Science.gov

Sample records for gradient hplc separation

  1. Gradient HPLC separation of dehydroepiandrosterone (DHEA) from its metabolites and biological congeners: role of tetrahydrofuran in the chromatographic mechanism.

    PubMed

    Gergely, András; Horváth, Péter; Szász, György; Veress, Gábor

    2009-08-01

    A three-step gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the separation of dehydroepiandrosterone (DHEA), its sulfate ester (DHEA-S), its three C7-oxidized metabolites (7alphaOH-DHEA, 7betaOH-DHEA, 7-keto-DHEA), and its biosynthetic congeners (androstenedione, testosterone, estradiol, pregnenolone). This new method allows the quantitative characterization of DHEA metabolism and biosynthetic transformation under given physiological, pathological, or therapeutically influenced circumstances. Tetrahydrofuran probably acts as a proton acceptor coadsorbent, while isopropanol behaves as a proton donor during the separation of testosterone, estradiol, and the stereoisomers of 7-OH-DHEA.

  2. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  3. Gradient Scouting in Reversed-Phase HPLC Revisited

    ERIC Educational Resources Information Center

    Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.

    2011-01-01

    Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…

  4. Optimizing Chromatographic Separation: An Experiment Using an HPLC Simulator

    ERIC Educational Resources Information Center

    Shalliker, R. A.; Kayillo, S.; Dennis, G. R.

    2008-01-01

    Optimization of a chromatographic separation within the time constraints of a laboratory session is practically impossible. However, by employing a HPLC simulator, experiments can be designed that allow students to develop an appreciation of the complexities involved in optimization procedures. In the present exercise, a HPLC simulator from "JCE…

  5. New HPLC method for separation of blood plasma phospholipids.

    PubMed

    Suchocka, Zofia; Gronostajska, Dorota; Suchocki, Piotr; Pachecka, Jan

    2003-08-08

    The aim of the present work was to develop a new HPLC method for separation of phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC) from small-volume samples of blood plasma. Human plasma glycerophospholipids were separated by liquid-liquid extraction method followed by solid phase extraction (SPE) on aminopropyl columns. Reversed-phase Sephasil C8 column (10 cm x 2.1 mm, I.D. 5 microm) and micropreparative chromatograph "SMART" were used for separation of PC, PE, LPC and PI from SPE phospholipids extract. Binary-step gradient of eluent A: acetonitrile-methanol (130:5, v/v) and B (0.01% trifluoroacetic acid) provided good, fast and reproducible resolution of investigated phospholipids classes in 12 min at 30 degrees C. Eluted phospholipids were detected at wavelengths lambda=235 and 254 nm. This method made it possible to determine quantitatively: 5 microg ml(-1) PC, 1 microg ml(-1) LPC, 4 microg ml(-1) PE and 3 microg ml(-1) PI in blood plasma samples.

  6. Separation of kafirins on surface porous RP-HPLC columns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface porous HPLC columns were investigated for the separation of kafarins, storage proteins of grain sorghum. Kafirins were successfully separated using C3, C8 and C18 surface porous stationary phases in less than 17 min. Separations using a monolithic C18 stationary phase were also developed ...

  7. Predicting retention time shifts associated with variation of the gradient slope in peptide RP-HPLC.

    PubMed

    Spicer, Vic; Grigoryan, Marine; Gotfrid, Alexander; Standing, Kenneth G; Krokhin, Oleg V

    2010-12-01

    We have developed a sequence-specific model for predicting slopes (S) in the fundamental equation of linear solvent strength theory for the reversed-phase HPLC separation of tryptic peptides detected in a typical bottom-up-proteomics experiment. These slopes control the variation in the separation selectivity observed when the physical parameters of chromatographic separation, such as gradient slope, flow rate, and column size are altered. For example, with the use of an arbitrarily chosen set of tryptic peptides with a 4-times difference in the gradient slope between two experiments, the R(2)-value of correlation between the observed retention times of identical species decreases to ~0.993-0.996 (compared to a theoretical value of ~1.00). The observed retention time shifts associated with variations of the gradient slope can be predicted a priori using the approach described here. The proposed model is based on our findings for a set of synthetic species (Vu, H.; Spicer, V.; Gotfrid, A.; Krokhin, O. V. J. Chromatogr., A, 2010, 1217, 489-497), which postulate that slopes S can be predicted taking into account simultaneously peptide length, charge, and hydrophobicity. Here we extend this approach using an extensive set of real tryptic peptides. We developed the procedure to accurately measure S-values in nano-RP HPLC MS experiments and introduced sequence-specific corrections for a more accurate prediction of the slopes S. A correlation of ~0.95 R(2)-value between the predicted and experimental S-values was demonstrated. Predicting S-values and calculating the expected retention time shifts when the physical parameters of separation like gradient slope are altered will facilitate a more accurate application of peptide retention prediction protocols, aid in the transfer of scheduled MRM (SRM) procedures between LC systems, and increase the efficiency of interlaboratory data collection and comparison.

  8. Recent developments in the HPLC separation of phenolic compounds.

    PubMed

    Kalili, Kathithileni M; de Villiers, André

    2011-04-01

    Phenolic compounds represent a class of highly complex naturally occurring molecules that possess a range of beneficial health properties. As a result, considerable attention has been devoted to the analysis of phenolics in a variety of samples. HPLC is the workhorse method for phenolic separation. However, conventional HPLC methods provide insufficient resolving power when faced with the complexity of real-world phenolic fractions. This limitation has been traditionally circumvented by extensive sample fractionation, multiple analysis methods and/or selective detection strategies. On the other hand, there is an increasing demand for improved throughput and resolving power from the chromatographic methods used for phenolic analyses. Fortunately, during the last decade, a number of important technological advances in LC have demonstrated significant gains in terms of both speed and resolution. These include ultra high-pressure liquid chromatography (UHPLC), high-temperature liquid chromatography (HTLC), multi-dimensional separations as well as various new stationary phase chemistries and morphologies. In recent years, these technologies have also found increasing application for phenolic analysis. This review seeks to provide an updated overview of the application of recent advances in HPLC to phenolic separation, with the emphasis on how these methodologies can contribute to improve performance in HPLC analysis of phenolics.

  9. Gradient HPLC-DAD determination of paracetamol, phenylephrine hydrochloride, cetirizine in tablet formulation.

    PubMed

    Dewani, A P; Shelke, P G; Bakal, R L; Jaybhaye, S S; Chandewar, A V; Patra, S

    2014-05-01

    Present work describes the development and validation of a simple and reliable high-performance liquid chromatography-diode array detection (HPLC-DAD) procedure for the analysis of phenylephrine hydrochloride (PHE), paracetamol (PAR) and cetirizine dihydrochloride (CET), in pharmaceutical mixture. The method was applied successfully on tablet dosage form. Effective chromatographic separation of PHE, PAR and CET was achieved using a Kinetex-C18 (4.6, 150 mm, 5 mm) column with gradient elution of the mobile phase composed of 10 mM phosphate buffer (pH 3.3) and acetonitrile. The elution was a 3 step gradient elution program step-1 started initially with 2% (by volume) acetonitrile and 98% phosphate buffer (pH 3.3) for first 2 min. In step-2 acetonitrile concentration changed linearly to 20% upto 12 min the analysis was concluded by step-3 changing acetonitrile to 2% upto 20 min. The reliability and analytical performance of the proposed HPLC procedure were statistically validated with respect to linearity, ranges, precision, accuracy, selectivity and robustness. Calibration curves were linear in the ranges 5-15, 250-750 and 2.5-7.5 μg/ml for PHE, PAR and CET, with correlation coefficients >0.9996. The validated HPLC method was applied to a pharmaceutical mixture of a marketed preparation tablet in which the analytes were successfully quantified with good recovery values with no interfering peaks from the excipents.

  10. Isomeric separation of methamphetamine by HPLC chiral column.

    PubMed

    Lekskulchai, V

    2001-11-01

    Methamphetamine and its active metabolite, amphetamine, are optically active compounds which, based upon synthetic routes, can be found in two forms; pure d-form and racemic mixture. Analysis of their isomers can help to identify which precursor is currently spreading widely in a given region. Since there are many drugs that can be metabolized to amphetamine/methamphetamine, isomeric separation can be a useful tool for evaluation of these drugs, as well. Indirect method by using N-trifluoroacetyl-1-prolyl chloride (1-TPC) was found to have limited accuracy due to the contribution effect. In this presentation a direct method using HPLC Chirex chiral column 3022 was studied. Although the method gave no base-line separation of two different isomer peaks, it gave good sensitivity, reliability, and linearity. No contribution effect was found in the method presented. It also gave excellent correlation with the 1-TPC method.

  11. PLETHORA gradient formation mechanism separates auxin responses

    PubMed Central

    Siligato, Riccardo; Smetana, Ondřej; Díaz-Triviño, Sara; Salojärvi, Jarkko; Wachsman, Guy; Prasad, Kalika; Heidstra, Renze; Scheres, Ben

    2015-01-01

    During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone1. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip2-12. In addition, auxin is also pivotal for tropic responses13,14. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation. PMID:25156253

  12. Separation and quantitative analysis of alkyl sulfate ethoxymers by HPLC.

    PubMed

    Morvan, Julien; Hubert-Roux, Marie; Agasse, Valérie; Cardinael, Pascal; Barbot, Florence; Decock, Gautier; Bouillon, Jean-Philippe

    2008-01-01

    Separation of alkyl sulfate ethoxymers is investigated on various high-performance liquid chromatography (HPLC) stationary phases: Acclaim C18 Surfactant, Surfactant C8, and Hypercarb. For a fixed alkyl chain length, ethoxymers are eluted in the order of increasing number of ethoxylated units on Acclaim C18 Surfactant, whereas a reversed elution order is observed on Surfactant C8 and Hypercarb. Moreover, on an Acclaim C18 Surfactant column, non-ethoxylated compounds are eluted in their ethoxymers distribution and the use of sodium acetate additive in mobile phase leads to a co-elution of ethoxymers. HPLC stationary phases dedicated to surfactants analysis are evaluated by means of the Tanaka test. Surfactant C8 presents a great silanol activity whereas Acclaim C18 Surfactant shows a high steric selectivity. For alkyl sulfates, linearity of the calibration curve and limits of detection and quantitation are evaluated. The amount of sodium laureth sulfate raw material found in commercial body product is in agreement with the specification of the manufacturer.

  13. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  14. Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method

    PubMed Central

    Strati, Irini F.; Sinanoglou, Vassilia J.; Kora, Lintita; Miniadis-Meimaroglou, Sofia; Oreopoulou, Vassiliki

    2012-01-01

    Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose) egg yolks through the use of a modified gradient elution HPLC method with a C30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis-isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All-trans lycopene predominated in tomato waste, followed by all-trans-β-carotene, 13-cis-lutein and all-trans lutein, while minor amounts of 9-cis-lutein, 13-cis-β-carotene and 9-cis-β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all-trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all-trans lutein and all-trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all-trans-lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers) were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis-isomers, originating from a wide range of matrices. PMID:28239091

  15. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    SciTech Connect

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-15

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Graphical abstract: Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials according to their size of thickness difference. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing “reaction zones” during sedimentation of the colloids. - Highlights: • Density gradient ultracentrifugation was applied on size separation of 2D material. • Isopycnic separation was applied on separation of low density materials. • Rate-zonal separation was applied on separation of large density materials. • Size

  16. Gradient HPLC analysis of raloxifene hydrochloride and its application to drug quality control.

    PubMed

    Basavaiah, Kanakapura; Anil Kumar, Urdigere Rangachar; Tharpa, Kalsang

    2008-09-01

    A rapid, sensitive and selective method for the determination of raloxifene hydrochloride (RLX) in pure drug and in tablets was developed using gradient high performance liquid chromatography (HPLC). The devised method involved separation of RLX on a reversed phase Hypersil ODS column and determination with UV detection at 284 nm. The standard curve was linear (R = 0.999) over the concentration range of 50-600 microg mL-1 with a detection limit of 0.04 microg mL-1 and a quantification limit of 0.16 microg mL-1. Intra-day and inter-day precision and accuracy of the method were established according to the current ICH guidelines. Intra-day RSD values at three QC levels (250, 450 and 550 microg mL-1) were 0.2-0.5%, based on the peak area. The intra-day relative error (er) was between 0.2 and 0.5%. The developed method was successfully applied to the determination of RLX in tablets and the results were statistically compared with those obtained by a literature method. Accuracy, evaluated by means of the spike recovery method, was the excellent with percent recovery in the range 97.7-103.2 with precision in the range 1.6-2.2%. No interference was observed from the co-formulated substances. The method was economical in terms of the time taken and the amount of solvent used.

