Balkatzopoulou, P; Fasoula, S; Gika, H; Nikitas, P; Pappa-Louisi, A
2015-05-29
In the present work the retention of three highly polar and ionizable solutes - uric acid, nicotinic acid and ascorbic acid - was investigated on a mixed-mode reversed-phase and weak anion-exchange (RP/WAX) stationary phase in buffered aqueous acetonitrile (ACN) mobile phases. A U-shaped retention behavior was observed for all solutes with respect to the eluent organic modifier content studied in a range of 5-95% (v/v). This retention behavior clearly demonstrates the presence of a HILIC-type retention mechanism at ACN-rich hydro-organic eluents and an RP-like retention at aqueous-rich hydro-organic eluents. Hence, this column should be promising for application under both RP and HILIC gradient elution modes. For this reason, a series of programmed elution runs were carried out with increasing (RP) and decreasing (HILIC) organic solvent concentration in the mobile phase. This dual gradient process was successfully modeled by two retention models exhibiting a quadratic or a cubic dependence of the logarithm of the solute retention factor (lnk) upon the organic modifier volume fraction (φ). It was found that both models produced by gradient retention data allow the prediction of solute retention times for both types of programmed elution on the mixed-mode column. Four, in the case of the quadratic model, or five, in the case of the cubic model, initial HILIC- and RP-type gradient runs gave satisfactory retention predictions of any similar kind elution program, even with different flow rate, with an overall error of only 2.5 or 1.7%, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Secretory immunoglobulin purification from whey by chromatographic techniques.
Matlschweiger, Alexander; Engelmaier, Hannah; Himmler, Gottfried; Hahn, Rainer
2017-08-15
Secretory immunoglobulins (SIg) are a major fraction of the mucosal immune system and represent potential drug candidates. So far, platform technologies for their purification do not exist. SIg from animal whey was used as a model to develop a simple, efficient and potentially generic chromatographic purification process. Several chromatographic stationary phases were tested. A combination of two anion-exchange steps resulted in the highest purity. The key step was the use of a small-porous anion exchanger operated in flow-through mode. Diffusion of SIg into the resin particles was significantly hindered, while the main impurities, IgG and serum albumin, were bound. In this step, initial purity was increased from 66% to 89% with a step yield of 88%. In a second anion-exchange step using giga-porous material, SIg was captured and purified by step or linear gradient elution to obtain fractions with purities >95%. For the step gradient elution step yield of highly pure SIg was 54%. Elution of SIgA and SIgM with a linear gradient resulted in a step yield of 56% and 35%, respectively. Overall yields for both anion exchange steps were 43% for the combination of flow-through and step elution mode. Combination of flow-through and linear gradient elution mode resulted in a yield of 44% for SIgA and 39% for SIgM. The proposed process allows the purification of biologically active SIg from animal whey in preparative scale. For future applications, the process can easily be adopted for purification of recombinant secretory immunoglobulin species. Copyright © 2017 Elsevier B.V. All rights reserved.
Schollenberger, Martin; Radke, Wolfgang
2011-10-28
A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich
2011-12-01
Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.
Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P
2015-05-22
A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances. Copyright © 2015 Elsevier B.V. All rights reserved.
Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães
2015-11-01
Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode. Georg Thieme Verlag KG Stuttgart · New York.
Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing
2015-05-01
An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...
2014-11-04
A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less
Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan
2002-07-01
In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.
Gradient Scouting in Reversed-Phase HPLC Revisited
ERIC Educational Resources Information Center
Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.
2011-01-01
Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…
Lee, Yi Feng; Jöhnck, Matthias; Frech, Christian
2018-02-21
The efficiencies of mono gradient elution and dual salt-pH gradient elution for separation of six mAb charge and size variants on a preparative-scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt-pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno ® CPX. Besides giving high binding capacity, this type of opposite dual salt-pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt-pH gradient, and opposite dual salt-pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt-pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt-pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.
D'Archivio, Angelo Antonio; Maggi, Maria Anna; Ruggieri, Fabrizio
2014-08-01
In this paper, a multilayer artificial neural network is used to model simultaneously the effect of solute structure and eluent concentration profile on the retention of s-triazines in reversed-phase high-performance liquid chromatography under linear gradient elution. The retention data of 24 triazines, including common herbicides and their metabolites, are collected under 13 different elution modes, covering the following experimental domain: starting acetonitrile volume fraction ranging between 40 and 60% and gradient slope ranging between 0 and 1% acetonitrile/min. The gradient parameters together with five selected molecular descriptors, identified by quantitative structure-retention relationship modelling applied to individual separation conditions, are the network inputs. Predictive performance of this model is evaluated on six external triazines and four unseen separation conditions. For comparison, retention of triazines is modelled by both quantitative structure-retention relationships and response surface methodology, which describe separately the effect of molecular structure and gradient parameters on the retention. Although applied to a wider variable domain, the network provides a performance comparable to that of the above "local" models and retention times of triazines are modelled with accuracy generally better than 7%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bashir, Mubasher A; Radke, Wolfgang
2012-02-17
The retention behavior of a range of statistical poly(styrene/ethylacrylate) copolymers is investigated, in order to determine the possibility to predict retention volumes of these copolymers based on a suitable chromatographic retention model. It was found that the composition of elution in gradient chromatography of the copolymers is closely related to the eluent composition at which, in isocratic chromatography, the transition from elution in adsorption to exclusion mode occurs. For homopolymers this transition takes place at a critical eluent composition at which the molar mass dependence of elution volume vanishes. Thus, similar critical eluent compositions can be defined for statistical copolymers. The existence of a critical eluent composition is further supported by the narrower peak width, indicating that the broad molar mass distribution of the samples does not contribute to the retention volume. It is shown that the existing retention model for homopolymers allows for correct quantitative predictions of retention volumes based on only three appropriate initial experiments. The selection of these initial experiments involves a gradient run and two isocratic experiments, one at the composition of elution calculated from first gradient run and second at a slightly higher eluent strength. Copyright © 2011 Elsevier B.V. All rights reserved.
Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K
2010-06-15
The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.
Sajic, Tatjana; Varesio, Emmanuel; Szanto, Ildiko; Hopfgartner, Gérard
2015-09-01
In the frame of protein identification from mouse adipose tissue, two strategies were compared for the offline elution of peptides from a strong cation exchange (SCX) column in two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) analyses. First, the salt gradient (using K(+) as displacing agent) was evaluated from 25 to 500mM KCl. Then, a less investigated elution mode using a pH gradient (using citric acid and ammonium hydroxide) was carried out from pH 2.5 to 9.0. Equal amounts of peptide digest derived from mouse adipose tissue were loaded onto the SCX column and fractionated according to the two approaches. A total of 15 fractions were collected in two independent experiments for each SCX elution strategy. Then, each fraction was analyzed on a nanoLC-MS/MS platform equipped with a column-switching unit for desalting and enrichment. No substantial differences in peptide quality characteristics (molecular weight, isoelectric point, or GRAVY [grand average of hydropathicity] index distributions) were observed between the two datasets. The pH gradient approach was found to be superior, with 27.5% more unique peptide identifications and 10% more distinct protein identifications compared with the salt-based elution method. In conclusion, our data imply that the pH gradient SCX fractionation is more desirable for proteomics analysis of entire adipose tissue. Copyright © 2015 Elsevier Inc. All rights reserved.
Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael
2014-08-08
Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.
Separation of proteins by hydrophobic interaction chromatography at low salt concentration.
Kato, Yoshio; Nakamura, Koji; Kitamura, Takashi; Moriyama, Hiroyuki; Hasegawa, Masazumi; Sasaki, Hiroo
2002-09-20
We investigated protein separation by hydrophobic interaction chromatography (HIC) at low salt concentration on the supports of various hydrophobicities. Hydrophobic proteins could be successfully separated with more than 90% recovery by gradient elution of ammonium sulfate from 0.3-0.5 M to 0 in 50 mM phosphate buffer (pH 6.8) by using supports whose hydrophobicities were properly adjusted individually for each protein. Satisfactory results were also obtained by isocratic elution without ammonium sulfate and gradient elution of ethanol from 0 to 10%. HIC at low salt concentration was compatible with other modes of liquid chromatography like ion-exchange chromatography. On the other hand, it was not successful to separate hydrophilic proteins at low salt concentration. Recoveries of hydrophilic proteins decreased before they were retained enough as support hydrophobicity increased. Therefore, it is inevitable to use a higher concentration of salt, e.g., 1-2 M ammonium sulfate, on hydrophilic or moderately hydrophobic support in order to retain hydrophilic proteins without decrease in recovery.
Acid/Salt/pH Gradient Improved Resolution and Sensitivity in Proteomics Study Using 2D SCX-RP LC-MS.
Zhu, Ming-Zhi; Li, Na; Wang, Yi-Tong; Liu, Ning; Guo, Ming-Quan; Sun, Bao-Qing; Zhou, Hua; Liu, Liang; Wu, Jian-Lin
2017-09-01
The usage of strong cation exchange (SCX) chromatography in proteomics is limited by its poor resolution and nonspecific hydrophobic interactions with peptides, which lead to peptide overlap across fractions and change of peptide retention, respectively. The application of high concentration of salt (up to 1000 mM) in SCX also restricted its use in online 2D SCX-RP LC. In the present research, we first exploited the chromatographic ability of online 2D SCX-RP LC by combination of acid, salt, and pH gradient, three relatively independent modes of eluting peptides from SCX column. 50% ACN was added to elution buffer for eliminating hydrophobic interactions between SCX matrix and peptides, and the concentration of volatile salt was reduced to 50 mM. Acid/salt/pH gradient showed superior resolution and sensitivity as well as uniform distribution across fractions, consequently leading to significant improvements in peptide and protein identification. 112 191 unique peptides and 7373 proteins were identified by acid/salt/pH fractionation, while 69 870 unique peptides and 4536 proteins were identified by salt elution, that is, 62.5 and 60.6% more proteins and unique peptides, respectively, identified by the former. Fraction overlap was also significantly minimized by acid/salt/pH approach. Furthermore, acid/salt/pH elution showed more identification for acidic peptides and hydrophilic peptides.
Modeling of salt and pH gradient elution in ion-exchange chromatography.
Schmidt, Michael; Hafner, Mathias; Frech, Christian
2014-01-01
The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Xu, Chunming; Ito, Yoichiro
2011-03-01
Counter-current chromatography (CCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate-water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, ¹HNMR and ¹³CNMR. Copyright © 2011 Elsevier B.V. All rights reserved.
Cao, Xueli; Wang, Qiaoe; Li, Yan; Bai, Ge; Ren, Hong; Ito, Yiochiro
2011-01-01
High-speed counter-current chromatography (HSCCC) combined with pre-separation by ultrasonic solvent extraction was successively used for the separation of series bioactive compounds from the crude extract of Hypericum perforatum L. The petroleum ether extract was separated by the solvent system of n-heptane-methanol-acetonitrile (1.5:0.5:0.5, v/v) and n-heptane-methanol (1.5:1, v/v) in gradient elution, yielding a phloroglucinol compound, hyperforin with HPLC purity over 98%. The ethyl acetate extract was separated by using the solvent system composed of hexane-ethyl acetate-methanol-water (1:1:1:1 and 1:3:1:3, v/v) in gradient through both reverse phase and normal phase elution mode, yielding a naphthodianthrone compound, hypericin with HPLC purity about 95%. The n-butanol extract was separated with the solvent system composed of n-butanol-ethyl acetate–water (1:4:5 and 1.5:3.5:5, v/v) in elution and back-extrusion mode, yielding two of flavones, rutin and hyperoside, with HPLC purity over 95%. HPLC-MS, reference sample and UV spectrum were selectively used in separation to search for target compounds from HPLC-DAD profiles of different sub-extracts. The structures of isolated compounds were further identified by ESI-MS, 1HNMR and 13CNMR. PMID:21306961
Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan
2014-11-28
The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.
Rapid column heating method for subcritical water chromatography.
Fogwill, Michael O; Thurbide, Kevin B
2007-01-19
A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC. Data from the current study demonstrate that the maximum column heating rate attainable in a typical SWC apparatus (i.e. using a GC convection oven) is around 10 degrees C/min, even at instrument oven settings of over three times this value. Conversely, by wrapping the separation column with ceramic insulation and a resistively heated wire, the column heating rates are increased five-fold. As a result, elution times can be greatly decreased in SWC employing gradients. Separations of standard alcohol test mixtures demonstrate that the retention time of the latest eluting component decreases by 35 to 50% using the prototype method. Additionally, solute retention times in this mode deviate by less than 1% RSD over several trials, which compares very well to those obtained using a conventional GC convection oven. Results suggest that the developed method can be a useful alternative heating technique in SWC.
Sun, Xiaoli; Hao, Weiqiang; Wang, Junde; Di, Bin; Chen, Qiang; Zhuang, Wei; Yu, Qiang; Zhang, Peipei
2013-08-01
By not explicitly specifying the type of solvent strength model, the features of ladder-like gradient elution were studied based on the general retention time formula that was derived in our previous work. For the case where the solute is eluted at like gradient, we derived the expression that connects the mobile phase composition (phiR), at which the solute is eluted from the column, with the gradient slope (B). It was shown that phiR will increase with the increase of B in this case. For the case where the solute is eluted at the last isocratic segment of the ladder-like gradient, it was proven that the retention time (tR) will correlate linearly with the reciprocal of the gradient slope (1/B) when the initial and final mobile phase compositions are set to be constant. In experiments, by taking biphenyl as the sample, the values of retention time in isocratic and gradient elution were measured on a C18 column by using a mixture of methanol and water as the mobile phase. The experimental values were found to be well consistent with the theoretical values that were calculated from the expressions. These expressions will be helpful to understand the features of the ladder-like gradient in practice.
Madadkar, Pedram; Nino, Sergio Luna; Ghosh, Raja
2016-11-01
We discuss the use of a laterally-fed membrane chromatography (or LFMC) device for single-step purification of mono-PEGylated lysozyme. Recent studies have shown such LFMC devices to be suitable for high-resolution, multi-component separation of proteins in the bind-and-elute mode. The device used in this study contained a stack of rectangular cation-exchange membranes having 9.25mL bed volume. PEGylation of lysozyme was carried out in batch mode using 5kDa methoxy-polyethyleneglycol propionaldehyde (or m-PEG propionaldehyde) in the presence of sodium cyanoborohydride as reducing agent. Membrane chromatographic separation was carried out at 1.62 membrane bed volumes per minute flow rate, in the bind-and-elute mode. When a salt gradient was applied, the higher PEGylated forms of lysozyme (i.e. the byproducts) eluted earlier than mono-PEGylated lysozyme (the target product), while lysozyme eluted last. Under elution conditions optimized for resolution and speed, the separation could be carried out in less than 15 membrane bed volumes. High purity and recovery of mono-PEGylated lysozyme was obtained. The resolution of separation of mono-PEGylated lysozyme obtained under the above condition was comparable to that reported in the literature for equivalent cation-exchange resin columns while the flow rate expressed in bed volumes/min was 21.7 times higher. Also, the number of theoretical plates per meter was significantly higher with the LFMC device. Therefore the LFMC based purification process discussed in this paper combined high-productivity with high-resolution. Copyright © 2016 Elsevier B.V. All rights reserved.
Nikitas, P; Pappa-Louisi, A
2005-09-01
The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes.
Creasy, Arch; Lomino, Joseph; Barker, Gregory; Khetan, Anurag; Carta, Giorgio
2018-04-27
Protein retention in hydrophobic interaction chromatography is described by the solvophobic theory as a function of the kosmostropic salt concentration. In general, an increase in salt concentration drives protein partitioning to the hydrophobic surface while a decrease reduces it. In some cases, however, protein retention also increases at low salt concentrations resulting in a U-shaped retention factor curve. During gradient elution the salt concentration is gradually decreased from a high value thereby reducing the retention factor and increasing the protein chromatographic velocity. For these conditions, a steep gradient can overtake the protein in the column, causing it to rebind. Two dynamic models, one based on the local equilibrium theory and the other based on the linear driving force approximation, are presented. We show that the normalized gradient slope determines whether the protein elutes in the gradient, partially elutes, or is trapped in the column. Experimental results are presented for two different monoclonal antibodies and for lysozyme on Capto Phenyl (High Sub) resin. One of the mAbs and lysozyme exhibit U-shaped retention factor curves and for each, we determine the critical gradient slope beyond which 100% recovery is no longer possible. Elution with a reverse gradient is also demonstrated at low salt concentrations for these proteins. Understanding this behavior has implications in the design of gradient elution since the gradient slope impacts protein recovery. Copyright © 2018 Elsevier B.V. All rights reserved.
Stevenson, Paul G; Tarafder, Abhijit; Guiochon, Georges
2012-01-13
A 2D comprehensive chromatographic separation of blackberry sage fragrant oil was performed by using HPLC in the first dimension and SFC in the second. A C(18)-bonded silica column eluted with an ACN gradient was used in the HPLC dimension and an amino-bonded silica column eluted with ACN as a modifier in the SFC dimension. This 2D separation was completed in the off-line mode, the fractions from the HPLC column being collected and injected in the SFC column. The retention factors on the two columns have a -0.757 correlation coefficient. The method provides a practical peak capacity of 2400 in 280 min. The first eluted peaks in HPLC are the last ones eluted in SFC and vice versa. The results demonstrate that the coupling of an HPLC and an SFC separation have a great potential for 2D chromatographic separations. Copyright © 2011 Elsevier B.V. All rights reserved.
An Inexpensive Digital Gradient Controller for HPLC.
ERIC Educational Resources Information Center
Brady, James E.; Carr, Peter W.
1983-01-01
Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter W. Carr; K.M. Fuller; D.R. Stoll
A new approach has been developed by modifying a conventional gradient elution liquid chromatograph for the high throughput screening of biological samples to detect the presence of regulated intoxicants. The goal of this work was to improve the speed of a gradient elution screening method over current approaches by optimizing the operational parameters of both the column and the instrument without compromising the reproducibility of the retention times, which are the basis for the identification. Most importantly, the novel instrument configuration substantially reduces the time needed to re-equilibrate the column between gradient runs, thereby reducing the total time for eachmore » analysis. The total analysis time for each gradient elution run is only 2.8 minutes, including 0.3 minutes for column reequilibration between analyses. Retention times standard calibration solutes are reproducible to better than 0.002 minutes in consecutive runs. A corrected retention index was adopted to account for day-to-day and column-to-column variations in retention time. The discriminating power and mean list length were calculated for a library of 47 intoxicants and compared with previous work from other laboratories to evaluate fast gradient elution HPLC as a screening tool.« less
Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo
2007-09-14
Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.
Temperature gradient interaction chromatography of polymers: A molecular statistical model.
Radke, Wolfgang; Lee, Sekyung; Chang, Taihyun
2010-11-01
A new model describing the retention in temperature gradient interaction chromatography of polymers is developed. The model predicts that polymers might elute in temperature gradient interaction chromatography in either an increasing or decreasing order or even nearly independent of molar mass, depending on the rate of the temperature increase relative to the flow rate. This is in contrast to solvent gradient elution, where polymers elute either in order of increasing molar mass or molar mass independent. The predictions of the newly developed model were verified with the literature data as well as new experimental data. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Creasy, Arch; Barker, Gregory; Carta, Giorgio
2017-03-01
A methodology is presented to predict protein elution behavior from an ion exchange column using both individual or combined pH and salt gradients based on high-throughput batch isotherm data. The buffer compositions are first optimized to generate linear pH gradients from pH 5.5 to 7 with defined concentrations of sodium chloride. Next, high-throughput batch isotherm data are collected for a monoclonal antibody on the cation exchange resin POROS XS over a range of protein concentrations, salt concentrations, and solution pH. Finally, a previously developed empirical interpolation (EI) method is extended to describe protein binding as a function of the protein and salt concentration and solution pH without using an explicit isotherm model. The interpolated isotherm data are then used with a lumped kinetic model to predict the protein elution behavior. Experimental results obtained for laboratory scale columns show excellent agreement with the predicted elution curves for both individual or combined pH and salt gradients at protein loads up to 45 mg/mL of column. Numerical studies show that the model predictions are robust as long as the isotherm data cover the range of mobile phase compositions where the protein actually elutes from the column. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi
2007-08-24
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.
Effect of modulator sorption on gradient shape in ion-exchange chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile phase additives, or modulators, are used in gradient elution chromatography to facilitate separation and reduce separation time. The modulators are usually assumed to be linearly adsorbed or unadsorbed. Here, the consequences of nonlinear modulator adsorption are examined for ion-exchange gradient elution through a series of simulations. Even when the buffer salt is identical to the modulator salt, gradient deformation is observed; the extent of deformation increases as the volume of the feed is increased. When the modulator salt is different from the buffer salt, unusual effects are observed, and the chromatograms are quite different from those predicted by classical gradient elution theory. In particular, local increases in the buffer concentration are found between feed bands, and serve to improve the separation. These effects become more pronounced as the feed volume increases, and could therefore prove valuable in preparative applications.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Tsonev, Latchezar I; Hirsh, Allen G
2008-07-25
pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.
[UPLC characteristic chromatographic profile of Poria].
Zhang, Qi; Wang, Zhenzhong; Xiao, Wei; Zhang, Liangqi; Bi, Kaishun; Jia, Ying
2012-04-01
To establish a UPLC characteristic chromatographic profile analysis method to quickly assess Poria quality and provide basis fro controlling Poria quality. The UPLC characteristic chromatographic profiles of fifteen batches of Poria were determined by ACQUITY UPLC, with HSS T3 Column (2.1 mm x 100 mm, 1.8 microm) eluted with the mobile phases of water containing 0.05% phosphoric acid and acetonitrile in gradient mode. The detection wavelength was set at 243 nm. The common mode of the UPLC characteristic chromatographic profile was set up. There were 20 common peaks, seven of which were identified, and the similar degrees of the fifteen samples to the common mode were between 0.787 and 0.974. The method was so time-saving that it can be used for the quality control of Poria.
Miller, N T; Feibush, B; Karger, B L
1984-12-21
This paper examines the use of wide-pore silica-based hydrophilic ether-bonded phases for the chromatographic separation of proteins under mild elution conditions. In particular, ether phases of the following structure identical to Si-(CH2)3-O-(CH2-CH2-O)n-R, where n = 1, 2, 3 and R = methyl, ethyl or n-butyl, have been prepared. These phases can be employed either in high-performance hydrophobic-interaction or size-exclusion chromatography, depending on mobile phase conditions. In the hydrophobic-interaction mode, a gradient of decreasing salt concentration, e.g., from 3 M ammonium sulfate (pH 6.0, 25 degrees C), yields sharp peaks with high mass recovery of active proteins. In this mode, retention can be controlled by salt type and concentration, as well as by column temperature. In the size-exclusion mode, use of medium ionic strength, e.g., 0.5 M ammonium acetate (pH 6.0) yields linear calibration of log (MW[eta]) vs. retention volume. Even at 0.05 M salt concentration, no stationary phase charge effects on protein elution are observed. These bonded-phase columns exhibit good column-to-column reproducibility and constant retention for at least five months of continual use. Examples of the high-performance separation of proteins in both modes are illustrated.
Li, Yan; Dvořák, Miloš; Nesterenko, Pavel N; Stanley, Roger; Nuchtavorn, Nantana; Krčmová, Lenka Kujovská; Aufartová, Jana; Macka, Mirek
2015-10-08
Trends towards portable analytical instrumentation of the last decades have not been equally reflected in developments of portable liquid chromatography (LC) instrumentation for rapid on-site measurements. A miniaturised medium pressure capillary LC (MPLC) system with gradient elution capability has been designed based on a flexible modular microfluidic system using primarily off-the-shelf low cost components to ensure wide accessibility to other analysts. The microfluidic platform was assembled on a breadboard and contained microsyringe pumps and switch valves, complemented with an injection valve and on-capillary detectors, all controlled by a PC. Four miniaturised microsyringe pumps, with 5, 20 and 100 μL syringe volume options, formed the basis of the pumping system. Two pairs of pumps were used for each mobile phase to create gradient elution capability. The two microsyringe pumps in each pairs were linked by two electrically operated microfluidic switching valves and both pairs of pumps were connected through a zero void volume cross-connector, thus providing a low hold-up volume for gradient formation. Sample was injected by a 20 nL nano-LC sampling valve, directly connected to a 18 cm long 100 μm i.d. Chromolith CapRod RP-18 monolithic capillary column. On-capillary LED-based UV-vis photometric detection was conducted through a piece of equal diameter fused silica capillary connected after the column. The performance of the portable LC system was evaluated theoretically and experimentally, including the maximum operating pressure, gradient mixing performance, and the performance of the detectors. The 5 μL microsyringe pump offered the best performance, with typical maximum operating pressures up to 11.4 ± 0.4 MPa (water) and gradient pumping repeatability of between 4 and 9% for gradients between 0.10% s(-1) and 0.33% s(-1). Test analytes of charged and uncharged dyes and pharmaceuticals of varying hydrophobicity showed typical RSD values of 0.7-1.4% and 3.3-4.8% in isocratic mode and 1.2-4.6% and 3.2-6.4% in gradient mode, respectively for retention time and peak area repeatability. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
[Fast identification of constituents of Lagotis brevituba by using UPLC-Q-TOF-MS/MS method].
Xie, Jing; Zhang, Li; Zeng, Jin-Xiang; Li, Min; Wang, Juan; Xie, Xiong-Xiong; Zhong, Guo-Yue; Luo, Guang-Ming; Yuan, Jin-Bin; Liang, Jian
2017-06-01
The chemical constituents of Lagotis brevituba were rapidly determined and analyzed by using ultra performance liquid chromatography tandem quadrupole time of flight mass spectrometry (UPLC-Q-TOF-MS/MS) method, providing material basis for the clinical application of L. brevituba. The separation was performed on UPLC YMC-Triart C₁₈ (2.1 mm×100 mm, 1.9 μm) column, with acetonitrile-water containing 0.2% formic acid as mobile phase for gradient elution. The flow rate was 0.4 mL•min-1 gradient elution and column temperature was 40 ℃, the injection volume was 2 μL. ESI ion source was used to ensure the data collected in a negative ion mode. The chemical components of L. brevituba were identified through retention time, exact relative molecular mass, cleavage fragments of MS/MS and reported data. The results showed that a total of 22 compounds were identified, including 11 flavones, 6 phenylethanoid glycosides, 1 iridoid glucosides, and 4 organic acid. The UPLC-Q-TOF-MS/MS method could fast identify the chemical components of L. brevituba, providing valuable information about L. brevituba for its clinical application. Copyright© by the Chinese Pharmaceutical Association.
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Comparison of retention models for polymers 1. Poly(ethylene glycol)s.
Bashir, Mubasher A; Radke, Wolfgang
2006-10-27
The suitability of three different retention models to predict the retention times of poly(ethylene glycol)s (PEGs) in gradient and isocratic chromatography was investigated. The models investigated were the linear (LSSM) and the quadratic solvent strength model (QSSM). In addition, a model describing the retention behaviour of polymers was extended to account for gradient elution (PM). It was found that all models are suited to properly predict gradient retention volumes provided the extraction of the analyte specific parameters is performed from gradient experiments as well. The LSSM and QSSM on principle cannot describe retention behaviour under critical or SEC conditions. Since the PM is designed to cover all three modes of polymer chromatography, it is therefore superior to the other models. However, the determination of the analyte specific parameters, which are needed to calibrate the retention behaviour, strongly depend on the suitable selection of initial experiments. A useful strategy for a purposeful selection of these calibration experiments is proposed.
Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi
2006-05-05
Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.
Miksík, I; Vylitová, M; Pácha, J; Deyl, Z
1999-04-16
High-performance liquid chromatography coupled to atmospheric pressure ionization-electrospray ionization mass spectrometry (API-ESI-MS) was investigated for the analysis of corticosterone metabolites; their characterization was obtained by combining the separation on Zorbax Eclipse XDB C18 column (eluted with a methanol-water-acetic acid gradient) with identification using positive ion mode API-ESI-MS and selected ion analysis. The applicability of this method was verified by monitoring the activity of steroid converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in avian intestines.
Joshi, Varsha; Kumar, Vijesh; Rathore, Anurag S
2015-08-07
A method is proposed for rapid development of a short, analytical cation exchange high performance liquid chromatography method for analysis of charge heterogeneity in monoclonal antibody products. The parameters investigated and optimized include pH, shape of elution gradient and length of the column. It is found that the most important parameter for development of a shorter method is the choice of the shape of elution gradient. In this paper, we propose a step by step approach to develop a non-linear sigmoidal shape gradient for analysis of charge heterogeneity for two different monoclonal antibody products. The use of this gradient not only decreases the run time of the method to 4min against the conventional method that takes more than 40min but also the resolution is retained. Superiority of the phosphate gradient over sodium chloride gradient for elution of mAbs is also observed. The method has been successfully evaluated for specificity, sensitivity, linearity, limit of detection, and limit of quantification. Application of this method as a potential at-line process analytical technology tool has been suggested. Copyright © 2015 Elsevier B.V. All rights reserved.
Aral, Tarık; Aral, Hayriye; Ziyadanoğulları, Berrin; Ziyadanoğulları, Recep
2015-01-01
A novel mixed-mode stationary phase was synthesised starting from N-Boc-glutamine, aniline and spherical silica gel (4 µm, 60 Å). The prepared stationary phase was characterized by IR and elemental analysis. The new stationary phase bears an embedded amide group into phenyl ring, highly polar a terminal amide group and non-polar groups (phenyl and alkyl groups). At first, this new mixed-mode stationary phase was used for HILIC separation of four nucleotides and five nucleosides. The effects of different separation conditions, such as pH value, mobile phase and temperature, on the separation process were investigated. The optimum separation for nucleotides was achieved using HILIC isocratic elution with aqueous mobile phase and acetonitrile with 20°C column temperature. Under these conditions, the four nucleotides could be separated and detected at 265 nm within 14 min. Five nucleosides were separated under HILIC isocratic elution with aqueous mobile phase containing pH=3.25 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 265 nm within 14 min. Chromatographic parameters as retention factor, selectivity, theoretical plate number and peak asymmetry factor were calculated for the effect of temperature and water content in mobile phase on the separation process. The new column was also tested for nucleotides and nucleosides mixture and six analytes were separated in 10min. The chromatographic behaviours of these polar analytes on the new mixed-model stationary phase were compared with those of HILIC columns under similar conditions. Further, phytohormones and phenolic compounds were separated in order to see influence of the new stationary phase in reverse phase conditions. Eleven plant phytohormones were separated within 13 min using RP-HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and detected at 230 or 278 nm. The best separation conditions for seven phenolic compounds was also achieved using reversed-phase HPLC gradient elution with aqueous mobile phase containing pH=2.5 phosphate buffer (10mM) and acetonitrile with 20°C column temperature and seven phenolic compounds could be separated and detected at 230 nm within 16 min. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Zhenbin; Yan, Xiaojing; Sun, Liangliang; Zhu, Guijie; Dovichi, Norman J
2015-04-21
A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.
Wade, James H; Bailey, Ryan C
2014-01-07
Refractive index-based sensors offer attractive characteristics as nondestructive and universal detectors for liquid chromatographic separations, but a small dynamic range and sensitivity to minor thermal perturbations limit the utility of commercial RI detectors for many potential applications, especially those requiring the use of gradient elutions. As such, RI detectors find use almost exclusively in sample abundant, isocratic separations when interfaced with high-performance liquid chromatography. Silicon photonic microring resonators are refractive index-sensitive optical devices that feature good sensitivity and tremendous dynamic range. The large dynamic range of microring resonators allows the sensors to function across a wide spectrum of refractive indices, such as that encountered when moving from an aqueous to organic mobile phase during a gradient elution, a key analytical advantage not supported in commercial RI detectors. Microrings are easily configured into sensor arrays, and chip-integrated control microrings enable real-time corrections of thermal drift. Thermal controls allow for analyses at any temperature and, in the absence of rigorous temperature control, obviates extended detector equilibration wait times. Herein, proof of concept isocratic and gradient elution separations were performed using well-characterized model analytes (e.g., caffeine, ibuprofen) in both neat buffer and more complex sample matrices. These experiments demonstrate the ability of microring arrays to perform isocratic and gradient elutions under ambient conditions, avoiding two major limitations of commercial RI-based detectors and maintaining comparable bulk RI sensitivity. Further benefit may be realized in the future through selective surface functionalization to impart degrees of postcolumn (bio)molecular specificity at the detection phase of a separation. The chip-based and microscale nature of microring resonators also make it an attractive potential detection technology that could be integrated within lab-on-a-chip and microfluidic separation devices.
Chen, Apeng; Lynch, Kyle B; Wang, Xiaochun; Lu, Joann J; Gu, Congying; Liu, Shaorong
2014-09-24
We integrate a high-pressure electroosmotic pump (EOP), a nanoflow gradient generator, and a capillary column into a miniaturized liquid chromatographic system that can be directly coupled with a mass spectrometer for proteomic analysis. We have recently developed a low-cost high-pressure EOP capable of generating pressure of tens of thousands psi, ideal for uses in miniaturized HPLC. The pump worked smoothly when it was used for isocratic elutions. When it was used for gradient elutions, generating reproducible gradient profiles was challenging; because the pump rate fluctuated when the pump was used to pump high-content organic solvents. This presents an issue for separating proteins/peptides since high-content organic solvents are often utilized. In this work, we solve this problem by incorporating our high-pressure EOP with a nano-flow gradient generator so that the EOP needs only to pump an aqueous solution. With this combination, we develop a capillary-based nano-HPLC system capable of performing nano-flow gradient elution; the pump rate is stable, and the gradient profiles are reproducible and can be conveniently tuned. To demonstrate its utility, we couple it with either a UV absorbance detector or a mass spectrometer for peptide separations. Copyright © 2014. Published by Elsevier B.V.
De Pauw, Ruben; Swier, Tim; Degreef, Bart; Desmet, Gert; Broeckhoven, Ken
2016-11-18
The limits in operating pressures are extended for narrow-bore columns in gradient elution up to 2000bar. As the required pumps for these pressures are incompatible with common chromatographic solvents and are not suitable to apply a mobile phase composition gradient, a mobile phase delivery and injection system is described and experimentally validated which allows to use any possible chromatographic solvent in isocratic and gradient elution. The mobile phase delivery and injection system also allows to perform multiple separations without the need to depressurize the column. This system consists out of 5 dual on/off valves and two large volume loops in which the gradient and equilibration volume of initial mobile phase are loaded by a commercial liquid chromatography pump. The loops are then flushed toward the column at extreme pressures. The mobile phase delivery and injection system is first evaluated in isocratic elution and shows a comparable performance to a state-of-the-art commercial flow-through-needle injector but with twice the pressure rating. Distortion of the loaded gradient by dispersion in the gradient storage loop is studied. The effect of the most important parameters (such as flow rate, pressure and gradient steepness) is experimentally investigated. Different gradient steepnesses and volumes can be applied at different flow rates and operating pressures with a good repeatability. Due to the isobaric operation of the pumps, the gradient is monitored in real-time by a mass flow meter installed at the detector outlet. The chromatograms are then converted from time to volume-base. A separation of a 19-compound sample is performed on a 300×2.1mm column at 1000bar and on a 600×2.1mm column at 2000bar. The peak capacity was found to increase from 141 to 199 and thus scales with L as is predicted by theory. This allows to conclude that the inlet pressure for narrow-bore columns in gradient elution can be increased up to 2000bar without fundamental pressure-induced limitations. Copyright © 2016 Elsevier B.V. All rights reserved.
Pinto, Nuno D S; Uplekar, Shaunak D; Moreira, Antonio R; Rao, Govind; Frey, Douglas D
2017-01-01
Purification processes for monoclonal Immunoglobulin G (IgG) typically employ protein A chromatography as a capture step to remove most of the impurities. One major concern of the post-protein A chromatography processes is the co-elution of some of the host cell proteins (HCPs) with IgG in the capture step. In this work, a novel method for IgG elution in protein A chromatography that reduces the co-elution of HCPs is presented where a two-step pH gradient is self-formed inside a protein A chromatography column. The complexities involved in using an internally produced pH gradient in a protein A chromatography column employing adsorbed buffering species are discussed though equation-based modeling. Under the conditions employed, ELISA assays show a 60% reduction in the HCPs co-eluting with the IgG fraction when using the method as compared to conventional protein A elution without affecting the IgG yield. Evidence is also obtained which indicates that the amount of leached protein A present in free solution in the purified product is reduced by the new method. Biotechnol. Bioeng. 2017;114: 154-162. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Gradient design for liquid chromatography using multi-scale optimization.
López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C
2018-01-26
In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Guofei; Lu, Tulin; Mao, Chunqin; Su, Tao; Sun, Xiaomin
2010-11-01
To establish a HPLC method for determination of 4 components in different varieties of vinegar backed Rhizoma Curcuma. The method was established by using an Elite Hypersil ODS2 column (4.6 mm x 250 mm, 5 microm). The mobile phase comprising acetonitrile (A) and water (B) was used to elute the targets in gradient elution mode. Flow rate and detection wavelength were set at 1 mL x min(-1) and 214 nm, respectively. The column temperature was 25 degrees C and the injection volume was 10 microL. All calibration curves showed good linearity with r > 0.999 5. Recoveries measured at three concentrations were in the range of 97.27% - 99.27% with RSD < 3%. The validated method is simple, reliable, and successfully applied to determine the contents of the selected compounds in vinegar backed Rhizoma Curcuma. The results of the determination showed that contents of the four components in vinegar backed Curcuma wenyujin were relatively high.
NASA Astrophysics Data System (ADS)
Duyck, Christiane Béatrice; Saint'Pierre, Tatiana Dillenburg; Miekeley, Norbert; da Fonseca, Teresa Cristina Oliveira; Szatmari, Peter
2011-05-01
A method was developed for the determination of V and Ni as tetrapyrroles by High Performance Liquid Chromatography hyphenated to Inductively Coupled Plasma Mass Spectrometry (HPLC-ICP-MS) using reversed phase and elution gradient. Chlorinated solvents and tetrahydrofuran were investigated as regard to separation time and ICP-MS detection efficiencies. The final elution gradient program started from pure methanol to a mixture of 20:80 (v/v) chloroform:methanol. External quantification of V and Ni with inorganic standards by flow injection ICP-MS, used online with HPLC, resulted in 95% of recoveries. The Limits of Detection for V during methanol elution and for Ni during the 20% chloroform gradient elution were evaluated by their minimum detectable concentrations, which were, respectively, 5 μg L - 1 and 8 μg L - 1 . The methodology was applied to polar and resin fractions separated from a Brazilian crude oil and a sediment extract from an oil-polluted area in the Guanabara Bay, Rio de Janeiro, Brazil. Vanadium as tetrapyrroles represented the totality of V content in the polar fraction, whereas Ni was in different polar forms in the resin and sediment extract.
Chen, Pei; Atkinson, Renata; Wolf, Wayne R
2009-01-01
The purpose of this study was to develop a single-laboratory validated (SLV) method using high-performance liquid chromatography with different detectors [diode array detector (DAD); fluorescence detector (FLD); and mass spectrometry (MS)] for determination of 7 B-complex vitamins (B1-thiamin, B2-riboflavin, B3-nicotinamide, B6-pyridoxine, B9-folic acid, pantothenic acid, and biotin) and vitamin C in multivitamin/multimineral dietary supplements. The method involves the use of a reversed-phase octadecylsilyl column (4 microm, 250 x 2.0 mm id) and a gradient mobile phase profile. Gradient elution was performed at a flow rate of 0.25 mL/min. After a 5 min isocratic elution at 100% A (0.1% formic acid in water), a linear gradient to 50% A and 50% B (0.1% formic acid in acetonitrile) at 15 min was employed. Detection was performed with a DAD as well as either an FLD or a triple-quadrupole MS detector in the multiple reaction monitoring mode. SLV was performed using Standard Reference Material (SRM) 3280 Multivitamin/Multimineral Tablets, being developed by the National Institute of Standards and Technology, with support by the Office of Dietary Supplements of the National Institutes of Health. Phosphate buffer (10 mM, pH 2.0) extracts of the NIST SRM 3280 were analyzed by the liquid chromatographic (LC)-DAD-FLDIMS method. Following extraction, the method does not require any sample cleanup/preconcentration steps except centrifugation and filtration.
Chen, Pei; Atkinson, Renata; Wolf, Wayne R.
2014-01-01
The purpose of this study was to develop a single-laboratory validated (SLV) method using high-performance liquid chromatography with different detectors [diode array detector (DAD); fluorescence detector (FLD); and mass spectrometry (MS)] for determination of 7 B-complex vitamins (B1-thiamin, B2-riboflavin, B3-nicotinamide, B6-pyridoxine, B9-folic acid, pantothenic acid, and biotin) and vitamin C in multivitamin/multimineral dietary supplements. The method involves the use of a reversed-phase octadecylsilyl column (4 µm, 250 × 2.0 mm id) and a gradient mobile phase profile. Gradient elution was performed at a flow rate of 0.25 mL/min. After a 5 min isocratic elution at 100% A (0.1% formic acid in water), a linear gradient to 50% A and 50% B (0.1% formic acid in acetonitrile) at 15 min was employed. Detection was performed with a DAD as well as either an FLD or a triple-quadrupole MS detector in the multiple reaction monitoring mode. SLV was performed using Standard Reference Material (SRM) 3280 Multivitamin/Multimineral Tablets, being developed by the National Institute of Standards and Technology, with support by the Office of Dietary Supplements of the National Institutes of Health. Phosphate buffer (10 mM, pH 2.0) extracts of the NIST SRM 3280 were analyzed by the liquid chromatographic (LC)-DAD-FLD/MS method. Following extraction, the method does not require any sample cleanup/preconcentration steps except centrifugation and filtration. PMID:19485230
Pappa-Louisi, A; Agrafiotou, P; Papachristos, K
2010-07-01
The combined effect of the ion-pairing reagent concentration, C(ipr), and organic modifier content, phi, on the retention under phi-gradient conditions at different constant C(ipr) was treated in this study by using two approaches. In the first approach, the prediction of the retention time of a sample solute is based on a direct fitting procedure of a proper retention model to 3-D phi-gradient retention data obtained under the same phi-linear variation but with different slope and time duration of the initial isocratic part and in the presence of various constant C(ipr) values in the eluent. The second approach is based on a retention model describing the combined effect of C(ipr) and phi on the retention of solutes in isocratic mode and consequently analyzes isocratic data obtained in mobile phases containing different C(ipr) values. The effectiveness of the above approaches was tested in the retention prediction of a mixture of 16 underivatized amino acids using mobile phases containing acetonitrile as organic modifier and sodium dodecyl sulfate as ion-pairing reagent. From these approaches, only the first one gives satisfactory predictions and can be successfully used in optimization of ion-pair chromatographic separations under gradient conditions. The failure of the second approach to predict the retention of solutes in the gradient elution mode in the presence of different C(ipr) values was attributed to slow changes in the distribution equilibrium of ion-pairing reagents caused by phi-variation.
Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G
2013-01-25
The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.
Magda, Balázs; Márta, Zoltán; Imre, Tímea; Kalapos-Kovács, Bernadett; Klebovich, Imre; Fekete, Jenő; Szabó, Pál T
2015-01-01
The original aim of this study was to develop a method for the determination of baicalin from membrane vesicles. The unconventional chromatographic separation ("inverse gradient elution" on a reversed phase column) was due to a lucky chance, which is detailed and discussed in this study. The validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is proved to be sensitive, rapid and selective. Chromatographic separation was performed on a Zorbax SB-C8 column (250 mm × 4.6 mm, i.d.; 5 μm) with 0.1% formic acid in water and methanol by linear gradient elution. Quantification of baicalin was determined by multiple reaction monitoring (MRM) mode using electrospray ionization (ESI). The calibration curve was linear (r = 0.9987) over the concentration range from 1 to 1000 nM. The coefficient of variation and relative error of baicalin for intra- and inter-assay at three quality control (QC) levels were 2.0-10.2% and -6.1 to 6.7%, respectively. The lower limit of quantification (LLOQ) for baicalin was 1 nM (0.446 ng/ml), without preconcentration of the sample. This method was subsequently applied to vesicular transport assays of baicalin in membrane vesicles successfully. The developed method can open up new area of research in the chromatographic separation of flavonoids and their glucuronides. Copyright © 2015. Published by Elsevier B.V.
Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides
Park, Sung-Soo; Maudsley, Stuart
2010-01-01
Global profiling of phosphoproteomes has proven a great challenge due to the relatively low stoichiometry of protein phosphorylation and poor ionization efficiency in mass spectrometers. Effective, physiologically-relevant, phosphoproteome research relies on the efficient phosphopeptide enrichment from complex samples. Immobilized metal affinity chromatography and titanium dioxide chromatography (TOC) can greatly assist selective phosphopeptide enrichment. However, the complexity of resultant enriched samples is often still high, suggesting that further separation of enriched phosphopeptides is required. We have developed a pH-gradient elution technique for enhanced phosphopeptide identification in conjunction with TOC. Using this process, we have demonstrated its superiority to the traditional ‘one-pot’ strategies for differential protein identification. Our technique generated a highly specific separation of phosphopeptides by an applied pH-gradient between 9.2 and 11.3. The most efficient elution range for high-resolution phosphopeptide separation was between pH 9.2 and 9.4. High-resolution separation of multiply-phosphorylated peptides was primarily achieved using elution ranges > pH 9.4. Investigation of phosphopeptide sequences identified in each pH fraction indicated that phosphopeptides with phosphorylated residues proximal to acidic residues, including glutamic acid, aspartic acid, and other phosphorylated residues, were preferentially eluted at higher pH values. PMID:20946866
Šatínský, Dalibor; Naibrtová, Linda; Fernández-Ramos, Carolina; Solich, Petr
2015-09-01
A new on-line SPE-HPLC method using fused-core columns for on-line solid phase extraction and large volume sample injection for increasing the sensitivity of detection was developed for the determination of insecticides fenoxycarb and cis-, trans-permethrin in surface waters. The separation was carried out on fused-core column Phenyl-Hexyl (100×4.6 mm), particle size 2.7 µm with mobile phase acetonitrile:water in gradient mode at flow rate 1.0 mL min(-1), column temperature 45°C. Large volume sample injection (1500 µL) to the extraction dimension using short precolumn Ascentis Express RP C-18 (5×4.6 mm); fused-core particle size 2.7 µm allowed effective sample preconcentration and efficient ballast sample matrix removal. The washing mobile phase consisting of a mixture of acetonitrile:water; 30:70, (v/v) was pumped at flow rate of 0.5 mL min(-1) through the extraction precolumn to the waste. Time of the valve switch for transferring the preconcentrated sample zone from the extraction to the separation column was set at 3rd min. Elution of preconcentrated insecticides from the extraction precolumn and separation on the analytical column was performed in gradient mode. Linear gradient elution started from 40% of acetonitrile at time of valve switch from SPE column (3rd min) to 95% of acetonitrile at 7th min. Synthetic dye sudan I was chosen as an internal standard. UV detection at wavelength 225 nm was used and the method reached the limits of detection (LOD) at ng mL(-1) levels for both insecticides. The method showing on-line sample pretreatment and preconcentration with highly sensitive determination of insecticides was applied for monitoring of fenoxycarb and both permethrin isomers in different surface water samples in Czech Republic. The time of whole analysis including on-line extraction, interferences removal, chromatography separation and system equilibration was less than 8 min. Copyright © 2015 Elsevier B.V. All rights reserved.
Andrés, Axel; Rosés, Martí; Bosch, Elisabeth
2015-03-13
Retention of ionizable analytes under gradient elution depends on the pH of the mobile phase, the pKa of the analyte and their evolution along the programmed gradient. In previous work, a model depending on two fitting parameters was recommended because of its very favorable relationship between accuracy and required experimental work. It was developed using acetonitrile as the organic modifier and involves pKa modeling by means of equations that take into account the acidic functional group of the compound (carboxylic acid, protonated amine, etc.). In this work, the two-parameter predicting model is tested and validated using methanol as the organic modifier of the mobile phase and several compounds of higher pharmaceutical relevance and structural complexity as testing analytes. The results have been quite good overall, showing that the predicting model is applicable to a wide variety of acid-base compounds using mobile phases prepared with acetonitrile or methanol. Copyright © 2015 Elsevier B.V. All rights reserved.
Kakimoto, Kensaku; Toriba, Akira; Ohno, Takanori; Ueno, Mariko; Kameda, Takayuki; Tang, Ning; Hayakawa, Kazuichi
2008-05-15
To evaluate human exposure to polycyclic aromatic hydrocarbons (PAHs), we developed a rapid, simple and sensitive method for determining 1-hydroxypyrene-glucuronide (1-OHP-G) in human urine. To improve precision, a deuterated glucuronide was used as an internal standard. The method requires only 1 mL of urine. The urine was treated with a mixed-mode anion-exchange and reversed-phase solid-phase extraction cartridge (Oasis MAX). The analytes were analyzed with a C(18) reversed-phase column with a gradient elution, followed by tandem mass spectrometry with electrospray ionization in negative ion mode. The detection limit of 1-OHP-G (corresponding to a signal-to-noise ratio of 3) was 0.13 fmol/injection. Urinary concentrations of 1-OHP-G determined by this method were strongly correlated (r(2)=0.961) with concentrations of 1-hydroxypyrene by conventional HPLC with fluorescence detection.
Kamble, Bhagyashree; Gupta, Ankur; Patil, Dada; Khatal, Laxman; Janrao, Shirish; Moothedath, Ismail; Duraiswamy, Basavan
2013-05-01
A sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method has been developed and validated for the determination of gymnemagenin (GMG), a triterpene sapogenin from Gymnema sylvestre, in rat plasma using withaferin A as the internal standard (IS). Plasma samples were simply extracted using liquid-liquid extraction with tetra-butyl methyl ether. Chromatographic separation was performed on Luna C(18) column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia) at a flow rate of 0.8 mL/min. GMG and IS were eluted at 4.64 and 4.36 min, ionized in negative and positive mode, respectively, and quantitatively estimated using multiple reaction monitoring (MRM) mode. Two MRM transitions were selected at m/z 505.70 → 455.5 and m/z 471.50 → 281.3 for GMG and IS, respectively. The assay was linear over the concentration range of 5.280-300.920 ng/mL. The mean plasma extraction recoveries for GMG and IS were found to be 80.92 ± 8.70 and 55.63 ± 0.76%, respectively. The method was successfully applied for the determination of pharmacokinetic parameters of GMG after oral administration of G. sylvestre extract. Copyright © 2012 John Wiley & Sons, Ltd.
Danger, Grégoire; Ross, David
2008-10-01
The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.
Miksík, Ivan; Mikulíková, Katerina; Pácha, Jirí; Kucka, Marek; Deyl, Zdenek
2004-02-05
A high-performance liquid chromatography-atmospheric pressure ionization-electrospray ionization mass spectrometry (HPLC-API-ESI-MS) method was developed for the analysis of steroids in a study of steroid-converting enzymes. Separations ware done on a Zorbax Eclipse XDB-C18 column (eluted with a linear methanol-water-acetic acid gradient) and identification of the steroids involved was done by API-ESI-MS using positive ion mode and extracted ion analysis. The applicability of the present method for studying steroid metabolism was proven in assaying two steroid-converting enzymes (20beta-hydroxysteroid dehydrogenase and 11beta-hydroxysteroid dehydrogenase) in various biological samples (rat and chicken intestine, chicken oviduct).
Creasy, Arch; Reck, Jason; Pabst, Timothy; Hunter, Alan; Barker, Gregory; Carta, Giorgio
2018-05-29
A previously developed empirical interpolation (EI) method is extended to predict highly overloaded multicomponent elution behavior on a cation exchange (CEX) column based on batch isotherm data. Instead of a fully mechanistic model, the EI method employs an empirically modified multicomponent Langmuir equation to correlate two-component adsorption isotherm data at different salt concentrations. Piecewise cubic interpolating polynomials are then used to predict competitive binding at intermediate salt concentrations. The approach is tested for the separation of monoclonal antibody monomer and dimer mixtures by gradient elution on the cation exchange resin Nuvia HR-S. Adsorption isotherms are obtained over a range of salt concentrations with varying monomer and dimer concentrations. Coupled with a lumped kinetic model, the interpolated isotherms predict the column behavior for highly overloaded conditions. Predictions based on the EI method showed good agreement with experimental elution curves for protein loads up to 40 mg/mL column or about 50% of the column binding capacity. The approach can be extended to other chromatographic modalities and to more than two components. This article is protected by copyright. All rights reserved.
Simultaneous concentration and purification through gradient deformation chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.
Kaczmarski, Krzysztof; Poe, Donald P; Guiochon, Georges
2010-10-15
When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. Copyright © 2010 Elsevier B.V. All rights reserved.
Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A
2007-04-01
A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
Kao, T H; Huang, S C; Inbaraj, B Stephen; Chen, B H
2008-09-26
Gynostemma pentaphyllum (Thunb.) Makino, a traditional Chinese herb possessing antitumor and antioxidant activities, has been shown to contain several functional components like saponins and flavonoids. However, their identities remain uncertain. The objectives of this study were to develop an appropriate extraction, purification and HPLC-MS method to determine saponins and flavonoids in G. pentaphyllum. Both flavonoids and saponins were extracted with methanol, followed by purification with a C18 cartridge to elute the former with 50% methanol and the latter with 100% methanol. A total of 34 saponins were separated within 40 min by a Gemini C18 column and a gradient mobile phase of acetonitrile and 0.1% formic acid in water, in which 18 saponins were identified by LC-MS with ESI mode and Q-TOF (LC/MS/MS). Similarly, a total of eight flavonoids were separated within 45 min by the same column and a gradient solvent system of methanol and 0.1% formic acid in water, with identification being carried out by a post-column derivatization method and LC-MS with ESI mode. The amounts of flavonoids in G. pentaphyllum ranged from 170.7 to 2416.5 mug g(-1), whereas saponins were from 491.0 to 89,888.9 mug g(-1).
Sinha, Arun Kumar; Verma, Subash Chandra; Sharma, Upendra Kumar
2007-01-01
A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.
Predicting ESI/MS Signal Change for Anions in Different Solvents.
Kruve, Anneli; Kaupmees, Karl
2017-05-02
LC/ESI/MS is a technique widely used for qualitative and quantitative analysis in various fields. However, quantification is currently possible only for compounds for which the standard substances are available, as the ionization efficiency of different compounds in ESI source differs by orders of magnitude. In this paper we present an approach for quantitative LC/ESI/MS analysis without standard substances. This approach relies on accurately predicting the ionization efficiencies in ESI source based on a model, which uses physicochemical parameters of analytes. Furthermore, the model has been made transferable between different mobile phases and instrument setups by using a suitable set of calibration compounds. This approach has been validated both in flow injection and chromatographic mode with gradient elution.
Wang, Shuo; Zhang, Xiangming; Zhang, Jing; Shao, Bing; Li, Shuming
2015-07-01
A method for the determination of 54 drugs in drinking water samples was developed by using ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI MS/MS). The target drugs in drinking water samples were enriched and cleaned-up by HLB solid-phase extraction (SPE) cartridges and then eluted with 5 mL methanol. The elute was collected, concentrated under a gentle stream of nitrogen gas, diluted with 0.4 mL 0.1% formic acid solution, and analyzed by UPLC-ESI MS/MS. The separation of the 54 drugs was performed on an ACQUITY UPLC™ BEH C18 column using mobile phases of 0.1% formic acid and methanol by gradient elution. The multiple reaction monitoring (MRM) mode was employed in mass spectrometry acquisition. The matrix-matched external standard calibration was used for quantitation. The results showed that the average recoveries of the drugs in ground water, tap water and surface water were 58.7%-104.4%, 53.1%-109.5%, and 50.7%-118.8%, respectively, and the corresponding relative standard deviations (RSD, n=6) were 0.3%-12.8%, 1.0%-15.5%, and 0.4%-19.3%, respectively. The method quantification limits (MQL) for target compounds were in the range of 0.002-5.000 ng/L. The developed method was applied to analyze the water samples from Beijing. The results showed that 26 drugs were detected in ground water samples.
Crock, J.G.; Lichte, F.E.; Wildeman, T.R.
1984-01-01
Demand is increasing for the determination of the rare-earth elements (REE) and yttrium in geologic materials. Due to their low natural abundance in many materials and the interferences that occur in many methods of determination, a separation procedure utilizing gradient strong-acid cation-exchange chromatography is often used to preconcentrate and isolate these elements from the host-rock matrix. Two separate gradient strong-acid cation-exchange procedures were characterized and the major elements as well as those elements thought to provide the greatest interference for the determination of the REE in geologic materials were tested for separation from the REE. Simultaneous inductively coupled argon plasma-atomic emission spectroscopy (ICAP-AES) measurements were used to construct the chromatograms for the elution studies, allowing the elution patterns of all the elements of interest to be determined in a single fraction of eluent. As a rock matrix, U.S. Geological Survey standard reference BCR-1 basalt was digested using both an acid decomposition procedure and a lithium metaborate fusion. Hydrochloric and nitric acids were tested as eluents and chromatograms were plotted using the ICAP-AES data; and we observed substantial differences in the elution patterns of the REE and as well as in the solution patterns of Ba, Ca, Fe and Sr. The nitric acid elution required substantially less eluent to elute the REE and Y as a group when compared to the hydrochloric acid elution, and provided a clearer separation of the REE from interfering and matrix elements. ?? 1984.
Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun
2017-10-13
A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Jandera, Pavel; Hájek, Tomás; Cesla, Petr
2010-06-01
Gradient elution provides significant improvement in peak capacity with respect to isocratic conditions. In the second dimension, gradients are limited to a short-time period available for separation. Various types of second-dimension gradients in comprehensive LC x LC are compared: (i) "full in fraction", (ii) "segment in fraction" and (iii) "continuously shifting" gradients, applied in orthogonal LC x LC separations of phenolic acids and flavones on a polyethylene glycol column in the first dimension and two types of porous shell fused-core C18 columns in the second dimension (Ascentis Express and Kinetex). The porous shell columns provide narrow bandwidths and fast second-dimension separations at moderate operating pressure that allows important savings of the overall separation time in comprehensive LC x LC separations. The effects of the gradient type on the bandwidths, theoretical peak capacity, separation time and column pressure in the second dimension were investigated. The type of gradient program controls the range of lipophilicity of sample compounds that can be separated in the second-dimension reversed-phase time period. This range can be calibrated using alkylbenzene standards, to design the separation conditions for complete sample separation, avoiding harmful wrap around of non-eluted compounds to the subsequent second-dimension fractions.
Electrophoretic separation of proteins in space
NASA Technical Reports Server (NTRS)
Brown, R. K.
1976-01-01
Commercially available and synthetic wide range and short range ampholytes used in the isoelectric focusing of proteins was analyzed by ion exchange chromatography. A pH gradient over the pH range 3.8 to 11.0 was used to elute the ampholytes from a column of a sulfonated polystyrene resin. The wide range ampholytes were resolved into some 60 to 70 ninhydrin positive components. The recovery obtained with the method was quantitative. Acid short range ampholytes have approximately 35 components which elute readily from the ion exchange resin. Basic short range ampholytes gave about 50 components, most of which eluted at alkaline pH.
Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian
2016-02-01
The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C
2017-11-10
An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2 D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael
2015-08-28
A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Richardson, W. S., III; Burns, L.
1988-01-01
Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)
Solvent-programmed microchip open-channel electrochromatography.
Kutter, J P; Jacobson, S C; Matsubara, N; Ramsey, J M
1998-08-01
Open-channel electrochromatography in combination with solvent programming is demonstrated using a microchip device. Channel walls were coated with octadecylsilanes at ambient temperatures, yielding stationary phases for chromatographic separations of neutral dyes. The electroosmotic flow after coating was sufficient to ensure transport of all species and on-chip mixing of isocratic and gradient elution conditions with acetonitrile-buffer mixtures. Chips having different channel depths between 10.2 and 2.9 μm were evaluated for performance, and van Deemter plots were established. Channel depths of about 5 μm were found to be a good compromise between efficiency and ease of operation. Isocratic and gradient elution conditions were easily established and manipulated by computer-controlled application of voltages to the terminals of the microchip. Linear gradients with different slopes, start times, duration times, and start percentages of organic modifier proved to be powerful tools to tune selectivity and analysis time for the separation of a test mixture. Even very steep gradients still produced excellent efficiencies. Together with fast reconditioning times, complete runs could be finished in under 60 s.
Wyss, R; Bucheli, F
1988-02-26
A fully automated gradient high-performance liquid chromatographic method for the determination of isotretinoin, tretinoin and their 4-oxo metabolites in plasma was developed, using the column-switching technique. After dilution with an internal standard solution containing 20% acetonitrile, 0.5 ml of the sample was injected onto a precolumn (17 X 4.6 mm I.D.), filled with C18 Corasil 37-53 micron. Proteins and polar plasma components were washed out using 1% ammonium acetate-acetonitrile (9:1, v/v) as mobile phase 1. After valve switching, the retained components were transferred to the analytical column in the backflush mode, separated by gradient elution and detected at 360 nm by UV detection. Using two coupled reversed-phase columns (125 mm long), the separation of cis and trans isomers was possible, and all four compounds could be quantified down to 2 ng/ml of plasma. The inter-assay precision in the concentration range 20-100 ng/ml was between 1.0 and 4.7% for all compounds.
