure gradients due to magma flow are secondary to insignificant, because the flow direction is dominantly horizontal. This configuration of vertical, blade-shaped dikes with horizontal dike propagation and magma flow is fundamentally different from the two dike model configurations described in a recent review paper as two schools of thought for mechanical models of dikes. In School I, a dike is disconnected from its source and ascends under the influence of buoyancy. In School II, a dike is connected to a magma reservoir and is driven upward by magma flux from the source. We review the geological and geophysical data supporting the vertical dike - horizontal flow/propagation configuration and suggest the abundance and veracity of these data in many different geological settings, and the modeling results that address this physical process, warrant adding this as a third school of thought. A new analytical solution for the boundary-value problem of a homogeneous, isotropic, and linear elastic solid with a vertical, fluid-filled crack is used to investigate the effects of gravitationally induced stress and pressure gradients on the aperture distribution, dike-tip stress intensity, and stable height. Model results indicate that in a homogeneous crust, dikes can achieve stable heights greater than a kilometer only if the host rock fracture toughness KIC 100 MPa · m1/2. However, density stratification of the crust is an effective mechanism for trapping kilometer-scale dikes even if the host rock is very weak (KIC = 0). This analysis may explain why vertical dikes propagate laterally for great distances, but reside within a narrow range of depths in the crust.
NASA Astrophysics Data System (ADS)
Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis
2015-11-01
We study the flow of two immiscible, Newtonian fluids in a periodically constricted tube driven by a constant pressure gradient. Our Volume-of-Fluid algorithm is used to solve the governing equations. First the code is validated by comparing its predictions to previously reported results for stratified and pulsing flow. Then it is used to capture accurately all the significant topological changes that take place. Initially, the fluids have a core-annular arrangement, which is found to either remain the same or change to a different arrangement depending on the fluid properties, the pressure driving the flow or the flow geometry. The flow-patterns that appear are the core-annular, segmented, churn, spray and segregated flow. The predicted scalings near pinching of the core fluid concur with similarity predictions and earlier numerical results (Cohen et al. (1999)). Flow-pattern maps are constructed in terms of the Reynolds and Weber numbers. Our results provide deeper insights in the mechanism of the pattern transitions and are in agreement with previous studies on core-annular flow (Kouris & Tsamopoulos (2001 & 2002)), segmented flow (Lac & Sherwood (2009)) and churn flow (Bai et al. (1992)). GSRT of Greece through the program ``Excellence'' (Grant No. 1918, entitled ``FilCoMicrA'').
NASA Astrophysics Data System (ADS)
Azih, Chukwudi; Yaras, Metin I.
2018-01-01
The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.
Investigation of thermocapillary convection in a three-liquid-layer system
NASA Astrophysics Data System (ADS)
Géoris, Ph.; Hennenberg, M.; Lebon, G.; Legros, J. C.
1999-06-01
This paper presents the first experimental results on Marangoni Bénard instability in a symmetrical three-layer system. A pure thermocapillary phenomenon has been observed by performing the experiment in a microgravity environment where buoyancy forces can be neglected. This configuration enables the hydrodynamic stability of two identical liquid liquid interfaces subjected to a normal gradient of temperature to be studied. The flow is driven by one interface only and obeys the criterion based on the heat diffusivity ratio proposed by Scriven & Sternling (1959) and Smith (1966). The measured critical temperature difference for the onset of convection is compared to the value obtained from two-dimensional numerical simulations. The results of the simulations are in reasonable agreement with the velocimetry and the thermal experimental data for moderate supercriticality. Numerically and experimentally, the convective pattern exhibits a transition between different convective regimes for similar temperature gradients. Their common detailed features are discussed.
Generation of Plasma Density Irregularities in the Midlatitude/Subauroral F Region
NASA Astrophysics Data System (ADS)
Mishin, E. V.
2017-12-01
A concise review is given of the current state of the theoretical understanding of the creation of small- and meso-scale plasma density irregularities in the midlatitude/subauroral F region during quiet and disturbed periods. The former are discussed in terms of the temperature gradient instability (TGI) in the vicinity of the ionospheric projection of the plasmapause and the Perkins instability. During active conditions some part of the midlatitude ionosphere becomes the subauroral region dominated by enhanced westward flows (SAPS and SAID) driven by poleward electric fields. Their irregular, often nonlinear wave structure leads to the formation of plasma density irregularities in the plasmasphere and conjugate ionosphere. Here, meso-scale irregularities are due to the positive feedback magnetosphere-ionosphere coupling instability, while small scales resulted from the gradient drift instability (GDI), temperature GDI, and the ion frictional heating instability. The theoretical predictions are compared with satellite observations in the perturbed subauroral geospace.
Injection and swirl driven flowfields in solid and liquid rocket motors
NASA Astrophysics Data System (ADS)
Vyas, Anand B.
In this work, we seek approximate analytical solutions to describe the bulk flow motion in certain types of solid and liquid rocket motors. In the case of an idealized solid rocket motor, a cylindrical double base propellant grain with steady regression rate is considered. The well known inviscid profile determined by Culick is extended here to include the effects of viscosity and steady grain regression. The approximate analytical solution for the cold flow is obtained from similarity principles, perturbation methods and the method of variation of parameters. The velocity, vorticity, pressure gradient and the shear stress distributions are determined and interpreted for different rates of wall regression and injection Reynolds number. The liquid propellant rocket engine considered here is based on a novel design that gives rise to a cyclonic flow. The resulting bidirectional motion is triggered by the tangential injection of an oxidizer just upstream of the chamber nozzle. Velocity, vorticity and pressure gradient distributions are determined for the bulk gas dynamics using a non-reactive inviscid model. Viscous corrections are then incorporated to explain the formation of a forced vortex near the core. Our results compare favorably with numerical simulations and experimental measurements obtained by other researchers. They also indicate that the bidirectional vortex in a cylindrical chamber is a physical solution of the Euler equations. In closing, we investigate the possibility of multi-directional flow behavior as predicted by Euler's equation and as reported recently in laboratory experiments.
The Footprint of Continental-Scale Ocean Currents on the Biogeography of Seaweeds
Wernberg, Thomas; Thomsen, Mads S.; Connell, Sean D.; Russell, Bayden D.; Waters, Jonathan M.; Zuccarello, Giuseppe C.; Kraft, Gerald T.; Sanderson, Craig; West, John A.; Gurgel, Carlos F. D.
2013-01-01
Explaining spatial patterns of biological organisation remains a central challenge for biogeographic studies. In marine systems, large-scale ocean currents can modify broad-scale biological patterns by simultaneously connecting environmental (e.g. temperature, salinity and nutrients) and biological (e.g. amounts and types of dispersed propagules) properties of adjacent and distant regions. For example, steep environmental gradients and highly variable, disrupted flow should lead to heterogeneity in regional communities and high species turnover. In this study, we investigated the possible imprint of the Leeuwin (LC) and East Australia (EAC) Currents on seaweed communities across ~7,000 km of coastline in temperate Australia. These currents flow poleward along the west and east coasts of Australia, respectively, but have markedly different characteristics. We tested the hypothesis that, regional seaweed communities show serial change in the direction of current flow and that, because the LC is characterised by a weaker temperature gradient and more un-interrupted along-shore flow compared to the EAC, then coasts influenced by the LC have less variable seaweed communities and lower species turnover across regions than the EAC. This hypothesis was supported. We suggest that this pattern is likely caused by a combination of seaweed temperature tolerances and current-driven dispersal. In conclusion, our findings support the idea that the characteristics of continental-scale currents can influence regional community organisation, and that the coupling of ocean currents and marine biological structure is a general feature that transcends taxa and spatial scales. PMID:24260352
Observation of improved and degraded confinement with driven flow on the LAPD
NASA Astrophysics Data System (ADS)
Schaffner, David
2012-10-01
External continuous control over azimuthal flow and flow shear has been achieved in a linear plasma device for the first time allowing for a careful study of the effect of flow shear on pressure-gradient-driven turbulence and transport in the edge of the Large Plasma Device (LAPD). The flow is controlled using biasable iris-like limiters situated axially between the cathode source and main plasma chamber. LAPD rotates spontaneously in the ion diamagnetic direction (IDD); positive limiter bias first reduces, then minimizes (producing a near-zero shear state), and finally reverses the flow into the electron diamagnetic direction (EDD). Degradation of particle confinement is observed in the minimum shearing state and reduction in turbulent particle flux is observed with increasing shearing in both flow directions. Near-complete suppression of turbulent particle flux is observed for shearing rates comparable to the turbulent autocorrelation rate measured in the minimum shear state. Turbulent flux suppression is dominated by amplitude reduction in low-frequency (>10kHz) density fluctuations and a reduction in the radial correlation length. An increase in fluctuations for the highest shearing states is observed with the emergence of a coherent mode which does not lead to net particle transport. Magnetic field is varied in order to explore whether and how field effects transport modification. Calculations of transport equations are used to predict density profiles given source and temperature profiles and can show the level of transport predicted to be necessary in order to produce the experimental density profiles observed. Finally, the variations of density fluctuations and radial correlation length are fit well with power-laws and compare favorably to simple models of shear suppression of transport.
Glass fining experiments in zero gravity
NASA Technical Reports Server (NTRS)
Smith, H. D.
1977-01-01
Ground based experiments were conducted to demonstrate that thermal migration actually operated in glass melts. Thermal migration consistent with the theory was found in one experiment on a borax melt, i.e., there was an approximately linear relation between the bubble diameter and bubble velocity for a given temperature and temperature gradient. It also appeared that nearby bubbles were attracted to one another, which could greatly aid fining. Interpretation of these results was not possible because of complications arising from gravity, i.e., floating of the bubbles, circulation currents due to buoyancy-driven natural connection, and flow of the melt out from the cell.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
On the mound of Macrotermes michaelseni as an organ of respiratory gas exchange.
Turner, J S
2001-01-01
Patterns and rates of air movements in the mounds and nests of Macrotermes michaelseni were studied using tracer methods. Wind is a significant source of energy for powering nest ventilation, despite the mound being a completely enclosed structure. Nests are ventilated by a tidal movement of air driven by temporal variation in wind speed and wind direction. Density gradients sufficiently steep to drive bulk flow by natural convection will be rare. However, metabolism-induced buoyant forces may interact with wind energy in a way that promotes homeostasis of the mound atmosphere.
Adaptive mesh strategies for the spectral element method
NASA Technical Reports Server (NTRS)
Mavriplis, Catherine
1992-01-01
An adaptive spectral method was developed for the efficient solution of time dependent partial differential equations. Adaptive mesh strategies that include resolution refinement and coarsening by three different methods are illustrated on solutions to the 1-D viscous Burger equation and the 2-D Navier-Stokes equations for driven flow in a cavity. Sharp gradients, singularities, and regions of poor resolution are resolved optimally as they develop in time using error estimators which indicate the choice of refinement to be used. The adaptive formulation presents significant increases in efficiency, flexibility, and general capabilities for high order spectral methods.
Direct Coupling Method for Time-Accurate Solution of Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Soh, Woo Y.
1992-01-01
A noniterative finite difference numerical method is presented for the solution of the incompressible Navier-Stokes equations with second order accuracy in time and space. Explicit treatment of convection and diffusion terms and implicit treatment of the pressure gradient give a single pressure Poisson equation when the discretized momentum and continuity equations are combined. A pressure boundary condition is not needed on solid boundaries in the staggered mesh system. The solution of the pressure Poisson equation is obtained directly by Gaussian elimination. This method is tested on flow problems in a driven cavity and a curved duct.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Crystal growth in a low gravity environment
NASA Technical Reports Server (NTRS)
Carruthers, J. R.
1977-01-01
Crystal growth in microgravity possesses several distinct technological advantages over earth-bound processes; containerless handling and reduction of density gradient driven as well as sedimentation flows. Experiments performed in space to date have been basically reproductions of processes currently used on earth and the results have clarified our understanding of crystal growth dynamics. In addition, both unresolved problems and areas requiring further study on earth have been identified. Future work in space processing of materials must address these areas of study as soon as possible if the full potential of a space environment to develop new techniques and materials is to be realized.
NASA Astrophysics Data System (ADS)
Adams, Peter N.
2018-04-01
The Merritt Island-Cape Canaveral (MICCSC) sedimentary complex consists of a series of adjacent, non-conformable, beach ridge sets that suggest a multi-phase constructional history, but the feature's geomorphic and sedimentary origins are not well-understood. In spite of its notable sedimentary volume (surface area = 1200 km2), the MICCSC lacks a clear sediment source, or supply mechanism, to explain its presence today. Previously published U/Th, radiocarbon and OSL dates indicate that beach ridge deposition was active during MIS 5 (130-80 ka) on Merritt Island, but has occurred over a shorter, younger time interval on Cape Canaveral proper (6 ka to present). In this paper, it is proposed that the MICCSC is an abandoned paleodelta whose fluvial source provided a sediment supply sufficient for coastal progradation. Although the MICCSC, today, does not receive an appreciable sediment supply, the nearly 23,000 km2 drainage basin of the St. Johns River may well have provided such a sediment supply during MIS 5 times. This low-gradient fluvial system currently empties to the Atlantic Ocean some 200 km north of the MICCSC (near Jacksonville, Florida) but may have flowed southward during the time of MICCSC sedimentary construction, then experienced flow reversal since MIS 5 times. Three possible uplift mechanisms are proposed to explain the northward down-tilting that may have reversed the flow direction of the St. Johns, abandoning deltaic construction of the MICCSC: (1) karst-driven, flexural isostatic uplift in response to carbonate rock dissolution in central Florida, (2) glacio-hydro-isostatic tilting/back-tilting cycles during loading and unloading of the Laurentide ice sheet during the Pleistocene, and (3) mantle convection-driven dynamic topography operating within southeastern North America since the Pliocene. This example testifies to the sensitivity of low-gradient, low-relief landscapes to various sources of uplift, be they isostatic or otherwise.
An isotope hydrology study of the Kilauea volcano area, Hawaii
Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P.
1995-01-01
Isotope tracer methods were used to determine flow paths, recharge areas, and relative age for ground water in the Kilauea volcano area on the Island of Hawaii. Stable isotopes in rainfall show three distinct isotopic gradients with elevation, which are correlated with trade-wind, rain shadow, and high-elevation climatological patterns. Temporal variations in isotopic composition of precipitation are controlled more by the frequency of large storms than b.y seasonal temperature fluctuations. Consistency in results between two separate areas with rainfall caused by tradewinds and thermally-driven upslope airflow suggests that isotopic gradients with elevation may be similar on other islands in the tradewind belt, especially the other Hawaiian Islands, which have similar climatology and temperature lapse rates. Areal contrasts in ground-water stable isotopes and tritium indicate that the volcanic ri~ zones compartmentalize the regional ground-water system. Tritium levels in ground water within and downgradient of Kilauea's ri~ zones indicate relatively long residence times. Part of Kilauea's Southwest Ri~ Zone appears to act as a conduit for water from higher elevation, but there is no evidence for extensive down-ri~ flow in the lower East Ri~ Zone.
Ocean currents modify the coupling between climate change and biogeographical shifts.
García Molinos, J; Burrows, M T; Poloczanska, E S
2017-05-02
Biogeographical shifts are a ubiquitous global response to climate change. However, observed shifts across taxa and geographical locations are highly variable and only partially attributable to climatic conditions. Such variable outcomes result from the interaction between local climatic changes and other abiotic and biotic factors operating across species ranges. Among them, external directional forces such as ocean and air currents influence the dispersal of nearly all marine and many terrestrial organisms. Here, using a global meta-dataset of observed range shifts of marine species, we show that incorporating directional agreement between flow and climate significantly increases the proportion of explained variance. We propose a simple metric that measures the degrees of directional agreement of ocean (or air) currents with thermal gradients and considers the effects of directional forces in predictions of climate-driven range shifts. Ocean flows are found to both facilitate and hinder shifts depending on their directional agreement with spatial gradients of temperature. Further, effects are shaped by the locations of shifts in the range (trailing, leading or centroid) and taxonomic identity of species. These results support the global effects of climatic changes on distribution shifts and stress the importance of framing climate expectations in reference to other non-climatic interacting factors.
Thermocapillary reorientation of Janus drops
NASA Astrophysics Data System (ADS)
Rosales, Rodolfo; Saenz, Pedro
2017-11-01
Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, J.D.L.; Robinson, P.T.
The largely Eocene Clarno Formation consists of andesitic volcaniclastic rocks interstratified with clayey paludal sediments and lava flows, and cut locally by irregular hypabyssal stocks, dikes and sills. Lateral lithofacies variations are pronounced, and intrusive and extrusive volcanic rocks appear haphazardly emplaced throughout the formation. A range of sedimentary environments is represented, including near-vent flow and breccia accumulations, bouldery high-gradient braided streams, and relatively low-gradient sandy-tuff braidplains associated with paludal deposits. The authors infer that the coarse-grained volcaniclastic rocks of the Clarno Formation accumulated largely in volcanic flank and apron settings. The stratigraphy of the formation indicates that it wasmore » formed in sedimentary lowlands into which many small volcanoes erupted; only a few, scattered remnants of large central vent volcanoes are known. The absence of systematic variation across the unit's large outcrop belt argues against the derivation of the succession from a line of volcanoes beyond the reaches of the present outcrop. The authors infer that the arc was composed of small to medium-sized volcanoes arranged non-systematically over a broad area. The sedimentary succession most probably accumulated in a series of shallow intra-arc depressions formed by crustal stretching and diffuse block rotation driven by oblique subduction during the Eocene.« less
Pike, R.J.; Sobieszczyk, S.
2008-01-01
GIS analysis at 30-m resolution reveals that effectiveness of slope-destabilizing processes in the San Francisco Bay area varies with compass direction. Nearly half the soil slip/debris flows mapped after the catastrophic rainstorm of 3-5 January 1982 occurred on slopes that face S to WSW, whereas fewer than one-quarter have a northerly aspect. Azimuthal analysis of hillside properties for susceptible terrain near the city of Oakland suggests that the skewed aspect of these landslides primarily reflects vegetation type, ridge and valley alignment, and storm-wind direction. Bedrock geology, soil expansivity, and terrain height and gradient also were influential but less so; the role of surface curvature is not wholly resolved. Normalising soil-slip aspect by that of the region's NNW-striking topography shifts the modal azimuth of soil-slip aspect from SW to SE, the direction of origin of winds during the 1982 storm-but opposite that of the prevailing WNW winds. Wind from a constant direction increases rainfall on windward slopes while diminishing it on leeward slopes, generating a modelled difference in hydrologically effective rainfall of up to 2:1 on steep hillsides in the Oakland area. This contrast is consistent with numerical simulations of wind-driven rain and with rainfall thresholds for debris-flow activity. We conclude that storm winds from the SE in January 1982 raised the vulnerability of the Bay region's many S-facing hillsides, most of which are covered in shallow-rooted shrub and grass that offer minimal resistance to soil slip. Wind-driven rainfall also appears to have controlled debris-flow location in a major 1998 storm and probably others. Incorporating this overlooked influence into GIS models of debris-flow likelihood would improve predictions of the hazard in central California and elsewhere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odier, Philippe; Ecke, Robert E.
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
Odier, Philippe; Ecke, Robert E.
2017-02-21
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
Evolution of a Planar Wake in Adverse Pressure Gradient
NASA Technical Reports Server (NTRS)
Driver, David M.; Mateer, George G.
2016-01-01
In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.
A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation
Zhang, Rui; Zhu, Shiping; Zhou, Qin
2016-01-01
Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660
Climate and soil-age constraints on nutrient uplift and retention by plants.
Porder, Stephen; Chadwick, Oliver A
2009-03-01
Plants and soils represent coevolving components of ecosystems, and while the effects of soils (e.g., nutrient availability) on plants have been extensively documented, the effect of plants on soils has received less attention. Furthermore there has been no systematic investigation of how plant effects vary across important ecological gradients in climate or soil age, which leaves a substantial gap in our understanding of how plant-soil systems develop. In this context, we analyzed changes in nutrient availability and elemental losses from the entire weathering zone at 35 sites arrayed across climatic and soil-age gradients on the island of Hawai'i. The sites are located on three basaltic lava flows (ages 10, 170, and 350 kyr) each of which crosses a precipitation gradient from approximately 500 to 2500 mm/yr. By comparing the loss of nutrient (potassium, phosphorus) and non-nutrient (e.g., sodium) rock-derived elements, we identify a climatic zone at intermediate rainfall where the retention of plant nutrients in the upper soil is most pronounced. We further show that there are several abiotic constraints on plant-driven retention of nutrients. At the dry sites (< or = 750 mm/yr on all three flows), plants slow the loss of nutrients, but the effect (as measured by the difference between K and Na losses) is small, perhaps because of low plant cover and productivity. At intermediate rainfall (750-1400 mm/yr) but negative water balance, plants substantially enrich both nutrient cations and P relative to Na in the surface horizons, an effect that remains strong even after 350 kyr of soil development. In contrast, at high rainfall (> or = 1500 mm/yr) and positive water balance, the effect of plants on nutrient distributions diminishes with soil age as leaching losses overwhelm the uplift and retention of nutrients by plants after 350 kyr of soil development. The effect of plants on soil nutrient distributions can also be mediated by the movement of iron (Fe), and substantial Fe losses at high rainfall on the older flows are highly correlated with P losses. Thus redox-driven redistribution of Fe may place a further abiotic constraint on nutrient retention by plants. In combination, these data indicate that the effects of soil aging on plant uplift and retention of nutrients differ markedly with precipitation, and we view this as a potentially fruitful area for future research.
NASA Astrophysics Data System (ADS)
Carroll, R. W.; Warwick, J. J.