  17. Development of high-gradient and open-gradient magnetic separation

    SciTech Connect

    Hise, E C

    1981-01-01

    This paper was prepared: to review the accomplishments in both high-gradient magnetic separation (HGMS) and open-gradient magnetic separation (OGMS) by the Oak Ridge National Laboratory (ORNL) group during the past three years; to show, through the medium of motion pictures, the operation of the various separation methods and devices used and developed; to show qualitative results of the separation performed; and to make available, to those interested, detailed reports of the experimental procedures and the resulting data. The qualitative separation of pyritic sulfur and ash forming minerals from fine coal by high gradient magnetic separation has been demonstrated at feed rates up to one ton per hour, and in a machine that is commercially produced in sizes for feed rates up to several hundred tons per hour. The quantitative separation of pyritic sulfur and ash forming minerals from fine coal by free fall open gradient magnetic separation has been demonstrated at a laboratory scale and at 300 kg per hour in a solenoidal magnet configuration. A magnet modeling analysis has shown that an optimum magnet can be designed with practical physical constraints which can generate separating forces two to three times those of the existing solenoidal configuration and with a large processing capacity. The analytical predictions of the behavior of particles traversing these separating forces have been experimentally confirmed within 15% in existing magnets.

  18. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    SciTech Connect

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; Phelps, Tommy; Doktycz, Mitchel John

    2015-08-28

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradient sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.

  19. Microchannel protein separation by electric field gradient focusing.

    PubMed

    Petsev, Dimiter N; Lopez, Gabriel P; Ivory, Cornelius F; Sibbett, Scott S

    2005-06-01

    A microchannel device is presented which separates and focuses charged proteins based on electric field gradient focusing. Separation is achieved by setting a constant electroosmotic flow velocity against step changes in electrophoretic velocity. Where these two velocities are balanced for a given analyte, the analyte focuses at that point because it is driven to it from all points within the channel. We demonstrate the separation and focusing of a binary mixture of bovine serum albumin and phycoerythrin. The device is constructed of intersecting microchannels in poly(dimethylsiloxane)(PDMS) inlaid with hollow dialysis fibers. The device uses no exotic chemicals such as antibodies or synthetic ampholytes, but operates instead by purely physical means involving the independent manipulation of electrophoretic and electroosmotic velocities. One important difference between this apparatus and most other devices designed for field-gradient focusing is the injection of current at discrete intersections in the channel rather than continuously along the length of a membrane-bound separation channel.

  20. Separation of colloidal two dimensional materials by density gradient ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Kuang, Yun; Song, Sha; Huang, Jinyang; Sun, Xiaoming

    2015-04-01

    Two-dimensional (2D) materials have been made through various approaches but obtaining monodispersed simply by synthesis optimization gained little success, which highlighted the need for introducing nanoseparation methods. Density gradient ultracentrifugation method has emerged as a versatile and scalable method for sorting colloidal 2D nanomaterials. Isopycnic separation was applied on thickness-dependent separation of graphene nanosheets. And rate-zonal separation, as a more versatile separation method, demonstrated its capability in sorting nanosheets of chemically modified single layered graphene, layered double hydroxide, and even metallic Ag. Establishing such density gradient ultracentrifugation method not only achieves monodispersed nanosheets and provides new opportunities for investigation on size dependent properties of 2D materials, but also makes the surface modification possible by introducing "reaction zones" during sedimentation of the colloids.

  1. Size-separation of silver nanoparticles using sucrose gradient centrifugation

    DOE PAGES

    Suresh, Anil K.; Pelletier, Dale A.; Moon, Ji Won; ...

    2015-08-28

    Size and shape distributions of nanoparticles can drastically contribute to the overall properties of nanoparticles, thereby influencing their interaction with different chemotherapeutic molecules, biological organisms and or materials and cell types. Therefore, to exploit the proper use of nanoparticles for various biomedical and biosensor applications, it is important to obtain well-separated monodispersed nanoparticles. However, gaining precise control over the morphological characteristics of nanoparticles during their synthesis is often a challenging task. Consequently, post-synthesis separation of nanoparticles is necessary. In the present study, we demonstrate the successful one-pot post-synthesis separation of anisotropic silver nanoparticles to near modispersities using sucrose density gradientmore » sedimentation. The separation of the nanoparticles was evidenced based on optical confirmation, and spectrophotometric and transmission electron microscopy measurements. Our results clearly demonstrate the facile separation of anisotropic silver nanoparticles using sucrose density gradient sedimentation and can enable the use of nanoparticles for various biomedical applications.« less

  2. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  3. Use of high gradient magnetic separation for actinide application

    SciTech Connect

    Avens, L.R.; Worl, L.A.; Padilla, D.D.

    1996-08-01

    Decontamination of materials such as soils or waste water that contain radioactive isotopes, heavy metals, or hazardous components is a subject of great interest. Magnetic separation is a physical separation process that segregates materials on the basis of magnetic susceptibility. Because the process relies on physical properties, separations can be achieved while producing a minimum of secondary waste. Most traditional physical separation processes effectively treat particles larger than 70 microns. In many situations, the radioactive contaminants are found concentrated in the fine particle size fraction of less than 20 microns. For effective decontamination of the fine particle size fraction most current operations resort to chemical dissolution methods for treatment. High gradient magnetic separation (HGMS) is able to effectively treat particles from 90 to {approximately}0.1 micron in diameter. The technology is currently used on the 60 ton per hour scale in the kaolin clay industry. When the field gradient is of sufficiently high intensity, paramagnetic particles can be physically captured and separated from extraneous nonmagnetic material. Because all actinide compounds are paramagnetic, magnetic separation of actinide containing mixtures is feasible. The advent of reliable superconducting magnets also makes magnetic separation of weakly paramagnetic species attractive. HGMS work at Los Alamos National Laboratory (LANL) is being developed for soil remediation, waste water treatment and treatment of actinide chemical processing residues. LANL and Lockheed Environmental Systems and Technologies Company (LESAT) have worked on a co-operative research and development agreement (CRADA) to develop HGMS for radioactive soil decontamination. The program is designed to transfer HGMS from the laboratory and other industries for the commercial treatment of radioactive contaminated materials. 9 refs., 2 figs., 2 tabs.

  4. Systematic Approach to Links between Separations in MEKC and Reversed-Phase HPLC.

    PubMed

    Ferguson, P D; Goodall, D M; Loran, J S

    1998-10-01

    Retention factors and partition coefficients in micellar electrokinetic chromatography (MEKC) and reversed-phase high-performance liquid chromatography (RP-HPLC) are compared for a series of alkylbenzenes and substituted phenols. In both techniques, separations are based on partitioning between an aqueous phase and an alkyl phase. In MEKC, this was an SDS (C12) micellar pseudostationary phase, and in RP-HPLC an ODS 2 (C18) stationary phase. A nonporous silica (Micra 1.5-μm NPS), which has a low carbon loading, was used rather than a standard porous silica to avoid excessive retention in HPLC and to allow identical mobile phase conditions to be used in both separation modes. The average ratio of analyte retention factors, k(MEKC):k(HPLC), was found to be equal to the ratio β(MEKC):β(HPLC), where β is the phase ratio. This implies that partition coefficients, P, are similar in both MEKC and HPLC, since P = k/β, and that the dominant contribution to stability within each alkyl phase arises from hydrophobic interactions which are common to both separation media. Since partition coefficients are similar in MEKC and HPLC under aqueous buffer conditions, information on retention in one technique may be transferred to the other, provided that the phase ratios are known. In MEKC and HPLC, linear correlations of log octanol-water partition coefficients, K(ow), vs log k for the test compounds were transformed, knowing the phase ratio, to give log P values as a function of log K(ow). This allows quantitative links between MEKC and HPLC to be extended to include octanol-water partitioning. The addition of acetonitrile as an organic modifier over the concentration range 0-20% (v/v) was found to have a greater effect on k in HPLC than in MEKC. This could be a result of a decrease in the MEKC phase ratio due to an increase in the critical micelle concentration.

  5. High gradient magnetic field microstructures for magnetophoretic cell separation.

    PubMed

    Abdel Fattah, Abdel Rahman; Ghosh, Suvojit; Puri, Ishwar K

    2016-08-01

    Microfluidics has advanced magnetic blood fractionation by making integrated miniature devices possible. A ferromagnetic microstructure array that is integrated with a microfluidic channel rearranges an applied magnetic field to create a high gradient magnetic field (HGMF). By leveraging the differential magnetic susceptibilities of cell types contained in a host medium, such as paramagnetic red blood cells (RBCs) and diamagnetic white blood cells (WBCs), the resulting HGMF can be used to continuously separate them without attaching additional labels, such as magnetic beads, to them. We describe the effect of these ferromagnetic microstructure geometries have on the blood separation efficacy by numerically simulating the influence of microstructure height and pitch on the HGMF characteristics and resulting RBC separation. Visualizations of RBC trajectories provide insight into how arrays can be optimized to best separate these cells from a host fluid. Periodic microstructures are shown to moderate the applied field due to magnetic interference between the adjacent teeth of an array. Since continuous microstructures do not similarly weaken the resultant HGMF, they facilitate significantly higher RBC separation. Nevertheless, periodic arrays are more appropriate for relatively deep microchannels since, unlike continuous microstructures, their separation effectiveness is independent of depth. The results are relevant to the design of microfluidic devices that leverage HGMFs to fractionate blood by separating RBCs and WBCs.

  6. A NEW HPLC METHOD FOR SEPARATION OF PHYTOPLANKTON PIGMENTS IN NATURAL SAMPLES

    EPA Science Inventory

    A new high-performance liquid chromatographic (HPLC) method was developed to analyze, in a single run, most polar and non-polar chlorophylls and carotenoids from marine phytoplankton. The method is based on a reverse-phase amide C16 (RP-amide C16) column and an elution gradient o...

  7. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS.

    PubMed

    Tasioula-Margari, Maria; Tsabolatidou, Eleftheria

    2015-08-13

    The aim of this study was to evaluate the recovery of individual phenolic compounds extracted from virgin olive oil (VOO), from different Greek olive varieties. Sufficient recoveries (90%) of all individual phenolic compounds were obtained using methanol as an extraction solvent, acetonitrile for residue solubilization, and two washing steps with hexane. Moreover, in order to elucidate structural characteristics of phenolic compounds in VOO, high performance liquid chromatography with a diode array detector (HPLC-DAD) at 280 and 340 nm and HPLC coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) in the negative-ion mode were performed. The most abundant phenolic compounds were oleuropein derivatives with m/z 319 and 377 and ligstroside derivatives with m/z 303, 361. Lignans, such as 1-acetoxypinoresinol and pinoresinol were also present in substantial quantities in the phenolic fraction. However, pinoresinol was co-eluted with dialdehydic form of ligstroside aglycone (DAFLA) and it was not possible to be quantified separately. The phenolic extracts, obtained from different VOO samples, yielded similar HPLC profiles. Differences, however, were observed in the last part of the chromatogram, corresponding to isomers of the aldehydic form of ligstroside aglycone. Oxidized phenolic products, originating from secoiridoids, were also detected.

  8. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS

    PubMed Central

    Tasioula-Margari, Maria; Tsabolatidou, Eleftheria

    2015-01-01

    The aim of this study was to evaluate the recovery of individual phenolic compounds extracted from virgin olive oil (VOO), from different Greek olive varieties. Sufficient recoveries (90%) of all individual phenolic compounds were obtained using methanol as an extraction solvent, acetonitrile for residue solubilization, and two washing steps with hexane. Moreover, in order to elucidate structural characteristics of phenolic compounds in VOO, high performance liquid chromatography with a diode array detector (HPLC-DAD) at 280 and 340 nm and HPLC coupled to electrospray ionization mass spectrometry (HPLC-ESI-MS) in the negative-ion mode were performed. The most abundant phenolic compounds were oleuropein derivatives with m/z 319 and 377 and ligstroside derivatives with m/z 303, 361. Lignans, such as 1-acetoxypinoresinol and pinoresinol were also present in substantial quantities in the phenolic fraction. However, pinoresinol was co-eluted with dialdehydic form of ligstroside aglycone (DAFLA) and it was not possible to be quantified separately. The phenolic extracts, obtained from different VOO samples, yielded similar HPLC profiles. Differences, however, were observed in the last part of the chromatogram, corresponding to isomers of the aldehydic form of ligstroside aglycone. Oxidized phenolic products, originating from secoiridoids, were also detected. PMID:26783843

  9. Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation.