Juhel-Gaugain, M; Anger, B; Laurentie, M
1999-01-01
A high-performance liquid chromatographic (HPLC) method for the simultaneous determination of tilmicosin, tylosin, spiramycin, and its major metabolite neospiramycin was developed that is suitable for porcine, bovine, and poultry muscles. Macrolide residues were extracted from muscle with acetonitrile, fat was removed by liquid-liquid extraction with isooctane, and the extract was then cleaned on Bond Elut C18 cartridges. The HPLC separation was performed on an Inertsil ODS3 C18 column (150 x 4 mm) with 0.05% trifluoroacetic acid-acetonitrile in a gradient mode. Two different chromatographic gradients were used for tilmicosin-tylosin and spiramycin-neospiramycin, and the detection wavelengths were 287 and 232 nm, respectively. The method was validated from 1/2 the maximum residue limit (MRL) to 4 times the MRL with pork muscle samples. Mean recoveries were 60, 63.5, 51, and 42% for tilmicosin, tylosin, spiramycin, and neospiramycin, respectively. The detection limits are 15 micrograms/kg for tilmicosin and tylosin, 30 micrograms/kg for spiramycin, and 25 micrograms/kg for neospiramycin. Linearity, precision, and accuracy of the method were also tested.
Meyer, Andrea; Hansen, Dennis B; Gomes, Cláudia S G; Hobley, Timothy J; Thomas, Owen R T; Franzreb, Matthias
2005-01-01
A systematic approach for the design of a bioproduct recovery process employing magnetic supports and the technique of high-gradient magnetic fishing (HGMF) is described. The approach is illustrated for the separation of superoxide dismutase (SOD), an antioxidant protein present in low concentrations (ca. 0.15-0.6 mg L(-1)) in whey. The first part of the process design consisted of ligand screening in which metal chelate supports charged with copper(II) ions were found to be the most suitable. The second stage involved systematic and sequential optimization of conditions for the following steps: product adsorption, support washing, and product elution. Next, the capacity of a novel high-gradient magnetic separator (designed for biotechnological applications) for trapping and holding magnetic supports was determined. Finally, all of the above elements were assembled to deliver a HGMF process for the isolation of SOD from crude sweet whey, which consisted of (i) binding SOD using Cu2+ -charged magnetic metal chelator particles in a batch reactor with whey; (ii) recovery of the "SOD-loaded" supports by high-gradient magnetic separation (HGMS); (iii) washing out loosely bound and entrained proteins and solids; (iv) elution of the target protein; and (v) recovery of the eluted supports from the HGMF rig. Efficient recovery of SOD was demonstrated at approximately 50-fold increased scale (cf magnetic rack studies) in three separate HGMF experiments, and in the best of these (run 3) an SOD yield of >85% and purification factor of approximately 21 were obtained.
Floridi, A; Trizza, V; Paolotti, P; Lucarelli, C
1999-06-18
We propose a newly integrated procedure for the analysis of furosine (early glycation product) and pentosidine (glycoxidation end-product) in plasma proteins and the simultaneous assessment of advanced glycation end-product (AGE) peptides and free pentosidine in plasma. In order to determine furosine and protein-linked pentosidine, plasma proteins were hydrolyzed in 8 M HCl and each analyte was purified by solid-phase extraction. Furosine was determined by ion-pair RP-HPLC methodology with isocratic elution and spectrophotometric detection at 280 nm and pentosidine by ion-pair RP-HPLC by using gradient elution and fluorimetric detection at 335/385 nm. To assess free pentosidine concentration and simultaneously evaluate the AGE peptides, an aliquot of plasma sample was diluted and ultrafiltered by using Centricon 10 M(r) < or = 10,000) ultrafiltration membranes. Free pentosidine and AGE peptides were analysed by ion-pair RP-HPLC, by using gradient elution and fluorimetric detection at 385 nm upon excitation at 335 nm. The HPLC methodology has been successfully used for the determination of glycation and glycoxidation protein status in uremic patients.
Sendra, J M; Navarro, J L; Izquierdo, L
1988-09-01
A new analytical methodology for the determination of fully methoxylated flavones (FMFs) in citrus juices is described. Isolation of the FMFs is carried out by percolation of 30 mL of clarified citrus juice (to which tetramethyl-o-kaempferol is previously added as internal standard) through a C18 Sep-Pak cartridge, washing with 3 mL of water followed by 5 mL of water/acetonitrile (3:1), and selective elution of the retained FMFs with 5 mL of water/acetonitrile (9:11). Determination of the isolated FMFs is carried out by reversed-phase high-performance liquid chromatography (HPLC) and UV diode array detection (DAD). Signals at wavelengths 320, 335, and 345 nm (bandwidth 4 nm) are simultaneously acquired, stored, plotted, and integrated. The column used is a microbore (200 x 2.1-mm) Hypersil ODS 5 microns. Elution is in gradient mode, using a ternary mobile phase (water/acetonitrile/tetrahydrofuran). Column temperature is 40 degrees C. Recovery yields are nearly 100% for all the FMFs detected and identified: isosinensetin, hexamethyl-o-gossypetin, sinensetin, tetramethyl-o-isoscutellarein, hexamethyl-o-quercetagetin, nobiletin, tetramethyl-o-scutellarein, heptamethoxyflavone, and tangeretin. Chromatographic separation of the FMFs is extremely dependent upon the minor changes of the mobile phase composition and percentages, gradient rate, and temperature. The UV spectra (230 to 400 nm) of the FMFs obtained under chromatographic conditions are given. The FMFs relative response factors at 320, 335, and 345 nm and their concentrations in hand-squeezed and commercial concentrated orange and mandarin juices are tabulated. The FMF concentration differences found among samples are discussed.
Xian, Yanping; Wu, Yuluan; Dong, Hao; Guo, Xindong; Wang, Bin; Wang, Li
2017-09-29
The present work presents a novel and rapid analytical method for the simultaneous analysis of bisphenol A (BPA), bisphenol B (BPB), bisphenol F (BPF) and bisphenol S (BPS) in edible oil based on dispersive micro solid phase extraction (DMSPE) for the first time followed by isotope dilution-ultra high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The edible oil sample was dispersed by n-hexane and extracted with ammoniated methanol-water solution. Then the target analytes were dispersedly absorbed using the polymer anion exchange (PAX) as the sorbent and eluted by acidic methanol. After that, four bisphenols were separated on a C18 column by gradient elution with methanol and 0.05% ammonium hydroxide in water as mobile phase, detected by MS/MS under multiple reactions monitoring (MRM) mode and quantified by internal standard method. The PAX amounts, adsorption time, concentrations of formic acid in the elution solvent and volume of elution solvent for the DMSPE technique were optimized. The limit of detection and quantitation (LOD and LOQ), matrix effect, recovery and precision of the developed method were investigated. Results indicated that BPS and the rest three bisphenols displayed excellent linearity in the concentration ranges of 0.1-50μg/L and 0.5-250μg/L, respectively, with correlation coefficients (R 2 ) all larger than 0.998. Achieved MLODs (S/N=3) varied between 0.1-0.4μg/kg for all bisphenols. The mean recoveries at three spiked levels in edible oil were in the range of 87.3-108%. Intra-day precision (n=6) and inter-day precision (n=5) were <9% and <11%, respectively. This method is of rapid-and-simple pretreatment, accurate and sensitive, and suitable for the simultaneous determination of bisphenols in edible oil. Copyright © 2017. Published by Elsevier B.V.
Zhang, Jie; Wang, Yue-Hai; Wei, Quan-Yuan; Du, Xiao-Jia; Qu, Yong-Shui
2018-02-01
As the most representative of lignocellulosic materials, corn stalk (CS) will be a great candidate to produce xylo-oligosaccharides (XOS). Owing to the high impurity content of the XOS produced by directly enzymatic hydrolysis of xylan extracted from CS, subsequent refining steps are essential. The present study was aimed to investigate desorption during ethanol elution to improve the quality and antioxidant activity of XOS from CS. The desorption was systematically investigated after optimizing the elution conditions. The results showed that it had an elution watershed when the volume ratio was 2:1. More interestingly, XOS had a obvious priorities of desorption during ethanol gradient elution. The highest purity of XOS was 98.12% from 30% ethanol eluate. Antioxidant activity assay showed that the highest radical scavenging activity of XOS was 89.89% obtained from 70% ethanol eluate at a concentration of 3 mg/mL, which could be used in antioxidant food, feed additives. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Zhi; Liu, Xiaoman; Wang, Kuiwu; Cao, Xiaoji; Wu, Shihua
2013-03-01
Dysosma versipellis (Hance) is a famous traditional Chinese medicine for the treatment of snakebite, weakness, condyloma accuminata, lymphadenopathy, and tumors for thousands of years. In this work, four podophyllotoxin-like lignans including 4'-demethylpodophyllotoxin (1), α-peltatin (2), podophyllotoxin (3), β-peltatin (4) as major cytotoxic principles of D. versipellis were successfully isolated and purified by several novel linear and step gradient counter-current chromatography methods using the systems of hexane/ethyl acetate/methanol/water (4:6:3:7 and 4:6:4:6, v/v/v/v). Compared with isocratic elution, linear and step-gradient elution can provide better resolution and save more time for the separation of photophyllotoxin and its congeners. Their cytotoxicities were further evaluated and their structures were validated by high-resolution electrospray TOF MS and nuclear magnetic resonance spectra. All components showed potent anticancer activity against human hepatoma cells HepG2. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wittkopp, Felix; Peeck, Lars; Hafner, Mathias; Frech, Christian
2018-04-13
Process development and characterization based on mathematic modeling provides several advantages and has been applied more frequently over the last few years. In this work, a Donnan equilibrium ion exchange (DIX) model is applied for modelling and simulation of ion exchange chromatography of a monoclonal antibody in linear chromatography. Four different cation exchange resin prototypes consisting of weak, strong and mixed ligands are characterized using pH and salt gradient elution experiments applying the extended DIX model. The modelling results are compared with the results using a classic stoichiometric displacement model. The Donnan equilibrium model is able to describe all four prototype resins while the stoichiometric displacement model fails for the weak and mixed weak/strong ligands. Finally, in silico chromatogram simulations of pH and pH/salt dual gradients are performed to verify the results and to show the consistency of the developed model. Copyright © 2018 Elsevier B.V. All rights reserved.
Tumpa, Anja; Stajić, Ana; Jančić-Stojanović, Biljana; Medenica, Mirjana
2017-02-05
This paper deals with the development of hydrophilic interaction liquid chromatography (HILIC) method with gradient elution, in accordance with Analytical Quality by Design (AQbD) methodology, for the first time. The method is developed for olanzapine and its seven related substances. Following step by step AQbD methodology, firstly as critical process parameters (CPPs) temperature, starting content of aqueous phase and duration of linear gradient are recognized, and as critical quality attributes (CQAs) separation criterion S of critical pairs of substances are investigated. Rechtschaffen design is used for the creation of models that describe the dependence between CPPs and CQAs. The design space that is obtained at the end is used for choosing the optimal conditions (set point). The method is fully validated at the end to verify the adequacy of the chosen optimal conditions and applied to real samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Tylová, Tereza; Kolařík, Miroslav; Olšovská, Jana
2011-07-01
A new simple ultra-high-performance liquid chromatography method with diode array detection (UHPLC-DAD) was developed for chemical fingerprinting analysis of extracellular metabolites in fermentation broth of Geosmithia spp. The SPE method employing Oasis MCX strong cation-exchange mixed-mode polymeric sorbent was chosen for extraction of the metabolites. The analyses were performed on an Acquity UPLC BEH C18 column (100 × 2.1 mm i.d.; particle size, 1.7 μm; Waters) using a gradient elution program with an aqueous solution of trifluoroacetic acid and acetonitrile as the mobile phase. The applicability of the method was proved by analysis of 38 strains produced by different species and isolated from different sources (hosts). The results revealed the correlation of obtained UHPLC-DAD fingerprints with taxonomical identity.
Tian, Ting-Ting; Ma, Ying-Hua; Xie, Wei-Wei; Jin, Yi-Ran; Xu, Hui-Jun; Zhang, Lan-Tong; Du, Ying-Feng
2016-01-01
A quick HPLC-ESI-MS/MS method was established for simultaneous determination of four major diterpenoids in Rabdosia japonica var.glaucocalyx, including glaucocalyxin A, oridonin, hebeirubesensin and enmenol. Analysis was performed on an Agilent ZORBAX SB-C18(4.6 mm×250 mm, 5 μm ) column eluted in a gradient program with methanol and water. The flow rate was 0.8 mL•min⁻¹. Multiple reaction monitoring (MRM) scanning mode was performed in negative ion switching mode to apply for the quantitative determination. The calibration curves for the above four compounds were linear in corresponding injection amount. The average recoveries of the compounds ranged from 92.40% to 105.9%, with RSDs of 1.7%-6.5%. The method is simple, rapid, accurate with good repeatability, which can provide a reference for overcalling evaluation the quality of R. japonica var.glaucocalyx. The result of cluster analysis- showed that the quality of R. japonica glaucocalyx var. greatly varied between areas and parts. Copyright© by the Chinese Pharmaceutical Association.
Xia, Xi; Li, Xiaowei; Ding, Shuangyang; Zhang, Suxia; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong
2009-03-20
This work reports a rapid, reliable and sensitive multi-residue method for the simultaneous determination of six resorcylic acid lactones in bovine milk by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The resorcylic acid lactones were extracted, purified, and concentrated from milk samples in one step using a solid-phase extraction (SPE) cartridge that contained a polymeric mixed-mode anion-exchange sorbent. The analysis was performed on a Waters Acquity BEH C(18) column utilizing a gradient elution profile. Each LC run was completed in 3.5 min. The analytes were detected by multiple reaction monitoring (MRM) using electrospray ionization (ESI) negative mode. Mean recoveries from fortified samples ranged from 92.6% to 112.5%, with relative standard deviations lower than 11.4%. Using 5 mL bovine milk, the limits of detection and quantification for resorcylic acid lactones were in the ranges of 0.01-0.05 and 0.05-0.2 microg/L, respectively. The application of this newly developed method was demonstrated by analyzing bovine milk samples from markets.
Kiesewetter, André; Menstell, Peter; Peeck, Lars H; Stein, Andreas
2016-11-01
Rapid development of chromatographic processes relies on effective high-throughput screening (HTS) methods. This article describes the development of pseudo-linear gradient elution for resin selectivity screening using RoboColumns ® . It gives guidelines for the implementation of this HTS method on a Tecan Freedom EVO ® robotic platform, addressing fundamental aspects of scale down and liquid handling. The creation of a flexible script for buffer preparation and column operation plus efficient data processing provided the basis for this work. Based on the concept of discretization, linear gradient elution was transformed into multistep gradients. The impact of column size, flow rate, multistep gradient design, and fractionation scheme on separation efficiency was systematically investigated, using a ternary model protein mixture. We identified key parameters and defined optimal settings for effective column performance. For proof of concept, we examined the selectivity of several cation exchange resins using various buffer conditions. The final protocol enabled a clear differentiation of resin selectivity on miniature chromatography column (MCC) scale. Distinct differences in separation behavior of individual resins and the influence of buffer conditions could be demonstrated. Results obtained with the robotic platform were representative and consistent with data generated on a conventional chromatography system. A study on antibody monomer/high molecular weight separation comparing MCC and lab scale under higher loading conditions provided evidence of the applicability of the miniaturized approach to practically relevant feedstocks with challenging separation tasks as well as of the predictive quality for larger scale. A comparison of varying degrees of robotic method complexity with corresponding effort (analysis time and labware consumption) and output quality highlights tradeoffs to select a method appropriate for a given separation challenge or analytical constraints. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1503-1519, 2016. © 2016 American Institute of Chemical Engineers.
Fekete, Szabolcs; Veuthey, Jean-Luc; McCalley, David V; Guillarme, Davy
2012-12-28
A possible complication of ultra-high pressure liquid chromatography (UHPLC) is related to the effect of pressure and mobile phase velocity on the retention properties of the analytes. In the present work, numerous model compounds have been selected including small molecules, peptides, and proteins (such as monoclonal antibodies). Two instrumental setups were considered to attain elevated pressure drops, firstly the use of a post-column restrictor capillary at low mobile phase flow rate (pure effect of pressure) and secondly the increase of mobile phase flow rate without restrictor (i.e. a combined effect of pressure and frictional heating). In both conditions, the goal was to assess differences in retention behaviour, depending on the type or character of the analyte. An important conclusion is that the effect of pressure and mobile phase velocity on retention varied in proportion with the size of the molecule and in some cases showed very different behaviour. In isocratic mode, the pure effect of pressure (experiments with a post-column restrictor capillary) induces an increase in retention by 25-100% on small molecules (MW<300 g/mol), 150% for peptides (~1.3 kDa), 800% for insulin (~6 kDa) and up to >3000% for myoglobin (~17 kDa) for an increase in pressure from 100 bar up to 1100 bar. The important effect observed for the isocratic elution of proteins is probably related to conformational changes of the protein in addition to the effect of molecular size. Working in gradient elution mode, the pressure related effects on retention were found to be less pronounced but still present (an increase of apparent retention factor between 0.2 and 2.5 was observed). Copyright © 2012 Elsevier B.V. All rights reserved.
Kostanyan, Artak E; Erastov, Andrey A; Shishilov, Oleg N
2014-06-20
The multiple dual mode (MDM) counter-current chromatography separation processes consist of a succession of two isocratic counter-current steps and are characterized by the shuttle (forward and back) transport of the sample in chromatographic columns. In this paper, the improved MDM method based on variable duration of alternating phase elution steps has been developed and validated. The MDM separation processes with variable duration of phase elution steps are analyzed. Basing on the cell model, analytical solutions are developed for impulse and non-impulse sample loading at the beginning of the column. Using the analytical solutions, a calculation program is presented to facilitate the simulation of MDM with variable duration of phase elution steps, which can be used to select optimal process conditions for the separation of a given feed mixture. Two options of the MDM separation are analyzed: 1 - with one-step solute elution: the separation is conducted so, that the sample is transferred forward and back with upper and lower phases inside the column until the desired separation of the components is reached, and then each individual component elutes entirely within one step; 2 - with multi-step solute elution, when the fractions of individual components are collected in over several steps. It is demonstrated that proper selection of the duration of individual cycles (phase flow times) can greatly increase the separation efficiency of CCC columns. Experiments were carried out using model mixtures of compounds from the GUESSmix with solvent systems hexane/ethyl acetate/methanol/water. The experimental results are compared to the predictions of the theory. A good agreement between theory and experiment has been demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.
Locke, I. C.; Ramsey, M. P.; Hill, S. S.; Carpenter, B. G.
1993-01-01
The activity of most deoxyribonuclease enzymes can be monitored by measuring the change in absorbance at 260 nm which accompanies the breakdown of the double-stranded structure of native DNA. An automated method for determining deoxyribonuclease activity, based on such an absorbance change, which can overcome problems of inhibition arising from the presence of inorganic cations, is described. Variations in inorganic cation concentration is a particular problem when measuring the activity of chromatographic fractions eluted via a salt gradient. A comparison is made between the automated and a manual method for the assay of deoxyribonuclease active constituents, of the medicament ‘Varidase’, eluted from a Cellex-D (Bio-Rad Laboratories Ltd) anionic exchange resin using a 0.05-1.0 M sodium chloride gradient. PMID:18924962
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
Thurman, E.M.; Malcolm, R.L.
1979-01-01
A scheme is presented which used adsorption chromatography with pH gradient elution and size-exclusion chromatography to concentrate and separate hydrophobic organic acids from water. A review of chromatographic processes involved in the flow scheme is also presented. Organic analytes which appear in each aqueous fraction are quantified by dissolved organic carbon analysis. Hydrophobic organic acids in a water sample are concentrated on a porous acrylic resin. These acids usually constitute approximately 30-50 percent of the dissolved organic carbon in an unpolluted water sample and are eluted with an aqueous eluent (dilute base). The concentrate is then passed through a column of polyacryloylmorpholine gel, which separates the acids into high- and low-molecular-weight fractions. The high- and low-molecular-weight eluates are reconcentrated by adsorption chromatography, then are eluted with a pH gradient into strong acids (predominately carboxylic acids) and weak acids (predominately phenolic compounds). For standard compounds and samples of unpolluted waters, the scheme fractionates humic substances into strong and weak acid fractions that are separated from the low molecular weight acids. A new method utilizing conductivity is also presented to estimate the acidic components in the methanol fraction.
Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang
2011-04-01
Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R
2015-09-01
Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion chromatographic methods for the detection of starch hydrolysis products in ruminal digesta.
Barsuhn, K; Kotarski, S F
1991-06-21
Dionex high-performance ion chromatographic methods were evaluated for separation and quantitation of plant sugars and starch digestion products in the ruminal digesta of cattle. Mono- and disaccharides were eluted from a Dionex CarboPac PA1 column with sodium hydroxide used isocratically or as a pH gradient. Maltooligosaccharides which had a degree of polymerization (DP) less than 30 glucose residues were eluted in 60 min by a sodium hydroxide eluent containing a sodium acetate gradient. Carbohydrates were detected amperometrically. Responses were linear (r2 greater than 0.99) for glucose, disaccharides and maltooligosaccharides (DP less than 8). Precipitation and solid-phase extraction methods were evaluated for clean-up of samples of feedstuffs, ruminal contents, and bacterial culture fluids. Perchloric acid precipitation hydrolyzed sucrose but did not affect recoveries of cellobiose, isomaltose or maltose. Ethanol in concentrations of 79 and 86% precipitated maltooligosaccharides having chain lengths larger than 14 and 9 glucose residues, respectively. Maltooligosaccharide recoveries from solid-phase extraction columns varied with maltooligosaccharide size and column packing. Recoveries were greater than 94% for short chains (DP less than 6) eluted from phenyl-substituted columns and variable for all oligosaccharides eluted from C18 columns. Applications of these methods are presented and include: (1) detection of sugars in ruminant feed, (2) monitoring changes in ruminal sugars after feeding and (3) monitoring changes in extracellular sugars and oligosaccharides in the culture fluids of the ruminal bacterium, Bacteroides ruminicola.
Matysova, Ludmila; Zahalkova, Oxana; Klovrzova, Sylva; Sklubalova, Zdenka; Solich, Petr; Zahalka, Lukas
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min(-1) was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances.
2015-01-01
A selective and sensitive gradient HPLC-UV method for quantification of sotalol hydrochloride and potassium sorbate in five types of oral liquid preparations was developed and fully validated. The separation of an active substance sotalol hydrochloride, potassium sorbate (antimicrobial agent), and other substances (for taste and smell correction, etc.) was performed using an Ascentis Express C18 (100 × 4.6 mm, particles 2.7 μm) solid core HPLC column. Linear gradient elution mode with a flow rate of 1.3 mL min−1 was used, and the injection volume was 5 µL. The UV/Vis absorbance detector was set to a wavelength of 237 nm, and the column oven was conditioned at 25°C. A sodium dihydrogen phosphate dihydrate solution (pH 2.5; 17.7 mM) was used as the mobile phase buffer. The total analysis time was 4.5 min (+2.5 min for reequilibration). The method was successfully employed in a stability evaluation of the developed formulations, which are now already being used in the therapy of arrhythmias in pediatric patients; the method is also suitable for general quality control, that is, not only just for extemporaneous preparations containing the mentioned substances. PMID:25878920
Magiera, Sylwia; Baranowska, Irena; Lautenszleger, Anna
2015-01-01
A simple and rapid ultra-high performance liquid chromatographic (UHPLC) method coupled with an ultraviolet detector (UV) has been developed and validated for the separation and determination of 14 major flavonoids ((±)-catechin, (-)-epicatechin, glycitin, (-)-epicatechin gallate, rutin, quercitrin, hesperidine, neohesperidine, daidzein, glycitein, quercetin, genistein, hesperetin, and biochanin A) in herbal dietary supplements. The flavonoids have been separated on a Chromolith Fast Gradient Monolithic RP-18e column utilizing a mobile phase composed of 0.05% trifluoroacetic acid in water and acetonitrile in gradient elution mode. Under these conditions, flavonoids were separated in a 5 min run. The selectivity of the developed UHPLC-UV method was confirmed by comparison with ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis. The validation parameters such as linearity, sensitivity, precision, and accuracy were found to be highly satisfactory. The optimized method was applied to determination of flavonoids in different dietary supplements. Additionally, the developed HPLC-UV method combined with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay was used in the evaluation of antioxidant activity of the selected flavonoids. Copyright © 2014 Elsevier B.V. All rights reserved.
Purification of bacteriophage M13 by anion exchange chromatography.
Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang
2010-07-01
M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.
Jandera, Pavel; Hájek, Tomáš
2018-01-01
Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed-phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one- and two-dimensional liquid chromatography separations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydroxylapatite chromatography.
Broadhurst, A V
2001-05-01
Hydroxylapatite (also called hydroxyapatite), a form of calcium phosphate, can be used as a matrix for the chromatography of both proteins and nucleic acids. Protocols are provided for both standard low-pressure chromatography of a protein mixture using a hydroxylapatite column prepared in the laboratory, and an HPLC method, applicable to proteins and nucleic acids, that uses a commercially available column. Alternate protocols describe column chromatography using a step gradient or batch binding and step-gradient elution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, S.; Terada, S.
A modified semi-micro gradient elution chromatography for the analysis of tissue acid-soluble phosphorus compounds is described. One to 3 g of tissue can be analyzed by this method. Liver, muscle, and thymus tissue of rats were analyzed and the chromatograms are illustrated. The distribution and turnover of the acid-soluble phosphorus compounds in rat liver were also studied by P/sup 32/ injection and the use of the semi-micro method. Glucose 6-phosphate and L- alpha -glycerophosphate were identified on the chromatogram, and a phosphorus compound containing aminoacid was separated from the dowex 1 formate non-adsorbable fraction. (Abstr. Japan Med., 1: No. 9,more » 1961)« less
Fan, Sai; Zou, Jianhong; Li, Liping; Zhang, Nan; Liu, Wei; Li, Bing; Zhao, Xudong; Wu, Guohua; Xue, Ying; Zhao, Rong
2014-09-01
An ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed to identify and determine 11 industrial antioxidants in the aqueous simulants. A ProElut PLS SPE column was used for the enrichment, and an ACQUITY UPLC BEH C18 UPLC column (100 mm x 2.1 mm, 1.7 μm) was used for separation by the gradient elution with pure water and acetonitrile as the mobile phases. The MS/MS detection was performed with an electrospray ionization (ESI) source in negative mode. The external standard method was used for quantitation in the present study. The linear ranges of the 11 analytes were from 5.0 to 100 μg/L. The coefficients of correlation were greater than 0.995. The recoveries of blank aqueous simulants fortified with the 11 analytes at the levels of 5.0, 10.0 and 20.0 μg/L were 61.4% to 109.4% with the relative standard deviations varied from 3.9% to 18.2% (n = 6). The LODs and LOQs of the 11 analytes in aqueous simulants were 0.2-1.0 μg/L and 0.5-3.0 μg/L, respectively. This method is highly sensitive and accurate, and can be applied to the determination of the 11 trace industrial antioxidants in the aqueous simulants.
Taibon, Judith; Sturm, Sonja; Seger, Christoph; Parth, Martin; Strasser, Hermann; Stuppner, Hermann
2014-11-01
A fast and selective ultrahigh-performance liquid chromatography diode array detector (UHPLC-DAD) method combined with an off-line solid phase extraction (SPE) protocol was established to monitor destruxins (dtxs), a secondary metabolite class of highly bioactive cyclic depsipeptides. Sample purification via SPE was tailored to remove both more polar and apolar matrix constituents by applying analyte class-selective washing and elution conditions. To separate and detect destruxin congeners an UHPLC-DAD system hyphenated to a quadrupole-time-of-flight (Q-TOF) hybrid mass spectrometer was utilized. Analyses were performed on a sub-2-μm-particle-size RP-18 column with an acidified (0.02% acetic acid) 12 min water/acetonitrile solvent gradient. In the dtx congener elution zone 22 chromatographic peaks were separated. Four of these were identified by comparison with reference materials as dtx A, dtx B, dtx E, and dtx E-diol; 16 were tentatively assigned as known or novel dtx congeners by the analysis of high resolution UHPLC-DAD-QTOF-MS/MS data recorded in the positive electrospray ionization (ESI) mode. The applicability of the UHPLC-DAD assay to investigate biological materials in a qualitative and quantitative manner was proven by the application of the platform to monitor the dtx production profile of three Metarhizium brunneum strain fungal culture broths.
Determination and pharmacokinetic study of pirfenidone in rat plasma by UPLC-MS/MS.
Sun, Wei; Jiang, Zhe-li; Zhou, Lei; Chen, Rui-min; Wang, Zhe; Li, Wan-shu; Jiang, Shuo-min; Hu, Guo-xin; Chen, Rui-jie
2015-02-15
A rapid, sensitive and selective ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was developed and validated for the determination and pharmacokinetic investigation of pirfenidone in rat plasma. Sample preparation was accomplished through a simple one-step deproteinization procedure with 0.2 mL of acetonitrile to a 0.1 mL plasma sample. Plasma samples were separated by UPLC on an Acquity UPLC BEH C18 column using a mobile phase consisting of acetonitrile-0.1% formic acid in water with gradient elution. The total run time was 3.0 min and the elution of pirfenidone was at 1.39 min. The detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction-monitoring (MRM) mode using the respective transitions m/z 186.2→92.1 for pirfenidone and m/z 237.1→194.2 for carbamazepine (IS), respectively. The calibration curve was linear over the range of 5-2000 ng/mL with a lower limit of quantitation (LLOQ) of 5 ng/mL. Mean recovery of pirfenidone in plasma was in the range of 80.4-84.3%. Intra-day and inter-day precision were both <12.1%. This method was successfully applied in pharmacokinetic study after oral administration of 10.0mg/kg pirfenidone in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Lai, Shih-Ming; Gu, Jhe-Yu; Huang, Bing-Hao; Chang, Chieh-Ming J; Lee, Wen-Lung
2012-03-01
A silica adsorbent containing β-cyclodextrin (β-CD) has been developed and used for the separation and purification of epigallocatechin gallate (EGCG) from the green tea extracts. The batch adsorption experiments demonstrated that, the β-CD bonded silica adsorbent possessed excellent adsorption equilibrium capacity (> 55 mg/g adsorbent) and adsorption ratio (>95%) for EGCG compared to the other tea catechins and caffeine. The excellent adsorption capacity and selectivity for EGCG are attributed to the specific interactions between β-CD and EGCG. The preparative separation and purification performance of EGCG on the β-CD bonded silica column (220 mm L × 15 mm i.d., 40-63 μm) was then evaluated. The column was operated in the polar organic mode using methanol/acetonitrile/acetic acid as the mobile phase and eluted under a three-step gradient elution program. The sample was dissolved in acetonitrile and loaded on a preparative scale of about 0.8 mg/g adsorbent. Under the optimal chromatographic conditions, the target compound, EGCG, being the most retained species, was obtained at a purity of about 90% with a recovery of about 90%. The productivity of EGCG was about 6 mg per injection, which can be further increased by scaling-up the chromatographic system. Copyright © 2012 Elsevier B.V. All rights reserved.
Liu, Qi; Zeng, Hualiang; Jiang, Shujing; Zhang, Li; Yang, Fuzhu; Chen, Xiaoqing; Yang, Hua
2015-11-01
In this study, off-line two-dimensional High Speed Counter-Current Chromatography (2D HSCCC) strategy combined with recycling elution mode was developed to isolate compounds from the ethyl acetate extract of a common green tea--leaves of Malus hupehensis (Pamp.) Rehder. In the orthogonal separation system, a conventional HSCCC was employed for the first dimension and two recycling HSCCCs were used for the second in parallel. Using a solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:4:0.6:4.4, v/v) in the first and second dimension, four compounds including 3-hydroxy-phlorizin (1), phloretin (2), avicularin (3) and kaempferol 3-O-β-D-glucoside (4) were obtained. The purities of these four compounds were all over 95.0% as determined by HPLC. And their structures were all identified through UV, MS and (1)H NMR. It has been demonstrated that the combination of off-line 2D HSCCC with recycling elution mode is an efficient technique to isolate compounds with similar polarities in natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Xia; Hu, Changqin
2017-09-08
Penicillins are typical of complex ionic samples which likely contain large number of degradation-related impurities (DRIs) with different polarities and charge properties. It is often a challenge to develop selective and robust high performance liquid chromatography (HPLC) methods for the efficient separation of all DRIs. In this study, an analytical quality by design (AQbD) approach was proposed for stability-indicating method development of cloxacillin. The structures, retention and UV characteristics rules of penicillins and their impurities were summarized and served as useful prior knowledge. Through quality risk assessment and screen design, 3 critical process parameters (CPPs) were defined, including 2 mixture variables (MVs) and 1 process variable (PV). A combined mixture-process variable (MPV) design was conducted to evaluate the 3 CPPs simultaneously and a response surface methodology (RSM) was used to achieve the optimal experiment parameters. A dual gradient elution was performed to change buffer pH, mobile-phase type and strength simultaneously. The design spaces (DSs) was evaluated using Monte Carlo simulation to give their possibility of meeting the specifications of CQAs. A Plackett-Burman design was performed to test the robustness around the working points and to decide the normal operating ranges (NORs). Finally, validation was performed following International Conference on Harmonisation (ICH) guidelines. To our knowledge, this is the first study of using MPV design and dual gradient elution to develop HPLC methods and improve separations for complex ionic samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Fundamentals of capillary electrochromatography: migration behavior of ionized sample components.
Xiang, Rong; Horváth, Csaba
2002-02-15
The mechanism of separating charged species by capillary electrochromatography (CEC) was modeled with the conditions of ideal/linear chromatography by using a simple random walk. The most novel aspect of the work rests with the assumption that in sufficiently high electric field ionized sample components can also migrate in the adsorbed state on the ionized surface of the stationary phase. This feature of CEC leads to the introduction of three dimensionless parameters: alpha, reduced mobility of a sample component with the electrosmotic mobility as the reference; beta, the CEC retention factor; and gamma, the ratio of the electrophoretic migration velocity and the velocity of surface electrodiffusion. Since the interplay of retentive and electrophoretic forces determines the overall migration velocity, the separation mechanism in CEC is governed by the relative importance of the above parameters. The model predicts conditions under which the features of the CEC system engender migration behavior that manifests itself in a relatively narrow elution window and in a gradient like elution pattern in the separation of peptides and proteins by using pro forma isocratic CEC. It is believed that such elution patterns, which resemble those obtained by the use of external gradient of the eluent, are brought about by the formation of an internal gradient in the CEC system that gave rise to concomitant peak compression. The peculiarities of CEC are discussed in the three operational modalities of the technique: co-current, countercurrent, and co-counter CEC. The results suggest that CEC, which is often called "liquid chromatography on electrophoretic platform" is an analytical tool with great potential in the separation of peptides and proteins.
Li, Duxin; Schmitz, Oliver J
2013-08-01
Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7%. The effective peak distribution area increased significantly, which produced better separation.
Chocholous, Petr; Satínský, Dalibor; Sklenárová, Hana; Solich, Petr
2010-05-23
This work presents novel approach in low-pressure chromatography flow systems--two-column Sequential Injection Chromatography (2-C SIC) and its comparison with gradient elution chromatography on the same instrument. The system was equipped with two different chromatographic columns (connected to selection valve in parallel design) for isocratic separation and determination of all components in composed anti-inflammatory pharmaceutical preparation (tablets). The sample was first injected on the first column of length 30 mm where less retained analytes were separated and then the sample was injected on the second column of length 10 mm where more retained analytes were separated. The SIC system was based on a commercial SIChrom manifold (8-port high-pressure selection valve and medium-pressure syringe pump with 4 mL reservoir) (FIAlab, USA) with two commercially available monolithic columns the "first column" Chromolith Flash RP-18e (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.) and the "second column" Chromolith RP-18e (10 mm x 4.6 mm i.d.) and CCD UV-vis detector USB 4000 with micro-volume 1.0 cm Z flow cell. Two mobile phases were used for analysis (one for each column). The mobile phase 1 used for elution of paracetamol, caffeine and salicylic acid (internal standard) was acetonitrile/water (10:90, v/v, the water part of pH 3.5 adjusted with acetic acid), flow rate was 0.9 mL min(-1) (volume 3.0 mL of mobile phase per analysis). The mobile phase 2 used for elution of propyphenazone was acetonitrile/water (30:70, v/v); flow rate was 1.2 mL min(-1) (volume 1.5 mL of mobile phase per analysis). Absorbance was monitored at 210 nm. Samples were prepared by dissolving of one tablet in 30% acetonitrile and 10 microL of filtered supernatant was injected on each column (2 x 10 microL). The chromatographic resolution between all compounds was >1.45 and analysis time was 5.5 min under the optimal conditions. Limits of detection were determined at 0.4 microg mL(-1) for paracetamol, at 0.5 microg mL(-1) for caffeine and at 0.7 microg mL(-1) for propyphenazone. The new two-column chromatographic set-up developed as an alternative approach to gradient elution chromatography shows evident advantages (time and solvent reduction more than one-third) as compared with single-column gradient SIC method with Chromolith Flash RP-18 (25 mm x 4.6 mm i.d. with guard column 5 mm x 4.6 mm i.d.). Copyright 2010 Elsevier B.V. All rights reserved.
A simple, fast and sensitive screening LC-ESI-MS/MS method for antibiotics in fish.
Guidi, Letícia Rocha; Santos, Flávio Alves; Ribeiro, Ana Cláudia S R; Fernandes, Christian; Silva, Luiza H M; Gloria, Maria Beatriz A
2017-01-15
The objective of this study was to develop and validate a fast, sensitive and simple liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the screening of six classes of antibiotics (aminoglycosides, beta-lactams, macrolides, quinolones, sulfonamides and tetracyclines) in fish. Samples were extracted with trichloroacetic acid. LC separation was achieved on a Zorbax Eclipse XDB C18 column and gradient elution using 0.1% heptafluorobutyric acid in water and acetonitrile as mobile phase. Analysis was carried out in multiple reaction monitoring mode via electrospray interface operated in the positive ionization mode, with sulfaphenazole as internal standard. The method was suitable for routine screening purposes of 40 antibiotics, according to EC Guidelines for the Validation of Screening Methods for Residues of Veterinary Medicines, taking into consideration threshold value, cut-off factor, detection capability, limit of detection, sensitivity and specificity. Real fish samples (n=193) from aquaculture were analyzed and 15% were positive for enrofloxacin (quinolone), one of them at a higher concentration than the level of interest (50µgkg -1 ), suggesting possible contamination or illegal use of that antibiotic. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal conditions for elution of hepatitis B antigen after absorption onto colloidal silica.
Pillot, J; Goueffon, S; Keros, R G
1976-01-01
Hepatitis B surface antigen (HBSAg) adsorbed from sera onto colloidal silica could be completely eluted through the use of 0.25% sodium deoxycholate in 0.01 M borax, pH 9.3, at 56 degrees C. The HBSAg recovered in the eluate represented 100% of that present in the original serum, and it was contaminated by only trace amounts of serum proteins (in decreasing amounts: beta-lipoprotein, immunoglobulin G, albumin). This preliminary step greatly facilitates purification of large amounts of HBSAg and provides small volumes of highly concentrated material for subsequent purification by density gradient centrifugation. PMID:9423
Cavalli, Silvano; Polesello, Stefano; Valsecchi, Sara
2005-08-26
Bromate, a well known by-product of the ozonation of drinking water, has been included among the substances which have to be monitored in the drinking water according to the last EC Directive 251/98 on potable water with a regulated limit of 10 microg l(-1). The need of performing routine analysis at this limit is a driving force for the developing of new simple and sensitive methods of detection, which should be also able to overcome the effect of matrix composition. This work explored the use of mass spectrometry detection with electrospray ionisation hyphenated to a reagent free ion chromatograph with hydroxide gradient elution for the determination of bromate in drinking water. The use of a high capacity hydroxide selective column operated in gradient mode allowed to avoid the interference by carbonate peak, which moved to longer retention times. The effect of increasing chloride concentrations from 0 to 250 mg l(-1), which is the guideline limit for drinking water in Directive 251/98/EC, was to decrease absolute mass spectrometric response and chromatographic efficiency and, on the consequence, to increase the effective detection limits. The effect of the chloride concentration on the detection of bromate is discussed.
Hey, Y; Dean, P D
1983-01-01
1. A total of 65 immobilized triazine dyes were screened for their ability to purify the dual-nucleotide-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. From this screen a 'negative' (Matrex Gel Purple A) and a 'positive' (Matrex Gel Orange B) adsorbent were found to be the best in terms of overall purification and yield and were therefore combined to give the best purification. 2. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was purified approx. 56-fold in a two-step tandem chromatographic system using Matrex Gel Purple A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. 3. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were found to be the only effective biospecific eluents. A pulse of 50 microM-NADP+ (1/2 column vol.) was found to give a better purification than a 0-1 M-KCl gradient and therefore was the preferred method of elution. 4. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead us to propose two possible schemes to explain the mechanism of the dye-protein interaction. 5. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B. Images Fig. 1. PMID:6847623
Hey, Y; Dean, P D
1983-02-01
1. A total of 65 immobilized triazine dyes were screened for their ability to purify the dual-nucleotide-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides. From this screen a 'negative' (Matrex Gel Purple A) and a 'positive' (Matrex Gel Orange B) adsorbent were found to be the best in terms of overall purification and yield and were therefore combined to give the best purification. 2. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides was purified approx. 56-fold in a two-step tandem chromatographic system using Matrex Gel Purple A followed by Matrex Gel Orange B chromatography to a specific activity of 228 units/mg of protein in a final yield of 73%. 3. A study of the elution characteristics of glucose-6-phosphate dehydrogenase bound to Matrex Gel Orange B by KCl (pulse and gradient) and biospecific eluents (pulse) was carried out. NADP+, NADPH and adenosine 2',5'-bisphosphate were found to be the only effective biospecific eluents. A pulse of 50 microM-NADP+ (1/2 column vol.) was found to give a better purification than a 0-1 M-KCl gradient and therefore was the preferred method of elution. 4. Presaturation of the enzyme with various nucleotides was carried out to determine the effect on the subsequent binding of glucose-6-phosphate dehydrogenase to Matrex Gel Orange B. The results of these and biospecific-elution studies lead us to propose two possible schemes to explain the mechanism of the dye-protein interaction. 5. Reusability, capacity of the adsorbent and effect of varying the ligand concentration were also studied in the purification of glucose-6-phosphate dehydrogenase on Matrex Gel Orange B.
Di Corcia, D; Lisi, S; Pirro, V; Gerace, E; Salomone, A; Vincenti, M
2013-05-15
A simple and extremely fast procedure for the quantitative determination in oral fluid samples of 44 substances, including the most common drugs of abuse and several pharmaceutical drugs, was developed and fully validated. Preliminary sample treatment was limited to protein precipitation. The resulting acetonitrile solution was directly injected into an ultra-high performance liquid chromatograph (UHPLC) equipped with a C18 column (100mm×2.1mm, 1.7μm). The mobile phase eluted with linear gradient (water/formic acid 5mM: acetonitrile/formic acid 5mM; v:v) from 98:2 to 0:100 in 5.0min, followed by isocratic elution at 100% B for 1.0min. The flow rate was 0.6mL/min and the total run time was 9.0min including re-equilibration at the initial conditions. The analytes were revealed by a triple quadrupole mass spectrometer operating in the selected reaction monitoring mode. The method proved to be simple, accurate, rapid and highly sensitive, allowing the simultaneous detection of all compounds. The ease of sample treatment, together with the wide range of detectable substances, all with remarkable analytical sensitivity, make this procedure ideal for the screening of large populations in several forensic and clinical contexts, whenever oral fluid sampling has to be preferred to blood sampling, as for example in short retrospective investigations. Copyright © 2013 Elsevier B.V. All rights reserved.
Zhao, Ai-qin; Zhao, Ji-hong; Zhang, Shu-qing; Pan, Yong-yang; Huo, Xu-lei
2016-02-05
A rapid, sensitive and selective ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the determination and pharmacokinetic investigation of parthenolide in rat plasma. Sample preparation was accomplished through a simple one-step deproteinization procedure with 0.2mL of acetonitrile containing 30ng/mL of pirfenidone (IS), and to a 0.1mL plasma sample. Plasma samples were separated by UPLC on an Acquity UPLC BEH C18 column using a mobile phase consisting of acetonitrile-0.1% formic acid in water with gradient elution. The total run time was 3.0min and the elution of parthenolide was at 1.33min. The detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction-monitoring (MRM) mode using the respective transitions m/z 249.2→231.1 for parthenolide and m/z 186.2→92.1 for pirfenidone (IS), respectively. The calibration curve was linear over the range of 2.0-500ng/mL with a lower limit of quantitation (LLOQ) of 2.0ng/mL. Mean recovery of parthenolide in plasma was in the range of 78.2-86.6%. Intra-day and inter-day precision were both <8.3%. This method was successfully applied in pharmacokinetic study after oral and intravenous administration of parthenolide in rats. Copyright © 2015 Elsevier B.V. All rights reserved.
Systematical Optimization of Reverse-phase Chromatography for Shotgun Proteomics
Xu, Ping; Duong, Duc M.; Peng, Junmin
2009-01-01
Summary We report the optimization of a common LC/MS/MS platform to maximize the number of proteins identified from a complex biological sample. The platform uses digested yeast lysate on a 75 μm internal diameter × 12 cm reverse-phase column that is combined with an LTQ-Orbitrap mass spectrometer. We first generated a yeast peptide mix that was quantified by multiple methods including the strategy of stable isotope labeling with amino acids in cell culture (SILAC). The peptide mix was analyzed on a highly reproducible, automated nanoLC/MS/MS system with systematic adjustment of loading amount, flow rate, elution gradient range and length. Interestingly, the column was found to be almost saturated by loading ~1 μg of the sample. Whereas the optimal flow rate (~0.2 μl/min) and elution buffer range (13–32% of acetonitrile) appeared to be independent of the loading amount, the best gradient length varied according to the amount of samples: 160 min for 1 μg of the peptide mix, but 40 min for 10 ng of the same sample. The effect of these parameters on elution peptide peak width is evaluated. After full optimization, 1,012 proteins (clustered in 806 groups) with an estimated protein false discovery rate of ~3% were identified in 1 μg of yeast lysate in a single 160-min LC/MS/MS run. PMID:19566079
Li, Qing-Rong; Wu, Min; Huang, Rui-Jie; Chen, Ya-Fei; Chen, Chan-Jian; Li, Hui; Ni, He; Li, Hai-Hang
2017-06-01
The lack of aroma and natural taste is a critical problem in production and consumption of instant green teas. A method to prepare instant green teas high in-natural-aroma and low-caffeine by the novel column chromatographic extraction with gradient elution is reported. This method simultaneously extracted aroma (or volatile) and non-aroma compounds from green tea. Green tea was loaded into columns with 2.0-fold of petroleum ether (PE): ethanol (8:2). After standing for 3 h until the aroma compounds dissolved, the column was sequentially eluted with 3.0-fold 40% ethanol and 3.5-fold water. The eluant was collected together and automatically separated into PE and ethanol aqueous phases. The aroma extracts was obtained by vacuum-evaporation of PE phase at 45 °C. The ethanol aqueous phase was vacuum-concentrated to aqueous and partially or fully decaffeinated with 4% or 9% charcoal at 70 °C. A regular instant green tea with epigallocatechin-3-gallate: caffeine of 3.5:1 and a low-caffeine instant green tea (less than 1% caffeine) with excellent aroma and taste were prepared, by combining the aroma and non-aroma extracts at a 1:10 ratio. This work provides a practical approach to solve the low-aroma and low-taste problems in the production of high quality instant green teas.
Centrifugal precipitation chromatography
Ito, Yoichiro; Lin, Qi
2009-01-01
Centrifugal precipitation chromatography separates analytes according their solubility in ammonium sulfate (AS) solution and other precipitants. The separation column is made from a pair of long spiral channels partitioned with a semipermeable membrane. In a typical separation, concentrated ammonium sulfate is eluted through one channel while water is eluted through the other channel in the opposite direction. The countercurrent process forms an exponential AS concentration gradient through the water channel. Consequently, protein samples injected into the water channel is subjected to a steadily increasing AS concentration and at the critical AS concentration they are precipitated and deposited in the channel bed by the centrifugal force. Then the chromatographic separation is started by gradually reducing the AS concentration in the AS channel which lowers the AS gradient concentration in the water channel. This results in dissolution of deposited proteins which are again precipitated at an advanced critical point as they move through the channel. Consequently, proteins repeat precipitation and dissolution through a long channel and finally eluted out from the column in the order of their solubility in the AS solution. The present method has been successfully applied to a number of analytes including human serum proteins, recombinant ketosteroid isomerase, carotenoid cleavage enzymes, plasmid DNA, polysaccharide, polymerized pigments, PEG-protein conjugates, etc. The method is capable to single out the target species of proteins by affinity ligand or immunoaffinity separation. PMID:19541553
Liu, Yonggang; Phiri, Mohau Justice; Ndiripo, Anthony; Pasch, Harald
2017-11-03
A propylene-ethylene random copolymer was fractionated by preparative temperature rising elution fractionation (TREF). The structural heterogeneity of the bulk sample and its TREF fractions was studied by high temperature liquid chromatography with a solvent gradient elution from 1-decanol to 1,2,4-trichlorobenzene. HPLC alone cannot resolve those propylene-ethylene copolymers with high ethylene content in the bulk sample, due to their low weight fractions in the bulk sample and a small response factor of these components in the ELSD detector, as well as their broad chemical composition distribution. These components can only be detected after being separated and enriched by TREF followed by HPLC analysis. Chemical composition separations were achieved for TREF fractions with average ethylene contents between 2.1 and 22.0mol%, showing that copolymers with higher ethylene contents were adsorbed stronger in the Hypercarb column and eluted later. All TREF fractions, except the 40°C fraction, were relatively homogeneous in both molar mass and chemical composition. The 40°C fraction was rather broad in both molar mass and chemical composition distributions. 2D HPLC showed that the molar masses of the components containing more ethylene units were getting lower for the 40°C fraction. HPLC revealed and confirmed that co-crystallization influences the separation in TREF of the studied propylene-ethylene copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.
Sun, Han-wen; Qiao, Feng-xia; Liu, Guang-yu
2006-11-17
Theophylline imprinted monolithic columns were designed and prepared for rapid separation of a homologous series of xanthine derivatives, caffeine, and theophylline by an in situ thermal-initiated copolymerization technique. Caffeine and theophylline were fully separated both under isocratic and gradient elutions on this kind of monolithic molecularly imprinted polymers (MIP) column. The broad peak showed in isocratic elution could be improved in gradient elution. Some chromatographic conditions such as mobile phase composition, flow rate, and the temperature on the retention times were investigated. Hydrogen bonding interaction and hydrophobic interaction played an important role in the retention and separation. The binding capacity was evaluated by static adsorption and Scatchard analysis, which showed that the dissociation constant (KD) and the maximum binding capacity (Qmax) were 1.50 mol/L, and 236 micromol/g for high affinity binding site, and 7.97 mol/L and 785 micromol/g for lower affinity binding site, respectively. Thermodynamic data (DeltaDeltaH and DeltaDeltaS) obtained by Van't Hoff plots revealed an enthalpy-controlled separation. The morphological characteristics of monolithic MIP were investigated by scanning electron microscope, which showed that both mesopores and macropores were formed in the monolith. The present monolithic MIP column was successfully applied for the quantitative determination of caffeine and theophylline in different kinds of green tea.
Fast "hyperlayer" separation development in sedimentation field flow fractionation.
Kassab, James R; Cardot, Philippe J P; Zahoransky, Richard A; Battu, Serge
2005-11-05
Specific prototypes of sedimentation field flow fractionation devices (SdFFF) have been developed with relative success for cell sorting. However, no data are available to compare these apparatus with commercial ones. In order to compare with other devices mainly used for non-biological species, biocompatible systems were used for standard particle (latex: 3-10 microm of different size dispersities) separation development. In order to enhance size dependent separations, channels of reduced thickness were used (80 and 100 microm) and channel/carrier-phase equilibration procedures were necessary. For sample injection, the use of inlet tubing linked to the FFF accumulation wall, common for cell sorting, can be extended to latex species when they are eluted in the Steric Hyperlayer elution mode. It avoids any primary relaxation steps (stop flow injection procedure) simplifying series of elution processing. Mixtures composed of four different monodispersed latex beads can be eluted in 6 min with 100 microm channel thickness.
Simultaneous determination of 5'-monophosphate nucleotides in infant formulas by HPLC-MS.
Ren, Yiping; Zhang, Jingshun; Song, Xiaodan; Chen, Xiaochun; Li, Duo
2011-04-01
A method was developed for simultaneous determination of 5'-monophosphate nucleotides, adenosine 5'-monophosphate, cytidine 5'-monophosphate, guanosine 5'-monophosphate, inosine 5'-monophosphate, and uridine 5'-monophosphate in infant formulas by high-performance liquid chromatography-mass spectrometry equipped with electrospray ionization source. The complete chromatographic separation of five nucleotides was achieved through a Symmetry C(18) column, after a binary gradient elution with water containing 0.1% formic acid and acetonitrile as mobile phase. The multi-reaction monitoring mode was applied for tandem mass spectrometry analysis. The established method was further validated by determining the linearity (R(2) > 0.999), recovery (92.0-105.0%), and precision (relative standard deviation ≤6.97%). To verify the applicability of the method, thirty commercially available infant formulas were randomly purchased from the supermarkets in Hangzhou, China, and then analyzed. The results showed that the developed method is validated, sensitive, and reliable for quantitation of nucleotides in infant formulas.
NASA Astrophysics Data System (ADS)
Syarifah, V. B.; Rafi, M.; Wahyuni, W. T.
2017-05-01
Brotowali (Tinospora crispa) is widely used in Indonesia as ingredient of herbal medicine formulation. To ensure the quality, safety, and efficacy of herbal medicine products, its chemical constituents should be continuously evaluated. High performance liquid chromatography (HPLC) fingerprint is one of powerful technique for this quality control process. In this study, HPLC fingerprint analysis method was developed for quality control of brotowali. HPLC analysis was performed in C18 column and detection was performed using photodiode array detector. The optimum mobile phase for brotowali fingerprint was acetonitrile (ACN) and 0.1% formic acid in gradient elution mode at a flow rate of 1 mL/min. The number of peaks detected in HPLC fingerprint of brotowali was 32 peaks and 23 peaks for stems and leaves, respectively. Berberine as marker compound was detected at retention time of 20.525 minutes. Evaluation of analytical performance including precision, reproducibility, and stability prove that this HPLC fingerprint analysis was reliable and could be applied for quality control of brotowali.
Zhang, Chunyu; Wang, Hui; Zhang, Xiaohui; Ma, Zhongqiang; Deng, Wanmei; Hu, Ke; Ding, Mingyu
2011-12-01
A method of gel permeation chromatography-high performance liquid chromatography (GPC-HPLC) was established for the simultaneous determination of 5 main phthalate plasticizers in foods (edible oil, instant noodles, fried pastries, Saqima, etc.). The samples were extracted with petroleum ether in an ultrasonator, purified by a GPC column, and analyzed by HPLC. The chromatographic separation was achieved on a Labtech-C18 column (250 mm x 4.6 mm, 5 microm) using acetonitrile and water mixture as the mobile phases in a gradient elution mode. The developed method exhibited a linear correlation coefficient of more than 0.997 and the detection limits of 3.25 - 13.4 microg/L. The spike recoveries were between 70.4% and 113.6% with the relative standard deviations (RSDs, n = 3) of 0.3% - 5.8% at the spiked level of 50 mg/L. This method is simple, rapid and practical, and can be used for the simultaneous determination of PAEs in grease food samples.
Sun, Zhiwei; Liu, Lingjun; Hu, Baojun; Sheng, Xiao; Wang, Xiaoyan; Suo, Yourui; You, Jinmao
2008-03-01
Eight saccharides were derivatized using 1-(2-naphthyl)-3-methyl-5-pyrazolone (NMP) as pre-column derivatizing reagent, and separated on a reversed-phase Hypersil ODS 2 column (4.6 mm x 200 mm, 5 microm), by high performance liquid chromatography (HPLC) in conjunction with a gradient elution, detected by a diode array detector (DAD), and identified by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. NMP reacted with reductive saccharides easily in the presence of 17% ammonia water at 70 degrees C. All linear correlation coefficients for saccharide derivatives were over 0.998 5. The detection limits (at signal-to-noise of 3:1) were 0.58 - 1.1 pmol for saccharide derivatives. The characteristic fragment ions, especially m/z 473, from the cleavage of NMP-labeled saccharides exhibited high regularity for the identification of the composition of saccharide mixture. The established method is sensitive and repeatable for the determination of saccharides.
Pous, X; Ruíz, M J; Picó, Y; Font, G
2001-09-01
Imidacloprid, metalaxyl, myclobutanil, propham, and thiabendazole have been simultaneously determined in strawberries, oranges, potatoes, pears, and melons by matrix solid-phase dispersion (MSPD) followed by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) in positive-ion mode. The samples were homogenized with C8 bonded silica as MSPD sorbent, placed in a glass column, and eluted with dichloromethane. Chromatographic separation of the compounds was achieved on a reversed-phase LC column using a methanol-ammonium formate (50 mmol L(-1)) gradient as a mobile phase. Samples were screened by monitoring the protonated molecular ion at m/z 256 for imidacloprid, 280 for metalaxyl, 289 for myclobutanil, and 202 for thiabendazole, and the main fragment at m/z 138 for propham. Positive samples were confirmed by multiple-ion monitoring. The repeatability (<20%) and recovery (>57%) of the method were good, and limits of detection (<0.05 mg kg(-1)) were adequate.
Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R
2009-09-18
The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.
ERIC Educational Resources Information Center
Haddad, Paul; And Others
1983-01-01
Background information, procedures, and results are provided for an experiment demonstrating techniques of solvent selection, gradient elution, pH control, and ion-pairing in the analysis of an analgesic mixture using reversed-phase liquid chromatography on an octadecylsilane column. Although developed using sophisticated/expensive equipment, less…
Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline
2016-10-07
Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.
Ultrafast quantification of β-lactam antibiotics in human plasma using UPLC-MS/MS.
Carlier, Mieke; Stove, Veronique; De Waele, Jan J; Verstraete, Alain G
2015-01-26
There is an increasing interest in monitoring plasma concentrations of β-lactam antibiotics. The objective of this work was to develop and validate a fast ultra-performance liquid chromatographic method with tandem mass spectrometric detection (UPLC-MS/MS) for simultaneous quantification of amoxicillin, cefuroxime, ceftazidime, meropenem and piperacillin with minimal turn around time. Sample clean-up included protein precipitation with acetonitrile containing 5 deuterated internal standards, and subsequent dilution of the supernatant with water after centrifugation. Runtime was only 2.5 min. Chromatographic separation was performed on a Waters Acquity UPLC system using a BEH C18 column (1.7 μm, 100 mm × 2.1 mm) applying a binary gradient elution of water and methanol both containing 0.1% formic acid and 2 mmol/L ammonium acetate on a Water TQD instrument in MRM mode. All compounds were detected in electrospray positive ion mode and could be quantified between 1 and 100 mg/L for amoxicillin and cefuroxime, between 0.5 and 80 mg/L for meropenem and ceftazidime, and between 1 and 150 mg/L for piperacillin. The method was validated in terms of precision, accuracy, linearity, matrix effect and recovery and has been compared to a previously published UPLC-MS/MS method. Copyright © 2014 Elsevier B.V. All rights reserved.
Oberacher, Herbert; Schubert, Birthe; Libiseller, Kathrin; Schweissgut, Anna
2013-04-03
Systematic toxicological analysis (STA) is aimed at detecting and identifying all substances of toxicological relevance (i.e. drugs, drugs of abuse, poisons and/or their metabolites) in biological material. Particularly, gas chromatography-mass spectrometry (GC/MS) represents a competent and commonly applied screening and confirmation tool. Herein, we present an untargeted liquid chromatography-tandem mass spectrometry (LC/MS/MS) assay aimed to complement existing GC/MS screening for the detection and identification of drugs in blood, plasma and urine samples. Solid-phase extraction was accomplished on mixed-mode cartridges. LC was based on gradient elution in a miniaturized C18 column. High resolution electrospray ionization-MS/MS in positive ion mode with data-dependent acquisition control was used to generate tandem mass spectral information that enabled compound identification via automated library search in the "Wiley Registry of Tandem Mass Spectral Data, MSforID". Fitness of the developed LC/MS/MS method for application in STA in terms of selectivity, detection capability and reliability of identification (sensitivity/specificity) was demonstrated with blank samples, certified reference materials, proficiency test samples, and authentic casework samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Kravtsova, Oxana Yu; Paramonov, Sergey A; Vasilevich, Natalya I; Kazyulkin, Denis N; Vlasova, Ekaterina; Engsig, Michael
2013-12-01
A specific, sensitive, rapid and reproducible method for the determination of flomoxef in human plasma using high-performance liquid chromatography-tandem mass spectrometry was developed and validated. Flomoxef was detected using an electrospay ionization method operated in negative-ion mode. Chromatographic separation was performed in gradient elution mode on a Luna® C18(2) column (3 μM, 20 × 4.0 mm) at a flow rate of 1 mL/min and runtime 3.5 min. The mobile phase consisted of acetonitrile and water containing 0.1% formic acid as additive. Extraction of flomoxef from plasma and precipitation of plasma proteins was performed with acetonitrile with an absolute recovery of 86.4 ± 1.6%. The calibration curve was linear with a correlation coefficient of 0.999 over the concentration range 10-5000 ng/mL and the lower limit of quantification was 10 ng/mL. The intra- and inter-day precisions were <11.8%, while the accuracy ranged from 99.6 to 109.0%. A stability study of flomoxef revealed that it could be successfully analyzed at 4 ºС over 24 h, but it was unstable in solutions at room temperature during short-term storage (4 h) and several freeze-thaw cycles. Copyright © 2013 John Wiley & Sons, Ltd.