2009-12-01
Past mercury modeling studies of the Carson River-Lahontan Reservoir (CRLR) system have focused on total Hg and total MeHg transport in the Carson River, most of which is cycled through the river via sediment transport processes of bank erosion and over bank deposition during higher flow events. Much less attention has been given to low flow events and dissolved species. Four flow regimes are defined to capture significant mechanisms of mercury loading for total and dissolved species at all flow regimes. For extremely low flows, only gradient driven diffusion of mercury from the bottom sediments occurs. At low flows, diffusional loads are augmented with turbulent mixing of channel bed material. Mercury loading into the river during medium to higher flows is driven by bank erosion process, but flows remain within the confines of the river’s channel. Finally, mercury cycling during overbank flows is dominated by both bank erosion as well as floodplain deposition. Methylation and demethylation are allowed to occur in the channel and reservoir bed sediments as well as in channel bank sediments and are described by the first order kinetic equations using observed methylation and demethylation rates. Calibration and verification is divided into geomorphic as well as mercury geochemical and transport processes with evaluation done for pre- and post- 1997 flood conditions to determine systematic changes to mercury cycling as a result of the January 1997 flood. Preliminary results for a Monte Carlo simulation are presented. Monte Carlo couples output uncertainty due to ranges in bank erosion rates, inorganic mercury in the channel banks, floodplain transport capacity during over bank flows, methylation and demethylation rates and diffusional distance in the reservoir bottom sediments. Uncertainty is compared to observed variability in water column mercury concentrations and discussed in the context of flow regime and reservoir residence time.
The stratified two-sided jet of Cygnus A. Acceleration and collimation
NASA Astrophysics Data System (ADS)
Boccardi, B.; Krichbaum, T. P.; Bach, U.; Mertens, F.; Ros, E.; Alef, W.; Zensus, J. A.
2016-01-01
Aims: High-resolution Very-Long-Baseline Interferometry (VLBI) observations of relativistic jets are essential for constraining the fundamental parameters of jet formation models. At a distance of 249 Mpc, Cygnus A is a unique target for such studies, since it is the only Fanaroff-Riley Class II radio galaxy for which a detailed subparsec scale imaging of the base of both jet and counter-jet can be obtained. Observing at millimeter wavelengths unveils those regions that appear self-absorbed at longer wavelengths and enables an extremely sharp view toward the nucleus to be obtained. Methods: We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 μas. This resolution corresponds to a linear scale of only ~400 Schwarzschild radii (for MBH = 2.5 × 109M⊙). We studied the kinematic properties of the main emission features of the two-sided flow and probed its transverse structure through a pixel-based analysis. Results: We suggest that a fast and a slow layer with different acceleration gradients exist in the flow. The extension of the acceleration region is large (~ 104RS), indicating that the jet is magnetically driven. The limb brightening of both jet and counter-jet and their large opening angles (φJ ~ 10°) strongly favour a spine-sheath structure. In the acceleration zone, the flow has a parabolic shape (r ∝ z0.55 ± 0.07). The acceleration gradients and the collimation profile are consistent with the expectations for a jet in "equilibrium", achieved in the presence of a mild gradient of the external pressure (p ∝ z- k,k ≤ 2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valdarnini, R., E-mail: valda@sissa.it
In this paper, we present results from a series of hydrodynamical tests aimed at validating the performance of a smoothed particle hydrodynamics (SPH) formulation in which gradients are derived from an integral approach. We specifically investigate the code behavior with subsonic flows, where it is well known that zeroth-order inconsistencies present in standard SPH make it particularly problematic to correctly model the fluid dynamics. In particular, we consider the Gresho–Chan vortex problem, the growth of Kelvin–Helmholtz instabilities, the statistics of driven subsonic turbulence and the cold Keplerian disk problem. We compare simulation results for the different tests with those obtained,more » for the same initial conditions, using standard SPH. We also compare the results with the corresponding ones obtained previously with other numerical methods, such as codes based on a moving-mesh scheme or Godunov-type Lagrangian meshless methods. We quantify code performances by introducing error norms and spectral properties of the particle distribution, in a way similar to what was done in other works. We find that the new SPH formulation exhibits strongly reduced gradient errors and outperforms standard SPH in all of the tests considered. In fact, in terms of accuracy, we find good agreement between the simulation results of the new scheme and those produced using other recently proposed numerical schemes. These findings suggest that the proposed method can be successfully applied for many astrophysical problems in which the presence of subsonic flows previously limited the use of SPH, with the new scheme now being competitive in these regimes with other numerical methods.« less
Key parameters controlling the performance of catalytic motors.
Esplandiu, Maria J; Afshar Farniya, Ali; Reguera, David
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.
NASA Astrophysics Data System (ADS)
Majeski, R.; Bell, R. E.; Boyle, D. P.; Hughes, P. E.; Kaita, R.; Kozub, T.; Merino, E.; Zhang, X.; Biewer, T. M.; Canik, J. M.; Elliott, D. B.; Reinke, M. L.; Bialek, J.; Hansen, C.; Jarboe, T.; Kubota, S.; Rhodes, T.; Dorf, M. A.; Rognlien, T.; Scotti, F.; Soukhanovskii, V. A.; Koel, B. E.; Donovan, D.; Maan, A.
2017-10-01
LTX- β, the upgrade to the Lithium Tokamak Experiment, approximately doubles the toroidal field (to 3.4 kG) and plasma current (to 150 - 175 kA) of LTX. Neutral beam injection at 20 kV, 30 A will be added in February 2018, with systems provided by Tri-Alpha Energy. A 9.3 GHz, 100 kW, short-pulse (5-10 msec) source will be available in summer 2018 for electron Bernstein wave heating. New lithium evaporation sources will allow between-shots recoating of the walls. Upgrades to the diagnostic set are intended to strengthen the research program in the critical areas of equilibrium, core transport, scrape-off layer physics, and plasma-material interactions. The LTX- β research program will combine the capability for gradient-free temperature profiles, to stabilize ion and electron temperature gradient-driven modes, with approaches to stabilization of ∇n-driven modes, such as the trapped electron mode (TEM). Candidate stabilization mechanisms for the TEM include sheared flow stabilization, which can be tested on LTX- β. The goal will be to minimize anomalous transport in a low aspect ratio tokamak, which would lead to a very compact, tokamak-based fusion core. This work supported by US DOE contracts DE-AC02-09CH11466 and DE-AC05-00OR22725.
NASA Astrophysics Data System (ADS)
Cansever, H.; Narkowicz, R.; Lenz, K.; Fowley, C.; Ramasubramanian, L.; Yildirim, O.; Niesen, A.; Huebner, T.; Reiss, G.; Lindner, J.; Fassbender, J.; Deac, A. M.
2018-06-01
Similar to electrical currents flowing through magnetic multilayers, thermal gradients applied across the barrier of a magnetic tunnel junction may induce pure spin-currents and generate ‘thermal’ spin-transfer torques large enough to induce magnetization dynamics in the free layer. In this study, we describe a novel experimental approach to observe spin-transfer torques induced by thermal gradients in magnetic multilayers by studying their ferromagnetic resonance response in microwave cavities. Utilizing this approach allows for measuring the magnetization dynamics on micron/nano-sized samples in open-circuit conditions, i.e. without the need of electrical contacts. We performed first experiments on magnetic tunnel junctions patterned into 6 × 9 µm2 ellipses from Co2FeAl/MgO/CoFeB stacks. We conducted microresonator ferromagnetic resonance (FMR) under focused laser illumination to induce thermal gradients in the layer stack and compared them to measurements in which the sample was globally heated from the backside of the substrate. Moreover, we carried out broadband FMR measurements under global heating conditions on the same extended films the microstructures were later on prepared from. The results clearly demonstrate the effect of thermal spin-torque on the FMR response and thus show that the microresonator approach is well suited to investigate thermal spin-transfer-driven processes for small temperatures gradients, far below the gradients required for magnetic switching.
NASA Astrophysics Data System (ADS)
Lu, G.; Ou, H.; Hu, B. X.; Wang, X.
2017-12-01
This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.
Lattice Boltzmann model capable of mesoscopic vorticity computation
NASA Astrophysics Data System (ADS)
Peng, Cheng; Guo, Zhaoli; Wang, Lian-Ping
2017-11-01
It is well known that standard lattice Boltzmann (LB) models allow the strain-rate components to be computed mesoscopically (i.e., through the local particle distributions) and as such possess a second-order accuracy in strain rate. This is one of the appealing features of the lattice Boltzmann method (LBM) which is of only second-order accuracy in hydrodynamic velocity itself. However, no known LB model can provide the same quality for vorticity and pressure gradients. In this paper, we design a multiple-relaxation time LB model on a three-dimensional 27-discrete-velocity (D3Q27) lattice. A detailed Chapman-Enskog analysis is presented to illustrate all the necessary constraints in reproducing the isothermal Navier-Stokes equations. The remaining degrees of freedom are carefully analyzed to derive a model that accommodates mesoscopic computation of all the velocity and pressure gradients from the nonequilibrium moments. This way of vorticity calculation naturally ensures a second-order accuracy, which is also proven through an asymptotic analysis. We thus show, with enough degrees of freedom and appropriate modifications, the mesoscopic vorticity computation can be achieved in LBM. The resulting model is then validated in simulations of a three-dimensional decaying Taylor-Green flow, a lid-driven cavity flow, and a uniform flow passing a fixed sphere. Furthermore, it is shown that the mesoscopic vorticity computation can be realized even with single relaxation parameter.
NASA Astrophysics Data System (ADS)
Guzdar, P. N.; Kleva, R. G.; Groebner, R. J.; Gohil, P.
2004-03-01
Shear flow stabilization of edge turbulence in tokamaks has been the accepted paradigm for the improvement in confinement observed in high (H) confinement mode plasmas. Results on the generation of zonal flow and fields in finite β plasmas are presented. This theory yields a criterion for bifurcation from low to high (L-H) confinement mode, proportional to Te/√Ln , where Te is the electron temperature and Ln is the density scale-length at the steepest part of the density gradient. When this parameter exceeds a critical value (mostly determined by the strength of the toroidal magnetic field), the transition occurs. The predicted threshold based on this parameter shows good agreement with edge measurements on discharges undergoing L-H transitions in DIII-D [J. L. Luxon, R. Anderson, F. Batty et al., in Proceedings of the 11th Conference on Plasma Physics and Controlled Fusion Research, 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter due to the differences in the density gradient scale-lengths in the edge. The theory also provides a possible explanation for lowered threshold power, pellet injection H modes in DIII-D, thereby providing a unified picture of the varied observations on the L-H transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.
2015-02-01
Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsicmore » mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.« less
Transitions in Convection of a Low Prandtl Number Fluid Driven by a Horizontal Temperature Gradient
NASA Astrophysics Data System (ADS)
Hung, Ming-Cheng
The transitions in convection of a low Prandtl number fluid (mercury) contained in enclosed rectangular cavities driven by horizontal temperature gradients were investigated. These cavities have insulating top, bottom and side boundaries. The other two end walls are highly conducting. The temperatures on the conducting walls were varied to control the temperature gradient inside. Both the temperature and the velocity of the fluid inside the cavity were measured. A traversing system allowed the probe position to be changed with the cavity always sealed. The temperature gradient, controlled by a computer, was ramped very slowly. At every 0.2 or 0.12 degree the ramping was held and a data file of several hours was taken. The Prandtl number of the fluid was varied from 0.025 to 0.035 by changing the average temperature. The cavity size effect on the transitions was investigated. The primary (large) cavity had aspect ratio (length:height:width) of 17.8:1:17.8 (height = 0.9 cm). The other cavities for size effect investigation were shorter and narrower. Fourier transform was used to analyze the time series. Phase portraits were constructed in 3d using time delay method and correlation dimensions were computed for some trajectories. For the large cavity, the observed onset of the longitudinal oscillatory state at Grashof number Gr = 18490 was far above the predicted value of 10610 for an infinite long cavity (height/length = 0). At low Grashof numbers, the flow was time independent. As Gr was increased, it changed to a noisy state with a periodic component and then became purely chaotic. Finally the longitudinal oscillatory state appeared with two frequencies and noise. The longitudinal oscillatory state was observed to be a standing wave with a wavelength of about 3 cm. The critical Gr was affected by the cavity width and length. The narrower the cavity, the more stable the flow. The critical Gr for oscillation decreased as the length was increased. An unusual subharmonic transition sequence was observed for the cavity with aspect ratio 4:1:2. With frequency components f and f/2 appear at the onset of oscillation, they were followed by f/3, f/6, f/9 and f/18. After the appearance of f/18, the subharmonics started to disappear and noise background kept increasing. Finally, it became pure chaotic.
Ortmann, Alice C; Brannock, Pamela M; Wang, Lei; Halanych, Kenneth M
2018-04-17
Meiobenthic community structure in the northern Gulf of Mexico has been shown to be driven by geographical differences due to inshore-offshore gradients and location relative to river discharge. Samples collected along three transects spanning Mobile Bay, Alabama, showed significant differences in meiobenthic communities east of the bay compared to those sampled from the west. In contrast, analysis of bacterial and archaeal communities from the same sediment samples shows that the inshore-offshore gradient has minimal impact on their community structure. Significant differences in community structure were observed for Bacteria and Archaea between the east and west samples, but there was no difference in richness or diversity. Grouped by sediment type, higher richness was observed in silty samples compared to sandy samples. Significant differences were also observed among sediment types for community structure with bacteria communities in silty samples having more anaerobic sulfate reducers compared to aerobic heterotrophs, which had higher abundances in sandy sediments. This is likely due to increased organic matter in the silty sediments from the overlying river leading to low oxygen habitats. Most archaeal sequences represented poorly characterized high-level taxa, limiting interpretation of their distributions. Overlap between groups based on transect and sediment characteristics made determining which factor is more important in structuring bacterial and archaeal communities difficult. However, both factors are driven by discharge from the Mobile River. Although inshore-offshore gradients do not affect Bacteria or Archaea to the same extent as the meiobenthic communities, all three groups are strongly affected by sediment characteristics.
NASA Astrophysics Data System (ADS)
Roth, Mathias K.; MacMahan, Jamie; Reniers, Ad; Özgökmen, Tamay M.; Woodall, Kate; Haus, Brian
2017-04-01
Motivated by the Deepwater Horizon oil spill, the Surfzone and Coastal Oil Pathways Experiment obtained Acoustic Doppler Current Profiler (ADCP) Eulerian and GPS-drifter based Lagrangian "surface" (<1 m) flow observations in the northern Gulf of Mexico to describe the influence of small-scale river plumes on surface material transport pathways in the nearshore. Lagrangian paths are qualitatively similar to surface pathlines derived from non-traditional, near-surface ADCP velocities, but both differ significantly from depth-averaged subsurface pathlines. Near-surface currents are linearly correlated with wind velocities (r =0.76 in the alongshore and r =0.85 in the cross-shore) at the 95% confidence level, and are 4-7 times larger than theoretical estimates of wind and wave-driven surface flow in an un-stratified water column. Differences in near-surface flow are attributed to the presence of a buoyant river plume forced by winds from passing extratropical storms. Plume boundary fronts induce a horizontal velocity gradient where drifters deployed outside of the plume in oceanic water routinely converge, slow, and are re-directed. When the plume flows west parallel to the beach, the seaward plume boundary front acts as a coastal barrier that prevents 100% of oceanic drifters from beaching within 27 km of the inlet. As a result, small-scale, wind-driven river plumes in the northern Gulf of Mexico act as coastal barriers that prevent offshore surface pollution from washing ashore west of river inlets.
Surface-subsurface flow modeling: an example of large-scale research at the new NEON user facility
NASA Astrophysics Data System (ADS)
Powell, H.; McKnight, D. M.
2009-12-01
Climate change is predicted to alter surface-subsurface interactions in freshwater ecosystems. These interactions are hypothesized to control nutrient release at diel and seasonal time scales, which may then exert control over epilithic algal growth rates. The mechanisms underlying shifts in complex physical-chemical-biological patterns can be elucidated by long-term observations at sites that span hydrologic and climate gradients across the continent. Development of the National Ecological Observatory Network (NEON) will provide researchers the opportunity to investigate continental-scale patterns by combining investigator-driven measurements with Observatory data. NEON is a national-scale research platform for analyzing and understanding the impacts of climate change, land-use change, and invasive species on ecology. NEON features sensor networks and experiments, linked by advanced cyberinfrastructure to record and archive ecological data for at least 30 years. NEON partitions the United States into 20 ecoclimatic domains. Each domain hosts one fully instrumented Core Aquatic site in a wildland area and one Relocatable site, which aims to capture ecologically significant gradients (e.g. landuse, nitrogen deposition, urbanization). In the current definition of NEON there are 36 Aquatic sites: 30 streams/rivers and 6 ponds/lakes. Each site includes automated, in-situ sensors for groundwater elevation and temperature; stream flow (discharge and stage); pond water elevation; atmospheric chemistry (Tair, barometric pressure, PAR, radiation); and surface water chemistry (DO, Twater, conductivity, pH, turbidity, cDOM, nutrients). Groundwater and surface water sites shall be regularly sampled for selected chemical and isotopic parameters. The hydrologic and geochemical monitoring design provides basic information on water and chemical fluxes in streams and ponds and between groundwater and surface water, which is intended to support investigator-driven modeling studies. Theoretical constructs, such as the River Continuum Concept, that aim to elucidate general mechanistic underpinnings of freshwater ecosystem function via testable hypotheses about relative rates of photosynthesis and respiration, for example, may be readily examined using data collected at hourly time scales at the NEON facility once constructed. By taking advantage of NEON data and adding PI-driven research to the Observatory, we can further our understanding of the relative roles of water flow, nutrients, temperature, and light on freshwater ecosystem function and structure.
Shameli, Seyed Mostafa; Glawdel, Tomasz; Ren, Carolyn L
2015-03-01
Counter-flow gradient electrofocusing allows the simultaneous concentration and separation of analytes by generating a gradient in the total velocity of each analyte that is the sum of its electrophoretic velocity and the bulk counter-flow velocity. In the scanning format, the bulk counter-flow velocity is varying with time so that a number of analytes with large differences in electrophoretic mobility can be sequentially focused and passed by a single detection point. Studies have shown that nonlinear (such as a bilinear) velocity gradients along the separation channel can improve both peak capacity and separation resolution simultaneously, which cannot be realized by using a single linear gradient. Developing an effective separation system based on the scanning counter-flow nonlinear gradient electrofocusing technique usually requires extensive experimental and numerical efforts, which can be reduced significantly with the help of analytical models for design optimization and guiding experimental studies. Therefore, this study focuses on developing an analytical model to evaluate the separation performance of scanning counter-flow bilinear gradient electrofocusing methods. In particular, this model allows a bilinear gradient and a scanning rate to be optimized for the desired separation performance. The results based on this model indicate that any bilinear gradient provides a higher separation resolution (up to 100%) compared to the linear case. This model is validated by numerical studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cardiac Imaging for Assessing Low-Gradient Severe Aortic Stenosis.
Clavel, Marie-Annick; Burwash, Ian G; Pibarot, Philippe
2017-02-01
Up to 40% of patients with aortic stenosis (AS) harbor discordant Doppler-echocardiographic findings, the most common of which is the presence of a small aortic valve area (≤1.0 cm 2 ) suggesting severe AS, but a low gradient (<40 mm Hg) suggesting nonsevere AS. The purpose of this paper is to present the role of multimodality imaging in the diagnostic and therapeutic management of this challenging entity referred to as low-gradient AS. Doppler-echocardiography is critical to determine the subtype of low-gradient AS: that is, classical low-flow, paradoxical low-flow, or normal-flow. Patients with low-flow, low-gradient AS generally have a worse prognosis compared with patients with high-gradient or with normal-flow, low-gradient AS. Patients with low-gradient AS and evidence of severe AS benefit from aortic valve replacement (AVR). However, confirmation of the presence of severe AS is particularly challenging in these patients and requires a multimodality imaging approach including low-dose dobutamine stress echocardiography and aortic valve calcium scoring by multidetector computed tomography. Transcatheter AVR using a transfemoral approach may be superior to surgical AVR in patients with low-flow, low-gradient AS. Further studies are needed to confirm the best valve replacement procedure and prosthetic valve for each category of low-gradient AS and to identify patients with low-gradient AS in whom AVR is likely to be futile. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Shi, F.; Hanes, D.M.; Kirby, J.T.; Erikson, L.; Barnard, P.; Eshleman, J.
2011-01-01
The nearshore circulation induced by a focused pattern of surface gravity waves is studied at a beach adjacent to a major inlet with a large ebb tidal shoal. Using a coupled wave and wave-averaged nearshore circulation model, it is found that the nearshore circulation is significantly affected by the heterogeneous wave patterns caused by wave refraction over the ebb tidal shoal. The model is used to predict waves and currents during field experiments conducted near the mouth of San Francisco Bay and nearby Ocean Beach. The field measurements indicate strong spatial variations in current magnitude and direction and in wave height and direction along Ocean Beach and across the ebb tidal shoal. Numerical simulations suggest that wave refraction over the ebb tidal shoal causes wave focusing toward a narrow region at Ocean Beach. Due to the resulting spatial variation in nearshore wave height, wave-induced setup exhibits a strong alongshore nonuniformity, resulting in a dramatic change in the pressure field compared to a simulation with only tidal forcing. The analysis of momentum balances inside the surf zone shows that, under wave conditions with intensive wave focusing, the alongshore pressure gradient associated with alongshore nonuniform wave setup can be a dominant force driving circulation, inducing heterogeneous alongshore currents. Pressure-gradient- forced alongshore currents can exhibit flow reversals and flow convergence or divergence, in contrast to the uniform alongshore currents typically caused by tides or homogeneous waves.
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em
2016-10-01
We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.
Behavior of a wave-driven buoyant surface jet on a coral reef
Herdman, Liv; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.
2017-01-01
A wave-driven surface buoyant jet exiting a coral reef was studied in order to quantify the amount of water re-entrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and along-shore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of along-shore velocity to jet-velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest, creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean-water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.
Behavior of a wave-driven buoyant surface jet on a coral reef
NASA Astrophysics Data System (ADS)
Herdman, Liv M. M.; Hench, James L.; Fringer, Oliver; Monismith, Stephen G.