    PubMed

    Kim, Jin-Young; Cho, Soong-Won; Kang, Dong-Ku; Edel, Joshua B; Chang, Soo-Ik; deMello, Andrew J; O'Hare, Danny

    2012-09-21

    We demonstrate the integration of a droplet-based microfluidic device with high performance liquid chromatography (HPLC) in a monolithic format. Sequential operations of separation, compartmentalisation and concentration counter were conducted on a monolithic chip. This describes the use of droplet-based microfluidics for the preservation of chromatographic separations, and its potential application as a high frequency fraction collector.

  10. SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC

    EPA Science Inventory

    Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...

  11. Modeling high gradient magnetic separation from biological fluids.

    SciTech Connect

    Bockenfeld, D.; Chen, H.; Rempfer, D.; Kaminski, M. D.; Rosengart, A. J.; Chemical Engineering; Illinois Inst. of Tech.; Univ. of Chicago, Pritzker School of Medicine

    2006-01-01

    A proposed portable magnetic separator consists of an array of biocompatible capillary tubing and magnetizable wires immersed in an externally applied homogeneous magnetic field. While subject to the homogeneous magnetic field, the wires create high magnetic field gradients, which aid in the collection of blood-borne magnetic nanospheres from blood flow. In this study, a 3-D numerical model was created using COMSOL Multiphysics 3.2 software to determine the configuration of the wire-tubing array from two possible configurations, one being an array with rows alternating between wires and tubing, and the other being an array where wire and tubing alternate in two directions. The results demonstrated that the second configuration would actually capture more of the magnetic spheres. Experimental data obtained by our group support this numerical result.

  12. Medical protein separation system using high gradient magnetic separation by superconducting magnet

    NASA Astrophysics Data System (ADS)

    Kamioka, Y.; Agatsuma, K.; Kajikawa, K.; Ueda, H.; Furuse, M.; Fuchino, S.; Iitsuka, T.; Nakamura, S.

    2014-01-01

    A high gradient magnetic separation system for medical protein using affinity magnetic nano-beads has been developed. Medical protein such as monoclonal antibody or immunoglobulin is an important substance as a medicine for cancer etc. However; the separation system of these medical protein has very low separation rate and the cost of product is extremely high. The developed system shows very high separation efficiency and can achieve low cost by large production rate compared to the system now using in this field. The system consists of a 3T superconducting magnet cooled by a cryo-cooler, a filter made of fine magnetic metal wires of about 30μm diameter and a demagnetization circuit and a liquid circulation pump for solvent containing medical protein. Affinity magnetic nano-beads is covered with the medical protein after agitation of solvent containing the protein and nano-beads, then the solvent flows through the system and the beads are trapped in the filters by high gradient magnetic field. The beads are released and flow out of the system by the AC demagnetization of the filters using LC resonance circuits after discharge of the magnet. The test results shows 97.8% of the magnetic nano-beads in pure water were captured and 94.1% of total beads were collected.

  13. Method to predict the bandwidth of elution profile under the linear gradient elution in reversed-phase HPLC.

    PubMed

    Lee, Ju Weon; Row, Kyung Ho

    2009-01-01

    Solute migration in a chromatographic column is an important consideration when designing batch or continuous chromatographic separation processes. Most design methods for the chromatographic processes are based on the equilibrium theory which concerns only the migration velocity of the solute. However, in real cases, it is important to predict the zone spreading which occurs by axial dispersion and mass transfer resistance. To predict the actual solute profiles in the column or effluent stream, numerical methods to solve nonlinear partial differential equations have been used. However, these methods involve much time and expense. In this work, two different rate factors are considered to predict the characteristics of the solute profiles. The first is solute migration velocity and the second is the zone spreading rate. The zone spreading rate can be estimated by the apparent axial dispersion coefficient which is obtained from the height of the equivalent theoretical plate in particular. Four benzene derivatives (benzene, toluene, p-xylene, and acetophenone) were used as model solutes, and two mobile phase systems, water/methanol and water/ACN, were used in RP-HPLC. The bandwidths and retention times of the solutes were predicted under several linear gradient conditions. The predicted and experimental bandwidths and retention times showed good agreement.

  14. Identification and quantification of phenolic compounds in grapes by HPLC-PDA-ESI-MS on a semimicro separation scale.

    PubMed

    Nicoletti, Isabella; Bello, Cristiano; De Rossi, Antonella; Corradini, Danilo

    2008-10-08

    Reversed phase high performance liquid chromatography (RP-HPLC) on a semimicro separation scale was employed to develop a straightforward method for the simultaneous separation, identification, and quantification of phenolic compounds occurring in whole berries of Vitis vinifera, which comprise phenolic acids, flavonols, catechins, stilbenes, and anthocyanins. A C-18 narrow bore column of 150 x 2.0 mm I.D. and a semimicro photodiode array detector (PDA) cell of 2.5 microL, in conjunction with a mass spectrometry detector equipped with an electrospray ionization source (ESI-MS) to confirm peak identification, were employed. The C-18 narrow bore column was eluted by a multisegment gradient of increasing concentration of acetonitrile in water-formic acid solution that was optimized on the basis of the results of a study carried out to evaluate the influence of mobile phase composition and gradient shape on separation performance and detection sensitivity by ESI-MS. The identification of individual phenolic compounds was performed on the basis of their retention times and both UV-visible and mass spectra, acquired by a mass spectrometer (MS) equipped with an electrospray ionization (ESI) source, employed in conjunction with the PDA detector. Libraries comprising retention times, UV-visible, and mass spectra for major phenolic compounds expected in grape berries were made by subjecting solutions of each phenolic standard to the optimized RP-HPLC method. Quantification of individual compounds was performed by the external standard method using a six point regression graph of the UV-visible absorption data collected at the wavelength of maximum absorbance of each analyte determined by the PDA spectra. The RP-HPLC method was validated in terms of linearity of calibration graphs, limits of detection, limits of quantification, repeatability, and accuracy, which was evaluated by a recovery study. The developed method was successfully applied to identify the phenolic compounds

  15. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS.

    PubMed

    Chandra, A; Rana, J; Li, Y

    2001-08-01

    A method has been established and validated for identification and quantification of individual, as well as total, anthocyanins by HPLC and LC/ES-MS in botanical raw materials used in the herbal supplement industry. The anthocyanins were separated and identified on the basis of their respective M(+) (cation) using LC/ES-MS. Separated anthocyanins were individually calculated against one commercially available anthocyanin external standard (cyanidin-3-glucoside chloride) and expressed as its equivalents. Amounts of each anthocyanin calculated as external standard equivalent were then multiplied by a molecular-weight correction factor to afford their specific quantities. Experimental procedures and use of a molecular-weight correction factors are substantiated and validated using Balaton tart cherry and elderberry as templates. Cyanidin-3-glucoside chloride has been widely used in the botanical industry to calculate total anthocyanins. In our studies on tart cherry and elderberry, its use as external standard followed by use of molecular-weight correction factors should provide relatively accurate results for total anthocyanins, because of the presence of cyanidin as their major anthocyanidin backbone. The method proposed here is simple and has a direct sample preparation procedure without any solid-phase extraction. It enables selection and use of commercially available anthocyanins as external standards for quantification of specific anthocyanins in the sample matrix irrespective of their commercial availability as analytical standards. It can be used as a template and applied for similar quantification in several anthocyanin-containing raw materials for routine quality control procedures, thus providing consistency in analytical testing of botanical raw materials used for manufacturing efficacious and true-to-the-label nutritional supplements.

  16. Separation of mAbs molecular variants by analytical hydrophobic interaction chromatography HPLC: overview and applications.

    PubMed

    Haverick, Mark; Mengisen, Selina; Shameem, Mohammed; Ambrogelly, Alexandre

    2014-01-01

    Hydrophobic interaction chromatography-high performance liquid chromatography (HIC-HPLC) is a powerful analytical method used for the separation of molecular variants of therapeutic proteins. The method has been employed for monitoring various post-translational modifications, including proteolytic fragments and domain misfolding in etanercept (Enbrel®); tryptophan oxidation, aspartic acid isomerization, the formation of cyclic imide, and α amidated carboxy terminus in recombinant therapeutic monoclonal antibodies; and carboxy terminal heterogeneity and serine fucosylation in Fc and Fab fragments. HIC-HPLC is also a powerful analytical technique for the analysis of antibody-drug conjugates. Most current analytical columns, methods, and applications are described, and critical method parameters and suitability for operation in regulated environment are discussed, in this review.

  17. Metrics of separation performance in chromatography: Part 3: General separation performance of linear solvent strength gradient liquid chromatography.

    PubMed

    Blumberg, Leonid M; Desmet, Gert

    2015-09-25

    The separation performance metrics defined in Part 1 of this series are applied to the evaluation of general separation performance of linear solvent strength (LSS) gradient LC. Among the evaluated metrics was the peak capacity of an arbitrary segment of a chromatogram. Also evaluated were the peak width, the separability of two solutes, the utilization of separability, and the speed of analysis-all at an arbitrary point of a chromatogram. The means are provided to express all these metrics as functions of an arbitrary time during LC analysis, as functions of an arbitrary outlet solvent strength changing during the analysis, as functions of parameters of the solutes eluting during the analysis, and as functions of several other factors. The separation performance of gradient LC is compared with the separation performance of temperature-programmed GC evaluated in Part 2.

  18. A new technique for the separation and analysis of organomercury compounds: HPLC-PCO-CVAAS

    SciTech Connect

    Engelhart, W.G.

    1994-12-31

    While methodologies and instrumentation for mercury are well established, a simple, reliable technique for quantifying organomercury compounds has not emerged. The environmental impact of organomercurials cannot be accurately assessed without data from reliable, standardized analytical procedures. AOAC methods do exist for the analysis of methylmercury in fish tissue and are used for compliance monitoring of the FDA`s 1 ppm action level. However, these gas chromatographic based methods exhibit poor selectivity for organomercury compounds and limited sensitivity due to the small injection volumes used. Virtually all other publications in the field are feasibility studies reporting results obtained using modified, experimental instrumentation. Difficulties in interfacing the instruments required for separation with the instruments performing the quantitation function have hindered adoption of these experimental approaches as routine analytical methods. A new technique for the separation and analysis of organomercury compounds that overcomes the limitations of other techniques has recently been demonstrated. This technique termed HPLC-PCO-CVAAS combines high performance liquid chromatography with a post column oxidation step by followed by cold vapor atomic absorption spectroscopy. The underlying principles of the HPLC-PCO-CVAAS technique will be discussed and contrasted with other techniques. Analytical results obtained with methyl, phenyl and ethyl mercury species, and inorganic mercury (II) will be reported.

  19. Retention modeling in combined pH/organic solvent gradient reversed-phase HPLC.

    PubMed

    Zisi, Ch; Fasoula, S; Nikitas, P; Pappa-Louisi, A

    2013-07-07

    An approach for retention modeling of double pH/organic solvent gradient data easily generated by automatically mixing two mobile phases with different pH and organic content according to a linear pump program is proposed. This approach is based on retention models arising from the evaluation of the retention data of a set of 17 OPA derivatives of amino acids obtained in 27 combined pH/organic solvent gradient runs performed between fixed initial pH/organic modifier values but different final ones and for different gradient duration. The derived general model is a ninth parameter equation easily manageable through a linear least-squares fitting but it requires eighteen initial pH/organic modifier gradient experiments for a satisfactory retention prediction in various double gradients of the same kind with those used in the fitting procedure. Two simplified versions of the general model, which were parameterized based on six only initial pH/organic modifier gradients, were also proposed, when one of the final double gradient conditions, pH or organic content was kept constant. The full and the simplified models allowed us to predict the experimental retention data in simultaneous pH/organic solvent double gradient mode very satisfactorily without the solution of the fundamental equation of gradient elution.

  20. Configurable lipid membrane gradients quantify diffusion, phase separations and binding densities.

    PubMed

    Liu, Katherine N; Hung, Chen-Min S; Swift, Michael A; Muñoz, Kristen A; Cortez, Jose L; Sanii, Babak

    2015-11-14

    Single-experiment analysis of phospholipid compositional gradients reveals diffusion coefficients, phase separation parameters, and binding densities as a function of localized lipid mixture. Compositional gradients are formed by directed self assembly where rapid-prototyping techniques (i.e., additive manufacturing or laser-cutting) prescribe lipid geometries that self-spread, heal and mix by diffusion.