Ennis, Erin J; Foley, Joe P
2016-07-15
A stochastic approach was utilized to estimate the probability of a successful isocratic or gradient separation in conventional chromatography for numbers of sample components, peak capacities, and saturation factors ranging from 2 to 30, 20-300, and 0.017-1, respectively. The stochastic probabilities were obtained under conditions of (i) constant peak width ("gradient" conditions) and (ii) peak width increasing linearly with time ("isocratic/constant N" conditions). The isocratic and gradient probabilities obtained stochastically were compared with the probabilities predicted by Martin et al. [Anal. Chem., 58 (1986) 2200-2207] and Davis and Stoll [J. Chromatogr. A, (2014) 128-142]; for a given number of components and peak capacity the same trend is always observed: probability obtained with the isocratic stochastic approach
Zhao, Shan; Zhang, Jing; Yang, Yi; Shao, Bing
2010-04-01
A method for the determination of 27 industrial dyes in juice and wine has been developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/ MS). Acetonitrile was used as extraction solvent, and sodium chloride was added to salt out the analytes from the samples. Chromatographic separation was performed on a C18 column with the gradient elution and the mass spectrometric acquisition was carried out under the mode of multiple reaction monitoring (MRM). Twenty-four of the 27 dyes were detected under positive ionization mode using the mobile phase of acetonitrile and water containing 0.1% formic acid. The other 3 dyes were analyzed under negative ionization mode with the mobile phase of acetonitrile and water. As a result, the average recoveries of 27 dyes spiked in juice ranged from 57.0% to 117.7% with the relative standard deviations (RSDs) of 2.4%-17.7%, and the average recoveries of 27 dyes spiked in wine ranged from 40.8% to 109.4% with the RSDs of 1.6%-17.9%. The limits of quantification (LOQs) of 27 dyes spiked in juice were in the range of 0.1-50 microg/kg, and 0.2-50 microg/kg for those spiked in wine. This method can be applied to rapid detection of illegally added dyes in soft drinks due to its simplicity and high sensitivity.
Nováková, Lucie; Vildová, Anna; Mateus, Joana Patricia; Gonçalves, Tiago; Solich, Petr
2010-09-15
UHPLC-MS/MS method using BEH C18 analytical column was developed for the separation and quantitation of 12 phenolic compounds of Chamomile (Matricaria recutita L.). The separation was accomplished using gradient elution with mobile phase consisting of methanol and formic acid 0.1%. ESI in both positive and negative ion mode was optimized with the aim to reach high sensitivity and selectivity for quantitation using SRM experiment. ESI in negative ion mode was found to be more convenient for quantitative analysis of all phenolics except of chlorogenic acid and kaempherol, which demonstrated better results of linearity, accuracy and precision in ESI positive ion mode. The results of method validation confirmed, that developed UHPLC-MS/MS method was convenient and reliable for the determination of phenolic compounds in Chamomile extracts with linearity >0.9982, accuracy within 76.7-126.7% and precision within 2.2-12.7% at three spiked concentration levels. Method sensitivity expressed as LOQ was typically 5-20 nmol/l. Extracts of Chamomile flowers and Chamomile tea were subjected to UHPLC-MS/MS analysis. The most abundant phenolic compounds in both Chamomile flowers and Chamomile tea extracts were chlorogenic acid, umbelliferone, apigenin and apigenin-7-glucoside. In Chamomile tea extracts there was greater abundance of flavonoid glycosides such as rutin or quercitrin, while the aglycone apigenin and its glycoside were present in lower amount. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Kim, Won Il; Zhao, Bing Tian; Zhang, Hai Yan; Lee, Je Hyun; Son, Jong Keun; Woo, Mi Hee
2014-01-01
Two rapid and simple HPLC methods with UV detector to determine three main compounds (magnoflorine, spinosin and 6'''-feruloyl spinosin) and evaporative light scattering detector (ELSD) to determine jujuboside A were developed for the chemical analyses of Zizyphi Semen. Magnoflorine, spinosin, and 6'''-feruloyl spinosin were separated with an YMC J'sphere ODS-H80 column (250 mm × 4.6 mm, 4 μm) by the gradient elution followed by the isocratic elution using methanol with 0.1 % formic acid and water with 0.1 % formic acid as the mobile phase. The flow rate was 1.0 mL/min. Jujuboside A was separated by HPLC-ELSD with YoungJinBioChrom Aegispak C18-L column (250 mm × 4.6 mm, 5 μm) column in a gradient elution using methanol with 0.1 % formic acid (A) and water with 0.1 % formic acid as the mobile phase. These two methods were fully validated with respect to linearity, precision, accuracy, stability, and robustness. These HPLC methods were applied successfully to quantify four compounds in a Zizyphi Semen extract. The HPLC analytical methods were validated for pattern recognition analysis by repeated analysis of 91 seed samples corresponding to 48 Zizyphus jujuba var. spinosa (J01-J48) and 43 Zizyphus mauritiana (M01-M43). The results indicate that these methods are suitable for a quality evaluation of Zizyphi Semen.
Asea, Philip E; MacNeil, James D; Boison, Joe O
2006-01-01
A method was developed and validated to screen for residues of the thyreostatic drugs, tapazole (TAP), mercaptobenzimidazole (MBI), thiouracil (TU), methylthiouracil (MTU), propylthiouracil (PrTU), and phenylthiouracil (PhTU) in bovine, equine, ovine, and porcine thyroid and muscle tissues at concentrations > or = 5 ng/g using 2-methoxy-mercaptobenzimidazole (MeMBI) and dimethylthiouracil (DMTU) as internal standards. In this method, the drugs were solvent extracted from thyroid and muscle tissue and cleaned up on an amino-propyl solid-phase extraction (SPE) cartridge. The unretained fraction containing TAP and MBI and the internal standard, MeMBI, was collected as Fraction 1. The retained fraction containing TU, MTU, PrTU, PhTU, and the internal standard, DMTU, was eluted with 3% acetic acid-isopropanol as Fraction 2. Fraction 1 was further cleaned up on an alumina B SPE cartridge and analyzed by gradient elution on a C18 high-performance liquid chromatography (HPLC) column with ultraviolet detection at wavelengths of 255 and 300 nm. Fraction 2 was taken to dryness, derivatized with 4-chloro-7-nitrobenzo-2-furazan at pH 8, and analyzed by gradient elution on a C18 LC column with mass spectrometry (MS) detection. Any "presumptive positive" test results were submitted for further analysis by LC/MS/MS. The validated method was applied to the analysis of over 300 thyroid tissue samples.
Chromatographic Separation, and Characteristics of Nucleic Acids from HeLa Cells
Philipson, Lennart
1961-01-01
The application of the phenol-duponol method to extraction of nucleic acids from HeLa cells is described. Chromatography of the phenol extract on an esterified bovine serum albumin column with a salt gradient of sodium chloride gives separation of soluble RNA, DNA, and two different high molecular RNA fractions. Ultracentrifugation of the DNA eluted from the column gives a sedimentation coefficient (s 20 o,w) of 38, which agrees with ultracentrifugation data on the phenol extract. The eluted RNA appears polydisperse at low ionic strength, but at high ionic strength and after alcohol precipitation two fractions with the sedimentation coefficients of 16 and 25 to 29, respectively, were obtained. PMID:13735276
A NEW HPLC METHOD FOR SEPARATION OF PHYTOPLANKTON PIGMENTS IN NATURAL SAMPLES
A new high-performance liquid chromatographic (HPLC) method was developed to analyze, in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a reverse-phase amide C16 (RP-amide C16) column and an elution gradient o...
Li, Wei; Wang, Jun; Yan, Zheng-Yu
2015-10-10
A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Khan, Nymul E; Adewuyi, Yusuf G
2011-01-21
A new method for the determination of peroxydisulfate using ion chromatography has been developed. Elution of peroxydisulfate was effected by isocratic elution using 200 mM NaOH at 40°C. A modification of the method using gradient elution was able to simultaneously determine other common inorganic ions (nitrate, nitrite, sulfate and chloride) down to significantly low concentrations in a peroxydisulfate matrix. The relative standard deviations (RSD) were in the range of 0.5-5%, for peak areas and <0.2% for peak retention times. The recoveries were between 95% and 120% for a concentration range of about 0.5-42 ppm. The limit of detection for peroxydisulfate ion was 0.2 ppm and for the other ions were ≤2×10(-2) ppm. The calibration curves were linear with slope and intercepts close to 1 and 0, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
Gao, Wenhui; Legido-Quigley, Cristina
2011-07-15
A fast and sensitive HPLC method for analysis of cosmetic creams for hydroquinone, phenol and six preservatives has been developed. The influence of sample preparation conditions and the composition of the mobile phase and elution mode were investigated to optimize the separation of the eight studied components. Final conditions were 60% methanol and 40% water (v/v) extraction of the cosmetic creams. A C18 column (100 mm × 2.1 mm) was used as the separation column and the mobile phase consisted of methanol and 0.05 mol/L ammonium formate in water (pH=3.0) with gradient elution. The results showed that complete separation of the eight studied components was achieved within 10 min, the linear ranges were 1.0-200 μg/mL for phenol, 0.1-150 μg/mL for sorbic acid, 2.0-200 μg/mL for benzoic acid, 0.5-200 μg/mL for hydroquinone, methyl paraben, ethyl paraben and propyl paraben, butyl paraben, and good linear correlation coefficient (≥0.9997) were obtained, the detection limit was in the range of 0.05-1.0 μg/mL, the average recovery was between 86.5% and 116.3%, and the relative standard deviation (RSD) was less than 5.0% (n=6). The method is easy, fast and sensitive, it can be employed to analyze component residues in cosmetic creams especially in a quality control setting. Copyright © 2011 Elsevier B.V. All rights reserved.
G, Arun Govind; Kamalanathan, Agamudi Shivasankaran; Vijayalakshmi, Mookambeswaran Arunachalam; Venkataraman, Krishnan
2018-01-15
HDL-ApoA1 plays a pivotal role in the prevention of atherosclerosis and cardiovascular diseases. ApoA1 purification from blood plasma has always remained tedious, involving multiple steps, large volumes of plasma and substantial loss in the final yield of pure ApoA1. In this study, a two-step method has been developed and optimized for the purification of ApoA1 from plasma. Plasma was first subjected to 60% ammonium sulphate (NH 4 ) 2 SO 4 precipitation and subsequently, ApoA1 was recovered using mixed mode chromatographic sorbent, HEA HyperCel™. ApoA1 was found to be enriched in 60% (NH 4 ) 2 SO 4 supernatant that was dialyzed and injected onto HEA sorbent with 50 mM phosphate buffer pH 7.4. The bound proteins were eluted by decreasing the pH in step-gradient from pH 7.4 to pH 4.0 and subsequently to pH 3.5 using 50 mM sodium acetate buffer. Gel electrophoresis showed elution of homogeneous apoA1 at pH 3.5, with purity and yield of 63%. An interesting feature of this approach is that the purified ApoA1 was monomeric with a mass of 28,079.30 Da as confirmed by MS analysis. This simple and efficient method of purification of apoA1 serves as an alternative method which can be combined with traditional approaches and has a great potential for biochemical and clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Vanderheyden, Yoachim; Cabooter, Deirdre; Desmet, Gert; Broeckhoven, Ken
2013-10-18
The intrinsic kinetic performance of three recently commercialized large size (≥4μm) core-shell particles packed in columns with different lengths has been measured and compared with that of standard fully porous particles of similar and smaller size (5 and 3.5μm, respectively). The kinetic performance is compared in both absolute (plot of t0 versus the plate count N or the peak capacity np for isocratic and gradient elution, respectively) and dimensionless units. The latter is realized by switching to so-called impedance plots, a format which has been previously introduced (as a plot of t0/N(2) or E0 versus Nopt/N) and has in the present study been extended from isocratic to gradient elution (where the impedance plot corresponds to a plot of t0/np(4) versus np,opt(2)/np(2)). Both the isocratic and gradient impedance plot yielded a very similar picture: the clustered impedance plot curves divide into two distinct groups, one for the core-shell particles (lowest values, i.e. best performance) and one for the fully porous particles (highest values), confirming the clear intrinsic kinetic advantage of core-shell particles. If used around their optimal flow rate, the core-shell particles displayed a minimal separation impedance that is about 40% lower than the fully porous particles. Even larger gains in separation speed can be achieved in the C-term regime. Copyright © 2013 Elsevier B.V. All rights reserved.
Sousa, Ângela; Pereira, Patrícia; Sousa, Fani; Queiroz, João A
2014-10-31
Histamine and agmatine amino acid derivatives were immobilized into monolithic disks, in order to combine the specificity and selectivity of the ligand with the high mass transfer and binding capacity offered by monolithic supports, to purify potential plasmid DNA biopharmaceuticals. Different elution strategies were explored by changing the type and salt concentration, as well as the pH, in order to understand the retention pattern of different plasmids isoforms The pVAX1-LacZ supercoiled isoform was isolated from a mixture of pDNA isoforms by using NaCl increasing stepwise gradient and also by ammonium sulfate decreasing stepwise gradient, in both histamine and agmatine monoliths. Acidic pH in the binding buffer mainly strengthened ionic interactions with both ligands in the presence of sodium chloride. Otherwise, for histamine ligand, pH values higher than 7 intensified hydrophobic interactions in the presence of ammonium sulfate. In addition, circular dichroism spectroscopy studies revealed that the binding and elution chromatographic conditions, such as the combination of high ionic strength with extreme pH values can reversibly influence the structural stability of the target nucleic acid. Therefore, ascending sodium chloride gradients with pH manipulation can be preferable chromatographic conditions to be explored in the purification of plasmid DNA biopharmaceuticals, in order to avoid the environmental impact of ammonium sulfate. Copyright © 2014. Published by Elsevier B.V.
Gimeno, Pascal; Maggio, Annie-Françoise; Bancilhon, Marjorie; Lassu, Nelly; Gornes, Hervé; Brenier, Charlotte; Lempereur, Laurent
2016-03-01
Corticosteroids, hydroquinone and its ethers are regulated in cosmetics by the Regulation 1223/2009. As corticosteroids are forbidden to be used in cosmetics and cannot be present as contaminants or impurities, an identification of one of these illicit compounds deliberately introduced in these types of cosmetics is enough for market survey control. In order to quickly identify skin-whitening agents present in illegal cosmetics, this article proposes an HPLC-UV method for the identification and screening of hydroquinone, 3 ethers of hydroquinone and 39 corticosteroids that may be found in skin-whitening products. Two elution gradients were developed to separate all compounds. The main solvent gradient (A) allows the separation of 39 compounds among the 43 compounds considered in 50 min. Limits of detection on skin-whitening cosmetics are given. For compounds not separated, a complementary gradient elution (B) using the same solvents is proposed. Between 2004 and 2009, a market survey on "skin-whitening cosmetic" was performed on 150 samples and highlights that more than half of the products tested do not comply with the Cosmetic Regulation 1223/2009 (amending the Council Directive 76/768/EEC). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Berendsen, Bjorn J A; Meijer, Thijs; Wegh, Robin; Mol, Hans G J; Smyth, Wesley G; Armstrong Hewitt, S; van Ginkel, Leen; Nielen, Michel W F
2016-05-01
Besides the identification point system to assure adequate set-up of instrumentation, European Commission Decision 2002/657/EC includes performance criteria regarding relative ion abundances in mass spectrometry and chromatographic retention time. In confirmatory analysis, the relative abundance of two product ions, acquired in selected reaction monitoring mode, the ion ratio should be within certain ranges for confirmation of the identity of a substance. The acceptable tolerance of the ion ratio varies with the relative abundance of the two product ions and for retention time, CD 2002/657/EC allows a tolerance of 5%. Because of rapid technical advances in analytical instruments and new approaches applied in the field of contaminant testing in food products (multi-compound and multi-class methods) a critical assessment of these criteria is justified. In this study a large number of representative, though challenging sample extracts were prepared, including muscle, urine, milk and liver, spiked with 100 registered and banned veterinary drugs at levels ranging from 0.5 to 100 µg/kg. These extracts were analysed using SRM mode using different chromatographic conditions and mass spectrometers from different vendors. In the initial study, robust data was collected using four different instrumental set-ups. Based on a unique and highly relevant data set, consisting of over 39 000 data points, the ion ratio and retention time criteria for applicability in confirmatory analysis were assessed. The outcomes were verified based on a collaborative trial including laboratories from all over the world. It was concluded that the ion ratio deviation is not related to the value of the ion ratio, but rather to the intensity of the lowest product ion. Therefore a fixed ion ratio deviation tolerance of 50% (relative) is proposed, which also is applicable for compounds present at sub-ppb levels or having poor ionisation efficiency. Furthermore, it was observed that retention time shifts, when using gradient elution, as is common practice nowadays, are mainly observed for early eluting compounds. Therefore a maximum retention time deviation of 0.2 min (absolute) is proposed. These findings should serve as input for discussions on the revision of currently applied criteria and the establishment of a new, globally accepted, criterion document for confirmatory analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Li, Jiaxiao; Zhu, Marcel
2018-02-01
A simple, selective, and accurate ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established and validated for the efficient separation and quantification of polyurethane amine catalysts in polyether polyols. Amine catalysts were primarily separated in polyether polyol-based sample by solid-phase extraction, and further baseline separated on a reversed-phase/cation-exchange mixed-mode column (SiELC Primesep™ 200) using 0.1% trifluoroacetic acid/acetonitrile as a mobile phase in gradient elution mode at a flow rate of 0.2 mL/min. High-resolution quadrupole time-of-flight mass spectrometry analysis in electrospray ionization positive mode allowed the identification as N,N'-bis[3-(dimethylamino)propyl]urea, N-[2-(2-dimethylaminoethoxy)ethyl]-N-methyl-1,3-propanediamine, and N,N,N',N'-tetramethyldipropylenetriamine. The method was validated and presented good linearity for all the analytes in blank matrices within the concentration range of 0.20-5.0 or 0.1-2.0 μg/mL with the correlation coefficients (R 2 ) ranging from 0.986 to 0.997. Method recovery ranged within 81-105% at all three levels (80, 100, and 120% of the original amount) with relative standard deviations of 1.0-6.2%. The limits of detection were in the range of 0.007-0.051 μg/mL. Good precision was obtained with relative standard deviation below 3.2 and 0.72% for peak area and retention time of three amines, respectively. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bu, Zhisi; Lv, Liqiong; Li, Xingnuo; Chu, Chu; Tong, Shengqiang
2017-11-01
Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH-zone-refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution-extrusion mode was investigated for pH-zone-refining countercurrent chromatography for the first time. A two-phase solvent system composed of n-hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n-hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH-zone-refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH-zone-refining countercurrent chromatography, yielding 53 mg of aurantio-obtusin, 40 mg of chryso-obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high-performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH-zone-refining mode was observed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vaccher, Claude; Decaudin, Bertrand; Sautou, Valérie; Lecoeur, Marie
2014-09-12
The analysis of several plasticizers, widely used in the production of medical devices, was investigated on porous graphitic carbon (PGC) stationary phase in supercritical fluid chromatography (SFC) with an evaporative light scattering detector (ELSD). Due to strong interaction of compounds with the PGC support, solvents of strong eluotropic strength were added to the CO2 supercritical fluid. The effect of alkyl chain (pentane, hexane, heptane) and chlorinated (CH2Cl2, CHCl3, CCl4) solvents was studied on the retention and on the ELSD detection of plasticizers. A co-solvent mixture composed of CHCl3/heptane, eluted under gradient mode, allowed a significant improvement of the ELSD response compared to the use of each solvent individually. Then, a central composite design (CCD) was implemented to optimize both the separation and the detection of plasticizers. The parameters involved were the outlet pressure, the gradient slope, the co-solvent composition and the drift tube temperature of the ELSD. After optimization, baseline separation of plasticizers was achieved in 7min and best signal-to-noise ratios were obtained with outlet pressure and drift tube temperature of ELSD set at 200bar and 31°C, respectively. The co-solvent mixture was also composed of CHCl3/heptane (35/65 v/v) and a gradient from 15 to 60% of co-solvent in 2.2min was employed. The results demonstrated that CCD is a powerful tool for the optimization of SFC/ELSD method and the response surface model analysis can provide statistical understandings of the significant factors required to achieve optimal separation and ELSD sensitivity. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Xinxin; Li, Jing; Ito, Yoichiro; Sun, Wenji
2014-01-01
A simple, reliable and sensitive high-performance liquid chromatography tandem mass spectrometry method (HPLC-MS/MS) was established for simultaneous analyses of the following 5 steroid saponins in rat plasma after the single dose administration of total steroid saponins extracted from the rhizome of Dioscorea zingiberensis C.H.Wright for the first time. Protodioscin, huangjiangsu A, zingiberensis new saponin, dioscin, and gracillin were quantified using ginsenoside Rb1 as the internal standard (IS). The plasma samples were pretreated by a single step acetonitrile-mediated protein precipitation. The chromatographic separation was performed on an Inersil ODS-3 C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase composed of acetonitrile and water containing 0.1% formic acid under a gradient elution mode at 0.2 mL min−1 using a microsplit after the eluent from the HPLC apparatus. The quantification was accomplished on a triple quadrupole tandem mass spectrometer using the multiple reaction monitoring (MRM) in the positive ionization mode. The above five analytes were stable under sample storage and preparation conditions applied in the present study. The linearity, precision, accuracy, and recoveries of the analysis confirmed the requirements for quality-control purposes. After validation, this proposed method was successfully adopted to investigate the pharmacokinetic parameters of these five analytes. PMID:25201262
Hroch, Miloš; Mičuda, Stanislav; Havelek, Radim; Cermanová, Jolana; Cahlíková, Lucie; Hošťálková, Anna; Hulcová, Daniela; Řezáčová, Martina
2016-07-01
Evidence gathered in various studies points to the fact that haemanthamine, an isoquinoline alkaloid, has multiple medicinally interesting characteristics, including antitumor, antileukemic, antioxidant, antiviral, anticonvulsant and antimalarial activity. This work presents, for the first time, a universal LC-MS/MS method for analysis of haemanthamine in plasma, bile and urine which has been verified in a pilot pharmacokinetic experiment on rats. Chromatographic separation was performed on a pentafluorophenyl core-shell column in gradient elution mode with a mobile phase consisting of acetonitrile-methanol-ammonium formate buffer. A sample preparation based on liquid-liquid extraction with methyl tert-butyl ether was employed with ambelline used as an internal standard. Quantification was performed using LC-MS-ESI(+) in Selected Reaction Monitoring mode. The method was validated according to the European Medicines Agency guideline in a concentration range of 0.1-10 μmol/L in plasma, bile and urine. The concentration-time profiles of haemanthamine in plasma, bile and urine after a single i.v. bolus of 10 mg/kg have been described for the first time. The presented study addresses the lack of information on haemanthamine pharmacokinetics and also introduces a new universal method of haemanthamine analysis in complex biological matrices. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Lei, Meikang; Peng, Fang; Ding, Tao; Zhu, Zitong; Xu, Jiawen; Wu, Xiaoqin
2015-01-01
A method based on solid phase extraction and ultra performance liquid chromatography coupled with tandem mass spectrometry (SPE-UPLC-MS/MS) has been proposed for the determination of wilforine residue in honey. After the sample was dissolved with water, concentrated and purified by an HLB solid phase extraction cartridge, the UPLC separation was performed on a Hypersil GOLD C18 column (50 mm x 2.1 mm, 1.9 microm) utilizing a gradient elution program of methanol (containing 0.15% formic acid) and water as mobile phases at a flow rate of 0. 25 mL/min. The determination was carried out with electrospray ion source in the positive mode (ESI) and multiple reaction monitoring (MRM) mode. The mass concentration of wilforine in the range of 0.01-2 microg/L was linearly correlated with the peak area, and the correlation coefficients was greater than 0.998. The limit of quantification (S/N>10) for wilforine was 0.01 microg/kg. The recoveries were 76.1% to 96.2% in the spiked levels of 0.01, 0.05 and 0.5 microg/kg with the relative standard deviations (RSD, n=6) lower than 10%. The results indicate that the method is rapid, sensitive and accurate, and can be applied for the qualitative and quantitative analysis of wilforine in honey.
Gou, Xinlei; Gao, Xia; Hu, Guanghui; Chi, Haitao; Le, Shengfeng; Wang, Wei; Liu, Weili
2014-09-01
A sensitive method was developed for the simultaneous determination of 11 bisphenols in plastic bottled drinking water by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were freeze-dried under vacuum and then dissolved with methanol. The separation was performed on a UPLC BEH C18 column (100 mm x 2.1 mm, 1.7 μm) by using 0.1% (v/v) NH3 · H2O and methanol as mobile phases with gradient elution at a flow rate of 0.2 mL/min. The electrospray ionization (ESI) source in negative ion mode was used for the analysis of the 11 bisphenols in the multiple reaction monitoring (MRM) mode. The results verified that the standard curves for the 11 bisphenols were obtained with good correlation coefficients (R2) > 0.997 in their concentration ranges. The limits of detection (LOD, S/N = 3) for the 11 bisphenols were in the range of 0.01-1.00 μg/L. The mean recoveries for the 11 bisphenols at three spiked levels (low, middle, high) were 75.3%-102.1% with the relative standard deviations of 1.5%-8.9%. Seven plastic bottled drinking water samples were tested, and no bisphenol was found. The method is accurate, simple, rapid and feasible for the simultaneous determination of bisphenols in plastic bottled drinking water.
Castilhos, Tamara S; Barreto, Fabiano; Meneghini, Leonardo; Bergold, Ana Maria
2016-07-01
A reliable and simple method for the detection and quantification of residues of 14 non-steroidal anti-inflammatory drugs and a metamizole metabolite in swine muscle was developed using liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS). The samples were extracted with acetonitrile (ACN) in solid-liquid extraction followed by a low-temperature partitioning (LLE-LTP) process at -20 ± 2°C. After evaporation to dryness, the residue was reconstituted with hexane and a mixture of water:acetonitrile (1:1). LC separation was achieved on a reversed-phase (RP18) column with gradient elution using water (phase A) and ACN (phase B) both containing 1 mmol l(-)(1) ammonium acetate (NH4COO) with 0.025% acetic acid. Analysis was carried out on a triple-quadrupole tandem mass spectrometer (LC-MS/MS) in multiple reaction monitoring mode using an electrospray interface in negative and positive mode in a single run. Method validation was performed according to the criteria of Commission Decision No. 2002/657/EC. The matrix effect and linearity were evaluated. Decision limit (CCα), detection capability (CCβ), accuracy and repeatability of the method are also reported. The proposed method proved to be simple, easy and adequate for high-throughput analysis and was applied to routine analysis by the Brazilian Ministry of Agriculture, Livestock and Food Supply.
Pharmacokinetic study of indocyanine Green after intravenous administration by UPLC-MS/MS.
Chen, Yu; Chen, Dongxin; Hu, Wenhao; Lin, Guanyang; Huang, Shiyong
2015-01-01
Indocyanine Green is widely used in medical diagnosis and to evaluate liver function and other regional blood flows in clinical application or animal experiments. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of Indocyanine Green in rat plasma was developed and validated. After addition of rutin as an internal standard (IS), protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 753.4→330.2 for Indocyanine Green, and m/z 611.1→303.1 for IS. Calibration plots were linear throughout the range 20-5000 ng/mL for Indocyanine Green in rat plasma. Mean recoveries of Indocyanine Green in rat plasma ranged from 79.5% to 85.4%. RSD of intra-day and inter-day precision were both < 12%. The accuracy of the method was between 95.9% and 113.9%. The method was successfully applied to pharmacokinetic study of Indocyanine Green after intravenous administration.
Pharmacokinetic study of indocyanine Green after intravenous administration by UPLC-MS/MS
Chen, Yu; Chen, Dongxin; Hu, Wenhao; Lin, Guanyang; Huang, Shiyong
2015-01-01
Indocyanine Green is widely used in medical diagnosis and to evaluate liver function and other regional blood flows in clinical application or animal experiments. In this work, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determination of Indocyanine Green in rat plasma was developed and validated. After addition of rutin as an internal standard (IS), protein precipitation by acetonitrile-methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 753.4→330.2 for Indocyanine Green, and m/z 611.1→303.1 for IS. Calibration plots were linear throughout the range 20-5000 ng/mL for Indocyanine Green in rat plasma. Mean recoveries of Indocyanine Green in rat plasma ranged from 79.5% to 85.4%. RSD of intra-day and inter-day precision were both < 12%. The accuracy of the method was between 95.9% and 113.9%. The method was successfully applied to pharmacokinetic study of Indocyanine Green after intravenous administration. PMID:26629038
Peng, Can; Tian, Jixin; Lv, Mengying; Huang, Yin; Tian, Yuan; Zhang, Zunjian
2014-02-01
Artificial Calculus Bovis is a major substitute in clinical treatment for Niuhuang, a widely used, efficacious but rare traditional Chinese medicine. However, its chemical structures and the physicochemical properties of its components are complicated, which causes difficulty in establishing a set of effective and comprehensive methods for its identification and quality control. In this study, a simple, sensitive and reliable liquid chromatography-tandem mass spectrometry method was successfully developed and validated for the simultaneous determination of bilirubin, taurine and major bile acids (including six unconjugated bile acids, two glycine-conjugated bile acids and three taurine-conjugated bile acids) in artificial Calculus Bovis using a Zorbax SB-C18 column with a gradient elution of methanol and 10 mmol/L ammonium acetate in aqueous solution (adjusted to pH 3.0 with formic acid). The mass spectra were obtained in the negative ion mode using dehydrocholic acid as the internal standard. The content of each analyte in artificial Calculus Bovis was determined by monitoring specific ion pairs in the selected reaction monitoring mode. All analytes demonstrated perfect linearity (r(2) > 0.994) in a wide dynamic range, and 10 batches of samples from different sources were further analyzed. This study provided a comprehensive method for the quality control of artificial Calculus Bovis.
Simultaneous determination of antidementia drugs in human plasma for therapeutic drug monitoring.
Noetzli, Muriel; Choong, Eva; Ansermot, Nicolas; Eap, Chin B
2011-04-01
A simple liquid chromatography mass spectrometry method was developed and validated for the simultaneous determination of antidementia drugs, including donepezil, galantamine, rivastigmine and its major metabolite, NAP 226-90, and memantine. A solid phase extraction procedure with a mixed-mode sorbent was used to isolate the drugs from 0.5 mL human plasma. Reverse phase chromatographic separation of the compounds was obtained with a gradient elution of an ammonium acetate buffer at pH 9.3 and acetonitrile and the analytes were detected by mass spectrometry in the single ion monitoring mode. The method was validated according to the recommendations of the Food and Drug Administration, including assessment of trueness (-8.0% to +10.7%), imprecision (repeatability: 1.1-4.9%, intermediate imprecision: 2.1-8.5%), selectivity and matrix effects variability (less than 6%) as well as short- and long-term stability in plasma. The calibration ranges were from 1 ng/mL to 300 ng/mL (rivastigmine and memantine) and 2 ng/mL to 300 ng/mL (donepezil, galantamine, and NAP 226-90). The method was successfully applied to patients' samples and might contribute to evaluate whether a therapeutic drug monitoring-guided dose adjustment of antidementia drugs could contribute to minimize the risk of adverse reactions and to increase the probability of efficient therapeutic response.
Tian, Tingting; Jin, Yiran; Ma, Yinghua; Xie, Weiwei; Xu, Huijun; Du, Yingfeng
2016-02-01
An ultra performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry (UPLC-MS-MS) method was developed for analyzing and identifying the constituents of 11 compounds including berberine, epiberberine, berberrubine, jatrorrhizine, coptisine, palmatine, evodiamine, rutaecarpine, limonin, paeoniflorin and albiflorin in Wuji pill (WJ pill), a traditional Chinese medicine. The chromatographic separation was performed on a C18 column and the mobile phase was composed of water (0.1% formic acid and 2 mmol ammonium acetate) and methanol with a linear gradient elution. The detection was performed by multiple reaction monitoring mode, using electrospray ionization in the positive ion mode. The total run time was 14 min. The calibration curves were linear with all correlation coefficients higher than 0.9987 in the tested range. The intra- and interday precisions were no more than 4.9%, and the average recoveries were from 92.4 to 107.8% with the relative standard deviations no more than 7.8%. The developed method was successfully employed to analyze five batches of WJ pill samples. This is the first time to establish a method for the quality control of WJ pill to ensure the safety and efficacy in clinical applications effectively. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Yang; Zhao, Yunling; Zhou, Xin; Gong, Xiaojian
2014-01-01
Objective: Evodiae Fructus (EF), one of the most widely used traditional Chinese medicines, mainly consists of alkaloids, is widely used for the treatments of headache and gastrointestinal disorders. In this study, a sensitive and reliable UPLC-ESI-MS/MS method was developed for qualitative determination of dehydroevodiamine, limonin, evodiamine, and rutaecarpine. Materials and Methods: Chromatographic separations were accomplished on a Phenomenex Kinetex XB-C18 column (2.1 × 150 mm, 1.7 μm) by using a gradient elution profile with a mobile phase consisting of 0.5% formic acid in water (A) and acetonitrile (B). Detection was performed using multiple reactions monitoring mode under ESI in the positive ion mode. Results: The results showed good linearity over the investigated concentration ranges (R2>0.9900) for the analytes. The limit of quantitations (LOQs) were 6.88 ng/mL for dehydroevodiamine, 18.6 ng/mL for limonin, 6.24 ng/mL for evodiamine, and 2.56 ng/mL for rutaecarpine, respectively. Intraday and interday precisions (relative standard deviations, %) were <5% and accuracies ranged from 92% to 106%. Conclusion: The validated method was successfully applied to assay the contents of the four compounds in EF samples from different regions, with which just 10 min was needed to analyze each sample. PMID:25210328
Wan, Jian-Bo; Zhang, Qing-Wen; Hong, Si-Jia; Li, Peng; Li, Shao-Ping; Wang, Yi-Tao
2012-05-16
A pressurized liquid extraction (PLE) and high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method was developed for the qualitative determination of saponins in different parts of P. notoginseng, including rhizome, root, fibre root, seed, stem, leaf and flower. The samples were extracted using PLE. The analysis was achieved on a Zorbax SB-C18 column with gradient elution of acetonitrile and 8 mM aqueous ammonium acetate as mobile phase. The mass spectrometer was operated in the negative ion mode using the electrospray ionization, and a collision induced dissociation (CID) experiment was also carried out to aid the identification of compounds. Forty one saponins were identified in different parts of P. notoginseng according to the fragmentation patterns and literature reports, among them, 21 saponins were confirmed by comparing the retention time and ESI-MS data with those of standard compounds. The results showed that the chemical characteristics were obviously diverse in different parts of P. notoginseng, which is helpful for pharmacological evaluation and quality control of P. notoginseng.
Călinescu, Octavian; Badea, Irinel A; Vlădescu, Luminiţa; Meltzer, Viorica; Pincu, Elena
2012-04-01
Determination of acetaminophen and its main impurities: 4-nitrophenol, 4'-chloroacetanilide, as well as 4-aminophenol and its degradation products, p-benzoquinone and hydroquinone has been developed and validated by a new high-performance liquid chromatography method. Chromatographic separation has been obtained on a Hypersil Duet C18/SCX column, using gradient elution, with a mixture of phosphate buffer (pH = 4.88) and methanol as a mobile phase. Analysis time did not exceed 14.5 min and good resolutions, peak shapes and asymmetries have resulted. The linearity of the method has been tested in the range of 5.0-60 µg/mL for acetaminophen and 0.5-6 µg/mL for the other compounds. The limits of detection and quantification have been also established to be lower than 0.1 µg/mL and 0.5 µg/mL, respectively. The method has been successfully applied for the analysis of commercial acetaminophen preparations. © The Author [2012]. Published by Oxford University Press. All rights reserved.
Yao, Xin; Zhou, Guisheng; Tang, Yuping; Li, Zhenhao; Su, Shulan; Qian, Dawei; Duan, Jin-Ao
2013-03-07
A sensitive and accurate ultra-performance liquid chromatography coupled with triple quadrupole mass (UPLC-MS/MS) method was developed for the determination of quercetin-3-O-β-D-glucopyranoside-(4→1)-α-L-rhamnoside (QGR) in rat plasma using rutin as internal standard. Chromatographic separation was achieved on a Acquity BEH C18 column (100 mm × 2.1 mm, 1.7 μm) with a gradient elution of acetonitrile and 0.10% formic acid (v/v) at a flow rate of 0.4 mL/min. QGR and rutin were detected using electrospray negative ionization mass spectrometry in the multiple reaction monitoring (MRM) mode. The method demonstrated good linearity and did not show any endogenous interference with the QGR and rutin peaks. This method was successfully applied to a pharmacokinetic study of QGR in rats after intravenous (20 mg/kg) and oral (40 mg/kg) administration, and the results showed that the compound was poorly absorbed, with an absolute bioavailability of approximately 3.41%.
NASA Astrophysics Data System (ADS)
Zhang, S. L.; Zhang, J.; Wang, Z. G.; Wang, Y. Z.; Liang, S. T.; Liu, C.; Wang, Z.
2017-08-01
Several samples collected from lakes, rivers and reservoirs in Haihe river basin of China were analyzed for 8 sulfonamide antibiotics by using solid-phase extraction and liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). All water samples were enriched with HLB extraction cartridges. The antibiotics were separated by gradient elution with methanol as the mobile phase adding 0.1% formic acid. The eluate was then analyzed by the mode of multiple reaction monitoring (MRM). The limits of detection (LOD) and quantification (LOQ) were 0.4-1.0 ng/L and 1.0-3.0 ng/L respectively. The method was used for the analysis of 13 samples from Haihe river basin in China. The results showed that sulfamethoxazole was present in all water samples with maximum concentration of 107.59 ng/L. Sulfadiazine was also frequently detected, concentrations ranging from 2.81 ng/L to 85.35 ng/L. Other sulfonamide antibiotics were not detected in most water samples, especially for those samples from drinking water resources.
Rood, Johannes J M; van Hoppe, Stephanie; Schinkel, Alfred H; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W
2016-01-25
A validated simple, fast and sensitive bio-analytical assay for ibrutinib and its dihydrodiol metabolite in human and mouse plasma was set up. Sample preparation was performed by protein precipitation, and addition of the respective deuterated internal standards, followed by LC-MS/MS analysis. Separation was performed on a 3.5 μm particle-size, bridged ethylene hybrid column with gradient elution by 0.1% v/v formic acid and acetonitrile. The full eluate was transferred to an electrospray interface in positive ionization mode, and subsequently analyzed by a triple quadrupole mass spectrometer by selected reaction monitoring. The assay was validated in a 5-5000 ng/ml calibration range. Both ibrutinib and dihydrodiol-ibrutinib were deemed stable under refrigerated or frozen storage conditions. At room temperature, ibrutinib showed a not earlier described instability, and revealed rapid degradation at 37 °C. Finally, the assay was used for a pharmacokinetic study of plasma levels in treated FVB mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhou, Yulu; Zhou, Ting; Pei, Qi; Liu, Shikun; Yuan, Hong
2014-01-01
Chlorogenic acid (ChA) is proposed as the major bioactive compounds of Lonicerae Japonicae Flos (LJF). Forty-two Wistar rats were randomly divided into seven groups to investigate the pharmacokinetics and tissue distribution of ChA, via oral administration of LJF extract, using ibuprofen as internal standard, employing a high performance liquid chromatography in conjunction with tandem mass spectrometry. Analytes were extracted from plasma samples and tissue homogenate by liquid–liquid extraction with acetonitrile, separated on a C 18 column by linear gradient elution, and detected by electrospray ionization mass spectrometry in negative selected multiple reaction monitoring mode. Our results successfully demonstrate that the method has satisfactory selectivity, linearity, extraction recovery, matrix effect, precision, accuracy, and stability. Using noncompartment model to study pharmacokinetics, profile revealed that ChA was rapidly absorbed and eliminated. Tissue study indicated that the highest level was observed in liver, followed by kidney, lung, heart, and spleen. In conclusion, this method was suitable for the study on pharmacokinetics and tissue distribution of ChA after oral administration. PMID:25140190
Yi, Deliang; Wang, Zhihua; Yi, Longzhi
2015-04-01
A selective and sensitive liquid chromatography-mass spectrometry (MS) method was developed and validated for the determination of karanjin in rat plasma. The target analyte, together with the internal standard (warfarin), was extracted from rat plasma by liquid-liquid extraction with ethyl acetate. Chromatographic separation was performed on a ZORBAX SB-C18 column using a mixture of acetonitrile and 0.1% aqueous formic acid as the mobile phase with linear gradient elution. MS detection was performed on a single quadrupole MS by selected ion monitoring mode via a positive electrospray ionization source. The assay exhibited a linear dynamic range of 2.50-3,000 ng/mL for karanjin. The intra- and inter-day precision was <10.8%, and the intra- and inter-day accuracy was <9.2%. The validated method has been applied to the preclinical pharmacokinetic studies of karanjin following oral administration of 5, 10 and 20 mg/kg karanjin to rats. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhao, Heng-Qiang; Wang, Xiao; Li, Hong-Mei; Yang, Bin; Yang, Hong-Jun; Huang, Luqi
2013-08-15
A method combining hydrophilic interaction chromatography (HILIC) and electrospray ionization mass spectrometry (ESI-MS) was developed for the characterization and determination of natural Cordyceps. Separation was achieved on a Waters Xbridge Amide column with gradient elution. Identification of 15 target nucleosides and nucleobases was based on retention time, UV spectra and mass measurements of the protonated molecules ([M+H]⁺) and main fragment ions (ESI-TOF/MS). Eight non-target compounds were tentatively identified by ESI-TOF/MS. The 15 target compounds were quantified by HILIC-ESI-MS/MS using time-programmed selective ion monitoring or multiple reaction monitoring in positive-ion mode under optimized mass conditions. This technique showed good linearity, repeatability and recovery. This approach was also successfully implemented in the analysis of nucleosides and nucleobases in 12 batches of natural Cordyceps samples that were collected from different regions in China. The developed HILIC-ESI-MS method exhibited clear advantages in identifying and determining highly polar bioactive components in Cordyceps, as well as their quality control.
Ares, Ana M; Valverde, Silvia; Bernal, José L; Toribio, Laura; Nozal, María J; Bernal, José
2017-10-01
In this study, a new method has been developed to determine flubendiamide in honey using liquid chromatography coupled to a selective mass spectrometry detector (quadrupole-time-of-flight). An efficient sample treatment involving a solid phase extraction with a C 18 sorbent was proposed (average analyte recoveries were between 94 and 104%). Chromatographic analysis (9min) was performed on a C 18 column (Gemini C 18 , 50×2.0mm, 3µm, 110Å). The mobile phase consisted of water and acetonitrile, with a flow rate of 0.5mL/min in gradient elution mode. The method was fully validated in terms of selectivity, limits of detection and quantification, matrix effect, linearity, trueness and precision. Low limits of detection and quantification were obtained, ranging from 0.1 to 0.2µg/kg and 0.4 to 0.6µg/kg, respectively. The method was applied to analyze flubendiamide in honey from different botanic origins (multifloral, rosemary and heather). Copyright © 2017 Elsevier Ltd. All rights reserved.
Malintan, Nancy T; Mohd, Mustafa Ali
2006-09-15
An analytical HPLC method for the simultaneous determination of eight sulfonamides in swine wastewater was developed. The samples were collected from three states in Malaysia. Sample clean up was carried out by employing solid-phase extraction using a 60 mg Oasis HLB (Waters) cartridge with 3 ml reservoir. The HPLC column used was Supelcosil C18 (250 mm x 4.6mm I.D.) and elution was carried out using gradient mode. The mobile phases used were acetonitrile and 0.5% acetic acid in purified water. Antibiotics were detected using UV absorbance at 272 nm. Recoveries obtained for sulphanilamide ranged from 31.9+/-5.1% to 36.2+/-1.0%, while recoveries for other sulfa drugs studied were from 91.9+/-5.0% to 106.0+/-1.1%. The limit of quantitation (LOQ) for sulfamerazine, sulfamethazine and sulfamethoxypyridazine was 7.5 ng/L, while the LOQ for the other studied antibiotics was 5.0 ng/L. The method was used to analyse sulfonamides in wastewater collected from selected Malaysian swine facilities.
Ekdahl, Anja; Johansson, Maria C; Ahnoff, Martin
2013-04-01
Matrix effects on electrospray ionization were investigated for plasma samples analysed by hydrophilic interaction chromatography (HILIC) in gradient elution mode, and HILIC columns of different chemistries were tested for separation of plasma components and model analytes. By combining mass spectral data with post-column infusion traces, the following components of protein-precipitated plasma were identified and found to have significant effect on ionization: urea, creatinine, phosphocholine, lysophosphocholine, sphingomyelin, sodium ion, chloride ion, choline and proline betaine. The observed effect on ionization was both matrix-component and analyte dependent. The separation of identified plasma components and model analytes on eight columns was compared, using pair-wise linear correlation analysis and principal component analysis (PCA). Large changes in selectivity could be obtained by change of column, while smaller changes were seen when the mobile phase buffer was changed from ammonium formate pH 3.0 to ammonium acetate pH 4.5. While results from PCA and linear correlation analysis were largely in accord, linear correlation analysis was judged to be more straight-forward in terms of conduction and interpretation.
Upper-Tropospheric Synoptic-Scale Waves. Part II: Maintenance and Excitation of Quasi Modes.
NASA Astrophysics Data System (ADS)
Rivest, Chantal; Farrell, Brian F.
1992-11-01
In a preceding paper a simple dynamical model for the maintenance of upper-tropospheric waves was proposed: the upper-level Eady normal modes. In this paper it is shown that these modes have counterparts in basic states with positive tropospheric gradients of potential vorticity, and that these counterparts can be maintained and excited on time scales consistent with observations.In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-level normal-mode solutions no longer exist. That the normal-mode solution disappears when gradients are infinitesimal represents an apparent singularity and challenges the interpretation of upper-level synoptic-scale waves as related to the upper-level Eady normal modes. What happens to the upper-level modal solution in the presence of tropospheric gradients of potential vorticity is examined in a series of initial-value experiments. Our results show that they become slowly decaying quasi modes. Mathematically the quasi modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and their decay proceeds as the modes interfere with one another. We repeat these experiments in basic states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and similar results are obtained.Following a previous study by Farrell, a class of near-optimal initial conditions for the excitation of upper-level waves is identified. The initial conditions consist of upper-tropospheric disturbances that lean against the shear. They strongly excite upper-level waves not only in the absence of tropospheric potential vorticity gradients, but also in their presence. This result is important mathematically since it suggests that quasi modes are as likely to emerge from favorably configured initial disturbances as true normal modes, although the excitation is followed by a slow decay.
Yao, Shanshan; Zhao, Yonggang; Li, Xiaoping; Chen, Xiaohong; Jin, Micong
2012-06-01
A method was developed for the determination of 11 anabolic hormones (boldenone, androstenedione, nandrolone, methandrostenolone, methyltestosterone, testosterone, testosterone acetate, trenbolone, testosterone propionate, stanozolol, fluoxymesterone) in fish by multi-function impurity adsorption solid-phase extraction-ultrafast liquid chromatography-tandem mass spectrometry. After the sample was extracted by methanol, the extract was cleaned-up quickly by C18 adsorbent, neutral alumina adsorbent and amino-functionalized nano-adsorbent. The separation was performed on a Shim-Pack XR-ODS II column (100 mm x 2.0 mm, 2.2 microm) using the mobile phases of 0.1% (v/v) formic acid in acetonitrile and 0.1% (v/v) formic acid solution in a gradient elution mode. The identification and quantification were achieved by using electrospray ionization in positive ion mode (ESI+) in multiple reaction monitoring (MRM) mode. The matrix-matched external standard calibration curves were used for quantitative determination. The results showed that the calibration curves were in good linearity for the eleven analytes with the correlation coefficients (r) more than 0.999. The limits of detection (LODs, S/N > 3) for the 11 anabolic hormones were from 0.03 microg/kg to 0.4 microg/kg and the limits of quantification (LOQs, S/N > 10) were from 0.1 microg/kg to 1.5 microg/kg. The average recoveries ranged from 80.9% to 98.1% with the relative standard deviations between 5.2% and 11.5%. The method is simple, rapid, sensitive, accurate and suitable for the quantitative determination and confirmation of the 11 anabolic hormones in fish.
Golubović, Jelena; Protić, Ana; Otašević, Biljana; Zečević, Mira
2016-04-01
QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans. Copyright © 2015 Elsevier B.V. All rights reserved.
A new automated 2D-(SCX/RP)-nano-LC/MSMS method was developed. Separation of the peptides in the first LC dimension was the main focus of this work, and it was optimized using human serum albumin (HSA) and human lung cell lysate tryptic digests. Samples were reduced and alkylated...
1988-07-15
solvents were used. For high performance liquid chromatographic studies, the DNA bases thymine, adenine, cytocine, uracil, and guanine (Aldrich...this experiment. The DNA bases guanine, adenine, cytocine, uracil, and thymine were detected for a gradient elution of a mixture of the bases in a
ANALYSIS OF PROTEIN DIGESTS BY nano- SCX/RP/MSMS WITH pH SALT GRADIENT SCX ELUTION
The objective of this study was to optimize chromatographic parameters for complex peptide mixture analyses using two dimensional nano-LC/MSMS system. It used a strong cation exchange (SCX) and reversed phase chromatography (RP). The SCX solvent system was designed to promote pep...
Characterization of Explosives Processing Waste Decomposition Due to Composting.
1994-09-01
leachate were injected onto an Alltech RP-C 18/Anion column (150 mm x 4.6 mm ID) and were eluted at 1 mL/min using a complex ternary gradient of 0.015 M...the study because it is an agriculturally important legume; the seeds of this plant are also an important carbon sink. Thus, Glycine was advantageous
A Microwave Flow Detector for Gradient Elution Liquid Chromatography.
Ye, Duye; Wang, Weizheng; Moline, David; Islam, Md Saiful; Chen, Feng; Wang, Pingshan
2017-10-17
This study presents a microwave flow detector technique for liquid chromatography (LC) application. The detector is based on a tunable microwave interferometer (MIM) with a vector network analyzer (VNA) for signal measurement and a computer for system control. A microstrip-line-based 0.3 μL flow cell is built and incorporated into the MIM. With syringe pump injection, the detector is evaluated by measuring a few common chemicals in DI water at multiple frequencies from 0.98 to 7.09 GHz. Less than 30 ng minimum detectable quantity (MDQ) is demonstrated. An algorithm is provided and used to obtain sample dielectric permittivity at each frequency point. When connected to a commercial HPLC system and injected with a 10 μL aliquot of 10 000 ppm caffeine DI-water solution, the microwave detector yields a signal-to-noise ratio (SNR) up to 10 under isocratic and gradient elution operations. The maximum sampling rate is 20 Hz. The measurements show that MIM tuning, aided by a digital tunable attenuator (DTA), can automatically adjust MIM operation to retain detector sensitivity when mobile phase changes. Furthermore, the detector demonstrates a capability to quantify coeluted vitamin E succinate (VES) and vitamin D 3 (VD 3 ).
van Haandel, Leon; Gibson, Kim T; Leeder, J Steven; Wagner, Jonathan B
2016-02-15
An ultra high pressure liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method for the simultaneous quantitation of pravastatin and major metabolites, 3'α-hydroxy-pravastatin, pravalactone and 3'α-hydroxy-pravalactone, in human plasma has been developed and validated. Aliquots of (100μL) plasma in EDTA were diluted in pH 4.5 (0.1M buffer) to stabilize the analytes and subjected to hydrophilic lipophilic balance (HLB) solid phase extraction on 96 well μelution plates. Extracted samples were evaporated to dryness and reconstituted in pH 4.5 buffer. Chromatographic separation was performed on a Cortecs™ C18 column (2.1×100mm, 1.8μm), using gradient elution with a blend of acetonitrile and 10mM methylammonium acetate buffer (pH 4.5) at a flow rate of 0.4mL/min. Mass spectrometric detection was performed using multiple reaction monitoring (MRM) switching between positive/negative electrospay ionization (ESI). Pravastatin, 3'α-hydroxy-pravastatin, and internal standards [(2)H3]-pravastatin, and [(2)H3]-3'α-hydroxy-pravastatin were monitored in negative ESI mode at ion transitions m/z 423.2→321.1 and 426.2→321.1, respectively. Positive ESI mode was used for the detection of pravalactone, 3'α-hydroxy-pravalactone, and internal standards [(2)H3]-pravalactone, and [(2)H3]-3'α-hydroxy-pravalactone at ion transitions m/z 438.2→183.1 and 441.2→269.1 respectively. The method was linear for all analytes in the concentration range 0.5-200nM with intra- and inter-day precisions (as relative standard deviation) of ≤5.2% and accuracy (as relative error) of ≤8.0% at all quality control levels. The method was successfully applied to the investigation of pharmacokinetic properties of pravastatin and its metabolites in children after an oral dose of 20-40mg. Copyright © 2016 Elsevier B.V. All rights reserved.
Lindley, C.E.; Burkhardt, M.R.; DeRusseau, S.N.
1994-01-01
Organic explosives are determined in samples of ground water and surface water with emphasis on identifying and quantifying trinitrotoluene (TNT) metabolites. Water samples are filtered to remove suspended particulate material and passed through a polystyrene divinylbenzene-packed cartridge by a vacuum-extraction system. The target analytes subsequently are eluted with acetonitrile. A high-performance liquid chromatograph (HPLC) equipped with a photodiode-array detector is used for sample analysis. Analytes are separated on an octadecylsilane column using a methanol, water, and acetonitrile gradient elution. The compounds 2,4- and 2,6-dinitrotoluene are separated through an independent, isocratic elution. Method detection limits, on the basis of a 1-liter sample size, range from 0.11 to 0.32 microgram per liter. Recoveries averaged from 71 to 101 percent for 13 analytes in one set of HPLC-grade water fortified at about 1 microgram per liter. The method is limited to use by analysts experienced in handling explosive materials. (USGS)
Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography
NASA Astrophysics Data System (ADS)
Karicheva, E.; Guseva, N.; Kambalina, M.
2016-03-01
Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.
Gershon, P D
2010-12-15
Two tools are described for integrating LC elution position with mass-based data in hydrogen-deuterium exchange (HDX) experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (nanoLC/MALDI-MS, a novel approach to HDX-MS). The first of these, 'TOF2H-Z Comparator', highlights peptides in HDX experiments that are potentially misidentified on the basis of mass alone. The program first calculates normalized values for the organic solvent concentration responsible for the elution of ions in nanoLC/MALDI HDX experiments. It then allows the solvent gradients for the multiple experiments contributing to an MS/MS-confirmed peptic peptide library to be brought into mutual alignment by iteratively re-modeling variables among LC parameters such as gradient shape, solvent species, fraction duration and LC dead time. Finally, using the program, high-probability chromatographic outliers can be flagged within HDX experimental data. The role of the second tool, 'TOF2H-XIC Comparator', is to normalize the LC chromatograms corresponding to all deuteration timepoints of all HDX experiments of a project, to a common reference. Accurate normalization facilitates the verification of chromatographic consistency between all ions whose spectral segments contribute to particular deuterium uptake plots. Gradient normalization in this manner revealed chromatographic inconsistencies between ions whose masses were either indistinguishable or separated by precise isotopic increments. Copyright © 2010 John Wiley & Sons, Ltd.
Gonçalves, João L; Alves, Vera L; Rodrigues, Fátima P; Figueira, José A; Câmara, José S
2013-08-23
In this work a highly selective and sensitive analytical procedure based on semi-automatic microextraction by packed sorbents (MEPS) technique, using a new digitally controlled syringe (eVol(®)) combined with ultra-high pressure liquid chromatography (UHPLC), is proposed to determine the prenylated chalcone derived from the hop (Humulus lupulus L.), xanthohumol (XN), and its isomeric flavonone isoxanthohumol (IXN) in beers. Extraction and UHPLC parameters were accurately optimized to achieve the highest recoveries and to enhance the analytical characteristics of the method. Important parameters affecting MEPS performance, namely the type of sorbent material (C2, C8, C18, SIL, and M1), elution solvent system, number of extraction cycles (extract-discard), sample volume, elution volume, and sample pH, were evaluated. The optimal experimental conditions involves the loading of 500μL of sample through a C18 sorbent in a MEPS syringe placed in the semi-automatic eVol(®) syringe followed by elution using 250μL of acetonitrile (ACN) in a 10 extractions cycle (about 5min for the entire sample preparation step). The obtained extract is directly analyzed in the UHPLC system using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and ACN (eluent B) in the gradient elution mode (10min total analysis). Under optimized conditions good results were obtained in terms of linearity within the established concentration range with correlation coefficients (R) values higher than 0.986, with a residual deviation for each calibration point below 12%. The limit of detection (LOD) and limit of quantification (LOQ) obtained were 0.4ngmL(-1) and 1.0ngmL(-1) for IXN, and 0.9ngmL(-1) and 3.0ngmL(-1) for XN, respectively. Precision was lower than 4.6% for IXN and 8.4% for XN. Typical recoveries ranged between 67.1% and 99.3% for IXN and between 74.2% and 99.9% for XN, with relative standard deviations %RSD no larger than 8%. The applicability of the proposed analytical procedure in commercial beers, revealed the presence of both target prenylchalcones in all samples being IXN the most abundant with concentration of between 0.126 and 0.200μgmL(-1). Copyright © 2013 Elsevier B.V. All rights reserved.
Fernandez-Torres, R; Consentino, M Olías; Lopez, M A Bello; Mochon, M Callejon
2010-05-15
A new, accurate and sensitive reversed-phase high-performance liquid chromatography (RP-HPLC) as analytical method for the quantitative determination of 11 antibiotics (drugs) and the main metabolites of five of them present in human urine has been worked out, optimized and validated. The analytes belong to four different groups of antibiotics (sulfonamides, tetracyclines, penicillins and anphenicols). The analyzed compounds were sulfadiazine (SDI) and its N(4)-acetylsulfadiazine (NDI) metabolite, sulfamethazine (SMZ) and its N(4)-acetylsulfamethazine (NMZ), sulfamerazine (SMR) and its N(4)-acetylsulfamerazine (NMR), sulfamethoxazole (SMX), trimetroprim (TMP), amoxicillin (AMX) and its main metabolite amoxicilloic acid (AMA), ampicillin (AMP) and its main metabolite ampicilloic acid (APA), chloramphenicol (CLF), thiamphenicol (TIF), oxytetracycline (OXT) and chlortetracycline (CLT). For HPLC analysis, diode array (DAD) and fluorescence (FLD) detectors were used. The separation of the analyzed compounds was conducted by means of a Phenomenex Gemini C(18) (150mm x 4.6mm I.D., particle size 5microm) analytical column with LiChroCART LiChrospher C(18) (4mm x 4mm, particle size 5microm) guard column. Analyzed drugs were determined within 34min using formic acid 0.1% in water and acetonitrile in gradient elution mode as mobile phase. A linear response was observed for all compounds in the range of concentration studied. Two procedures were optimized for sample preparation: a direct treatment with methanol and acetonitrile and a solid phase extraction procedure using Bond Elut Plexa columns. The method was applied to the determination of the analytes in human urine from volunteers under treatment with different pharmaceutical formulations. This method can be successfully applied to routine determination of all these drugs in human urine samples.
Yokoyama, Yukio; Tsuji, Sachiyo; Sato, Hisakuni
2005-08-26
A simple and versatile cation-exchange chromatography technique for the simultaneous determination of urinary creatinine (Cre), creatine (Crn), methionine (Met), tyrosine (Tyr), phenylalanine (Phe), histidine (His), and tryptophan (Trp) was developed. A novel low-capacity cation-exchange column packed with a newly developed sulfoacylated hypercross-linked macroreticular polystyrene-divinylbenzene resin, referred to as TMR-A/75 (capacity: 75 microequiv/column), was successfully used with a binary dual-mode gradient eluting system. Two solvents, (A) 25 mM phosphoric acid-methanol (30:70, v/v) and (B) 25 mM disodium hydrogenphosphate-methanol (30:70, v/v) were pumped through the column by programming solvent delivery ratios as 0 to 5 min: A-B (55:45, pH 3.6); 5-21 min: A-B (49:51, pH 5.3); and 21-35 min: A-B (55:45, pH 3.6). The flow rate was simultaneously time-programmed to be 0.6 mL/min from 0 to 19 min and to be 1.0 mL/min from 19 to 35 min. This eluting system could permit the use of the UV detection at 210 nm. The analytes, Crn, Met, Tyr, His, Cre, Phe, and Trp, were well separated in this order in 27 min with minimum resolution of approximately 2, and the cycle time was about 35 min. Retention time of each analyte was very reproducible with relative standard deviations (RSDs) between 0.05 and 0.38% (n = 5). The peak area responses were also reproducible with RSDs between 0.74 and 2.24% (n = 5). Calibration lines based on area data were linear from 1 to 1000 microM with r2 values of 0.9998 (Crn), 0.9998 (Met), 0.9999 (Tyr), 0.9999 (His), 1.0000 (Cre), 1.0000 (Phe), and 0.9999 (Trp). The method was applicable to the screening and/or chemical diagnosis of inherited metabolic disorders such as phenylketonuria (PKU), tyrosinemia, and Lowe syndrome. The creatinine ratios of diagnostic markers (microM/microM Cre) were easily determined. The Phe/Cre ratios for five urines from patients with PKU ranged from 0.162 to 0.521, and the Tyr/Cre ratio for tyrosinemia was 0.147. The ratios of Tyr/Cre, Phe/Cre, and Trp/Cre for Lowe syndrome were 0.497, 0.321, and 0.495, respectively. In contrast, the creatinine ratios for healthy newborns showed one digit lower than those for patients did. The developed method is very practical and can provide useful information and results for the clinical or biomedical researches with low analytical run costs.