2017-05-01
A wave-driven surface-buoyant jet exiting a coral reef was studied in order to quantify the amount of water reentrained over the reef crest. Both moored observations and Lagrangian drifters were used to study the fate of the buoyant jet. To investigate in detail the effects of buoyancy and alongshore flow variations, we developed an idealized numerical model of the system. Consistent with previous work, the ratio of alongshore velocity to jet velocity and the jet internal Froude number were found to be important determinants of the fate of the jet. In the absence of buoyancy, the entrainment of fluid at the reef crest creates a significant amount of retention, keeping 60% of water in the reef system. However, when the jet is lighter than the ambient ocean water, the net effect of buoyancy is to enhance the separation of the jet from shore, leading to a greater export of reef water. Matching observations, our modeling predicts that buoyancy limits retention to 30% of the jet flow for conditions existing on the Moorea reef. Overall, the combination of observations and modeling we present here shows that reef-ocean temperature gradients can play an important role in reef-ocean exchanges.
Exact Solutions for Wind-Driven Coastal Upwelling and Downwelling over Sloping Topography
NASA Astrophysics Data System (ADS)
Choboter, P.; Duke, D.; Horton, J.; Sinz, P.
2009-12-01
The dynamics of wind-driven coastal upwelling and downwelling are studied using a simplified dynamical model. Exact solutions are examined as a function of time and over a family of sloping topographies. Assumptions in the two-dimensional model include a frictionless ocean interior below the surface Ekman layer, and no alongshore dependence of the variables; however, dependence in the cross-shore and vertical directions is retained. Additionally, density and alongshore momentum are advected by the cross-shore velocity in order to maintain thermal wind. The time-dependent initial-value problem is solved with constant initial stratification and no initial alongshore flow. An alongshore pressure gradient is added to allow the cross-shore flow to be geostrophically balanced far from shore. Previously, this model has been used to study upwelling over flat-bottom and sloping topographies, but the novel feature in this work is the discovery of exact solutions for downwelling. These exact solutions are compared to numerical solutions from a primitive-equation ocean model, based on the Princeton Ocean Model, configured in a similar two-dimensional geometry. Many typical features of the evolution of density and velocity during downwelling are displayed by the analytical model.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
NASA Technical Reports Server (NTRS)
Bercovici, David
1995-01-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth's present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field. As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.
A source-sink model of the generation of plate tectonics from non-Newtonian mantle flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bercovici, D.
1995-02-01
A model of mantle convection which generates plate tectonics requires strain rate- or stress-dependent rheology in order to produce strong platelike flows with weak margins as well as strike-slip deformation and plate spin (i.e., toroidal motion). Here, we employ a simple model of source-sink driven surface flow to determine the form of such a rheology that is appropriate for Earth`s present-day plate motions. In this model, lithospheric motion is treated as shallow layer flow driven by sources and sinks which correspond to spreading centers and subduction zones, respectively. Two plate motion models are used to derive the source sink field.more » As originally implied in the simpler Cartesian version of this model, the classical power law rheologies do not generate platelike flows as well as the hypothetical Whitehead-Gans stick-slip rheology (which incorporates a simple self-lubrication mechanism). None of the fluid rheologies examined, however, produce more than approximately 60% of the original maximum shear. For either plate model, the viscosity fields produced by the power law rheologies are diffuse, and the viscosity lows over strike-slip shear zones or pseudo-margins are not as small as over the prescribed convergent-divergent margins. In contrast, the stick-slip rheology generates very platelike viscosity fields, with sharp gradients at the plate boundaries, and margins with almost uniformly low viscosity. Power law rheologies with high viscosity contrasts, however, lead to almost equally favorable comparisons, though these also yield the least platelike viscosity fields. This implies that the magnitude of toroidal flow and platelike strength distributions are not necessarily related and thus may present independent constraints on the determination of a self-consistent plate-mantle rheology.« less
Post-fire "Hillslope Debris Flows": evidence of a distinct erosion process
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Nyman, Petter; Noske, Phil; Vandersant, Rene; Lane, Patrick; Sheridan, Gary
2017-04-01
Debris flows occurring soon after fire have been associated with a somewhat mysterious erosion process upslope of their initiation zone that some authors have called 'miniature debris flows on hillslopes', and that leave behind levee-lined rills. Despite the unusual proposition of debris flow on planar hillslopes, the process has not received much attention. The objective of this study was to present evidence of this process from field observations, to analyse its initiation, movement and form through runoff experiments and video, explore the role of fire severity and runoff rate, and to propose a conceptual model of the process. Hillslope debris flows (HDF) consist of a lobe of gravel- to cobble-sized material 0.2 - 1 m wide that is pushed by runoff damming up behind it. During initiation, runoff moved individual particles that accumulated a small distance downslope until the accumulation of grains failed and formed the granular lobe of the HDF. They occur at relatively steep slope gradients (0.4 - 0.8), on a variety of geologies, and after fire of at least moderate intensity, where all litter is burnt and the soil surface becomes non-cohesive. HDF are a threshold process, and runoff rates of less than 0.5 L s-1 to more than 1 L s-1 were required for their initiation during the experiments. Char and ash lower the threshold considerably. Our conceptual model highlights HDF as a geomorphic process distinct from channel debris flows and classical rill erosion. On a matrix of slope and grain size, HDF are enveloped between purely gravity-driven dry ravel, and mostly runoff-driven bedload transport in rills.
Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis
Wolfram, Christopher J.; Rubloff, Gary W.; Luo, Xiaolong
2016-01-01
Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication. PMID:27917249
Perspectives in flow-based microfluidic gradient generators for characterizing bacterial chemotaxis.
Wolfram, Christopher J; Rubloff, Gary W; Luo, Xiaolong
2016-11-01
Chemotaxis is a phenomenon which enables cells to sense concentrations of certain chemical species in their microenvironment and move towards chemically favorable regions. Recent advances in microbiology have engineered the chemotactic properties of bacteria to perform novel functions, but traditional methods of characterizing chemotaxis do not fully capture the associated cell motion, making it difficult to infer mechanisms that link the motion to the microbiology which induces it. Microfluidics offers a potential solution in the form of gradient generators. Many of the gradient generators studied to date for this application are flow-based, where a chemical species diffuses across the laminar flow interface between two solutions moving through a microchannel. Despite significant research efforts, flow-based gradient generators have achieved mixed success at accurately capturing the highly subtle chemotactic responses exhibited by bacteria. Here we present an analysis encompassing previously published versions of flow-based gradient generators, the theories that govern their gradient-generating properties, and new, more practical considerations that result from experimental factors. We conclude that flow-based gradient generators present a challenge inherent to their design in that the residence time and gradient decay must be finely balanced, and that this significantly narrows the window for reliable observation and quantification of chemotactic motion. This challenge is compounded by the effects of shear on an ellipsoidal bacterium that causes it to preferentially align with the direction of flow and subsequently suppresses the cross-flow chemotactic response. These problems suggest that a static, non-flowing gradient generator may be a more suitable platform for chemotaxis studies in the long run, despite posing greater difficulties in design and fabrication.
Thermally driven ratchet motion of a skyrmion microcrystal and topological magnon Hall effect
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Yu, X. Z.; Seki, S.; Kanazawa, N.; Koshibae, W.; Zang, J.; Mostovoy, M.; Tokura, Y.; Nagaosa, N.
2014-03-01
Spontaneously emergent chirality is an issue of fundamental importance across the natural sciences. It has been argued that a unidirectional (chiral) rotation of a mechanical ratchet is forbidden in thermal equilibrium, but becomes possible in systems out of equilibrium. Here we report our finding that a topologically nontrivial spin texture known as a skyrmion—a particle-like object in which spins point in all directions to wrap a sphere—constitutes such a ratchet. By means of Lorentz transmission electron microscopy we show that micrometre-sized crystals of skyrmions in thin films of Cu2OSeO3 and MnSi exhibit a unidirectional rotation motion. Our numerical simulations based on a stochastic Landau-Lifshitz-Gilbert equation suggest that this rotation is driven solely by thermal fluctuations in the presence of a temperature gradient, whereas in thermal equilibrium it is forbidden by the Bohr-van Leeuwen theorem. We show that the rotational flow of magnons driven by the effective magnetic field of skyrmions gives rise to the skyrmion rotation, therefore suggesting that magnons can be used to control the motion of these spin textures.
NASA Astrophysics Data System (ADS)
Majorowicz, Jacek A.; Embry, Ashton F.
1998-06-01
Calculations of the present geothermal gradient and terrestrial heat flow were made on 156 deep wells of the Canadian Arctic Archipelago. Corrected bottom hole temperature (BHT) data and drill stem test (DST) temperatures were used to determine the thermal gradients for sites for which the quality of data was sufficient. Thermal gradients evaluated for depths below the base of permafrost for the onshore wells and below sea bottom for the offshore wells were combined with the estimates of effective thermal conductivity to approximate heat flow for these sites. The present geothermal gradient is in the 15-50 mK/m range (mean = 31 ± 7 mK/m). Present heat flow is mainly in the 35-90 mW/m 2 range (mean = 53 ± 12 mW/m 2). Maps of the present geothermal gradient and present heat flow have been constructed for the basin. The analysis of vitrinite reflectance profiles and the calculation of logarithmic coalification gradients for 101 boreholes in the Sverdrup Basin showed large variations related in many cases to regional variations of present terrestrial heat flow. Paleo-geothermal gradients estimated from these data are mostly in the range of 15-50 mK/m (mean = 28 ± 9 mK/m) and paleo-heat flow is in the 40-90 mW/m 2 range (mean = 57 ± 18 mW/m 2) related to the time of maximum burial in the Early Tertiary. Mean values of the present heat flow and paleo-heat flow for the Sverdrup Basin are almost identical considering the uncertainties of the methods used (53 ± 12 versus 57 ± 18 mW/m 2, respectively). Present geothermal gradients and paleo-geothermal gradients are also close when means are compared (31 ± 7 versus 28 ± 9 mK/m respectively). A zone of high present heat flow and a paleo-heat flow zone coincide in places with the northeastern-southwestern incipient rift landward of the Arctic margin first described by Balkwill and Fox (1982). Correlation between present heat flow and paleo-heat flow for the time of maximum burial in the earliest Tertiary suggests that the high heat flow zone has prevailed since that time.
Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byer, Robert L.
2013-11-07
The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.
Movement of liquid droplets containing polymers on substrate
NASA Astrophysics Data System (ADS)
Hu, Guohui; Wang, Heng
2016-11-01
It is of both fundamental and practical interests to study the flow physics in the manipulation of droplets. As a microreactor, the macromolecules or particles inside the droplets might have significant influences on their movement. In the present study, the many-body dissipative particle dynamics (MDPD) is utilized to investigate the translocation of droplets containing polymer on a substrate driven by the wettability gradient, where the polymer is modelled as worm-like chain (WLC). The internal flows of the droplets are analyzed, as well as the comparison to the polymer-free moving droplets. The effects of physical parameters, such as the interaction potential between liquid particle and polymer beads, the mass of the beads, on the translocation speed are also addressed in the present study. These results might be helpful to the optimization in design of the microfluidic systems.
NASA Astrophysics Data System (ADS)
Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek
Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.
Stability of boundary layer flow based on energy gradient theory
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Numerical modeling of heat transfer in molten silicon during directional solidification process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, M.; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in
2015-06-24
Numerical investigation is performed for some of the thermal and fluid flow properties of silicon melt during directional solidification by numerical modeling. Dimensionless numbers are extremely useful to understand the heat and mass transfer of fluid flow on Si melt and control the flow patterns during crystal growth processes. The average grain size of whole crystal would increase when the melt flow is laminar. In the silicon growth process, the melt flow is mainly driven by the buoyancy force resulting from the horizontal temperature gradient. The thermal and flow pattern influences the quality of the crystal through the convective heatmore » and mass transport. The computations are carried out in a 2D axisymmetric model using the finite-element technique. The buoyancy effect is observed in the melt domain for a constant Rayleigh number and for different Prandtl numbers. The convective heat flux and Reynolds numbers are studied in the five parallel horizontal cross section of melt silicon region. And also, velocity field is simulated for whole melt domain with limited thermal boundaries. The results indicate that buoyancy forces have a dramatic effect on the most of melt region except central part.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty Thakur, S.; Fedorczak, N.; Manz, P.
2012-08-15
Using laser induced fluorescence (LIF), radial profiles of azimuthal ion fluid velocity and ion temperature are measured in the controlled shear de-correlation experiment (CSDX) linear helicon plasma device. Ion velocities and temperatures are derived from the measured Doppler broadened velocity distribution functions of argon ions. The LIF system employs a portable, high power (>300 mW), narrowband ({approx}1 MHz) tunable diode laser-based system operating at 668.614 nm. Previous studies in CSDX have shown the existence of a radially sheared azimuthal flow as measured with time delay estimation methods and Mach probes. Here, we report the first LIF measurements of sheared plasmamore » fluid flow in CSDX. Above a critical magnetic field, the ion fluid flow profile evolves from radially uniform to peaked on axis with a distinct reversed flow region at the boundary, indicating the development of a sheared azimuthal flow. Simultaneously, the ion temperature also evolves from a radially uniform profile to a profile with a gradient. Measurements in turbulent and coherent drift wave mode dominated plasmas are compared.« less
NASA Technical Reports Server (NTRS)
Maples, A. L.; Poirier, D. R.
1980-01-01
The physical and numerical formulation of a model for the horizontal solidification of a binary alloy is described. It can be applied in an ingot. The major purpose of the model is to calculate macrosegregation in a casting ingot which results from flow of interdendritic liquid during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, was modeled as flow through a porous medium. The symbols used are defined. The physical formulation of the problem leading to a set of equations which can be used to obtain: (1) the pressure field; (2) the velocity field: (3) mass flow and (4) solute flow in the solid plus liquid zone during solidification is presented. With these established, the model calculates macrosegregation after solidification is complete. The numerical techniques used to obtain solution on a computational grid are presented. Results, evaluation of the results, and recommendations for future development of the model are given. The macrosegregation and flow field predictions for tin-lead, aluminum-copper, and tin-bismuth alloys are included as well as comparisons of some of the predictions with published predictions or with empirical data.
Flow-driven Assembly of Microcapsule Towers
NASA Astrophysics Data System (ADS)
Shum, Henry; Balazs, Anna
2016-11-01
Large populations of the slime mold, Dictyostelium discoideum, are able to aggregate over a surface and collectively form a long, vertical stalk. Inspired by this biological behavior, we develop a synthetic mechanism for assembling tower-like structures using microcapsules as the building blocks. We accomplish this in simulations by generating a fluid flow field that draws microcapsules together along a surface and lifts them up at a central point. We considered a fluid flow generated by the local release of a chemical species from a patch on the surface. The concentration gradient of the diffusing chemical species causes radial diffusioosmotic flow along the solid surface toward the patch. Adhesive interactions keep the microcapsules attached to the surface as they are drawn together above the patch. To build a tower-like structure, some of the microcapsules must detach from the surface but remain attached to the rest of the cluster. The upward directed fluid flow above the patch then draws out the cluster into a tower shape. The final morphology of the aggregate structure depends on the flow field, the adhesive capsule-capsule and capsule-surface interaction strengths, and the sedimentation force on the capsules. Tuning these factors changes the structures that are produced.
Buoyancy Driven Shear Flows of Bubble Suspensions
NASA Technical Reports Server (NTRS)
Koch, D. L.; Hill, R. J.; Chellppannair, T.; Zenit, R.; Zenit, R.; Spelt, P. D. M.
1999-01-01
In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1a nd Re >> 1, for which comparisons are made with kinetic theory and numerical simulations. Here Re = gamma(a(exp 2)/nu is the Reynolds number and We = rho(gamma(exp 2))a(exp 3)/sigma is the Weber number; gamma is the shear rate, a is the bubble radius, nu is the kinematic viscosity of the liquid, rho is the density of the liquid, and sigma is the surface tension of the gas/liquid interface. Kang et al. calculated the bubble phase pressure and velocity variance of sheared bubble suspensions under conditions where the bubbles are spherical and the liquid phase velocity field can be approximated using potential flow theory, i.e. We= 0 and Re >> 1. Such conditions can be achieved in an experiment using gas bubbles, with a radius of O(0.5mm), in water. The theory requires that there be no average relative motion of the gas and liquid phases, hence the motivation for an experimental program in microgravity. The necessity of performing preliminary, Earth based experiments, however, requires performing experiments where the gas phase rises in the liquid, which significantly complicates the comparison of experiments with theory. Rather than comparing experimental results with theory for a uniform, homogeneous shear flow, experiments can be compared directly with solutions of the averaged equations of motion for bubble suspensions. This requires accounting for the significant lift force acting on the gas phase when the bubbles rise parallel to the average velocity of the sheared suspension. Shear flows can be produced in which the bubble phase pressure gradient, arising from shear induced collisions amongst the bubbles, balances a body force (centrifugal or gravitational) on the gas phase. A steady, non-uniform gas volume fraction can be measured, from which the bubble phase pressure gradient can be obtained and compared to theory and numerical simulations. The presence of bounding walls further complicates the experiments, since the detailed interactions of the bubbles with bounding walls is not well understood, especially in the presence of gravity, where the momentum and energy exchange depends on the inclination of the wall.
NASA Astrophysics Data System (ADS)
Delil, A. A. M.
2003-01-01
Single-component two-phase systems are envisaged for aerospace thermal control applications: Mechanically Pumped Loops, Vapour Pressure Driven Loops, Capillary Pumped Loops and Loop Heat Pipes. Thermal control applications are foreseen in different gravity environments: Micro-g, reduced-g for Mars or Moon bases, 1-g during terrestrial testing, and hyper-g in rotating spacecraft, during combat aircraft manoeuvres and in systems for outer planets. In the evaporator, adiabatic line and condenser sections of such single-component two-phase systems, the fluid is a mixture of the working liquid (for example ammonia, carbon dioxide, ethanol, or other refrigerants, etc.) and its saturated vapour. Results of two-phase two-component flow and heat transfer research (pertaining to liquid-gas mixtures, e.g. water/air, or argon or helium) are often applied to support research on flow and heat transfer in two-phase single-component systems. The first part of the tutorial updates the contents of two earlier tutorials, discussing various aerospace-related two-phase flow and heat transfer research. It deals with the different pressure gradient constituents of the total pressure gradient, with flow regime mapping (including evaporating and condensing flow trajectories in the flow pattern maps), with adiabatic flow and flashing, and with thermal-gravitational scaling issues. The remaining part of the tutorial qualitatively and quantitatively determines the differences between single- and two-component systems: Two systems that physically look similar and close, but in essence are fully different. It was already elucidated earlier that, though there is a certain degree of commonality, the differences will be anything but negligible, in many cases. These differences (quantified by some examples) illustrates how careful one shall be in interpreting data resulting from two-phase two-component simulations or experiments, for the development of single-component two-phase thermal control systems for various gravity environments.
Diffusion-driven fluid dynamics in ideal gases and plasmas
NASA Astrophysics Data System (ADS)
Vold, E. L.; Yin, L.; Taitano, W.; Molvig, K.; Albright, B. J.
2018-06-01
The classical transport theory based on Chapman-Enskog methods provides self-consistent approximations for the kinetic flux of mass, heat, and momentum in a fluid limit characterized with a small Knudsen number. The species mass fluxes relative to the center of mass, or "diffusive fluxes," are expressed as functions of known gradient quantities with kinetic coefficients evaluated using similar analyses for mixtures of gases or plasma components. The sum over species of the diffusive mass fluxes is constrained to be zero in the Lagrange frame, and thus results in a non-zero molar flux leading to a pressure perturbation. At an interface between two species initially in pressure equilibrium, the pressure perturbation driven by the diffusive molar flux induces a center of mass velocity directed from the species of greater atomic mass towards the lighter atomic mass species. As the ratio of the species particle masses increases, this center of mass velocity carries an increasingly greater portion of the mass across the interface and for a particle mass ratio greater than about two, the center of mass velocity carries more mass than the gradient driven diffusion flux. Early time transients across an interface between two species in a 1D plasma regime and initially in equilibrium are compared using three methods; a fluid code with closure in a classical transport approximation, a particle in cell simulation, and an implicit Fokker-Planck solver for the particle distribution functions. The early time transient phenomenology is shown to be similar in each of the computational simulation methods, including a pressure perturbation associated with the stationary "induced" component of the center of mass velocity which decays to pressure equilibrium during diffusion. At early times, the diffusive process generates pressure and velocity waves which propagate outward from the interface and are required to maintain momentum conservation. The energy in the outgoing waves dissipates as heat in viscous regions, and it is hypothesized that these diffusion driven waves may sustain fluctuations in less viscid finite domains after reflections from the boundaries. These fluid dynamic phenomena are similar in gases or plasmas and occur in flow transients with a moderate Knudsen number. The analysis and simulation results show how the kinetic flux, represented in the fluid transport closure, directly modifies the mass averaged flow described with the Euler equations.
Hotspot: the Snake River Geothermal Drilling Project--initial report
Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.
2012-01-01
The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.
GRADFLEX: Fluctuations in Microgravity
NASA Technical Reports Server (NTRS)
Vailati, A.; Cerbino, R.; Mazzoni, S.; Giglio, M.; Nikolaenko, G.; Cannell, D. S.; Meyer, W. V.; Smart, A. E.
2004-01-01
We present the results of experimental investigations of gradient driven fluctuations induced in a liquid mixture with a concentration gradient and in a single-component fluid with a temperature gradient. We also describe the experimental apparatus being developed to carry out similar measurement under microgravity conditions.
Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model
NASA Astrophysics Data System (ADS)
Makino, Hiroki; Suzuki, Hiroshi
2015-03-01
It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.
NASA Technical Reports Server (NTRS)
Conley, Julianne M.