  1. Possibility of high gradient magnetic separation in angular steps

    SciTech Connect

    Iacob, G.; Rezlescu, N.

    1997-11-01

    Using a rotating HGMS ordered matrix in a quasi-transversal configuration, experiments have been performed to study the dependence of the captured mass m{sub S} on the angle {alpha} between the direction of the applied field H{sub 0} and the ferromagnetic wires. The ordered dependence of m{sub S} on {alpha} registered experimentally reveals the possibility to successively separate a granular mixture by an adequate choice of the inclination angles (angular steps) without modifying the applied field H{sub 0} or the average flow velocity v{sub a}. Relationships were derived connecting the magnetic susceptibilities of the mixture components with the inclination angle {alpha} in order to accomplish such a separation in angular steps.

  2. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.

    PubMed

    Xie, Rui; Tu, Maobing; Wu, Yonnie; Adhikari, Sushil

    2011-04-01

    5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase. The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.

  3. Role of surfactants in carbon nanotubes density gradient separation.

    PubMed

    Carvalho, Elton J F; dos Santos, Maria Cristina

    2010-02-23

    Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 A, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 A. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

  4. Efficient HPLC separation of N-p-nitrophenylglycosylamines derived from complex oligosaccharide mixtures. Human orosomucoid as a model.

    PubMed

    Kurth, H; Lehmann, J

    1986-04-01

    With human orosomucoid as model compound, a new method was developed to separate neutral oligosaccharides as N-p-nitro-phenylglycosylamines. Asialo orosomucoid was prepared by treatment with neuraminidase and purified by size exclusion HPLC on TSK 2000 SW. Oligosaccharides were isolated by reversed phase HPLC on Hamilton PRP-1 after hydrazinolysis and re-N-acetylation. Glycosylamination was performed with p-nitroaniline in DMSO-formic acid-water, where the whole mixture of oligosaccharide derivatives was isolated by reversed phase HPLC on Hamilton PRP-1 and separated into single glycosylamines on Shandon Hypersil ODS. The purified glycosylamines could be methylated by a new rapid method with sodium hydroxide and methyl iodide in DMSO, isolation and purification were carried out on Hamilton PRP-1 and Spherisorb ODS 2, respectively, as described for the glycosylamines. Preparative scale HPLC separations were performed on analytical columns using repetitive collection mode and automatic sample loading by means of a peristaltic pump operated by the HPLC controller. The purified glycosylamines can be used for sugar analyses or, after permethylation, for methylation analyses or related procedures.

  5. Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC.

    PubMed

    Borrego, C M; Garcia-Gil, L J

    1994-07-01

    A reversed-phase High Performance Liquid Cromatography (HPLC) method has been developed to accurately separate bacteriochlorophyllsc, d ande homologues in a reasonably short run time of 60 minutes. By using this method, two well-defined groups of bacteriochlorophyll homologue peaks can be discriminated. The first one consists of 4 peaks (min 24 to 30), which corresponds to the four main farnesyl homologues. The second peak subset is formed by a cluster of up to 10 minor peaks (min 33 to 40). These peaks can be related with series of several alcohol esters of the different chlorosome chlorophylls. The number of homologues was, however, quite variable depending on both, the bacteriochlorophyll and the bacterial species. The method hereby described, also provides a good separation of other photosynthetic pigments, either bacterial (Bacteriochlorophylla, chlorobactene, isorenieratene and okenone) or algal ones (Chlorophylla, Pheophytina and β-carotene). A preliminary screening of the homologue composition of several green photosynthetic bacterial species and isolates, has revealed different relative quantitative patterns. These differences seem to be related to physiological aspects rather than to taxonomic ones. The application of the method to the study of natural populations avoids the typical drawbacks on the pigment identification of overlapping eukaryotic and prokaryotic phototrophic microorganisms, giving further information about their physiological status.

  6. Combined HPLC-MS and HPLC-NMR on-line coupling for the separation and determination of lutein and zeaxanthin stereoisomers in spinach and in retina.

    PubMed

    Dachtler, M; Glaser, T; Kohler, K; Albert, K

    2001-02-01

    The determination and unambiguous identification of carotenoid stereoisomers from biological tissues, avoiding isomerization and oxidation due to the extraction process, is still a major challenge. Particularly, the analysis of lutein and zeaxanthin stereoisomers is of great importance, as these are the main constituents of the macula lutea, the central part of the human retina, and act as possible agents in the prevention and treatment of age-related macular degeneration (AMD). By combining a mild and quick extraction technique such as matrix solid-phase dispersion together with high-performance liquid chromatography (HPLC), the extremely light and oxygen sensitive lutein and zeaxanthin stereoisomers are extracted, enriched, and separated directly from the solid plant or tissue samples, excluding preparation of artifacts. HPLC separations are performed with C30 phases due to their enhanced shape selectivity compared to C18 phases and on-line coupled to mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. By using HPLC-MS with atmospheric pressure chemical ionization, the lutein stereoisomers can be distinguished from the zeaxanthin stereoisomers within one chromatographic run in the upper picogram range, whereas HPLC-NMR coupling allows the unequivocal identification of each stereoisomer with a concentration in the upper nanogram range. This article provides an analytical method for the artifact-free determination of lutein and zeaxanthin stereoisomers directly from the solid biological tissue spinach as a source of carotenoids and retina as the sphere of activity for AMD. In addition, the structures of these stereoisomers were unambiguously elucidated by employing hyphenated analytical techniques.

  7. Feedback control of chromosome separation by a midzone Aurora B gradient.

    PubMed

    Afonso, Olga; Matos, Irina; Pereira, António J; Aguiar, Paulo; Lampson, Michael A; Maiato, Helder

    2014-07-18

    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids before nuclear envelope reassembly (NER). However, how these two processes are coordinated remains unknown. Here, we identified a conserved feedback control mechanism that delays chromosome decondensation and NER in response to incomplete chromosome separation during anaphase. A midzone-associated Aurora B gradient was found to monitor chromosome position along the division axis and to prevent premature chromosome decondensation by retaining Condensin I. PP1/PP2A phosphatases counteracted this gradient and promoted chromosome decondensation and NER. Thus, an Aurora B gradient appears to mediate a surveillance mechanism that prevents chromosome decondensation and NER until effective separation of sister chromatids is achieved. This allows the correction and reintegration of lagging chromosomes in the main nuclei before completion of NER.

  8. Separation of mitochondria from contaminating subcellular structures utilizing silica sol gradient centrifugation.

    PubMed

    Jackson, C; Dench, J E; Hall, D O; Moore, A L

    1979-07-01

    Discontinuous Percoll density gradients have been developed for the purification of mitochondria, permitting rapid separation under isosmotic and low viscosity conditions. Mitochondria from several etiolated tissues have been successfully separated from contaminating subcellular structures by this method. For potato tuber the ratio of washed to purified mitochondrial protein was 2.6, similar to the increase in specific activity of cytochrome c oxidase following separation. The purification of mitochondria from green leaf tissues on Percoll gradients has reduced chlorophyll contamination of spinach mitochondria from about 70 micrograms chlorophyll per milligram protein to approximately 8 micrograms chlorophyll per milligram protein.The ratio of protein content of the washed mitochondria compared to that in the purified preparation was 7 for spinach and respiratory activity was retained. The physiological integrity and oxidative properties of washed and gradient mitochondria are compared.

  9. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration.

    PubMed

    Cerff, Martin; Morweiser, Michael; Dillschneider, Robert; Michel, Aymeé; Menzel, Katharina; Posten, Clemens

    2012-08-01

    In this study, the focus is on magnetic separation of fresh water algae Chlamydomonas reinhardtii and Chlorella vulgaris as well as marine algae Phaeodactylum tricornutum and Nannochloropsis salina by means of silica-coated magnetic particles. Due to their small size and low biomass concentrations, harvesting algae by conventional methods is often inefficient and cost-consuming. Magnetic separation is a powerful tool to capture algae by adsorption to submicron-sized magnetic particles. Hereby, separation efficiency depends on parameters such as particle concentration, pH and medium composition. Separation efficiencies of >95% were obtained for all algae while maximum particle loads of 30 and 77 g/g were measured for C. reinhardtii and P. tricornutum at pH 8 and 12, respectively. This study highlights the potential of silica-coated magnetic particles for the removal of fresh water and marine algae by high gradient magnetic filtration and provides critical discussion on future improvements.

  10. Quantification of protein thiols using ThioGlo 1 fluorescent derivatives and HPLC separation.

    PubMed

    Hoff, Signe; Larsen, Flemming H; Andersen, Mogens L; Lund, Marianne N

    2013-04-07

    A method for quantification of total soluble protein-derived thiols in beer was developed based on the formation of fluorescent adducts with the maleimide compound ThioGlo 1. The problem of interference from fluorescent adducts of sulfite and ThioGlo 1 was solved by HPLC separation of the adducts followed by fluorescence detection. Using standard addition of GSH, a detection limit of 0.028 μM thiols was achieved. The application and validation of the method was demonstrated for beers with different color intensities, and the application range is in principle for any biological system containing thiols. However, the quantification of cysteine was complicated by a lower fluorescence response of its ThioGlo 1 adducts. Based on the studies of the responses of a series of cysteine-derived thiols and (1)H NMR studies of the structures of ThioGlo 1 adducts with GSH and cysteine, it was concluded that thiols with a neighboring free amino group yield ThioGlo 1 adducts with a reduced fluorescence intensity.

  11. Application of high temperature superconductors to high-gradient magnetic separation

    SciTech Connect

    Daugherty, M.A.; Prenger, F.C.; Hill, D.D.; Daney, D.E.; Worl, L.W.; Schake, A.R.; Padilla, D.D.

    1994-06-01

    High Gradient Magnetic Separation (HGMS) is a powerful technique which can be used to separate widely dispersed contaminants from a host material, This technology can separate magnetic solids from other solids, liquids or gases. As the name implies HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles. HGMS separators usually consist of a high-field solenoid magnet, the bore of which contains a fine-structured, ferromagnetic matrix material. The matrix material locally distorts the magnetic field and creates large field gradients in the vicinity of the matrix elements. These elements then become trapping sites for magnetic particles and are the basis for the magnetic separation. In this paper we discuss the design and construction of a prototype HGMS unit using a magnet made with high temperature superconductors (HTS). The prototype consists of an outer vacuum vessel which contains the HTS solenoid magnet The magnet is surrounded by a thermal radiation shield and multilayer insulation (MLI) blankets. The magnet, thermal shield and current leads all operate in a vacuum and are cooled by a cryocooler. High temperature superconducting current leads are used to reduce the heat leak from the ambient environment to the HTS magnet.

  12. Positive selection of human blood cells using improved high gradient magnetic separation filters.

    PubMed

    Thomas, T E; Richards, A J; Roath, O S; Watson, J H; Smith, R J; Lansdorp, P M

    1993-01-01

    High gradient magnetic separators (HGMS) create magnetic field gradients that can be used to attract much smaller and less magnetic particles than those required for conventional magnetic separation techniques. As a result cells can be labeled with submicron magnetic particles and still be separated using an HGMS filter. Typically, HGMS filters consist of random arrays of wire such as stainless steel wool. Wire elements arranged regularly in a filter should allow more efficient separation of cells. Filters were constructed containing ordered wire arrays composed of 430 series stainless steel wire mesh with wire diameters of 50, 100, or 150 microns. The ability of these filters to separate T cells from peripheral blood mononuclear cell suspensions was tested and found superior to random arrays of 302 series stainless steel wire (Thomas et al, 1992). Target cells recognized by OKT5 monoclonal antibody were cross-linked to dextran-iron particles of approximately 20 nm in diameter. Separation conditions were optimized and after one passage through the filter 88% of the OKT5+ cells were recovered in the enriched fraction with 85% purity (%OKT5+). Multiple passages (3 times) could achieve 99% purity with 68% recovery. Variations in separation flow rate had a large effect on the balance between purity and recovery. Optimum separation efficiencies were achieved only when > 10(8) cells were processed. The primarily cause of nonspecific entrapment of CD8- cells was not nonspecific magnetic labeling of cells but the physical (nonmagnetic) characteristics of the filter/filter chamber.