Cserháti, T; Forgács, E; Morais, M H; Mota, T; Ramos, A
2000-10-27
The performance of reversed-phase thin-layer (RP-TLC) and reversed-phase high-performance liquid chromatography (RP-HPLC) was compared for the separation and determination of the colour pigments of chili (Capsicum frutescens) powder using a wide variety of eluent systems. No separation of pigments was achieved in RP-TLC, however, it was established that tetrahydrofuran shows an unusually high solvent strength. RP-HPLC using water-methanol-acetonitrile gradient elution separated the chili pigments in many fractions. Diode array detection (DAD) indicated that yellow pigments are eluted earlier than the red ones and chili powder contains more yellow pigments than common paprika powders. It was established that the very different absorption spectra of pigments make the use of DAD necessary.
[HPLC specific chromatogram of Dendrobium officinale].
Yan, Mei-Qiu; Chen, Su-Hong; Lv, Gui-Yuan; Zhou, Gui-Fen; Liu, Xia
2013-02-01
To establish the method of specific chromatogram analysis of ether extract of Dendrobium officinale for identification of D. officinale. Chromatographic separation was carried out at 30 degrees C on an Ultimate C18 column (4.6 mm x 250 mm, 5 microm) eluted with methanol and water containing 0.2% phosphoric acid in a gradient elution at a flow rate of 1.0 mL x min(-1). The detection wavelength was set at 280 nm. The similarity evaluation system for chromatographic fingerprint of NPC (National Pharmacopoeia Committee) was adopted to specific chromatogram construction. The HPLC specific chromatogram of D. officinale was constructed with 6 common specific chromatographic peaks including naringenin as a reference peak. The method shows good precision and repeatability of relative retention time. It can be used to identify D. officinale.
Baranowska, Irena; Wojciechowska, Iwona; Solarz, Natalia; Krutysza, Ewa
2014-01-01
This paper reports the development of a method for simultaneously determining five preservatives in cosmetics, cleaning agents and pharmaceuticals by fast liquid chromatography. Methylisothiazolinone, methylchloroisothiazolinone, benzyl alcohol, sodium benzoate and methylparaben were separated on a Chromolith Fast Gradient reversed-phase 18e column using gradient elution with acetonitrile and a 0.1% aqueous solution of formic acid, with a run time of 3 min. The preparation of solid and liquid samples included ultrasonic extraction with methanol with recoveries ranging from 69 to 119%. The developed method was used to analyze samples of cosmetics (66 samples), cleaning agents (five samples) and pharmaceutical industry products (17 samples).
Liu, Bingyi; Zhao, Jiajun; Xu, Xiaodong; Zhao, Wenyu; Jiang, Yongyuan
2017-10-23
Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell's law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for all-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the all-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates inside the metasurface slab. The coiling-up space structures are utilized to build desired acoustic gradient metasurface, and the all-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface, and the all-angle negative reflection characteristic possessed by acoustic gradient metasurface could enable a new degree of the acoustic wave manipulating and be applied in the functional diffractive acoustic elements, such as the all-angle acoustic back reflector.
Yamada, H; Fukumura, T; Ito, Y; Imoto, T
1985-04-01
Preparation of chitin-coated Celite as an affinity adsorbent for high-performance liquid chromatography of lysozymes and its application to separation of N-bromosuccinimide-oxidized lysozymes are described. By pH gradient elution, two diastereomers of oxindolealanine-62-lysozyme, delta 1-acetoxytryptophan-62-lysozyme (intermediate product in the reaction in acetate buffer), and native lysozyme were all separated within 40 min.
Cummings, J; MacLellan, A J; Mark, M; Jodrell, D I
1999-09-24
[Arg6, D-Trp7,9 mePhe8]-substance P (6-11), code-named antagonist G, is a novel peptide currently undergoing early clinical trials as an anticancer drug. A sensitive, high efficiency high-performance liquid chromatography (HPLC) method is described for the determination in human plasma of antagonist G and its three major metabolites, deamidated-G (M1), G-minus Met11 (M2) and G[Met11(O)] (M3). Gradient elution was employed using 40 mM ammonium acetate in 0.15% trifluoroacetic acid as buffer A and acetonitrile as solvent B, with a linear gradient increasing from 30 to 100% B over 15 min, together with a microbore analytical column (microBondapak C18, 30 cm X 2 mm I.D.). Detection was by UV at 280 nm and the column was maintained at 40 degrees C. Retention times varied by <1% throughout the day and were as follows: G, 13.0 min; M1, 12.2 min; M2, 11.2 min; M3, 10.8 min, and 18.1 min for a pyrene conjugate of G (G-P). The limit of detection on column (LOD) was 2.5 ng for antagonist G, M1-3 and G-P and the limit of quantitation (LOQ) was 20 ng/ml for G and 100 ng/ml for M1-3. Sample clean-up by solid-phase extraction using C2-bonded 40 microm silica particles (Bond Elut, 1 ml reservoirs) resulted in elimination of interference from plasma constituents. Within-day and between-day precision and accuracy over a broad range of concentrations (100 ng/ml-100 microg/ml) normally varied by < 10%, although at the highest concentrations of M1 and M2 studied (50 microg/ml), increased variability and reduced recovery were observed. The new assay will aid in the clinical development of antagonist G.
Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong
2016-08-19
In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated. Copyright © 2016. Published by Elsevier B.V.
Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Patrick Allen
2005-12-17
Quantification in liquid chromatography (LC) is becoming very important as more researchers are using LC, not as an analytical tool itself, but as a sample introduction system for other analytical instruments. The ability of LC instrumentation to quickly separate a wide variety of compounds makes it ideal for analysis of complex mixtures. For elemental speciation, LC is joined with inductively coupled plasma mass spectrometry (ICP-MS) to separate and detect metal-containing, organic compounds in complex mixtures, such as biological samples. Often, the solvent gradients required to perform complex separations will cause matrix effects within the plasma. This limits the sensitivity ofmore » the ICP-MS and the quantification methods available for use in such analyses. Traditionally, isotope dilution has been the method of choice for LC-ICP-MS quantification. The use of naturally abundant isotopes of a single element in quantification corrects for most of the effects that LC solvent gradients produce within the plasma. However, not all elements of interest in speciation studies have multiple naturally occurring isotopes; and polyatomic interferences for a given isotope can develop within the plasma, depending on the solvent matrix. This is the case for reverse phase LC separations, where increasing amounts of organic solvent are required. For such separations, an alternative to isotope dilution for quantification would be is needed. To this end, a new method was developed using the Apex-Q desolvation system (ESI, Omaha, NE) to couple LC instrumentation with an ICP-MS device. The desolvation power of the system allowed greater concentrations of methanol to be introduced to the plasma prior to destabilization than with direct methanol injection into the plasma. Studies were performed, using simulated and actual linear methanol gradients, to find analyte-internal standard (AIS) pairs whose ratio remains consistent (deviations {+-} 10%) over methanol concentration ranges of 5%-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.« less
Lal, Manohar; Bhushan, Ravi
2016-10-01
An efficient, simple, validated, analytical and semi-preparative HPLC method has been developed for direct enantioresolution of (RS)-Ketorolac (Ket) using monochloro-methylated derivatives of cellulose and amylose, i.e. cellulose (tris-3-chloro-4-methylphenylcarbamate) and amylose (tris-5-chloro-2-methylphenylcarbamate) as chiral stationary phases (CSPs) with photo diode array detection at 320 nm. Enantioresolution was carried out in samples of human plasma spiked with (RS)-Ket under normal and reversed-phase elution modes with suitable mobile phase compositions. The effect of nature of alcohols (MeOH, EtOH, PrOH and n-BuOH) and other solvents (MeCN and MeOH) as organic modifiers in the mobile phase was investigated on the separation performance of two CSPs in terms of retention and separation of enantiomers. The best resolution was observed on cellulose-based CSP using EtOH, while using 2-PrOH (15%) and amylose-based CSP obtained the highest retention. Under reversed-phase elution mode the best enantioseparation was observed using 30% MeCN with ammonium formate buffer. The elution order of enantiomers was ascertained by determining specific rotations. The limit of detection and quantitation values were 5 and 15.5 ng/mL for each enantiomer of (RS)-Ket, respectively. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Local gyrokinetic study of electrostatic microinstabilities in dipole plasmas
NASA Astrophysics Data System (ADS)
Xie, Hua-sheng; Zhang, Yi; Huang, Zi-cong; Ou, Wei-ke; Li, Bo
2017-12-01
A linear gyrokinetic particle-in-cell scheme, which is valid for an arbitrary perpendicular wavelength k⊥ρi and includes the parallel dynamic along the field line, is developed to study the local electrostatic drift modes in point and ring dipole plasmas. We find that the most unstable mode in this system can be either the electron mode or the ion mode. The properties and relations of these modes are studied in detail as a function of k⊥ρi , the density gradient κn, the temperature gradient κT, electron to ion temperature ratio τ=Te/Ti , and mass ratio mi/me . For conventional weak gradient parameters, the mode is on the ground state (with eigenstate number l = 0) and especially k∥˜0 for small k⊥ρi . Thus, the bounce averaged dispersion relation is also derived for comparison. For strong gradient and large k⊥ρi , most interestingly, higher order eigenstate modes with even (e.g., l = 2, 4) or odd (e.g., l = 1) parity can be most unstable, which is not expected in the previous studies. High order eigenstate can also easily be most unstable at weak gradient when τ>10 . This work can be particularly important to understand the turbulent transport in laboratory and space magnetosphere.
Liquid Chromatography at Critical Conditions: Balancing size exclusion and adsorption in nanopores
NASA Astrophysics Data System (ADS)
Abdulahad, Asem; Amos, Jeffrey; Ryu, Chang
2009-03-01
Liquid chromatography at critical condition (LCCC) is a measure to identify thermodynamic conditions, in which polymers elute independently of molar mass during high performance liquid chromatography. Under these critical conditions the entropic exclusions that dominate size exclusion chromatography (SEC) and the enthalpic adsorption that governs adsorption-based interaction chromatography (IC) are said to negate one another resulting in simultaneous elution of the polymer of different molecular weights. Using multiple C18-bonded silica columns with different average nanopore sizes (from 5 nm to 30 nm), we will study the LCCC conditions of PS in methylene chloride/acetonitrile solvent mixture at different temperature. In addition, we will show that the separation of polystyrene can be fine tuned using a refined temperature gradient interaction chromatography (TGIC) that employs multiple columns of varying pore size in sequence.
Purification of Bacteriophages Using Anion-Exchange Chromatography.
Vandenheuvel, Dieter; Rombouts, Sofie; Adriaenssens, Evelien M
2018-01-01
In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM ® ) monoliths. Afterward, the column is washed to remove impurities from the CIM ® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.
Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C
2017-02-17
The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Houshmandyar, S.; Hatch, D. R.; Horton, C. W.; Liao, K. T.; Phillips, P. E.; Rowan, W. L.; Zhao, B.; Cao, N. M.; Ernst, D. R.; Greenwald, M.; Howard, N. T.; Hubbard, A. E.; Hughes, J. W.; Rice, J. E.
2018-04-01
A profile for the critical gradient scale length (Lc) has been measured in L-mode discharges at the Alcator C-Mod tokamak, where electrons were heated by an ion cyclotron range of frequency through minority heating with the intention of simultaneously varying the heat flux and changing the local gradient. The electron temperature gradient scale length (LTe-1 = |∇Te|/Te) profile was measured via the BT-jog technique [Houshmandyar et al., Rev. Sci. Instrum. 87, 11E101 (2016)] and it was compared with electron heat flux from power balance (TRANSP) analysis. The Te profiles were found to be very stiff and already above the critical values, however, the stiffness was found to be reduced near the q = 3/2 surface. The measured Lc profile is in agreement with electron temperature gradient (ETG) models which predict the dependence of Lc-1 on local Zeff, Te/Ti, and the ratio of the magnetic shear to the safety factor. The results from linear Gene gyrokinetic simulations suggest ETG to be the dominant mode of turbulence in the electron scale (k⊥ρs > 1), and ion temperature gradient/trapped electron mode modes in the ion scale (k⊥ρs < 1). The measured Lc profile is in agreement with the profile of ETG critical gradients deduced from Gene simulations.
Duhamel, Paul; Ounissi, Marwa; Le Saux, Thomas; Bienayme, Hugues; Chiron, Catherine; Jullien, Vincent
2017-12-01
An analytical method was developed for the quantification in plasma of the R and S enantiomers of vigabatrin (VGB), a drug used for the treatment of some refractory pediatric epileptic syndromes. After adding 50μL of the internal standard, which consisted of a 15mg/L solution of deuterated racemic VGB, and 100μL of water to 100μL of plasma samples, a protein precipitation was performed by adding 600μL of methanol. The supernatant was evaporated to dryness under a stream of nitrogen and the dry residue was reconstituted with 500μL of water. Then, 100μL of 0.01M o-phthaldialdehyde and 0.01M N-acetyl-l-cysteine in borate buffer (0.1M, pH=9.5) were added for pre-column derivatization of the enantiomers as diastereomeric isoindoles. One microliter of the resulting mixture was injected in the chromatographic system. The chromatographic separation was performed in gradient elution mode at a flow rate of 400μL/min using a phenomenex EVO C-18 column with a mobile phase composed of 5mM ammonium acetate and a methanol:acetonitrile (63:37v/v) mixture. Detection was performed by mass spectrometry in selected reaction monitoring mode using heated electrospray ionization in positive mode as the ion source. Intra- and inter-day precision and accuracy were lower than 15% over the calibration range (0.2-50mg/L for each enantiomer) and the method was successfully used to assess plasma concentrations of VGB in epileptic children. Copyright © 2017 Elsevier B.V. All rights reserved.
Goerlitz, D.F.
1981-01-01
Methods for the determination of pentachlorophenol (PCP) in water and aquifer sediments are presented. Reverse-phase high-performance liquid chromotography employing ion suppression and gradient elution is used. PCP can be determined directly in water at a lower limit of detection Of 0.2 micrograms per liter. For extracts of sediment, PCP can be determined to a lower limit of 1.0 micrograms per kilogram.
USDA-ARS?s Scientific Manuscript database
An LC-MS/MS method was developed and validated to determine 7alpha-OH cholesterol in liver microsome. This method was convenient and fast with high specificity and sensitivity. Briefly, a gradient elution was performed on a Synergi polar-C18 column (50 x 4.6mm i.d., 3microm). The mobile phase (cons...
Purification and characterization of two isoenzymes of lipoxygenase from soybeans.
Diel, E; Stan, H J
1978-01-01
A chromatographic procedure for the purification of two lipoxygenase isoenzymes (linoleate: O2 oxidoreductase, EC 1.13.11.12.) from soybean is described. The procedure for the purification of isoenzyme L-1 includes optimalized extraction, ammonium sulfate fractionation, heat treatment and gradient elution from a CM-Sephadex C-50 column. The purification of L-2 includes ammonium sulfate fractionation, gelfiltration on Sephadex G-150 and gradient elution from a DEAE-cellulose column. Both isoenzymes L-1 and L-2 appear homogeneous after Disc-PAGE. The isoelectric points are 5.6 for L-1 and 5.8 for L-2. Molecular weights are estimated as 100,000 for L-1 as well as L-2 applying three different methods. Both isoenzymes contain 0.9 mol iron per mol protien. The estimated turn over numbers are 8,200 mol linoleate per mol enzyme and min for L-1 and 3,100 for L-2. Amino acid compositions determined after acid hydrolysis show marked differences between L-1 and L-2, particularly with respect to the amino acids Lys, Phe, Ser, Gly and Leu. L-1 posesses a total of 9 cysteine molecules, 6 of which are present as disulfide bonds. L-2 posesses a total of 8 cysteine molecules with only one disulfide bond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Tham, S Y; Agatonovic-Kustrin, S
2002-05-15
Quantitative structure-retention relationship(QSRR) method was used to model reversed-phase high-performance liquid chromatography (RP-HPLC) separation of 18 selected amino acids. Retention data for phenylthiocarbamyl (PTC) amino acids derivatives were obtained using gradient elution on ODS column with mobile phase of varying acetonitrile, acetate buffer and containing 0.5 ml/l of triethylamine (TEA). Molecular structure of each amino acid was encoded with 36 calculated molecular descriptors. The correlation between the molecular descriptors and the retention time of the compounds in the calibration set was established using the genetic neural network method. A genetic algorithm (GA) was used to select important molecular descriptors and supervised artificial neural network (ANN) was used to correlate mobile phase composition and selected descriptors with the experimentally derived retention times. Retention time values were used as the network's output and calculated molecular descriptors and mobile phase composition as the inputs. The best model with five input descriptors was chosen, and the significance of the selected descriptors for amino acid separation was examined. Results confirmed the dominant role of the organic modifier in such chromatographic systems in addition to lipophilicity (log P) and molecular size and shape (topological indices) of investigated solutes.
Lin, Q-B; Wang, T-J; Song, H; Li, B
2010-12-01
A novel and simple method to detect isothiazolinone-type biocides (2-methyl-3-isothiazolinone (MI), 5-chloro-2-methyl-3-isothiazolinone (CMI), 1,2-benzisothiazolinone (BIT) and 2-octyl-3-isothiazolinone (OIT)) in paper used for food packaging by ultrasonic extraction coupled with UPLC-MS/MS was developed. Parameters affecting process efficiency such as extraction solvents, UPLC mobile phase, gradient elution procedure and MS/MS conditions were studied to optimise the operating conditions. Using the optimised gradient elution procedure, the retention time was less than 6 min. The limits of detection (LODs) were found to be between 0.001 and 0.010 mg kg⁻¹, which was validated using actual concentrations. After diluting the standard solution with a blank matrix, the linear calibration curve ranges were 0.002-1.000 mg kg⁻¹ for BIT and OIT, 0.005-1.000 mg kg⁻¹ for MI, and 0.020-1.000 mg kg⁻¹ for CMI, with correlation coefficients higher than 0.9985 (n = 6). A good level of precision with a mean recovery greater than 81.3% and a relative standard deviation (RSD) less than 6.2% were also obtained. A methodology has been proposed for the analysis of isothiazolinones in paper.
Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...
2016-09-27
Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less
Broadband mode conversion via gradient index metamaterials
Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang
2016-01-01
We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456
NASA Astrophysics Data System (ADS)
Song, Qingguana; Wang, Cheng; Han, Yong; Gao, Dayuan; Duan, Yingliang
2017-06-01
Since detonation often initiates and propagates in the non-homogeneous mixtures, investigating its behavior in non-uniform mixtures is significant not only for the industrial explosion in the leakage combustible gas, but also for the experimental investigations with a vertical concentration gradient caused by the difference in the molecular weight of gas mixture. Objective of this work is to show the detonation behavior in the mixture with different concentration gradients with detailed chemical reaction mechanism. A globally planar detonation in H2-O2 system is simulated by a high-resolution code based on the fifth-order weighted essentially non-oscillatory (WENO) scheme in spatial discretization and the third-order Additive Runge-Kutta schemes in time discretization. The different shocked combustion modes appear in the rich-fuel and poor-fuel layers due to the concentration gradient effect. Globally, for the cases with the lower gradient detonation can be sustained in a way of the alternation of the multi-heads mode and single-head mode, whereas for the cases with the higher gradient detonation propagates with a single-head mode. Institute of Chemical Materials, CAEP.
Jiang, Yalan; Huang, Fang; Wu, Fuhai; Wu, Huiqin; Huang, Xiaolan; Deng, Xin
2015-10-01
A method for the determination of 16 functional components of ginkgo dietary supplement tea such as catechin, vitexin, puerarin, isoflavoues aglycone, silymarin, quercetin, luteolin, apigenin, naringenin, hesperitin dihydrochalcone, kaempferol, hesperitin, isorhamnetin, baicalein, nobiletin and tangeretin by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was proposed. The conditions of chromatography and mass spectrometry were optimized. The 16 flavonoids were separated on a C18 chromatographic column with acetonitrile and water (additional 0.1% formic acid) as mobile phases under gradient elution at a flow rate of 0.25 mL/min. The determination was conducted by tandem mass spectrometry in positive ESI mode under multiple reaction monitoring (MRM) mode. Good linearities for all the compounds, with correlation coefficients over 0.996, were acquired. The recoveries were in the range of 70.9% to 100.0% (n = 6), while the relative standard deviations (RSDs) were less than 10%. The results showed that the nine flavonoids, which were kaempferol, quercetin, hesperitin, vitexin, luteolin, catechin, apigenin, naringenin and isorhamnetin, were higher in contents among the 16 flavonoids in real samples, and they constituted up to 99.6% of the total flavonoids. The contents of these nine flavonoids can be considered as the quality control index of the ginkgo dietary supplement tea. The method proved to be rapid, selective, sensitive and stable, and it can be applied to control the quality of the ginkgo dietary supplement tea.
Gou, Xinlei; Zhao, Xinying; Chi, Haitao; Gao, Xia; Zhou, Mingqiang; Liu, Weili
2015-06-01
A sensitive method was developed for the simultaneous determination of ten benzotriazole ultraviolet stabilizers in food contact plastic materials by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The sample was extracted by methanol-dichloromethane, and purified by a C18 solid-phase extraction (SPE) column. The separation was performed by using water containing 0. 1% (v/v) formic acid and methanol as the mobile phases with gradient elution at a flow rate of 0. 3 mL/min. The electrospray ionization (ESI) source in positive ion mode was used for the analysis of the ten benzotriazole ultraviolet stabilizers in multiple reaction monitoring (MRM) mode. The results showed that the standard curves were obtained with good correlation coefficients (r2 > 0.996) in their linear concentration ranges. The limits of detection (LODs, S/N = 3) for the ten benzotriazole ultraviolet stabilizers were in the range of 0.6-1.6 µg/kg. The mean recoveries for the ten benzotriazole ultraviolet stabilizers at three spiked levels (low, medium and high) were 75.2%-85.3% with relative standard deviations of 1.0%-5.7%. Ten kinds of food contact plastic materials were tested, and 2,2'-methylenebis (6-(benzotriazol-2-yl)-4-tert-octylphenol) (UV-360) was found in a sample of polyethylene (PE) material. The method is accurate, simple, rapid and feasible for the simultaneous determination of benzotriazole ultraviolet stabilizers in food plastic materials.
Magotra, Asmita; Sharma, Anjna; Gupta, Ajai Prakash; Wazir, Priya; Sharma, Shweta; Singh, Parvinder Pal; Tikoo, Manoj Kumar; Vishwakarma, Ram A; Singh, Gurdarshan; Nandi, Utpal
2017-08-15
In the present study, a simple, sensitive, specific and rapid liquid chromatography (LC) tandem mass spectrometry (MS/MS) method was developed and validated according to the Food and Drug Administration (FDA) guidelines for estimation of IIIM-MCD-211 (a potent oral candidate with promising action against tuberculosis) in mice plasma using carbamazepine as internal standard (IS). Bioanalytical method consisted of one step protein precipitation for sample preparation followed by quantitation in LC-MS/MS using positive electrospray ionization technique (ESI) operating in multiple reaction monitoring (MRM) mode. Elution was achieved in gradient mode on High Resolution Chromolith RP-18e column with mobile phase comprised of acetonitrile and 0.1% (v/v) formic acid in water at the flow rate of 0.4mL/min. Precursor to product ion transitions (m/z 344.5/218.4 and m/z 237.3/194.2) were used to measure analyte and IS, respectively. All validation parameters were well within the limit of acceptance criteria. The method was successfully applied to assess the pharmacokinetics of the candidate in mice following oral (10mg/kg) and intravenous (IV; 2.5mg/kg) administration. It was also effectively used to quantitate metabolic stability of the compound in mouse liver microsomes (MLM) and human liver microsomes (HLM) followed by its in-vitro-in-vivo extrapolation. Copyright © 2017 Elsevier B.V. All rights reserved.
Xie, Honglei; Li, Chun; Liu, Ning
2013-08-01
The method for analysing sialic acid in infant formulas by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) has been established. Sialic acid in milk was released via acid hydrolysis, and purified by an HLB solid phase extraction cartridge. The UPLC separation was performed on an ACQUITY UPLC BEH HILIC column (50 mm x 2.1 mm, 1.7 microm) utilizing a gradient elution program of acetonitrile and water (containing 0.1% formic acid) as the mobile phases at a flow rate of 0.25 mL/min. Injection volume and column temperature were set at 5 microL and 30 degrees C, respectively. The identification and quantification were achieved by using electrospray ionisation (ESI)-MS/MS in positive ion mode and multiple reaction monitoring (MRM) mode. The linear range was from 0.05 to 5.0 mg/L for sialic acid and the correlation coefficient (R(2)) was greater than 0.99. The average recoveries spiked at the four concentration levels of 0.1, 0.5, 2.5 and 5.0 mg/L ranged between 84.3% and 98.9% with the relative standard deviations from 4.9% to 8.2%. The limit of detection was 0.01 mg/L. Therefore, this method has the characteristics of simple operation, high reproducibility and sensitivity. It can be widely applied to determine the total contents of sialic acid in infant formula, cow milk and human milk.
Wang, Qing; Wang, Guomin; Xi, Cunxian; Li, Xianliang; Chen, Dongdong; Tang, Bobin; Zhang, Lei; Zhao, Hua
2014-06-01
A combination immunoaffinity column (IAC-CZ) clean-up and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical method was successfully developed for zearalenol, beta-zearalenol and zearalenone) and chloramphenicol (CAP) in foodstuffs of animal origin. The samples (fish, liver, milk and honey) were enzymatically digested by beta-glucuronidase/sulfatase for about 16 h and then extracted with ether. The extracts were evaporated to dryness and then the residues were dissolved by 1.0 mL of 50% acetonitrile solution. After filtered and diluted with PBS buffer, the reconstituted solution were cleaned-up with a IAC-CZ and then analyzed by LC-MS/MS in multiple reaction monitoring (MRM) mode. The chromatographic separation was performed on a Shimadzu Shim-pack VP-ODS column with gradient elution by acetonitrile and 2 mmol/L ammonium acetate solution. The detection was carried out by electrospray negative ionization mass spectrometry in MRM mode. The proposed method was validated by the limit of detection (0.04-0.10 microg/kg), linearity (R2 > or = 0.999 0), average recoveries (70.9%-95.6%) and precisions (2.0% - 11.8%). The developed method is reliable, sensitive and has good applicability. The combination immunoaffinity column was proved to be an effective pretreatment technique to decrease the matrix effect, and it met the requirements of residue analysis of co-occurring zeranols and chloramphenicol.
[Comparison of chemical composition between fresh and processed Bufonis Venenum by UPLC-TQ-MS].
Wang, Zi-yue; Wang, Hong-lan; Zhou, Jing; Ma, Hong-yue; Gong, Yan; Yan, Wen-li; Qian, Da-wei
2015-10-01
Toad venom is the Bufo bufo gargarizans or B. melanostictus after the ears of the gland secretion, used in the treatment of various cancers in recent years. Research shows that the main anti-tumor components in bufadienolide. Bufadienolide have free type structure and conjunct type structure. To identify and clarify the difference between bufogenin and bufotoxin contained in Bufonis Venenum, which was from B. bufo gargarizans, an UPLC-TQ-MS method has been established. UPLC-TQ-MS method was used to identify and quantify the major bufadienolides in Bufonis Venenum. UPLC-TQ-MS assay with positive ion mode was performed on a Waters ACQUITY UPLC BEH C, (2.1 mm x 100 mm, 1.7 µm) with the mobile phase consisting of 0. 1% aqueous formic and acidacetonitrile in gradient elution at a flow rate of 0.4 mL · min⁻¹ and the column temperature was set at 35 °C. By comparing their retention time and high resolution mass data of Bufonis Venenum extracts, 37 effective components were primarily identified by MS/MS analysis in positive ion mode. Twenty-six of them were free-type bufadienolides (bufogenin), 11 of them were conjugated bufadienolides. There were significant differences in the main composition between fresh and processed Bufonis Venenum. The study found that the chemical composition of toad venom through great changes after processing, conjunct type content is much less, free type content as well change.
Jin, Mi-cong; Chen, Xiao-hong; OuYang, Xiao-kun
2009-03-01
An accurate and selective method for the simultaneous determination of triptolide, tripdiolide and tripterine in human urine using hydrocortisone as an internal standard (IS) by high-performance liquid chromatography coupled with atmospheric-pressure chemical ionization mass spectrometry in negative ion mode has been developed. After triptolide, tripdiolide and tripterine in human urine were extracted with ethyl acetate and cleaned by solid-phase extraction with C(18) cartridges, a satisfactory separation was achieved on an XDB C(18) short column (30 x 2.1 mm i.d., 3 microm) using the mobile phase of acetic acid-ammonium acetate (5 mmol/L, pH = 4.5)-acetonitrile-methanol in gradient elution. Detection was operated by APCI in selected ion monitoring mode. The target ions m/z 359, m/z 375, m/z 449 and m/z 419 were selected for the quantification of triptolide, tripdiolide, tripterine and IS, respectively. The linear range was 1.0-100.0 ng mL(-1), and the limits of quantification in human urine were found to be 0.1-0.5 ng mL(-1) for the three compounds. The precisions (CV%) and accuracies were 6.6-12.9 and 85.1-97.0%, respectively. The developed method could be applied to the determination of triptolide, tripdiolide and tripterine in human urine for diagnosis of the intoxication and for forensic purposes. 2008 John Wiley & Sons, Ltd.
A novel strategy for isolation and determination of sugars and sugar alcohols from conifers.
Sarvin, B A; Seregin, A P; Shpigun, O A; Rodin, I A; Stavrianidi, A N
2018-06-02
The ultrasound-assisted extraction method for isolation of 17 sugars and sugar alcohols from conifers with a subsequent hydrophilic interaction liquid chromatography-tandem mass spectrometry method for their determination is proposed. The optimization of extraction parameters was carried out using Taguchi - L 9 (3 4 ) orthogonal array experimental design for the following parameters-a methanol concentration in the extraction solution, an extraction time, a type of plant sample and an extraction temperature. The optimal ultrasound-assisted extraction conditions were-MeOH concentration - 30% (water - 70%), extraction time - 30 min, type of plant sample - II (grinded leaves 2-4 mm long), extraction temperature - 60 °C. Pure water and acetonitrile were used as eluents in gradient elution mode to separate the analytes. Direct determination of multiple sugars and sugar alcohols was carried out using a mass spectrometric detector operated in a multiple reaction monitoring mode, providing detection limits in the range between 0.1 and 20 ng/mL and good analytical characteristics of the method without derivatization. The developed approach was validated by multiple successive extraction method applied to test its performance on a series of 10 samples, i.e. 2 samples per each of 5 genera: Abies, Larix, Picea, Pinus (Pinaceae) and Juniperus (Cupressaceae), widely distributed in the boreal conifer forests of Eurasia. The novel strategy can be used for profiling of sugars and sugar alcohols in a wide range of plant species. Copyright © 2018. Published by Elsevier B.V.
Viñas, Pilar; Pastor-Belda, Marta; Torres, Aitor; Campillo, Natalia; Hernández-Córdoba, Manuel
2016-05-01
Magnetic nanoparticles of cobalt ferrite with oleic acid as the surfactant (CoFe2O4/oleic acid) were used as sorbent material for the determination of alkylphenols in fruit juices. High sensitivity and specificity were achieved by liquid chromatography and detection using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the selected reaction monitoring (SRM) mode of the negative fragment ions for alkylphenols (APs) and in positive mode for ethoxylate APs (APEOs). The optimized conditions for the different variables influencing the magnetic separation procedure were: mass of magnetic nanoparticles, 50mg, juice volume, 10mL diluted to 25mL with water, pH 6, stirring for 10min at room temperature, separation with an external neodymium magnet, desorption with 3mL of methanol and orbital shaking for 5min. The enriched organic phase was evaporated and reconstituted with 100µL acetonitrile before injecting 30µL into a liquid chromatograph with a mobile phase composed of acetonitrile/0.1% (v/v) formic acid under gradient elution. Quantification limits were in the range 3.6 to 125ngmL(-1). The recoveries obtained were in the 91-119% range, with RSDs lower than 14%. The ESI-MS/MS spectra permitted the correct identification of both APs and APEOs in the fruit juice samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Contractor, Pritesh; Gandhi, Abhishek; Solanki, Gajendra; Shah, Priyanka A; Shrivastav, Pranav S
2017-12-01
An accurate, sensitive and selective method is developed for determination of ergocalciferol (vitamin D 2 ) in human plasma using LC-MS/MS. After liquid-liquid extraction with n- hexane, ergocalciferol was derivatized by reacting with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), a strong dienophile based on Diels-Alder reaction. Ergocalciferol and its deuterated internal standard, ergocalciferol-d6, were analyzed on X Select CSH C 18 (100 mm×4.6 mm, 2.5 µm) column using acetonitrile and 0.1% (v/v) formic acid in water containing 0.14% methylamine within 6.0 min under gradient elution mode. Tandem mass spectrometry in positive ionization mode was used to quantify ergocalciferol by multiple reaction monitoring (MRM). Entire data processing was done using Watson LIMS™ software which provided excellent data integrity and high throughput with improved operational efficiency. The major advantage of this method includes higher sensitivity (0.10 ng/mL), superior extraction efficiency (≥83%) and small sample volume (100 µL) for processing. The method was linear in the concentration range of 0.10-100 ng/mL for ergocalciferol. The intra-batch and inter-batch accuracy and precision (% CV) values varied from 97.3% to 109.0% and 1.01% to 5.16%, respectively. The method was successfully applied to support a bioequivalence study of 1.25 mg ergocalciferol capsules in 12 healthy subjects.
Acoustic waves in gases with strong pressure gradients
NASA Technical Reports Server (NTRS)
Zorumski, William E.
1989-01-01
The effect of strong pressure gradients on the acoustic modes (standing waves) of a rectangular cavity is investigated analytically. When the cavity response is represented by a sum of modes, each mode is found to have two resonant frequencies. The lower frequency is near the Viaesaela-Brundt frequency, which characterizes the buoyant effect, and the higher frequency is above the ordinary acoustic resonance frequency. This finding shows that the propagation velocity of the acoustic waves is increased due to the pressure gradient effect.
Ion temperature gradient mode driven solitons and shocks
NASA Astrophysics Data System (ADS)
Zakir, U.; Adnan, Muhammad; Haque, Q.; Qamar, Anisa; Mirza, Arshad M.
2016-04-01
Ion temperature gradient (ITG) driven solitons and shocks are studied in a plasma having gradients in the equilibrium number density and equilibrium ion temperature. In the linear regime, it is found that the ion temperature and the ratio of the gradient scale lengths, ηi=Ln/LT , affect both the real frequency and the growth rate of the ITG driven wave instability. In the nonlinear regime, for the first time we derive a Korteweg de Vries-type equation for the ITG mode, which admits solitary wave solution. It is found that the ITG mode supports only compressive solitons. Further, it is noticed that the soliton amplitude and width are sensitive to the parameter ηi=Ln/LT . Second, in the presence of dissipation in the system, we obtain a Burger type equation, which admits the shock wave solution. This work may be useful to understand the low frequency electrostatic modes in inhomogeneous electron-ion plasma having density and ion temperature gradients. For illustration, the model has been applied to tokamak plasma.
Chowdhary, J; Keyes, T
2002-02-01
Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.
Dybczyński, Rajmund S; Kulisa, Krzysztof; Pyszynska, Marta; Bojanowska-Czajka, Anna
2015-03-20
Separation of Y from other rare earth elements (REE) is difficult because of similarity of its ionic radius to ionic radii of Tb, Dy and Ho. In the new RP-HPLC system with C18 column, tetra-n-butyl ammonium hydroxide (TBAOH) as an ion interaction reagent (IIR), nitrilotriacetic acid (NTA) as a complexing agent at pH=2.8-3.5, and post column derivatization with Arsenazo III, yttrium is eluted in the region of light REE, between Nd and Sm and is base line separated from Nd and Sm and even from promethium. Simple model employing literature data on complex formation of REE with NTA and based on anion exchange mechanism was developed to foresee the order of elution of individual REE. The model correctly predicted that lanthanides up to Tb will be eluted in the order of increasing Atomic Number (At.No.) but all heavier REE will show smaller retention factors than Tb. Concurrent UV/VIS detection at 658nm and the use of radioactive tracers together with γ-ray spectrometric measurements made possible to establish an unique elution order of elution of REE: La, Ce, Pr, Nd, Pm, Y, Sm, Er, Ho, Tm, Yb, Eu, Lu, Dy+Gd, Tb, Sc. The real place of Y however, in this elution series differs from that predicted by the model (Y between Sm and Eu). The method described in this work enables selective separation of Y from La, Ce, Pr, Nd, Pm, Sm and all heavier REE treated as a group. Copyright © 2015 Elsevier B.V. All rights reserved.
Purification and Characteriztion of the Type III Secretion System Protein from Burkholderia mallei
2013-08-01
official Department of the Army position unless so designated by other authorizing documents. REPORT DOCUMENTATION PAGE Form Approved OMB No...HP column), the procedure was performed in an automated mode using the following four steps: eluting through a HisTrap crude FF column, desalting
Baranowska, Irena; Adolf, Weronika; Magiera, Sylwia
2015-11-01
A sensitive, stereoselective assay using solid phase extraction and high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) was developed and validated for the analysis of enantiomers of metoprolol and its metabolites (α-hydroxymetoprolol, O-desmethylmetoprolol). Chiral separation was achieved using a CHIRALCEL OD-RH column, packed with cellulose tris-(3,5-dimethylphenyl-carbamate) stationary phase, employing a mobile phase composed by a mixture of 0.2% diethylamine in water and acetonitrile in gradient elution mode. Linear calibration curves were obtained over the range of 0.025-2.0μg/mL (R(2)>0.994) in urine for both enantiomers of metoprolol and its metabolites with quantitation limit of 0.025μg/mL. Intra and inter-day precision and accuracy were below 15% for both metoprolol and metabolites enantiomers. The recovery of enantiomer of metoprolol and its metabolite was greater than 68.0%, utilizing a SPE procedure. The method was tested with urine quality control samples and human urine fractions after administration of 50mg rac-metoprolol. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Hui-Jun; Yu, Jun-Jie; Li, Ping
2011-03-25
This study presents a high performance liquid chromatography (HPLC) with electrospray ionization mass spectrometric detection (ESI-MSD) and evaporative light scattering detection (ELSD) method for the simultaneous qualification and quantification of eight major baccharane glycosides, namely hosenlosides A, B, C, F, G, K, L, and M in Impatientis Semen, a Chinese herbal medicine derived from the seeds of Impatiens balsamina L. In order to achieve optimum performance, several extraction parameters (including extraction solvent, extraction mode, extraction time) were optimized. The baccharane glycosides were separated on a Shim-pack CLC-ODS column with gradient elution of water and methanol. Temperature for the ELSD drift tube was set at 98°C and the nitrogen flow rate was 2.7l/min. The unambiguous identities of the analytes were realized by comparing retention times and mass data with those of reference compounds. The developed method was fully validated in terms of linearity, sensitivity, precision, repeatability, recovery as well as robustness, and subsequently applied to evaluate the quality of 14 batches of Impatientis Semen commercial samples from different collections. Copyright © 2010 Elsevier B.V. All rights reserved.
He, Jun; Bo, Fang; Tu, Yaru; Azietaku, John Teye; Dou, Ting; Ouyang, Huizi; Chang, Yanxu; Liu, Hong; Gao, Xiumei
2015-10-10
A sensitive and reliable LC-MS/MS method was developed and validated for the simultaneous determination of periplocin and its two metabolites (periplocymarin and periplogenin) in rat plasma using psoralen as the internal standard (IS). After liquid-liquid extraction with ethyl acetate, chromatographic separation was performed on a C18 column with a 13 min gradient elution using 0.1% formic acid and acetonitrile as mobile phase at a flow rate of 0.3 mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the positive ionization mode. The lower limits of quantitation (LLOQs) for periplocin, periplocymarin and periplogenin were 0.5, 1 and 0.1 ng/mL, respectively. The mean recoveries of the analytes and IS were higher than 67.7%. The proposed method was successfully applied to evaluating the pharmacokinetic studies of periplocin and its metabolites (periplocymarin and periplogenin) in rats after a single oral administration of periplocin at 50 mg/kg. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhao, Liang; Lou, Zi-Yang; Zhu, Zhen-Yu; Zhang, Guo-Qing; Chai, Yi-Feng
2008-01-01
A reliable and rapid method based on rapid-resolution liquid chromatography-diode array detection (RRLC-DAD) and electrospray ionization time-of-flight mass spectrometry (ESI-TOF/MS) has been developed for the isolation and characterization of multiple constituents in the root of Stellera chamaejasme L., which was extracted by sonication with methanol in an optimized procedure. Separation of the multiple constituents was achieved on an Agilent Zorbax XDB-C18 (50x3.0 mm i.d.; 1.8 microm) column using a gradient elution at a flow rate of 0.4 mL/min. The detection wavelength was 210 nm. Mass spectra were acquired in both positive and negative modes. A formula database of the known chemical constituents in the root of Stellera chamaejasme L. was established by an Agilent software. Twenty-two obvious peaks appeared in the total ion chromatogram and nine of them were characterized by TOF/MS. The RRLC-DAD and ESI-TOF/MS method with ultrasonic extraction would be useful for rapid and effective characterization of chemical constituents in the root of Stellera chamaejasme L. Copyright (c) 2007 John Wiley & Sons, Ltd.
Chen, Xiaohong; Li, Xiaoping; Zhao, Yonggang; Pan, Shengdong; Jin, Micong
2015-07-01
A method based on ultrafast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) has been developed for the simultaneous determination of seven synthetic pigments in cooked meat product. After the cooked meat products were extracted by mixed extraction agent, purified by WAX column, the UFLC separation was performed on a Shim-pack XR-ODS II column (75 mm x 2.0 mm, 2.2 µm) with a linear gradient elution program of acetonitrile and ammonium acetate (AmAc, 5 mmol/L) as the mobile phase. Electrospray ionization was applied and operated in the negative ion mode. The limits of quantitation (LOQs) for the seven synthetic pigments were in the range of 0.7-5.0 µg/kg. The calibration curves showed good linearities for the seven analytes in their detection ranges, and the correlative coefficients (r) were more than 0.999. The recoveries were between 88.2%-106.5% with the RSDs in the range of 1.2%-5.0%. The method is sensitive, reproducible, quick and adapts to the simultaneous determination of the seven synthetic pigments in cooked meat product.
Ciegis, Paulius; Zevzikovas, Andrejus; Zevzikoviene, Augusta; Nenortiene, Palma; Kazlauskiene, Daiva
2016-01-01
The increasing drug consumption in Lithuania and all over the world makes us think about the negative consequences - the risk of toxicity. Fast and accurate identification of material that caused the poisoning reduces the probability in death cases and makes easier to determine the main cause of death. The results have shown that the most appropriate systems of solvents for qualitative analysis by TLC method of the mixture consisting of alprazolam, codeine and paracetanol are: system "D" (trichloromethane : acetone : conc. ammonia = 55 : 40 : 5 (v/v/v)) and system "F" (trichloromethane : diethyl ether: isobutanol : conc. ammonia = 50 : 30 : 15 : 5 (v/v/v/v)). For qualitative analysis of the mixture consisting of alprazolam, codeine and paracetamol by HPLC method the chromatographic column ACE C18 (25 cm x 4.6 mm x 5 µm), gradient elution mode (mixture of 3% acetic acid and methanol and the flow rate 1 mL/min have been used. The injection volume was 10 pL. Photodiode array detector (210 - 240 nm range) has been used. UV absorption spectra of materials measured using photodiode array detector have been identical to those presented in the scientific literature.
Zhang, Juzhou; Li, Jing; Shao, Dongliang; Yao, Bangben; Jiang, Junshu
2012-02-01
An effective high performance liquid chromatographic (HPLC) method has been developed for the simultaneous determination of 9 ultraviolet stabilizers in food plastic packaging materials. The food packaging samples were firstly extracted by methanol-ethyl acetate, and then purified by a C18 solid-phase extraction (SPE) column. The target compounds were separated on a ZORBAX SB-C18 column (250 mm x 4.6 mm, 5 microm) in gradient elution mode using methanol and water as mobile phases. The detection wavelength was at 310 nm. The linear plots of the nine ultraviolet stabilizers were obtained between 0.2 and 10 mg/L, with the correlation coefficients of above 0. 999 for the nine ultraviolet stabilizers. The limits of detection for this method were in the range from 0.05 to 0.1 mg/L. The recoveries spiked in commercial food plastic packaging materials were in the range of 70.2% - 89.0% with the relative standard deviations of 0.4% - 4.5%. The results indicated that the method is simple, accurate, and suitable for the simultaneous determination of the nine ultraviolet stabilizers in food plastic packaging materials.
Lin, Lin; Yang, Haifeng; Jones, Peter J H
2012-12-01
Fatty acid ethanolamides (FAE) represent a group of lipid signaling molecules associated with many physiological and pharmacological actions; however, low FAE tissue levels pose challenges in terms of analytical characterization. The objective was to develop a competent ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for analysis of multiple FAE in animal and human tissue samples. Analytes were extracted using lipid-phase and solid-phase extraction procedures. Chromatographic separation was achieved using a gradient elution in 8 min. FAE were quantified by MS/MS in positive electrospray ionization mode. Linearity was shown in lower and higher FAE concentration ranges, with a limit of quantification (LOQ) ≤0.2 ng/ml for FAE including alpha-linolenoylethanolamide (ALEA), arachidonoylethanolamide (AEA), docosahexaenoylethanolamide (DHEA), linoleoylethanolamide (LEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Accuracy was shown to be between 92.4% and 108.8%, and precision was <10% for all FAE species. In sum, this sensitive and reproducible method can be used to simultaneously determine multiple FAE at low concentrations in order to facilitate further study of the role of FAE on physiological state. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Analysis of metabolites of quercitrin in rat intestinal flora by using UPLC-ESI-Q-TOF-MS/MS].
Qin, Xiao-Li; Sun, Hui-Yuan; Yang, Wu; Li, Yong-Jun; Zheng, Lin; Liu, Ting; Huang, Yong
2017-01-01
To investigate the metabolism of quercitrin in rat intestinal flora and possible biological pathways, laying the foundation for the metabolic mechanism of traditional Chinese medicine glycosides ingredients. UPLC-Q-TOF-MS/MS method was established to detect the quercitrin and its metabolites with 0.1% formic acid solution(A)-0.1% formic acid acetonitrile(B) as the mobile phase for gradient elution at a flow rate of 0.3 mL•min⁻¹. Electrospray negative ion mode was applied to analyze the metabolites of quercitrin in rat intestinal flora. Metabolite ToolsTM, mass defect filter(MDF) and other technologies were used to screen, analyze the metabolites and infer the chemical formula of the metabolites. The results showed that quercitrin would have degalactoside, deoxygenation and acetylation reactions, and the aglycone quercetin resulted from degalactoside would have further reactions such as hydroxylation, deoxygenation, reduction, and ring opening to achieve deoxygenation metabolite kaempferol, C2-C3 double bonds hydrogenation and reduction product taxifolin, and degalactoside product quercetin. The research results showed that quercitrin can be metabolized by rat intestinal flora, which could increase their hydrophobicity and chemical diversity. Copyright© by the Chinese Pharmaceutical Association.
Polymer Analysis by Liquid Chromatography/Electrospray Ionization Time-of-Flight Mass Spectrometry.
Nielen, M W; Buijtenhuijs, F A
1999-05-01
Hyphenation of liquid chromatography (LC) techniques with electrospray ionization (ESI) orthogonal acceleration time-of-flight (oa-TOF) mass spectrometry (MS) provides both MS-based structural information and LC-based quantitative data in polymer analysis. In one experimental setup, three different LC modes are interfaced with MS: size-exclusion chromatography (SEC/MS), gradient polymer elution chromatography (GPEC/MS), and liquid chromatography at the critical point of adsorption (LCCC/MS). In SEC/MS, both absolute mass calibration of the SEC column based on the polymer itself and determination of monomers and end groups from the mass spectra are achieved. GPEC/MS shows detailed chemical heterogeneity of the polymer and the chemical composition distribution within oligomer groups. In LCCC/MS, the retention behavior is primarily governed by chemical heterogeneities, such as different end group functionalities, and quantitative end group calculations can be easily made. The potential of these methods and the benefit of time-of-flight analyzers in polymer analysis are discussed using SEC/MS of a polydisperse poly(methyl methacrylate) sample, GPEC/MS of dipropoxylated bisphenol A/adipic acid polyester resin, LCCC/MS of alkylated poly(ethylene glycol), and LCCC/MS of terephthalic acid/neopentyl glycol polyester resin.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Sangeetha, D.; Kalyanraman, L.
2017-11-01
For determination of process related impurities and degradation products of asenapine maleate in asenapine sublingual Tablets, a reversed phase, stability indicating UPLC method was developed. Acetonitrile, methanol and potassium dihydrogen phosphate buffer with tetra-n- butyl ammonium hydrogen sulphate as ion pair (pH 2.2; 0.01 M) at flow rate of 0.2 ml/min were used in gradient elution mode. Separation was achieved by using acquity BEH Shield RP18 column (1.7 μm, 2.1 mm×100 mm) at 35 ºC. UV detection was performed at 228 nm. Subsequently the liquid chromatography method was validated as per ICH. The drug product was exposed to the stress conditions of acid hydrolysis, base hydrolysis, water hydrolysis, oxidative, thermal, and photolytic. In oxidative stress and thermal stress significant degradation was observed. All the degradation products were well separated from analyte peak and its impurities. Stability indicating nature of the method was proved by demonstrating the peak purity of Asenapine peak in all the stressed samples. The mass balance was found >95% for all the stress conditions. Based on method validation, the method was found specific, linear, accurate, precise, rugged and robust.
Li, Man; Liu, Xiao; Cai, Hao; Shen, Zhichun; Xu, Liu; Li, Weidong; Wu, Li; Duan, Jinao; Chen, Zhipeng
2016-12-16
Yuanhuacine was found to have significant inhibitory activity against A-549 human lung cancer cells. However, there would be serious adverse toxicity effects after systemic administration of yuanhuacine, such as by oral and intravenous ways. In order to achieve better curative effect and to alleviate the adverse toxicity effects, we tried to deliver yuanhuacine directly into the lungs. Ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) was used to detect the analyte and IS. After extraction (ether:dichloromethane = 8:1), the analyte and IS were separated on a Waters BEH-C 18 column (100 mm × 2.1 mm, 1.7 μm) under a 5 min gradient elution using a mixture of acetonitrile and 0.1% formic acid aqueous solution as mobile phase at a flow rate of 0.3 mL/min. ESI positive mode was chosen for detection. The method was fully validated for its selectivity, accuracy, precision, stability, matrix effect, and extraction recovery. This new method for yuanhuacine concentration determination in rat plasma was reliable and could be applied for its preclinical and clinical monitoring purpose.
Hetrick, Evan M; Kramer, Timothy T; Risley, Donald S
2017-03-17
Based on a column-screening exercise, a column ranking system was developed for sample mixtures containing any combination of 26 sugar and sugar alcohol analytes using 16 polar stationary phases in the HILIC mode with acetonitrile/water or acetone/water mobile phases. Each analyte was evaluated on the HILIC columns with gradient elution and the subsequent chromatography data was compiled into a statistical software package where any subset of the analytes can be selected and the columns are then ranked by the greatest separation. Since these analytes lack chromophores, aerosol-based detectors, including an evaporative light scattering detector (ELSD) and a charged aerosol detector (CAD) were employed for qualitative and quantitative detection. Example qualitative applications are provided to illustrate the practicality and efficiency of this HILIC column ranking. Furthermore, the design-space approach was used as a starting point for a quantitative method for the trace analysis of glucose in trehalose samples in a complex matrix. Knowledge gained from evaluating the design-space led to rapid development of a capable method as demonstrated through validation of the following parameters: specificity, accuracy, precision, linearity, limit of quantitation, limit of detection, and range. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Ting-Ting; Wu, Yi; Hang, Tai-Jun
2009-05-01
To establish a stable and repeatable HPLC fingerprint standard and evaluate the flavonoids from Houttuynia cordata qualitatively and quantitatively. HPLC separation was performed on a C18 column with methanol-0.1% phosphoric acid mixed solution as mobile phase in gradient elution mode. The fingerprint reference was determined as one of the most typical chromatograms and used to be compared with other samples through Cosine and Relative Euclid Distance methods, thus the chromatographic fingerprints of flavonoids from Houttuynia cordata were evaluated by constitutes and contents, respectively. Fourteen mutual peaks were fixed in the HPLC fingerprint of flavonoids from Houttaynia cordata. It showed good results in validation tests in which the quercitrin's peak was set as the reference peak to calculate relative retention time and area of other peaks in the chromatograms, and the RSD were less than 0.2% and 5.0%, respectively. The linear ranges for quercitrin was 1.07-83.4 microg/mL (r=0.9999) and the average recovery was 100.3%. The method shows good repeatability, ruggedness and reliability. Comparing with the established reference fingerprint, the evaluation system including Cosine and Relative Euclid Distance methods lays dependable foundation for controlling the quality of Houttuynia cordata.
Viñas, Pilar; Campillo, Natalia; Pastor-Belda, Marta; Oller, Ainhoa; Hernández-Córdoba, Manuel
2015-01-09
Phthalic acid esters (PEs) were preconcentrated from cleaning products, detergents and cosmetics using ultrasound assisted extraction (UAE) in the presence of acetonitrile, and then submitted to dispersive liquid-liquid microextraction (DLLME). For DLLME, 3mL of acetonitrile extract, 150μL carbon tetrachloride and 10mL aqueous solution were used. The enriched organic phase was evaporated, reconstituted with 25μL acetonitrile and injected into a liquid chromatograph with a mobile phase (acetonitrile:10mM ammonium acetate, pH 4) under gradient elution. Detection was carried out using both diode-array (DAD) and electrospray-ion trap-tandem mass spectrometry (ESI-IT-MS/MS) in the multiple reaction monitoring mode (MRM) of the positive fragment ions. Quantification was carried out using matrix-matched standards. Detection limits were in the range 0.04-0.45ngmL(-1) for the six PEs considered. The recoveries obtained were in the 84-124% range, with RSDs lower than 10%. Thirty three different cleaning products were analyzed. The most frequently found compound was diethyl phthalate. Copyright © 2014 Elsevier B.V. All rights reserved.
Shan, Chen-Xiao; Cui, Xiao-Bing; Yu, Sheng; Chai, Chuan; Wen, Hong-Mei; Wang, Xin-Zhi; Sun, Xue
2016-01-01
3,4-Divanillyltetrahydrofuran is the main active ingredient of nettle root which can increase steroid hormones in the bloodstream for many of bodybuilders. To better understand its pharmacological activities, we need to determine its pharmacokinetic profiles. In this study, a rapid and sensitive ultra-fast liquid chromatography-tandem mass spectrometry (UFLC-MS/MS) method has been developed for the determination of 3,4-divanillyltetrahydrofuran in the plasma of rats. Chromatographic separation was performed on a C18 column at 40°C, with a gradient elution consisting of methanol and water containing 0.3% (v/v) formic acid at a flow rate of 0.8mL/min. The detection was performed using an electrospray triple-quadrupole MS/MS via positive ion multiple reaction monitoring mode. The lower limits-of-quantification determined were 0.5ng/mL. The intra- and inter-day precision (RSD%) was found to be within 15% and the accuracy (RE%) ranged from -4.0% to 7.0%. This simple yet sensitive method was fully validated and could be successfully applied to the study on pharmacokinetics of 3, 4-divanillyltetrahydrofuran. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Jing; Pan, Hefang; Liu, Zhengzheng; Ge, Fei
2009-03-20
A novel method has been developed for the determination of alkylphenols in soil by ultra-high-pressure liquid chromatography employing small particle sizes, combined with tandem mass spectrometry. Soil samples were extracted with pressurized liquid extraction (PLE) and then cleaned with solid-phase extraction (SPE). The extracts were separated on C18 column (1.7 microm, 50 mm x 2.1mm) with a gradient elution and a mobile phase consisting of water and acetonitrile, and then detected by an electrospray ionization tandem mass spectrometry in negative ion mode with multiple reaction monitoring (MRM). Compared with traditional liquid chromatography, it took ultra-high-pressure liquid chromatography much less time to analyze alkylphenols. Additionally, the ultra-high-pressure liquid chromatography/tandem mass spectrometry method produces satisfactory reliability, sensitivity, and accuracy. The average recoveries of the three target analytes were 74.0-103.4%, with the RSD<15%. The calibration curves for alkylphenols were linear within the range of 0.01-0.4 microg/ml, with the correlation coefficients greater than 0.99. When 10 g soil sample was used for analysis, the limits of quantification (LOQs) of the three alkylphenols were all 1.0 microg/kg.
Green, Curtis O; Wheatley, Andrew O; Osagie, Anthony U; St A Morrison, Errol Y; Asemota, Helen N
2007-01-01
The concentrations of the polymethoxylated flavones (PMFs) in peels of selected citrus cultivars grown in Jamaica and Mexico were determined. The PMFs were extracted from sun-dried citrus peels with reagent-grade methanol. Analyses were carried out by reverse-phase HPLC and UV detection. The column used was a C(18) 5 microm (150 x 4.6 mm) Discovery column. Elution was in the gradient mode, using a ternary mobile phase. The results showed that all the citrus cultivars used contained at least three of the six major PMFs quantified. Ortanique peel contained the highest quantity of PMFs (34,393 +/- 272 ppm), followed by tangerine (28,389 +/- 343 ppm) and Mexican sweet orange (sample 1; 21,627 +/- 494 ppm). The major PMFs, i.e. sinensetin, nobiletin, tangeretin, heptamethoxyflavone, tetramethylscutellarein and hexamethyl-o-quercetagetin, present in the peels of 20 citrus cultivars, was quantified. The results were compared with those of Florida citrus peels. A large amount of citrus peels and byproducts are produced in the Caribbean which could provide a cheap and convenient source of PMFs. Copyright 2006 John Wiley & Sons, Ltd.
Bhatta, R S; Kumar, D; Chhonker, Y S; Jain, G K
2011-09-01
A sensitive and selective liquid chromatography/tandem mass spectrometric method was developed for simultaneous determination of E- and Z-guggulsterone isomers (antihyperlipidemic drug) in rabbit plasma. Both the isomers were resolved on a Symmetry-Shield C(18) (5 µm, 4.6 × 150 mm) column, using gradient elution comprising a mobile phase of methanol, 0.5% v/v formic acid and acetonitrile. With dexamethasone as internal standard, plasma samples were extracted by an automated solid-phase extraction method using C(18) cartridges. Detection was performed by electrospray ionization in multiple reaction monitoring (MRM) in positive mode. The calibration curve was linear over the concentration range of 1.56-200 ng/mL (r(2) ≥ 0.998) for both analytes. The intra-day and inter-day accuracy and precision were within -0.96 to 4.12 (%bias) and 2.73 to 8.00 (%RSD) respectively. The analytes were stable after three freeze-thaw cycles. The method was successfully applied to study steriospecific pharmacokinetics of E- and Z-guggulsterone in NZ rabbit. Copyright © 2011 John Wiley & Sons, Ltd.
Vikingsson, Svante; Strömqvist, Malin; Svedberg, Anna; Hansson, Johan; Höiom, Veronica; Gréen, Henrik
2016-08-01
A novel, rapid and sensitive liquid chromatography tandem-mass spectrometry method for quantification of vemurafenib in human plasma, that also for the first time allows for metabolite semi-quantification, was developed and validated to support clinical trials and therapeutic drug monitoring. Vemurafenib was analysed by precipitation with methanol followed by a 1.9 min isocratic liquid chromatography tandem masspectrometry analysis using an Acquity BEH C18 column with methanol and formic acid using isotope labelled internal standards. Analytes were detected in multireaction monitoring mode on a Xevo TQ. Semi-quantification of vemurafenib metabolites was performed using the same analytical system and sample preparation with gradient elution. The vemurafenib method was successfully validated in the range 0.5-100 μg/mL according to international guidelines. The metabolite method was partially validated owing to the lack of commercially available reference materials. For the first time concentration levels at steady state for melanoma patients treated with vemurafenib is presented. The low abundance of vemurafenib metabolites suggests that they lack clinical significance. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Histamine quantification in human plasma using high resolution accurate mass LC-MS technology.