1994-01-01
Computational fluid dynamics is being used increasingly to predict flows for aerospace propulsion applications, yet there is still a need for an easy to use, computationally inexpensive turbulence model capable of accurately predicting a wide range of turbulent flows. The Baldwin-Lomax model is the most widely used algebraic model, even though it has known difficulties calculating flows with strong adverse pressure gradients and large regions of separation. The modified mixing length model (MML) was developed specifically to handle the separation which occurs on airfoils and has given significantly better results than the Baldwin-Lomax model. The success of these calculations warrants further evaluation and development of MML. The objective of this work was to evaluate the performance of MML for zero and adverse pressure gradient flows, and modify it as needed. The Proteus Navier-Stokes code was used for this study and all results were compared with experimental data and with calculations made using the Baldwin-Lomax algebraic model, which is currently available in Proteus. The MML model was first evaluated for zero pressure gradient flow over a flat plate, then modified to produce the proper boundary layer growth. Additional modifications, based on experimental data for three adverse pressure gradient flows, were also implemented. The adapted model, called MMLPG (modified mixing length model for pressure gradient flows), was then evaluated for a typical propulsion flow problem, flow through a transonic diffuser. Three cases were examined: flow with no shock, a weak shock and a strong shock. The results of these calculations indicate that the objectives of this study have been met. Overall, MMLPG is capable of accurately predicting the adverse pressure gradient flows examined in this study, giving generally better agreement with experimental data than the Baldwin-Lomax model.
Particle-in-cell study of the ion-to-electron sheath transition
Scheiner, Brett; Baalrud, Scott D.; Hopkins, Matthew M.; ...
2016-08-09
The form of a sheath near a small electrode, with bias changing from below to above the plasma potential, is studied using 2D particle-in-cell simulations. When the electrode is biased within T e/2 e below the plasma potential, the electron velocity distribution functions (EVDFs) exhibit a loss-cone type truncation due to fast electrons overcoming the small potential difference between the electrode and plasma. No sheath is present in this regime, and the plasma remains quasineutral up to the electrode. The EVDF truncation leads to a presheath-like density and flow velocity gradients. Once the bias exceeds the plasma potential, an electronmore » sheath is present. In this case, the truncation driven behavior persists, but is accompanied by a shift in the maximum value of the EVDF that is not present in the negative bias cases. In conclusion, the flow moment has significant contributions from both the flow shift of the EVDF maximum, and the loss-cone truncation.« less
NASA Astrophysics Data System (ADS)
VeeraKrishna, M.; Subba Reddy, G.; Chamkha, A. J.
2018-02-01
The effects of radiation and Hall current on an unsteady magnetohydrodynamic free convective flow in a vertical channel filled with a porous medium have been studied. We consider an incompressible viscous and electrically conducting incompressible viscous second grade fluid bounded by a loosely packed porous medium. The fluid is driven by an oscillating pressure gradient parallel to the channel plates, and the entire flow field is subjected to a uniform inclined magnetic field of strength Ho inclined at an angle of inclination α with the normal to the boundaries in the transverse xy-plane. The temperature of one of the plates varies periodically, and the temperature difference of the plates is high enough to induce the radiative heat transfer. The effects of various parameters on the velocity profiles, the skin friction, temperature field, rate of heat transfer in terms of their amplitude, and phase angles are shown graphically.
González Gómez, Ariana; Fernández-Golfín, Covadonga; Monteagudo, Juan Manuel; Izurieta, Carlos; Hinojar, Rocío; García, Ana; Casas, Eduardo; Jiménez-Nacher, José Julio; Moya, José Luis; Ruiz, Soledad; Zamorano, José Luis
2017-12-01
Clinicians often encounter patients with apparently discordant echocardiographic findings, severe aortic stenosis (SAS) defined by aortic valve area (AVA) despite a low mean gradient. A new classification according to flow state and pressure gradient has been proposed. We sought to assess the prevalence, characteristics and outcomes of patients with asymptomatic SAS with preserved left-ventricular ejection fraction (LVEF) according to flow and gradient. In total 442 patients with SAS (AVAi<0.6 cm2/m2) and LVEF ≥50% (mean age 80+11years, 54,5% female) were included. Patients were classified according to flow state (≥ or <35ml/m 2 ) and mean pressure gradient (≥ or <40mmHg): Low Flow/Low Gradient (LF/LG): 21.3%(n=94); Normal Flow/Low Gradient (NF/LG): 32.1%(n=142); Low Flow/High Gradient (LF/HG): 6.8%(n=30); Normal Flow/High Gradient (NF/HG): 39,8%(n=176). Mean follow-up time was 20.5months (SD=10.3). Primary combined endpoint was cardiovascular mortality and hospital admission for SAS related symptom, secondary endpoint was aortic valve replacement (AVR), comparing HG group to LF/LG group. During follow-up 17 (18%) of LF/LG patients and 21 (10.2%) of HG patients met the primary endpoint. A lower free of event survival (cardiovascular mortality and hospital admission) was observed in patients with LF/LG AS (Breslow, p=0.002). Significant differences were noted between groups with a lower AVR free survival in the LF/LG group compared to HG groups (Breslow, p=0.002). Our study confirms the high prevalence and worse prognosis of LF/LG SAS. Clinicians must be aware of this entity to ensure appropriate patient management. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flock, M.; Dzyurkevich, N.; Klahr, H.
2011-07-10
We present full 2{pi} global three-dimensional stratified magnetohydrodynamic (MHD) simulations of accretion disks. We interpret our results in the context of protoplanetary disks. We investigate the turbulence driven by the magnetorotational instability (MRI) using the PLUTO Godunov code in spherical coordinates with the accurate and robust HLLD Riemann solver. We follow the turbulence for more than 1500 orbits at the innermost radius of the domain to measure the overall strength of turbulent motions and the detailed accretion flow pattern. We find that regions within two scale heights of the midplane have a turbulent Mach number of about 0.1 and amore » magnetic pressure two to three orders of magnitude less than the gas pressure, while in those outside three scale heights the magnetic pressure equals or exceeds the gas pressure and the turbulence is transonic, leading to large density fluctuations. The strongest large-scale density disturbances are spiral density waves, and the strongest of these waves has m = 5. No clear meridional circulation appears in the calculations because fluctuating radial pressure gradients lead to changes in the orbital frequency, comparable in importance to the stress gradients that drive the meridional flows in viscous models. The net mass flow rate is well reproduced by a viscous model using the mean stress distribution taken from the MHD calculation. The strength of the mean turbulent magnetic field is inversely proportional to the radius, so the fields are approximately force-free on the largest scales. Consequently, the accretion stress falls off as the inverse square of the radius.« less
Atomic Force Microscope Mediated Chromatography
NASA Technical Reports Server (NTRS)
Anderson, Mark S.
2013-01-01
The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a sliding plate system, consisting of two flat surfaces, one of which has a recessed channel. A fluid flow is produced by axially sliding one plate past another, where the fluid has mechanical shear forces imposed at each point along the channel length. The shear-induced flow rates are very reproducible, and do not have pressure or voltage gradient limitations. SDC opens up a new range of enhanced separation kinetics by permitting the sample confinement with submicron dimensions. Small, highly confined liquid is advantageous for chromatographic separation because the separation rate is known to scale according to the square of the confined sample diameter. In addition, because shear-driven flows are not limited by fluid velocity, shear-driven liquid chromatography may provide up to 100,000 plate efficiency.
Microscale electrokinetic transport and stability
NASA Astrophysics Data System (ADS)
Chen, Chuan-Hua
Electrokinetics is a leading mechanism for transport and separation of biochemical samples in microdevices due to its favorable scaling at small scales. However, electrokinetic systems can become highly unstable, and this instability adversely affects key processes such as sample stacking and electrophoretic separation. This dissertation deals with two major topics: a novel planar micropump exploiting the favorable scaling of electroosmosis at the microscale, and a fundamental study of electrokinetic flow instabilities induced by electrical conductivity gradients. Electroosmotic micropumps use field-induced ion drag to drive liquids and achieve high pressures in a compact design with no moving parts. An analytical model applicable to planar, etched-structure micropumps was developed to guide the geometrical design and working fluid selection. Standard microlithography and wet etching techniques were used to fabricate a pump 1 mm long along the flow direction and 0.9 mum by 38 mm in cross section. The pump produced a maximum pressure of 0.33 atm and a maximum flow rate of 15 mul/min at 1 kV applied potential with deionized water as working fluid. The pump performance agreed well with the theoretical model. Electrokinetic flow instabilities occur under high electric field in the presence of electrical conductivity gradients. In a microfluidic T-junction 11 mum by 155 mum in cross section, aqueous electrolytes of 10:1 conductivity ratio were electrokinetically driven into a common mixing channel. Convectively unstable waves were observed at 0.5 kV/cm, and upstream propagating waves at 1.5 kV/cm. A physical model for this instability has been developed. A linear stability analysis of the governing equations in the thin-layer limit predicts both qualitative trends and quantitative features that agree well with experimental data. Briggs-Bers criteria were applied to select physically unstable modes and determine the nature of instability. Conductivity gradients and bulk charge accumulation are a crucial factor in the instability. The role of electroosmotic flow is mainly as a convecting medium. The instability is governed by two key controlling parameters: the ratio of dynamic to dissipative forces which determines the onset of instability, and the ratio of electroviscous to electroosmotic velocities which governs the convective versus absolute nature of instability.
SMD-based numerical stochastic perturbation theory
NASA Astrophysics Data System (ADS)
Dalla Brida, Mattia; Lüscher, Martin
2017-05-01
The viability of a variant of numerical stochastic perturbation theory, where the Langevin equation is replaced by the SMD algorithm, is examined. In particular, the convergence of the process to a unique stationary state is rigorously established and the use of higher-order symplectic integration schemes is shown to be highly profitable in this context. For illustration, the gradient-flow coupling in finite volume with Schrödinger functional boundary conditions is computed to two-loop (i.e. NNL) order in the SU(3) gauge theory. The scaling behaviour of the algorithm turns out to be rather favourable in this case, which allows the computations to be driven close to the continuum limit.
Frontogenesis driven by horizontally quadratic distributions of density
NASA Technical Reports Server (NTRS)
Jacqmin, David
1991-01-01
Attention is given to the quadratic density distribution in a channel, which has been established by Simpson and Linden to be the simplest case of the horizontally nonlinear distribution of fluid density required for the production of frontogenesis. The porous-media and Boussinesq flow models are examined, and their evolution equations are reduced to one-dimensional systems. While both the porous-media and the inviscid/nondiffusive Boussinesq systems exhibit classic frontogenesis behavior, the viscous Boussinesq system exhibits a more complex behavior: boundary-layer effects force frontogenesis away from the lower boundary, and at late times the steepest density gradients are close to mid-channel.
A silicon-nanowire memory driven by optical gradient force induced bistability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, B.; Institute of Microelectronics, A*STAR; Cai, H., E-mail: caih@ime.a-star.edu.sg
2015-12-28
In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.
How fast does water flow in carbon nanotubes?
Kannam, Sridhar Kumar; Todd, B D; Hansen, J S; Daivis, Peter J
2013-03-07
The purpose of this paper is threefold. First, we review the existing literature on flow rates of water in carbon nanotubes. Data for the slip length which characterizes the flow rate are scattered over 5 orders of magnitude for nanotubes of diameter 0.81-10 nm. Second, we precisely compute the slip length using equilibrium molecular dynamics (EMD) simulations, from which the interfacial friction between water and carbon nanotubes can be found, and also via external field driven non-equilibrium molecular dynamics simulations (NEMD). We discuss some of the issues in simulation studies which may be reasons for the large disagreements reported. By using the EMD method friction coefficient to determine the slip length, we overcome the limitations of NEMD simulations. In NEMD simulations, for each tube we apply a range of external fields to check the linear response of the fluid to the field and reliably extrapolate the results for the slip length to values of the field corresponding to experimentally accessible pressure gradients. Finally, we comment on several issues concerning water flow rates in carbon nanotubes which may lead to some future research directions in this area.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1988-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1986-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
Concentration and Velocity Measurements of Both Phases in Liquid-Solid Slurries
NASA Astrophysics Data System (ADS)
Altobelli, Stephen; Hill, Kimberly; Caprihan, Arvind
2007-03-01
Natural and industrial slurry flows abound. They are difficult to calculate and to measure. We demonstrate a simple technique for studying steady slurries. We previously used time-of-flight techniques to study pressure driven slurry flow in pipes. Only the continuous phase velocity and concentration fields were measured. The discrete phase concentration was inferred. In slurries composed of spherical, oil-filled pills and poly-methyl-siloxane oils, we were able to use inversion nulling to measure the concentration and velocity fields of both phases. Pills are available in 1-5mm diameter and silicone oils are available in a wide range of viscosities, so a range of flows can be studied. We demonstrated the technique in horizontal, rotating cylinder flows. We combined two tried and true methods to do these experiments. The first used the difference in T1 to select between phases. The second used gradient waveforms with controlled first moments to produce velocity dependent phase shifts. One novel processing method was developed that allows us to use static continuous phase measurements to reference both the continuous and discrete phase velocity images. ?
On the Opening of Thick Walled Elastic Tubes: A Fluid-Structure Model for Acid Reflux
NASA Astrophysics Data System (ADS)
Ghosh, Sudip; Kahrilas, Peter
2005-11-01
A coupled fluid-structure mathematical model was developed to quantify rapid opening of thick-walled elastic tubes, a phenomenon underlying biological flows such as gastroesophageal reflux disease (GERD). The wall was modeled using non-linear finite deformation theory to predict space-time radial distention of an axisymmetric tube with luminal fluid flow. Anisotropic azimuthal and longitudinal muscle-induced stresses were incorporated, and interstitial material properties were assumed isotropic and linearly elastic. Fluid flow was modeled using lubrication theory with inertial correction. Opening and flow were driven by a specified inflow pressure and zero pressure gradient was specified at outflow. No-slip and surface force balance were applied at the fluid-wall interface. Viscoelasticity was modeled with ad hoc damping and the evolution of the tube geometry was predicted at mid-layer. A potentially important discovery was made when applied to studies of initiation of opening with GERD: while material stiffness is of minor consequence, small changes in resting lumen distension (˜2 mm diameter) may be a sensitive distinguishing feature of the disease.
Fish Gill Inspired Crossflow for Efficient and Continuous Collection of Spilled Oil.
Dou, Yuhai; Tian, Dongliang; Sun, Ziqi; Liu, Qiannan; Zhang, Na; Kim, Jung Ho; Jiang, Lei; Dou, Shi Xue
2017-03-28
Developing an effective system to clean up large-scale oil spills is of great significance due to their contribution to severe environmental pollution and destruction. Superwetting membranes have been widely studied for oil/water separation. The separation, however, adopts a gravity-driven approach that is inefficient and discontinuous due to quick fouling of the membrane by oil. Herein, inspired by the crossflow filtration behavior in fish gills, we propose a crossflow approach via a hydrophilic, tilted gradient membrane for spilled oil collection. In crossflow collection, as the oil/water flows parallel to the hydrophilic membrane surface, water is gradually filtered through the pores, while oil is repelled, transported, and finally collected for storage. Owing to the selective gating behavior of the water-sealed gradient membrane, the large pores at the bottom with high water flux favor fast water filtration, while the small pores at the top with strong oil repellency allow easy oil transportation. In addition, the gradient membrane exhibits excellent antifouling properties due to the protection of the water layer. Therefore, this bioinspired crossflow approach enables highly efficient and continuous spilled oil collection, which is very promising for the cleanup of large-scale oil spills.
Unstable Pore-Water Flow in Intertidal Wetlands
NASA Astrophysics Data System (ADS)
Barry, D. A.; Shen, C.; Li, L.
2014-12-01
Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and creek water. The changes would influence not only the marsh soil condition for plant growth but also nutrient cycling in the marsh soil and discharge to the coastal sea.
Ground-water flow in the shallow aquifer system at the Naval Weapons Station Yorktown, Virginia
Smith, Barry S.
2001-01-01
The Environmental Directorate of the Naval Weapons Station Yorktown, Virginia, is concerned about possible contamination of ground water at the Station. Ground water at the Station flows through a shallow system of layered aquifers and leaky confining units. The units of the shallow aquifer system are the Columbia aquifer, the Cornwallis Cave confining unit, the Cornwallis Cave aquifer, the Yorktown confining unit, and the Yorktown-Eastover aquifer. The Eastover-Calvert confining unit separates the shallow aquifer system from deeper confined aquifers beneath the Station. A three-dimensional, finite-difference, ground-water flow model was used to simulate steady-state ground-water flow of the shallow aquifer system in and around the Station. The model simulated ground-water flow from the peninsular drainage divide that runs across the Lackey Plain near the southern end of the Station north to King Creek and the York River and south to Skiffes Creek and the James River. The model was calibrated by minimizing the root mean square error between 4 7 measured and corresponding simulated water levels. The calibrated model was used to determine the ground-water budget and general directions of ground-water flow. A particle-tracking routine was used with the calibrated model to estimate groundwater flow paths, flow rates, and traveltimes from selected sites at the Station. Simulated ground-water flow velocities of the Station-area model were small beneath the interstream areas of the Lackey Plain and Croaker Flat, but increased outward toward the streams and rivers where the hydraulic gradients are larger. If contaminants from the land surface entered the water table at or near the interstream areas of the Station, where hydraulic gradients are smaller, they would migrate more slowly than if they entered closer to the streams or the shores of the rivers where gradients commonly are larger. The ground-water flow simulations indicate that some ground water leaks downward from the water table to the Yorktown confining unit and, where the confining unit is absent, to the Yorktown-Eastover aquifer. The velocities of advective-driven contaminants would decrease considerably when entering the Yorktown confining unit because the hydraulic conductivity of the confining unit is small compared to that of the aquifers. Any contaminants that moved with advective ground-water flow near the groundwater divide of the Lackey Plain would move relatively slowly because the hydraulic gradients are small there. The direction in which the contaminants would move, however, would be determined by precisely where the contaminants entered the water table. The model was not designed to accurately simulate ground-water flow paths through local karst features. Beneath Croaker Flat, ground water flows downward through the Columbia aquifer and the Yorktown confining unit into the Yorktown-Eastover aquifer. Analyses of the movement of simulated particles from two adjacent sites at Croaker Flat indicated that ground-water flow paths were similar at first but diverged and discharged to different tributaries of Indian Field Creek or to the York River. These simulations indicate that complex and possibly divergent flow paths and traveltimes are possible at the Station. Although the Station-area model is not detailed enough to simulate ground-water flow at the scales commonly used to track and remediate contaminants at specific sites, general concepts about possible contaminant migration at the Station can be inferred from the simulations.
Wang, Hongqing; Meselhe, Ehab A.; Waldon, Michael G.; Harwell, Matthew C.; Chen, Chunfang
2012-01-01
The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km canal, which circumscribes the wetland. Optimal management is a challenge and requires scientifically based predictive tools to assess and forecast the impacts of water management on Refuge water quality. In this research, we developed a compartment-based numerical model of hydrodynamics and water quality for the Refuge. Using the numerical model, we examined the dynamics in stage, water depth, discharge from hydraulic structures along the canal, and exchange flow among canal and marsh compartments. We also investigated the transport of chloride, sulfate and total phosphorus from the canal to the marsh interior driven by hydraulic gradients as well as biological removal of sulfate and total phosphorus. The model was calibrated and validated using long-term stage and water quality data (1995-2007). Statistical analysis indicates that the model is capable of capturing the spatial (from canal to interior marsh) gradients of constituents across the Refuge. Simulations demonstrate that flow from the eutrophic and mineral-enriched canal impacts chloride and sulfate in the interior marsh. In contrast, total phosphorus in the interior marsh shows low sensitivity to intrusion and dispersive transport. We conducted a rainfall-driven scenario test in which the pumped inflow concentrations of chloride, sulfate and total phosphorus were equal to rainfall concentrations (wet deposition). This test shows that pumped inflow is the dominant factor responsible for the substantially increased chloride and sulfate concentrations in the interior marsh. Therefore, the present day Refuge should not be classified as solely a rainfall-driven or ombrotrophic wetland. The model provides an effective screening tool for studying the impacts of various water management alternatives on water quality across the Refuge, and demonstrates the practicality of similarly modeling other wetland systems. As a general rule, modeling provides one component of a multi-faceted effort to provide technical support for ecosystem management decisions.
Cavity Solitons in Vertical Cavity Surface Emitting Lasers and their Applications
NASA Astrophysics Data System (ADS)
Giudici, Massimo; Pedaci, Francesco; Caboche, Emilie; Genevet, Patrice; Barland, Stephane; Tredicce, Jorge; Tissoni, Giovanna; Lugiato, Luigi
Cavity solitons (CS) are single peak localized structures which form over a homogeneous background in the section of broad-area non linear resonator driven by a coherent holding beam. They can be switched on and off by shining a writing/ erasing local laser pulse into the optical cavity. Moreover, when a phase or amplitude gradient is introduced in the holding beam, CS are set in motion along the gradient with a speed that depends on gradient strength. The ability to address CS and to control their location as well as their motion makes them interesting for alloptical processing units. In this chapter we report on several functionalities of CS that have been experimentally implemented in a Vertical Cavity Surface Emitting Laser (VCSEL) biased below threshold. We show that CS positions in the transverse section of the resonator can be reconfigured according to a phase landscape introduced in the holding beam. CS drifting propelled by a phase gradient in the holding beam can be used for realizing an all-optical delay line. Information bits are written in form of CS at a point of the device and a time delayed version of the written information can be read elsewhere along the gradient direction. CS existence and functionalities are deeply affected by presence of device defects generated during the fabrication process and randomly distributed through the device section. The sensitivity of CS to parameters gradients can be used to probe these defects, otherwise not detectable, and mapping their positions. Finally, a periodic flow of moving CS can be obtained by the interplay between a device defect and an external parameter gradient. This suggests the possibility of engineering a CS source directly onto the device.
NASA Astrophysics Data System (ADS)
Williams, R. J. P.