  13. Towards a miniaturised system for dynamic field gradient focused separation of proteins.

    PubMed

    Myers, P; Bartle, K D

    2004-07-30

    Separation and focusing of proteins is described in a miniaturised dynamic field gradient focusing device with a 2.5 cm x 0.1 cm channel filled with a porous polymer monolith. The separation channel is in contact with a parallel electric field channel with five individually addressable electrodes through a porous glass membrane so that a variable field can be generated that drives charged proteins electroosmotically against a constant hydrodynamic flow. Separated pre-stained proteins were detected by means of a digital camera and background subtraction.

  14. Separation of DNA fragments for fast diagnosis by microchip electrophoresis using programmed field strength gradient.

    PubMed

    Kang, Seong Ho; Park, Mira; Cho, Keunchang

    2005-08-01

    We evaluated a novel strategy for fast diagnosis by microchip electrophoresis (ME), using programmed field strength gradients (PFSG) in a conventional glass double-T microfluidic chip. The ME-PFSG allows for the ultrafast separation and enhanced resolving power for target DNA fragments. These results are based on electric field strength gradients (FSG) that use an ME separation step in a sieving gel matrix poly-(ethylene oxide). The gradient can develop staircase or programmed shapes FSG over the time. The PFSG method could be easily used to increase separation efficiency and resolution in ME separation of specific size DNA fragments. Compared to ME that uses a conventional and constantly applied electric field (isoelectrostatic) method, the ME-PFSG achieved about 15-fold faster analysis time during the separation of 100 bp DNA ladder. The ME-PFSG was also applied to the fast analysis of the PCR products, 591 and 1191 bp DNA fragments from the 18S rRNA of Babesia gibsoni and Babesia caballi.

  15. Retention prediction and separation optimization under multilinear gradient elution in liquid chromatography with Microsoft Excel macros.

    PubMed

    Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P

    2015-05-22

    A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances.

  16. 'Click Chemistry' in the preparation of porous polymer-basedparticulate stationary phases for mu-HPLC separation of peptides andproteins

    SciTech Connect

    Slater, Michael; Snauko, Marian; Svec, Frantisek; Frechet, JeanM.J.

    2006-01-02

    With the use of the copper(I)-catalyzed (3 + 2) azide-alkynecycloaddition, an element of "click chemistry," stationary phasescarrying long alkyl chains or soybean trypsin inhibitor have beenprepared for use in HPLC separations in the reversed-phase and affinitymodes, respectively. The ligands were attached via a triazole ring tosize monodisperse porous beads containing either alkyne or azide pendantfunctionalities. Alkyne-containing beads prepared by directcopolymerization of propargyl acrylate with ethylene dimethacrylate wereallowed to react with azidooctadecane to give a reversed-phase sorbent.Azide-functionalized beads were prepared by chemical modification ofglycidyl methacrylate particles. Subsequent reaction with a terminalaliphatic alkyne produced a reversed-phase sorbent similar to thatobtained from the alkyne beads. Soybean trypsin inhibitor wasfunctionalized with N-(4-pentynoyloxy) succinimide to carry alkyne groupsand then allowed to react with the azide-containing beads to produce anaffinity sorbent for trypsin. The performance of these stationary phaseswas demonstrated with the HPLC separations of a variety of peptides andproteins.

  17. Determination of arsenic species in edible periwinkles (Littorina littorea) by HPLC-ICPMS and XAS along a contamination gradient.

    PubMed

    Whaley-Martin, K J; Koch, I; Reimer, K J

    2013-07-01

    Arsenic is naturally found in the tissues of marine animals, usually as the non-toxic arsenical arsenobetaine, but exposure to elevated arsenic concentrations in the environment may alter the arsenic species distribution within tissues of the organism. This study examined the arsenic species in the tissues of the marine periwinkle (Littorina littorea) along an arsenic concentration gradient in the sediment. The arsenicals in L. littorea were examined using the complementary analytical methods high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICPMS) and X-ray absorption spectroscopy (XAS). Total arsenic concentrations in the periwinkle tissues ranged from 56 to 840 mg·kg(-1) dry weight (equivalent to 13 to 190 mg·kg(-1) wet weight). Inorganic arsenicals were found to be positively correlated with total arsenic concentrations (R(2)=0.993) and reached 600 mg·kg(-1) dry weight, the highest reported to date in marine organisms. These high inorganic arsenic concentrations within this low trophic organism pose a potential toxicological risk to higher trophic consumers.

  18. Separation of Bacteria, Protozoa and Carbon Nanotubes by Density Gradient Centrifugation

    PubMed Central

    Mortimer, Monika; Petersen, Elijah J.; Buchholz, Bruce A.; Holden, Patricia A.

    2016-01-01

    Sustainable production and use of carbon nanotube (CNT)-enabled materials require efficient assessment of CNT environmental hazards, including the potential for CNT bioaccumulation and biomagnification in environmental receptors. Microbes, as abundant organisms responsible for nutrient cycling in soil and water, are important ecological receptors for studying the effects of CNTs. Quantification of CNT association with microbial cells requires efficient separation of CNT-associated cells from individually dispersed CNTs and CNT agglomerates. Here, we designed, optimized, and demonstrated procedures for separating bacteria (Pseudomonas aeruginosa) from unbound multiwall carbon nanotubes (MWCNTs) and MWCNT agglomerates using sucrose density gradient centrifugation. We demonstrate separation of protozoa (Tetrahymena thermophila) from MWCNTs, bacterial agglomerates, and protozoan fecal pellets by centrifugation in an iodixanol solution. The presence of MWCNTs in the density gradients after centrifugation was determined by quantification of 14C-labeled MWCNTs; the recovery of microbes from the density gradient media was confirmed by optical microscopy. Protozoan intracellular contents of MWCNTs and of bacteria were also unaffected by the designed separation process. The optimized methods contribute to improved efficiency and accuracy in quantifying MWCNT association with bacteria and MWCNT accumulation in protozoan cells, thus supporting improved assessment of CNT bioaccumulation. PMID:27917301

  19. Effect of gradient steepness on the kinetic performance limits and peak compression for reversed-phase gradient separations of small molecules.

    PubMed

    Vaňková, Nikola; De Vos, Jelle; Tyteca, Eva; Desmet, Gert; Edge, Tony; Česlová, Lenka; Česla, Petr; Eeltink, Sebastiaan

    2015-08-28

    The effect of gradient steepness on the kinetic performance limits and peak compression effects has been assessed in gradient mode for the separation of phenol derivatives using columns packed with 2.6μm core-shell particles. The effect of mobile-phase velocity on peak capacity was measured on a column with fixed length while maintaining the retention factor at the moment of elution and the peak-compression factor constant. Next, the performance limits were determined at the maximum system pressure of 100MPa while varying the gradient steepness. For the separation of small molecules applying a linear gradient with a broad span, the best performance limits in terms of peak capacity and analysis time were obtained applying a gradient-time-to-column-dead-time (tG/t0) ratio of 12. The magnitude of the peak-compression factor was assessed by comparing the isocratic performance with that in gradient mode applying different gradient times. Therefore, the retention factors for different analytes were determined in gradient mode and the mobile-phase composition in isocratic mode was tuned such that the difference in retention factor was smaller than 2%. Peak-compression factors were quantitatively determined between 0.95 and 0.65 depending on gradient steepness and the gradient retention factor.

  20. Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F-isoprostanes.

    PubMed

    Taylor, Alan W; Bruno, Richard S; Frei, Balz; Traber, Maret G

    2006-03-01

    The F(2)-isoprostanes are products of free-radical-induced oxidation of arachidonic acid (AA) that are stereoisomers of prostaglandin F(2alpha) (PGF(2alpha)). We describe a method for quantitation of several 15-series PGF isomers (15-PGFs) and AA by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS). Plasma samples were subjected to alkaline hydrolysis and acidified, and total (free + esterified) 15-PGFs and AA were extracted with organic solvents. The analytes were separated by gradient reverse-phase HPLC and detected by multiple reaction monitoring on a triple-quadrupole mass spectrometer, using deuterated internal standards for quantitation. The assay had a linear range of 1-40 pg of 8-iso-PGF(2alpha) on column and can quantify as little as 40 pg/mL (0.11 nM) in plasma. Outcomes significantly correlated (p < 0.0001) with data obtained by gas chromatography-mass spectrometry GC-MS or enzyme-linked immunosorbent assay. All plasma 15-PGF isomers increased over time with in vitro cigarette smoke exposure and correlated (p < 0.0001) with each other. The same strong inter-15-PGF correlations were observed in plasma from healthy young adult subjects. The coefficients of variation of HPLC-MS-MS measurements (24-32%) were smaller than those obtained by GC-MS (53%). Thus, HPLC-MS-MS potentially offers greater precision and allows quantitation of more compounds with simpler sample preparation than existing methods. Ours is the first validated quantitative assay using HPLC-tandem MS applied to plasma total 15-PGFs.

  1. Synthesis of the impurities during the manufacture of bulk drug midazolam and separation of these impurities by HPLC.

    PubMed

    Sati, Bhawana; Sati, Hemlata; Saklani, Sarla; Bhatt, Prakash Chandra; Mishra, Ravinesh

    2013-09-01

    During the manufacture of bulk drug midazolam various impurities arised that can be the related products or degradation products. Structures of eight impurities that can arise during the manufacture of bulk drug midazolam were proposed. In the present work, synthesis of these impurities and their characterization by different spectroscopic techniques have been done. HPLC method was developed for the separation of impurities from the bulk drug. The developed method separates midazolam from its eight impurities/degradation products within a run time of 45 min.

  2. Evaluation of turbulence models for prediction of separated turbulent boundary layer under unsteady adverse pressure gradients

    NASA Astrophysics Data System (ADS)

    Park, Junshin; You, Donghyun

    2014-11-01

    Predicitive capabilites of Reynolds-averaged Navier-Stokes (RANS) techniques for separated flow under unsteady adverse pressure gradients have been assessed using SST k - ω model and Spalart-Allmaras model by comparing their results with direct numerical simulation (DNS) results. Both DNS and RANS have been conducted with a zero pressure gradient, a steady adverse pressure gradient, and an unsteady adverse pressure gradient, respectively. Comparative studies show that both RANS models predict earlier separation and fuller velocity profiles at the reattachment zone than DNS in the unsteady case, while reasonable agreements with DNS are observed for steady counterparts. Causes for differences in the predictive capability of RANS for steady and unsteady cases, are explained by examining the Reynolds stress term and eddy viscosity term in detail. The Reynolds stress and eddy viscosity are under-predicted by both RANS models in the unsteady case. The origin of the under-prediction of the Reynolds stress with both RANS models is revealed by investigating Reynolds stress budget terms obtained from DNS. Supported by the National Research Foundation of Korea Grant NRF-2012R1A1A2003699 and the Brain Korea 21+ program.

  3. Chromatographic separation of three monoclonal antibody variants using multicolumn countercurrent solvent gradient purification (MCSGP).

    PubMed

    Müller-Späth, Thomas; Aumann, Lars; Melter, Lena; Ströhlein, Guido; Morbidelli, Massimo

    2008-08-15

    Multicolumn countercurrent solvent gradient purification (MCSGP) is a continuous chromatographic process developed in recent years (Aumann and Morbidelli, 2007a; Aumann et al., 2007) that is particularly suited for applications in the field of bioseparations. Like batch chromatography, MCSGP is suitable for three-fraction chromatographic separations and able to perform solvent gradients but it is superior in terms of solvent consumption, yield, purity, and productivity due to the countercurrent movement of the liquid and the solid phases. In this work, the MCSGP process is applied to the separation of three monoclonal antibody variants on a conventional preparative cation exchange resin. The experimental process performance was compared to simulations based on a lumped kinetic model. Yield and purity values of the target variant of 93%, respectively were obtained experimentally. The batch reference process was clearly outperformed by the MCSGP process.

  4. HPLC separation of human serum albumin isoforms based on their isoelectric points.

    PubMed

    Turell, Lucía; Botti, Horacio; Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA-SHg(+)), HSA with Cys34 oxidized to sulfenic acid (HSA-SOH) and HSA oxidized to sulfinate anion (HSA-SO2(-)) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3-585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA.