Laurichesse, Mathieu; Gicquel, Thomas; Moreau, Caroline; Tribut, Olivier; Tarte, Karin; Morel, Isabelle; Bendavid, Claude; Amé-Thomas, Patricia
2016-01-01
Histamine (HA) is a small amine playing an important role in anaphylactic reactions. In order to identify and quantify HA in plasma matrix, different methods have been developed but present several disadvantages. Here, we developed an alternative method using liquid chromatography coupled with an ultra-high resolution and accurate mass instrument, Q Exactive™ (Thermo Fisher) (LCHRMS). The method includes a protein precipitation of plasma samples spiked with HA-d4 as internal standard (IS). LC separation was performed on a C18 Accucore column (100∗2.1mm, 2.6μm) using a mobile phase containing nonafluoropentanoic acid (3nM) and acetonitrile with 0.1% (v/v) formic acid on gradient mode. Separation of analytes was obtained within 10min. Analysis was performed from full scan mode and targeted MS2 mode using a 5ppm mass window. Ion transitions monitored for targeted MS2 mode were 112.0869>95.0607m/z for HA and 116.1120>99.0855m/z for HA-d4. Calibration curves were obtained by adding standard calibration dilution at 1 to 180nM in TrisBSA. Elution of HA and IS occurred at 4.1min. The method was validated over a range of concentrations from 1nM to 100nM. The intra- and inter-run precisions were <15% for quality controls. Human plasma samples from 30 patients were analyzed by LCHRMS, and the results were highly correlated with those obtained using the gold standard radioimmunoassay (RIA) method. Overall, we demonstrate here that LCHRMS is a sensitive method for histamine quantification in biological human plasmas, suitable for routine use in medical laboratories. In addition, LCHRMS is less time-consuming than RIA, avoids the use of radioactivity, and could then be considered as an alternative quantitative method. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Upper hybrid wave excitation due to O-mode interaction with density gradient in the ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antani, S.N.; Kaup, D.J.; Rao, N.N.
1995-12-31
It has been well recognized that upper hybrid (UH) waves play a key role in various wave processes occurring in the upper hybrid resonance (UHR) region of the ionosphere leading to the observed stimulated electromagnetic emissions (SEE) during artificial heating by ordinary mode (O-mode) electromagnetic waves. Hence it is important to investigate how the UH waves get excited from the incident O-mode. It has been generally suggested that the UH waves are excited by O-mode interaction with nonuniform ionospheric plasma. For instance, direct conversion of the O-mode into UH waves due to pre-existing short scale irregularities was reported earlier. Heremore » the authors consider the role of large-scale, smooth density gradient in exciting the UH waves from the O-mode. The model used is that of a driven harmonic oscillator in which the source term arises from the O-mode interaction with local density gradient. For a slab model with density gradient in the x-direction, and the geomagnetic field in the z-direction, they obtain an inhomogeneous fourth order ordinary differential equation governing the UH wave excitation. This equation has been analyzed in the vicinity of the UHR. The pertinent solutions will be presented and discussed for the typical parameters of heating experiments.« less
Hammann, Simon; Conrad, Jürgen; Vetter, Walter
2015-06-12
Countercurrent chromatography (CCC) is a technique, which uses two immiscible liquid phases for a separation process in a long and hollow tube. The technique allows the separation of high amounts of sample (50mg to several grams) with a low consumption of solvents. In this study, we fractionated 50mg technical octabromodiphenyl ether (DE-79) and analyzed the fractions by gas chromatography with mass spectrometry (GC/MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy. CCC separations were performed with n-hexane/acetonitrile as solvent system in tail-to-head (i.e. the upper phase is mobile) mode. Twelve CCC fractions were studied for the PBDE composition. CCC elution of PBDE congeners was dependent both on the degree of bromination and substitution pattern. Higher brominated congeners eluted faster than lower brominated congeners and isomers with vicinal hydrogen atoms eluted last. In addition to several known PBDE congeners in DE-79, we were able to unequivocally identify BDE 195 in DE-79 and we could verify the presence of BDE 184. Finally, we also established the online hyphenation of CCC with (1)H NMR. The use of deuterated solvents could be avoided by using n-hexane/acetonitrile as two-phase system. By online CCC-(1)H NMR in stop-flow mode we were able to detect eight PBDE congeners in the mixture. Copyright © 2015 Elsevier B.V. All rights reserved.
Qi, Chao; Cai, Qianqian; Zhao, Pan; Jia, Xiuna; Lu, Nan; He, Lu; Hou, Xiaohong
2016-06-03
Metal-organic framework MIL-101(Cr) was successfully used as an efficient sorbent in a vortex-assisted dispersive solid-phase extraction (VA-DSPE) and applied for the determination and the pharmacokinetic of imatinib mesylate in rat plasma by UPLC-MS/MS. In the enrichment of imatinib from rat plasma, the analyte was efficiently adsorbed on MIL-101(Cr) and simply recovered by using initial mobile phase (0.1% formic acid-methanol (6:4 v/v)) as elution solvent. Meanwhile, the protein in the plasma samples was excluded from the porous structure of MIL-101(Cr), leading to direct extraction of drug molecule from protein-rich biological samples without any other pretreatment procedure. After being removed, the supernatant was filtered and directly injected into the UPLC-MS/MS for the analysis of the target. The experimental parameters, including nature of MOFs, amount of MIL-101(Cr), pH value of aqueous solution, extraction time, type and volume of elution solvent, were systematically optimized. After VA-DSPE, chromatographic separation was performed on an ACQUITY UPLC(®) BEH C18 column (2.1mm×100mm, 1.7μm) with a 3min gradient elution using 0.1% formic acid and methanol as mobile phase at a flow rate of 0.3mL/min. The detection was accomplished on a tandem mass spectrometer via an electrospray ionization (ESI) source by multiple reaction monitoring (MRM) in the positive ionization mode. The lower limit of quantification of 1ng/mL was achieved and the mean recovery of the analyte was higher than 81.2%. Moreover, computational simulation was primarily applied to predict the adsorption behavior and revealed the molecular interactions and free binding energies between MIL-101(Cr) and imatinib with the molecular modeling method, providing certain explanation of the adsorption mechanism. The originally established pretreatment and detection method has some merits, such as less solvent consumption, easy operation, higher sensitivity and lower matrix effect. And the MIL-101(Cr) exhibited a potential as an efficient sorbent in the enrichment of the analyte from complex biosamples. Copyright © 2016 Elsevier B.V. All rights reserved.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James; Sarff, John; Ding, Weixing; Brower, David; Parke, Eli; Chapman, Brett; Terry, Paul; Pueschel, M. J.; Williams, Zach
2017-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM). Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking, which are suppressed via inductive control for this work. The improved confinement is associated with an increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have f 50 kHz, kϕρs < 0.14 , and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in global tearing mode associated fluctuations, their amplitude increases with local density gradient, and they exhibit a density-gradient threshold at R /Ln 15 . The GENE code, modified for the RFP, predicts the onset of density-gradient-driven TEM for these strong-gradient plasma conditions. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations, comparable to experimental magnetic fluctuations, causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Work supported by US DOE.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Shibasaki, Hiromi; Okamoto, Sawako; Inoue, Risako; Okita, Misato; Yokokawa, Akitomo; Furuta, Takashi
2012-03-01
The present study developed an high-performance liquid chromatography (HPLC) method for the simultaneous determination of urinary metabolites of endogenous cortisol, 6α-hydroxycortisol (6α-OHF) and 6β-hydroxycortisol (6β-OHF), in human urine, using 6α-hydroxycorticosterone as internal standard. 6α-OHF and 6β-OHF were extracted from urine with ethyl acetate by using a Sep-Pak C(18) plus cartridge. Separation of the stereoisomers was achieved on a reversed-phase hybrid column by a gradient elution of (A) 0.05 M KH(2)PO(4)-0.01 M CH(3)COOH (pH 3.77) and (B) 0.05 M KH(2)PO(4)-0.01 M CH(3)COOH/acetonitrile (2:3, v/v). 6α-OHF and 6β-OHF were well separated on an XTerra MS C(18) 5 μm column using two types of stepwise gradient elution program (programs 2 and 3). Resolutions of 6α-OHF and 6β-OHF were Rs = 4.41 for program 2 and Rs = 4.60 for program 3. The analysis was performed within 23~26 min, monitored by UV absorbance at 239 nm. The lower limits of detection of 6α-OHF and 6β-OHF were 0.80 ng per injection (s/n = ca. 8), and the lower limits of quantification were 5.02 ng/ml for 6α-OHF and 41.08 ng/ml for 6β-OHF, respectively. The within-day reproducibilities in the amounts of 6α-OHF and 6β-OHF determined were in good agreement with the actual amounts added, the relative errors being -5.37% and -3.73% (gradient 2) and -5.69% and -3.96% (gradient 3) for both 6α-OHF and 6β-OHF, respectively. The inter-assay precisions (RSDs) for 6α-OHF and 6β-OHF were less than 1.99% (gradient 2) and 2.61% (gradient 3), respectively. The present HPLC method was applied to the measurement of 6α-OHF and 6β-OHF in urine to evaluate the time courses of 6α-hydroxylation and 6β-hydroxylation clearances of cortisol during 40 days for phenotyping CYP3A in a healthy subject.
High-performance cation-exchange chromatofocusing of proteins.
Kang, Xuezhen; Frey, Douglas D
2003-03-28
Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.
Andrade-Eiroa, Auréa; Diévart, Pascal; Dagaut, Philippe
2010-04-15
A new procedure for optimizing PAHs separation in very complex mixtures by reverse phase high performance (RPLC) is proposed. It is based on changing gradually the experimental conditions all along the chromatographic procedure as a function of the physical properties of the compounds eluted. The temperature and speed flow gradients allowed obtaining the optimum resolution in large chromatographic determinations where PAHs with very different medium polarizability have to be separated. Whereas optimization procedures of RPLC methodologies had always been accomplished regardless of the physico-chemical properties of the target analytes, we found that resolution is highly dependent on the physico-chemical properties of the target analytes. Based on resolution criterion, optimization process for a 16 EPA PAHs mixture was performed on three sets of difficult-to-separate PAHs pairs: acenaphthene-fluorene (for the optimization procedure in the first part of the chromatogram where light PAHs elute), benzo[g,h,i]perylene-dibenzo[a,h]anthracene and benzo[g,h,i]perylene-indeno[1,2,3-cd]pyrene (for the optimization procedure of the second part of the chromatogram where the heavier PAHs elute). Two-level full factorial designs were applied to detect interactions among variables to be optimized: speed flow, temperature of column oven and mobile-phase gradient in the two parts of the studied chromatogram. Experimental data were fitted by multivariate nonlinear regression models and optimum values of speed flow and temperature were obtained through mathematical analysis of the constructed models. An HPLC system equipped with a reversed phase 5 microm C18, 250 mm x 4.6mm column (with acetonitrile/water mobile phase), a column oven, a binary pump, a photodiode array detector (PDA), and a fluorimetric detector were used in this work. Optimum resolution was achieved operating at 1.0 mL/min in the first part of the chromatogram (until 45 min) and 0.5 mL/min in the second one (from 45 min to the end) and by applying programmed temperature gradient (15 degrees C until 30 min and progressively increasing temperature until reaching 40 degrees C at 45 min). (c) 2009 Elsevier B.V. All rights reserved.
Ghareeb, Hewa Othman; Radke, Wolfgang
2013-11-06
A two-dimensional liquid chromatographic method (2D LC) was developed to analyze the heterogeneities of cellulose acetates (CA) in the DS-range DS=1.5-2.9 with respect to both, molar mass and degree of substitution (DS). The method uses gradient liquid chromatography (HPLC) as the first dimension in order to separate by DS followed by separation of the different fractions by size (SEC) in the second dimension. The 2D experiments revealed different correlations between gradient and SEC elution volume. These correlations might arise from differences in the synthetic conditions. The newly developed 2D LC separation therefore provides new insights into the heterogeneity of CAs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi
2018-01-19
An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.
Diallo, A.; Groebner, R. J.; Rhodes, T. L.; ...
2015-05-15
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. When using fast Thomson scattering measurements, we found that the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the density gradient compared to the temperature gradient. The temperature gradient appears to provide a drive for the onset of quasi-coherent fluctuations (as measured with the magnetic probe and the density diagnostics) localized in the pedestal. The amplitude evolution of these QCFs tracks the temperature gradient evolution includingmore » its saturation. Such correlation suggests that these QCFs play a key role in limiting the pedestal temperature gradient. Moreover, the saturation of the QCFs coincides with the pressure gradient reaching the kinetic-ballooning mode (KBM) critical gradient as predicted by EPED1. Furthermore, linear microinstability analysis using GS2 indicates that the steep gradient is near the KBM threshold. Finally, the modeling and the observations together suggest that QCFs are consistent with dominant KBMs, although microtearing cannot be excluded as subdominant.« less
Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao
2015-01-14
Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.
Mills, M.S.; Thurman, E.M.; Pedersen, M.J.
1993-01-01
Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).
Role of turbulence regime on determining the local density gradient
Wang, X.; Mordijck, Saskia; Doyle, E. J.; ...
2017-11-16
In this study we show that the local density gradient in the plasma core depends on the calculated mode-frequency of the most unstable linear mode and reaches a maximum when this frequency is close to zero. Previous theoretical and experimental work on AUG has shown that the ratio of electron to ion temperature, and as such the frequency of the dominant linear gyrokinetic mode, affects the local density gradient close to ρ = 0.3 [1, 2]. On DIII-D we find that by adding Electron Cyclotron Heating (ECH), we modify the dominant unstable linear gyro kinetic mode from an Ion Temperaturemore » Gradient (ITG) mode to a Trapped Electron Mode (TEM), which means that the frequency of the dominant mode changes sign (from the ion to the electron direction). Local density peaking around mid-radius increases by 50% right around the cross-over between the ITG and TEM regimes. By comparing how the particle flux changes, through the derivative of the electron density, n e, with respect to time, ∂n e/∂t, we find that the particle flux also exhibits the same trend versus mode frequency. As a result, we find that the changes in local particle transport are inversely proportional to the changes in electron density, indicating that the changes are driven by a change in thermo-diffusive pinch.« less
Rodriguez-Aller, Marta; Guillarme, Davy; Beck, Alain; Fekete, Szabolcs
2016-01-25
The goal of this work is to provide some recommendations for method development in HIC using monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs) as model drug candidates. The effects of gradient steepness, mobile phase pH, salt concentration and type, as well as organic modifier were evaluated for tuning selectivity and retention in HIC. Except the nature of the stationary phase, which was not discussed in this study, the most important parameter for modifying selectivity was the gradient steepness. The addition of organic solvent (up to 15% isopropanol) in the mobile phase was also found to be useful for mAbs analysis, since it could provide some changes in elution order, in some cases. On the contrary, isopropanol was not beneficial with ADCs, since the most hydrophobic DAR species (DAR6 and DAR8) cannot be eluted from the stationary phase under these conditions. This study also illustrates the possibility to perform HIC method development using optimization software, such as Drylab. The optimum conditions suggested by the software were tested using therapeutic mAbs and commercial cysteine linked ADC (brentuximab-vedotin) and the average retention time errors between predicted and experimental retention times were ∼ 1%. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, T; Wu, D
2011-10-01
A method of gradient elution high-performance liquid chromatography (HPLC) for simultaneous determination of 11 different ultraviolet-absorbing chemicals of phenylbenzlmldazole sulphonic acid, 4-aminobenzoic acid, benzophenone-4, benzophenone-3, isoamyl p-methoxycinnamate, 4-methylbenzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, homosalate, ethylhexyl salicylate, methylene bis-benzotriazolyl tetramethylbutyl phenol was developed for the application to sunscreen cosmetic products. In this study, an Agilent SB-C18 analytical column (250 × 4.6 mm, 5 μm) was utilized and methanol, tetrahydrofuran and perchloric acid aqueous solution (0.2 mL HClO(4) + 300 mL H(2)O) were used for gradient elution at a total flow rate of 1.0 mL min(-1). The optimum conditions for 11 different ultraviolet-absorbing chemicals analyses were investigated. All calibration curves showed good linear regression with UV detection (311 nm) within test ranges. The correlation coefficients were better than 0.999 in all cases. The assay was simple, selective, convenient and reproducible and is suitable for the determination of ultraviolet-absorbing chemicals in commercial sunscreen cosmetic products. The use frequency of 11 different ultraviolet absorbents in 100 sunscreen cosmetics was investigated and statistically analysed. The ultraviolet absorbent of maximum use frequency was ethylhexyl methoxycinnamate. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Bhambure, Rahul; Gupta, Darpan; Rathore, Anurag S
2013-11-01
Methionine oxidized, reduced and fMet forms of a native recombinant protein product are often the critical product variants which are associated with proteins expressed as bacterial inclusion bodies in E. coli. Such product variants differ from native protein in their structural and functional aspects, and may lead to loss of biological activity and immunogenic response in patients. This investigation focuses on evaluation of multimodal chromatography for selective removal of these product variants using recombinant human granulocyte colony stimulating factor (GCSF) as the model protein. Unique selectivity in separation of closely related product variants was obtained using combined pH and salt based elution gradients in hydrophobic charge induction chromatography. Simultaneous removal of process related impurities was also achieved in flow-through leading to single step purification process for the GCSF. Results indicate that the product recovery of up to 90.0% can be obtained with purity levels of greater than 99.0%. Binding the target protein at pH
Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier
2014-09-01
Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed.
Alexander, Anthony J; Ma, Lianjia
2009-02-27
This paper focuses on the application of RPLC x RPLC to pharmaceutical analysis and addresses the specific problem of separating co-eluting impurities/degradation products that maybe "hidden" within the peak envelope of the active pharmaceutical ingredient (API) and thus may escape detection by conventional methods. A comprehensive two-dimensional liquid chromatograph (LC x LC) was constructed from commercially available HPLC equipment. This system utilizes two independently configurable 2nd dimension binary pumping systems to deliver independent flow rates, gradient profiles and mobile phase compositions to dual Fused-Core secondary columns. Very fast gradient separations (30s total cycle time) were achieved at ambient temperature without excessive backpressure and without compromising optimal 1st dimension sampling rates. The operation of the interface is demonstrated for the analysis of a 1mg/ml standard mixture containing 0.05% of a minor component. The practicality of using RPLC x RPLC for the analysis of actual co-eluting pharmaceutical degradation products, by exploiting pH-induced changes in selectivity, is also demonstrated using a three component mixture. This mixture (an API, an oxidation product of the API at 1.0%, w/w, and a photo degradant of the API at 0.5%, w/w) was used to assess the stability indicating nature of an established LC method for analysis of the API.
Xu, Zhihao; Li, Jason; Zhou, Joe X
2012-01-01
Aggregate removal is one of the most important aspects in monoclonal antibody (mAb) purification. Cation-exchange chromatography (CEX), a widely used polishing step in mAb purification, is able to clear both process-related impurities and product-related impurities. In this study, with the implementation of quality by design (QbD), a process development approach for robust removal of aggregates using CEX is described. First, resin screening studies were performed and a suitable CEX resin was chosen because of its relatively better selectivity and higher dynamic binding capacity. Second, a pH-conductivity hybrid gradient elution method for the CEX was established, and the risk assessment for the process was carried out. Third, a process characterization study was used to evaluate the impact of the potentially important process parameters on the process performance with respect to aggregate removal. Accordingly, a process design space was established. Aggregate level in load is the critical parameter. Its operating range is set at 0-3% and the acceptable range is set at 0-5%. Equilibration buffer is the key parameter. Its operating range is set at 40 ± 5 mM acetate, pH 5.0 ± 0.1, and acceptable range is set at 40 ± 10 mM acetate, pH 5.0 ± 0.2. Elution buffer, load mass, and gradient elution volume are non-key parameters; their operating ranges and acceptable ranges are equally set at 250 ± 10 mM acetate, pH 6.0 ± 0.2, 45 ± 10 g/L resin, and 10 ± 20% CV respectively. Finally, the process was scaled up 80 times and the impurities removal profiles were revealed. Three scaled-up runs showed that the size-exclusion chromatography (SEC) purity of the CEX pool was 99.8% or above and the step yield was above 92%, thereby proving that the process is both consistent and robust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Megan; Nordmeyer, Robert A.; Cornell, Earl
2009-10-02
To facilitate a direct interface between protein separation by PAGE and protein identification by mass spectrometry, we developed a multichannel system that continuously collects fractions as protein bands migrate off the bottom of gel electrophoresis columns. The device was constructed using several short linear gel columns, each of a different percent acrylamide, to achieve a separation power similar to that of a long gradient gel. A Counter Free-Flow elution technique then allows continuous and simultaneous fraction collection from multiple channels at low cost. We demonstrate that rapid, high-resolution separation of a complex protein mixture can be achieved on this systemmore » using SDS-PAGE. In a 2.5 h electrophoresis run, for example, each sample was separated and eluted into 48-96 fractions over a mass range of 10-150 kDa; sample recovery rates were 50percent or higher; each channel was loaded with up to 0.3 mg of protein in 0.4 mL; and a purified band was eluted in two to three fractions (200 L/fraction). Similar results were obtained when running native gel electrophoresis, but protein aggregation limited the loading capacity to about 50 g per channel and reduced resolution.« less
Watanabe, Yasushi
2018-03-02
The performance of ion-exchange chromatography combined with small-angle X-ray scattering measurement was evaluated by characterization of the hen egg white lysozyme as a model protein. The X-ray transmittance was estimated using a micro-ionization chamber equipped with a sample cell holder for the real-time monitoring of the X-ray beam strength through the salt gradient elution. The radius of gyration of the eluted protein was estimated to be 1.50 ± 0.06 (n = 3) nm and 1.4 ± 0.1 nm as the value at the zero protein concentration. By using the X-ray transmittance values for the scattering intensity correction, the molecular weight of the eluted protein was estimated to be 15,200 ± 500 (n = 3) and 14,400 ± 200 as the value at the zero protein concentration. These values are close to those of the monomer of this protein. The ion-exchange chromatography combined with the small-angle X-ray scattering measurement system equipped with the X-ray transmittance monitor is a reliable method for protein characterization in solution. Copyright © 2018 Elsevier B.V. All rights reserved.
Transport modes during crystal growth in a centrifuge
NASA Technical Reports Server (NTRS)
Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.
1992-01-01
Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.
Gritti, Fabrice
2016-11-18
An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.
Shi, Zhihong; Li, Zhimin; Zhang, Shulan; Fu, Hongna; Zhang, Hongyi
2015-09-01
Based on the phase separation phenomenon of acetonitrile-water system at subzero temperature, a subzero-temperature liquid-liquid extraction coupled with ultra-performance liquid chromatography tandem quadrupole mass spectrometry : UPLC-MS-MS) method was developed for the simultaneous determination of 12 bioactive components in Gegen-Qinlian decoction. After optimization, the extraction conditions were set as follows: 3.0 mL of aqueous sample solution (pH 5.86) was extracted with 2 mL of acetonitrile at -35°C for 35 min. The separated acetonitrile phase was diluted 10-fold with water before UPLC-MS-MS analysis. Separation was performed on a Waters ACQUITY UPLC(®)BEH C18 column (2.1 × 100 mm i.d., 1.7 µm) with ammonium formate buffer solution (20 mmol L(-1), pH 3.2, adjusted by formic acid) and acetonitrile as mobile phase with gradient elution. Twelve target components could be separated within 10 min and quantified in multiple reaction monitoring mode, both positive and negative ionization modes were employed. Limits of detection were in the range of 0.0003-0.0451 μg mL(-1). Relative standard deviation values for intra- and interday precision were <2.71 and 8.94%, respectively. The established method provides a simple and effective framework for the quality control of Gegen-Qinlian decoction and related traditional Chinese medicinal preparations. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wang, Xiaofan; Zhao, Xu; Gu, Liqiang; Lv, Chunxiao; He, Bosai; Liu, Zhenzhen; Hou, Pengyi; Bi, Kaishun; Chen, Xiaohui
2014-03-15
A simple and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) method has been developed for the simultaneous determination of five free flavonoids (amentoflavone, isorhamnetin, naringenin, kaempferol and quercetin) and their total (free and conjugated) forms, and to compare the pharmacokinetics of these active ingredients in normal and hyperlipidemic rats. The free and total forms of these flavonoids were extracted by liquid-liquid extraction with ethyl acetate. The conjugated flavonoids were deconjugated by the enzyme β-Glucuronidase and Sulfatase. Chromatographic separation was accomplished on a ZORBAX Eclipse XDB-C8 USP L7 column using gradient elution. Detection was performed on a 4000Q uHPLC-MS/MS system from AB Sciex using negative ion mode in the multiple reaction monitoring (MRM) mode. The lower limits of quantification were 2.0-5.0ng/mL for all the analytes. Intra-day and inter-day precision were less than 15% and accuracy ranged from -9.3% to 11.0%, and the mean extraction recoveries of analytes and internal standard (IS) from rat plasma were all more than 81.7%. The validated method was successfully applied to a comparative pharmacokinetic study of five free and total analytes in rat plasma. The results indicated that the absorption of five total flavonoids in hyperlipidemia group were significantly higher than those in normal group with similar concentration-time curves. Copyright © 2014 Elsevier B.V. All rights reserved.
Li, Tian-xue; Hu, Lang; Zhang, Meng-meng; Sun, Jian; Qiu, Yue; Rui, Jun-qian; Yang, Xing-hao
2014-01-01
There is a growing concern for the sensitive quantification of multiple components using advanced data acquisition method in herbal medicines (HMs). An improved and rugged UPLC-MS/MS method has been developed and validated for sensitive and rapid determination of multiply analytes from Tong-Xie-Yao-Fang (TXYF) decoction in three biological matrices (plasma/brain tissue/urine) using geniposide and formononetin as internal standards. After solid-phase extraction, chromatographic separation was performed on a C18 column using gradient elution. Quantifier and qualifier transitions were monitored using novel Triggered Dynamic multiple reaction monitoring (TdMRM) in the positive ionization mode. A significant peak symmetry and sensitivity improvement in the TdMRM mode was achieved as compared to conventional MRM. The reproducibility (RSD%) was ≤7.9% by applying TdMRM transition while the values were 6.8-20.6% for MRM. Excellent linear calibration curves were obtained under TdMRM transitions over the tested concentration ranges. Intra- and inter-day precisions (RSD%) were ≤14.2% and accuracies (RE%) ranged from -9.6% to 10.6%. The validation data of specificity, carryover, recovery, matrix effect and stability were within the required limits. The method was effectively applied to simultaneously detect and quantify 1 lactone, 2 monoterpene glucosides, 1 alkaloid, 5 flavonoids and 2 chromones in plasma, brain tissue and urine after oral administration of TXYF decoction. In conclusion, this new and reliable method is beneficial for quantification and confirmation assays of multiply components in complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Lottanti, S; Gautschi, H; Sener, B; Zehnder, M
2009-04-01
To evaluate the effects of ethylenediaminetetraacetic (EDTA), etidronic (EA) and peracetic acid (PA) when used in conjunction with sodium hypochlorite (NaOCl) as root canal irrigants on calcium eluted from canals, smear layer, and root dentine demineralization after instrumentation/irrigation. Single-rooted human premolars were irrigated as follows (n = 12 per group): (1) 1% NaOCl during instrumentation, deionized water after instrumentation, (2) 1% NaOCl during, 17% EDTA after instrumentation, (3) a 1 : 1-mixture of 2% NaOCl and 18% EA during and after instrumentation, and (4) 1% NaOCl during, 2.25% PA after instrumentation. Irrigant volumes and contact times were 10 mL/15 min during and 5 mL/3 min after instrumentation. The evaluated outcomes were eluted calcium by atomic absorption spectroscopy, smear-covered areas by scanning electron microscopy in secondary electron mode and apparent canal wall decalcifications on root transsections in backscatter mode. For the smear layer analysis, sclerotic dentine was taken into consideration. Results were compared using appropriate parametric and nonparametric tests, alpha = 0.05. The statistical comparison of the protocols regarding calcium elution revealed that protocol (1) yielded less calcium than (3), which yielded less than protocols (2) and (4). Most of the instrumented canal walls treated with one of the decalcifying agents were free of smear layer. Protocols (1) and (3) caused no decalcification of root dentine, whilst (2) and (4) showed substance typical demineralization patterns. The decalcifying agents under investigation were all able to remove or prevent a smear layer. However, they eroded the dentine wall differently.
Thermal transport dynamics in the quasi-single helicity state
NASA Astrophysics Data System (ADS)
McKinney, I. J.; Terry, P. W.
2017-06-01
A dynamical model describing oscillations between multiple and single helicity configurations in the quasi-single helicity (QSH) state of the reversed field pinch [P. W. Terry and G. G. Whelan, Plasma Phys. Controlled Fusion 56, 094003 (2014)] is extended to include electron temperature profile dynamics. It is shown that QSH dynamics is linked to the electron temperature profile because the suppression of mode coupling between tearing modes proposed to underlie QSH also suppresses magnetic-fluctuation-induced thermal transport. Above the threshold of dominant-mode shear that marks the transition to QSH, the model produces temperature-gradient steepening in the strong shear region. Oscillations of the dominant and secondary mode amplitudes give rise to oscillations of the temperature gradient. The phasing and amplitude of temperature gradient oscillations relative to those of the dominant mode are in agreement with experiment. This provides further evidence that the model, while heuristic, captures key physical aspects of the QSH state.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
Quintana, José Benito; Miró, Manuel; Estela, José Manuel; Cerdà, Víctor
2006-04-15
In this paper, the third generation of flow injection analysis, also named the lab-on-valve (LOV) approach, is proposed for the first time as a front end to high-performance liquid chromatography (HPLC) for on-line solid-phase extraction (SPE) sample processing by exploiting the bead injection (BI) concept. The proposed microanalytical system based on discontinuous programmable flow features automated packing (and withdrawal after single use) of a small amount of sorbent (<5 mg) into the microconduits of the flow network and quantitative elution of sorbed species into a narrow band (150 microL of 95% MeOH). The hyphenation of multisyringe flow injection analysis (MSFIA) with BI-LOV prior to HPLC analysis is utilized for on-line postextraction treatment to ensure chemical compatibility between the eluate medium and the initial HPLC gradient conditions. This circumvents the band-broadening effect commonly observed in conventional on-line SPE-based sample processors due to the low eluting strength of the mobile phase. The potential of the novel MSFI-BI-LOV hyphenation for on-line handling of complex environmental and biological samples prior to reversed-phase chromatographic separations was assessed for the expeditious determination of five acidic pharmaceutical residues (viz., ketoprofen, naproxen, bezafibrate, diclofenac, and ibuprofen) and one metabolite (viz., salicylic acid) in surface water, urban wastewater, and urine. To this end, the copolymeric divinylbenzene-co-n-vinylpyrrolidone beads (Oasis HLB) were utilized as renewable sorptive entities in the micromachined unit. The automated analytical method features relative recovery percentages of >88%, limits of detection within the range 0.02-0.67 ng mL(-1), and coefficients of variation <11% for the column renewable mode and gives rise to a drastic reduction in operation costs ( approximately 25-fold) as compared to on-line column switching systems.
Kinetic simulation of edge instability in fusion plasmas
NASA Astrophysics Data System (ADS)
Fulton, Daniel Patrick
In this work, gyrokinetic simulations in edge plasmas of both tokamaks and field reversed. configurations (FRC) have been carried out using the Gyrokinetic Toroidal Code (GTC) and A New Code (ANC) has been formulated for cross-separatrix FRC simulation. In the tokamak edge, turbulent transport in the pedestal of an H-mode DIII-D plasma is. studied via simulations of electrostatic driftwaves. Annulus geometry is used and simulations focus on two radial locations corresponding to the pedestal top with mild pressure gradient and steep pressure gradient. A reactive trapped electron instability with typical ballooning mode structure is excited in the pedestal top. At the steep gradient, the electrostatic instability exhibits unusual mode structure, peaking at poloidal angles theta=+- pi/2. Simulations find this unusual mode structure is due to steep pressure gradients in the pedestal but not due to the particular DIII-D magnetic geometry. Realistic DIII-D geometry has a stabilizing effect compared to a simple circular tokamak geometry. Driftwave instability in FRC is studied for the first time using gyrokinetic simulation. GTC. is upgraded to treat realistic equilibrium calculated by an MHD equilibrium code. Electrostatic local simulations in outer closed flux surfaces find ion-scale modes are stable due to the large ion gyroradius and that electron drift-interchange modes are excited by electron temperature gradient and bad magnetic curvature. In the scrape-off layer (SOL) ion-scale modes are excited by density gradient and bad curvature. Collisions have weak effects on instabilities both in the core and SOL. Simulation results are consistent with density fluctuation measurements in the C-2 experiment using Doppler backscattering (DBS). The critical density gradients measured by the DBS qualitatively agree with the linear instability threshold calculated by GTC simulations. One outstanding critical issue in the FRC is the interplay between turbulence in the FRC. core and SOL regions. While the magnetic flux coordinates used by GTC provide a number of computational advantages, they present unique challenges at the magnetic field separatrix. To address this limitation, a new code, capable of coupled core-SOL simulations, is formulated, implemented, and successfully verified.
2015-11-24
spatial concerns: ¤ how well are gradients captured? (resolution requirement) spatial/temporal concerns: ¤ dispersion and dissipation error...distribution is unlimited. Gradient Capture vs. Resolution: Single Mode FFT: Solution/Derivative: Convergence: f x( )= sin(x) with x∈[0,2π ] df dx...distribution is unlimited. Gradient Capture vs. Resolution: Multiple Modes FFT: Solution/Derivative: Convergence: 6 __ CD02 __ CD04 __ CD06
Quéméner, Bernard; Désiré, Cédric; Lahaye, Marc; Debrauwer, Laurent; Negroni, Luc
2003-01-01
The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.
Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu
2006-02-01
We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.
NASA Astrophysics Data System (ADS)
Romanelli, M.; Zocco, A.; Crisanti, F.; Contributors, JET-EFDA
2010-04-01
Understanding and modelling turbulent transport in thermonuclear fusion plasmas are crucial for designing and optimizing the operational scenarios of future fusion reactors. In this context, plasmas exhibiting state transitions, such as the formation of an internal transport barrier (ITB), are particularly interesting since they can shed light on transport physics and offer the opportunity to test different turbulence suppression models. In this paper, we focus on the modelling of ITB formation in the Joint European Torus (JET) [1] hybrid-scenario plasmas, where, due to the monotonic safety factor profile, magnetic shear stabilization cannot be invoked to explain the transition. The turbulence suppression mechanism investigated here relies on the increase in the plasma pressure gradient in the presence of a minority of energetic ions. Microstability analysis of the ion temperature gradient driven modes (ITG) in the presence of a fast-hydrogen minority shows that energetic ions accelerated by the ion cyclotron resonance heating (ICRH) system (hydrogen, nH,fast/nD,thermal up to 10%, TH,fast/TD,thermal up to 30) can increase the pressure gradient enough to stabilize the ITG modes driven by the gradient of the thermal ions (deuterium). Numerical analysis shows that, by increasing the temperature of the energetic ions, electrostatic ITG modes are gradually replaced by nearly electrostatic modes with tearing parity at progressively longer wavelengths. The growth rate of the microtearing modes is found to be lower than that of the ITG modes and comparable to the local E × B-velocity shearing rate. The above mechanism is proposed as a possible trigger for the formation of ITBs in this type of discharges.
Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges
2013-11-29
Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.
Bogusz, Maciej J; Enazi, Eid Al; Hassan, Huda; Abdel-Jawaad, Jamil; Ruwaily, Jamal Al; Tufail, Mohammed Al
2007-05-01
The purpose of the study was to develop rapid and simple procedure for simultaneous determination of cyclosporine A (CsA), tacrolimus (TCR), and sirolimus (SIR) in whole blood and mycophenolic acid (MPA) in plasma. Ascomycin (ASCO), cyclosporine D (CsD), and desmethoxysirolimus (DMSIR) were used as internal standards (IS) for TCR, CsA and MPA, and SIR, respectively. In the method development, six-level blood calibrators were used for CsA (range 47-1725 ng/ml), TCR (range 2.1-38.8 ng/ml), and SIR (range 2.4-39.6 ng/ml). Four-level calibrators were used for MPA (range 0.15-5.48 microg/ml). Four levels of quality control (QC) standards were used for blood samples, together with two levels of QC standards in plasma. All QC standards and calibrators were obtained from commercial sources. Sample preparation based on precipitation of 50 microl of sample in zinc sulfate-methanol-acetonitrile mixture containing IS, followed by centrifugation. HPLC was performed on ChromSpher pi column, 30 mm x 3 mm, in ballistic gradient of ammonium formate buffer-methanol at 0.8 ml flow rate. Following gradient elution profile was applied: 0-1.2 min at 30% methanol (divert valve to waste), 1.21-3.1 min 97% methanol (divert valve to detector), 3.11-3.7 min 30% methanol (divert valve to waste). ESI-MS-MS (MRM) was done on TSQ Quantum instrument with ESI source in positive ion mode. Ammoniated adducts of protonated molecules were used as precursor ions for all analytes but MPA. For this compound sodium adduct was used. Following transitions were monitored: for CsA m/z 1220-1203; for CsD 1234-1217; for SIR 931.6-864.5 and 882.6; for DMSIR 902-834.5; for TCR 821.5-768.5 and 785.5; for ASCO 809.5-756; for MPA 343-211.6; for MPA-glucuronide 514-306 and 211.6. The limits of quantitation were: 1 ng/ml for TCR and SIR, 20 ng/ml for CsA, and 0.1 microg/ml for MPA. Post-column infusion experiments showed that no positive or negative peaks appeared after injection of matrix in the elution range of target compounds. General signal suppression caused by matrix ranged from 20-40%, and was caused mainly by zinc sulfate present in deproteinizing solution. Extracted samples were stable for 2 days at 4 degrees C and for at least 20 days at -20 degrees C. MPA was fully separated from its glucuronide, which was eluted at around 0.7-0.8 min and directed to the waste. Some mutual cross-contribution of CsD and CsA was observed (below 1%), other IS did not contribute to target compounds and vice versa. Observations of chromatograms from patients taken single therapy demonstrated that possible metabolites of CsA, TCR, or SIR did not interfere with target compounds or IS.
1977-01-01
balanced at the mean, with the central part steeper ( platykurtic : broad mode or truncated tails) -r flatter (leptokurtic: peaked mode or extended...and NUPUR, have negative kurtosis (they are platykurtic , with truncated tails and/or broad modes relative to their standard deviations) FERRO, on the...the other areas, and its gradients are platykurtic but almost unskewed. Hence the square root of sine transformation (Fig,15) and the log tangent
Rood, Johannes J M; van Bussel, Mark T J; Schellens, Jan H M; Beijnen, Jos H; Sparidans, Rolf W
2016-09-15
A method for the quantitative analysis by ultra-performance liquid chromatography-tandem mass spectrometry of the highly selective irreversible covalent inhibitor of EGFR-TK, osimertinib in human plasma was developed and validated, using pazopanib as an internal standard. The validation was performed in a range from 1 to 1000ng/ml, with the lowest level corresponding to the lower limit of quantitation. Gradient elution was performed on a 1.8μm particle trifunctional bonded C18 column by 1% (v/v) formic acid in water, and acetonitrile as mobile phase. The analyte was detected in the selected reaction monitoring mode of a triple quadrupole mass spectrometer after positive ionization with the heated electrospray interface. Within-day precisions ranged from 3.4 to 10.3%, and between-day precisions from 3.8 to 10.4%, accuracies were 95.5-102.8%. Plasma (either lithium heparin or sodium EDTA) pretreatment was performed by salting-out assisted liquid-liquid extraction using acetonitrile and magnesium sulfate. This method was used to analyze the osimertinib blood plasma levels of five adult patients with metastatic T790M mutated non-small cellular lung carcinoma for therapeutic drug monitoring purposes. Copyright © 2016 Elsevier B.V. All rights reserved.
Chatterjee, Arnab; Kumar, Satyanshu; Chattopadhyay, Sunil K
2013-12-01
A simple, rapid, accurate and reproducible reverse-phase HPLC method has been developed for the identification and quantification of two alkaloids ephedrine and cryptolepine in different extracts of Sida species using photodiode array detection. Baseline separation of the two alkaloids was achieved on a Waters RP-18 X-terra column (250 × 4.6 mm, 5 µm) using a solvent system consisting of a mixture of water containing 0.1% Trifluoroacetic acid (TFA) and acetonitrile in a gradient elution mode with detection at 210 and 280 nm for ephedrine and cryptolepine, respectively. The calibration curves were linear in a concentration range of 10-250 µg/mL for both the alkaloids with correlation coefficient values >0.99. The limits of detection and quantification for ephedrine and cryptolepine were 5 and 10 µg/mL and 2.5 and 5 µg/mL, respectively. Relative standard deviation values for intra-day and inter-day precision were 1.22 and 1.04% for ephedrine and 1.71 and 2.06% for cryptolepine, respectively. Analytical recovery ranged from 92.46 to 103.95%. The developed HPLC method was applied to identify and quantify ephedrine and cryptolepine in different extracts of Sida species. Copyright © 2013 John Wiley & Sons, Ltd.
Yang, Yun-Yun; Tang, You-Zhi; Fan, Chun-Lin; Luo, Hui-Tai; Guo, Peng-Ran; Chen, Jian-Xin
2010-07-01
A method based on accelerated solvent extraction combined with rapid-resolution LC-MS for efficient extraction, rapid separation, online identification and accurate determination of the saikosaponins (SSs) in Radix bupleuri (RB) was developed. The RB samples were extracted by accelerated solvent extraction using 70% aqueous ethanol v/v as solvent, at a temperature of 120 degrees C and pressure of 100 bar, with 10 min of static extraction time and three extraction cycles. Rapid-resolution LC separation was performed by using a C(18) column at gradient elution of water (containing 0.5% formic acid) and acetonitrile, and the major constituents were well separated within 20 min. A TOF-MS and an IT-MS were used for online identification of the major constituents, and 27 SSs were identified or tentatively identified. Five major bioactive SSs (SSa, SSc, SSd, 6''-O-acetyl-SSa and 6''-O-acetyl-SSd) with obvious peak areas and good resolution were chosen as benchmark substances, and a triple quadrupole MS operating in multiple-reaction monitoring mode was used for their quantitative analysis. A total of 16 RB samples from different regions of China were analyzed. The results indicated that the method was rapid, efficient, accurate and suitable for use in the quality control of RB.
Zan, Tao; Piao, Li; Wei, Yuntao; Gu, Yue; Liu, Baohua; Jiang, Daqing
2018-03-01
A simple and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed for the simultaneous determination of isoquercitrin, kaempferol-3-O-rutinoside and tiliroside in rat plasma. Plasma samples were deproteinized with methanol and separated on a Hypersil Gold C 18 column (2.1 × 50 mm, i.d., 3.0 μm) using gradient elution with the mobile phase of water and methanol at a flow rate of 0.4 mL/min. Mass spectrometric detection was performed with negative ion electrospray ionization in selected reaction monitoring mode. All analytes showed good linearity over their investigated concentration ranges (r 2 > 0.99). The lower limit of quantification was 1.0 ng/mL for isoquercitrin and 2.0 ng/mL for kaempferol-3-O-rutinoside and tiliroside, respectively. Intra- and inter-day precisions were <8.2% and accuracy ranged from -11.5 to 9.7%. The mean extraction recoveries of analytes and IS from rat plasma were >80.4%. The assay was successfully applied to investigate the pharmacokinetic study of the three ingredients after oral administration of Rubus chingii Hu to rats. Copyright © 2017 John Wiley & Sons, Ltd.
Han, Fei; Li, Yanting; Mao, Xinjuan; Xu, Rui; Yin, Ran
2016-05-01
In this work, an approach using high-performance liquid chromatography coupled with diode-array detection and Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS) for the identification and profiling of chemical constituents in Rhodiola crenulata was developed for the first time. The chromatographic separation was achieved on an Inertsil ODS-3 column (150 mm × 4.6 mm,3 µm) using a gradient elution program, and the detection was performed on a Bruker Solarix 7.0 T mass spectrometer equipped with electrospray ionization source in both positive and negative modes. Under the optimized conditions, a total of 48 chemical compounds, including 26 alcohols and their glycosides, 12 flavonoids and their glycosides, 5 flavanols and gallic acid derivatives, 4 organic acids and 1 cyanogenic glycoside were identified or tentatively characterized. The results indicated that the developed HPLC-FT-ICR MS method with ultra-high sensitivity and resolution is suitable for identifying and characterizing the chemical constituents in R. crenulata. And it provides a helpful chemical basis for further research on R. crenulata. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Niu, Tian-Zeng; Zhang, Yu-Wei; Bao, Yong-Li; Wu, Yin; Yu, Chun-Lei; Sun, Lu-Guo; Yi, Jing-Wen; Huang, Yan-Xin; Li, Yu-Xin
2013-03-25
A reversed phase high performance liquid chromatography method coupled with a diode array detector (HPLC-DAD) was developed for the first time for the simultaneous determination of 9 flavonoids in Senecio cannabifolius, a traditional Chinese medicinal herb. Agilent Zorbax SB-C18 column was used at room temperature and the mobile phase was a mixture of acetonitrile and 0.5% formic acid (v/v) in water in the gradient elution mode at a flow-rate of 1.0mlmin(-1), detected at 360nm. Validation of this method was performed to verify the linearity, precision, limits of detection and quantification, intra- and inter-day variabilities, reproducibility and recovery. The calibration curves showed good linearities (R(2)>0.9995) within the test ranges. The relative standard deviation (RSD) of the method was less than 3.0% for intra- and inter-day assays. The samples were stable for at least 96h, and the average recoveries were between 90.6% and 102.5%. High sensitivity was demonstrated with detection limits of 0.028-0.085μg/ml for flavonoids. The newly established HPLC method represents a powerful technique for the quality assurance of S. cannabifolius. Copyright © 2012 Elsevier B.V. All rights reserved.
Zhou, Weijun; Xie, Zhengfu; Shao, Linzhi
2012-07-01
A high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/ MS) method was developed for simultaneous determination of 13 antibiotics in oral hygiene products, including five tetracyclines, three macrolides, two quinolones, one beta-lactam and two lincosamides. The sample was extracted with 0.1% (volume percentage, same hereinafter) formic acid-acetonitrile (95:5, v/v), then centrifuged, filtered and diluted. The target compounds were separated on a C18 column (150 mm x 2.1 mm, 5 microm) with a gradient elution of 0. 1% formic acid and acetonitrile as the mobile phases, and detected by tandem mass spectrometry in positive electrospray ionization and multiple reaction monitoring (MRM) mode. The quantification of 13 antibiotics was performed by the external standard method. The calibration curves showed good linearity in the range of 5.0-50.0 microg/L with detection limits of 10.0 mg/kg. The recoveries of antibiotics in mouthwash and toothpaste samples at the three spiked levels of 10, 20 and 100 mg/kg were in the range of 80.1%-115% with the relative standard deviations in the range of 0.94%-8.69%. This method is accurate, reliable, simple, and suitable for the analysis of antibiotics in oral hygiene products.
[Rapidly identify oligosaccharides in Morinda officinalis by UPLC-Q-TOF-MSE].
Hao, Qing-Xiu; Kang, Li-Ping; Zhu, Shou-Dong; Yu, Yi; Hu, Ming-Hua; Ma, Fang-Li; Zhou, Jie; Guo, Lan-Ping
2018-03-01
In this paper, an approach was applied for separation and identification of oligosaccharides in Morinda officinalis How by Ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) with collision energy. The separation was carried out on an ACQUITY UPLC BEH Amide C₁₈(2.1mm×100 mm,1.7 μm) with gradient elution using acetonitrile(A) and water(B) containing 0.1% ammonia as mobile phase at a flow rate of 0.2 mL·min⁻¹. The column temperature was maintained at 40 °C. The information of accurate mass and characteristic fragment ion were acquired by MSE in ESI negative mode in low and high collision energy. The chemical structures and formula of oligosaccharides were obtained and identified by the software of UNIFI and Masslynx 4.1 based on the accurate mass, fragment ions, neutral losses, mass error, reference substance, isotope information, the intensity of fragments, and retention time. A total of 19 inulin oligosaccharide structures were identified including D(+)-sucrose, 1-kestose, nystose, 1F-fructofuranosyl nystose and other inulin oligosaccharides (DP 5-18). This research provided important information about the inulin oligosaccharides in M. officinalis. The results would provide scientific basis for innovative utilization of M. officinalis. Copyright© by the Chinese Pharmaceutical Association.
[Determination of 25 quinolones in cosmetics by liquid chromatography-tandem mass spectrometry].
Lin, Li; Zhang, Yi; Tu, Xiaoke; Xie, Liqi; Yue, Zhenfeng; Kang, Haining; Wu, Weidong; Luo, Yao
2015-03-01
An analytical method was developed for the simultaneous determination of 25 quinolones, including danofloxacin mesylate, enrofloxacin, flumequine, oxloinic acid, ciprofloxacin, sarafloxacin, nalidixic acid, norfloxacin, and ofloxacin etc in cosmetics using direct extraction and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Cosmetic sample was extracted by acidified acetonitrile, defatted by n-hexane and separated on Poroshell EC-C18 column with gradient elution program using acetonitrile and water (both containing 0. 1% formic acid) as the mobile phases and analyzed by LC-ESI-MS/MS under the positive mode using multiple reaction monitoring (MRM). The interference of matrix was reduced by the matrix-matched calibration standard curve. The method showed good linearities over the range of 1-200 mg/kg for the 25 quinolones with good linear correlation coefficients (r ≥ 0.999). The method detection limit of the 25 quinolones was 1.0 mg/kg, and the recoveries of all analytes in lotion, milky and cream cosmetics matrices ranged from 87.4% to 105% at the spiked levels of 1, 5 and 10 mg/kg with the relative standard deviations (RSD) of 4.54%-19.7% (n = 6). The results indicated that this method is simple, fast and credible, and suitable for the simultaneous determination of the quinolones in the above three types of cosmetics.
Shen, Yan; Han, Chao; Liu, Cuiping; Zhou, Yongfang; Xia, Biqi; Zhu, Zhenou; Liu, Aili
2011-02-01
A method for the analysis of 4 alkaloids in Corydalis decumbens (Thunb.) Pers. was developed by high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-MS/MS). The sample was extracted in methanol by ultrasonic, filtered and diluted with methanol for further analysis. The analysis was performed on a C18 column (150 mm x 2.1 mm, 3.5 microm) using a gradient elution program with the mobile phase of 0.2% acetic acid solution and acetonitrile. The analyte was determined by an electrospray ionization tandem mass spectrometry in multiple reactions monitoring (MRM) mode. The qualitative and quantitative analyses were based on the retention times and characteristic ion pairs consisting of one parent ion and two fragment ions of the analyte. The limits of detection (LODs) for 4 alkaloids were in the range of 0.02 - 0.2 microg/L, and the limits of quantification (LOQs) were in the range of 0.07 - 0.66 microg/L. The average recoveries were in the range of 93.6% - 103.5% for 4 alkaloids with the relative standard deviations below 3.8%. This method is reliable, sensitive and reproducible, and it can be used for the quality control of Corydalis decumbens (Thunb.) Pers. sample.
Wang, Jing; Dai, Xiao-jian; Zhang, Yi-fan; Zhong, Da-fang; Wu, Yu-lin; Chen, Xiao-yan
2015-10-01
A simple and rapid method was developed based on high performance liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) to determine sivelestat and its metabolite XW-IMP-A in human plasma. After a simple protein precipitation, the samples and internal standards were analyzed on a C18 column by a gradient elution program. The mobile phase consisted of 30% acetonitrile in methanol and 5 mmol · L(-1) ammonium acetate at a flow rate of 0.7 mL · min(-1). The mass spectrometric data was collected in multiple reaction monitoring mode (MRM) in the negative electrospray ionization. The standard curves were linear in the range of 10.0-15,000 ng · mL(-1) for sivelestat, and 2.50-1000 ng · mL(-1) for XW-IMP-A. The low limits of quantitation were identified at 10.0 and 2.50 ng · mL for sivelestat and XW-IMP-A, respectively. The intra- and inter-day precision were within 11.3% and 13.1% for sivelestat and XW-IMP-A, and accuracy was 0.3% and 0.6% for sivelestat and XW-IMP-A, within the acceptable limits across all concentrations. The method was successfully validated in the pharmacokinetic study of sivelestat in healthy Chinese volunteers.
Wang, Yanjuan; Wen, Jing; Zheng, Weihua; Zhao, Longshan; Fu, Xiaohuan; Wang, Zhenzhong; Xiong, Zhili; Li, Famei; Xiao, Wei
2015-01-01
A simple, specific and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established and validated for simultaneous determination of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid and geniposide in rat plasma using puerarin as an internal standard (IS). Plasma samples were pretreated by a one-step direct protein precipitation procedure with acetonitrile after acidified using as little as 50 μL plasma. Chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 µm) at a flow rate of 0.2 mL/min by a gradient elution, using 0.2% acetic acid-methanol as mobile phase. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring via electrospray ionization source with negative ion mode. Calibration curves showed good linearity (r > 0.995) over wide concentration ranges. The intra- and inter-day precisions were <15%, and the accuracy was within ±8.0%. The validated method was successfully applied to a pharmacokinetic study of the four bioactive components in rats after intravenous administration of Reduning injection. Copyright © 2014 John Wiley & Sons, Ltd.
Pan, Yuanhu; Zhang, Heying; Xi, Chenglong; Huang, Lingli; Xie, Shuyu; Chen, Dongmei; Tao, Yanfei; Liu, Zhenli; Yuan, Zonghui
2018-05-02
A simple and reliable LC-MS/MS method was established for simultaneous determination of twelve components from acetylkitasamycin and kitasamycin in swine plasma. The analytes were separated by a Shim-pack VP-ODS column with a 25 min gradient elution using 5 mmol/L ammonium acetate and acetonitrile as the mobile phase at a flow rate of 0.2 mL/min. Identification and quantification were accomplished by electrospray ionization (ESI) in positive mode using multiple reaction monitoring (MRM). The LOQ S of acetylkitasamycin A 1 A 3 , A 13 and kitasamycin A 3 , A 13 were 3 μg/L, and that of the other 8 components were 5 μg/L. The mean recoveries of kitasamycin and acetylkitasamycin ranged from 85.3 to 103.5 %. The developed method was successfully applied to a pharmacokinetic study in swine after intravenous (IV) and oral (PO) administration of acetylkitasamycin. The result showed that the plasma concentrations of acetylkitsamycin components were much higher than that of kitasamycin in swine after IV and PO, in which acetylkitsamycin A 4 A 5 was the highest component at each time point. This article is protected by copyright. All rights reserved.
Ma, Yuhua; Huang, Dongqun; Zhang, Rui; Xu, Shiru; Feng, Shun
2013-11-01
A high performance liquid chromatographic (HPLC) method was proposed to simultaneously determine four common nonprotein nitrogen substances, including creatine (Cr), creatinine (Cn), uric acid (Ua) and pseudouridine (Pu) in urine. After proteins being removed by acetone precipitation method, freeze drying and redissolving, the urine samples were analyzed by HPLC. Chromatographic separation was performed on a Waters RP18 Column (150 mm x 4.60 mm, 3.5 microm) in gradient elution mode using 10.0 mmol/L KH2PO4 solution (pH 4.78) and acetonitrile as mobile phases at a flow rate of 0.8 mL/min. The samples were detected at 220 nm. Rapid separation was achieved within 7 min. Under the optimized conditions, good linearities of four common nonprotein nitrogen substances were obtained in the range of 0.1-250 mg/L. The detection limits were 9.31 (Cr), 26.19 (Cn), 4.70 (Ua), an 6.30 (Pu) microg/L and the recoveries were in the range of 81%-111% with the relative standar deviations of 0.23%-2.78% (n = 3). The results demonstrate that this method is simple, rapid and accurate with good reproducibility, and can provide early diagnosis and preliminary judgment for type 2 diabetes mellitus (T2DM) patients with renal damage.
Li, Jun; Bi, Yanlan; Sun, Shangde; Peng, Dan
2017-11-01
A normal-phase high performance liquid chromatography method for the simultaneous determination of tert-butylhydroquinone, tert-butylquinone, butylated hydroxytoluene, 2-tert-butyl-4-hydroxyanisole, 3-tert-butyl-4-hydroxyanisole, α-tocopherol, γ-tocopherol, and δ-tocopherol in edible oils was investigated. A silica column was used to separate the analytes with the gradient elution. An ultraviolet-visible detector was set at dual wavelengths mode (280 and 310nm). The column temperature was 30°C. The analytes were directly extracted with methanol. Results showed that the normal-phase high performance liquid chromatography method performed well with wide liner ranges (0.10∼500.00μg/mL, R 2 >0.9998), low limits of detection and quantitation (below 0.40 and 1.21μg/mL, respectively), and good recoveries (81.38∼102.34% in soybean oils and 83.03∼100.79% in lard, respectively). The reduction of tert-butylquinone caused by the reverse-phase high performance liquid chromatography during the injection was avoided with the current normal-phase method. The two isomers of butylated hydroxyanisole can also be separated with good resolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Di Carro, Marina; Scapolla, Carlo; Liscio, Camilla; Magi, Emanuele
2010-09-01
A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water-acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d (16) as internal standard were drawn, showing good correlation coefficients (0.9993-0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.
Tan, Zhirong; Ouyang, Dongsheng; Chen, Yao; Zhou, Gan; Cao, Shan; Wang, Yicheng; Peng, Xiujuan; Zhou, Honghao
2010-08-01
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) method has been developed and validated for the identification and quantification of clebopride in human plasma using itopride as an internal standard. The method involves a simple liquid-liquid extraction. The analytes were separated by isocratic gradient elution on a CAPCELL MG-III C(18) (5 microm, 150 mm x 2.1 mm i.d.) column and analyzed in multiple reaction monitoring (MRM) mode with positive electrospray ionization (ESI) interface using the respective [M+H](+) ions, m/z 373.9-->m/z184.0 for clebopride, m/z 359.9-->m/z71.5 for itopride. The method was validated over the concentration range of 69.530-4450.0 pg/ml for clebopride. Within- and between-batch precision (RSD%) was all within 6.83% and accuracy ranged from -8.16 to 1.88%. The LLOQ was 69.530 pg/ml. The extraction recovery was on an average 77% for clebopride. The validated method was used to study the pharmacokinetics profile of clebopride in human plasma after oral administration of clebopride. Copyright 2010. Published by Elsevier B.V.
Wei, Mei; Du, Lan-zhe; Li, Hui; Zhang, Guang-da; Chen, Xiang-dong
2015-05-01
To study the correlation of characteristic spectra of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules by HPLC, and to investigate the transfer of the main chemical constituents between three different forms. The analysis was carried out by a Phenomenex Gemini C18 column (250 mm x 4.6 mm,5 μm) with acetonitrile-1% acetic acid and ammonium acetate buffer solution (pH 6.0) as the mobile phase in a gradient elution mode. The detection wavelength was 280 nm with a flow rate of 0.8 mL /min. The column temperature was 30 degrees C. The characteristic spectra from 11 batches of Vinegar Corydalis Rhizoma decoction pieces, 11 batches of water decoction and 11 batches of formula granules were established respectively. Ten peaks in the HPLC characteristic spectra from 11 batches of formula granules could be tracked in the water decoction, nine peaks in the HPLC characteristic spectra could be tracked in the decoction pieces. In the ten common peaks, four components such as protopine, palnatine chloride, berberine hydrochloride and tetrahydropalmatine were verified. The main chemical components of Vinegar Corydalis Rhizoma decoction pieces, water decoction and formula granules are basically the same, the common component contents have similar proportion.
Determination of hydroxyurea in human plasma by HPLC-UV using derivatization with xanthydrol.
Legrand, Tiphaine; Rakotoson, Marie-Georgine; Galactéros, Frédéric; Bartolucci, Pablo; Hulin, Anne
2017-10-01
A simple and rapid high performance liquid chromatography (HPLC) method using ultraviolet (UV) detection was developed to determine hydroxyurea (HU) concentration in plasma sample after derivatization with xanthydrol. Two hundred microliters samples were spiked with methylurea (MeU) as internal standard and proteins were precipitated by adding methanol. Derivatization of HU and MeU was immediately performed by adding 0.02M xanthydrol and 1.5M HCl in order to obtain xanthyl-derivatives of HU and MeU that can be further separated using HPLC and quantified using UV detection at 240nm. Separation was achieved using a C18 column with a mobile phase composed of 20mM ammonium acetate and acetonitrile in gradient elution mode at a flow rate of 1mL/min. The total analysis time did not exceed 18min. The method was found linear from 5 to 400μM and all validation parameters fulfilled the international requirements. Between- and within-run accuracy error ranged from -4.7% to 3.2% and precision was lower than 12.8%. This simple method requires small volume samples and can be easily implemented in most clinical laboratories to develop pharmacokinetics studies of HU and to promote its therapeutic monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiplexed electronically programmable multimode ionization detector for chromatography
Wise, M.B.; Buchanan, M.V.
1988-05-19
Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.
Multiplexed electronically programmable multimode ionization detector for chromatography
Wise, Marcus B.; Buchanan, Michelle V.
1989-01-01
Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.
Blanco López, S L; Moal, J; San Juan Serrano, F
2000-09-01
Reversed-phase HPLC was applied to obtain a sensitive and efficient means for quantitating nucleotides in the mussel Mytilus galloprovincialis. We obtained a good separation of adenylic, guanylic, uridylic and cytidylic nucleotides. Adenine nucleotides play a critical role in the regulation and integration of cellular metabolism; particularly in the mantle tissue in the mussel, they are involved in the regulation of the enzyme glycogen phosphorylase, a key enzyme in the transfer of bioenergetic reserves (glycogen) to gametogenic development; it is of great importance to have a measure of the concentrations in vivo during the reproductive cycle of the organism. Different elution conditions were tested: isocratic versus step gradient elution, different mobile phase pH and the type and proportion of ion-pairing agent added to the mobile phase. The best method was selected and the separation and accurate determination of adenine, citidine, guanine and uridine nucleotides was accomplished within a 20-min run, with UV-Vis detection (254 nm).
Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves.