Electron transfer is one of the key reactions of biology not just in catalysis of oxidation/reduction reactions but in the conversion of sources of energy such as light to usable form for chemical transformations. There are then two intriguing problems. What is the nature of the matrix in which electrons flow in a biological cell after the initial charge separation due for example to the absorption of light. Here we are examining biological structures similar to man's electronic wires and the construction must be of low resistance in what are apparently insulators - organic polymers. It has been found that the electronic conduction system is largely made from metallo-proteins associated with lipid membranes. We understand much about these biological wires today. The second problem concerns the conversion of the energy captured from the light into usable chemical form. The major synthetic step in the production of biological polymers, including proteins, DNA, RNA, polysaccharides and fats, is condensation, i.e. the removal of water in the formation of amides, esters and so on. Now these condensation reactions are driven in biology by using a drying agent in water, namely the anhydride, pyrophosphate, in a special compound ATP, adenosine triphosphate. The central problem is to discover exactly how the flow of electrons can be related to the synthesis of (bound) pyrophosphate. (In a thermodynamic sense pyrophosphate is a water soluble kinetically stable drying agent comparable with solid P2O5.) In the biological systems the connection between these different classes of reaction, electron transfer and condensation, is known to be via the production of an energized gradient of protons across the biological membrane which arises from the flow of electrons across the same membrane in the electron transport wires of biology. However we do not understand thoroughly the steps which lead from electron flow in a membrane to proton gradients in that membrane, i.e. electron/proton coupling. Again we do not understand thoroughly how subsequently the proton gradient across a membrane makes ATP, pyrophosphate. Today there is good experimental evidence as to the likely answers in principle. These analyse the coupling devices in mechanical terms. In this article I describe at first the 'wires' of biology, uncoupled simple electron flow, and then go on to the ways in which electron flow could be transduced by mechanical devices, also proteins, into proton gradients and then ATP. This will be termed coupled electron flow. The objective of the article is to stimulate participation by physical chemists in the further description of biological energy capture from light or the oxidation of hydrocarbons to a form suitable for driving chemical syntheses in a controlled manner.
Generation of region 1 current by magnetospheric pressure gradients
NASA Technical Reports Server (NTRS)
Yang, Y. S.; Spiro, R. W.; Wolf, R. A.
1994-01-01
The Rice Convection Model (RCM) is used to illustrate theoretical possibilities for generating region 1 Birkeland currents by pressure gradients on closed field lines in the Earth's magnetosphere. Inertial effects and viscous forces are neglected. The RCM is applied to idealized cases, to emphasize the basic physical ideas rather than realistic representation of the actual magnetosphere. Ionospheric conductance is taken to be uniform, and the simplest possible representations of the magnetospheric plasma are used. Three basic cases are considered: (1) the case of pure northward Interplanetary Magnetic Field (IMF), with cusp merging assumed to create new closed field lines near the nose of the magnetosphere, following the suggestion by Song and Russell (1992); (2) the case where Dungey-type reconnection occurs at the nose, but magnetosheath plasma somehow enters closed field lines on the dawnside and duskside of the merging region, causing a pressure-driven low-latitude boundary layer; and (3) the case where Dungey-type reconnection occurs at the nose, but region 1 currents flow on sunward drifting plasma sheet field lines. In case 1, currents of region 1 sense are generated by pressure gradients, but those currents do not supply the power for ionospheric convection. Results for case 2 suggest that pressure gradients at the inner edge of the low-latitude boundary layer might generate a large fraction of the region 1 Birkeland currents that drive magnetospheric convection. Results for case 3 indicate that pressure gradients in the plasma sheet could provide part of the region 1 current.
Multiscale interaction between a large scale magnetic island and small scale turbulence
NASA Astrophysics Data System (ADS)
Choi, M. J.; Kim, J.; Kwon, J.-M.; Park, H. K.; In, Y.; Lee, W.; Lee, K. D.; Yun, G. S.; Lee, J.; Kim, M.; Ko, W.-H.; Lee, J. H.; Park, Y. S.; Na, Y.-S.; Luhmann, N. C., Jr.; Park, B. H.
2017-12-01
Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence can mutually interact via coupling between the electron temperature (T e ) gradient, the T e turbulence, and the poloidal flow. The T e gradient altered by the magnetic island steepens outside and flattens inside the island. The T e turbulence can appear in increased T e gradient regions. The combined effects of the T e gradient and the poloidal flow shear determines the two-dimensional distribution of the T e turbulence. When the poloidal vortex flow forms, it can maintain the steepest T e gradient and the magnetic island acts more like an electron heat transport barrier. Interestingly, when the T e gradient, the T e turbulence, and the vortex flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.
Post-fire hillslope debris flows: Evidence of a distinct erosion process
NASA Astrophysics Data System (ADS)
Langhans, Christoph; Nyman, Petter; Noske, Philip J.; Van der Sant, Rene E.; Lane, Patrick N. J.; Sheridan, Gary J.
2017-10-01
After wildfire a hitherto unexplained erosion process that some authors have called 'miniature debris flows on hillslopes' and that leave behind levee-lined rills has been observed in some regions of the world. Despite the unusual proposition of debris flow on planar hillslopes, the process has not received much attention. The objectives of this study were to (1) accumulate observational evidence of Hillslope Debris Flows (HDF) as we have defined the process, to (2) understand their initiation process by conducting runoff experiments on hillslopes, to (3) propose a conceptual model of HDF, and to (4) contrast and classify HDF relative to other erosion and transport processes in the post-wildfire hillslope domain. HDF have been observed at relatively steep slope gradients (0.4-0.8), on a variety of geologies, and after fire of at least moderate severity and consist of a lobe of gravel- to cobble-sized material 0.2-1 m wide that is pushed by runoff damming up behind it. During initiation, runoff moved individual particles that accumulated a small distance downslope until the accumulation of grains failed and formed the granular lobe of the HDF. HDF are a threshold process, and runoff rates of 0.5 L s- 1 2 L s- 1 were required for their initiation during the experiments. The conceptual model highlights HDF as a geomorphic process distinct from channel debris flows, because they occur on planar, unconfined hillslopes rather than confined channels. HDF can erode very coarse non-cohesive surface soil, which distinguishes them from rill erosion that have suspended and bedload transport. On a matrix of slope and grain size, HDF are enveloped between purely gravity-driven dry ravel, and mostly runoff driven bedload transport in rills.
NASA Astrophysics Data System (ADS)
Xue, Nan; Khodaparast, Sepideh; Zhu, Lailai; Nunes, Janine; Kim, Hyoungsoo; Stone, Howard
2017-11-01
Layered composite fluids are sometimes observed in confined systems of rather chaotic initial states, for example, layered lattes formed by pouring espresso into a glass of warm milk. In such configurations, pouring forces a lower density liquid (espresso) into a higher density ambient, which is similar to the fountain effects that characterize a wide range of flows driven by injecting a fluid into a second miscible phase. Although the initial state of the mixture is complex and chaotic, there are conditions where the mixture cools at room temperature and exhibits an organized layered pattern. Here we report controlled experiments injecting a fluid into a miscible phase and show that, above a critical injection velocity, layering naturally emerges over the time scale of minutes. We perform experimental and numerical analyses of the time-dependent flows to observe and understand the convective circulation in the layers. We identify critical conditions to produce the layering and relate the results quantitatively to the critical Rayleigh number in double-diffusive convection, which indicates the competition between the horizontal thermal gradient and the vertical density gradient generated by the fluid injection. Based on this understanding, we show how to employ this single-step process to produce layered structures in soft materials, where the local elastic properties as well as the local material concentration vary step-wise along the length of the material.
NASA Astrophysics Data System (ADS)
Basu, S.; Makela, J.; Doherty, P.; Wright, J.; Coster, A.
2008-05-01
Multi-technique ground and space-based studies conducted during the intense magnetic storm of 7-8 November 2004 yielded a hitherto little-recognized means of impacting space-based navigation systems such as the Federal Aviation Administration's Wide Area Augmentation System (WAAS) that operates in the North American sector. During this superstorm, no appreciable storm-enhanced density gradients were observed. Rather the mid-latitude region was enveloped by the auroral oval and the ionospheric trough within which the sub auroral polarization stream (SAPS) was confined during the local dusk to nighttime hours. This shows that such processes can partially disable GPS-based navigation systems for many hours even in the absence of appreciable TEC gradients, provided an intense flow channel is present in the ionosphere during nighttime hours, as revealed by DMSP and Dynasonde drift results. The competing effects of irregularity amplitude ΔN/N, the background F-region density and the magnitude of SAPS or auroral convection are discussed in establishing the extent of the region of impact on the WAAS system. In order to provide inputs to operational space weather models, the current GPS network used for measuring the total electron content in North America and elsewhere should be augmented by instruments that can measure ionospheric drifts.
Beam-driven acceleration in ultra-dense plasma media
Shin, Young-Min
2014-09-15
Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less
Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarski, Jacek; Ruediger, Guenther
2007-12-15
We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
Radial and local time structure of the Saturnian ring current, revealed by Cassini
NASA Astrophysics Data System (ADS)
Sergis, N.; Jackman, C. M.; Thomsen, M. F.; Krimigis, S. M.; Mitchell, D. G.; Hamilton, D. C.; Dougherty, M. K.; Krupp, N.; Wilson, R. J.
2017-02-01
We analyze particle and magnetic field data obtained between July 2004 and December 2013 in the equatorial magnetosphere of Saturn, by the Cassini spacecraft. The radial and local time distribution of the total (thermal and suprathermal) particle pressure and total plasma beta (ratio of particle to magnetic pressure) over radial distances from 5 to 16 Saturn radii (RS = 60,258 km) is presented. The average azimuthal current density Jϕ and its separate components (inertial, pressure gradient, and anisotropy) are computed as a function of radial distance and local time and presented as equatorial maps. We explore the relative contribution of different physical mechanisms that drive the ring current at Saturn. Results show that (a) the particle pressure is controlled by thermal plasma inside of 8 RS and by the hot ions beyond 12 RS, exhibiting strong local time asymmetry with higher pressures measured at the dusk and night sectors; (b) the plasma beta increases with radial distance and remains >1 beyond 8-10 RS for all local times; (c) the ring current is asymmetric in local time and forms a maximum region between 7 and 13 RS, with values up to 100-115 pA/m2; and (d) the ring current is inertial everywhere inside of 7 RS, exhibits a mixed nature between 7 and 11 RS and is pressure gradient driven beyond 11 RS, with the exception of the noon sector where the mixed nature persists. In the dawn sector, it appears strongly pressure gradient driven for a wider range of radial distance, consistent with fast return flow of hot, tenuous magnetospheric plasma following tail reconnection.
Plasma transport in an Eulerian AMR code
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; ...
2017-04-04
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions tomore » flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.« less
Plasma transport in an Eulerian AMR code
NASA Astrophysics Data System (ADS)
Vold, E. L.; Rauenzahn, R. M.; Aldrich, C. H.; Molvig, K.; Simakov, A. N.; Haines, B. M.
2017-04-01
A plasma transport model has been implemented in an Eulerian AMR radiation-hydrodynamics code, xRage, which includes plasma viscosity in the momentum tensor, viscous dissipation in the energy equations, and binary species mixing with consistent species mass and energy fluxes driven by concentration gradients, ion and electron baro-diffusion terms and temperature gradient forces. The physics basis, computational issues, numeric options, and results from several test problems are discussed. The transport coefficients are found to be relatively insensitive to the kinetic correction factors when the concentrations are expressed with the molar fractions and the ion mass differences are large. The contributions to flow dynamics from plasma viscosity and mass diffusion were found to increase significantly as scale lengths decrease in an inertial confinement fusion relevant Kelvin-Helmholtz instability mix layer. The mixing scale lengths in the test case are on the order of 100 μm and smaller for viscous effects to appear and 10 μm or less for significant ion species diffusion, evident over durations on the order of nanoseconds. The temperature gradient driven mass flux is seen to deplete a high Z tracer ion at the ion shock front. The plasma transport model provides the generation of the atomic mix per unit of interfacial area between two species with no free parameters. The evolution of the total atomic mix then depends also on an accurate resolution or estimate of the interfacial area between the species mixing by plasma transport. High resolution simulations or a more Lagrangian-like treatment of species interfaces may be required to distinguish plasma transport and numerical diffusion in an Eulerian computation of complex and dynamically evolving mix regions.
Transient Interfacial Phenomena in Miscible Polymer Systems (TIPMPS)
NASA Technical Reports Server (NTRS)
Pojman, John A.; Bessonov, Nicholas; Volpert, Vitaly; Wilke, Hermann
2003-01-01
Almost one hundred years ago Korteweg published a theory of how stresses could be induced in miscible fluids by concentration gradients, causing phenomena that would appear to be the same as with immiscible fluids. Miscible fluids could manifest a transient or effective interfacial tension (EIT). To this day, there has been no definitive experiment to confirm Korteweg's model but numerous fascinating and suggestive experiments have been reported. The goal of TIPMPS is to answer the question: Can concentration and temperature gradients in miscible materials induce stresses that cause convection? Many polymer processes involving miscible monomer and polymer systems could be affected by fluid flow and so this work could help understand miscible polymer processing, not only in microgravity, but also on earth. Demonstrating the existence of this phenomenon in miscible fluids will open up a new area of study for materials science. The science objectives of TIPMPS are: (1) Determine if convection can be induced by variation of the width of a miscible interface; (2) Determine if convection can be induced by variation of temperature along a miscible interface; (3) Determine if convection can be induced by variation of conversion along a miscible interface An interface between two miscible fluids can best be created via a spatially-selective photopolymerization of dodecyl acrylate with a photoinitiator, which allows the creation of precise and accurate concentration gradients between polymer and monomer. Optical techniques will be used to measure the refractive index variation caused by the resultant temperature and concentration fields. The viscosity of the polymer will be measured from the increase in the fluorescence of pyrene. Because the large concentration and temperature gradients cause buoyancy-driven convection that prevents the observation of the predicted flows, the experiment must be done in microgravity. In this report, we will consider our efforts to estimate the square gradient parameter, k, and our use of the estimates in modeling of the planned TIPMPS experiments. We developed a model consisting of the heat and diffusion equations with convective terms and of the Navier-Stokes equations with an additional volume force written in the form of the Korteweg stresses arising from nonlocal interaction in the fluid. The fluid's viscosity dependence on polymer conversion and temperature was taken from measurements of poly(dodecyl acrylate). Numerical modeling demonstrated that significant flows would arise for conditions corresponding to the planned experiments.
Key parameters controlling the performance of catalytic motors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David, E-mail: dreguera@ub.edu
2016-03-28
The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential andmore » the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.« less
A Model for the Oxidation of C/SiC Composite Structures
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
2003-01-01
A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of C/SiC composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. Within the mathematical formulation, two diffusion mechanisms are possible: (1) the relative diffusion of one species with respect to the mixture, which is concentration gradient driven and (2) the diffusion associated with the average velocity of the gas mixture, which is total gas pressure gradient driven. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations must be solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of space and time. The local rate of carbon oxidation is determined as a function of space and time using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The end result is a numerical scheme capable of determining the variation of the local carbon oxidation rates as a function of space and time for any arbitrary C/SiC composite structures.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
NASA Technical Reports Server (NTRS)
Cannell, David
2005-01-01
We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.
Gao, Junyuan; Sun, Xiurong; Moore, Leon C.; White, Thomas W.; Brink, Peter R.
2011-01-01
We recently modeled fluid flow through gap junction channels coupling the pigmented and nonpigmented layers of the ciliary body. The model suggested the channels could transport the secretion of aqueous humor, but flow would be driven by hydrostatic pressure rather than osmosis. The pressure required to drive fluid through a single layer of gap junctions might be just a few mmHg and difficult to measure. In the lens, however, there is a circulation of Na+ that may be coupled to intracellular fluid flow. Based on this hypothesis, the fluid would cross hundreds of layers of gap junctions, and this might require a large hydrostatic gradient. Therefore, we measured hydrostatic pressure as a function of distance from the center of the lens using an intracellular microelectrode-based pressure-sensing system. In wild-type mouse lenses, intracellular pressure varied from ∼330 mmHg at the center to zero at the surface. We have several knockout/knock-in mouse models with differing levels of expression of gap junction channels coupling lens fiber cells. Intracellular hydrostatic pressure in lenses from these mouse models varied inversely with the number of channels. When the lens’ circulation of Na+ was either blocked or reduced, intracellular hydrostatic pressure in central fiber cells was either eliminated or reduced proportionally. These data are consistent with our hypotheses: fluid circulates through the lens; the intracellular leg of fluid circulation is through gap junction channels and is driven by hydrostatic pressure; and the fluid flow is generated by membrane transport of sodium. PMID:21624945
Fracture-induced flow and liquid metal transport during core formation
NASA Astrophysics Data System (ADS)
Jones, V.; Petford, N.; Rushmer, T.; Wertheim, D.
2008-12-01
The most important event in the early history of the earth was the separation of its iron-rich core. Core formation induced profound chemical fractionations and extracted into the core most of Earth's iron and siderophile elements (Ni, Co, Au, Pt, W, Re), leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, 'raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation
Return current instability driven by a temperature gradient in ICF plasmas
Rozmus, W.; Brantov, A. V.; Sherlock, M.; ...
2017-10-12
Here, hot plasmas with strong temperature gradients in inertial confinement fusion (ICF) experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the nonlocal regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state ofmore » ion acoustic turbulence produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the ion acoustic turbulence and its effects on absorption and transport are also discussed.« less
NASA Astrophysics Data System (ADS)
Chakraborty Thakur, Saikat; Hong, Rongjie; Tynan, George
2017-10-01
We observe axial plasma detachment in a helicon plasma device that occurs simultaneously along with a spontaneous, self-organized global transition in the plasma dynamics via a transport bifurcation with strong hysteresis, at a certain B_crit. For B
Return current instability driven by a temperature gradient in ICF plasmas
NASA Astrophysics Data System (ADS)
Rozmus, W.; Brantov, A. V.; Sherlock, M.; Bychenkov, V. Yu
2018-01-01
Hot plasmas with strong temperature gradients in inertial confinement fusion experiments are examined for ion acoustic instabilities produced by electron heat flow. The return current instability (RCI) due to a neutralizing current of cold electrons arising in response to a large electron heat flux has been considered. First, the linear threshold and growth rates are derived in the non-local regime of thermal transport. They are compared with the results of Vlasov-Fokker-Planck (VFP) simulations in one spatial dimension. Very good agreement has been found between kinetic VFP simulations and the linear theory of the RCI. A quasi-stationary state of ion acoustic turbulence (IAT) produced by the RCI is achieved in the VFP simulations. Saturation of the RCI involves heating of ions in the tail of the ion distribution function and convection of the enhanced ion acoustic fluctuations from the unstable region of the plasma. Further evolution of the IAT and its effects on absorption and transport are also discussed.
Results from a Set of Three-Dimensional Numerical Experiments of a Hot Jupiter Atmosphere
NASA Technical Reports Server (NTRS)
Mayne, Nathan J.; Debras, Flirian; Baraffe, Isabelle; Thuburn, John; Amundsen, David S.; Acreman, David M.; Smith, Chris; Browning, Matthew K.; Manners, James; Wood Nigel
2017-01-01
We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.
Self-powered enzyme micropumps
NASA Astrophysics Data System (ADS)
Sengupta, Samudra; Patra, Debabrata; Ortiz-Rivera, Isamar; Agrawal, Arjun; Shklyaev, Sergey; Dey, Krishna K.; Córdova-Figueroa, Ubaldo; Mallouk, Thomas E.; Sen, Ayusman
2014-05-01
Non-mechanical nano- and microscale pumps that function without the aid of an external power source and provide precise control over the flow rate in response to specific signals are needed for the development of new autonomous nano- and microscale systems. Here we show that surface-immobilized enzymes that are independent of adenosine triphosphate function as self-powered micropumps in the presence of their respective substrates. In the four cases studied (catalase, lipase, urease and glucose oxidase), the flow is driven by a gradient in fluid density generated by the enzymatic reaction. The pumping velocity increases with increasing substrate concentration and reaction rate. These rechargeable pumps can be triggered by the presence of specific analytes, which enables the design of enzyme-based devices that act both as sensor and pump. Finally, we show proof-of-concept enzyme-powered devices that autonomously deliver small molecules and proteins in response to specific chemical stimuli, including the release of insulin in response to glucose.
Rich complex behaviour of self-assembled nanoparticles far from equilibrium
Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer
2017-01-01
A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish. PMID:28443636
Rich complex behaviour of self-assembled nanoparticles far from equilibrium
NASA Astrophysics Data System (ADS)
Ilday, Serim; Makey, Ghaith; Akguc, Gursoy B.; Yavuz, Özgün; Tokel, Onur; Pavlov, Ihor; Gülseren, Oguz; Ilday, F. Ömer
2017-04-01
A profoundly fundamental question at the interface between physics and biology remains open: what are the minimum requirements for emergence of complex behaviour from nonliving systems? Here, we address this question and report complex behaviour of tens to thousands of colloidal nanoparticles in a system designed to be as plain as possible: the system is driven far from equilibrium by ultrafast laser pulses that create spatiotemporal temperature gradients, inducing Marangoni flow that drags particles towards aggregation; strong Brownian motion, used as source of fluctuations, opposes aggregation. Nonlinear feedback mechanisms naturally arise between flow, aggregate and Brownian motion, allowing fast external control with minimal intervention. Consequently, complex behaviour, analogous to those seen in living organisms, emerges, whereby aggregates can self-sustain, self-regulate, self-replicate, self-heal and can be transferred from one location to another, all within seconds. Aggregates can comprise only one pattern or bifurcated patterns can coexist, compete, endure or perish.
CURVATURE-DRIVEN MOLECULAR FLOW ON MEMBRANE SURFACE*
MIKUCKI, MICHAEL; ZHOU, Y. C.
2017-01-01
This work presents a mathematical model for the localization of multiple species of diffusion molecules on membrane surfaces. Morphological change of bilayer membrane in vivo is generally modulated by proteins. Most of these modulations are associated with the localization of related proteins in the crowded lipid environments. We start with the energetic description of the distributions of molecules on curved membrane surface, and define the spontaneous curvature of bilayer membrane as a function of the molecule concentrations on membrane surfaces. A drift-diffusion equation governs the gradient flow of the surface molecule concentrations. We recast the energetic formulation and the related governing equations by using an Eulerian phase field description to define membrane morphology. Computational simulations with the proposed mathematical model and related numerical techniques predict (i) the molecular localization on static membrane surfaces at locations with preferred mean curvatures, and (ii) the generation of preferred mean curvature which in turn drives the molecular localization. PMID:29056778
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanizaki, Yuya; Nishimura, Hiromichi; Verbaarschot, Jacobus J. M.