  5. HPLC separation of human serum albumin isoforms based on their isoelectric points

    PubMed Central

    Bonilla, Lucía; Torres, María José; Schopfer, Francisco; Freeman, Bruce A.; Armas, Larissa; Ricciardi, Alejandro; Alvarez, Beatriz; Radi, Rafael

    2014-01-01

    Human serum albumin (HSA) is the most abundant protein in plasma. Cys34, the only free Cys residue, is the predominant plasma thiol and a relevant sacrificial antioxidant. Both in vivo circulating HSA and pharmaceutical preparations are heterogeneous with respect to the oxidation state of Cys34. In this work, we developed an external pH gradient chromatofocusing procedure that allows the analysis of the oxidation status of HSA in human plasma and biopharmaceutical products based on the different apparent isoelectric points and chemical properties of the redox isoforms. Specifically, reduced-mercury blocked HSA (HSA–SHg+), HSA with Cys34 oxidized to sulfenic acid (HSA–SOH) and HSA oxidized to sulfinate anion (HSA–SO2−) can be separated with resolutions of 1.4 and 3.1 (first and last pair) and hence quantified and purified. In addition, an N-terminally degraded isoform (HSA3–585) in different redox states can be resolved as well. Confirmation of the identity of the chromatofocusing isolated isoforms was achieved by high resolution whole protein MS. It is proposed that the chromatofocusing procedure can be used to produce more exact and complete descriptions of the redox status of HSA in vivo and in vitro. Finally, the scalability capabilities of the chromatofocusing procedure allow for the preparation of highly pure standards of several redox isoforms of HSA PMID:24316526

  6. Serum of Blood Separation by Means of Dynamic Electrochromatography in a Centrifugal and Electromagnetic Gradient.

    PubMed

    Jan Dyszkiewicz, Andrzej

    2014-01-01

    The paper presents the dynamic association of several gradients of separation with electrophoresis and the laboratory implementation of a prototype device for dynamic electrochromatography in a centrifugal and electromagnetic gradient (DECGOE), based on patent PL171643. The object of the study was to compare the separation capacity and repeatability of the location of edge parameters (xx(1), yy(1), d) of the contours of a proteinogram fraction for conventional electrophoresis (EF), radial SR-DECGOE separation and three variants of radial-transverse SR-SPM, SR-SPE, SRSPRRM distribution as well as the reproducibility of the following prototype parameters: PV(1), PV(2), PV(3)[V] potentials, PV(3)[F] frequency, ω(1) and ω(2) rotational speed, MC mixer chamber buffer [pH] and volume[ml], and B [T] magnetic induction. Human blood serum was used in the study, 50 samples for each separation type. The highest rate of fraction formation was registered for the SR-SPRRM (8,07/s) variant. The percentage values of standard deviations for the edge parameters of proteinograms were the lowest for conventional electrophoresis (EF), slightly higher for radial distribution SR, while among the radial-transverse separations, the highest accuracy was obtained for the SR-SPRRM variant.

  7. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison.

    PubMed

    Hubbuch, J J; Matthiesen, D B; Hobley, T J; Thomas, O R

    2001-01-01

    A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non-porous superparamagnetic supports followed by rapid separation of the 'loaded' adsorbents from the feedstock using high gradient magnetic separation technology. For the recovery of Savinase from a cell-free Bacillus clausii fermentation liquor using bacitracin-linked adsorbents, the integrated magnetic separation system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h(-1). Use of the bacitracin-linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation at a processing rate of 12 m h(-1) resulted in a 2.2-fold higher productivity relative to expanded bed adsorption, while an increase in adsorbent collection rate to 72 m h(-1) raised the productivity to 10.7 times that of expanded bed adsorption. When the number of batch adsorption cycles was then increased to three, significant drops in both magnetic adsorbent consumption (3.6 fold) and filter volume required (1.3 fold) could be achieved at the expense of a reduction in productivity from 10.7 to 4.4 times that of expanded bed adsorption.

  8. Development of a novel RP-HPLC method for the efficient separation of aripiprazole and its nine impurities.

    PubMed

    Nikolic, Katarina; Filijović, Nataša Djordjević; Maričić, Borislava; Agbaba, Danica

    2013-10-01

    The development of an RP-HPLC method for the separation of aripiprazole and its nine impurities was performed with the use of partial least squares regression, response surface plot methodology, and chromatographic response function. The HPLC retention times and computed molecular parameters of the aripiprazole and its nine impurities were further used for the quantitative structure-retention relationship (QSRR) study. The QSRR model, R(2):0.899, Q(2):0.832, root mean square error of estimation: 4.761, root mean square error of prediction: 6.614, was developed. Very good agreement between the predicted and observed retention times (t(R)) for three additional aripiprazole impurities (TC1-TC3) indicated the high prediction potential of the QSRR model for tR evaluation of other aripiprazole impurities and metabolites. The developed HPLC method is the first reported method for the efficient separation of aripiprazole and its nine impurities, which could be used for the analysis of an additional three aripiprazole impurities (TC1-TC3).

  9. SEPARATION AND PURIFICATION OF TWO MINOR COMPOUNDS FROM RADIX ISATIDIS BY INTEGRATIVE MPLC AND HSCCC WITH PREPARATIVE HPLC

    PubMed Central

    Liang, Zhenjie; Li, Bin; Liang, Yong; Su, Yaping; Ito, Yoichiro

    2014-01-01

    Radix isatidis has been widely used as a Chinese traditional medicine for its anti-virus and anticancer activities where the minor components may contribute to these beneficial pharmaceutical effects. In order to enrich the target minor compounds effectively and rapidly, extraction, medium-pressure liquid chromatography (MPLC), high-speed countercurrent chromatography (HSCCC) and preparative high-performance liquid chromatography (pre-HPLC) were integratively used for separation and purification of two target minor compounds indole-3-acetonitrile-6-O-β-D-glucopyranoside (target 1) and clemastanin B (target 2) in the present study. Radix isatidis was dried, pulverized and extracted with 50% methanol at room temperature, then concentrated and subjected to pretreatment with D-101 macroporous resin chromatography and extraction by MPLC. The first target compound was separated by MPLC at the purity raised to 70–80%, but without the second minor compounds which were irreversibly adsorbed by C18 solid support. Therefore, the second target compound in the crude extract was directly separated by HSCCC at purity of 80–90%. Finally these refined samples were further separated by pre-HPLC to obtain a high purity at 98–99%. The chemical structure identification of each target compound was carried out by IR, ESI-MS and 1H NMR. PMID:25745338

  10. Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting.

    PubMed

    Murray, Coleman; Pao, Edward; Tseng, Peter; Aftab, Shayan; Kulkarni, Rajan; Rettig, Matthew; Di Carlo, Dino

    2016-04-13

    Extraction of rare target cells from biosamples is enabling for life science research. Traditional rare cell separation techniques, such as magnetic activated cell sorting, are robust but perform coarse, qualitative separations based on surface antigen expression. A quantitative magnetic separation technology is reported using high-force magnetic ratcheting over arrays of magnetically soft micropillars with gradient spacing, and the system is used to separate and concentrate magnetic beads based on iron oxide content (IOC) and cells based on surface expression. The system consists of a microchip of permalloy micropillar arrays with increasing lateral pitch and a mechatronic device to generate a cycling magnetic field. Particles with higher IOC separate and equilibrate along the miropillar array at larger pitches. A semi-analytical model is developed that predicts behavior for particles and cells. Using the system, LNCaP cells are separated based on the bound quantity of 1 μm anti-epithelial cell adhesion molecule (EpCAM) particles as a metric for expression. The ratcheting cytometry system is able to resolve a ±13 bound particle differential, successfully distinguishing LNCaP from PC3 populations based on EpCAM expression, correlating with flow cytometry analysis. As a proof-of-concept, EpCAM-labeled cells from patient blood are isolated with 74% purity, demonstrating potential toward a quantitative magnetic separation instrument.

  11. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  12. Isoform separation and structural identification of mono-PEGylated recombinant human growth hormone (PEG-rhGH) with pH gradient chromatography.

    PubMed

    Qin, Xiufeng; Li, Jing; Li, Yong; Gan, Yiru; Huang, He; Liang, Chenggang

    2017-02-15

    Human growth hormone plays an essential role in the treatment of dwarfism diseases, but it is limited in its short circulating half-life. Nowadays, some manufacturers are trying to take advantage of polyethylene glycol (PEG) conjugated with recombinant human growth hormone (rhGH) to improve its half-life and efficacy. However, the modified products are heterogeneous mixtures composed of reaction products with different modification sites. It is generally known as a challenging task to separate and characterize a PEGylated product, especially for its positional isoforms. In this study, cation exchange high performance liquid chromatograph (IEC-HPLC) based on a pH gradient separation method was presented to separate five position isomers of rhGH conjugated with a 40-kDa branched PEG N-hydroxysuccinimidyl (NHS) functional group. Then Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALD-TOF MS) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated that each of five materials collected by IEC-HPLC was conjugated with only one branched PEG chain. Furthermore, rhGH and PEG-rhGH were digested by trypsin and peptides were collected by reversed phase high performance liquid chromatography (RP-HPLC). Following MALDI-TOF MS, PEG modification sites were determined through comparative analysis of peptide mapping between PEG-rhGH and rhGH. Finally, biological activities of those positional isomers were performed in vivo and very small variations were observed. This method was shown to be suitable for heterogeneity analysis of PEGylated biopharmaceutical products.

  13. Low-power concentration and separation using temperature gradient focusing via Joule heating.

    PubMed

    Kim, Sun Min; Sommer, Greg J; Burns, Mark A; Hasselbrink, Ernest F

    2006-12-01

    We present an experimental study of temperature gradient focusing (TGF) exploiting an inherent Joule heating phenomenon. A simple variable-width PDMS device delivers rapid and repeatable focusing of model analytes using significantly lower power than conventional TGF techniques. High electric potential applied to the device induces a temperature gradient within the microchannel due to the channel's variable width, and the temperature-dependent mobility of the analytes causes focusing at a specific location. The PDMS device also shows simultaneous separation and concentration capability of a mixture of two sample analytes in less than 10 min. An experiment combining Joule heating with external heating/cooling further supports the hypothesis that temperature is indeed the dominant factor in achieving focusing with this technique.

  14. A two-dimensional HPLC separation for the enantioselective determination of hexabromocyclododecane (HBCD) isomers in biota samples.

    PubMed

    Bester, Kai; Vorkamp, Katrin

    2013-08-01

    A new method for enantioselective analysis of isomers of hexabromocyclododecane (HBCD) is described, using a two-dimensional high-performance liquid chromatography (HPLC) approach to avoid coelution, in particular between (+) α-HBCD, (+) β-HBCD, or (+) γ-HBCD. After isomer separation on a conventional column, the single isomers are transferred to an enantioselective HPLC column using heart cuts. Two enantioseparations are conducted in two separate partial chromatograms: one for α-HBCD and one for β- and γ-HBCD. The result is a completely undisturbed enantioselective separation for α-HBCD at a resolution of 4.11. A peak capacity of 107 was achieved. This peak capacity is utilized by the six peaks of the three isomers with two enantiomers each by 6%. This method was applied to samples of sand eel oil, glaucous gull, and ringed seal. The calibration was performed by treating each enantiomer as a single analyte using a multilevel internal standard calibration. Enantiomeric fractions of 0.495-0.501 with standard deviations (SDs) of 0.056-0.071 were determined for racemic standards of α-HBCD, while the values for fish oil were 0.548-0.562 with SD of 0.018-0.041, depending on the respective mass spectrometric transition.

  15. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    NASA Astrophysics Data System (ADS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour.

  16. Separation of arginase isoforms by capillary zone electrophoresis and isoelectric focusing in density gradient column.

    PubMed

    Pedrosa, M M; Legaz, M E

    1995-04-01

    Four major arginase isoforms, I, II, III and IV, have been detected in Evernia prunastri thallus. They differ in terms of both physical and biochemical properties. The isoelectric point (pI) of these proteins has been determined by both isoelectric focusing in density gradient column and high-performance capillary electrophoresis (HPCE). Isoelectric focusing revealed charge microheterogeneity for isoforms II and IV whereas arginases I and II had the same pI value of 5.8. HPCE separation confirmed this charge microheterogeneity for isoform IV but not for isoform III, and provided evidence of microheterogeneity for isoforms I and II. The effect of various electrolyte buffers and running conditions on the HPCE separation of arginase isoform were investigated. Addition of 0.5 mM spermidine (SPD) to the running buffer reduced the electroosmotic flow (EOF) and permitted discriminating between the native proteins and protein fragments.

  17. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part I: theory.