Lorenzo, Cándida; Serrano-Díaz, Jéssica; Plaza, Miguel; Quintanilla, Carmen; Alonso, Gonzalo L
2014-08-15
The aim of this work is to propose an HPLC method for analysing major steviol glycosides as well as to optimise the extraction and clarification conditions for obtaining these compounds. Toward this aim, standards of stevioside and rebaudioside A with purities ⩾99.0%, commercial samples from different companies and Stevia rebaudiana Bertoni leaves from Paraguay supplied by Insobol, S.L., were used. The analytical method proposed is adequate in terms of selectivity, sensitivity and accuracy. Optimum extraction conditions and adequate clarification conditions have been set. Moreover, this methodology is safe and eco-friendly, as we use only water for extraction and do not use solid-phase extraction, which requires solvents that are banned in the food industry to condition the cartridge and elute the steviol glycosides. In addition, this methodology consumes little time as leaves are not ground and the filtration is faster, and the peak resolution is better as we used an HPLC method with gradient elution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transcription in Yeast: Separation and Properties of Multiple RNA Polymerases
Adman, Ray; Schultz, Loren D.; Hall, Benjamin D.
1972-01-01
Four peaks of DNA-directed RNA polymerase activity are resolved by salt gradient elution of a sonicated yeast cell extract on DEAE-Sephadex. The enzymes, which are named IA, IB, II, and III in order of elution, all appear to come from cell nuclei. Only enzyme II is sensitive to α-amanitin. All enzymes are more active with Mn++ than with Mg++ as divalent ion. Enzymes IB and II have salt optima in the range 0.05-0.10 M (NH4)2SO4, whereas enzyme III is maximally active at 0.20-0.25 M (NH4)2SO4. With optimal salt concentration and saturating DNA, the template preference ratio, activity on native calfthymus DNA divided by activity on denatured calf-thymus DNA, is 2.2 for IB, 0.4 for II, and 3.5 for III. None of the yeast polymerases was inhibited by rifamycin SV. Rifamycin AF/013 effectively inhibited polymerases IB, II, and III. PMID:4558656
Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor
NASA Technical Reports Server (NTRS)
Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)
1995-01-01
Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.
[Study on HPLC fingerprint of 11 Taraxacum species in northeast of China].
Zhu, Dan; Zhao, Xin; Xu, Qiao; Ning, Wei
2011-04-01
To study the RP-HPLC fingerprints of 11 plants in the genus Taraxacum for their quality control. The fingerprints were determined using an Agilent 1100 series instrument system. Chromatographic analyses were performed on a Kromasil 100-5 C18 (4.6 mm x 250 mm, 5 microm) analytical column,eluted with methanol and water containing 0.5% acetic acid as the mobile phases in gradient elution at the flow rate of 1.0 mL x min(-1). The detection wavelength was 323 nm. The temperature of column was 35 degrees C. Eleven species of Taraxacum in northeast of China were detected respectively. Twenty-five common peaks existed in 11 RP-HPLC fingerprints. By comparing the retention time and the on-line UV spectra, peaks No. 10, No. 12, No. 16 and No. 25 were identified as chlorogenic acid, caffeic acid, p-coumaroy acid and luteolin respectively. The analytical method with good precision and reproducibility can be useful in the quality control of Taraxacum plants.
Mode transition induced by the magnetic field gradient in Hall thrusters
NASA Astrophysics Data System (ADS)
Han, Liang; Wei, Liqiu; Yu, Daren
2016-09-01
A mode transition phenomenon was found in Hall thrusters, which was induced by the increase of the magnetic field gradient. In the transition process, we observed experimentally that there have been obvious changes in the oscillation, the mean value of the discharge current, the thrust, the anode efficiency, and the plume pattern. The shifting and compression of the high magnetic field causes the electron density in the discharge channel to decrease and the ionization zone to move towards the exit plane. This also corresponds to a low atom density in the discharge channel, resulting in a loss of stability of the ionization at a high magnetic field gradient, which presents the transition of the discharge mode.
Cao, Xiaoshan; Shi, Junping; Jin, Feng
2012-06-01
The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.
Beneito-Cambra, M; Ripoll-Seguer, L; Herrero-Martínez, J M; Simó-Alfonso, E F; Ramis-Ramos, G
2011-11-25
A method for the separation, characterization and determination of fatty alcohol ethoxylates (FAE) and alkylether sulfates (AES) in industrial and environmental samples is described. Separation of the two surfactant classes was achieved in a 50:50 methanol-water medium by retaining AES on a strong anionic exchanger (SAX) whereas most FAE were eluted. After washing the SAX cartridges to remove cations, the residual hydrophobic FAE were eluted by increasing methanol to 80%. Finally, AES were eluted using 80:20 and 95:5 methanol-concentrated aqueous HCl mixtures. Methanol and water were removed from the FAE and AES fractions, and the residues were dissolved in 1,4-dioxane. In this medium, esterification of FAE and transesterification of AES with a cyclic anhydride was performed. Phthalic and diphenic anhydrides were used to derivatizate the surfactants in industrial samples and seawater extracts, respectively. Separation of the derivatized oligomers was achieved by gradient elution on a C8 column with acetonitrile/water in the presence of 0.1% acetic acid. Good resolution between both the hydrocarbon series and the successive oligomers within the series was achieved. Cross-contamination of FAE with AES and vice versa was not observed. Using dodecyl alcohol as calibration standard, and correction of the peak areas of the derivatized oligomers by their respective UV-vis response factors, both FAE and AES were evaluated. After solid-phase extraction on C18, the proposed method was successfully applied to the characterization and determination of the two surfactant classes in industrial samples and in seawater. Copyright © 2011 Elsevier B.V. All rights reserved.
Metabolism of (/sup 3/H)gibberellin A/sub 5/ by immature seeds of apricot (Prunus armeniaca L. )
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bottini, G.A.; Bottini, R.; Koshioka, M.
1987-01-01
Immature seeds of apricot (Prunus armeniaca L.) were fed the native gibberellin A/sub 5/ (GA/sub 5/) as 1- and 1,2-(/sup 3/H)GA/sub 5/ at doses 2 to 530 times the expected endogenous level. After 4 days of incubation, seeds were extracted and free (/sup 3/H)GA-like metabolites were separated from the highly H/sub 2/O-soluble (/sup 3/H)metabolites. For high specific activity feeds the retention times (Rts) of radioactive peaks were compared with Rts of authentic GAs on sequential gradient-eluted ..-->.. isocratic eluted reversed-phase C/sub 18/ high performance liquid chromatography (HPLC)-radiocounting (RC). From high substrate feeds (530 and 230 x expected endogenous levels) HPLC-RCmore » peak groupings were subjected to capillary gas chromatography-selected ion monitoring (GC-SIM), usually six characteristic ions. The major free GA metabolites of (/sup 3/H) GA/sub 5/ were identified as GA/sub 1/, GA/sub 3/, and GA/sub 6/ by GC-SIM. The major highly water soluble metabolite of (/sup 3/H)GA/sub 5/ at all levels of substrate GA/sub 5/ had chromatographic characteristics similar to authentic GA/sub 1/-glucosyl ester. Expressed as a percentage of recovered radioactivity, low substrate (/sup 3/H)GA/sub 5/ feeds (2 x expected endogenous level) yielded a broad spectrum of metabolites eluting at the Rts where GA/sub 1/, GA/sub 3/, GA/sub 5/ methyl ester, GA/sub 6/, GA/sub 22/, GA/sub 29/ (17, 14, 1.6, 7, 1.1, 0.5%, respectively) and GA glucosyl conjugates of GA/sub 1/, GA/sub 3/, GA/sub 5/, and GA/sub 8/ (33, 11, 1, 0.1%, respectively) elute.« less
Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M
2014-01-01
Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes.
Li, Austin C; Li, Yinghe; Guirguis, Micheal S; Caldwell, Robert G; Shou, Wilson Z
2007-01-04
A new analytical method is described here for the quantitation of anti-inflammatory drug cyclosporin A (CyA) in monkey and rat plasma. The method used tetrahydrofuran (THF)-water mobile phases to elute the analyte and internal standard, cyclosporin C (CyC). The gradient mobile phase program successfully eluted CyA into a sharp peak and therefore improved resolution between the analyte and possible interfering materials compared with previously reported analytical approaches, where CyA was eluted as a broad peak due to the rapid conversion between different conformers. The sharp peak resulted from this method facilitated the quantitative calculation as multiple smoothing and large number of bunching factors were not necessary. The chromatography in the new method was performed at 30 degrees C instead of 65-70 degrees C as reported previously. Other advantages of the method included simple and fast sample extraction-protein precipitation, direct injection of the extraction supernatant to column for analysis, and elimination of evaporation and reconstitution steps, which were needed in solid phase extraction or liquid-liquid extraction reported before. This method is amenable to high-throughput analysis with a total chromatographic run time of 3 min. This approach has been verified as sensitive, linear (0.977-4000 ng/mL), accurate and precise for the quantitation of CyA in monkey and rat plasma. However, compared with the usage of conventional mobile phases, the only drawback of this approach was the reduced detection response from the mass spectrometer that was possibly caused by poor desolvation in the ionization source. This is the first report to demonstrate the advantages of using THF-water mobile phases to elute CyA in liquid chromatography.
Upper-Level Waves of Synoptic Scale at Midlatitudes
NASA Astrophysics Data System (ADS)
Rivest, Chantal
1990-01-01
Upper-level waves of synoptic scale are important dynamical entities at midlatitudes. They often induce surface cyclogenesis (cf. Peterssen and Smebye, 1971), and their life duration is typically longer than time scales for disruption by the ambient shear (Sanders, 1988). The objectives of the present thesis are to explain the maintenance and genesis of upper-level synoptic-scale waves in the midlatitude flow. We develop an analytical model of waves on generalized Eady basic states that have uniform tropospheric and stratospheric potential vorticity, but allow for the decay of density with height. The Eady basic state represents the limiting case of infinite stratospheric stability and constant density. We find that the Eady normal mode characteristics hold in the presence of realistic tropopause and stratosphere. In particular, the basic states studied support at the synoptic scale upper-level normal modes. These modes provide simple models for the dynamics of upper-level synoptic-scale waves, as waves supported by the large latitudinal gradients of potential vorticity at the tropopause. In the presence of infinitesimal positive tropospheric gradients of potential vorticity, the upper-level normal mode solutions no longer exist, as was demonstrated in Green (1960). Disappearance of the normal mode solution when a parameter changes slightly represents a dilemma that we seek to understand. We examine what happens to the upper-level normal modes in the presence of tropospheric gradients of potential vorticity in a series of initial -value experiments. Our results show that the normal modes become slowly decaying quasi-modes. Mathematically the quasi-modes consist of a superposition of singular modes sharply peaked in the phase speed domain, and their decay proceeds as the modes interfere with one another. We repeat these experiments in basic states with a smooth tropopause in the presence of tropospheric and stratospheric gradients, and similar results are obtained. Basic states with positive tropospheric and stratospheric gradients of potential vorticity are found to support upper-level synoptic-scale waves for time scales consistent with observations. Following Farrell (1989), we then identify a class of near optimal initial conditions for the excitation of upper-level waves. The initial conditions consist of upper -tropospheric disturbances that lean against the shear. They strongly excite upper-level waves not only in the absence of tropospheric potential vorticity gradients, but also in their presence. This result demonstrates that quasi -modes are as likely to emerge from favorably configured initial conditions as real normal modes, although their excitation is followed by a slow decay. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).
Framework for community functioning: synthesis of stress gradient and resource partitioning concepts
2017-01-01
To understand how communities function and generate abundance, I develop a framework integrating elements from the stress gradient and resource partitioning concepts. The framework suggests that guild abundance depends on environmental and spatial factors but also on inter-guild interactions (competitor or facilitator richness), which can alter the fundamental niche of constituent species in negative (competition) or positive direction (facilitation). Consequently, the environmental and spatial mechanisms driving guild abundance would differ across guilds and interaction modes. Using continental data on stream diatoms and physico-chemistry, the roles of these mechanisms were tested under three interaction modes—shared preference, distinct preference, and facilitative, whereby pairs of guilds exhibited, respectively, a dominance-tolerance tradeoff along a eutrophication gradient, specialization along a pH gradient, or a donor-recipient relationship along a nitrogen gradient. Representative of the shared preference mode were the motile (dominant) and low profile (tolerant) guilds, of the distinct preference mode—the acidophilous and alkaliphilous (low profile) guilds, and of the facilitative mode—nitrogen fixers (donors) and motile species (recipients). In each mode, the influences of environment, space (latitude and longitude), and competitor or facilitator richness on guild density were assessed by variance partitioning. Pure environment constrained most strongly the density of the dominant, the acidophilous, and the recipient guild in the shared preference, distinct preference, and facilitative mode, respectively, while spatial effects were important only for the low profile guild. Higher competitor richness was associated with lower density of the tolerant guild in the shared preference mode, both guilds in the distinct preference mode, and the donor guild in the facilitative mode. Conversely, recipient density in the facilitative mode increased with donor richness in stressful nitrogen-poor environments. Thus, diatom guild abundance patterns were determined primarily by biotic and/or environmental impacts and, with the exception of the low profile guild, were insensitive to spatial effects. This framework identifies major sources of variability in diatom guild abundance with implications for the understanding of biodiversity-ecosystem functioning. PMID:29018618
Toribio, Alix; Delannay, Eldra; Richard, Bernard; Plé, Karen; Zèches-Hanrot, Monique; Nuzillard, Jean-Marc; Renault, Jean-Hugues
2007-01-26
The pH-zone refining centrifugal partition chromatography technique was used to separate the two acetylcholinesterase inhibitors huperzines A and B from a crude alkaloid extract of the club moss Huperzia serrata. Complete co-elution of huperzines A and B was initially observed with the well-known methyl tert-butyl ether-acetonitrile-water (4:1:5, v/v/v) solvent system with triethylamine (8mM) as the displacer and methane sulfonic acid (6mM) as the retainer. An efficient biphasic system was designed on the basis of solvent association that provided selectivity in the elution mode: n-heptane/ethyl acetate/n-propanol/water (5:15:35:45, v/v/v/v). Lowering the bridge solvent content (n-propanol) of this system increased the polarity difference between the two phases thus adapting it to the pH-zone refining mode. Thus, the purification of these compounds was achieved using the biphasic system n-heptane/ethyl acetate/n-propanol/water (10:30:15:45, v/v/v/v) with triethylamine (8mM) as the displacer and methane sulfonic acid (6mM) as the retainer.
Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun
2015-01-09
High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products.
Gu, Binbin; Zhang, Yanying; Ding, Lijian; He, Shan; Wu, Bin; Dong, Junde; Zhu, Peng; Chen, Juanjuan; Zhang, Jinrong; Yan, Xiaojun
2015-01-01
High-speed counter-current chromatography (HSCCC) was successively applied to the separation of three sulfur-containing diketopiperazines (DKPs) (including two new compounds cladosporin A (1) and cladosporin B (3), and a known compound haematocin (2)) from a marine fungus Cladosporium sp. The two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water at (1:1:1:1, v/v) and (2:1:2:1, v/v), in stepwise elution mode, was used for HSCCC. The preparative HSCCC separation was performed on 300 mg of crude sample yielding 26.7 mg of compound 3 at a purity of over 95%, 53.6 mg of a mixture of compounds 1 and 2, which was further separated by preparative-HPLC yielding 14.3 mg of compound 1 and 25.4 mg of compound 2 each at a purity of over 95%. Their structures were established by spectroscopic methods. The sulfur-containing DKPs suppressed the proliferation of hepatocellular carcinoma cell line HepG2. The present work represents the first application of HSCCC in the efficient preparation of marine fungal natural products. PMID:25584683
Kostanyan, Artak E; Shishilov, Oleg N
2018-06-01
Multiple dual mode counter-current chromatography (MDM CCC) separation processes with semi-continuous large sample loading consist of a succession of two counter-current steps: with "x" phase (first step) and "y" phase (second step) flow periods. A feed mixture dissolved in the "x" phase is continuously loaded into a CCC machine at the beginning of the first step of each cycle over a constant time with the volumetric rate equal to the flow rate of the pure "x" phase. An easy-to-use calculating machine is developed to simulate the chromatograms and the amounts of solutes eluted with the phases at each cycle for steady-state (the duration of the flow periods of the phases is kept constant for all the cycles) and non-steady-state (with variable duration of alternating phase elution steps) separations. Using the calculating machine, the separation of mixtures containing up to five components can be simulated and designed. Examples of the application of the calculating machine for the simulation of MDM CCC processes are discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Sardella, Roccaldo; Ianni, Federica; Lisanti, Antonella; Scorzoni, Stefania; Marini, Francesca; Sternativo, Silvia; Natalini, Benedetto
2014-05-01
To the best of our knowledge enantioselective chromatographic protocols on β-amino acids with polysaccharide-based chiral stationary phases (CSPs) have not yet appeared in the literature. Therefore, the primary objective of this work was the development of chromatographic methods based on the use of an amylose derivative CSP (Lux Amylose-2), enabling the direct normal-phase (NP) enantioresolution of four fully constrained β-amino acids. Also, the results obtained with the glycopeptide-type Chirobiotic T column employed in the usual polar-ionic (PI) mode of elution are compared with those achieved with the polysaccharide-based phase. The Lux Amylose-2 column, in combination with alkyl sulfonic acid containing NP eluent systems, prevailed over the Chirobiotic T one, when used under the PI mode of elution, and hence can be considered as the elective choice for the enantioseparation of this class of rigid β-amino acids. Moreover, the extraordinarily high α (up to 4.60) and R S (up to 10.60) values provided by the polysaccharidic polymer, especially when used with camphor sulfonic acid containing eluent systems, make it also suitable for preparative-scale enantioisolations.
Vaňková, Nikola; Česla, Petr
2017-02-17
In this work, we have investigated the predictive properties of mixed-mode retention model and oligomeric mixed-mode model, taking into account the contribution of monomeric units to the retention, in hydrophilic interaction liquid chromatography. The gradient retention times of native maltooligosaccharides and their fluorescent derivatives were predicted in the oligomeric series with number of monomeric glucose units in the range from two to seven. The maltooligosaccharides were separated on a packed column with carbamoyl-bonded silica stationary phase and 15 gradient profiles with different initial and final mobile phase composition were used with the gradient times 5; 7.5 and 10min. The predicted gradient retention times were compared for calculations based on isocratic retention data and gradient retention data, which provided better accuracy of the results. By comparing two different mobile phase additives, the more accurate retention times were predicted in mobile phases containing ammonium acetate. The acidic derivatives, prepared by reaction of an oligosaccharide with 2-aminobenzoic acid or 8-aminonaphthalene-1,3,6-trisulfonic acid, provided more accurate predictions of the retention data in comparison to native oligosaccharides or their neutral derivatives. The oligomeric mixed-mode model allowed prediction of gradient retention times using only one gradient profile, which significantly speeded-up the method development. Copyright © 2017 Elsevier B.V. All rights reserved.
Ernst, D. R.; Burrell, K. H.; Guttenfelder, W.; ...
2016-05-10
In a series of DIII-D [J. L. Luxon, Nucl. Fusion 42 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven TEM (DGTEM) turbulence dominates the inner core of H-Mode plasmas during strong electron cyclotron heating (ECH). By adding 3.4 MW ECH doubles T e/T i from 0.5 to 1.0, which halves the linear DGTEM critical density gradient, locally reducing density peaking, while transport in all channels displays extreme stiffness in the density gradient. This then suggests fusion -heating may degrade inner core confinement in H-Mode plasmas with moderate density peaking and low collisionality, with equal electron andmore » ion temperatures, key conditions expected in burning plasmas. Gyrokinetic simulations using GYRO [J. Candy and R. E. Waltz, J. Comp. Phys. 186 545 (2003)] (and GENE [F. Jenko et al., Phys. Plasmas 7, 1904 (2000)]) closely match not only particle, energy, and momentum fluxes, but also density fluctuation spectra from Doppler Backscattering (DBS), with and without ECH. Inner core DBS density fluctuations display discrete frequencies with adjacent toroidal mode numbers, which we identify as DGTEMs. GS2 [W. Dorland et al., Phys. Rev. Lett. 85 5579 (2000)] predictions show the DGTEM can be suppressed, to avoid degradation with electron heating, by broadening the current density profile to attain q 0 > q min > 1.« less
STUDIES ON FLUORESCENT ANTIBODY STAINING
Goldstein, Gerald; Slizys, Irene S.; Chase, Merrill W.
1961-01-01
1. A study has been made of the non-specific fluorescent staining of splenic imprints treated with fluorescent sheep antibody globulins. 2. In tissue imprints made with the spleens of antigen-stimulated animals, no morphological distinction was evident between areas showing non-specific fluorescence and specific fluorescence. 3. Elimination of non-specific fluorescence was not achieved by any one, or any combination of the following: (a) conjugating only gamma globulins with fluorescein isothiocyanate; (b) removal of dialyzable fluorescent products on sephadex, followed by concentration through the use of pressure dialysis; (c) use of crystalline preparations of fluorescein isothiocyanate. 4. Individual preparations of fluorescent antibodies were separated by gradient elution chromatography on diethylaminoethyl (DEAE) cellulose into fractions possessing different numbers of fluorescein radicals per molecule of globulin. 5. The coupling ratio of 50 mg fluorescein isothiocyanate (FITC) per gm of protein, as commonly advocated, can not be recommended for the precise localization of antibody globulin in tissues owing to the capacity of the coupled products to give non-specific fluorescent staining. When crystalline preparations of FITC are used instead of the amorphous product at 50 mg/gm protein, far too high non-specific fluorescence results. 6. A fraction with bright specific fluorescence and no or negligible nonspecific fluorescence was obtained from each fluorescent antibody that was prepared by using 6 to 8 mg of crystalline fluorescein isothiocyanate per gm of globulin and was then subjected to DEAE-cellulose chromatography and gradient elution to eliminate the most highly coupled molecules. PMID:13706641
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, D. P.; Maingi, R.; Snyder, P. B.
2011-01-01
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less
Observation of trapped-electron-mode microturbulence in reversed field pinch plasmas
NASA Astrophysics Data System (ADS)
Duff, J. R.; Williams, Z. R.; Brower, D. L.; Chapman, B. E.; Ding, W. X.; Pueschel, M. J.; Sarff, J. S.; Terry, P. W.
2018-01-01
Density fluctuations in the large-density-gradient region of improved confinement Madison Symmetric Torus reversed field pinch (RFP) plasmas exhibit multiple features that are characteristic of the trapped-electron mode (TEM). Core transport in conventional RFP plasmas is governed by magnetic stochasticity stemming from multiple long-wavelength tearing modes. Using inductive current profile control, these tearing modes are reduced, and global confinement is increased to that expected for comparable tokamak plasmas. Under these conditions, new short-wavelength fluctuations distinct from global tearing modes appear in the spectrum at a frequency of f ˜ 50 kHz, which have normalized perpendicular wavenumbers k⊥ρs≲ 0.2 and propagate in the electron diamagnetic drift direction. They exhibit a critical-gradient threshold, and the fluctuation amplitude increases with the local electron density gradient. These characteristics are consistent with predictions from gyrokinetic analysis using the Gene code, including increased TEM turbulence and transport from the interaction of remnant tearing magnetic fluctuations and zonal flow.
NASA Astrophysics Data System (ADS)
Horký, Miroslav; Omura, Yoshiharu; Santolík, Ondřej
2018-04-01
This paper presents the wave mode conversion between electrostatic and electromagnetic waves on the plasma density gradient. We use 2-D electromagnetic code KEMPO2 implemented with the generation of density gradient to simulate such a conversion process. In the dense region, we use ring beam instability to generate electron Bernstein waves and we study the temporal evolution of wave spectra, velocity distributions, Poynting flux, and electric and magnetic energies to observe the wave mode conversion. Such a conversion process can be a source of electromagnetic emissions which are routinely measured by spacecraft on the plasmapause density gradient.
Center, S A; Thompson, M; Guida, L
1993-05-01
Concentrations of 3 alpha-hydroxylated bile acids were measured in serum and urine of clinically normal (healthy) cats (n = 6), cats with severe hepatic lipidosis (n = 9), and cats with complete bile duct occlusion (n = 4). Bile acid concentrations were measured by use of a gradient flow high-performance liquid chromatography procedure with an acetonitrile and ammonium phosphate mobile phase and an in-line postanalytic column containing 3 alpha-hydroxy-steroid dehydrogenase and a fluorescence detector. Specific identification of all bile acid peaks was not completed; unidentified moieties were represented in terms of their elution time (in minutes). Significant differences in serum and urine bile acid concentrations, quantitative and proportional, were determined among groups of cats. Cats with hepatic lipidosis and bile duct occlusion had significantly (P > or = 0.05) greater total serum and urine bile acids concentrations than did healthy cats. The proportion of hydrophobic bile acids in serum, those eluting at > or = 400 minutes, was 1.9% for healthy cats, 3.3% for cats with lipidosis, and 5.4% for bile duct-obstructed cats. Both groups of ill cats had a broader spectrum of unidentified late-eluting serum bile acids than did healthy cats; the largest spectrum developed in bile duct-occluded cats.(ABSTRACT TRUNCATED AT 250 WORDS)
Bernhardt, Katrin; Valenta, Hana; Kersten, Susanne; Humpf, Hans-Ulrich; Dänicke, Sven
2016-05-01
A sensitive method for the simultaneous determination of T-2 toxin, HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol in layer feed using high-performance liquid chromatography coupled to triple quadrupole mass spectrometry in the positive ionization mode (LC-ESI-MS/MS) is described. Two fast and easy clean-up methods-with BondElut Mycotoxin and MycoSep 227 columns, respectively-were tested. The separation of the toxins was conducted on a Pursuit XRs Ultra 2.8 HPLC column using 0.13 mM ammonium acetate as eluent A and methanol as eluent B. Detection of the mycotoxins was carried out in the multiple reaction monitoring (MRM) mode using ammonium adducts as precursor ions. Quantification of all analytes was performed with d3-T-2 toxin as an internal standard. The clean-up method with MycoSep 227 columns gave slightly better results for layer feed compared to the method using BondElut Mycotoxin columns (MycoSep 227: recovery between 50 and 63%, BondElut Mycotoxin: recovery between 32 and 67%) and was therefore chosen as the final method. The limits of detection ranged between 0.9 and 7.5 ng/g depending on the mycotoxin. The method was developed for the analysis of layer feed used at carry-over experiments with T-2 toxin in laying hens. For carry-over experiments, it is necessary that the method includes not only T-2 toxin but also the potential metabolites in animal tissues HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol which could naturally occur in cereals used as feed stuff as well.
Groskreutz, Stephen R.; Weber, Stephen G.
2016-01-01
In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A’s temperature rise, TEC B’s temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25–75 °C) at each of twelve mobile phases compositions (0.05–0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-minute separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF. PMID:27836226
Groskreutz, Stephen R; Weber, Stephen G
2016-11-25
In this work we characterize the development of a method to enhance temperature-assisted on-column solute focusing (TASF) called two-stage TASF. A new instrument was built to implement two-stage TASF consisting of a linear array of three independent, electronically controlled Peltier devices (thermoelectric coolers, TECs). Samples are loaded onto the chromatographic column with the first two TECs, TEC A and TEC B, cold. In the two-stage TASF approach TECs A and B are cooled during injection. TEC A is heated following sample loading. At some time following TEC A's temperature rise, TEC B's temperature is increased from the focusing temperature to a temperature matching that of TEC A. Injection bands are focused twice on-column, first on the initial TEC, e.g. single-stage TASF, then refocused on the second, cold TEC. Our goal is to understand the two-stage TASF approach in detail. We have developed a simple yet powerful digital simulation procedure to model the effect of changing temperature in the two focusing zones on retention, band shape and band spreading. The simulation can predict experimental chromatograms resulting from spatial and temporal temperature programs in combination with isocratic and solvent gradient elution. To assess the two-stage TASF method and the accuracy of the simulation well characterized solutes are needed. Thus, retention factors were measured at six temperatures (25-75°C) at each of twelve mobile phases compositions (0.05-0.60 acetonitrile/water) for homologs of n-alkyl hydroxylbenzoate esters and n-alkyl p-hydroxyphenones. Simulations accurately reflect experimental results in showing that the two-stage approach improves separation quality. For example, two-stage TASF increased sensitivity for a low retention solute by a factor of 2.2 relative to single-stage TASF and 8.8 relative to isothermal conditions using isocratic elution. Gradient elution results for two-stage TASF were more encouraging. Application of two-stage TASF increased peak height for the least retained solute in the test mixture by a factor of 3.2 relative to single-stage TASF and 22.3 compared to isothermal conditions for an injection four-times the column volume. TASF improved resolution and increased peak capacity; for a 12-min separation peak capacity increased from 75 under isothermal conditions to 146 using single-stage TASF, and 185 for two-stage TASF. Copyright © 2016 Elsevier B.V. All rights reserved.
Novic, Milko; Liu, Yan; Avdalovic, Nebojsa; Pihlar, Boris
2002-05-31
Classical gradient elution, based on the application of a gradient pump used for mixing two or more prepared eluent components in pre-determined concentrations, was replaced by a chromatography system equipped with an isocratic pump and an electrolytic KOH generator. The isocratic pump delivered a constant concentration eluent composed of pure hydrogencarbonate solution. Carbonate ions, the main component of carbonate/hydrogencarbonate-based eluents, were formed by titration of hydrogencarbonate with KOH formed on-line in the electrolytic KOH generator. By changing the concentration of electrolytically-generated KOH, the eluent composition could be changed from pure hydrogencarbonate to a carbonate/hydrogencarbonate buffer, and finally to a carbonate/hydroxide-based eluent. The described system was tested to achieve pH-based changes of retention behavior of phosphate under constant inflow eluent composition conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less
Isolation and identification of fatty acid amides from Shengli coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming-Jie Ding; Zhi-Min Zong; Ying Zong
Shengli coal, a Chinese brown coal, was extracted with carbon disulfide and the extract was gradiently eluted with n-hexane and ethyl acetate (EA)/n-hexane mixed solvents with different concentrations of EA in a silica gel-filled column. A series of fatty acid amides, including fourteen alkanamides (C{sub 15}-C{sub 28}) and three alkenamides (C{sub 18} and C{sub 22}), were isolated from the coal by this method and analyzed with a gas chromatography/mass spectrometry. 26 refs., 2 figs., 2 tabs.
Perrone, Daniel; Donangelo, Carmen Marino; Farah, Adriana
2008-10-15
A rapid liquid chromatography-mass spectrometry method for the simultaneous quantification of caffeine, trigonelline, nicotinic acid and sucrose in coffee was developed and validated. The method involved extraction with hot water, clarification with basic lead acetate and membrane filtration, followed by chromatographic separation using a Spherisorb(®) S5 ODS2, 5μm chromatographic column and gradient elution with 0.3% aqueous formic acid/methanol at a flow rate of 0.2mL/min. The electrospray ionization source was operated in the negative mode to generate sucrose ions and in the positive mode to generate caffeine, trigonelline and nicotinic acid ions. Ionization suppression of all analytes was found due to matrix effect. Calibrations curves prepared in green and roasted coffee extracts were linear with r(2)>0.999. Roasted coffee was spiked and recoveries ranged from 93.0% to 105.1% for caffeine, from 85.2% to 116.2% for trigonelline, from 89.6% to 113.5% for nicotinic acid and from 94.1% to 109.7% for sucrose. Good repeatibilities (RSD<5%) were found for all analytes in the matrix. The limit of detection (LOD), calculated on the basis of signal-to-noise ratios of 3:1, was 11.9, 36.4, 18.5 and 5.0ng/mL for caffeine, trigonelline, nicotinic acid and sucrose, respectively. Analysis of 11 coffee samples (regular or decaffeinated green, ground roasted and instant) gave results in agreement with the literature. The method showed to be suitable for different types of coffee available in the market thus appearing as a fast and reliable alternative method to be used for routine coffee analysis. Copyright © 2008 Elsevier Ltd. All rights reserved.
Li, Yinghong; Zhou, Ping; Xu, Quanhua; Zhao, Huan; Shao, Qiaoyun
2018-02-08
A method was developed for the simultaneous determination of seven high risk pesticides in the royal jelly, eg. tau-fluvalinate, triadimenol, coumaphos, haloxyfop, carbendazim, thiophanate-ethyl and thiophanate-methyl by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). First, the royal jelly samples were extracted with acetonitrile under alkaline conditions. After dehydration by anhydrous sodium sulfate, the extracts were enriched and purified through solid-phase extraction (SPE) with Oasis HLB cartridges. Finally, the pesticides were detected by HPLC-MS/MS method. The separation was carried out on a Venusil MP C18 column with gradient elution. Methanol (containing 0.1% (v/v) formic acid) and 0.5 mmol/L ammonium acetate aqueous solution (containing 0.1% (v/v) formic acid) were used as the mobile phases. The detection was achieved using electrospray ionization in positive ion (ESI + ) mode and multiple reaction monitoring (MRM) mode for data collection. Quantification was carried out using internal standard method. The results showed that the seven high risk pesticides were linear in the range of 5-100 μg/kg. The linear correlation coefficients ( r 2 ) were 0.9921-0.9996. The limits of detection (LODs) and limits of quantification (LOQs) of the seven high risk pesticides were 0.5-2.0 μg/kg and 1.0-5.0 μg/kg, respectively. The average recoveries at the three spiked levels were 80.5%-101.3%, and the relative standard deviations were 3.6%-9.4% ( n =3). This method is simple, effective and sensitive, and is suitable for the determination of the pesticide residues in royal jelly.
Xu, Yu; Wang, DanDan; Tang, Lan; Wang, Jian
2017-10-25
Eleven unknown allergic impurities in cefodizime, cefmenoxime and cefonicid were separated and characterized by a trap-free two-dimensional high performance size exclusion chromatography (HPSEC) and reversed phase liquid chromatography (RP-HPLC) coupled to high resolution ion trap/time-of-flight mass spectrometry (2D-HPSEC×LC-IT-TOF MS) with positive and negative modes of electrospray ionization method. Separation and characterization the allergic polymerized impurities in β-lactam antibiotics were on the basis of column-switching technique which effectively combined the advantages of HPSEC and the ability of RP-HPLC to identify the special impurities. In the first dimension HPSEC, the column was Xtimate SEC-120 analytical column (7.8mm×30cm, 5μm), and the gradient elution used pH 7.0 buffer-acetonitrile as mobile phase And the second dimension analytical column was ZORBAX SB-C18 (4.6×150mm, 3.5μm) with ammonium formate solution (10mM) and ammonium formate (8mM) in [acetonitrile-water (4:1, v/v)] solution as mobile phase. Structures of eleven unknown impurities were deduced based on the high resolution MS n data with both positive and negative modes, in which nine impurities were polymerized impurities. The forming mechanism of β-lactam antibiotic polymerization in cephalosporins was also studied. The question on incompatibility between non-volatile salt mobile phase and mass spectrometry was solved completely by multidimensional heart-cutting approaches and online demineralization technique, which was worthy of widespread use and application for the advantages of stability and repeatability. Copyright © 2017. Published by Elsevier B.V.
Jacobs, Bart A W; Rosing, Hilde; de Vries, Niels; Meulendijks, Didier; Henricks, Linda M; Schellens, Jan H M; Beijnen, Jos H
2016-07-15
Quantification of the endogenous dihydropyrimidine dehydrogenase (DPD) substrate uracil (U) and the reaction product dihydrouracil (UH2) in plasma might be suitable for identification of patients at risk of fluoropyrimidine-induced toxicity as a result of DPD deficiency. In this paper, we describe the development and validation of a rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay for quantification of U and UH2 in human plasma. Analytes were extracted by protein precipitation, chromatographically separated on an Acquity UPLC(®) HSS T3 column with gradient elution and analyzed with a tandem mass spectrometer equipped with an electrospray ionization source. U was quantified in the negative ion mode and UH2 in the positive ion mode. Stable isotopes for U and UH2 were used as internal standards. Total chromatographic run time was 5min. Validated concentration ranges for U and UH2 were from 1 to 100ng/mL and 10 to 1000ng/mL, respectively. Inter-assay bias and inter-assay precision for U were within ±2.8% and ≤12.4%. For UH2, inter-assay bias and inter-assay precision were within ±2.9% and ≤7.2%. Adequate stability of U and UH2 in dry extract, final extract, stock solution and plasma was demonstrated. Stability of U and UH2 in whole blood was only satisfactory when stored up to 4hours at 2-8°C, but not at ambient temperatures. An accurate, precise and sensitive UPLC-MS/MS assay for quantification of U and UH2 in plasma was developed. This assay is now applied to support clinical studies with fluoropyrimidine drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyan; Sun, Jianguo; Hao, Haiping; Wang, Guangji; Hu, Xiaoling; Lv, Hua; Gu, Shenghua; Wu, Xiaoming; Xu, Jinyi
2008-05-01
A rapid and sensitive high performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS/MS) detection was developed for the simultaneous determination of multiple angiotensin type 1 receptor antagonists (AT1RAs) WX472, WX581, 1b and telmisartan in rat plasma for the purpose of high-throughout pharmacokinetic screening. The method was operated under selected reaction monitoring (SRM) mode in the positive ion mode. The analytes and the internal standard (pitavastatin) were extracted from 100 [mu]L rat plasma under acidic conditions by liquid-liquid extraction with ethyl acetate. The analytes and internal standard were baseline separated on a Gemini analytical column (3 [mu]m, 150 mm × 2.0 mm) with the adoption of a gradient elution using acetonitrile and 0.05% aqueous formic acid. The standard curves were linear in the concentration ranges of 4.5-900 ng/mL for WX472, 5-1000 ng/mL for WX581 and 0.5-100 ng/mL for 1b and telmisartan. Intra- and inter-batch precisions (R.S.D.%) were all within 15% and the method assessed a quite good accuracy (R.E.%). Recoveries were found to be >65% for all the compounds and no obvious matrix effects were found. This method has been successfully applied to the high-throughput pharmacokinetic screening study for both cassette dosing and cassette analysis of four compounds to rats. Significant drug-drug interactions were observed after cassette dosing. The study suggested that cassette analysis of pooled samples would be a better choice for the high-throughput pharmacokinetic screening of angiotensin type 1 receptor antagonists.
[Quality Analysis and Evaluation of Anemarrhena asphodeloides Rhizome from Different Habitats].
Li, Guo-long; Yang, Jie; Duan, Jin-ao; Liu, Hong-bo; Zhu, Zhen-hua; Qian, Da-wei; Tang, Zhi-shu
2015-06-01
tive: To compare and analyze the quality of Anemarrhena asphodeloides rhizome from different habitats. Simultaneous determination of nine components in Anemarrhena asphodeloides rhizome by UPLC-TQ/MS was performed on a Phenomenex Kinetex XB-C18 (100 mm x 2.1 mm, 1.7 μm) column with the mobile phase consisted of 0.1% formic acid-acetonitrile (gradient elution) at the flow rate of 0.4 mL/min and thecolumn temperature at 35 degrees C. Multiple reaction mode detection (MRM) in mode was used in this assay. Nine components were separated totally within 15 min. Good correlation were found between the investigated compounds concentrations and their peak areas within the test ranges with the correlation coefficient from 0.9917 to 0.9992. The average recoveries were from 98.1% to 103.7%, and the RSD of precision was in the range of 1.7% - 4.7%. 0.074-3.620 mg/g for sarsasapogenin, 0.042-2.530 mg/g for timosaponin A III, 22.1- 50.4 mg/g for timosaponon B II, 0.10 -8.28 mg/g for officinalisinin II, 0.64 -7.29 mg/g for anemarsaponin B III, 3.28 -27.40 mg/g for mangiferin, 1.83 - 7.21 mg/g for isomangiferin, 0.36 -9.25 mg/g for neomangiferin and 4.72 x 10(-5) - 1.38 x 10(-3) mg/g for baohuoside I in Anemarrhena asphodeloides rhizome from different habitats were detected. The method is rapid, accurate and can be used for quality evaluation of Anemarrhena asphodeloides rhizome. The quality of Anemarrhena asphodeloides rhizome from different habitats are different. The saponins content of Anemarrhena asphodeloides rhizome in Hebei is higher than that of the others.
Ares, Ana M; Ayuso, Irene; Bernal, José L; Nozal, María J; Bernal, José
2016-02-15
In this study, we investigate for the first time the presence of sulforaphane (SFN) residues in two of the most currently consumed food/dietary supplements, royal jelly and bee pollen. Chromatography-tandem mass spectrometry (LC-MS/MS) was the method employed, the mass spectrometer consisting of an ion-trap mass analyzer used with electrospray ionization (ESI) in positive ion mode. An efficient sample treatment involving a solvent extraction with methanol, centrifugation, and concentration in a rotary evaporator was proposed. In all cases average analyte recoveries were between 92 and 106%. Chromatographic analysis (16min) was performed on a core-shell technology based column (Kinetex C18, 150×4.6mm, 2.6μm, 100Å). The mobile phase consisted of 0.02M ammonium formate in water and acetonitrile, with a flow rate of 0.5mL/min in gradient elution mode. The fully validated method was selective, linear from 8 to 1000μg/kg (bee pollen), or from 10 to 1250μg/kg (royal jelly), precise and accurate; relative standard deviation (% RSD) and relative error (% RE) values were below 10%. Low limits of detection (LOD) and quantification (LOQ) were obtained, namely, 3μg/kg (LOD) and 8 (bee pollen) and 10 (royal jelly) μg/kg (LOQ). The method was applied for SFN analysis in several royal jelly and bee pollen samples. SFN was detected at trace levels in some bee pollen samples (<23μg/kg) examined, whilst SFN went undetected in the royal jelly samples analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.
Tayade, Amol B; Dhar, Priyanka; Kumar, Jatinder; Sharma, Manu; Chaurasia, Om P; Srivastava, Ravi B
2013-07-30
A rapid method was developed to determine both types of vitamins in Rhodiola imbricata root for the accurate quantification of free vitamin forms. Rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) with electrospray ionization (ESI) source operating in multiple reactions monitoring (MRM) mode was optimized for the sequential analysis of nine water-soluble vitamins (B1, B2, two B3 vitamins, B5, B6, B7, B9, and B12) and six fat-soluble vitamins (A, E, D2, D3, K1, and K2). Both types of vitamins were separated by ion-suppression reversed-phase liquid chromatography with gradient elution within 30 min and detected in positive ion mode. Deviations in the intra- and inter-day precision were always below 0.6% and 0.3% for recoveries and retention time. Intra- and inter-day relative standard deviation (RSD) values of retention time for water- and fat-soluble vitamin were ranged between 0.02-0.20% and 0.01-0.15%, respectively. The mean recoveries were ranged between 88.95 and 107.07%. Sensitivity and specificity of this method allowed the limits of detection (LOD) and limits of quantitation (LOQ) of the analytes at ppb levels. The linear range was achieved for fat- and water-soluble vitamins at 100-1000 ppb and 10-100 ppb. Vitamin B-complex and vitamin E were detected as the principle vitamins in the root of this adaptogen which would be of great interest to develop novel foods from the Indian trans-Himalaya. Copyright © 2013 Elsevier B.V. All rights reserved.
Šesták, Jozef; Kahle, Vladislav
2014-07-11
Performing gradient liquid chromatography at constant pressure instead of constant flow rate has serious potential for shortening the analysis time and increasing the productivity of HPLC instruments that use gradient methods. However, in the constant pressure mode the decreasing column permeability during a long period of time negatively affects the repeatability of retention time. Thus a volume-based approach, in which the detector signal is plotted as a function of retention volume, must be taken into consideration. Traditional HPLC equipment, however, requires quite complex hardware and software modifications in order to work at constant pressure and in the volume-based mode. In this short communication, a low cost and easily feasible pressure-controlled extension of the previously described simple gradient liquid chromatography platform is proposed. A test mixture of four nitro esters was separated by 10-60% (v/v) acetone/water gradient and a high repeatability of retention volumes at 20MPa (RSD less than 0.45%) was realized. Separations were also performed at different values of pressure (20, 25, and 31MPa), and only small variations of the retention volumes (up to 0.8%) were observed. In this particular case, the gain in the analysis speed of 7% compared to the constant flow mode was realized at a constant pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Progress in understanding the enhanced pedestal H-mode in NSTX
Gerhardt, S. P.; Canik, J. M.; Maingi, R.; ...
2014-08-01
The paper describes the enhanced pedestal (EP) H-mode observed in the National Spherical Torus Experiment (NSTX). The defining characteristics of EP H-mode are given, namely i)transition after the L- to H-mode transition, ii) region of very steep ion temperature gradient, and iii) associated region of strong rotational shear. A newly observed long-pulse EP H-mode example shows quiescent behavior for as long as the heating and current drive sources are maintained. Cases are shown where the region of steep ion temperature gradient is located at the very edge, and cases where it is shifted up to 10 cm inward from themore » plasma edge; these cases are united by a common dependence of the ion temperature gradient on the toroidal rotation frequency shear. EP H-mode examples have been observed across a wide range of q95 and pedestal collisionality. No strong changes in the fluctuation amplitudes have been observed following the eP H-mode transition, and transport analysis indicates that the ion t hermal transport is comparable to or less than anticipated from a simple neoclassical transport model. Cases are shown where EP H-modes were reliably generated, through these low-q95 examples were difficult to sustain. A case where an externally triggered ELM precipitates the transition to EP H-mode is also shown, though an initial experiment designed to trigger EP-H-modes in this fashion was successful.« less
Solitary plasma rings and magnetic field generation involving gravity and differential rotation
NASA Astrophysics Data System (ADS)
Coppi, B.
2012-12-01
A new theoretical framework for describing how magnetic fields are generated and amplified is provided by finding magneto-gravitational modes that involve gravity, density gradients, and differential rotation in an essential way. Other factors, such as the presence of a high temperature particle population or of a temperature gradient, can contribute to their excitation. These modes identified by a linearized analysis are shown to be important for the evolution of plasma disks surrounding black holes toward different configurations. Since the nonlinear development of these modes can lead to radially localized regions with a relatively small differential rotation, new stationary structures have been identified, in the (fully) nonlinear limit, which are localized radially over regions with negligible gradients of the rotation frequency. These structures, characterized by solitary plasma rings, do not involve a pre-existing "seed" magnetic field, unlike other configurations found previously. The relevant magnetic energy density is comparable to the gravitationally confined plasma pressure. The "source" of these configurations is the combination of the gravitational force and of the plasma density gradient orthogonal to it that is an important factor in the theory of magneto-gravitational modes, another important factor being an anisotropy of the plasma pressure.
Biedermann, Maurus; Munoz, Celine; Grob, Koni
2017-10-27
On-line coupled high performance liquid chromatography-gas chromatography-flame ionization detection (HPLC-GC-FID) is the most widely used method for the analysis of mineral oil hydrocarbons in food, food contact materials, tissues and cosmetics. With comprehensive two-dimensional gas chromatography (GCxGC), a tool became available for better establishing the elution sequence of the various types of hydrocarbons from the HPLC column used for isolating the mineral oil saturated hydrocarbons (MOSH) and mineral oil aromatic hydrocarbons (MOAH). The performance of a heavily used HPLC column with reduced retention for MOAH was investigated to improve the robustness of the method. Updates are recommended that render the MOSH/MOAH separation less dependent of the state of the HPLC column and more correct in cases of highly refined mineral oil products of high molecular mass. Cyclohexyl cyclohexane (Cycy), used as internal standard, turned out to be eluted slightly after cholestane (Cho); apparently the size exclusion effect predominates the extra retention by ring number on the 60Å pore size silica gel. Hence, Cycy can be used to determine the end of the MOSH fraction. Long chain alkyl benzenes were eluted earlier than tri-tert. butyl benzene (Tbb). It is proposed to start the MOAH transfer immediately after the MOSH fraction and use a gradient causing breakthrough of dichloromethane (visible in the UV chromatogram) at a time suitable to elute perylene (Per) at the end of the fraction. In this way, a decrease in retention power of the HPLC column can be tolerated without adjustment of the MOAH fraction until some MOAH start being eluted into the MOSH fraction. This critical point can be checked either with di(2-ethylhexyl) benzene (DEHB) as a marker or the HPLC-UV chromatogram. Finally, based on new findings in rats and human tissues, it is recommended to integrate the MOSH and MOAH up to the retention time of the n-alkane C40. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-Mode Cavity Accelerator Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yong; Hirshfield, Jay Leonard
2016-11-10
This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less
Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...
2016-03-01
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less
Vergara, Carola; Mardones, Claudia; Hermosín-Gutiérrez, Isidro; von Baer, Dietrich
2010-09-03
Anthocyanins, which confer the characteristic color to red wine, can be used as markers to classify wines according to the grape variety. It is a complex separation that requires very high chromatographic efficiency, especially in the case of aged red wines, due to the formation of pyranoanthocyanins. A coelution between these kinds of compounds can affect the R(ac/coum) ratio of aged wines, and might lead to false results when classifying the wine variety. In 2007, the use of a novel mixed-mode ion-exchange reversed-phase column was reported to separate anthocyanins extracted from grapes of Vitis labrusca with different selectivity than C-18 columns. In the present work, the separation of anthocyanins including pyranoanthocyanins in young and aged Cabernet Sauvignon wines and other varieties is evaluated. The most interesting contributions of this research are the different elution order and selectivity obtained for anthocyanins and pyranoanthocyanins (only formed in wine), compared with those observed in C-18 stationary phases. Also interesting is the separation of the polymeric fraction, which elutes as a clearly separated peak at the chromatogram's end. However, a comparison with a high efficiency C-18 column with the same dimensions and particle size demonstrated that the tested mixed-mode column shows broader peaks with a theoretical plate number below 8000, for malvidin-3-glucoside peak, while it can be up to 10 times higher for a high efficiency C-18 column, depending on the column manufacturer. Under the tested conditions, in mixed-mode phase, the analysis time is almost twice that of a C-18 column with the same dimensions and particle size. A mixed-mode phase with increased efficiency should provide an interesting perspective for separation of anthocyanins in wine, due to its improved selectivity, combined with a useful role in a second-dimension separation in preparative anthocyanin chromatography. 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farengo, R.; Guzdar, P. N.; Lee, Y. C.
1989-08-01
The effect of finite parallel wavenumber and electron temperature gradients on the lower hybrid drift instability is studied in the parameter regime corresponding to the TRX-2 device [Fusion Technol. 9, 48 (1986)]. Perturbations in the electrostatic potential and all three components of the vector potential are considered and finite beta electron orbit modifications are included. The electron temperature gradient decreases the growth rate of the instability but, for kz=0, unstable modes exist for ηe(=T'en0/Ten0)>6. Since finite kz effects completely stabilize the mode at small values of kz/ky(≂5×10-3), magnetic shear could be responsible for stabilizing the lower hybrid drift instability in field-reversed configurations.
NASA Astrophysics Data System (ADS)
Haque, Q.; Zakir, U.; Qamar, A.
2015-12-01
Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.
De Beer, Maarten; Lynen, Fréderic; Chen, Kai; Ferguson, Paul; Hanna-Brown, Melissa; Sandra, Pat
2010-03-01
Stationary-phase optimized selectivity liquid chromatography (SOS-LC) is a tool in reversed-phase LC (RP-LC) to optimize the selectivity for a given separation by combining stationary phases in a multisegment column. The presently (commercially) available SOS-LC optimization procedure and algorithm are only applicable to isocratic analyses. Step gradient SOS-LC has been developed, but this is still not very elegant for the analysis of complex mixtures composed of components covering a broad hydrophobicity range. A linear gradient prediction algorithm has been developed allowing one to apply SOS-LC as a generic RP-LC optimization method. The algorithm allows operation in isocratic, stepwise, and linear gradient run modes. The features of SOS-LC in the linear gradient mode are demonstrated by means of a mixture of 13 steroids, whereby baseline separation is predicted and experimentally demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Eric M.; Waltz, R. E.
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Bass, Eric M.; Waltz, R. E.
2017-12-08
Here, a “stiff transport” critical gradient model of energetic particle (EP) transport by EPdriven Alfven eigenmodes (AEs) is verified against local nonlinear gyrokinetic simulations of a well-studied beam-heated DIII-D discharge 146102. A greatly simplifying linear “recipe” for the limiting EP-density gradient (critical gradient) is considered here. In this recipe, the critical gradient occurs when the AE linear growth rate, driven mainly by the EP gradient, exceeds the ion temperature gradient (ITG) or trapped electron mode (TEM) growth rate, driven by the thermal plasma gradient, at the same toroidal mode number (n) as the AE peak growth, well below the ITG/TEMmore » peak n. This linear recipe for the critical gradient is validated against the critical gradient determined from far more expensive local nonlinear simulations in the gyrokinetic code GYRO, as identified by the point of transport runaway when all driving gradients are held fixed. The reduced linear model is extended to include the stabilization from equilibrium E×B velocity shear. The nonlinear verification unambiguously endorses one of two alternative recipes proposed in Ref. 1: the EP-driven AE growth rate should be determined with rather than without added thermal plasma drive.« less
Rapid purification of staphylococcal enterotoxin B by high-pressure liquid chromatography.
Strickler, M P; Neill, R J; Stone, M J; Hunt, R E; Brinkley, W; Gemski, P
1989-01-01
The Staphylococcus aureus enterotoxins represent a group of proteins that cause emesis and diarrhea in humans and other primates. We have developed a rapid two-step high-pressure liquid chromatography (HPLC) procedure for purification of staphylococcal enterotoxin B (SEB). Sterile filtrates (2.5 liters) of strain 10-275 were adsorbed directly onto a reversed-phase column (50 mm by 30 cm Delta Pak; 300 A [30 nm], 15 microns, C18). SEB was obtained by using a unique sequential gradient system. First, an aqueous ammonium acetate to acetonitrile gradient followed by an aqueous trifluoroacetic acid (TFA) wash was used to remove contaminants. A subsequent TFA to acetonitrile-TFA gradient eluted the bound SEB. Further purification was obtained by rechromatography on a cation-exchange column. From 35 to 45% of the SEB in starting filtrates was recovered. Analysis by immunoblotting of samples separated on sodium dodecyl sulfate-polyacrylamide gels indicated that HPLC-purified SEB exhibited immunological and biochemical properties similar to those of the SEB standard. Induction of an emetic response in rhesus monkeys showed that the HPLC-purified toxin also retained biological activity. Images PMID:2745678
Engineering functionality gradients by dip coating process in acceleration mode.
Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David
2014-10-08
In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.
Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear
NASA Astrophysics Data System (ADS)
Chen, W.; Yu, D. L.; Ma, R. R.; Shi, P. W.; Li, Y. Y.; Shi, Z. B.; Du, H. R.; Ji, X. Q.; Jiang, M.; Yu, L. M.; Yuan, B. S.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Ding, X. T.; Dong, J. Q.; Wang, Z. X.; Wei, H. L.; Cao, J. Y.; Song, S. D.; Song, X. M.; Liu, Yi.; Yang, Q. W.; Xu, M.; Duan, X. R.
2018-05-01
Kinetic Alfvén and pressure gradient driven instabilities are very common in magnetized plasmas, both in space and the laboratory. These instabilities will be easily excited by energetic particles (EPs) and/or pressure gradients in present-day fusion and future burning plasmas. This will not only cause the loss and redistribution of the EPs, but also affect plasma confinement and transport. Alfvénic ion temperature gradient (AITG) instabilities with the frequency ω_BAE<ω<ω_TAE and the toroidal mode numbers n=2{-}8 are found to be unstable in NBI internal transport barrier plasmas with weak shear and low pressure gradients, where ω_BAE and ω_TAE are the frequencies of the beta- and toroidicity-induced Alfvén eigenmodes, respectively. The measured results are consistent with the general fishbone-like dispersion relation and kinetic ballooning mode equation, and the modes become more unstable the smaller the magnetic shear is in low pressure gradient regions. The interaction between AITG activity and EPs also needs to be investigated with greater attention in fusion plasmas, such as ITER (Tomabechi and The ITER Team 1991 Nucl. Fusion 31 1135), since these fluctuations can be enhanced by weak magnetic shear and EPs.
Suppression of electron temperature gradient turbulence via negative magnetic shear in NSTX.
Yuh, H Y; Kaye, S M; Levinton, F M; Mazzucato, E; Mikkelsen, D R; Smith, D R; Bell, R E; Hosea, J C; LeBlanc, B P; Peterson, J L; Park, H K; Lee, W
2011-02-04
Negative magnetic shear is found to suppress electron turbulence and improve electron thermal transport for plasmas in the National Spherical Torus Experiment (NSTX). Sufficiently negative magnetic shear results in a transition out of a stiff profile regime. Density fluctuation measurements from high-k microwave scattering are verified to be the electron temperature gradient (ETG) mode by matching measured rest frequency and linear growth rate to gyrokinetic calculations. Fluctuation suppression under negligible E×B shear conditions confirm that negative magnetic shear alone is sufficient for ETG suppression. Measured electron temperature gradients can significantly exceed ETG critical gradients with ETG mode activity reduced to intermittent bursts, while electron thermal diffusivity improves to below 0.1 electron gyro-Bohms.
Effect of density gradients in confined supersonic shear layers. Part 2: 3-D modes
NASA Astrophysics Data System (ADS)
Peroomian, Oshin; Kelly, R. E.
1994-11-01
The effect of basic flow density gradients on the supersonic wall modes were investigated in Part 1 of this analysis. In that investigation only the 2-D modes were studied. Tam and Hu investigated the 3-D modes in a confined vortex sheet and reported that the first 2-D Class A mode (A01) had the highest growth rate compared to all other 2-D and 3-D modes present in the vortex sheet for that particular set of flow patterns. They also showed that this result also held true for finite thickness shear layers with delta(sub w) less than 0.125. For free shear layers, Sandham and Reynolds showed that the 3-D K-H mode became the dominant mode for M(sub c) greater than 0.6. Jackson and Grosch investigated the effect of crossflow and obliqueness on the slow and fast odes present in a M(sub c) greater than 1 environment and showed that for certain combination of crossflow and wave angles the growth rates could be increased by up to a factor of 2 with respect to the 2-D case. The case studied here is a confined shear layer shown in Part 1. All solution procedures and basic low profiles are the same as in Part 1. The effect of density gradients on the 3-D modes present in the density ratios considered in Part 1 are investigated.
Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn
2011-09-23
The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. Copyright © 2011 Elsevier B.V. All rights reserved.
Sheng, Ning; Zheng, Hao; Xiao, Yao; Wang, Zhe; Li, Menglin; Zhang, Jinlan
2017-09-29
Chemical profile for Chinese medicine formulas composed of several herbs is always a challenge due to a big array of small molecules with high chemical diversity so much as isomers. The present paper develops a feasible strategy to characterize and identify complex chemical constituents of a four-herb traditional Chinese medicine formula, Denzhan Shenmai (DZSM) by integrating comprehensive two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC×LC-qTOF-MS) with multiple heart-cutting two-dimensional liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (MHC-qTOF-MS). DZSM was separated by C8×C18 HPLC column system for comprehensive two-dimensional liquid chromatography system and 283 compounds most of which belonged to phenolic acid, flavonoid, saponin and lignan families were characterized and identified within 75min. Some isomers and compounds at low level were analyzed on C8×Chiral HPLC column system for multiple heart-cutting two-dimensional liquid chromatography system with 1D and 2D optimized gradient elution program. These 1D cutting fractions were successively separated on 2D chiral chromatographic column under extended the 2D gradient elution time from 30s to 5.0min. 12 pairs of isomer compounds were separated with good resolution. The combination of LC×LC and MHC system provides a powerful technique for global chemical profiling of DZSM and provided feasible strategy for other complex systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of a large density gradient on linear and nonlinear edge-localized mode simulations
Xi, P. W.; Xu, X. Q.; Xia, T. Y.; ...
2013-09-27
Here, the impact of a large density gradient on edge-localized modes (ELMs) is studied linearly and nonlinearly by employing both two-fluid and gyro-fluid simulations. In two-fluid simulations, the ion diamagnetic stabilization on high-n modes disappears when the large density gradient is taken into account. But gyro-fluid simulations show that the finite Larmor radius (FLR) effect can effectively stabilize high-n modes, so the ion diamagnetic effect alone is not sufficient to represent the FLR stabilizing effect. We further demonstrate that additional gyroviscous terms must be kept in the two-fluid model to recover the linear results from the gyro-fluid model. Nonlinear simulations show that the density variation significantly weakens the E × B shearing at the top of the pedestal and thus leads to more energy loss during ELMs. The turbulence spectrum after an ELM crash is measured and has the relation ofmore » $$P(k_{z})\\propto k_{z}^{-3.3}$$ .« less
Flux tube gyrokinetic simulations of the edge pedestal
NASA Astrophysics Data System (ADS)
Parker, Scott; Wan, Weigang; Chen, Yang
2011-10-01
The linear instabilities of DIII-D H-mode pedestal are studied with gyrokinetic micro-turbulence simulations. The simulation code GEM is an electromagnetic δf code with global tokamak geometry in the form of Miller equilibrium. Local flux tube simulations are carried out for multiple positions of two DIII-D profiles: shot #98889 and shot #131997. Near the top of the pedestal, the instability is clearly ITG. The dominant instability of the pedestal appears at the steep gradient region, and it is identified as a low frequency mode mostly driven by electron temperature gradient. The mode propagates along the electron diamagnetic direction for low n and may propagate along the ion direction for high n. At some positions near the steep gradient region, an ion instability is found which shows some characteristics of kinetic ballooning mode (KBM). These results will be compared to the results of E. Wang et al. and D. Fulton et al. in the same session. We thank R. Groebner and P. Snyder for providing experimental profiles and helpful discussions.
Bhushan, Ravi; Nagar, Hariom
2015-03-01
Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. Copyright © 2014 John Wiley & Sons, Ltd.
Origin of bombesin-like peptides in human fetal lung.