We propose new gradient flows that define Lefschetz thimbles and do not blow up in a finite flow time. Here, we study analytic properties of these gradient flows, and confirm them by numerical tests in simple examples.
Pressure gradients fail to predict diffusio-osmosis
NASA Astrophysics Data System (ADS)
Liu, Yawei; Ganti, Raman; Frenkel, Daan
2018-05-01
We present numerical simulations of diffusio-osmotic flow, i.e. the fluid flow generated by a concentration gradient along a solid-fluid interface. In our study, we compare a number of distinct approaches that have been proposed for computing such flows and compare them with a reference calculation based on direct, non-equilibrium molecular dynamics simulations. As alternatives, we consider schemes that compute diffusio-osmotic flow from the gradient of the chemical potentials of the constituent species and from the gradient of the component of the pressure tensor parallel to the interface. We find that the approach based on treating chemical potential gradients as external forces acting on various species agrees with the direct simulations, thereby supporting the approach of Marbach et al (2017 J. Chem. Phys. 146 194701). In contrast, an approach based on computing the gradients of the microscopic pressure tensor does not reproduce the direct non-equilibrium results.
NASA Astrophysics Data System (ADS)
Millar, David J.; Cooper, David J.; Ronayne, Michael J.
2018-06-01
Hydrological dynamics act as a primary control on ecosystem function in mountain peatlands, serving as an important regulator of carbon fluxes. In western North America, mountain peatlands exist in different hydrogeological settings, across a range climatic conditions, and vary in floristic composition. The sustainability of these ecosystems, particularly those at the low end of their known elevation range, is susceptible to a changing climate via changes in the water cycle. We conducted a hydrological investigation of two mountain peatlands, with differing vegetation, hydrogeological setting (sloping vs basin), and climate (strong vs weak monsoon influence). Growing season saturated zone water budgets were modeled on a daily basis, and subsurface flow characterizations were performed during multiple field campaigns at each site. The sloping peatland expectedly showed a strong lateral groundwater potential gradient throughout the growing season. Alternatively, the basin peatland had low lateral gradients but more pronounced vertical gradients. A zero-flux plane was apparent at a depth of approximately 50 cm below the peat surface at the basin peatland; shallow groundwater above this depth moved upward towards the surface via evapotranspiration. The differences in groundwater flow dynamics between the two sites also influenced water budgets. Higher groundwater inflow at the sloping peatland offset higher rates of evapotranspiration losses from the saturated zone, which were apparently driven by differences in vegetative cover. This research revealed that although sloping peatlands cover relatively small portions of mountain watersheds, they provide unique settings where vegetation directly utilizes groundwater for transpiration, which were several-fold higher than typically reported for surrounding uplands.
Transport Barriers in Bootstrap Driven Tokamaks
NASA Astrophysics Data System (ADS)
Staebler, Gary
2017-10-01
Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Weyer, K. U.
2017-12-01
Coastal groundwater flow investigations at the Biscayne Bay, south of Miami, Florida, gave rise to the concept of density-driven flow of seawater into coastal aquifers creating a saltwater wedge. Within that wedge, convection-driven return flow of seawater and a dispersion zone were assumed by Cooper et al. (1964) to be the cause of the Biscayne aquifer `sea water wedge'. This conclusion was based on the chloride distribution within the aquifer and on an analytical model concept assuming convection flow within a confined aquifer without taking non-chemical field data into consideration. This concept was later labelled the `Henry Problem', which any numerical variable density flow program must be able to simulate to be considered acceptable. Both, `density-driven flow' and Tothian `groundwater flow systems' (with or without variable density conditions) are driven by gravitation. The difference between the two are the boundary conditions. 'Density-driven flow' occurs under hydrostatic boundary conditions while Tothian `groundwater flow systems' occur under hydrodynamic boundary conditions. Revisiting the Cooper et al. (1964) publication with its record of piezometric field data (heads) showed that the so-called sea water wedge has been caused by discharging deep saline groundwater driven by gravitational flow and not by denser sea water. Density driven flow of seawater into the aquifer was not found reflected in the head measurements for low and high tide conditions which had been taken contemporaneously with the chloride measurements. These head measurements had not been included in the flow interpretation. The very same head measurements indicated a clear dividing line between shallow local fresh groundwater flow and saline deep groundwater flow without the existence of a dispersion zone or a convection cell. The Biscayne situation emphasizes the need for any chemical interpretation of flow pattern to be supported by head data as energy indicators of flow fields. At the Biscayne site density-driven flow of seawater did and does not exist. Instead this site and the Florida coast line in general are the end points of local fresh and regional saline groundwater flow systems driven by gravity forces and not by density differences.
Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas
NASA Astrophysics Data System (ADS)
Hornsby, W. A.; Angioni, C.; Lu, Z. X.; Fable, E.; Erofeev, I.; McDermott, R.; Medvedeva, A.; Lebschy, A.; Peeters, A. G.; The ASDEX Upgrade Team
2018-05-01
Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al 2017 Nucl. Fusion 57 046008). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al 2017 Nucl. Fusion 57 046008). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector.
Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard
2016-01-01
The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
Modeling sediment concentration of rill flow
NASA Astrophysics Data System (ADS)
Yang, Daming; Gao, Peiling; Zhao, Yadong; Zhang, Yuhang; Liu, Xiaoyuan; Zhang, Qingwen
2018-06-01
Accurate estimation of sediment concentration is essential to establish physically-based erosion models. The objectives of this study were to evaluate the effects of flow discharge (Q), slope gradient (S), flow velocity (V), shear stress (τ), stream power (ω) and unit stream power (U) on sediment concentration. Laboratory experiments were conducted using a 10 × 0.1 m rill flume under four flow discharges (2, 4, 8 and 16 L min-1), and five slope gradients (5°, 10°, 15°, 20° and 25°). The results showed that the measured sediment concentration varied from 87.08 to 620.80 kg m-3 with a mean value of 343.13 kg m-3. Sediment concentration increased as a power function with flow discharge and slope gradient, with R2 = 0.975 and NSE = 0.945. The sediment concentration was more sensitive to slope gradient than to flow discharge. The sediment concentration was well predicted by unit stream power (R2 = 0.937, NSE = 0.865), whereas less satisfactorily by flow velocity (R2 = 0.470, NSE = 0.539) and stream power (R2 = 0.773, NSE = 0.732). In addition, using the equations to simulate the measured sediment concentration of other studies, the result further indicated that slope gradient, flow discharge and unit stream power were good predictors of sediment concentration. In general, slope gradient, flow discharge and unit stream power seem to be the preferred predictors for estimating sediment concentration.
UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.
2013-06-10
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns andmore » thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.« less
NASA Astrophysics Data System (ADS)
Gao, Q. D.; Budny, R. V.
2015-03-01
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.
The characteristics and dynamics of wave-driven flow across a platform coral reef in the Red Sea
NASA Astrophysics Data System (ADS)
Lentz, S. J.; Churchill, J. H.; Davis, K. A.; Farrar, J. T.; Pineda, J.; Starczak, V.
2016-02-01
Current dynamics across a platform reef in the Red Sea near Jeddah, Saudi Arabia, are examined using 18 months of current profile, pressure, surface wave, and wind observations. The platform reef is 700 m long, 200 m across with spatial and temporal variations in water depth over the reef ranging from 0.6 to 1.6 m. Surface waves breaking at the seaward edge of the reef cause a 2-10 cm setup of sea level that drives cross-reef currents of 5-20 cm s-1. Bottom stress is a significant component of the wave setup balance in the surf zone. Over the reef flat, where waves are not breaking, the cross-reef pressure gradient associated with wave setup is balanced by bottom stress. The quadratic drag coefficient for the depth-average flow decreases with increasing water depth from Cda = 0.17 in 0.4 m of water to Cda = 0.03 in 1.2 m of water. The observed dependence of the drag coefficient on water depth is consistent with open-channel flow theory and a hydrodynamic roughness of zo = 0.06 m. A simple one-dimensional model driven by incident surface waves and wind stress accurately reproduces the observed depth-averaged cross-reef currents and a portion of the weaker along-reef currents over the focus reef and two other Red Sea platform reefs. The model indicates the cross-reef current is wave forced and the along-reef current is partially wind forced.
Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary
NASA Astrophysics Data System (ADS)
Huang, Wei; Li, Chunyan
2017-11-01
With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.
Effect of particle inertia on fluid turbulence in gas-solid disperse flow
NASA Astrophysics Data System (ADS)
Mito, Yoichi
2016-11-01
The effect of particle inertia on the fluid turbulence in gas-solid disperse flow through a vertical channel has been examined by using a direct numerical simulation, to calculate the gas velocities seen by the particles, and a simplified non-stationary flow model, in which a uniform distribution of solid spheres of density ratio of 1000 are added into the fully-developed turbulent gas flow in an infinitely wide channel. The gas flow is driven downward with a constant pressure gradient. The frictional Reynolds number defined with the frictional velocity before the addition of particles, v0*, is 150. The feedback forces are calculated using a point force method. Particle diameters of 0.95, 1.3 and 1.9, which are made dimensionless with v0* and the kinematic viscosity, and volume fractions, ranging from 1 ×10-4 to 2 ×10-3 , in addition to the one-way coupling cases, are considered. Gravitational effect is not clearly seen where the fluid turbulence is damped by feedback effect. Gas flow rate increases with the decrease in particle inertia, that causes the increase in feedback force. Fluid turbulence decreases with the increase in particle inertia, that causes the increase in diffusivity of feedback force and of fluid turbulence. This work was supported by JSPS KAKENHI Grant Number 26420097.
NASA Astrophysics Data System (ADS)
Yee, Andrew; Cevheri, Necmettin; Yoda, Minami
2015-11-01
Recently, we have shown that suspended radii a = 245 nm particles flowing through a microchannel driven by the combination of a dc electric field and pressure gradient (where the resulting electroosmotic and shear flows are in opposite directions) are attracted to the wall at low electric field magnitude | E | , then assemble into concentrated bands that only exist within a few μm of the wall above a threshold value of | E | , | Ecr | . The ~ 6 μ m wide bands are aligned with the flow direction and are roughly periodic along the cross-stream direction. This talk focuses on quantitative characterization of these bands, for example how | Ecr | , the time required for bands to form after applying the electric field To, and the number of bands depend upon parameters such as particle volume fraction φ, shear rate γ˙ , | E | , and a. The dynamics of the particles within the bands are visualized by imaging a mixture of particles with different fluorescent labels. The visualizations show that the particles are in a liquid state within these bands, and suggest that the particles nearest the wall move in the direction of the electroosmotic flow, while those farther from the wall move in the direction of the shear flow. Supported by NSF.
Multiscale gyrokinetics for rotating tokamak plasmas: fluctuations, transport and energy flows.
Abel, I G; Plunk, G G; Wang, E; Barnes, M; Cowley, S C; Dorland, W; Schekochihin, A A
2013-11-01
This paper presents a complete theoretical framework for studying turbulence and transport in rapidly rotating tokamak plasmas. The fundamental scale separations present in plasma turbulence are codified as an asymptotic expansion in the ratio ε = ρi/α of the gyroradius to the equilibrium scale length. Proceeding order by order in this expansion, a set of coupled multiscale equations is developed. They describe an instantaneous equilibrium, the fluctuations driven by gradients in the equilibrium quantities, and the transport-timescale evolution of mean profiles of these quantities driven by the interplay between the equilibrium and the fluctuations. The equilibrium distribution functions are local Maxwellians with each flux surface rotating toroidally as a rigid body. The magnetic equilibrium is obtained from the generalized Grad-Shafranov equation for a rotating plasma, determining the magnetic flux function from the mean pressure and velocity profiles of the plasma. The slow (resistive-timescale) evolution of the magnetic field is given by an evolution equation for the safety factor q. Large-scale deviations of the distribution function from a Maxwellian are given by neoclassical theory. The fluctuations are determined by the 'high-flow' gyrokinetic equation, from which we derive the governing principle for gyrokinetic turbulence in tokamaks: the conservation and local (in space) cascade of the free energy of the fluctuations (i.e. there is no turbulence spreading). Transport equations for the evolution of the mean density, temperature and flow velocity profiles are derived. These transport equations show how the neoclassical and fluctuating corrections to the equilibrium Maxwellian act back upon the mean profiles through fluxes and heating. The energy and entropy conservation laws for the mean profiles are derived from the transport equations. Total energy, thermal, kinetic and magnetic, is conserved and there is no net turbulent heating. Entropy is produced by the action of fluxes flattening gradients, Ohmic heating and the equilibration of interspecies temperature differences. This equilibration is found to include both turbulent and collisional contributions. Finally, this framework is condensed, in the low-Mach-number limit, to a more concise set of equations suitable for numerical implementation.
NASA Astrophysics Data System (ADS)
Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas
2018-02-01
This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.
2017-12-01
A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.
Thermal rectification in thin films driven by gradient grain microstructure
NASA Astrophysics Data System (ADS)
Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel
2018-03-01
As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.
Constraints in the hot-dry-rock resources of the united states
Sass, John; Guffanti, Marianne; ,
1993-01-01
As with hydrothermal systems, the western U.S has higher HDR potential overall than the eastern U.S. because geothermal gradients on average are higher in the west. Nevertheless, some attractive exploration targets occur in the eastern U.S. The most favorable target in the eastern U.S. (defined here to include the Great Plains province) is one in which the heat flow from the basement rocks is higher than average, either due to heat generation from highly radioactive rocks or to a plume of hot water driven upwards from greater depths by convection, and where such basement rocks are blanketed by one or more kilometers of sedimentary material having a low thermal conductivity.
Alignment dynamics of diffusive scalar gradient in a two-dimensional model flow
NASA Astrophysics Data System (ADS)
Gonzalez, M.
2018-04-01
The Lagrangian two-dimensional approach of scalar gradient kinematics is revisited accounting for molecular diffusion. Numerical simulations are performed in an analytic, parameterized model flow, which enables considering different regimes of scalar gradient dynamics. Attention is especially focused on the influence of molecular diffusion on Lagrangian statistical orientations and on the dynamics of scalar gradient alignment.
Subnanometer Motion of Cargoes Driven by Thermal Gradients Along Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Barreiro, Amelia; Rurali, Riccardo; Hernández, Eduardo R.; Moser, Joel; Pichler, Thomas; Forró, László; Bachtold, Adrian
2008-05-01
An important issue in nanoelectromechanical systems is developing small electrically driven motors. We report on an artificial nanofabricated motor in which one short carbon nanotube moves relative to another coaxial nanotube. A cargo is attached to an ablated outer wall of a multiwalled carbon nanotube that can rotate and/or translate along the inner nanotube. The motion is actuated by imposing a thermal gradient along the nanotube, which allows for subnanometer displacements, as opposed to an electromigration or random walk effect.
Mazzucato, E; Smith, D R; Bell, R E; Kaye, S M; Hosea, J C; LeBlanc, B P; Wilson, J R; Ryan, P M; Domier, C W; Luhmann, N C; Yuh, H; Lee, W; Park, H
2008-08-15
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k perpendicular rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.
Systematic characterization of degas-driven flow for poly(dimethylsiloxane) microfluidic devices
Liang, David Y.; Tentori, Augusto M.; Dimov, Ivan K.; ...
2011-01-01
Degas-driven flow is a novel phenomenon used to propel fluids in poly(dimethylsiloxane) (PDMS)-based microfluidic devices without requiring any external power. This method takes advantage of the inherently high porosity and air solubility of PDMS by removing air molecules from the bulk PDMS before initiating the flow. The dynamics of degas-driven flow are dependent on the channel and device geometries and are highly sensitive to temporal parameters. These dependencies have not been fully characterized, hindering broad use of degas-driven flow as a microfluidic pumping mechanism. Here, we characterize, for the first time, the effect of various parameters on the dynamics ofmore » degas-driven flow, including channel geometry, PDMS thickness, PDMS exposure area, vacuum degassing time, and idle time at atmospheric pressure before loading. We investigate the effect of these parameters on flow velocity as well as channel fill time for the degas-driven flow process. Using our devices, we achieved reproducible flow with a standard deviation of less than 8% for flow velocity, as well as maximum flow rates of up to 3 nL/s and mean flow rates of approximately 1-1.5 nL/s. Parameters such as channel surface area and PDMS chip exposure area were found to have negligible impact on degas-driven flow dynamics, whereas channel cross-sectional area, degas time, PDMS thickness, and idle time were found to have a larger impact. In addition, we develop a physical model that can predict mean flow velocities within 6% of experimental values and can be used as a tool for future design of PDMS-based microfluidic devices that utilize degas-driven flow.« less
Gyrokinetic GDC turbulence simulations: confirming a new instability regime in LAPD plasmas
NASA Astrophysics Data System (ADS)
Pueschel, M. J.; Rossi, G.; Told, D.; Terry, P. W.; Jenko, F.; Carter, T. A.
2016-10-01
Recent high-beta experiments at the LArge Plasma Device have found significant parallel magnetic fluctuations in the region of large pressure gradients. Linear gyrokinetic simulations show the dominant instability at these radii to be the gradient-driven drift coupling (GDC) mode, a non-textbook mode driven by pressure gradients and destabilized by the coupling of ExB and grad-B∥ drifts. Unlike in previous studies, the large parallel extent of the device allows for finite-kz versions of this instability in addition to kz = 0 . The locations of maximum linear growth match very well with experimentally observed peaks of B∥ fluctuations. Local nonlinear simulations reproduce many features of the observations fairly well, with the exception of Bperp fluctuations, for which experimental profiles suggest a source unrelated to pressure gradients. In toto, the results presented here show that turbulence and transport in these experiments are driven by the GDC instability, that important characteristics of the linear instability carry over to nonlinear simulations, and - in the context of validation - that the gyrokinetic framework performs surprisingly well far outside its typical area of application, increasing confidence in its predictive abilities. Supported by U.S. DOE.
NASA Astrophysics Data System (ADS)
Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong
2018-02-01
The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.
Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Hao; Liu, Nansheng, E-mail: lns@ustc.edu.cn; Lu, Xiyun
Direct numerical simulations have been performed to study the Taylor-Couette (TC) flow between two rotating, coaxial cylinders in the presence of a radial temperature gradient. Specifically, the influence of the buoyant force and the outer cylinder rotation on the turbulent TC flow system with the radius ratio η = 0.912 was examined. For the co-rotating TC flows with Re{sub i} (inner cylinder) =1000 and Re{sub o} (outer cylinder) =100, a transition pathway to highly turbulent flows is realized by increasing σ, a parameter signifying the ratio of buoyant to inertial force. This nonlinear flow transition involves four intriguing states thatmore » emerge in sequence as chaotic wavy vortex flow for σ = 0, wavy interpenetrating spiral flows for σ = 0.02 and 0.05, intermittent turbulent spirals for σ = 0.1 and 0.2, and turbulent spirals for σ = 0.4. Overall, the fluid motion changes from a centrifugally driven flow regime characterized by large-scale wavy Taylor vortices (TVs) to a buoyancy-dominated flow regime characterized by small-scale turbulent vortices. Commensurate changes in turbulence statistics and heat transfer are seen as a result of the weakening of large-scale TV circulations and enhancement of turbulent motions. Additionally, the influence of variation of the outer cylinder rotation, −500 < Re{sub o} < 500 in presence of buoyancy (σ = 0.1) with Re{sub i} = 1000, has been considered. Specifically, it is demonstrated that this variation strongly influences the azimuthal and axial mean flows with a weaker influence on the fluctuating fluid motions. Of special interest, here are the turbulent dynamics near the outer wall where a marked decrease of turbulence intensity and a sign inversion of the Reynolds stress R{sub rz} are observed for the strongly counter-rotating regimes (Re{sub o} = − 300 and −500). To this end, it has been shown that the underlying flow physics for this drastic modification are associated with the modification of the correlation between the radial and axial fluctuating motions. In turn, the intriguing effects of this modification on the mean axial flow, turbulent statistics, force balance, and dynamic processes such as turbulence production and dissipation are discussed.« less
Application of the conjugate-gradient method to ground-water models
Manteuffel, T.A.; Grove, D.B.; Konikow, Leonard F.
1984-01-01
The conjugate-gradient method can solve efficiently and accurately finite-difference approximations to the ground-water flow equation. An aquifer-simulation model using the conjugate-gradient method was applied to a problem of ground-water flow in an alluvial aquifer at the Rocky Mountain Arsenal, Denver, Colorado. For this application, the accuracy and efficiency of the conjugate-gradient method compared favorably with other available methods for steady-state flow. However, its efficiency relative to other available methods depends on the nature of the specific problem. The main advantage of the conjugate-gradient method is that it does not require the use of iteration parameters, thereby eliminating this partly subjective procedure. (USGS)
Preliminary map of temperature gradients in the conterminous United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffanti, M.; Nathenson, M.
1980-09-01
Temperature gradients have been determined from temperature/depth measurements made in drill holes deeper than 600 m and used in the construction of a temperature-gradient map of the conterminous United States. The map displays temperature gradients (in /sup 0/C/km) that can be expected to exist regionally in a conductive thermal regime to a depth of 2 km. The major difference between this map and the AAPG-USGS temperature-gradient map is in the midcontinental region where the AAPG-USGS map does not demarcate a division between colder eastern and warmer western thermal regimes. A comparison with the heat-flow map of Sass et al. (1980)more » indicates that temperature gradients commonly reflect regional heat flow, and the gross east-west division of the United States on the basis of heat flow is also expressed by temperature gradient.« less
Fluid Flow and Solute Transport in the Bullwinkle Field J2 Sand, Offshore Gulf of Mexico
NASA Astrophysics Data System (ADS)
Nunn, J. A.; Hanor, J. S.