    PubMed

    Broeckhoven, K; Verstraeten, M; Choikhet, K; Dittmann, M; Witt, K; Desmet, G

    2011-02-25

    We report on a general theoretical assessment of the potential kinetic advantages of running LC gradient elution separations in the constant-pressure mode instead of in the customarily used constant-flow rate mode. Analytical calculations as well as numerical simulation results are presented. It is shown that, provided both modes are run with the same volume-based gradient program, the constant-pressure mode can potentially offer an identical separation selectivity (except from some small differences induced by the difference in pressure and viscous heating trajectory), but in a significantly shorter time. For a gradient running between 5 and 95% of organic modifier, the decrease in analysis time can be expected to be of the order of some 20% for both water-methanol and water-acetonitrile gradients, and only weakly depending on the value of V(G)/V₀ (or equivalently t(G)/t₀). Obviously, the gain will be smaller when the start and end composition lie closer to the viscosity maximum of the considered water-organic modifier system. The assumptions underlying the obtained results (no effects of pressure and temperature on the viscosity or retention coefficient) are critically reviewed, and can be inferred to only have a small effect on the general conclusions. It is also shown that, under the adopted assumptions, the kinetic plot theory also holds for operations where the flow rate varies with the time, as is the case for constant-pressure operation. Comparing both operation modes in a kinetic plot representing the maximal peak capacity versus time, it is theoretically predicted here that both modes can be expected to perform equally well in the fully C-term dominated regime (where H varies linearly with the flow rate), while the constant pressure mode is advantageous for all lower flow rates. Near the optimal flow rate, and for linear gradients running from 5 to 95% organic modifier, time gains of the order of some 20% can be expected (or 25-30% when accounting for

  18. Reverse-phase HPLC separation of hemp seed (Cannabis sativa L.) protein hydrolysate produced peptide fractions with enhanced antioxidant capacity.

    PubMed

    Girgih, Abraham T; Udenigwe, Chibuike C; Aluko, Rotimi E

    2013-03-01

    Hemp seed protein hydrolysate (HPH) was produced through simulated gastrointestinal tract (GIT) digestion of hemp seed protein isolate followed by partial purification and separation into eight peptide fractions by reverse-phase (RP)-HPLC. The peptide fractions exhibited higher oxygen radical absorbance capacity as well as scavenging of 2,2-diphenyl-1-picrylhydrazyl, superoxide and hydroxyl radicals when compared to HPH. Radical scavenging activities of the fractionated peptides increased as content of hydrophobic amino acids or elution time was increased, with the exception of hydroxyl radical scavenging that showed decreased trend. Glutathione (GSH), HPH and the RP-HPLC peptide fractions possessed low ferric ion reducing ability but all had strong (>60 %) metal chelating activities. Inhibition of linoleic acid oxidation by some of the HPH peptide fractions was higher at 1 mg/ml when compared to that observed at 0.1 mg/ml peptide concentration. Peptide separation resulted in higher concentration of some hydrophobic amino acids (especially proline, leucine and isoleucine) in the fractions (mainly F5 and F8) when compared to HPH. The elution time-dependent increased concentrations of the hydrophobic amino acids coupled with decreased levels of positively charged amino acids may have been responsible for the significantly higher (p < 0.05) antioxidant properties observed for some of the peptide fractions when compared to the unfractionated HPH. In conclusion, the antioxidant activity of HPH after simulated GIT digestion is mainly influenced by the amino acid composition of some of its peptides.

  19. Simultaneous determination of L-arginine and 12 molecules participating in its metabolic cycle by gradient RP-HPLC method: application to human urine samples.

    PubMed

    Markowski, Piotr; Baranowska, Irena; Baranowski, Jacek

    2007-12-19

    We have developed and described a highly sensitive, accurate and precise reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of L-arginine and 12 molecules participating in its metabolic cycle in human urine samples. After pre-column derivatization with ortho-phthaldialdehyde (OPA) reagent containing 3-mercaptopropionic acid (3MPA), the fluorescent derivatives were separated by a gradient elution and detected by fluorescence measurement at 338 nm (excitation) and 455 nm (emission). L-Arginine (ARG) and its metabolites: L-glutamine (GLN), N(G)-hydroxy-L-arginine (NOHA), L-citrulline (CIT), N(G)-monomethyl-L-arginine (NMMA), L-homoarginine (HARG), asymmetric N(G),N(G)-dimethyl-L-arginine (ADMA), symmetric N(G),N(G')-dimethyl-L-arginine (SDMA), L-ornithine (ORN), putrescine (PUT), agmatine (AGM), spermidine (SPERMD) and spermine (SPERM) were extracted in a cation-exchange solid-phase extraction (SPE) column and after derivatization separated in a Purospher STAR RP-18e analytical column. The calibration curves of analysed compounds are linear within the range of concentration: 45-825, 0.2-15, 16-225, 12-285, 0.1-32, 15-235, 0.1-12, 0.1-12, 10-205, 0.02-12, 0.1-24, 0.01-10 and 0.01-8 nmol mL(-1) for GLN, NOHA, CIT, ARG, NMMA, HARG, ADMA, SDMA, ORN, PUT, AGM, SPERMD and SPERM, respectively. The correlation coefficients are greater than 0.9980. Coefficients of variation are not higher than 6.0% for inter-day precision. The method has been determined or tested for limits of detection and quantification, linearity, precision, accuracy and recovery. All detection parameters of the method demonstrate that it is a reliable and efficient means of the comprehensive determination of ARG and its 12 main metabolites, making this approach suitable for routine clinical applications. The levels of analysed compounds in human urine can be successfully determined using this developed method with no matrix effect.

  20. Feasibility of turbidity removal by high-gradient superconducting magnetic separation.

    PubMed

    Zeng, Hua; Li, Yiran; Xu, Fengyu; Jiang, Hao; Zhang, Weimin

    2015-01-01

    Several studies have focused on pollutant removal by magnetic seeding and high-gradient superconducting magnetic separation (HGSMS). However, few works reported the application of HGSMS for treating non-magnetic pollutants by an industrial large-scale system. The feasibility of turbidity removal by a 600 mm bore superconducting magnetic separation system was evaluated in this study. The processing parameters were evaluated by using a 102 mm bore superconducting magnetic separation system that was equipped with the same magnetic separation chamber that was used in the 600 mm bore system. The double-canister system was used to process water pollutants. Analytical grade magnetite was used as a magnetic seed and the turbidity of the simulated raw water was approximately 110 NTU, and the effects of polyaluminum chloride (PAC) and magnetic seeds on turbidity removal were evaluated. The use of more PAC and magnetic seeds had few advantages for the HGSMS at doses greater than 8 and 50 mg/l, respectively. A magnetic intensity of 5.0 T was beneficial for HGSMS, and increasing the flow rate through the steel wool matrix decreased the turbidity removal efficiency. In the breakthrough experiments, 90% of the turbidity was removed when 100 column volumes were not reached. The processing capacity of the 600 mm bore industry-scale superconducting magnetic separator for turbidity treatment was approximately 78.0 m(3)/h or 65.5 × 10(4) m(3)/a. The processing cost per ton of water for the 600 mm bore system was 0.1 $/t. Thus, the HGSMS separator could be used in the following special circumstances: (1) when adequate space is not available for traditional water treatment equipment, especially the sedimentation tank, and (2) when decentralized sewage treatment HGSMS systems are easier to transport and install.

  1. Fast Gradient Elution Reversed-Phase HPLC with Diode-Array Detection as a High Throughput Screening Method for Drugs of Abuse

    SciTech Connect

    Peter W. Carr; K.M. Fuller; D.R. Stoll; L.D. Steinkraus; M.S. Pasha; Glenn G. Hardin

    2005-12-30

    A new approach has been developed by modifying a conventional gradient elution liquid chromatograph for the high throughput screening of biological samples to detect the presence of regulated intoxicants. The goal of this work was to improve the speed of a gradient elution screening method over current approaches by optimizing the operational parameters of both the column and the instrument without compromising the reproducibility of the retention times, which are the basis for the identification. Most importantly, the novel instrument configuration substantially reduces the time needed to re-equilibrate the column between gradient runs, thereby reducing the total time for each analysis. The total analysis time for each gradient elution run is only 2.8 minutes, including 0.3 minutes for column reequilibration between analyses. Retention times standard calibration solutes are reproducible to better than 0.002 minutes in consecutive runs. A corrected retention index was adopted to account for day-to-day and column-to-column variations in retention time. The discriminating power and mean list length were calculated for a library of 47 intoxicants and compared with previous work from other laboratories to evaluate fast gradient elution HPLC as a screening tool.

  2. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD.

    PubMed

    Ma, Chunmei; Sun, Zhen; Chen, Changbao; Zhang, Lili; Zhu, Shuhua

    2014-02-15

    A high-performance liquid chromatography (HPLC) method with evaporative light scattering detection (ELSD) was optimised for simultaneous determination of fructose, sorbitol, glucose and sucrose in fruits. The analysis was carried out on a Phenomenex Luna 5u NH₂ 100A column (250 mm × 4.60mm, 5 micron) with isocratic elution of acetonitrile:water (82.5:17.5, v/v). Drift tube temperature of the ELSD system was set to 82 °C and nitrogen flow rate was 2.0 L min⁻¹. The regression equation revealed good linear relationship (R = 0.9967-0.9989) within test ranges. The limits of detection (LOD) and quantification (LOQ) for four analytes (peach, apple, watermelon, and cherry fruits) were in the range of 0.07-0.27 and 0.22-0.91 mg L⁻¹, respectively. The proposed HPLC-ELSD method was validated for quantification of sugars in peach, apple, watermelon, and cherry fruits, and the results were satisfactory. The results showed that the contents of the four sugars varied among fruits. While fructose (5.79-104.01 mg g⁻¹) and glucose (9.25-99.62 mg g⁻¹) emerged as common sugars in the four fruits, sorbitol (8.70-19.13 mg g⁻¹) were only found in peach, apple and cherry fruits, and sucrose (15.82-106.39 mg g⁻¹) were in peach, apple and watermelon. There was not detectable sorbitol in watermelon and sucrose in cherry fruits, respectively.

  3. Coal liquefaction process streams characterization and evaluation: High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with uv diode array detection

    SciTech Connect

    Clifford, D.J.; McKinney, D.E.; Hou, Lei; Hatcher, P.G.

    1994-01-01

    This study demonstrated the considerable potential of using two-dimensional, high performance liquid chromatography (HPLC) with normal-phase separation and ultraviolet (UV) diode array detection for the examination of filtered process liquids and the 850{degrees}F{sup {minus}} distillate materials derived from direct coal liquefaction process streams. A commercially available HPLC column (Hypersil Green PAH-2) provided excellent separation of the complex mixture of polynuclear aromatic hydrocarbons (PAHs) found in coal-derived process streams process. Some characteristics of the samples delineated by separation could be attributed to processing parameters. Mass recovery of the process derived samples was low (5--50 wt %). Penn State believes, however, that, improved recovery can be achieved. High resolution mass spectrometry and gas chromatography/mass spectrometry (GC/MS) also were used in this study to characterize the samples and the HPLC fractions. The GC/MS technique was used to preliminarily examine the GC-elutable portion of the samples. The GC/MS data were compared with the data from the HPLC technique. The use of an ultraviolet detector in the HPLC work precludes detecting the aliphatic portion of the sample. The GC/MS allowed for identification and quantification of that portion of the samples. Further development of the 2-D HPLC analytical method as a process development tool appears justified based on the results of this project.

  4. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation

    NASA Astrophysics Data System (ADS)

    Maria, M. Sneha; Rakesh, P. E.; Chandra, T. S.; Sen, A. K.

    2017-03-01

    We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a ‘self-built-in filter’ and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour’s model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from <10 μl whole blood) in 15 min with a purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks.

  5. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation

    PubMed Central

    Maria, M. Sneha; Rakesh, P. E.; Chandra, T. S.; Sen, A. K.