Yoshizaki, K; de Bock, V; Solomon, S
1984-02-27
Four different forms of bombesin-like immunoreactive peaks were detected in extracts of human fetal lung by the use of reversed-phase high performance liquid chromatography (HPLC). Peaks I, II, III and IV, (increasing retention time), were eluted using a 14-38% of acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Peak II was the major material found in the extract of human fetal lung obtained at 16-20 weeks gestation. None of the four compounds contained in the eluted peaks had the same retention time as amphibian bombesin or porcine gastrin releasing peptide (GRP). On reversed-phase HPLC using two different solvent systems TFA or heptafluorobutyric acid (HFBA) as a hydrophobic counter ion, and in gel filtration chromatography, the chromatographic behavior of the main peak (peak II) was the same as that of the carboxyl terminal fragments of GRP, GRP18-27 or GRP19-27. This suggested that the peptide(s) in peak II resembled in composition the carboxy terminal 9 or 10 amino acids of porcine GRP. Following tryptic digestion the material in peak IV was converted to the more polar compound present in peak II. Two other peptide peaks were eluted close to peak II and these were presumed to be a modification of this main peak. One of the possible biosynthetic steps in the formation of bombesin-like peptides in human fetal lung could be a tryptic conversion of a less polar peptide to a more polar form (peak IV to II).
Liu, Dan; Ma, Yan; Wang, Ye; Su, Zhiguo; Gu, Ming; Janson, Jan-Christer
2011-05-01
The hydrolysable tannins corilagin and geraniin, the major active components of the traditional Chinese medicine Geranium wilfordii Maxim, have been separated and purified from crude extracts in one step by adsorption chromatography on cross-linked 12% agarose gel (Superose 12 10/300 GL). The separation was achieved by gradient elution using mobile phase A composed of 5% ethanol and 5% acetic acid and mobile phase B composed of 30% ethanol and 30% acetic acid. The gradients were composed as follows: 0-240 mL, 0-25% B; 240-480 mL, 25-40% B; after 480 mL, 100% B. The purities of the collected corilagin and geraniin were 92.4 and 87.2%, and the corresponding yields were 88.0 and 76.8%, respectively. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Brown, Ron H; Mueller-Harvey, Irene; Zeller, Wayne E; Reinhardt, Laurie; Stringano, Elisabetta; Gea, An; Drake, Christopher; Ropiak, Honorata M; Fryganas, Christos; Ramsay, Aina; Hardcastle, Emily E
2017-09-13
Unambiguous investigation of condensed tannin (CT) structure-activity relationships in biological systems requires well-characterized, high-purity CTs. Sephadex LH-20 and Toyopearl HW-50F resins were compared for separating CTs from acetone/water extracts, and column fractions analyzed for flavan-3-ol subunits, mean degree of polymerization (mDP), and purity. Toyopearl HW-50F generated fractions with higher mDP values and better separation of procyanidins (PC) and prodelphinidins (PD) but required a prepurification step, needed more time for large scale purifications, and gave poorer recoveries. Therefore, two gradient elution schemes were developed for CT purification on Sephadex LH-20 providing 146-2000 mg/fraction. Fractions were analyzed by thiolysis and NMR spectroscopy. In general, PC/PD ratios decreased and mDP increased during elution. 1 H NMR spectroscopy served as a rapid screening tool to qualitatively determine CT enrichment and carbohydrate impurities present, guiding fractionation toward repurification or 1 H- 13 C HSQC NMR spectroscopy and thiolysis. These protocols provide options for preparing highly pure CT samples.
DNA Polymerase in Virions of a Reptilian Type C Virus
Twardzik, Daniel R.; Papas, Takis S.; Portugal, Frank H.
1974-01-01
A study was made of the DNA polymerase of reptilian type C virus isolated from Russell's viper spleen cells. Simultaneous detection experiments demonstrated the presence of 70S RNA and RNA-dependent DNA polymerase activity in reptilian type C virions. The endogenous activity was dependent on the addition of all four deoxynucleotide triphosphates and demonstrated an absolute requirement for a divalent cation. The reptilian viral DNA polymerase elutes from phosphocellulose at 0.22 M salt. In this respect, it is similar to the avian (avian myeloblastosis virus; AMV) viral enzyme but is different from the mammalian (Rauscher leukemia virus; RLV) viral enzyme which elutes at 0.4 M salt. The molecular weight of the viper DNA polymerase as estimated from glycerol gradient centrifugation is 109,000. It is a smaller enzyme than the AMV DNA polymerase (180,000 daltons) and somewhat larger than the RLV enzyme (70,000 daltons). A comparison of other properties of the type C reptilian DNA polymerase with the enzyme found in other type C oncogenic viruses is made. PMID:4129837
Savary, B J
2001-08-01
A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.
Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M
2010-03-01
The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).
Horenstein, Alberto L; Crivellin, Federico; Funaro, Ada; Said, Marcela; Malavasi, Fabio
2003-04-01
Murine monoclonal antibodies (mAb) from cell culture supernatants have been purified in order to acquire clinical grade for in vivo cancer treatment. The starting material was purified by high performance liquid chromatography (HPLC) systems ranging from the analytical scale process to a scaleup to 1 g per batch. Three columns (Protein A affinity chromatography with single-step elution, hydroxyapatite (HA) chromatography followed by linear gradient elution and endotoxin removing-gel chromatography), exploiting different properties of the mAb were applied. The final batches of antibody were subjected to a large panel of tests for the purpose of evaluating the efficacy of the downstream processing. The resulting data have allowed us to determine the maximum number of times the column can be used and to precisely and thoroughly characterize antibody integrity, specificity, and potency according to in-house reference standards. The optimized bioprocessing is rapid, efficient, and reproducible. Not less importantly, all the techniques applied are characterized by costs which are affordable to medium-sized laboratories. They represent the basis for implementing immunotherapeutic protocols transferable to clinical medicine.
Streamer formation and transport for parameters characteristic of H-mode pedestals
NASA Astrophysics Data System (ADS)
Blackmon, Austin; Hatch, D. R.; Kotschenreuther, M.; Mahajan, S.; Hazeltine, R. D.
2017-10-01
We investigate, through gyrokinetic simulations, the formation of streamers as a consequence of electron temperature gradient driven, electron scale instabilities. We also study the interaction of velocity shear with streamers for parameters typical of H-mode pedestals, exploring both the higher as well as lower temperature gradient regions. Without ExB shear, the streamers form at the pedestal top causing large heat fluxes; the modes, however, did not saturate. When ExB shear was turned on, the streamers dissipated, and heat flux was lowered, though still of significant magnitude. In the middle of the pedestal, with high temperature gradient, heat flux was insignificant. There was no evidence of streamers in this region, leading to a conclusion that streamers have a strong influence on heat flux. Work supported by US DOE under DE-FG02-04ER54742.
Inactivation of viruses using novel protein A wash buffers.
Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J
2015-01-01
Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.
Lee, Hyejin; Kim, Jin Yong; Choi, Woonjin; Moon, Myeong Hee
2017-06-23
In this study, ultrahigh-molecular-weight (MW) (>10 7 Da) cationic polyacrylamides (C-PAMs), which are water-soluble polymers used in waste water treatment, were characterized using frit-inlet asymmetrical flow field-flow fractionation coupled with multi-angle light scattering and differential refractive detection. C-PAMs copolymerized with acryloxyethyltrimethyl ammonium chloride (DAC) were prepared by varying the feed amount of cationic monomer, polymerization method (solution vs. emulsion), and degree of branching. The MW of the copolymers prepared using emulsion polymerization (10 7 -10 9 Da) was generally larger than that of copolymers prepared using solution polymerization (4×10 7 -10 8 Da). When the amount of cationic monomer was increased from 10 to 55mol% in solution polymerization, hydrophobic contraction of the core induced formation of more compact C-PAMs. The copolymers prepared using emulsion polymerization formed highly aggregated or supercoil structures owing to increased intermolecular hydrophobic interaction when less cationic monomer was used. However, the MW decreased with increased cationic group content. In addition, C-PAMs larger than ∼10 8 Da prepared using the emulsion method were separated by steric/hyperlayer elution mode while those in the 10 7 -10 8 Da range were analyzed in either normal or steric/hyperlayer mode depending on the decay patterns of field programming. Moreover, branched copolymers were found to be resolved with different elution modes under the same field decay pattern depending on the degree of branching: steric/hyperlayer for low-branching and normal for high-branching C-PAMs. Copyright © 2017 Elsevier B.V. All rights reserved.
Ji, Bin; Zhuo, Limeng; Yang, Bin; Wang, Yang; Li, Lin; Yu, Miao; Zhao, Yunli; Yu, Zhiguo
2017-04-15
Rapid, sensitive, selective and accurate UPLC-MS/MS method was developed and fully validated for simultaneous determination of cinnamaldehyde, cinnamic acid, 2-methoxy cinnamic acid, glycyrrhizic acid, glycyrrhetinic acid, liquiritigenin and isoliquiritin in rat plasma after oral administration of Guizhi-gancao decoction. Plasma samples were processed with a simple protein precipitation technique using acetonitrile, followed by chromatographic separation using a Thermo Hypersil GOLD C 18 column. A 11.0min linear gradient elution was used at a flow rate of 0.2mL/min with a mobile phase of 0.1% acetic acid containing 0.2mM ammonium acetate in water and acetonitrile. The analytes and internal standard, schisandrin, were detected using both positive and negative ion electrospray ionization in multiple reaction monitoring mode. The developed method was validated for intra-day and inter-day accuracy and precision whose values fell in the acceptable limits. Matrix effect was found to be minimal. Recovery efficiency of all the analytes was found to be >60%. Stability results showed that the analytes were stable at all the conditions. This validated method was successfully used to study the pharmacokinetics of multiple compounds in rat plasma after oral administration of Guizhi-gancao decoction. Copyright © 2017 Elsevier B.V. All rights reserved.
Li, Wei; Zhou, Hongjie; Chu, Yang; Wang, Xiangyang; Luo, Ruizhi; Yang, Liu; Polachi, Navaneethakrishnan; Li, Xiao; Chen, Min; Huang, Luqi; Yan, Xueying; Guo, Zhixin; Sun, He
2017-10-25
Compound Danshen Dripping Pills (CDDP), a herbal patent medicine, is widely used in China for the prevention and treatment of cardiovascular diseases. A simple, sensitive and reliable method for simultaneous determination of danshensu (DSS), protocatechuic aldehyde (PCA), and their related metabolites, 4-hydroxy-3-methyloxyphenyl lactic acid (HMLA) and protocatechuic acid (PAA) in human plasma was developed and validated based on liquid chromatography tandem mass spectrometry (LC-MS/MS). The analytes and internal standard (IS), vanillic acid (VAA), were extracted from plasma with ethyl acetate and separated on a C 18 column by using the mobile phase consisted of methanol-0.1% formic acid via gradient elution. The electrospray ionization (ESI) source was applied and operated under the multiple reaction monitoring (MRM) mode. The linear calibration curves were obtained at the concentration ranges of 0.46-1000ng/mL for DSS and PAA, and 1.38-1000ng/mL for PCA and HMLA, respectively. The inter- and intra-day precisions (RSD%) were less than 13.5%, and the accuracy (±RE%) was within 13.4%. The described method was successfully applied for the clinical pharmacokinetics of CDDP in Chinese healthy volunteers. Copyright © 2017. Published by Elsevier B.V.
Herbrink, M; de Vries, N; Rosing, H; Huitema, A D R; Nuijen, B; Schellens, J H M; Beijnen, J H
2018-04-01
To support therapeutic drug monitoring of patients with cancer, a fast and accurate method for simultaneous quantification of the registered anticancer drugs afatinib, axitinib, ceritinib, crizotinib, dabrafenib, enzalutamide, regorafenib and trametinib in human plasma using liquid chromatography tandem mass spectrometry was developed and validated. Human plasma samples were collected from treated patients and stored at -20°C. Analytes and internal standards (stable isotopically labeled analytes) were extracted with acetonitrile. An equal amount of 10 mm NH 4 CO 3 was added to the supernatant to yield the final extract. A 2 μL aliquot of this extract was injected onto a C 18 -column, gradient elution was applied and triple-quadrupole mass spectrometry in positive-ion mode was used for detection. All results were within the acceptance criteria of the latest US Food and Drug Administration guidance and European Medicines Agency guidelines on method validation, except for the carry-over of ceritinib and crizotinib. These were corrected for by the injection order of samples. Additional stability tests were carried out for axitinib and dabrafenib in relation to their reported photostability. In conclusion, the described method to simultaneously quantify the eight selected anticancer drugs in human plasma was successfully validated and applied for therapeutic drug monitoring in cancer patients treated with these drugs. Copyright © 2017 John Wiley & Sons, Ltd.
Ocque, Andrew J; Stubbs, Jason R; Nolin, Thomas D
2015-05-10
A simple, sensitive, and precise ultra-high performance liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of trimethylamine N-oxide, choline, and betaine in human plasma and urine. Sample preparation involved protein precipitation with methanol containing internal standards. Chromatographic separation was achieved using an Acquity BEH Amide (2.1mm×50mm, 1.7μm) analytical column with gradient elution of solvent A (10mM ammonium formate, pH 3.5) and solvent B (acetonitrile). The flow rate was 0.4mL/min and the total run time was 5min. Detection of analytes was performed using heated electrospray ionization (positive mode) and selected reaction monitoring. Excellent linearity was observed over the standard curve concentration ranges of 0.010-5.00μg/mL (plasma) and 1.00-150μg/mL (urine) for all analytes. The intra- and inter-day accuracy and precision for all quality controls were within ±10%. Excellent recovery was observed. The method is rapid, accurate and reproducible, and was successfully applied to a pilot study of markers of atherosclerosis in patients with kidney disease who underwent successful kidney transplantation. Copyright © 2015 Elsevier B.V. All rights reserved.
Cui, Yan; Li, Qing; Liu, Zhenzhen; Geng, Lulu; Zhao, Xu; Chen, Xiaohui; Bi, Kaishun
2012-11-01
The decanting of red wines has a long tradition in red wine service from the perspective of modifying the aroma or taste of a wine. A simple and sensitive liquid chromatography-mass spectrometry method was developed for the simultaneous determination of 20 organic acids and polyphenols in decanting red wine. The separation was performed on a Diamonsil C(18) column (250 mm × 4.6 mm, 5 μm) using a mobile phase composed of methanol-0.1% acetic acid under gradient elution. Analysis was performed in selected ion monitoring mode with negative electrospray ionization interface. All the linear regressions showed good linear relationships (r(2) > 0.9973) between the peak area and concentration of each marker. The assay was reproducible with overall intra and interday variation of less than 5.0%. The recoveries for the quantified compounds were observed over the range of 92.1-108.3% with RSD values less than 5.7%. The method developed was successfully applied to determine the variations of the 20 components in red wine after decanting in different conditions. Concentrations of most organic acids and polyphenols investigated in the red wine were decreased in decanting. In addition, increment of duration, temperature, and light intensity would intensify the changes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Koželj, Gordana; Perharič, Lucija; Stanovnik, Lovro; Prosen, Helena
2014-08-05
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of atropine and scopolamine in 100μL human plasma was developed and validated. Sample pretreatment consisted of protein precipitation with acetonitrile followed by a concentration step. Analytes and levobupivacaine (internal standard) were separated on a Zorbax XDB-CN column (75mm×4.6mm i.d., 3.5μm) with gradient elution (purified water, acetonitrile, formic acid). The triple quadrupole MS was operated in ESI positive mode. Matrix effect was estimated for deproteinised plasma samples. Selected reaction monitoring (SRM) was used for quantification in the range of 0.10-50.00ng/mL. Interday precision for both tropanes and intraday precision for atropine was <10%, intraday precision for scopolamine was <14% and <18% at lower limit of quantification (LLOQ). Mean interday and intraday accuracies for atropine were within ±7% and for scopolamine within ±11%. The method can be used for determination of therapeutic and toxic levels of both compounds and has been successfully applied to a study of pharmacodynamic and pharmacokinetic properties of tropanes, where plasma samples of volunteers were collected at fixed time intervals after ingestion of a buckwheat meal, spiked with five low doses of tropanes. Copyright © 2014 Elsevier B.V. All rights reserved.
Guo, Panpan; Yan, Wenying; Han, Qingjie; Wang, Chunying; Zhang, Zijian
2015-04-01
A sensitive and selective high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry method has been developed and validated for the simultaneous determination of 25 active constituents, including 21 flavonoids and four phenolic acids in the total flavonoids extract from Herba Desmodii Styracifolii for the first time. Among the 25 compounds, seven compounds including caffeic acid, acacetin, genistein, genistin, diosmetin, diosmin and hesperidin were identified and quantified for the first time in Herba Desmodii Styracifolii. Chromatographic separation was accomplished on a ZORBAX SB-C18 (250 mm×4.6 mm, 5.0 μm) column using gradient elution of methanol and 0.1‰ acetic acid v/v at a flow rate of 1.0 mL/min. The identification and quantification of the analytes were achieved using negative electrospray ionization mass spectrometry in multiple-reaction monitoring mode. The method was fully validated in terms of limits of detection and quantification, linearity, precision and accuracy. The results indicated that the developed method is simple, rapid, specific and reliable. Furthermore, the developed method was successfully applied to quantify the 25 active components in six batches of total flavonoids extract from Herba Desmodii Styracifolii. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Mengchun; Zhang, Xiaoqian; Wang, Hao; Lin, Baoli; Wang, Shuanghu; Hu, Guoxin
2015-04-01
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS-MS) method for the determination of rutin in rat plasma was developed and validated. After addition of tolbutamide as internal standard (IS), protein precipitation by acetonitrile was used as sample preparation. The chromatographic separation was performed on an Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 μm particle size), using acetonitrile-0.1% formic acid as the mobile phase with gradient elution, delivered at a flow-rate of 0.4 mL/min. Mass spectrometric analysis was performed using a XEVO TQD mass spectrometer coupled with an electro-spray ionization (ESI) source in the positive ion mode. The MRM transitions of m/z 610.91→302.98 and m/z 271.2→155.1 were used to quantify for rutin and tolbutamide, respectively. This assay method has been fully validated in terms of specificity, linearity, recovery and matrix effect, accuracy, precision and stability. Calibration curves were linear in the concentration ranges of 25-2000 ng/mL for rutin. Only 3 min was needed for an analytical run. This developed method was successfully used for determination of rutin in rat plasma for pharmacokinetic study. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lin, Weixuan; Sun, Xingquan; Zhao, Xuerong; Xu, Wei; Guo, Guiyuan
2012-05-01
A method of high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) has been established for the simultaneous determination of six forbidden colorants including Sudan IV, Acid Violet 49, Sudan Blue 2, Solvent Red 49, Basic Violet 1 and Pigment Orange 5 in cream and powdery matrix cosmetics. The samples were extracted with ethanol-acetonitrile (3:2, v/v) solution by ultrasonic technique for 20 min, then centrifuged for purification and enriched by nitrogen blowing sequentially. The analytes were isolated on a Luna C18 column (150 mm x 2.1 mm, 5 microm) by gradient elution with methanol and 10 mmol/L ammonium acetate as the mobile phases, and detected by MS/MS in the multiple reaction monitoring (MRM) mode. The qualitative analysis was based on the retention time and the relative abundance ratio of the characteristic ions, and the quantitative analysis on calibration curve method. The results showed that the limits of quantification (LOQ, S/N= 10) of the six colorants ranged from 0.1 to 10 microg/kg and the average recoveries were from 86.67% to 98.22% with the relative standard deviations (RSDs) from 4.01% to 7.01%. The method is simple and rapid with high sensitivity and good reproducibility, and suitable for the determination of the six forbidden colorants in cosmetics.
Zhou, Yao; Yang, Huiqin; Shi, Yiyin; Chen, Jiaxian; Zhu, Jian; Deng, Xiaojun; Guo, Dehua
2017-09-08
A method was developed for the simultaneous determination of six strobilurin fungicide ( E -metominostrobin, azoxystrobin, kresoxim-methyl, picoxystrobin, pyraclostrobin and trifloxystrobin) residues in orange, banana, apple and pineapple samples by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The fragmentation routes of all the compounds were explained by the aid of a fragment predicting software ACD Lab/MS Fragmenter. The samples were extracted by acetonitrile, then cleaned up by amino solid phase extraction cartridges (SupelClean LC-NH 2 ). The extracts were separated on a ACQUITY UPLC BEH C 18 column (50 mm×2.1 mm, 1.7 μm) with gradient elution. Acetonitrile containing 0.1% (v/v) formic acid and 10 mmol/L ammonium acetate containing 0.1% (v/v) formic acid were used as mobile phases. The samples were detected by electrospray ionization (ESI)-MS/MS in positive ion and multiple reaction monitoring (MRM) mode, quantified by external standard method. Good linearities were obtained in the range of 5-100 μg/L (for pyraclostrobin, 1-20 μg/L) with correlation coefficients ( r 2 ) greater than 0.999. The recoveries ranged from 60.4% to 120% with the relative standard deviations between 2.15% and 15.1% ( n =6). The developed method can meet the inspection of the six strobilurin residues in the orange, banana, apple and pineapple samples.
Xiao, Ri-Ping; Lai, Xiao-Ping; Zhao, Yai; Yu, Liang-Wen; Zhu, Yue-Lan; Li, Geng
2014-02-01
To study the pharmacokinetics characteristics of six Aconitum alkaloids aconitine (AC), mesaconitine (MA), hypaconitine (HA), benzoylaconine (BAC), benzoylmesaconine (BMA) and benzoylhypaconine (BHA) in beagle dogs. An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for simultaneous quantitation of six Aconitum alkaloids in beagle dog plasma after oral administration of Aconiti Lateralis Radix Praeparata decoction. UPLC/MS/MS system coupled with an electrospray ionization (ESI) source was performed in multiple-reaction monitoring (MRM) mode. Sample preparation was performed with solid-phase extraction(SPE) on a 3 mL HLB cartridge before the analysis. The separation was applied on a Waters C8 column (100 mm x 2.1 mm, 1.7 microm) and a gradient elution of methanol and 0.2% formic acid-water was used as mobile phase. The pharmacokinetic parameters were calculated by the results of the analysis through the DAS 2. 1 software (Drug and Statistics for Windows). The results showed that the fitting model for the six Aconitum alkaloids was the one-compartment model pharmacokinetics. The method is successfully used for the pharmacokinetic evaluation of the six Aconitum alkaloids in beagle dog plasma, it can help monitor the ADME/Tox process when taking Aconiti Lateralis Radix Praeparata by observing the pharmacokinetic process. The results provide a good reference for clinical treatment and safe application of Aconiti Lateralis Radix Praeparata.
Wang, Ya; Wang, Junsu; Xiang, Lu; Xi, Cunxian; Chen, Dongdong; Peng, Tao; Wang, Guomin; Mu, Zhaode
2014-05-01
A novel method was established for the determination and identification of biurea in flour and its products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The biurea was extracted with water and oxidized to azodicarbonamide by potassium permanganate. The azodicarbonamide was then derivatized using sodium p-toluene sulfinate solution. The separation was performed on a Shimpak XR-ODS II column (150 mm x 2.0 mm, 2.2 microm) using the mobile phase composed of acetonitrile and 2 mmol/L ammonium acetate aqueous solution (containing 0.2% (v/v) formic acid) with a gradient elution program. Tandem mass spectrometric detection was performed in multiple reaction monitoring (MRM) scan mode with a positive electrospray ionization (ESI(+)) source. The method used stable isotope internal standard quantitation. The calibration curve showed good linearity over the range of 1-20 000 microg/kg (R2 = 0.999 9). The limit of quantification was 5 microg/kg for biurea spiked in flour and its products. At the spiking levels of 5.0, 10.0 and 50.0 microg/kg in different matrices, the average recovery o biurea was 78.3%-108.0% with the relative standard deviations (RSDs) < or = 5.73%. The method developed is novel, reliable and sensitive with wide linear range, and can be used to determine the biurea in flour and its products.
Liu, Minyan; Wang, Hongtao; Zhao, Shaohua; Shi, Xiaowei; Zhang, Yongfeng; Xu, Honghui; Wang, Yufeng; Li, Xiangjun; Zhang, Lantong
2011-11-01
A simple and rapid liquid chromatography-mass spectrometry (LC-MS) method was developed and validated for analysis of ginsenoside Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, icariin and epimedin A, B, C in rat target tissues (spinal cord, brain, muscle and sciatic nerve) after intravenous administration of Jiweiling freeze-dried powder using genistein as an internal standard (IS). The tissue samples were treated by protein precipitation with methanol prior to HPLC and chromatographic separation was performed on a C18 column utilizing a gradient elution program with acetonitrile and 0.1% formic acid aqueous. Electrospray ionization (ESI) source was employed and the 11 analytes and IS were detected by multiple reaction monitoring (MRM) scanning under the negative ionization mode. Higher sensitivity was achieved and the optimized mass transition ion-pairs (m/z) for quantitation were selected. The calibration curves were linear over the investigated concentration ranges with correlation coefficients higher than 0.995. The intra- and inter-day RSDs were all less than 10% with the relative error (RE) within ± 9.3%. The mean extraction recoveries for all compounds were between 93.3 and 106%. The proposed method was successfully applied to investigate the target tissue distribution of the 11 compounds in rat after intravenous administration of Jiweiling freeze-dried powder. Copyright © 2011 John Wiley & Sons, Ltd.
Zhang, Ming; Tang, Fangliang; Yu, Yayun; Chen, Feng; Xu, Jianfen; Ye, Yonggen
2014-05-01
A high-throughput detection method has been developed for the determination of sixteen perfluorinated organic compounds (PFCs) in surface water by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The water samples were concentrated and purified through WAX solid phase extraction cartridges. The UPLC separation was performed on an ACQUITY UPLC BEH C18 column utilizing a gradient elution program of methanol (containing 2 mmol/L ammonium acetate) and water (containing 2 mmol/L ammonium acetate) as the mobile phases at a flow rate of 0.4 mL/min. The MS/MS detection was performed under negative electrospray ionization ( ESI ) in multiple reaction monitoring (MRM) mode. Good linearities were observed in the range of 0.5-100 gg/L or 1.0 - 100 microg/L with correlation coefficients from 0.998 7 to 0.999 9. The limits of detection (LODs) for the sixteen perfluorinated organic compounds were in the range of 0.06-0.46 ng/L. The recoveries ranged from 67.6% to 103% with the relative standard deviations between 2.94% and 12.0%. This method was characterized by high sensitivity and precision, extensive range and high speed, and can be applied for the analysis of PFC contaminants in surface water.
Zhang, Ming; Tang, Fangliang; Xu, Jianfen; Yu, Bo; Zhang, Wei; Yao, Jianliang; Hu, Minhua
2017-10-08
A high-throughput detection method has been developed for the determination of nine perfluorinated compound precursors (PFCPs) in atmospheric precipitation by solid phase extraction-ultra performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (SPE-UPLC-ESI-MS/MS). The atmospheric precipitation samples were concentrated and purified with HLB solid phase extraction cartridges. The UPLC separation was performed on an HSS T 3 column (100 mm×2.1 mm, 1.7 μm) utilizing a gradient elution program of methanol and water as the mobile phases at a flow rate of 0.2 mL/min. The MS/MS detection was performed under negative electrospray ionization (ESI - ) in multiple reaction monitoring (MRM) mode. Good linearity was observed in the range of 0.05-5.00 μg/L, 0.50-50.0 μg/L or 5.00-500 μg/L with correlation coefficients from 0.9921 to 0.9995. The limits of detection (LODs) for the nine perfluorinated compound precursors were in the ranges of 0.05-7.9 ng/L. The recoveries ranged from 76.0% to 106% with the relative standard deviations between 0.72% and 13.7%. This method is characterized by high sensitivity and precision, extensive analytical range and quick analytical rate, and can be applied for the analysis of perfluorinated compound precursors in atmospheric precipitation.
Nirogi, Ramakrishna; Ajjala, Devender Reddy; Kandikere, Vishwottam; Aleti, Raghupathi; Srikakolapu, SuryaRao; Vurimindi, Himabindu
2012-10-15
Deferasirox is an iron chelating agent for the treatment of transfusional iron over load in patients with chronic anemia. These anemic patients require close monitoring of the deferasirox exposures for ensuring its therapeutic efficacy. Dried blood spot (DBS) sampling methodology has the advantages of low volume of blood withdrawal and ease of transportation and storage over liquid blood methods. A LC-MS/MS based analytical method was developed using reversed phase column with gradient elution program and quantitated in MRM mode. Linearity range for the liquid blood was 1-1000 ng/mL and for DBS was 5-5000 ng/mL under similar mass spectrometry conditions. The method was validated with respective (M-H)(-) ions, m/z 372→118 for deferasirox and m/z 410→348 for fluvastatin (internal standard). The validated method was applied for the analysis of DBS samples from a rat pharmacokinetic study and results were compared against liquid blood samples from the same animal. The mean C(max) from DBS sample (1121 ng/mL) was comparable to mean C(max) found in blood samples (1015 ng/mL) at 2h after oral dose of deferasirox. All the other calculated pharmacokinetic parameters were quite comparable for both liquid blood and DBS samples. Copyright © 2012. Published by Elsevier B.V.
Du, Gang; Zhao, Haiyu; Song, Yuelin; Zhang, Qingwen; Wang, Yitao
2011-10-01
A high-performance liquid chromatography (HPLC) coupled with triple quadrupole mass spectrometry (MS/MS) method was developed for rapid determination of 13 isoflavones in Radix puerariae. A novel shell-type column, namely Kinetex core-shell C(18) column (50 mm×2.1 mm id, 2.6 μm), and gradient elution were used during the analysis. The chromatographic peaks of 13 investigated compounds were identified by comparing their retention time and MS data with the related reference compounds. Multiple-reaction monitoring (MRM) was employed for the quantitative analysis with negative ionization mode. All calibration curves showed good linearity (r(2)>0.9990) within test ranges. The LOD and LOQ were lower than 0.017 and 0.873 μg/mL on column, respectively. The intra- and inter-day precisions for 13 analytes were <1.17 and 2.17%, respectively, and the recoveries were 93.1-104.4%. The validated method was applied for quantitative analysis of 13 isoflavones in 7 species of Radix puerariae. The result demonstrated that HPLC-MS/MS system with Kinetex column could be a promising analytical tool for the determination of isoflavones in traditional Chinese medicines, which is helpful for comprehensive evaluation of quality of R. puerariae. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ji, Chao; Feng, Feng; Chen, Zhengxing; Sun, Li; Chu, Xiaogang
2010-08-01
A high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI MS/MS) method for the determination of five synthetic sweeteners (acesulfame, sodium saccharin, sodium cyclamate, aspartame and neotame) in wines has been developed. The HPLC separation was carried out on an Ultimate C18 column (100 mm x 2.1 mm, 3 microm). Several parameters, including the composition and pH of the mobile phase, column temperature and the monitor ions, were optimized for improving the chromatographic performance and the sensitivity of determination. The results demonstrated that the separation can be completed in less than 5 min by gradient elution with 20 mmol/L ammonium formate and 0.1% (v/v) formic acid (pH 3.8) and methanol as the mobile phase. The column temperature was kept at 45 degrees C. When the analytes were detected by ESI -MS/MS under multiple reaction monitoring mode, the detection limits were 0.6, 5, 1, 0.8 and 0.2 microg/L for acesulfame, sodium saccharin, sodium cyclamate, aspartame and neotame, respectively. The average recoveries ranged from 87.2% to 103%. The relative standard deviations were not more than 1.2%. This method is rapid, accurate, highly sensitive and suitable for the quality control of low concentration of the synthetic sweeteners, which are illegally added to wines and other foods with complex matrices.
Sun, Qian; Chang, Lu; Ren, Yanping; Cao, Liang; Sun, Yingguang; Du, Yingfeng; Shi, Xiaowei; Wang, Qiao; Zhang, Lantong
2012-11-01
A novel method based on high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry was developed for simultaneous determination of the 11 major active components including ten flavonoids and one phenolic acid in Cirsium setosum. Separation was performed on a reversed-phase C(18) column with gradient elution of methanol and 0.1‰ acetic acid (v/v). The identification and quantification of the analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple-reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Full validation of the assay was carried out including linearity, precision, accuracy, stability, limits of detection and quantification. The results demonstrated that the method developed was reliable, rapid, and specific. The 25 batches of C. setosum samples from different sources were first determined using the developed method and the total contents of 11 analytes ranged from 1717.460 to 23028.258 μg/g. Among them, the content of linarin was highest, and its mean value was 7340.967 μg/g. Principal component analysis and hierarchical clustering analysis were performed to differentiate and classify the samples, which is helpful for comprehensive evaluation of the quality of C. setosum. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Han, Jiangbin; Sun, Jiye; Sha, Chunjie; Zhang, Jinfeng; Gai, Yunyun; Li, Youxin; Liu, Wanhui
2012-07-01
A sensitive method based on liquid chromatography-tandem mass spectrometry has been developed for the determination of triptorelin levels in beagle dog plasma. Plasma samples were applied to Oasis(®) HLB solid-phase extraction (SPE) cartridges. Extracted samples were evaporated under a stream of nitrogen and then reconstituted with 100 μl methanol:water:formic acid (60:40:0.08, v/v/v). The separation was achieved on a Venusil MP-C18 column (2.1 mm × 50 mm, 3 μm, Agela) with a gradient elution. Detection utilized a Qtrap5500 system operated in the positive ion mode with multiple reaction monitoring of the analyte at m/z 656.5→249.1 and of the I.S. at m/z 510.8→120.1. The proposed method was validated by assessing the specificity, linearity, precision and accuracy, recovery, matrix effects, and stability. Linear calibration curves were obtained in the concentration range of 0.01-10 ng/ml (the correlation coefficients were above 0.995). The lower limit of quantification (LLOQ) of the method was 0.01 ng/ml. The method was successfully applied to a pharmacokinetic study of a slow release triptorelin formulation in beagle dogs following a single intramuscular injection. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Saibaba, B; Vishnuvardhan, Ch; Johnsi Rani, P; Satheesh Kumar, N
2018-01-01
Almotriptan maleate (ALMT), a highly selective 5-hydroxy tryptamine 1B/1D (5-HT1B/1D) receptor agonist used in the treatment of migraine headache was subjected to various ICH (Q1A (R2)) specified guidelines. The drug underwent significant degradation under hydrolytic (acid, base and neutral), oxidative and photolytic stress conditions, while it was stable under thermal stress condition. A total of seven significant degradation products (DPs) were obtained. A simple, selective and reliable UPLC method has been developed for the separation of ALMT and its DPs using Acquity UPLC HSS Cyano (100 × 2.1 mm, 1.8 μm) column with mobile phase consisting of ammonium acetate (10 mM, pH 4.4) buffer and acetonitrile in gradient elution mode. Chromatographic analysis was performed at a flow rate of 0.3 mL/min using a PDA detector at a wavelength of 230 nm. All the DPs (DP-1 to DP-7) were characterized using UHPLC-ESI-QTOF based on mass fragmentation pattern and accurate m/z values. The developed UPLC method was validated in terms of specificity, linearity, precision and accuracy. The developed stability-indicating method helps in quantification of drug in the presence of DPs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wu, Ya-Hsueh; Wu, Ming-Ling; Lin, Chun-Chi; Chu, Wei-Lan; Yang, Chen-Chang; Lin, Robert Tate; Deng, Jou-Fang
2012-02-15
A simple and rapid assay based on hydrophilic interaction liquid chromatography with tandem mass spectrometry has been first developed and validated for simultaneous determination of caprolactam (CA) and 6-aminocaproic acid (6-ANCA) in human urine using 8-aminocaprylic acid as internal standard. A 20μL aliquot of urine was injected directly into the liquid chromatography tandem mass spectrometry (LC-MS-MS) system. The analytes were separated on a Phenomenex Luna HILIC column with gradient elution. Detection was performed on Triple Quadrupole LC-MS in positive ions multiple reaction monitoring mode using electrospray ionization. The calibration curves were linear (r(2)≥0.995) over the concentration range from 62.5 to 1250ng/mL for CA and 31.25 to 1000ng/mL for 6-ANCA. The detection limits of CA and 6-ANCA were 62.5 and 15.6ng/mL, respectively. The intra-day and inter-day precisions were within 8.7% and 9.9%, respectively. The intra-day and inter-day accuracy were between 5.3% and 3.5%, and between 6.1% and 6.6%, respectively. The method proved to be simple and time efficient, and was successfully applied to evaluate the kinetics of caprolactam in one unusual case of caprolactam poisoning. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Ludi; Yang, Wei; Wu, Siyang; Wang, Shuyao; Kang, Chen; Ma, Xiaoli; Li, Yingfei; Li, Chuan
2018-05-01
Isochamaejasmin, neochamaejasmin A and daphnoretin derived from Stellera chamaejasme L. are important because of their reported anticancer properties. In this study, a sensitive UPLC-MS/MS method for the determination of isochamaejasmin, neochamaejasmin A and daphnoretin in rat plasma was developed. The analyte and IS were separated on an Acquity UPLC HSS T3 column (100 × 2.1 mm, 1.8 μm) using gradient elution with the mobile phase of aqueous solution (methanol-water, 1:99, v/v, containing 1 mm formic acid) and organic solution (methanol-water, 99:1, v/v, containing 1 mm formic acid) at a flow rate of 0.3 mL/min. Multiple reaction monitoring mode with negative electrospray ionization interface was carried out to detect the components. The method was validated in terms of specificity, linearity, accuracy, precision, stability, etc. Excellent linear behavior was observed over the certain concentration ranges with the correlation coefficient values >0.99. Intra- and inter-day precisions (RSD) were <6.7% and accuracy (RE) ranged from -7.0 to 12.0%. The validated method was successfully applied to investigate the pharmacokinetics of three chemical ingredients after oral administration of S. chamaejasme L. extract to rats. Copyright © 2017 John Wiley & Sons, Ltd.
Li, Zhaoyong; Wang, Fengmei; Niu, Zengyuan; Luo, Xin; Zhang, Gang; Chen, Junhui
2014-05-01
A method of ultra high performance liquid chromatography-linear ion trap/orbitrap high resolution mass spectrometry (UPLC-LTQ/Orbitrap MS) was established to screen and confirm 24 hormones in cosmetics. Various cosmetic samples were extracted with methanol. The extract was loaded onto a Waters ACQUITY UPLC BEH C18 column (50 mm x 2.1 mm, 1.7 microm) using a gradient elution of acetonitrile/water containing 0.1% (v/v) formic acid for the separation. The accurate mass of quasi-molecular ion was acquired by full scanning of electrostatic field orbitrap. The rapid screening was carried out by the accurate mass of quasi-molecular ion. The confirmation analysis for targeted compounds was performed with the retention time and qualitative fragments obtained by data dependent scan mode. Under the optimal conditions, the 24 hormones were routinely detected with mass accuracy error below 3 x 10(-6) (3 ppm), and good linearities were obtained in their respective linear ranges with correlation coefficients higher than 0.99. The LODs (S/N = 3) of the 24 compounds were < or = 10 microg/kg, which can meet the requirements for the actual screening of cosmetic samples. The developed method was applied to screen the hormones in 50 cosmetic samples. The results demonstrate that the method is a useful tool for the rapid screening and identification of the hormones in cosmetics.
Joo, Kyung-Mi; Han, Ji Yeon; Son, Eui Dong; Nam, Gae-Won; Chung, Han Young; Jeong, Hye-Jin; Cho, Jun-Cheol; Lim, Kyung-Min
2012-05-15
A rapid, sensitive and specific hydrophilic interaction liquid chromatography coupled to tandem mass spectrometric (HILIC-MS/MS) method for the simultaneous determination of pyroglutamic acid, cis- and trans-urocanic acid in human skin stratum corneum (SC) were developed and validated. This method was carried out without derivatization or addition of ion-pair additives in mobile phase. The analytes were extracted by PBS buffer solution and analyzed using an electrospray positive ionization mass spectrometry in the multiple reaction monitoring (MRM) mode. Chromatographic separation was performed on an AQUITY UPLC amide column using gradient elution with the mobile phase of water and acetonitrile. The standard curves were linear over the concentration range of 1.0-250 ng/mL with a correlation coefficient higher than 0.999 with an LLOQ of 0.5 ng/mL. The lower limits of detection (LLOD) of these analytes were lower than 0.2 ng/mL. The intra- and inter-day precisions were measured to be below 7.7% and accuracies were within the range of 94.3-102.6%. The validated method was successfully applied to determine the level of pyroglutamic acid and cis-/trans-urocanic acid in the SC samples from forearm and forehead region of 19 human volunteers. Copyright © 2012 Elsevier B.V. All rights reserved.
Angelis, Apostolis; Hubert, Jane; Aligiannis, Nektarios; Michalea, Rozalia; Abedini, Amin; Nuzillard, Jean-Marc; Gangloff, Sophie C; Skaltsounis, Alexios-Leandros; Renault, Jean-Hugues
2016-11-21
Common spruce ( Picea abies L.) is a fast-growing coniferous tree, widely used in several countries for the production of sawn wood, timber and pulp. During this industrial exploitation, large quantities of barks are generated as waste materials. The aim of this study was the bio-guided investigation and the effective recovery of methanol-soluble metabolites of common spruce bark for the development of new dermo-cosmetic agents. The active methanol extract was initially fractionated by Centrifugal Partition Chromatography (CPC) using a triphasic solvent system in a step-gradient elution mode. All resulting fractions were evaluated for their antibacterial activity, antioxidant activity and their capability to inhibit tyrosinase, elastase and collagenase activity. In parallel, the chemical composition of each fraction was established by combining a 13 C-NMR dereplication approach and 2D-NMR analyses. As a result, fourteen secondary metabolites corresponding to stilbene, flavonoid and phenolic acid derivatives were directly identified in the CPC fractions. A high amount (0.93 g) of E -astringin was recovered from 3 g of crude extract in a single 125 min run. E -Astringin significantly induced the tyrosinase activity while E -piceid, taxifolin, and taxifolin-3'- O -glucopyranoside exhibited significant anti-tyrosinase activity. The above compounds showed important anti-collagenase and antimicrobial activities, thus providing new perspectives for potential applications as cosmetic ingredients.
Wang, Xiaoming; Rytting, Erik; Abdelrahman, Doaa R.; Nanovskaya, Tatiana N.; Hankins, Gary D.V.; Ahmed, Mahmoud S.
2013-01-01
The liquid chromatography with electrospray ionization mass spectrometry for the quantitative determination of famotidine in human urine, maternal and umbilical cord plasma was developed and validated. The plasma samples were alkalized with ammonium hydroxide and extracted twice with ethyl acetate. The extraction recovery of famotidine in maternal and umbilical cord plasma ranged from 53% to 64% and 72% to 79%, respectively. Urine samples were directly diluted with the initial mobile phase then injected into the HPLC system. Chromatographic separation of famotidine was achieved by using a Phenomenex Synergi™ Hydro-RP™ column with a gradient elution of acetonitrile and 10 mM ammonium acetate aqueous solution (pH 8.3, adjusted with ammonium hydroxide). Mass Spectrometric detection of famotidine was set in the positive mode and used a selected ion monitoring method. Carbon-13-labeled famotidine was used as internal standard. The calibration curves were linear (r2> 0.99) in the concentration ranges of 0.631-252 ng/mL for umbilical and maternal plasma samples, and of 0.075-30.0 μg/mL for urine samples. The relative deviation of method was less than 14% for intra- and inter-day assays, and the accuracy ranged between 93% and 110%. The matrix effect of famotidine in human urine, maternal and umbilical cord plasma is less than 17%. PMID:23401067
Gervasoni, Jacopo; Schiattarella, Arcangelo; Giorgio, Valentina; Primiano, Aniello; Russo, Consuelo; Tesori, Valentina; Scaldaferri, Franco; Urbani, Andrea; Zuppi, Cecilia; Persichilli, Silvia
2016-01-01
Aim . Lactulose/mannitol ratio is used to assess intestinal barrier function. Aim of this work was to develop a robust and rapid method for the analysis of lactulose and mannitol in urine by liquid chromatography coupled to tandem mass spectrometry. Lactulose/mannitol ratio has been measured in pediatric patients suffering from irritable bowel syndrome. Methods . Calibration curves and raffinose, used as internal standard, were prepared in water : acetonitrile 20 : 80. Fifty μ L of urine sample was added to 450 μ L of internal standard solution. The chromatographic separation was performed using a Luna NH 2 column operating at a flow rate of 200 μ L/min and eluted with a linear gradient from 20% to 80% water in acetonitrile. Total run time is 9 minutes. The mass spectrometry operates in electrospray negative mode. Method was fully validated according to European Medicine Agency guidelines. Results and Conclusions . Linearity ranged from 10 to 1000 mg/L for mannitol and 2.5 to 1000 mg/L for lactulose. Imprecision in intra- and interassay was lower than 15% for both analytes. Accuracy was higher than 85%. Lactulose/mannitol ratio in pediatric patients is significantly higher than that measured in controls. The presented method, rapid and sensitive, is suitable in a clinical laboratory.
Huang, Juan; Chen, Guosong; Zhang, Xiaoyan; Shen, Chongyu; Lü, Chen; Wu, Bin; Liu, Yan; Chen, Huilan; Ding, Tao
2012-11-01
A method was established for the determination of deoxynivalenol (vomitoxin) in grain and its products based on solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The sample was firstly extracted by acetonitrile-water (84:16, v/v). The extract was then cleaned-up by an HLB solid phase extraction cartridge. The separation was carried out on a Phenomenex Kinetex C18 column (100 mm x4. 6 mm, 2.6 microm) with a gradient elution using 0.3% per hundred ammonia solution-acetonitrile as mobile phases. The analysis of deoxynivalenol was performed under electrospray negative ionization mode. The limit of detection (LOD, S/N= 3) and the limit of quantification (LOQ, S/N = 10) were 20 microg/kg and 50 microg/kg, respectively. A good linearity (r > 0.99) was achieved for the target compound over the range of 20-1000 pg/L. The recoveries at the three spiked levels (50, 100, 500 microg/kg) in the blank matrices such as flour, barley, soybean, rice, cornmeal, cassava and wheat, were varied from 75.6% to 111.0% with the relative standard deviations no more than 13. 0%. The method is accurate, efficient, sensitive and practical. The cost of pretreatment is obviously reduced by replacing immunoaffinity columns and Mycosep columns with HLB columns which have the same purification effect.
Fast targeted analysis of 132 acidic and neutral drugs and poisons in whole blood using LC-MS/MS.
Di Rago, Matthew; Saar, Eva; Rodda, Luke N; Turfus, Sophie; Kotsos, Alex; Gerostamoulos, Dimitri; Drummer, Olaf H
2014-10-01
The aim of this study was to develop an LC-MS/MS based screening technique that covers a broad range of acidic and neutral drugs and poisons by combining a small sample volume and efficient extraction technique with simple automated data processing. After protein precipitation of 100μL of whole blood, 132 common acidic and neutral drugs and poisons including non-steroidal anti-inflammatory drugs, barbiturates, anticonvulsants, antidiabetics, muscle relaxants, diuretics and superwarfarin rodenticides (47 quantitated, 85 reported as detected) were separated using a Shimadzu Prominence HPLC system with a C18 separation column (Kinetex XB-C18, 4.6mm×150mm, 5μm), using gradient elution with a mobile phase of 25mM ammonium acetate buffer (pH 7.5)/acetonitrile. The drugs were detected using an ABSciex(®) API 2000 LC-MS/MS system (ESI+ and -, MRM mode, two transitions per analyte). The method was fully validated in accordance with international guidelines. Quantification data obtained using one-point calibration compared favorably to that using multiple calibrants. The presented LC-MS/MS assay has proven to be applicable for determination of the analytes in blood. The fast and reliable extraction method combined with automated processing gives the opportunity for high throughput and fast turnaround times for forensic and clinical toxicology. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
RP-HPLC ANALYSIS OF ACIDIC AND BASIC DRUGS IN SYSTEMS WITH DIETHYLAMINE AS ELUENTS ADDITIVE.
Petruczynik, Anna; Wroblewski, Karol; Strozek, Szymon; Waksmundzka-Hajnos, Monika
2016-11-01
The chromatographic behavior of some basic and acidic drugs was studied on Cl 8, Phenyl-Hexyl and Polar RP columns with methanol or acetonitrile as organic modifiers of aqueous mobile phases containing addition of diethylamine. Diethylamine plays a double function of silanol blocker reagent in analysis of basic drugs and ion-pair reagent in analysis of acidic drugs. Most symmetrical peaks and highest system efficiency were obtained on Phenyl-Hexyl and Polar RP columns in tested mobile phase systems compared to results obtained on C18 column. A new rapid, simple, specific and accurate reverse phase liquid chromatographic method was developed for the simultaneous determination of atorvastatin - antihyperlipidemic drug and amlodipine - calcium channel blocker in one pharmaceutical formulation. Atorvastatin is an acidic compounds while amlodipine is a basic substance. The chromatographic separation was carried out on Phenyl-Hexyl column by gradient elution mode with acetonitrile as organic modifier, acetate buffer at pH 3.5 and Q.025 M/L diethylamine. The proposed method was validated for specificity, precision, accuracy, linearity, and robustness. The linearity range of atorvastatin and amlodipine for 5 - 100 μg/mL was obtained with limits of-detection (LOD) 3.2750 gg/mL and 3.2102 μg/mL, respectively. The proposed method made use of DAD as a tool for peak identity and purity confirmation.
Kamble, Bhagyashree; Gupta, Ankur; Patil, Dada; Janrao, Shirish; Khatal, Laxman; Duraiswamy, B
2013-02-01
Gymnema sylvestre, with gymnemic acids as active pharmacological constituents, is a popular ayurvedic herb and has been used to treat diabetes, as a remedy for cough and as a diuretic. However, very few analytical methods are available for quality control of this herb and its marketed formulations. To develop and validate a new, rapid, sensitive and selective HPLC-ESI (electrospray ionisation)-MS/MS method for quantitative estimation of gymnemagenin in G. sylvestre and its marketed formulations. HPLC-ESI-MS/MS method using a multiple reactions monitoring mode was used for quantitation of gymnemagenin. Separation was carried out on a Luna C-18 column using gradient elution of water and methanol (with 0.1% formic acid and 0.3% ammonia). The developed method was validated as per International Conference on Harmonisation Guideline ICH-Q2B and found to be accurate, precise and linear over a relatively wide range of concentrations (5.280-305.920 ng/mL). Gymnemagenin contents were found from 0.056 ± 0.002 to 4.77 ± 0.59% w/w in G. sylvestre and its marketed formulations. The method established is simple, rapid, with high sample throughput, and can be used as a tool for quality control of G. sylvestre and its formulations. Copyright © 2012 John Wiley & Sons, Ltd.
Liu, Jingjing; Gong, Ping; Zhang, Xiaomei; Wang, Jianhua; Wang, Jingtang
2012-10-01
A novel method was established for the determination of six plant growth regulators (PGRs), 2,4-dichlorophenoxy acetic (2,4-D), 4-chlorophenoxy-acetic acid (CAP), 4-(3-indolyl)-butyric acid (BAA), forchlorfenuron (CPPU), abscisic acid (ABA) and trans-zeatin (ZT) in strawberry using liquid chromatography-quadrupole-time of flight mass spectrometry (LC-Q TOF MS). The Quick, Easy, Cheap, Effective, Rugged and Safe method (QuEChERS) has been validated for the extraction. In this QuEChERS method, the sample was extracted by acetonitrile and cleaned up with C18 adsorbent. The extract was measured directly by LC-Q TOF MS with electrospray ionization in negative mode. The compounds were separated on an Eclipse XDB-C8 column (150 mm x 4.6 mm, 5 microm) with acetonitrile-5 mmol/L ammonium acetate-0. 1% formic acid as mobile phase under gradient elution. The confirmatory analysis was carried out by determining the accurate masses of all compounds and fragment ions upon Target MS/MS. The limits of detection (LODs) were between 1 microg/kg and 5 microg/kg. The linear range was 0.005-1.0 mg/L for each analyte. The recoveries ranged from 87% to 107% with the relative standard deviations (RSDs) less than 10% (n = 6). The method was proved to be simple and accurate.
Jain, Lokesh; Gardner, Erin R.; Venitz, Jürgen; Giaccone, Giuseppe; Houk, Brett E.; Figg, William D.
2010-01-01
A simple, rapid and sensitive liquid chromatography/tandem mass spectrometric (LC/MS/MS) analytical method was developed for quantification of Hsp90 inhibitor PF-04928473 in human plasma, following administration of its prodrug, PF-04929113. Sample processing involved protein precipitation by addition of 0.4 mL of methanol containing internal standard (PF-04972487) to 50 μL volume of plasma sample. Chromatographic separation of PF-04928473 and PF-04972487 was achieved on a Phenomenex® Luna C18(2) (2.0×50 mm, 5 μm) column using a gradient elution method with mobile phase solvents: methanol containing 0.1% formic acid and 0.1% formic acid at a flow rate of 0.25 mL/min. Detection was performed in electrospray positive ionization mode, monitoring the ion transitions from m/z 465.1→350.1 (PF-04928473) and m/z 447.0→329.1 (PF-04972487). The retention times for PF-04928473 and PF-04972487 were 1.86 and 2.85 minutes, respectively. Calibration curves were generated in the range of 2–2000 ng/mL. The accuracy and precision ranged from 94.1–99.0% and 86.7–97.6%, respectively, which were calculated using quality control samples of three different concentrations analyzed in quintuplicate on four different days. PMID:20951100
Munyeza, Chiedza F; Shobo, Adeola; Baijnath, Sooraj; Bratkowska, Dominika; Naiker, Suhashni; Bester, Linda A; Singh, Sanil D; Maguire, Glenn E M; Kruger, Hendrik G; Naicker, Tricia; Govender, Thavendran
2016-06-01
Tigecycline (TIG), a derivative of minocycline, is the first in the novel class of glycylcyclines and is currently indicated for the treatment of complicated skin structure and intra-abdominal infections. A selective, accurate and reversed-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of TIG in rat brain tissues. Sample preparation was based on protein precipitation and solid phase extraction using Supel-Select HLB (30 mg/1 mL) cartridges. The samples were separated on a YMC Triart C18 column (150 mm x 3.0 mm. 3.0 µm) using gradient elution. Positive electrospray ionization (ESI+) was used for the detection mechanism with the multiple reaction monitoring (MRM) mode. The method was validated over the concentration range of 150-1200 ng/mL for rat brain tissue. The precision and accuracy for all brain analyses were within the acceptable limit. The mean extraction recovery in rat brain was 83.6%. This validated method was successfully applied to a pharmacokinetic study in female Sprague Dawley rats, which were given a dose of 25 mg/kg TIG intraperitoneally at various time-points. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
El-Maghrabey, Mahmoud; Kishikawa, Naoya; Kuroda, Naotaka
2016-09-02
9,10-Phenanthrenequinone (PQ) was successfully used as a new mass-tagging reagent for sensitive labeling of aliphatic aldehydes (C3-C10) prior liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). This reagent could overcome the drawbacks of previous amine or hydrazine-based reagents, such as lower sensitivity, formation of two stereoisomeric reaction products for each single analyte, need for longer derivatization time, and poor reactivity with aliphatic aldehydes. The PQ-aldehyde derivatives exhibited intense [M+H](+) and a common product ion with ESI in the positive-ion mode. The derivatives were monitored at the transition of [M+H](+)→m/z 231.9 with detection limits from 4.0 to 100 pM (signal to noise ratio=3). 3-Phenylpropanal was used as an internal standard (IS) and the separation of the eight aldehydes and IS was achieved in less than 10min employing gradient elution with methanol and ammonium formate buffer (20mM, pH 4.0). The method employed salting out liquid-liquid extraction for aliphatic aldehydes form serum for the first time with excellent recoveries (92.6-110.8%). The developed method was validated and applied for quantification of the target aldehydes in serum of healthy volunteers (n=14). Copyright © 2016 Elsevier B.V. All rights reserved.
Mixed retention mechanism of proteins in weak anion-exchange chromatography.
Liu, Peng; Yang, Haiya; Geng, Xindu
2009-10-30
Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.
Effects of Sheared Flow on Microinstabilities and Transport in Plasmas
NASA Astrophysics Data System (ADS)
H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong
2005-02-01
Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.
Moreno-Vicente, Raquel; Fernández-Nieva, Zuriñe; Navarro, Arantza; Gascón-Crespí, Irene; Farré-Albaladejo, Magí; Igartua, Manuela; Hernández, Rosa María; Pedraz, José Luis
2015-10-10
A bioanalytical method using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and validated for simultaneous quantification of heroin, its main metabolites and naloxone. In addition, naltrexone was detected qualitatively. This method was used to analyse human plasma samples from a clinical trial after oral administration of a heroin/naloxone formulation in healthy volunteers. O-methylcodeine was used as an internal standard. Samples were kept in an ice-bath during their processing to minimize the degradation of heroin. A short methodology based on protein precipitation with methanol was used for sample preparation. After protein precipitation, only the addition of a formic acid solution was needed to elute heroin, 6-monoacetylmorphine, morphine, naloxone and naltrexone. Morphine metabolites were evaporated to dryness and reconstituted in a formic acid solution. Chromatographic separation was achieved at 35 °C on an X-Bridge Phenyl column (150 × 4.6 mm, 5 μm) using a gradient elution with a mobile phase of ammonium formate buffer at pH 3.0 and formic acid in acetonitrile. The run time was 8 min. The analytes were monitored using a triple quadrupole mass spectrometer with positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. The method was found to be linear in a concentration range of 10-2000 ng/mL for M3G and 10-1000 ng/mL for the rest of compounds. Quality controls showed accurate values between -3.6% and 4.0% and intra- and inter-day precisions were below 11.5% for all analytes. The overall recoveries were approximately 100% for all analytes including the internal standard. A rapid, specific, precise and simple method was developed for the determination of heroin, its metabolites, naloxone and naltrexone in human plasma. This method was successfully applied to a clinical trial in 12 healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.
Murphy, Patrick J. M.
2014-01-01
Background Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Methods and Results Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conclusions Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes. PMID:25254496
He, Gaoli; Guo, Beining; Zhang, Jing; Li, Yi; Wu, Xiaojie; Fan, Yaxin; Chen, Yuancheng; Cao, Guoying; Yu, Jicheng
2018-04-01
Levornidazole is a novel third-generation nitroimidazoles antibiotic which metabolism and disposition in human are not well known. We have previously developed two methods to quantify levornidazole and its phase I metabolites, Ml (Hydroxylation metabolite), M2 (N-dealkylation metabolite) and M4 (Oxidative dechlorination metabolite), in human plasma and urine. In this study, we developed three novel liquid chromatographic-tandem mass spectrometric (LC-MS/MS) methods and analyzed its phase II metabolites, sulfate conjugate (M6) and glucuronide conjugate (M16), in human plasma and urine, and the parent drug and above-mentioned five metabolites in human feces samples. Analytes and internal standard (IS) in human plasma were extracted by a solid-phase extraction procedure and separated on an ACQUITY UPLC CSH C18 column in gradient elution using acetonitrile and 0.1% formic acid aqueous solution as the mobile phase. The pretreatment procedures for urine and feces homogenate samples involved a protein precipitation followed by liquid-liquid extraction, and chromatographic separations were performed on the Atlantis T3 columns of different lengths and particle sizes (2.1 × 50 mm, 3 μm and 2.1 × 150 mm, 5 μm), respectively. The mobile phases consisted of formic acid and acetonitrile-methanol solution (v/v, 50:50) in gradient elution. The MS/MS analysis was conducted on TSQ Quantum triple quadrupole mass spectrometer using electrospray ionization with selected reaction monitoring (SRM) in the positive ion mode. The calibration curves for all analytes were linear and the validation ranges were as follows: 0.005-0.500 μg/mL for M6 and 0.005-2.500 μg/mL for M16 in plasma; 0.010-10.000 μg/mL for M6 and M16 in urine; 0.005-1.000 μg/mL for levornidazole, M2, M4 and M16, and 0.010-2.000 μg/mL for M1 and M6 in human feces homogenate. Across these matrices, mean intra- and inter- batch accuracy values were in the ranges of 80.0%-120.0%, and intra- and inter-batch precision values did not exceed 20%. It was fully validated including selectivity, linearity, matrix effect, extraction recovery, stability, dilution integrity, carryover and incurred sample analysis (ISR). These newly developed methods were successfully applied in pharmacokinetics, metabolism and disposition study of levornidazole in 12 healthy Chinese subjects. Copyright © 2018 Elsevier B.V. All rights reserved.