2006-12-01
The Bullwinkle field is located in a Pliocene-Pleistocene salt withdrawal minibasin approximately 90 km southwest of New Orleans, Louisiana. Most of the production has been from the prolific "J" sand sequence, a late Pliocene age channel and sheet sand turbidite complex. Salinities of the oil-leg waters (i.e., the pre-production immobile waters located above the original oil-water contact) vary from over 300 g/L near salt to approximately 150 g/L at the original oil-water contact in the J2 sand. Aquifer waters below the original oil-water contact generally have salinities between 150 g/L and 100 g/L. We developed numerical models to simulate fluid flow and associated solute transport in a gently dipping, relatively thin but high permeability sand body such as the J2 sand in Bullwinkle field. Dissolution of salt exposed in the updip portion of a confined aquifer can generate kilometer-scale fluid circulation with velocities of 10-40 cm/yr. Aquifer dips can be less than 5 degrees. Salt dissolution can generate a dense brine throughout a minibasin scale aquifer within 10,000 to 100,000 years. The fluid circulation pattern and amount of salt dissolved depends on permeability, dip, dispersivity, salt available for dissolution, and aquifer thickness. Dissolution of salt is massive, 1 billion kg or more. Salt dissolution within aquifers may be an important process in removing the last few meters of salt to form salt welds. Stratigraphic variations in aquifer salinity may be related to differences in spatial/temporal contact with salt bodies rather than a complex pattern of fluid migration. Once salt dissolution stops, continued density driven flow in minibasin scale aquifers will largely eliminate spatial variations in salinity. Introduction of hydrocarbons must be rapid in order to preserve the observed spatial gradients in oil-leg water salinity. Model simulations indicate that vertical as well as horizontal spatial variations in preproduction oil-leg water salinities may exist. Pre- production spatial distributions of oil-leg and aquifer waters salinities in the J sands of the Bullwinkle field are quantitatively consistent with: fluid circulation driven by updip dissolution of salt; introduction of hydrocarbons which traps oil-leg waters and stops further salt dissolution; and continued mixing of aquifer waters driven by density driven flow until salinity variations are largely eliminated.
NASA Astrophysics Data System (ADS)
Bittner, S.; Priesack, E.
2012-04-01
We apply a functional-structural model of tree water flow to single old-growth trees in a temperate broad-leaved forest stand. Roots, stems and branches are represented by connected porous cylinder elements further divided into the inner heartwood cylinders surrounded by xylem and phloem. Xylem water flow is simulated by applying a non-linear Darcy flow in porous media driven by the water potential gradient according to the cohesion-tension theory. The flow model is based on physiological input parameters such as the hydraulic conductivity, stomatal response to leaf water potential and root water uptake capability and, thus, can reflect the different properties of tree species. The actual root water uptake is calculated using also a non-linear Darcy law based on the gradient between root xylem water potential and rhizosphere soil water potential and by the simulation of soil water flow applying Richards equation. A leaf stomatal conductance model is combined with the hydrological tree and soil water flow model and a spatially explicit three-dimensional canopy light model. The structure of the canopy and the tree architectures are derived by applying an automatic tree skeleton extraction algorithm from point clouds obtained by use of a terrestrial laser scanner allowing an explicit representation of the water flow path in the stem and branches. The high spatial resolution of the root and branch geometry and their connectivity makes the detailed modelling of the water use of single trees possible and allows for the analysis of the interaction between single trees and the influence of the canopy light regime (including different fractions of direct sunlight and diffuse skylight) on the simulated sap flow and transpiration. The model can be applied at various sites and to different tree species, enabling the up-scaling of the water usage of single trees to the total transpiration of mixed stands. Examples are given to reveal differences between diffuse- and ring-porous tree species and to simulate the diurnal dynamics of transpiration, stem sap flux, and root water uptake observed during the vegetation period in the year 2009.
NASA Astrophysics Data System (ADS)
Larsen, L.; Christensen, A.; Harvey, J. W.; Ma, H.; Newman, S.; Saunders, C.; Twilley, R.
2017-12-01
Emergence of vegetation patterning in fluvial landscapes is a classic example of how autogenic processes can drive long term fluvial and geomorphic adjustments in aquatic ecosystems. Studies elucidating the physics of flow through vegetation patches have produced understanding of how patterning in topography and vegetation commonly emerges and what effect it has on long term geomorphic change. However, with regard to mechanisms underlying pattern existence and resilience, several knowledge gaps remain, including the role of landscape-scale flow-vegetation feedbacks, feedbacks that invoke additional biogeochemical or biological agents, and determination of the relative importance of autogenic processes relative to external drivers. Here we provide a synthesis of the processes over a range of scales known to drive vegetation patterning and sedimentation in low gradient fluvial landscapes, emphasizing recent field and modeling studies in the Everglades, FL and Wax Lake Delta, LA that address these gaps. In the Everglades, while flow routing and sediment redistribution at the patch scale is known to be a primary driver of vegetation pattern emergence, landscape-scale routing of flow, as driven by the landscape's connectivity, can set up positive feedbacks that influence the rate of pattern degradation. Recent flow release experiments reveal that an additional feedback, involving phosphorus concentrations, flow, and floating vegetation communities that are abundant under low phosphorus, low flow conditions further stabilizes the alternative landscape states established through local scale sediment redistribution. Biogeochemistry-vegetation-sediment feedbacks may also be important for geomorphic development of newly emerging landscapes such as the Wax Lake Delta. There, fine sediment deposition shapes hydrogeomorphic zones with vegetation patterns that stimulate the growth of biofilm, while biofilm characteristics override the physical characteristics of vegetation canopies in determining fine sediment deposition rates and influence nitrogen and carbon biogeochemistry. Emerging tools and data streams, such as information flow analysis of lidar-derived vegetation biovolume and topography, can help identify the relative roles of autogenic vs. external forcing in these landscapes.
MPS solidification model. Analysis and calculation of macrosegregation in a casting ingot
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Maples, A. L.
1985-01-01
Work performed on several existing solidification models for which computer codes and documentation were developed is presented. The models describe the solidification of alloys in which there is a time varying zone of coexisting solid and liquid phases; i.e., the S/L zone. The primary purpose of the models is to calculate macrosegregation in a casting or ingot which results from flow of interdendritic liquid in this S/L zone during solidification. The flow, driven by solidification contractions and by gravity acting on density gradients in the interdendritic liquid, is modeled as flow through a porous medium. In Model 1, the steady state model, the heat flow characteristics are those of steady state solidification; i.e., the S/L zone is of constant width and it moves at a constant velocity relative to the mold. In Model 2, the unsteady state model, the width and rate of movement of the S/L zone are allowed to vary with time as it moves through the ingot. Each of these models exists in two versions. Models 1 and 2 are applicable to binary alloys; models 1M and 2M are applicable to multicomponent alloys.
Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.
1991-01-01
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).
Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.
1989-01-01
An experimental investigation of thermocapillary flow in droplets of a vegetable oil (partially hydrogenated soybean oil) immersed in silicone oil was conducted in a test cell with a heated top wall and a cooled bottom wall. The liquids are nearly immiscible and have equal densities at a temperature below the room temperature, thus providing a simulation of low-gravity conditions by reducing the buoyancy forces. The interfacial tension between the two oils was measured in the temperature range 20 to 50 C using a capillary tube and (d sigma)/(d T) was determined to be negative. Droplets ranging in sizes from 3 mm to 1 cm diameter were injected into the silicone oil. The vertical temperature profile in the bulk liquid (silicone oil) produces temperature variations along the interface which induce variations in the interfacial tension. The flow inside the droplet driven by the resulting interfacial shear stresses was observed using a laser light-sheet flow visualization technique. The flow direction is consistent with the sign of (d sigma)/(d T). The observed maximum surface velocities are compared to the theoretical predictions of Young et al. (1959).
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
Park, H M; Lee, W M
2008-07-01
Many lab-on-a-chip based microsystems process biofluids such as blood and DNA solutions. These fluids are viscoelastic and show extraordinary flow behaviors, not existing in Newtonian fluids. Adopting appropriate constitutive equations these exotic flow behaviors can be modeled and predicted reasonably using various numerical methods. In the present paper, we investigate viscoelastic electroosmotic flows through a rectangular straight microchannel with and without pressure gradient. It is shown that the volumetric flow rates of viscoelastic fluids are significantly different from those of Newtonian fluids under the same external electric field and pressure gradient. Moreover, when pressure gradient is imposed on the microchannel there appear appreciable secondary flows in the viscoelastic fluids, which is never possible for Newtonian laminar flows through straight microchannels. The retarded or enhanced volumetric flow rates and secondary flows affect dispersion of solutes in the microchannel nontrivially.
Matsumoto, Kengo; Imasato, Mitsunobu; Yamazaki, Yuji; Tanaka, Hiroo; Watanabe, Mitsuhiro; Eguchi, Hidetoshi; Nagano, Hiroaki; Hikita, Hayato; Tatsumi, Tomohide; Takehara, Tetsuo; Tamura, Atsushi; Tsukita, Sachiko
2014-11-01
Bile formation and secretion are essential functions of the hepatobiliary system. Bile flow is generated by transepithelial transport of water and ionic/nonionic solutes via transcellular and paracellular pathways that is mainly driven by osmotic pressure. We examined the role of tight junction-based paracellular transport in bile secretion. Claudins are cell-cell adhesion molecules in tight junctions that create the paracellular barrier. The claudin family has 27 reported members, some of which have paracellular ion- and/or water-channel-like functions. Claudin 2 is a paracellular channel-forming protein that is highly expressed in hepatocytes and cholangiocytes; we examined the hepatobiliary system of claudin 2 knockout (Cldn2(-/-)) mice. We collected liver and biliary tissues from Cldn2(-/-) and Cldn2(+/+) mice and performed histologic, biochemical, and electrophysiologic analyses. We measured osmotic movement of water and/or ions in Cldn2(-/-) and Cldn2(+/+) hepatocytes and bile ducts. Mice were placed on lithogenic diets for 4 weeks and development of gallstone disease was assessed. The rate of bile flow in Cldn2(-/-) mice was half that of Cldn2(+/+) mice, resulting in significantly more concentrated bile in livers of Cldn2(-/-) mice. Consistent with these findings, osmotic gradient-driven water flow was significantly reduced in hepatocyte bile canaliculi and bile ducts isolated from Cldn2(-/-) mice, compared with Cldn2(+/+) mice. After 4 weeks on lithogenic diets, all Cldn2(-/-) mice developed macroscopically visible gallstones; the main component of the gallstones was cholesterol (>98%). In contrast, none of the Cldn2(+/+) mice placed on lithogenic diets developed gallstones. Based on studies of Cldn2(-/-) mice, claudin 2 regulates paracellular ion and water flow required for proper regulation of bile composition and flow. Dysregulation of this process increases susceptibility to cholesterol gallstone disease in mice. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
Gradient isolator for flow field of fuel cell assembly
Ernst, W.D.
1999-06-15
Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.
Gradient isolator for flow field of fuel cell assembly
Ernst, William D.
1999-01-01
Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.
An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures
Amadei, B.; Savage, W.Z.
2001-01-01
We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, Jerald A.
1997-01-01
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for 1) cleaning, developing or etching, 2) rinsing, and 3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material.
Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor
Britten, J.A.
1997-08-26
A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.
Core segregation mechanism and compositional evolution of terretrial planets
NASA Astrophysics Data System (ADS)
Petford, N.; Rushmer, T.
2009-04-01
A singular event in the formation of the earth and terrestrial planets was the separation iron-rich melt from mantle silicate to form planetary cores. On Earth, and by implication other rocky planets, this process induced profound internal chemical fractionation, with siderophile elements (Ni, Co, Au, Pt, W, Re) following Fe into the core, leaving the silicate crust and mantle with strong depletions of these elements relative to primitive planetary material. Recent measurements of radiogenic 182W anomalies in the silicate Earth, Mars and differentiated meteorites imply that planetesimals segregated metallic cores within a few Myr of the origin of the solar system. Various models have been put forward to explain the physical nature of the segregation mechanism (Fe-diapirs, ‘raining' through a magma ocean), and more recently melt flow via fractures. In this contribution we present the initial results of a numerical study into Fe segregation in a deforming silicate matrix that captures the temperature-dependent effect of liquid metal viscosity on the transport rate. Flow is driven by pressure gradients associated with impact deformation in a growing planetesimal and the fracture geometry is constrained by experimental data on naturally deformed H6 chondrite. Early results suggest that under dynamic conditions, fracture-driven melt flow can in principle be extremely rapid, leading to a significant draining of the Fe-liquid metal and siderophile trace element component on a timescale of hours to days. Fluid transport in planetesimals where deformation is the driving force provides an attractive and simple way of segregating Fe from host silicate as both precursor and primary agent of core formation. The potential for flow of metal-rich melt to induce local magnetic anomalies will also be addressed.
Jönsson, Peter; Höök, Fredrik
2011-02-15
Supported lipid bilayers (SLBs) are one of the most common model systems for cell membrane studies. We have previously found that when applying a bulk flow of liquid above an SLB the lipid bilayer and its constituents move in the direction of the bulk flow in a rolling type of motion, with the lower monolayer being essentially stationary. In this study, a theoretical platform is developed to model the dynamic behavior of a shear-driven SLB. In most regions of the moving SLB, the dynamics of the lipid bilayer is well explained by a balance between the hydrodynamic shear force arising from the bulk flow above the lipid bilayer and the friction between the upper and lower monolayers of the SLB. These two forces result in a drift velocity profile for the lipids in the upper monolayer of the SLB that is highest at the center of the channel and decreases to almost zero at the corners of the channel. However, near the front of an advancing SLB a very different flow behavior is observed, showing an almost constant drift velocity of the lipids over the entire bilayer front. In this region, the motion of the SLB is significantly influenced by gradients in the surface pressure as well as internal friction due to molecules that have accumulated at the front of the SLB. It is shown that even a modest surface fraction of accumulated molecules (∼1%) can drastically affect the behavior of the SLB near the bilayer front, forcing the advancing lipids in the SLB away from the center of the channel out toward the sides.
NASA Astrophysics Data System (ADS)
Saup, C. M.; Sawyer, A. H.; Williams, K. H.; Wilkins, M.
2017-12-01
Upland rivers host exceptionally strong linkages between the terrestrial and aquatic elemental cycles. The weathering of mineral phases, coupled with degradation of organic matter and anthropogenic influences can result in the export of carbon, metals, and nutrients in upland fluvial systems, often decreasing downstream water quality with negative impacts on both human usage and ecosystem functioning. Within these fluvial networks, zones of hyporheic mixing—regions within the riverbed where surface water and groundwater mix—are thought to represent hotspots of biogeochemical activity, thus exerting significant control over elemental cycling and solute export. To investigate how the deeper exchange of oxic river water into the riverbed during snowmelt-driven peak discharge affects microbial degradation (oxidation) of carbon pools, depth resolved pore water samples were recovered from multiple locations around a representative meander on the East River near Crested Butte, CO. At each location, a series of temperature and redox probes were installed in the riverbed to track the extent of hyporheic mixing and the impact of this process on riverbed biogeochemistry. We complemented this real-time data with discrete samples collected during peak flow, intermediate flow, and base flow at a 10 cm resolution over 70 cm vertical profiles for a suite of microbiological and geochemical analyses. Results revealed elevated pore fluid concentrations of dissolved metals and recalcitrant DOC species under reducing conditions induced by base flow, while regions that were more influenced by down-welling oxic surface water hosted distinct microbial communities and lower metal concentrations. Overall, our results indicate that mixing-driven vertical redox gradients exert a strong control on biogeochemical processing in riverbeds, with implications for downstream water quality and solute export from watersheds.
Semipermeability Evolution of Wakkanai Mudstones During Isotropic Compression
NASA Astrophysics Data System (ADS)
Takeda, M.; Manaka, M.
2015-12-01
Precise identification of major processes that influence groundwater flow system is of fundamental importance for the performance assessment of waste disposal in subsurface. In the characterization of groundwater flow system, gravity- and pressure-driven flows have been conventionally assumed as dominant processes. However, recent studies have suggested that argillites can act as semipermeable membranes and they can cause chemically driven flow, i.e., chemical osmosis, under salinity gradients, which may generate erratic pore pressures in argillaceous formations. In order to identify the possibility that chemical osmosis is involved in erratic pore pressure generations in argillaceous formations, it is essential to measure the semipermeability of formation media; however, in the measurements of semipermeability, little consideration has been given to the stresses that the formation media would have experienced in past geologic processes. This study investigates the influence of stress history on the semipermeability of an argillite by an experimental approach. A series of chemical osmosis experiments were performed on Wakkanai mudstones to measure the evolution of semipermeability during loading and unloading confining pressure cycles. The osmotic efficiency, which represents the semipermeability, was estimated at each confining pressure. The results show that the osmotic efficiency increases almost linearly with increasing confining pressure; however, the increased osmotic efficiency does not recover during unloading unless the confining pressure is almost relieved. The observed unrecoverable change in osmotic efficiency may have an important implication on the evaluation of chemical osmosis in argillaceous formations that have been exposed to large stresses in past geologic processes. If the osmotic efficiency increased by the past stress can remain unchanged to date, the osmotic efficiency should be measured at the past highest stress rather than the current in-situ stress. Otherwise, the effect of chemical osmosis on the pore pressure generation would be underestimated.
NASA Astrophysics Data System (ADS)
Guervilly, C.; Cardin, P.
2017-10-01
We study rapidly rotating Boussinesq convection driven by internal heating in a full sphere. We use a numerical model based on the quasi-geostrophic approximation for the velocity field, whereas the temperature field is 3-D. This approximation allows us to perform simulations for Ekman numbers down to 10-8, Prandtl numbers relevant for liquid metals (˜10-1) and Reynolds numbers up to 3 × 104. Persistent zonal flows composed of multiple jets form as a result of the mixing of potential vorticity. For the largest Rayleigh numbers computed, the zonal velocity is larger than the convective velocity despite the presence of boundary friction. The convective structures and the zonal jets widen when the thermal forcing increases. Prograde and retrograde zonal jets are dynamically different: in the prograde jets (which correspond to weak potential vorticity gradients) the convection transports heat efficiently and the mean temperature tends to be homogenized; by contrast, in the cores of the retrograde jets (which correspond to steep gradients of potential vorticity) the dynamics is dominated by the propagation of Rossby waves, resulting in the formation of steep mean temperature gradients and the dominance of conduction in the heat transfer process. Consequently, in quasi-geostrophic systems, the width of the retrograde zonal jets controls the efficiency of the heat transfer.
Remote loading of doxorubicin into liposomes driven by a transmembrane phosphate gradient.
Fritze, Andreas; Hens, Felicitas; Kimpfler, Andrea; Schubert, Rolf; Peschka-Süss, Regine
2006-10-01
This study examines a new method for the remote loading of doxorubicin into liposomes. It was shown that doxorubicin can be loaded to a level of up to 98% into large unilamellar vesicles composed of egg phosphatidylcholine/cholesterol (7/3 mol/mol) with a transmembrane phosphate gradient. The different encapsulation efficiencies which were achieved with ammonium salts (citrate 100%, phosphate 98%, sulfate 95%, acetate 77%) were significantly higher as compared to the loading via sodium salts (citrate 54%, phosphate 52%, sulfate 44%, acetate 16%). Various factors, including pH-value, buffer capacity, solubility of doxorubicin in different salt solutions and base counter-flow, which likely has an influence on drug accumulation in the intraliposomal interior are taken into account. In contrast to other methods, the newly developed remote loading method exhibits a pH-dependent drug release property which may be effective in tumor tissues. At physiological pH-value doxorubicin is retained in the liposomes, whereas drug release is achieved by lowering the pH to 5.5 (approximately 25% release at 25 degrees C or 30% at 37 degrees C within two h). The DXR release of liposomes which were loaded via a sulfate gradient showed a maximum of 3% at pH 5.5.
Overview of recent HL-2A experiments
NASA Astrophysics Data System (ADS)
Duan, X. R.; Liu, Yi; Xu, M.; Yan, L. W.; Xu, Y.; Song, X. M.; Dong, J. Q.; Ding, X. T.; Chen, L. Y.; Lu, B.; Liu, D. Q.; Rao, J.; Xuan, W. M.; Yang, Q. W.; Zheng, G. Y.; Zou, X. L.; Liu, Y. Q.; Zhong, W. L.; Zhao, K. J.; Ji, X. Q.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, J. Y.; Cao, Z.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Bai, X. Y.; Cheng, J.; Chen, W.; Cui, Z. Y.; Delpech, L.; Diamond, P. H.; Dong, Y. B.; Ekedahl, A.; Hoang, T.; Huang, Y.; Ida, K.; Itoh, K.; Itoh, S.-I.; Isobe, M.; Inagaki, S.; Mazon, D.; Morita, S.; Peysson, Y.; Shi, Z. B.; Wang, X. G.; Xiao, G. L.; Yu, D. L.; Yu, L. M.; Zhang, Y. P.; Zhou, Y.; Cui, C. H.; Feng, B. B.; Huang, M.; Li, Y. G.; Li, B.; Li, G. S.; Li, H. J.; Li, Qing; Peng, J. F.; Wang, Y. Q.; Yuan, B. S.; Liu, Yong; HL-2A Team
2017-10-01
Since the last Fusion Energy Conference, significant progress has been made in the following areas. The first high coupling efficiency low-hybrid current drive (LHCD) with a passive-active multi-junction (PAM) antenna was successfully demonstrated in the H-mode on the HL-2A tokamak. Double critical impurity gradients of electromagnetic turbulence were observed in H-mode plasmas. Various ELM mitigation techniques have been investigated, including supersonic molecular beam injection (SMBI), impurity seeding, resonant magnetic perturbation (RMP) and low-hybrid wave (LHW). The ion internal transport barrier was observed in neutral beam injection (NBI) heated plasmas. Neoclassical tearing modes (NTMs) driven by the transient perturbation of local electron temperature during non-local thermal transport events have been observed, and a new type of non-local transport triggered by the ion fishbone was found. A long-lasting runaway electron plateau was achieved after argon injection and the runaway current was successfully suppressed by SMBI. It was found that low-n Alfvénic ion temperature gradient (AITG) modes can be destabilized in ohmic plasmas, even with weak magnetic shear and low-pressure gradients. For the first time, the synchronization of geodesic acoustic mode (GAM) and magnetic fluctuations was observed in edge plasmas, revealing frequency entrainment and phase lock. The spatiotemporal features of zonal flows were also studied using multi-channel correlation Doppler reflectometers.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
M*/L gradients driven by IMF variation: large impact on dynamical stellar mass estimates
NASA Astrophysics Data System (ADS)
Bernardi, M.; Sheth, R. K.; Dominguez-Sanchez, H.; Fischer, J.-L.; Chae, K.-H.; Huertas-Company, M.; Shankar, F.