Salagoity-Auguste, M H; Tricard, C; Sudraud, P
1987-04-17
Aromatic aldehydes (vanillin, syringaldehyde, coniferaldehyde and sinapaldehyde) and coumarins (esculetin, umbelliferone, scopoletin and methylumbelliferone) are natural wood compounds. Storage of wines and brandies in oak barrels increases notably aldehydes and coumarins (particularly scopoletin) concentrations. These compounds were separated by high-performance liquid chromatography, on hydrocarbon bonded reversed-phase packings, with a water-acetonitrile elution gradient. They were first extracted from wines and brandies by diethyl ether and then injected on chromatographic column. A double detection was used to determine simultaneously aromatic aldehydes and coumarins by UV absorption and fluorescence respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Viktor I; Panchenko, Vladislav Ya; Seminogov, V N
2012-08-31
A method is proposed for measuring the refractive index gradient n(z) in nonuniformly thick dielectric films. The method is based on the excitation of waveguide modes in a film using the prism coupling technique and on the calculation of n(z) and film thickness H{sub f} with the help of the angular positions of the TE or TM modes. The method can be used for an arbitrary shape of the index modulation over the film thickness in the limit of a small gradient [{Delta} n(z)/n(z) || 1]. (laser applications and other topics in quantum electronics)
NASA Technical Reports Server (NTRS)
Wang, Zuwei; Vaksman, Zalman; Putcha, Lakshmi
2008-01-01
Intranasal scopolamine is a choice drug for the treatment of motion sickness during space flight because of its quick onset of action, short half-life and favorable sideeffects profile. The dose administered usually ranges between 0.1 and 0.4 mg. Such small doses make it difficult to detect concentrations of scopolamine in biological fluids using existing sensitive LC/MS/MS method, especially when the biological sample volumes are limited. To measure scopolamine in human plasma to facilitate pharmacokinetic evaluation of the drug, we developed a sensitive LC/MS/MS method using 96 well micro elution plates for solid phase extraction (SPE) of scopolamine in human plasma. Human plasma (100-250 micro L) were loaded onto Waters Oasis HLB 96 well micro elution plate and eluted with 50 L of organic solvent without evaporation and reconstitution. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 3 minutes. The mobile phase for separation was 80:20 (v/v) methanol: ammonium acetate (30 mM) in water. Concentrations of scopolamine were determined using a Micromass Quattro Micro(TM) mass spectrometer with electrospray ionization (ESI). ESI mass spectra were acquired in positive ion mode with multiple reaction monitoring for the determination of scopolamine m/z = 304.2 right arrow 138.1 and internal standard hyoscyamine m/z = 290.2 right arrow 124.1. The method is rapid, reproducible, specific and has the following parameters: scopolamine and the IS are eluted at about 1.1 and 1.7 min respectively. The linear range is 25-10000 pg/mL for scopolamine in human plasma with correlation coefficients greater than 0.99 and CV less than 0.5%. The intra-day and inter-day CVs are less than 15% for quality control samples with concentrations of 75,300, and 750 pg/mL of scopolamine in human plasma. SPE using 96 well micro elution plates allows rapid sample preparation and enhanced sensitivity for the LC/MS/MS determination of scopolamine in a small volume of biological samples. The new method is also cost effective since it uses a small volume of organic solvents compared to the methods using SPE cartridges or regular 96 well SPE plates. This method can be successfully used for bioavailability and pharmacokinetic evaluations of scopolamine, especially when volumes of biological samples are limited. Further investigation to use automated SPE system with 96 well micro elution plates is planned.
Dynamics of a camphoric acid boat at the air-water interface
NASA Astrophysics Data System (ADS)
Akella, V. S.; Singh, Dhiraj K.; Mandre, Shreyas; Bandi, M. M.
2018-05-01
We report experiments on an agarose gel tablet loaded with camphoric acid (c-boat) spontaneously set into motion by surface tension gradients on the water surface. We observe three distinct modes of c-boat motion: harmonic mode where the c-boat speed oscillates sinusoidally in time, a steady mode where the c-boat maintains constant speed, and an intermittent mode where the c-boat maintains near-zero speed between sudden jumps in speed. Whereas all three modes have been separately reported before in different systems, controlled release of Camphoric Acid (CA) from the agarose gel matrix allowed the observation of all the three modes in the same system. These three modes are a result of a competition between the driving (surface tension gradients) and drag forces acting on the c-boat. Moreover we suggest that there exist two time scales corresponding to spreading of CA and boat motion and the mismatch of these two time scales give rise to the three modes in boat motion. We reproduced all the modes of motion by varying the air-water interfacial tension using Sodium Dodecyl Sulfate (SDS).
The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team
2012-08-17
Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less
NASA Astrophysics Data System (ADS)
Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.
2018-02-01
Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma and for /k c ω p < 4 in linear polarized plasma. Therefore, the shear stress and density gradient tend to stabilize the Weibel instability for /k c ω p < 4 in linear polarized plasma. Also, the shear stress and density gradient tend to stabilize the Weibel instability for the range of the propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.
Wiese, Steffen; Teutenberg, Thorsten; Schmidt, Torsten C
2012-01-27
In the present work it is shown that the linear elution strength (LES) model which was adapted from temperature-programming gas chromatography (GC) can also be employed for systematic method development in high-temperature liquid chromatography (HT-HPLC). The ability to predict isothermal retention times based on temperature-gradient as well as isothermal input data was investigated. For a small temperature interval of ΔT=40°C, both approaches result in very similar predictions. Average relative errors of predicted retention times of 2.7% and 1.9% were observed for simulations based on isothermal and temperature-gradient measurements, respectively. Concurrently, it was investigated whether the accuracy of retention time predictions of segmented temperature gradients can be further improved by temperature dependent calculation of the parameter S(T) of the LES relationship. It was found that the accuracy of retention time predictions of multi-step temperature gradients can be improved to around 1.5%, if S(T) was also calculated temperature dependent. The adjusted experimental design making use of four temperature-gradient measurements was applied for systematic method development of selected food additives by high-temperature liquid chromatography. Method development was performed within a temperature interval from 40°C to 180°C using water as mobile phase. Two separation methods were established where selected food additives were baseline separated. In addition, a good agreement between simulation and experiment was observed, because an average relative error of predicted retention times of complex segmented temperature gradients less than 5% was observed. Finally, a schedule of recommendations to assist the practitioner during systematic method development in high-temperature liquid chromatography was established. Copyright © 2011 Elsevier B.V. All rights reserved.
Liang, Chao; Qiao, Jun-Qin; Lian, Hong-Zhen
2017-12-15
Reversed-phase liquid chromatography (RPLC) based octanol-water partition coefficient (logP) or distribution coefficient (logD) determination methods were revisited and assessed comprehensively. Classic isocratic and some gradient RPLC methods were conducted and evaluated for neutral, weak acid and basic compounds. Different lipophilicity indexes in logP or logD determination were discussed in detail, including the retention factor logk w corresponding to neat water as mobile phase extrapolated via linear solvent strength (LSS) model from isocratic runs and calculated with software from gradient runs, the chromatographic hydrophobicity index (CHI), apparent gradient capacity factor (k g ') and gradient retention time (t g ). Among the lipophilicity indexes discussed, logk w from whether isocratic or gradient elution methods best correlated with logP or logD. Therefore logk w is recommended as the preferred lipophilicity index for logP or logD determination. logk w easily calculated from methanol gradient runs might be the main candidate to replace logk w calculated from classic isocratic run as the ideal lipophilicity index. These revisited RPLC methods were not applicable for strongly ionized compounds that are hardly ion-suppressed. A previously reported imperfect ion-pair RPLC method was attempted and further explored for studying distribution coefficients (logD) of sulfonic acids that totally ionized in the mobile phase. Notably, experimental logD values of sulfonic acids were given for the first time. The IP-RPLC method provided a distinct way to explore logD values of ionized compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, A. M.; Griffiths, J. H.
2007-05-01
At the 2005 Fall Meeting of the American Geophysical Union, Griffiths and Johnson [2005] introduced a method of extracting from the deformation-gradient (and velocity-gradient) tensor the amount and preferred orientation of simple-shear associated with 2-D shear zones and faults. Noting the 2-D is important because the shear zones and faults in Griffiths and Johnson [2005] were assumed non-dilatant and infinitely long, ignoring the scissors- like action along strike associated with shear zones and faults of finite length. Because shear zones and faults can dilate (and contract) normal to their walls and can have a scissors-like action associated with twisting about an axis normal to their walls, the more general method of detecting simple-shear is introduced and called MODES "method of detecting simple-shear." MODES can thus extract from the deformation-gradient (and velocity- gradient) tensor the amount and preferred orientation of simple-shear associated with 3-D shear zones and faults near or far from the Earth's surface, providing improvements and extensions to existing analytical methods used in active tectonics studies, especially strain analysis and dislocation theory. The derivation of MODES is based on one definition and two assumptions: by definition, simple-shear deformation becomes localized in some way; by assumption, the twirl within the deformation-gradient (or the spin within the velocity-gradient) is due to a combination of simple-shear and twist, and coupled with the simple- shear and twist is a dilatation of the walls of shear zones and faults. The preferred orientation is thus the orientation of the plane containing the simple-shear and satisfying the mechanical and kinematical boundary conditions. Results from a MODES analysis are illustrated by means of a three-dimensional diagram, the cricket- ball, which is reminiscent of the seismologist's "beach ball." In this poster, we present the underlying theory of MODES and illustrate how it works by analyzing the three- dimensional displacements measured with the Global Positioning System across the 1999 Chi-Chi earthquake ground rupture in Taiwan. In contrast to the deformation zone in the upper several meters of the ground below the surface detected by Yu et al. [2001], MODES determines the orientation and direction of shift of a shear zone representing the earthquake fault within the upper several hundred or thousand meters of ground below the surface. Thus, one value of the MODES analysis in this case is to provide boundary conditions for dislocation solutions for the subsurface shape of the main rupture during the earthquake.
Huang, Yun-Qing; You, Jing-Qing; Zhang, Junsheng; Sun, Wenjian; Ding, Li; Feng, Yu-Qi
2011-10-14
We developed a convenient method by coupling frontal elution paper chromatography with desorption corona beam ionization mass spectrometry (DCBI-MS) for rapid determination of chlorphenamine added in herbal medicines or dietary supplements. In this method, the ethanol extract of the herbal products was spotted directly onto an isosceles triangular filter paper sheet, and then the paper sheet was developed under strong elution condition with the sample zone migrating at the solvent front. The analyte was finally condensed at the V-shaped tip which could then be placed under the visible plasma beam of DCBI for ionization. The overall procedure took less than 5 min. The frontal elution paper chromatography on a triangular plate used in this work improved the signal intensity of chlorphenamine by 30-fold due to the analyte condensing at the tip and the reduction of the background suppression. Furthermore, the paper sheet also functioned as a filter in the analysis of solid or powder samples, which can increase the analytical throughput by omitting the step of centrifugation. The proposed method in current study was successfully applied in the determination of chlorphenamine in herbal medicines. Chlorphenamine was detected in four of the twelve types of herbal medicines examined in this study. The limit of detection was 200 ng/mL (2.0 ng absolute) in full-scan positive-ion mode and the linear range was from 5.0 μg/mL to 50 μg/mL with satisfactory linear coefficient (R(2) (the square of the correlation coefficient)=0.895). Good reproducibility was achieved with relative standard deviations (RSDs) less than 15.0% and the recoveries of chlorphenamine ranged from 84.3 to 90.6%. Copyright © 2011 Elsevier B.V. All rights reserved.
Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges
2014-01-17
Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sung, C.; Wang, G.; Rhodes, T. L.; Smith, S. P.; Osborne, T. H.; Ono, M.; McKee, G. R.; Yan, Z.; Groebner, R. J.; Davis, E. M.; Zeng, L.; Peebles, W. A.; Evans, T. E.
2017-11-01
The first observation of increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) is presented. These are long wavelength fluctuations (kθρs ≤ 0.2, where kθ = poloidal wavenumber and ρs = ion sound gyroradius) observed during H-mode plasmas on the DIII-D. This increase occurs only after ELMs are suppressed and are not observed during the initial RMP application. The T˜ e/Te increases ( >60%) are coincident with changes in normalized density and electron temperature gradients in the region from the top of the pedestal outward to the upper portion of the steep edge gradient. Density turbulence (kθρs ≤ 0.4) in this location was also observed to increase only after ELM suppression. These results are significant since they indicate that increased gradient-driven turbulent transport is one possible mechanism to regulate and maintain ELM-free H-mode operation. Investigation of linear stability of drift wave instabilities using the CGYRO code [Candy et al., J. Comput. Phys. 324, 73 (2016)] shows that the dominant mode moves closer to the electron mode branch from the ion mode branch only after ELMs are suppressed, correlated with the increased turbulence. The increased turbulence during ELM suppression, rather than with the initial RMP application, indicates that the often observed RMP induced "density pump-out" cannot be attributed to long wavelength edge turbulence level changes.
Liu, Xuemei; Hu, Pei; Wang, Yongsheng; Wang, Xizhu; Huang, Jinghua; Li, Jin; Li, Cheng; Wang, Hongyun; Jiang, Ji
2018-04-10
Monocyte locomotion inhibitory factor (MLIF, Met-Gln-Cys-Asn-Ser), a pentapeptide with anti-inflammatory activity, was developed for neural protection in acute ischemic stroke. Determination of MLIF in human plasma samples is of great importance for pharmacokinetic evaluation in clinical studies. A reliable and sensitive method based on ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was established for the measurement of MLIF in human plasma. Instability of peptide in matrix was the primary challenge in method development, which was properly resolved by addition of acidification reagents like sulfuric acid. Samples were prepared by protein precipitation and then analyzed using a gradient chromatographic separation over an ACQUITY UPLC HSS T 3 column. The mobile phase consisted of acetonitrile containing 0.2% formic acid and water containing 0.2% formic acid and gradient elution was performed at a flow rate of 0.4 mL/min. Detection was carried out on a Xevo TQ-S tandem mass spectrometer and positive electrospray ionization was employed in the multiple reaction monitoring (MRM) mode. This method was fully validated over the concentration range of 0.5-40 ng/mL with a lower limit of quantification (LLOQ) of 0.5 ng/mL. The inter- and intra-batch precision was no more than 8.8% and the accuracy was between 88.7 and 104.2%. The mean extraction recovery was 43.3% and the detection was independent of matrix. Besides, the analyte proved to be stable under various handling processes and storage conditions after acidification. Finally, the method was applied to the first-in-human (FIH) study of MLIF in Chinese healthy subjects. Copyright © 2018. Published by Elsevier B.V.
A, Vijaya Bhaskar Reddy; Yusop, Zulkifli; Jaafar, Jafariah; Aris, Azmi B; Majid, Zaiton A; Umar, Khalid; Talib, Juhaizah
2016-09-05
In this study a sensitive and selective gradient reverse phase UPLC-MS/MS method was developed for the simultaneous determination of six process related impurities viz., Imp-I, Imp-II, Imp-III, Imp-IV, Imp-V and Imp-VI in darunavir. The chromatographic separation was performed on Acquity UPLC BEH C18 (50 mm×2.1mm, 1.7μm) column using gradient elution of acetonitrile-methanol (80:20, v/v) and 5.0mM ammonium acetate containing 0.01% formic acid at a flow rate of 0.4mL/min. Both negative and positive electrospray ionization (ESI) modes were operated simultaneously using multiple reaction monitoring (MRM) for the quantification of all six impurities in darunavir. The developed method was fully validated following ICH guidelines with respect to specificity, linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, robustness and sample solution stability. The method was able to quantitate Imp-I, Imp-IV, Imp-V at 0.3ppm and Imp-II, Imp-III, and Imp-VI at 0.2ppm with respect to 5.0mg/mL of darunavir. The calibration curves showed good linearity over the concentration range of LOQ to 250% for all six impurities. The correlation coefficient obtained was >0.9989 in all the cases. The accuracy of the method lies between 89.90% and 104.60% for all six impurities. Finally, the method has been successfully applied for three formulation batches of darunavir to determine the above mentioned impurities, however no impurity was found beyond the LOQ. This method is a good quality control tool for the trace level quantification of six process related impurities in darunavir during its synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.
Coury, M.; Guttenfelder, W.; Mikkelsen, D. R.; ...
2016-06-30
Linear (local) gyrokinetic predictions of edge microinstabilities in highly shaped, lithiated and non-lithiated NSTX discharges are reported using the gyrokinetic code GS2. Microtearing modes dominate the non-lithiated pedestal top. The stabilization of these modes at the lithiated pedestal top enables the electron temperature pedestal to extend further inwards, as observed experimentally. Kinetic ballooning modes are found to be unstable mainly at the mid-pedestal of both types of discharges, with un- stable trapped electron modes nearer the separatrix region. At electron wavelengths, ETG modes are found to be unstable from mid-pedestal outwards for η e, exp ~2.2 with higher growth ratesmore » for the lithiated discharge. Near the separatrix, the critical temperature gradient for driving ETG modes is reduced in the presence of lithium, re ecting the reduction of the lithiated density gradients observed experimentally. A preliminary linear study in the edge of non-lithiated discharges shows that the equilibrium shaping alters the electrostatic modes stability, found more unstable at high plasma shaping.« less
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J
2011-02-20
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.
Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.
2011-01-01
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276
Characterization of new types of stationary phases for fast liquid chromatographic applications.
Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2009-12-05
The performance of a narrow bore silica based monolith column (5 cm x 2 mm) was compared to 5 cm long narrow bore (internal diameter < or = 2.1 mm) columns, packed with shell particles (2.7 microm) and totally porous sub-2 microm particles (1.5 microm, 1.7 microm and 1.9 microm) in gradient and isocratic elution separations of steroids. The highest peak capacity could be achieved with the column packed with 1.5 microm totally porous particles. The columns packed with porous 1.7 microm and shell 2.7 microm particles showed very similar capacity. The monolith column provided the lowest capacity during gradient elution. The plate height (HETP) of the 2.7 microm Ascentis Express column was very similar to the HETP obtained with 1.5 microm and 1.7 microm totally porous particles. The Chromolith monolithic column displayed an efficiency that is comparable to that of columns packed with spherical particles having their diameter between 3 microm and 4 microm. A kinetic plot analysis is presented to compare the theoretical analysis speed of different separation media. At 200 bar, the monolith column provided the highest performance when the required plate number was higher than 5000 (N>5000), however the efficiency drifted off faster in the range of N<5000 than in the case of packed columns. If the possibility of maximum performance was utilized (1000 bar for sub-2 microm particles, 600 bar for shell particles and 200 bar for monolith column) the monolith column would provide the poorest efficiency, while the column, packed with 1.5 microm particles offered the shortest impedance time.
Chen, Zongyan; Li, Chuanfeng; Peng, Gaojing; Liu, Guangqing
2013-07-01
The goose parvovirus (GPV) Rep1 protein is both essential for viral replication and a potential target for GPV diagnosis, but its protein characterization and intracellular localization is not clear. We constructed a recombinant plasmid, pET28a/GPV-Rep1, and expressed the Rep1 gene in BL21 (DE3) Escherichia coli. A protein approximately 75 kDa in size was obtained from lysates of E. coli cells expressing the recombinant plasmid. SDS-PAGE analysis showed that after induction with 0.6 mM isopropyl β-D-thiogalactosidase (IPTG) at 30°C for 5 h, the Rep1 protein was highly overexpressed. Two methods used to purify proteins, a salinity-gradient elution and Ni-NTA affinity chromatography, were performed. The amount of Rep1 protein obtained by Ni-NTA affinity chromatography was 41.23 mg, while 119.9 mg of Rep1 protein was obtained by a salinity-gradient elution from a 1 L E. coli BL21 (DE3) culture. An immunogenicity analysis showed that the protein could significantly elicit a specific antibody response in immunized goslings compared to control groups. Antibody titers peaked to 1:5120 (optical density (OD) 450 = 3.9) on day 28 after immunization but had mean titers of 1:10,240 (OD450 = 4.2) in gosling groups immunized with a commercially available GPV-attenuated vaccine strain. Experiments examining subcellular localization showed that the Rep1 protein appeared to associate predominantly with the nuclear membrane, especially during later times of infection. This work provides a basis for biochemical and structural studies on the GPV Rep1 protein.
Separation of an associated 90K heat shock protein from the glucocorticoid receptor complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller-Diener, A.; Kirsch, T.; Grove, B.
1986-05-01
A 90K heat shock protein(HSP), observed to copurify with the glucocorticoid receptor(GR), can be separated from the complex by 2 methods, allowing investigation of the role of HSP on kinase activity that was previously reported to be inherent to purified activated GR. Na/sub 2/MoO/sub 4/ stabilized unactivated rat hepatic GR complexes have been purified to >10,000-fold using a purification scheme that involves batchwise treatment of cytosol with phosphocellulose/DNAcellulose, elution from an affinity resin, gel filtration and ion exchange chromatography. Samples were subjected to 10-20% gradient SDS-PAGE. Proteins were transferred to nitrocellulose and blotted against monoclonal antibodies to GR(3A6), HSP ormore » nonspecific IgM/G. Immunoblots indicated that HSP was separated from unactivated GR complexes at the affinity step prior to elution of GR with active steroid. GR eluted from the resin with /sup 3/H Triamcinolone acetonide or /sup 3/H Dexamethasone mesylate had an apparent M/sub r/ = 94-96,000 for the steroid binding subunit and is recognized by 3A6. Purification of GR minus the affinity step resulted in copurification of HSP throughout the procedure. However, after Sephadex G75 filtration and subsequent incubation at 25/sup 0/C, 30 min., HSP was separated from activated (DNA binding) GR on DEAE cellulose-52. HSP did not enhance or inhibit /sup 32/P incorporation of the 94K steroid binding subunit nor did it affect phosphorylation of histones by GR.« less
Shaheen, Nusrat; Lu, Yanzhen; Geng, Ping; Shao, Qian; Wei, Yun
2017-03-01
Two-step high speed countercurrent chromatography method, following normal phase and elution-extrusion mode of operation by using selected solvent systems, was introduced for phenolic compounds separation. Phenolic compounds including gallic acid, ethyl gallate, ethyl digallate and ellagic acid were separated from the ethanol extract of mango (Mangifera indica L.) flowers for the first time. In the first step, gallic acid of 3.7mg and ethyl gallate of 3.9mg with the purities of 98.87% and 99.55%, respectively, were isolated by using hexane-ethylacetate-methanol-water (4:6:4:6, v/v) in normal phase high speed countercurrent chromatography from 200mg of crude extract, while ethyl digallate and ellagic acid were collected in the form of mixture fraction. In the second step, further purification of the mixture was carried out with the help of another selected solvent system of dichloromethane-methanol-water (4:3:2, v/v) following elusion-extrusion mode of operation. Ethyl digallate of 3.8mg and ellagic acid of 5.7mg were separated well with high purities of 98.68% and 99.71%, respectively. The separated phenolic compounds were identified and confirmed by HPLC, UPLC-QTOF/ESI-MS, 1 H and 13 C NMR spectrometric analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Insa, S; Anticó, E; Ferreira, V
2005-09-30
A reliable solid-phase extraction (SPE) method for the simultaneous determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wines has been developed. In the proposed procedure 50 mL of wine are extracted in a 1 mL cartridge filled with 50 mg of LiChrolut EN resins. Most wine volatiles are washed up with 12.5 mL of a water:methanol solution (70%, v/v) containing 1% of NaHCO3. Analytes are further eluted with 0.6 mL of dichloromethane. A 40 microL aliquot of this extract is directly injected into a PTV injector operated in the solvent split mode, and analysed by gas chromatography (GC)-ion trap mass spectrometry using the selected ion storage mode. The solid-phase extraction, including sample volume and rinsing and elution solvents, and the large volume GC injection have been carefully evaluated and optimized. The resulting method is precise (RSD (%) < 6% at 100 ng L(-1)), sensitive (LOD were 0.2 and 0.4 ng/L for TCA and TBA, respectively), robust (the absolute recoveries of both analytes are higher than 80% and consistent wine to wine) and friendly to the GC-MS system (the extract is clean, simple and free from non-volatiles).
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces
Li, Zhaoyi; Kim, Myoung -Hwan; Wang, Cheng; ...
2017-04-17
Here, research on two-dimensional designer optical structures, or metasurfaces, has mainly focused on controlling the wavefronts of light propagating in free space. Here, we show that gradient metasurface structures consisting of phased arrays of plasmonic or dielectric nanoantennas can be used to control guided waves via strong optical scattering at subwavelength intervals. Based on this design principle, we experimentally demonstrate waveguide mode converters, polarization rotators and waveguide devices supporting asymmetric optical power transmission. We also demonstrate all-dielectric on-chip polarization rotators based on phased arrays of Mie resonators with negligible insertion losses. Our gradient metasurfaces can enable small-footprint, broadband and low-lossmore » photonic integrated devices.« less
Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H
2009-06-05
Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
Global simulation of edge pedestal micro-instabilities
NASA Astrophysics Data System (ADS)
Wan, Weigang; Parker, Scott; Chen, Yang
2011-10-01
We study micro turbulence of the tokamak edge pedestal with global gyrokinetic particle simulations. The simulation code GEM is an electromagnetic δf code. Two sets of DIII-D experimental profiles, shot #131997 and shot #136051 are used. The dominant instabilities appear to be two kinds of modes both propagating in the electron diamagnetic direction, with comparable linear growth rates. The low n mode is at the Alfven frequency range and driven by density and ion temperature gradients. The high n mode is driven by electron temperature gradient and has a low real frequency. A β scan shows that the low n mode is electromagnetic. Frequency analysis shows that the high n mode is sometimes mixed with an ion instability. Experimental radial electric field is applied and its effects studied. We will also show some preliminary nonlinear results. We thank R. Groebner, P. Snyder and Y. Zheng for providing experimental profiles and helpful discussions.
Toklu, Bora; Amoroso, Nicholas; Fusaro, Mario; Kumar, Sunil; Hannan, Edward L; Faxon, David P; Feit, Frederick
2013-01-01
Objective To compare the efficacy and safety of biodegradable polymer drug eluting stents with those of bare metal stents and durable polymer drug eluting stents. Design Mixed treatment comparison meta-analysis of 258 544 patient years of follow-up from randomized trials. Data sources and study selection PubMed, Embase, and Central were searched for randomized trials comparing any of the Food and Drug Administration approved durable polymer drug eluting stents (sirolimus eluting, paclitaxel eluting, cobalt chromium everolimus eluting, platinum chromium everolimus eluting, zotarolimus eluting-Endeavor, and zotarolimus eluting-Resolute) or biodegradable polymer drug eluting stents, with each other or against bare metal stents. Outcomes Long term efficacy (target vessel revascularization, target lesion revascularization) and safety (death, myocardial infarction, stent thrombosis). Landmark analysis at more than one year was evaluated to assess the potential late benefit of biodegradable polymer drug eluting stents. Results From 126 randomized trials and 258 544 patient years of follow-up, for long term efficacy (target vessel revascularization), biodegradable polymer drug eluting stents were superior to paclitaxel eluting stents (rate ratio 0.66, 95% credibility interval 0.57 to 0.78) and zotarolimus eluting stent-Endeavor (0.69, 0.56 to 0.84) but not to newer generation durable polymer drug eluting stents (for example: 1.03, 0.89 to 1.21 versus cobalt chromium everolimus eluting stents). Similarly, biodegradable polymer drug eluting stents were superior to paclitaxel eluting stents (rate ratio 0.61, 0.37 to 0.89) but inferior to cobalt chromium everolimus eluting stents (2.04, 1.27 to 3.35) for long term safety (definite stent thrombosis). In the landmark analysis after one year, biodegradable polymer drug eluting stents were superior to sirolimus eluting stents for definite stent thrombosis (rate ratio 0.29, 0.10 to 0.82) but were associated with increased mortality compared with cobalt chromium everolimus eluting stents (1.52, 1.02 to 2.22). Overall, among all stent types, the newer generation durable polymer drug eluting stents (zotarolimus eluting stent-Resolute, cobalt chromium everolimus eluting stents, and platinum chromium everolimus eluting stents) were the most efficacious (lowest target vessel revascularization rate) stents, and cobalt chromium everolimus eluting stents were the safest with significant reductions in definite stent thrombosis (rate ratio 0.35, 0.21 to 0.53), myocardial infarction (0.65, 0.55 to 0.75), and death (0.72, 0.58 to 0.90) compared with bare metal stents. Conclusions Biodegradable polymer drug eluting stents are superior to first generation durable polymer drug eluting stents but not to newer generation durable polymer stents in reducing target vessel revascularization. Newer generation durable polymer stents, and especially cobalt chromium everolimus eluting stents, have the best combination of efficacy and safety. The utility of biodegradable polymer stents in the context of excellent clinical outcomes with newer generation durable polymer stents needs to be proven. PMID:24212107
Mode Propagation in Nonuniform Circular Ducts with Potential Flow
NASA Technical Reports Server (NTRS)
Cho, Y. C.; Ingard, K. U.
1982-01-01
A previously reported closed form solution is expanded to determine effects of isentropic mean flow on mode propagation in a slowly converging-diverging duct, a circular cosh duct. On the assumption of uniform steady fluid density, the mean flow increases the power transmission coefficient. The increase is directly related to the increase of the cutoff ratio at the duct throat. With the negligible transverse gradients of the steady fluid variables, the conversion from one mode to another is negligible, and the power transmission coefficient remains unchanged with the mean flow direction reversed. With a proper choice of frequency parameter, many different modes can be made subject to a single value of the power transmission loss. A systematic method to include the effects of the gradients of the steady fluid variables is also described.
Lesellier, E; Mith, D; Dubrulle, I
2015-12-04
Analyses of complex samples of cosmetics, such as creams or lotions, are generally achieved by HPLC. These analyses are often multistep gradients, due to the presence of compounds with a large range of polarity. For instance, the bioactive compounds may be polar, while the matrix contains lipid components that are rather non-polar, thus cosmetic formulations are usually oil-water emulsions. Supercritical fluid chromatography (SFC) uses mobile phases composed of carbon dioxide and organic co-solvents, allowing for good solubility of both the active compounds and the matrix excipients. Moreover, the classical and well-known properties of these mobile phases yield fast analyses and ensure rapid method development. However, due to the large number of stationary phases available for SFC and to the varied additional parameters acting both on retention and separation factors (co-solvent nature and percentage, temperature, backpressure, flow rate, column dimensions and particle size), a simplified approach can be followed to ensure a fast method development. First, suited stationary phases should be carefully selected for an initial screening, and then the other operating parameters can be limited to the co-solvent nature and percentage, maintaining the oven temperature and back-pressure constant. To describe simple method development guidelines in SFC, three sample applications are discussed in this paper: UV-filters (sunscreens) in sunscreen cream, glyceryl caprylate in eye liner and caffeine in eye serum. Firstly, five stationary phases (ACQUITY UPC(2)) are screened with isocratic elution conditions (10% methanol in carbon dioxide). Complementary of the stationary phases is assessed based on our spider diagram classification which compares a large number of stationary phases based on five molecular interactions. Secondly, the one or two best stationary phases are retained for further optimization of mobile phase composition, with isocratic elution conditions or, when necessary, two-step gradient elution. The developed methods were then applied to real cosmetic samples to assess the method specificity, with regards to matrix interferences, and calibration curves were plotted to evaluate quantification. Besides, depending on the matrix and on the studied compounds, the importance of the detector type, UV or ELSD (evaporative light-scattering detection), and of the particle size of the stationary phase is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Overview of recent HL-2A experiments
NASA Astrophysics Data System (ADS)
Duan, X. R.; Liu, Yi; Xu, M.; Yan, L. W.; Xu, Y.; Song, X. M.; Dong, J. Q.; Ding, X. T.; Chen, L. Y.; Lu, B.; Liu, D. Q.; Rao, J.; Xuan, W. M.; Yang, Q. W.; Zheng, G. Y.; Zou, X. L.; Liu, Y. Q.; Zhong, W. L.; Zhao, K. J.; Ji, X. Q.; Mao, W. C.; Wang, Q. M.; Li, Q.; Cao, J. Y.; Cao, Z.; Lei, G. J.; Zhang, J. H.; Li, X. D.; Bai, X. Y.; Cheng, J.; Chen, W.; Cui, Z. Y.; Delpech, L.; Diamond, P. H.; Dong, Y. B.; Ekedahl, A.; Hoang, T.; Huang, Y.; Ida, K.; Itoh, K.; Itoh, S.-I.; Isobe, M.; Inagaki, S.; Mazon, D.; Morita, S.; Peysson, Y.; Shi, Z. B.; Wang, X. G.; Xiao, G. L.; Yu, D. L.; Yu, L. M.; Zhang, Y. P.; Zhou, Y.; Cui, C. H.; Feng, B. B.; Huang, M.; Li, Y. G.; Li, B.; Li, G. S.; Li, H. J.; Li, Qing; Peng, J. F.; Wang, Y. Q.; Yuan, B. S.; Liu, Yong; HL-2A Team
2017-10-01
Since the last Fusion Energy Conference, significant progress has been made in the following areas. The first high coupling efficiency low-hybrid current drive (LHCD) with a passive-active multi-junction (PAM) antenna was successfully demonstrated in the H-mode on the HL-2A tokamak. Double critical impurity gradients of electromagnetic turbulence were observed in H-mode plasmas. Various ELM mitigation techniques have been investigated, including supersonic molecular beam injection (SMBI), impurity seeding, resonant magnetic perturbation (RMP) and low-hybrid wave (LHW). The ion internal transport barrier was observed in neutral beam injection (NBI) heated plasmas. Neoclassical tearing modes (NTMs) driven by the transient perturbation of local electron temperature during non-local thermal transport events have been observed, and a new type of non-local transport triggered by the ion fishbone was found. A long-lasting runaway electron plateau was achieved after argon injection and the runaway current was successfully suppressed by SMBI. It was found that low-n Alfvénic ion temperature gradient (AITG) modes can be destabilized in ohmic plasmas, even with weak magnetic shear and low-pressure gradients. For the first time, the synchronization of geodesic acoustic mode (GAM) and magnetic fluctuations was observed in edge plasmas, revealing frequency entrainment and phase lock. The spatiotemporal features of zonal flows were also studied using multi-channel correlation Doppler reflectometers.
Stephanson, N N; Signell, P; Helander, A; Beck, O
2017-08-01
The influx of new psychoactive substances (NPS) has created a need for improved methods for drug testing in toxicology laboratories. The aim of this work was to design, validate and apply a multi-analyte liquid chromatography-high-resolution mass spectrometry (LC-HRMS) method for screening of 148 target analytes belonging to the NPS class, plant alkaloids and new psychoactive therapeutic drugs. The analytical method used a fivefold dilution of urine with nine deuterated internal standards and injection of 2 μl. The LC system involved a 2.0 μm 100 × 2.0 mm YMC-UltraHT Hydrosphere-C 18 column and gradient elution with a flow rate of 0.5 ml/min and a total analysis time of 6.0 min. Solvent A consisted of 10 mmol/l ammonium formate and 0.005% formic acid, pH 4.8, and Solvent B was methanol with 10 mmol/l ammonium formate and 0.005% formic acid. The HRMS (Q Exactive, Thermo Scientific) used a heated electrospray interface and was operated in positive mode with 70 000 resolution. The scan range was 100-650 Da, and data for extracted ion chromatograms used ± 10 ppm tolerance. Product ion monitoring was applied for confirmation analysis and for some selected analytes also for screening. Method validation demonstrated limited influence from urine matrix, linear response within the measuring range (typically 0.1-1.0 μg/ml) and acceptable imprecision in quantification (CV <15%). A few analytes were found to be unstable in urine upon storage. The method was successfully applied for routine drug testing of 17 936 unknown samples, of which 2715 (15%) contained 52 of the 148 analytes. It is concluded that the method design based on simple dilution of urine and using LC-HRMS in extracted ion chromatogram mode may offer an analytical system for urine drug testing that fulfils the requirement of a 'black box' solution and can replace immunochemical screening applied on autoanalyzers. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Lin, Qing; Li, Yuan; Tan, Xiao-Mei; Yao, Xiang-Chao
2013-04-01
To establish a method to determine the concentration of formononetin, calycosin and isorhamnetin from Astragalus mongholicus in rats' plasma using LC-MS/MS and calculate their pharmacokinetic parameters. The contents of formononetin, calycosin and isorhamnetin in plasma were detected before and 24 h after 10 rats were treated with 10 g/kg Astragalus mongholicus. Rutin was used as internal standard. Agilent 1 200 HPLC system with Alltima C18 (150 mm x 2.1 mm, 5 microm) was used. Mobile phase was methanol-water solution with gradient elute at a flow rate of 0.3 mL/min. The column temperature was 40 degrees C. The LC-MS/ MS system was operated using an electrospray ionization probe in negative ion mode; Scan mode: multiple reaction ion monitoring (MRM) mode. The ion of monitor: m/z 267.0 --> 251.9 for formononetin, m/z 283.1 --> 268.2 for calycosin, m/z 315.4 --> 300.1 for isorhamnetin and m/z 609.4 --> 300.1 for rutin (internal standard), respectively. The linear range of formononetin, calycosin and isorhamnetin was 5 - 1 000 (r = 0.9996), 3.91 - 500 (r = 0.9989) and 0.5 - 100 ng/mL (r = 0.9992), respectively. The lowest limit of quantification (LLOQ) of formononetin, calycosin and isorhamnetin was 0.625, 0.5 and 0.1 ng/mL, respectively. The pharmacokinetic parameter, t(1/2beta), of formononetin, calycosin and isorhamnetin was (10.43 +/- 2.94), (6.91 +/- 1.33) and (5.07 +/- 1.21) h, respectively. The C(max) of formononetin, calycosin and isorhamnetin was (398.5 +/- 103.7), (138.7 +/- 32.8) and (58.3 +/- 14.5) ng/mL, respectively. The AUC(0 -> 12h), of formononetin, calycosin and isorhamnetin was (1238.8 +/- 311.3), (669.5 +/- 159.7) and (274.1 +/- 83.9)ng x h/mL, respectively. A sensitive, accuracy and suitable LC-MS/MS method for determination of formononetin, calycosin and isorhamnetin is developed and successfully applied to the pharmacokinetic study of 10 g/kg Astragalus mongholicus after oral administration in rats.
Relativistic g-modes in rapidly rotating neutron stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaertig, Erich; Kokkotas, Kostas D.; Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124
2009-09-15
We study the g-modes of fast rotating stratified neutron stars in the general relativistic Cowling approximation, where we neglect metric perturbations and where the background models take into account the buoyant force due to composition gradients. This is the first paper studying this problem in a general relativistic framework. In a recent paper [A. Passamonti, B. Haskell, N. Andersson, D. I. Jones, and I. Hawke, Mon. Not. R. Astron. Soc. 394, 730 (2009)], a similar study was performed within the Newtonian framework, where the authors presented results about the onset of CFS-unstable g-modes and the close connection between inertial andmore » gravity modes for sufficiently high rotation rates and small composition gradients. This correlation arises from the interplay between the buoyant force which is the restoring force for g-modes and the Coriolis force which is responsible for the existence of inertial modes. In our relativistic treatment of the problem, we find an excellent qualitative agreement with respect to the Newtonian results.« less
Tong, Shengqiang; Zheng, Ye; Yan, Jizhong
2013-03-15
High performance liquid chromatography (HPLC) and high speed counter-current chromatography (HSCCC) were applied and compared in enantioseparation of 2-phenylpropionic acid (2-PPA) when hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as chiral mobile phase additive. For HPLC, the enantioseparation was achieved on ODS C(18) reverse phase column and the mobile phase was 25 mmol L(-1) HP-β-CD aqueous buffer solution (pH 4.0, adjusted with triethylamine): methanol: glacial acetic acid (85:15:0.5 (v/v/v)). For HSCCC, the two-phase solvent system was composed of n-hexane-ethyl acetate-0.1 mol L(-1) phosphate buffer solution pH2.67 (5:5:10 for isocratic elution and 8:2:10 for recycling elution (v/v/v)) added with 0.1 mol L(-1) HP-β-CD. The key parameters, such as a substitution degree of HP-β-CD, the concentration of HP-β-CD, pH value of the aqueous phase and the temperature were optimized for both separation methods. Using the optimum conditions a complete HSCCC enantioseparation of 40 mg of 2-propylpropionic acid in a recycling elution mode gave 15-18 mg of (+)-2-PPA and (-)-2-PPA enantiomers with 95-98% purity and 85-93% recovery. Copyright © 2013 Elsevier B.V. All rights reserved.
Rho, Hoon Suk; Hanke, Alexander Thomas; Ottens, Marcel; Gardeniers, Han J G E
2018-04-01
A microfluidic device for pH gradient chromatofocusing is presented, which performs creation of a micro-column, pH gradient generation, and fraction collection in a single device. Using a sieve micro-valve, anion exchange particles were packed into a microchannel in order to realize a solid-phase absorption column. To fractionate proteins according to their isoelectric points, elution buffer solutions with a stepwise pH gradient were prepared in 16 parallel mixing reactors and flowed through the micro-column, wherein a protein mixture was previously loaded. The volume of the column is only 20 nL, hence it allows extremely low sample consumption and fast analysis compared with a conventional system. We demonstrated separation of two proteins, albumin-fluorescein isothiocyanate conjugate (FITC-BSA) and R-Phycoerythrin (R-PE), by using a microcolumn of commercial charged polymeric particles (Source 15Q). The microfluidic device can be used as a rapid diagnostic tool to analyse crude mixtures of proteins or nucleic acids and determine adsorption/desorption characteristics of various biochemical products, which can be helpful for scientific fundamental understanding as well as instrumental in various industrial applications, especially in early stage screening and process development. © 2018 The Authors Electrophoresis Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radially localized helicon modes in nonuniform plasma
Breizman; Arefiev
2000-04-24
A radial density gradient in an axisymmetric cylindrical plasma column forms a potential well for nonaxisymmetric helicon modes ( m not equal0). This paper presents an analytic description of such modes in the limit of small longitudinal wave numbers. The corresponding mode equation indicates the possibility of efficient resonant absorption of rf power in helicon discharges at unusually low frequencies.
The influence of installation angle of GGIs on full-tensor gravity gradient measurement
NASA Astrophysics Data System (ADS)
Wei, Hongwei; Wu, Meiping
2018-03-01
Gravity gradient plays an important role in many disciplines as a fundamental signal to reflect the information of the earth. Full-tensor gravity gradient measurement (FGGM) is an effective way to obtain the gravity gradient signal. In this paper, the installation mode of GGIs in FGGM is studied. It is expected that the accuracy of FGGM will be improved by optimizing the installation mode of GGIs. In addition, we analysed the relationship between GGIs’ installation angle and FGGM by establishing the measurement model of FGGM. Then the following conclusions was proved that there was no relationship between GGIs’ installation angle and the measurement result. This conclusion showed that there was no optimal angle for the GGIs’ installation in FGGM, and the installation angle only need to satisfy the relationship shown in the conclusion section of this paper. Finally, this conclusion was demonstrated by computer simulations.
NASA Astrophysics Data System (ADS)
Kalaee, Mohammad Javad; Katoh, Yuto
2014-12-01
For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell's equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones' formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.
He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui
2013-01-11
Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development. Copyright © 2012 Elsevier B.V. All rights reserved.
Buoyancy-induced mixing during wash and elution steps in expanded bed adsorption.
Fee, C J; Liten, A D
2001-01-01
Buoyancy-induced mixing occurs during expanded bed adsorption processes when the feed stream entering the bottom of the system has a lower density than that of the fluid above it. In the absence of a headspace, mixing in the expanded bed can be modeled as a single, well-mixed vessel, with first-order dynamics. In the presence of a headspace, the system exhibits second-order dynamics for the densities typically encountered in protein chromatography, and can be modeled as two well-mixed vessels (the expanded bed and the headspace) arranged in series. In this paper, the mixing dynamics of the expanded bed are described and a mathematical model of the system is presented. Experimental measurements of density changes during the dilution of sucrose and salt solutions in a STREAMLINE 25 column are presented. These show excellent agreement with predictions using the model. A number of strategies for wash and elution in expanded mode, both in the presence and absence of headspace, are discussed.
Ferritin (FER), isoferritins and aluminum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, J.; Cho, S.W.; Clauberg, M.
FER from Alzheimer's brain contains more Al. One source of Al is beverages. Of the several common beverages analyzed, Pepsi, sold in bottles but not in cans, contained the highest conc. of Al (10..mu..M). Male albino rats were fed 10..mu..M Al in drinking water for one year. They were then sacrificed and their brain homogenates were analyzed for FER, Al and several enzymes. The results: compared to controls, the homogenates of the Al fed rats had 276.5% more Al bound to Fer (114.2 +/- 25.3 g atoms/mol) and 30% less hexokinase activity (150 units/mg protein). Acetyl choline esterase and alkalinemore » ribonuclease levels remained unchanged. Isoelectrofocusing (pH 4-6.5) of human-brain FER yielded at least five bands. None corresponded with those from human liver FER or horse spleen FER. Horse spleen FER was applied to DEAE sephadex and eluted by NaCl-batchwise gradient. Five distinct fractions were obtained. The most acidic eluted last. It contained least Fe, tended to precipitate on standing and required less Al or Be to ppt. Thus, isoferritins may differ in their metal binding capacity and perhaps in their related physiological functions.« less
Alvarez-Segura, T; Gómez-Díaz, A; Ortiz-Bolsico, C; Torres-Lapasió, J R; García-Alvarez-Coque, M C
2015-08-28
Getting useful chemical information from samples containing many compounds is still a challenge to analysts in liquid chromatography. The highest complexity corresponds to samples for which there is no prior knowledge about their chemical composition. Computer-based methodologies are currently considered as the most efficient tools to optimise the chromatographic resolution, and further finding the optimal separation conditions. However, most chromatographic objective functions (COFs) described in the literature to measure the resolution are based on mathematical models fitted with the information obtained from standards, and cannot be applied to samples with unknown compounds. In this work, a new COF based on the automatic measurement of the protruding part of the chromatographic peaks (or peak prominences) that indicates the number of perceptible peaks and global resolution, without the need of standards, is developed. The proposed COF was found satisfactory with regard to the peak purity criterion when applied to artificial peaks and simulated chromatograms of mixtures built using the information of standards. The approach was applied to mixtures of drugs containing unknown impurities and degradation products and to extracts of medicinal herbs, eluted with acetonitrile-water mixtures using isocratic and gradient elution. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Qaim, Fouad Fadhil; Abdullah, Md Pauzi; Othman, Mohamed Rozali
2013-11-01
In this work, a developed method using solid - phase extraction (SPE) followed by liquid chromatography - time of flight mass spectrometry (LC-ESI-TOF/MS) was developed and validated for quantification and confirmation of eleven pharmaceuticals with different therapeutic classes in water samples, Malaysia. These compounds are caffeine (CAF), prazosin (PRZ), enalapril (ENL), carbamazepine (CBZ), nifedipine (NFD), levonorgestrel (LNG), simvastatin (SMV), hydrochlorothiazide (HYD), gliclazide (GLIC), diclofenac-Na (DIC-Na) and mefenamic acid (MEF). LC was performed on a Dionex Ultimate 3000/LC 09115047 (USA) system. Chromatography was performed on a Thermo Scientific C18 (250 mm × 2.1 mm, i.d.: 5μm) column. Several parameters were optimised such as; mobile phase, gradient elution, collision energy and solvent elution for extraction of compounds from water. The recoveries obtained ranged from 30-148 % in river water. Five pharmaceutical compounds were detected in the surface water samples: caffeine, prazosin, enalpril, diclofenac-Na and mefenamic acid. The developed method is precise and accepted recoveries were got. In addition, this method is suitable to identify and quantify trace concentrations of pharmaceuticals in surface water.
Le Guellec, C; Gaudet, M L; Breteau, M
1998-11-20
We report a high-performance liquid chromatography method for clonazepam determination in plasma. The use of a synthetic silica-based stationary phase markedly improved clonazepam resolution compared to standard reversed-phase columns. A liquid-liquid extraction was used, associated with reversed-phase chromatography, gradient elution and ultraviolet detection. Accuracy and precision were satisfactory at therapeutic concentrations. Selectivity was studied for benzodiazepines or other antiepileptic drugs, with particular attention to newly marketed drugs i.e., gabapentine and vigabatrin. No interfering substance was evidenced. Under the conditions described, it was possible to quantify clonazepam at nanogram level even when carbamazepine was present at therapeutic concentrations.
NASA Astrophysics Data System (ADS)
Jhang, Hogun
2018-05-01
We show that the threshold condition for the toroidal ion temperature gradient (ITG) mode with an inverted density profile can be derived from a simple physics argument. The key in this picture is that the density inversion reduces the ion compression due to the ITG mode and the electron drift motion mitigates the poloidal potential build-up. This condition reproduces the same result that has been reported from a linear gyrokinetic calculation [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. The destabilizing role of trapped electrons in toroidal geometry is easily captured in this picture.
Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard
2016-01-01
The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.
2015-01-15
Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less
NASA Astrophysics Data System (ADS)
Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure
2018-05-01
A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .
Ratnaraj, N; Patsalos, P N
1998-08-01
A gradient high-performance liquid chromatography micromethod is described for the simultaneous quantitation of vigabatrin and gabapentin in human serum. Chromatography was performed using a 125- x 3-mm ID Hypersil BDS C-18 column with a 3-microm mini-bore, eluted with a gradient system comprised of phosphate buffer (pH 6.5)-acetonitrile-methanol-water at a flow rate of 0.45 ml/minute. The column eluent was monitored on a fluorescence detector using excitation and emission wavelengths of 340 and 440 nm, respectively. The lower limit of quantitation for vigabatrin and for gabapentin was 5 micromol/l, and the within-batch and between-batch coefficients of variation were <5%. No interference from commonly prescribed antiepileptic drugs (carbamazepine and its metabolite carbamazepine epoxide, oxcarbazepine and its metabolite 10-hydroxycarbazepine, ethosuximide, lamotrigine, phenobarbitone, phenytoin, primidone, and valproic acid) was observed; thus, the method can be used to monitor vigabatrin and gabapentin in patients on polytherapy antiepileptic drug regimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bostick, W.D.; Denton, M.S.; Dinsmore, S.R.
1980-01-01
Isoenzymes of creatine kinase were separated by anion-exchange chromatography, with use of an elution gradient containing lithium acetate (0.1 to 0.6 mol/L). A stream splitter was used to divert a 5% side stream of column effluent, which was subsequently mixed with the reagents necessary for bioluminescence assay of the separated isoenzymes. The use of the stream splitter greatly decreased the rate of consumption of reagent and, when combined with a peristaltic pumping system, permitted independent control of the side-stream flow rate. Thus both the residence interval in a delay coil in which the ATP reaction product is formed and themore » bioluminescence emission was monitored in a flow-through fluorometer without use of an external light source or filters. Separation and detection of the isoenzymes of creatine kinase were rapid, sensitive, and highly selective. The incremental decrease of bioluminescence response owing to inhibition by the ions in the eluent was less than 31% across the entire gradient.« less
Amer, Sawsan M; Abbas, Samah S; Shehata, Mostafa A; Ali, Nahed M
2008-01-01
A simple and reliable high-performance liquid chromatographic method was developed for the simultaneous determination of mixture of phenylephrine hydrochloride (PHENYL), guaifenesin (GUAIF), and chlorpheniramine maleate (CHLO) either in pure form or in the presence of methylparaben and propylparaben in a commercial cough syrup dosage form. Separation was achieved on a C8 column using 0.005 M heptane sulfonic acid sodium salt (pH 3.4 +/- 0.1) and acetonitrile as a mobile phase by gradient elution at different flow rates, and detection was done spectrophotometrically at 210 nm. A linear relationship in the range of 30-180, 120-1800, and 10-60 microg/mL was obtained for PHENYL, GUAIF, and CHLO, respectively. The results were statistically analyzed and compared with those obtained by applying the British Pharmacopoeia (2002) method and showed that the proposed method is precise, accurate, and can be easily applied for the determination of the drugs under investigation in pure form and in cough syrup formulations.
Shell and small particles; evaluation of new column technology.
Fekete, Szabolcs; Fekete, Jeno; Ganzler, Katalin
2009-01-15
The performance of 5 cm long columns packed with shell particles was compared to totally porous sub-2 microm particles in gradient and isocratic elution separations of hormones (dienogest, finasteride, gestodene, levonorgestrel, estradiol, ethinylestradiol, noretistherone acetate, bicalutamide and tibolone). Peak capacities around 140-150 could be achieved in 25 min with the 5 cm long columns. The Ascentis Express column (packed with 2.7 microm shell particles) showed similar efficiency to sub-2 microm particles under gradient conditions. Applying isocratic separation, the column of 2.7 microm shell particles had a reduced plate height minimum of approximately h=1.6. It was much smaller than obtained with totally porous particles (h approximately = 2.8). The impedance time also proved more favorable with 2.7 microm shell particles than with totally porous particles. The influence of extra-column volume on column efficiency was investigated. The extra-column dispersion of the chromatographic system may cause a shift of the HETP curves.
Novel diffusive gradients in thin films technique to assess labile sulfate in soil.
Hanousek, Ondrej; Mason, Sean; Santner, Jakob; Chowdhury, Md Mobaroqul Ahsan; Berger, Torsten W; Prohaska, Thomas
2016-09-01
A novel diffusive gradients in thin films (DGT) technique for sampling labile soil sulfate was developed, based on a strong basic anion exchange resin (Amberlite IRA-400) for sulfate immobilization on the binding gel. For reducing the sulfate background on the resin gels, photopolymerization was applied instead of ammonium persulfate-induced polymerization. Agarose cross-linked polyacrylamide (APA) hydrogels were used as diffusive layer. The sulfate diffusion coefficient in APA gel was determined as 9.83 × 10(-6) ± 0.35 × 10(-6) cm(2) s(-1) at 25 °C. The accumulated sulfate was eluted in 1 mol L(-1) HNO3 with a recovery of 90.9 ± 1.6 %. The developed method was tested against two standard extraction methods for soil sulfate measurement. The obtained low correlation coefficients indicate that DGT and conventional soil test methods assess differential soil sulfate pools, rendering DGT a potentially important tool for measuring labile soil sulfate.
Stability of drift-cyclotron loss-cone waves in H-mode plasmas
Farmer, W. A.; Morales, G. J.
2016-05-24
The drift-cyclotron loss-cone mode was first studied in mirror machines. In such devices, particles with small pitch angles are not confined, creating a hole in the velocity distribution function that is a source of free energy and leads to micro-instabilities in the cyclotron-range of frequencies. In the edge region of tokamak devices operating under H-mode conditions, ion loss also occurs. In this case, gradient drift carries ions moving opposite to the plasma current preferentially into the divertor, creating a one-sided loss cone. A simple analysis shows that for the quiescent H-mode plasmas in DIII-D the critical gradient for instability ismore » exceeded within 2 cm of the separatrix, and the maximum growth rate at the separatrix is 3×10 7 s -1.« less
Tripolar vortex formation in dense quantum plasma with ion-temperature-gradients
NASA Astrophysics Data System (ADS)
Qamar, Anisa; Ata-ur-Rahman, Mirza, Arshad M.
2012-05-01
We have derived system of nonlinear equations governing the dynamics of low-frequency electrostatic toroidal ion-temperature-gradient mode for dense quantum magnetoplasma. For some specific profiles of the equilibrium density, temperature, and ion velocity gradients, the nonlinear equations admit a stationary solution in the form of a tripolar vortex. These results are relevant to understand nonlinear structure formation in dense quantum plasmas in the presence of equilibrium ion-temperature and density gradients.
MEMS cantilever based magnetic field gradient sensor
NASA Astrophysics Data System (ADS)
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2017-05-01
This paper describes major contributions to a MEMS magnetic field gradient sensor. An H-shaped structure supported by four arms with two circuit paths on the surface is designed for measuring two components of the magnetic flux density and one component of the gradient. The structure is produced from silicon wafers by a dry etching process. The gold leads on the surface carry the alternating current which interacts with the magnetic field component perpendicular to the direction of the current. If the excitation frequency is near to a mechanical resonance, vibrations with an amplitude within the range of 1-103 nm are expected. Both theoretical (simulations and analytic calculations) and experimental analysis have been carried out to optimize the structures for different strength of the magnetic gradient. In the same way the impact of the coupling structure on the resonance frequency and of different operating modes to simultaneously measure two components of the flux density were tested. For measuring the local gradient of the flux density the structure was operated at the first symmetrical and the first anti-symmetrical mode. Depending on the design, flux densities of approximately 2.5 µT and gradients starting from 1 µT mm-1 can be measured.
Kumar, Sunil; Fusaro, Mario; Amoroso, Nicholas; Kirtane, Ajay J; Byrne, Robert A; Williams, David O; Slater, James; Cutlip, Donald E; Feit, Frederick
2012-01-01
Objectives To evaluate the efficacy and safety of currently used drug eluting stents compared with each other and compared with bare metal stents in patients with diabetes. Design Mixed treatment comparison meta-analysis. Data sources and study selection PubMed, Embase, and CENTRAL were searched for randomised clinical trials, until April 2012, of four durable polymer drug eluting stents (sirolimus eluting stents, paclitaxel eluting stents, everolimus eluting stents, and zotarolimus eluting stents) compared with each other or with bare metal stents for the treatment of de novo coronary lesions and enrolling at least 50 patients with diabetes. Primary outcomes Efficacy (target vessel revascularisation) and safety (death, myocardial infarction, stent thrombosis). Results From 42 trials with 22 844 patient years of follow-up, when compared with bare metal stents (reference rate ratio 1) all of the currently used drug eluting stents were associated with a significant reduction in target vessel revascularisation (37% to 69%), though the efficacy varied with the type of stent (everolimus eluting stents∼sirolimus eluting stents>paclitaxel eluting stents∼zotarolimus eluting stent>bare metal stents). There was about an 87% probability that everolimus eluting stents were the most efficacious compared with all others, though there were limited usable data for the zotarolimus eluting Resolute stent in patients with diabetes. Moreover, there was no increased risk of any safety outcome (including very late stent thrombosis) with any drug eluting stents compared with bare metal stents. There was about a 62% probability that the everolimus eluting stent was the safest stent for the outcome of “any” stent thrombosis. Conclusions Among patients with diabetes treated with coronary stents all currently available drug eluting stents were efficacious without compromising safety compared with bare metal stents. There were relative differences among the drug eluting stents, such that the everolimus eluting stent was the most efficacious and safe. PMID:22885395
Wang, Min; Guo, Dehua; Ding, Zhuoping; Yao, Jinting; Li, Fengge; Su, Min
2012-07-01
A rapid qualitative and quantitative analytical method was developed for the simultaneous determination of 14 heterocyclic aromatic amines (HAAs) in wine by liquid chromatography-ion trap-time of flight tandem mass spectrometry (LC-IT-TOF MS). HAAs were extracted from the samples by ethyl acetate under alkaline condition. The quantitation was carried out using internal standard method. The separation of HAAs was carried out based on Phenomenex Kinetex C18 100A column (100 mm x 2.1 mm, 2.6 microm), with a gradient elution of acetonitrile and 30 mmol/L ammonium formate at a flow rate of 0.4 mL/min. The analytes were detected under positive-ion electrospray ionization mode. The results showed that the linear ranges of the 14 HAAs were 1-500 microg/L with limits of detection (signal/noise = 3) of 0.33-1.77 microg/L. The average recoveries of all the compounds spiked in wine samples at three levels of 10, 50, 100 microg/L were in the ranges of 71.6%-96.4%, 72.9%-101.9%, 74.5%-103.3%, with the corresponding relative standard deviations (RSDs, n = 6) of 2.9%-7.9%, 1.7%-5.3%, 1.8%-4.8%, respectively. The established method is simple, rapid, accurate, and has wide linear range and high sensitivity. It can be applied to the simultaneous analysis of the HAAs in wine.
Wang, Hanxue; Yang, Tao; Cheng, Xuemei; Kwong, Sukfan; Liu, Chenghai; An, Rui; Li, Guowen; Wang, Xinhong; Wang, Changhong
2018-03-01
Usnea longissima Ach. (Usnea) is used in pharmaceuticals, food and cosmetics. Evernic acid (EA), barbatic acid (BA), diffractaic acid (DA) and usnic acid (UA) are the most typical ingredients in U. longissima and exert a wide variety of biological functions. The study aimed to develop a sensitive method for simultaneous analysis of EA, BA, DA and UA in rat plasma and was applied to pharmacokinetic studies after consumption of UA and ethanol extract from U. longissima (UE). The samples were separated on a BEH C 18 column by gradient elution with 0.5% formic acid in water and in methanol. The relative molecular masses of analytes were obtained in full-scan range from 50.0 to 750.0 m/z under negative ionization mode by UPLC-Q-Exactive Orbitrap MS. All validation parameters, such as lower limit of quantitation, linearity, specificity, precision, accuracy, extraction recovery, matrix effect and stability, were within acceptable ranges and the method was appropriate for biological specimen analysis. The pharmacokinetic results indicated that the absolute bioavailabilities of UA after oral administration of UA and UE reached 69.2 and 146.9%, respectively. Compared with UA in UE, the relative bioavailability of DA, BA and EA reached 103.7, 10.4 and 0.7% after oral administration of UE. Copyright © 2017 John Wiley & Sons, Ltd.
De Orsi, Daniela; Pellegrini, Manuela; Pichini, Simona; Mattioli, Donatella; Marchei, Emilia; Gagliardi, Luigi
2008-11-04
A simple high-performance liquid chromatography (HPLC) method with ultraviolet diode array (UV-DAD) and electrospray ionisation mass spectrometry (ESI-MS) detection has been developed for the determination of minoxidil, progesterone, estrone, spironolactone, canrenone, hydrocortisone and triamcinolone acetonide in cosmetic products. The presence of these substances in commercial cosmetic samples is prohibited. The compounds were separated by reversed phase chromatography with water (0.1% trifluoroacetic acid) and acetonitrile gradient elution and detected by UV-DAD at 230, 254 and 280 nm and by ESI-MS positive ionisation mode. Benzoic acid was used as internal standard. Linearity was studied with UV-DAD detection from 1.50 to 1,000 microg/ml or mug/g range, depending on the different compounds and type of cosmetic preparation and with ESI-MS in the 50-1,000 ng/ml or ng/g range. Good determination coefficients (r(2)>or=0.99) were found in both UV and ESI-MS. At three concentrations spanning the linear dynamic ranges of both UV-DAD and ESI-MS assay, mean recoveries were always higher than 90% for the different analytes. This method was successfully applied to the analysis of substances under investigations illegally added in cosmetic cream and lotions, sold on internet web sites to prevent hair loss and other hormone-dependent skin diseases, like acne and hirsutism.