2018-06-01
Within a galaxy the stellar mass-to-light ratio ϒ* is not constant. Recent studies of spatially resolved kinematics of nearby early-type galaxies suggest that allowing for a variable initial mass function (IMF) returns significantly larger ϒ* gradients than if the IMF is held fixed. We show that ignoring such IMF-driven ϒ* gradients can have dramatic effect on dynamical (M_*^dyn), though stellar population (M_*^SP) based estimates of early-type galaxy stellar masses are also affected. This is because M_*^dyn is usually calibrated using the velocity dispersion measured in the central regions (e.g. Re/8) where stars are expected to dominate the mass (i.e. the dark matter fraction is small). On the other hand, M_*^SP is often computed from larger apertures (e.g. using a mean ϒ* estimated from colours). If ϒ* is greater in the central regions, then ignoring the gradient can overestimate M_*^dyn by as much as a factor of two for the most massive galaxies. Large ϒ*-gradients have four main consequences: First, M_*^dyn cannot be estimated independently of stellar population synthesis models. Secondly, if there is a lower limit to ϒ* and gradients are unknown, then requiring M_*^dyn=M_*^SP constrains them. Thirdly, if gradients are stronger in more massive galaxies, then accounting for this reduces the slope of the correlation between M_*^dyn/M_*^SP of a galaxy with its velocity dispersion. In particular, IMF-driven gradients bring M_*^dyn and M_*^SP into agreement, not by shifting M_*^SP upwards by invoking constant bottom-heavy IMFs, as advocated by a number of recent studies, but by revising M_*^dyn estimates in the literature downwards. Fourthly, accounting for ϒ* gradients changes the high-mass slope of the stellar mass function φ (M_*^dyn), and reduces the associated stellar mass density. These conclusions potentially impact estimates of the need for feedback and adiabatic contraction, so our results highlight the importance of measuring ϒ* gradients in larger samples.
Extended Subadiabatic Layer in Simulations of Overshooting Convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Käpylä, Petri J.; Arlt, Rainer; Rheinhardt, Matthias
2017-08-20
We present numerical simulations of hydrodynamic overshooting convection in local Cartesian domains. We find that a substantial fraction of the lower part of the convection zone (CZ) is stably stratified according to the Schwarzschild criterion while the enthalpy flux is outward directed. This occurs when the heat conduction profile at the bottom of the CZ is smoothly varying, based either on a Kramers-like opacity prescription as a function of temperature and density or a static profile of a similar shape. We show that the subadiabatic layer arises due to nonlocal energy transport by buoyantly driven downflows in the upper partsmore » of the CZ. Analysis of the force balance of the upflows and downflows confirms that convection is driven by cooling at the surface. We find that the commonly used prescription for the convective enthalpy flux being proportional to the negative entropy gradient does not hold in the stably stratified layers where the flux is positive. We demonstrate the existence of a non-gradient contribution to the enthalpy flux, which is estimated to be important throughout the convective layer. A quantitative analysis of downflows indicates a transition from a tree-like structure where smaller downdrafts merge into larger ones in the upper parts to a structure in the deeper parts where a height-independent number of strong downdrafts persist. This change of flow topology occurs when a substantial subadiabatic layer is present in the lower part of the CZ.« less
Observations of a tidal intrusion front in a tidal channel
NASA Astrophysics Data System (ADS)
Lu, Shasha; Xia, Xiaoming; Thompson, Charlie E. L.; Cao, Zhenyi; Liu, Yifei
2017-11-01
A visible front indicated by a surface colour change, and sometimes associated with foam or debris lines, was observed in a tidal channel during neap tide. This is an example of a tidal intrusion front occurring in the absence of sudden topographical changes or reversing flows, typically reported to be associated with such fronts. Detailed Acoustic Doppler Current Profiler and conductivity/temperature/depth measurements were taken on repeated transects both with fronts apparent and with fronts absent. The results indicated that the front occurred as a result of stratification, which was sustained by the buoyancy flux and the weak tide-induced mixing during neap ebb tide. The stronger tide-induced mixing during spring tide restrained stratification, leading to the absence of a front. The mechanism of the frontogenesis was the density gradient between the stratified water formed during neap ebb tide, and the more mixed seawater during neap flood tide; thus, the water on the landward (southwestern) side of the front was stratified, and that on the seaward side (northeastern) of the front was vertically well mixed. Gradient Richardson number estimates suggest that the flow between the stratified and mixed water was near the threshold 0.25 for shear instability. Meanwhile, the density gradient would provide an initial baroclinic contribution to velocity convergence, which is indicated by the accumulation of buoyant matter such as foam, grass, and debris into a sharply defined line along the surface. The front migrates with the flood current, with a local maximum towards the eastern side of the channel, leading to an asymmetrical shape with the eastern side of the front driven further into the Tiaozhoumen tidal channel.
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2015-08-01
We study the influence of topography on groundwater fluxes and water table depths across the contiguous United States (CONUS). Groundwater tables are often conceptualized as subdued replicas of topography. While it is well known that groundwater configuration is also controlled by geology and climate, nonlinear interactions between these drivers within large real-world systems are not well understood and are difficult to characterize given sparse groundwater observations. We address this limitation using the fully integrated physical hydrology model ParFlow to directly simulate groundwater fluxes and water table depths within a complex heterogeneous domain that incorporates all three primary groundwater drivers. Analysis is based on a first of its kind, continental-scale, high-resolution (1 km), groundwater-surface water simulation spanning more than 6.3 million km2. Results show that groundwater fluxes are most strongly driven by topographic gradients (as opposed to gradients in pressure head) in humid regions with small topographic gradients or low conductivity. These regions are generally consistent with the topographically controlled groundwater regions identified in previous studies. However, we also show that areas where topographic slopes drive groundwater flux do not generally have strong correlations between water table depth and elevation. Nonlinear relationships between topography and water table depth are consistent with groundwater flow systems that are dominated by local convergence and could also be influenced by local variability in geology and climate. One of the strengths of the numerical modeling approach is its ability to evaluate continental-scale groundwater behavior at a high resolution not possible with other techniques. This article was corrected on 11 SEP 2015. See the end of the full text for details.
Acoustics of swirling flow in a variable area pipe
NASA Astrophysics Data System (ADS)
Peake, Nigel; Cooper, Alison
2000-11-01
We consider the propagation of small-amplitude waves through swirling steady flow conveyed by a circular pipe whose cross-sectional area varies slowly in the axial direction. The unsteady flow is decomposed into vortical and irrotational components, and the steady vorticity means that unlike in standard rapid distortion theory these components are coupled, as in recent work by Atassi, Tam and co-workers. The coupling leads to separate families of modes, driven by compressibility or by the swirl, which must be treated separately. We consider the practically important case in which the swirl Mach numbers are comparable to those of the steady axial flow. WKB analysis is applied using ɛ, the mean axial gradient of the cylinder walls, as the small parameter. At O(1) we determine local wave numbers according to the parallel-flow theory of Atassi, while at O(ɛ) a secularity condition yields the variaition of the modal amplitudes along the axis. We demonstrate that the presence of swirl can significantly reduce the amplitude of acoustic modes in the pipe. This is of practical significnance for the prediction of noise generation by turbomachinery, since rotating blade rows can produce significant mean swirl downstream. Similar analysis for a compressible swirling jet, in which the axial variation is provided by viscous effects, will also be described.
Middione, Matthew J; Thompson, Richard B; Ennis, Daniel B
2014-06-01
To investigate a novel phase-contrast MRI velocity-encoding technique for faster imaging and reduced chemical shift-induced phase errors. Velocity encoding with the slice select refocusing gradient achieves the target gradient moment by time shifting the refocusing gradient, which enables the use of the minimum in-phase echo time (TE) for faster imaging and reduced chemical shift-induced phase errors. Net forward flow was compared in 10 healthy subjects (N = 10) within the ascending aorta (aAo), main pulmonary artery (PA), and right/left pulmonary arteries (RPA/LPA) using conventional flow compensated and flow encoded (401 Hz/px and TE = 3.08 ms) and slice select refocused gradient velocity encoding (814 Hz/px and TE = 2.46 ms) at 3 T. Improved net forward flow agreement was measured across all vessels for slice select refocused gradient compared to flow compensated and flow encoded: aAo vs. PA (1.7% ± 1.9% vs. 5.8% ± 2.8%, P = 0.002), aAo vs. RPA + LPA (2.1% ± 1.7% vs. 6.0% ± 4.3%, P = 0.03), and PA vs. RPA + LPA (2.9% ± 2.1% vs. 6.1% ± 6.3%, P = 0.04), while increasing temporal resolution (35%) and signal-to-noise ratio (33%). Slice select refocused gradient phase-contrast MRI with a high receiver bandwidth and minimum in-phase TE provides more accurate and less variable flow measurements through the reduction of chemical shift-induced phase errors and a reduced TE/repetition time, which can be used to increase the temporal/spatial resolution and/or reduce breath hold durations. Copyright © 2013 Wiley Periodicals, Inc.
Insights into asthenospheric anisotropy and deformation in Mainland China
NASA Astrophysics Data System (ADS)
Zhu, Tao
2018-03-01
Seismic anisotropy can provide direct constraints on asthenospheric deformation which also can be induced by the inherent mantle flow within our planet. Mantle flow calculations thus have been an effective tool to probe asthenospheric anisotropy. To explore the source of seismic anisotropy, asthenospheric deformation and the effects of mantle flow on seismic anisotropy in Mainland China, mantle flow models driven by plate motion (plate-driven) and by a combination of plate motion and mantle density heterogeneity (plate-density-driven) are used to predict the fast polarization direction of shear wave splitting. Our results indicate that: (1) plate-driven or plate-density-driven mantle flow significantly affects the predicted fast polarization direction when compared with simple asthenospheric flow commonly used in interpreting the asthenospheric source of seismic anisotropy, and thus new insights are presented; (2) plate-driven flow controls the fast polarization direction while thermal mantle flow affects asthenospheric deformation rate and local deformation direction significantly; (3) asthenospheric flow is an assignable contributor to seismic anisotropy, and the asthenosphere is undergoing low, large or moderate shear deformation controlled by the strain model, the flow plane/flow direction model or both in most regions of central and eastern China; and (4) the asthenosphere is under more rapid extension deformation in eastern China than in western China.
Light-driven solute transport in Halobacterium halobium
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1979-01-01
The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.
Reversible ratchet effects for vortices in conformal pinning arrays
Reichhardt, Charles; Ray, Dipanjan; Reichhardt, Cynthia Jane Olson
2015-05-04
A conformal transformation of a uniform triangular pinning array produces a structure called a conformal crystal which preserves the sixfold ordering of the original lattice but contains a gradient in the pinning density. Here we use numerical simulations to show that vortices in type-II superconductors driven with an ac drive over gradient pinning arrays produce the most pronounced ratchet effect over a wide range of parameters for a conformal array, while square gradient or random gradient arrays with equivalent pinning densities give reduced ratchet effects. In the conformal array, the larger spacing of the pinning sites in the direction transversemore » to the ac drive permits easy funneling of interstitial vortices for one driving direction, producing the enhanced ratchet effect. In the square array, the transverse spacing between pinning sites is uniform, giving no asymmetry in the funneling of the vortices as the driving direction switches, while in the random array, there are numerous easy-flow channels present for either direction of drive. We find multiple ratchet reversals in the conformal arrays as a function of vortex density and ac amplitude, and correlate the features with a reversal in the vortex ordering, which is greater for motion in the ratchet direction. In conclusion, the enhanced conformal pinning ratchet effect can also be realized for colloidal particles moving over a conformal array, indicating the general usefulness of conformal structures for controlling the motion of particles.« less
Time-resolved lateral spin-caloric transport of optically generated spin packets in n-GaAs
NASA Astrophysics Data System (ADS)
Göbbels, Stefan; Güntherodt, Gernot; Beschoten, Bernd
2018-05-01
We report on lateral spin-caloric transport (LSCT) of electron spin packets which are optically generated by ps laser pulses in the non-magnetic semiconductor n-GaAs at K. LSCT is driven by a local temperature gradient induced by an additional cw heating laser. The spatio-temporal evolution of the spin packets is probed using time-resolved Faraday rotation. We demonstrate that the local temperature-gradient induced spin diffusion is solely driven by a non-equilibrium hot spin distribution, i.e. without involvement of phonon drag effects. Additional electric field-driven spin drift experiments are used to verify directly the validity of the non-classical Einstein relation for moderately doped semiconductors at low temperatures for near band-gap excitation.
Amplification, attenuation, and dispersion of sound in inhomogeneous flows
NASA Technical Reports Server (NTRS)
Kentzer, C. P.
1975-01-01
First order effects of gradients in nonuniform potential flows of a compressible gas are included in a dispersion relation for sound waves. Three nondimensional numbers, the ratio of the change in the kinetic energy in one wavelength to the thermal energy of the gas, the ratio of the change in the total energy in one wavelength to the thermal energy, and the ratio of the dillatation frequency (the rate of expansion per unit volume) to the acoustic frequency, play a role in the separation of the effects of flow gradients into isotropic and anisotropic effects. Dispersion and attenuation (or amplification) of sound are found to be proportional to the wavelength for small wavelength, and depend on the direction of wave propagation relative to flow gradients. Modification of ray acoustics for the effects of flow gradients is suggested, and conditions for amplification and attenuation of sound are discussed.
A theory of self-organized zonal flow with fine radial structure in tokamak
NASA Astrophysics Data System (ADS)
Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.
2017-12-01
The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.
Gyrokinetic stability of electron-positron-ion plasmas
NASA Astrophysics Data System (ADS)
Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.
2018-02-01
The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.
Heat-driven spin torques in antiferromagnets
NASA Astrophysics Data System (ADS)
Białek, Marcin; Bréchet, Sylvain; Ansermet, Jean-Philippe
2018-04-01
Heat-driven magnetization damping, which is a linear function of a temperature gradient, is predicted in antiferromagnets by considering the sublattice dynamics subjected to a heat-driven spin torque. This points to the possibility of achieving spin torque oscillator behavior. The model is based on the magnetic Seebeck effect acting on sublattices which are exchange coupled. The heat-driven spin torque is estimated and the feasibility of detecting this effect is discussed.
NASA Astrophysics Data System (ADS)
Dokumaci, Erkan
2017-12-01
In a recent study, Li and Morgans [1] present an ingenious WKB approximation for the acoustic plane wave field in a straight uniform duct with mean temperature gradient and mean flow. The authors state that the previous solutions are limited to small linear mean temperature gradients and low mean flow Mach numbers and claim that their solution applies for arbitrary mean temperature profiles and moderate-to-large mean flow velocity Mach numbers at both low and high frequencies.
Interactions between bedforms, turbulence and pore flow
NASA Astrophysics Data System (ADS)
Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.
2010-12-01
A widespread occurrence of flow-form interaction in rivers is represented by subaqueous bedforms such as dunes. Many models have been proposed to explain how bedform generation and evolution are driven by turbulent flow structures that control the incipient motion of cohesionless sediments and later bedform development. However, most of these models have assumed such bedforms to be migrating over an impermeable bed, and that any surface-subsurface flow interaction is negligible. However, for some gravel-bed rivers the porosity can be high, up to 43%, which may result in significant flow both through the permeable bed (hyporheic flow) and across the surface-subsurface interface. The mass and momentum exchange occurring at the interface may have a strong impact on the structure of turbulent flow in the near-bed region. In the case of a dune, its topography induces a local pressure gradient that enhances flow across the interface. This results in a flow structure that may be radically different from that commonly proposed by past work. This paper presents results from a simplified laboratory model akin to a fine-grained bedform generated on top of a coarser sediment bed. Particle imaging velocimetry (PIV) measurements were conducted in order to characterise flow both over and underneath an idealised 2-dimensional dune (0.41 m long, 0.056 m high and having a leeside angle of 27°) overlaying a packed bed of uniform size spheres (D = 0.04 m diameter). Experiments were conducted in free surface flow conditions (Froude number = 0.1; Reynolds number = 25,000) for one bedform height: flow depth ratio (0.31). The flow above the dune was measured using a standard PIV technique while a novel endoscopic PIV (EPIV) system allowed collection of flow data within the pore spaces beneath the dune. The results show that topographically-induced subsurface flow significantly modifies the structure of flow in the leeside of the dune, resulting in a flow field that is radically different to traditional concepts of leeside flow. The pressure gradient across the bedform controls the direction and intensity of flow within the bed and across the interface. Specifically, the low pressure region induced by flow separation at the dune crest causes a pulsating jet flow from the bed into the free flow downstream of the dune. Fluid upwelling is particularly intense at the toe of the leeside and gradually decreases downstream. The interaction between the free-flow and hyporheic flow is significant; in the leeside, flow reattachment is entirely absent, and recirculation in the separation zone is replaced by a mechanism of asymmetric alternate vortex shedding. Hyporheic flow thus controls the dynamics of flow in the leeside and near-wake region. The paper discusses the implications of these results for the morphodynamics of coarse-sediment bedforms.
Applications of a new wall function to turbulent flow computations
NASA Astrophysics Data System (ADS)
Chen, Y. S.
1986-01-01
A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.
Finding a planet's heartbeat: surprising results from patient Mars
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Ward, Lewis; Fischer, Woodward; Russell, Michael J.
2016-10-01
We explore, from a 3D time-dependent perspective, the evolution of oxidizing and reducing planetary niches and how they form a planetary-scale redox network - from a planet's deep interior to its atmosphere. Such redox networks are similar to the circulatory system of animals, but instead of pressure gradients redox gradients drive the flow of electrons and create hotspots for nutrients and metabolic activity.Using time-dependent geodynamic and atmospheric models, we compute for Mars the time-dependent 3D distribution of 1) hydrogen- and methane-rich reducing subsurface environments, driven by serpentinization and radiolysis of water, and 2) oxygen-rich oases as a product of atmosphere-brine interactions governed by climate and surface chemistry.This is only a first step towards our greater goal to globally model the evolution of local redox environments through time for rocky planets. However, already now our preliminary results show where on Mars oxidizing and reducing oases might have existed and might still exist today. This opens the window to search for extinct and extant life on Mars from a probabilistic global 3D perspective.
A Real-Time Method for Estimating Viscous Forebody Drag Coefficients
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Hurtado, Marco; Rivera, Jose; Naughton, Jonathan W.
2000-01-01
This paper develops a real-time method based on the law of the wake for estimating forebody skin-friction coefficients. The incompressible law-of-the-wake equations are numerically integrated across the boundary layer depth to develop an engineering model that relates longitudinally averaged skin-friction coefficients to local boundary layer thickness. Solutions applicable to smooth surfaces with pressure gradients and rough surfaces with negligible pressure gradients are presented. Model accuracy is evaluated by comparing model predictions with previously measured flight data. This integral law procedure is beneficial in that skin-friction coefficients can be indirectly evaluated in real-time using a single boundary layer height measurement. In this concept a reference pitot probe is inserted into the flow, well above the anticipated maximum thickness of the local boundary layer. Another probe is servomechanism-driven and floats within the boundary layer. A controller regulates the position of the floating probe. The measured servomechanism position of this second probe provides an indirect measurement of both local and longitudinally averaged skin friction. Simulation results showing the performance of the control law for a noisy boundary layer are then presented.
Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu
2018-06-01
This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.
NASA Astrophysics Data System (ADS)
Kim, Stacy; Hammerstrom, Kamille
2012-04-01
The Lau back-arc spreading center exhibits gradients in hydrothermal vent habitat characteristics from north to south. Biological zonation within a few meters of vents has been described as temperature driven. We constructed georeferenced photomosaics of the seafloor out to tens of meters beyond vents to describe peripheral zonation and explore correlations between environmental conditions and the biological community. Cluster analysis separated northern sites from southern sites, corresponding to a break in substrate from basalt in the north to andesite in the south. Northern sites were dominated by anemones, and southern by sponges. A previous suggestion that dominants may be dependent on friability of the substrate was not supported; when visually distinguishable, individual species within taxa showed different patterns. Northern sites hosted proportionally more suspension feeding species. Sulfide that can support microbial food sources is at higher concentrations at these sites, though bathymetry that may enhance bottom currents is less rugged. Northern sites had higher diversity that may result from the overall northwards flow, which would generally permit easier dispersal downcurrent, though we observed no difference in dispersal strategies at different sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Q. D., E-mail: qgao@swip.ac.cn; Budny, R. V.
2015-03-15
By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LHmore » driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.« less
Plasma Oscillation Characterization of NASA's HERMeS Hall Thruster via High Speed Imaging
NASA Technical Reports Server (NTRS)
Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.
2016-01-01
The performance and facility effect characterization tests of NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had been completed. As a part of these tests, three plasma oscillation characterization studies were performed to help determine operation settings and quantify margins. The studies included the magnetic field strength variation study, background pressure effect study, and cathode flow fraction study. Separate high-speed videos of the thruster including the cathode and of only the cathode were recorded. Breathing mode at 10-15 kHz and cathode gradient-driven mode at 60-75 kHz were observed. An additional high frequency (40-70 kHz) global oscillation mode with sinusoidal probability distribution function was identified.
Advances in electrophoretic separations
NASA Technical Reports Server (NTRS)
Snyder, R. S.; Rhodes, P. H.
1984-01-01
Free fluid electrophoresis is described using laboratory and space experiments combined with extensive mathematical modeling. Buoyancy driven convective flows due to thermal and concentration gradients are absent in the reduced gravity environment of space. The elimination of convection in weightlessness offers possible improvements in electrophoresis and other separation methods which occur in fluid media. The mathematical modeling suggests new ways of doing electrophoresis in space and explains various phenomena observed during past experiments. The extent to which ground based separation techniques are limited by gravity induced convection is investigated and space experiments are designed to evaluate specific characteristics of the fluid/particle environment. A series of experiments are proposed that require weightlessness and apparatus is developed that can be used to carry out these experiments in the near future.