    2017-01-01

    We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a ‘self-built-in filter’ and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour’s model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from <10 μl whole blood) in 15 min with a purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks. PMID:28256564

  6. A pseudo three-zone simulated moving bed with solvent gradient for quaternary separations.

    PubMed

    Jiang, Chongwen; Huang, Fengmei; Wei, Feng

    2014-03-21

    In a SMB with solvent gradient, as the eluotropic strength of the liquid in zone II (between the extract-port and feed-port) is higher than that in zone III (between the feed-port and the raffinate-port), the solute can move forward in zone II but backward in zone III to be trapped in the two zones consequently. On this basis, a pseudo-SMB was proposed to separate two medium retained solutes (B1 and B2) from a quaternary mixture by selectively trapping the two solutes. Once the columns in zones II and III are saturated with the target solutes, the solvent dissolving the feed is introduced at the feed-port to remove the least retained solute (A) from the raffinate-port and the most retained solute (C) from the extract-port. The two target components trapped in zones II and III are purified accordingly. At the same time, solute B1 would distribute in the columns of zone III whereas solute B2 spread in the columns of zone II if solute B2 had a stronger retention than solute B1. Thereby, the two medium retained solutes B1 and B2 could be recovered separately from the columns in zones II and III. This scheme was validated by the successful separation of capsaicin (B1) and dihydrocapsaicin (B2) from a crude capsaicinoids.

  7. Capillary flow-driven microfluidic device with wettability gradient and sedimentation effects for blood plasma separation.

    PubMed

    Maria, M Sneha; Rakesh, P E; Chandra, T S; Sen, A K

    2017-03-03

    We report a capillary flow-driven microfluidic device for blood-plasma separation that comprises a cylindrical well between a pair of bottom and top channels. Exposure of the well to oxygen-plasma creates wettability gradient on its inner surface with its ends hydrophilic and middle portion hydrophobic. Due to capillary action, sample blood self-infuses into bottom channel and rises up the well. Separation of plasma occurs at the hydrophobic patch due to formation of a 'self-built-in filter' and sedimentation. Capillary velocity is predicted using a model and validated using experimental data. Sedimentation of RBCs is explained using modified Steinour's model and correlation between settling velocity and liquid concentration is found. Variation of contact angle on inner surface of the well is characterized and effects of well diameter and height and dilution ratio on plasma separation rate are investigated. With a well of 1.0 mm diameter and 4.0 mm height, 2.0 μl of plasma was obtained (from <10 μl whole blood) in 15 min with a purification efficiency of 99.9%. Detection of glucose was demonstrated with the plasma obtained. Wetting property of channels was maintained by storing in DI water under vacuum and performance of the device was found to be unaffected over three weeks.

  8. Working principle and application of magnetic separation for biomedical diagnostic at high- and low-field gradients.

    PubMed

    Leong, Sim Siong; Yeap, Swee Pin; Lim, JitKang

    2016-12-06

    Magnetic separation is a versatile technique used in sample preparation for diagnostic purpose. For such application, an external magnetic field is applied to drive the separation of target entity (e.g. bacteria, viruses, parasites and cancer cells) from a complex raw sample in order to ease the subsequent task(s) for disease diagnosis. This separation process not only can be achieved via the utilization of high magnetic field gradient, but also, in most cases, low magnetic field gradient with magnitude less than 100 T m(-1) is equally feasible. It is the aim of this review paper to summarize the usage of both high gradient magnetic separation and low gradient magnetic separation (LGMS) techniques in this area of research. It is noteworthy that effectiveness of the magnetic separation process not only determines the outcome of a diagnosis but also directly influences its accuracy as well as sensing time involved. Therefore, understanding the factors that simultaneously influence the efficiency of both magnetic separation process and target detection is necessary. Moreover, for LGMS, there are several important considerations that should be taken into account in order to ensure its successful implementation. Hence, this review paper aims to provide an overview to relate all this crucial information by linking the magnetic separation theory to biomedical diagnostic applications.

  9. Enantiomeric separations of ruthenium (II) polypyridyl complexes using HPLC with cyclofructan chiral stationary phases.

    PubMed

    Shu, Yang; Breitbach, Zachary S; Dissanayake, Milan K; Perera, Sirantha; Aslan, Joseph M; Alatrash, Nagham; MacDonnell, Frederick M; Armstrong, Daniel W

    2015-01-01

    The enantiomeric separation of 21 ruthenium (II) polypyridyl complexes was achieved with a novel class of cyclofructan-based chiral stationary phases (CSPs) in the polar organic mode. Aromatic derivatives on the chiral selectors proved to be essential for enantioselectivity. The R-napthylethyl carbamate functionalized cyclofructan 6 (LARIHC CF6-RN) column proved to be the most effective overall, while the dimethylphenyl carbamate cyclofructan 7 (LARIHC CF7-DMP) showed complementary selectivity. A combination of acid and base additives was necessary for optimal separations. The retention factor vs. acetonitrile/methanol ratio plot showed a U-shaped retention curve, indicating that different interactions take place at different polar organic solvent compositions. The separation results indicated that π-π interactions, steric effects, and hydrogen bonding contribute to the enantiomeric separation of ruthenium (II) polypyridyl complexes with cyclofructan chiral stationary phases in the polar organic mode.

  10. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.

    PubMed

    Maynes, Daniel; Tenny, Joseph; Webbd, Brent W; Lee, Milton L

    2008-02-01

    Recently the use electric field gradient focusing (EFGF) to enhance focusing of proteins has been proposed and explored to provide significant improvement in separation resolution. The objective of EFGF is to focus proteins of specific electrophoretic mobilities at distinct stationary locations in a column or channel. This can be accomplished in a capillary by allowing the electric potential to vary in the streamwise direction. Because the electric field is varying, so also is the electrokinetic force exerted on the proteins and the electroosmotic velocity of the buffer solution. Due to the varying electric field, the Taylor diffusion characteristics will also vary along the column, causing a degradation of peak widths of some proteins, dependent on their equilibrium positions and local velocity distributions. The focus of this paper is an analysis that allows characterization of the local Taylor diffusion and resulting protein band peak width as a function of the local magnitude of the EOF relative to the average fluid velocity for both cylindrical and rectangular channels. In general the analysis shows that as the ratio of the local electroosmotic velocity to the average velocity deviates from unity, the effective diffusion increases significantly. The effectiveness of EFGF devices over a range of protein diffusivities, capillary diameters, flow velocities, and electric field gradient is discussed.

  11. Simultaneous Acquisition of Gradient Echo / Spin Echo BOLD and Perfusion with a Separate Labeling Coil

    PubMed Central

    Glielmi, C.B.; Xu, Q.; Craddock, R.C.; Hu, X.

    2010-01-01

    Arterial spin labeling (ASL) based cerebral blood flow (CBF) imaging complements blood oxygenation level dependent (BOLD) imaging with a measure that is more quantitative and has better specificity to neuronal activation. Relative to gradient echo (GE) BOLD, spin echo (SE) BOLD has better spatial specificity because it is less biased to large draining veins. While there have been many studies comparing simultaneously acquired CBF data with GE BOLD data in fMRI, there have been few studies comparing CBF with SE BOLD and no study comparing all three. We present a pulse sequence that simultaneously acquires CBF data with a separate labeling coil, GE BOLD and SE BOLD images. Simultaneous acquisition avoids inter-scan variability, allowing more direct assessment and comparison of each contrast’s relative specificity and reproducibility. Furthermore, it facilitates studies that may benefit from multiple complementary measures. PMID:20648682

  12. Generating and Separating Twisted Light by gradient-rotation Split-Ring Antenna Metasurfaces.

    PubMed

    Zeng, Jinwei; Li, Ling; Yang, Xiaodong; Gao, Jie

    2016-05-11

    Nanoscale compact optical vortex generators promise substantially significant prospects in modern optics and photonics, leading to many advances in sensing, imaging, quantum communication, and optical manipulation. However, conventional vortex generators often suffer from bulky size, low vortex mode purity in the converted beam, or limited operation bandwidth. Here, we design and demonstrate gradient-rotation split-ring antenna metasurfaces as unique spin-to-orbital angular momentum beam converters to simultaneously generate and separate pure optical vortices in a broad wavelength range. Our proposed design has the potential for realizing miniaturized on-chip OAM-multiplexers, as well as enabling new types of metasurface devices for the manipulation of complex structured light beams.

  13. Size exclusion chromatography-gradients, an alternative approach to polymer gradient chromatography: 2. Separation of poly(meth)acrylates using a size exclusion chromatography-solvent/non-solvent gradient.

    PubMed

    Schollenberger, Martin; Radke, Wolfgang

    2011-10-28

    A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography.

  14. A novel isocratic HPLC method to separate and quantify acetanilide and its hydroxy aromatic derivatives: 2-, 3- and 4-hydroxyacetanilide (paracetamol or acetaminophen).

    PubMed

    Mancilla, J; Valdes, E; Gil, L

    1989-01-01

    Reverse-phase high performance liquid chromatography on a microBondapak C-18 Column has been used to separate and quantify acetanilide and its aromatic monohydroxy derivatives in the 2-, 3- and 4- positions. Separation was achieved within 22 min by using an isocratic mixture of 2-propanol: methanol: water, 8:18:74 (v/v). This method compares very favourably with other HPLC techniques already reported to separate acetanilide from the monohydroxy aromatic derivatives.

  15. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.

    PubMed

    Farnan, Dell; Moreno, G Tony

    2009-11-01

    In the biotechnology industry, ion-exchange chromatography is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies. Ionic strength based ion exchange separations, while having excellent resolving power and robustness, are product specific and time-consuming to develop. In the present work, a pH gradient based separation using a cation exchange column is described and shown to be a multiproduct charge sensitive separation method for monoclonal antibodies. Simple mixtures of defined buffer components were used to generate the pH-gradients that separate closely related antibody species. The form of the pH gradient was controlled and optimized by the pump as well as the buffer composition if necessary. During this work, the buffer compositions for the separation were optimized in parallel for several MAbs. The data shows that the multiproduct method is optimal for all of the MAbs studied. Operational aspects of the separation such as column chemistry, column length, and sample matrix indicate a very robust method. The pH gradient ion-exchange method is demonstrated to have significant resolving power and peak capacities far in excess of what we would expect for ionic strength elution ion-exchange. Data obtained demonstrates that the separation is relatively insensitive to column length. Direct analysis (no buffer exchange) of samples in matrixes consistent with in-process manufacturing pools is demonstrated. Such a capability is extremely useful for the high throughput evaluation of in-process and final product samples.

  16. RP-HPLC Separation of Isomeric Withanolides: Method Development, Validation and Application to In situ Rat Permeability Determination.

    PubMed

    Yaseen Malik, Mohd; Taneja, Isha; Raju, Kanumuri Siva Rama; Rahaman Gayen, Jiaur; Singh, Sheelendra Pratap; Sangwand, Neelam S; Wahajuddin, Muhammad

    2017-04-12

    Withanolides are the group of active chemical constituents of Withania somnifera (L.) Dunal. Withaferin A, withanolide A and withanone presents three of the biologically most active constituents of this herb. These steroidal lactones are isomers of each other and thus, pose significant difficulty in their separation. In present study, a simple, specific and reliable RP-HPLC method has been developed and validated for their separation and simultaneous quantification. Separation was carried out on Lichrocart Purospher STAR RP-18e column (250 × 4.5 mm, 5 µm) using mobile phase, methanol and 0.01 M ammonium acetate buffer (pH 5) in the ratio 60:40, v/v. The calibration curves were linear (r2 > 0.99) for all the three compounds across concentration range of 1.56-50 µg/mL. The lower limit of quantification for all the analytes was 1.56 µg/mL. The intra-day and inter-day accuracy was between 88.65% and 110.66% and coefficient of variation was between 0.55 and 10.12. The analytes were stable under different storage conditions. The developed method was successfully applied to analyze the samples for simultaneous determination of permeability of the three withanolides in rats using in situ single-pass intestinal perfusion model. Withanolide A and withanone were found to be high permeability compounds while withaferin A could not be detected.

  17. Functional characterization of human thymocyte subpopulations separated by density gradient centrifugation.

    PubMed Central

    Lederman, H M; Lee, J W; Cohen, A; Gelfand, E W

    1984-01-01

    A bovine serum albumin gradient was used to separate two populations of human thymocytes--a minority population (8%) of large thymocytes (LT) and a majority population (92%) of small thymocytes (ST). Fifty per cent of LT cells were in the S, G2 or M phases of the cell cycle compared to 5% of ST cells and 15% of unfractionated thymocytes. LT cells proliferated in response to T cell mitogens and included all of the T colony precursor cells (TCPC). In contrast, ST cells proliferated with mitogens only in the presence of added T cell growth factors and contained none of the thymocyte TCPC. ST cells neither helped nor suppressed the function of LT cells in any assay. This separation technique has provided a rapid method for isolating functionally distinct thymic lymphocyte subpopulations and permitted a further definition of the TCPC in the human thymus. Furthermore it should prove useful in studies of thymocytes at different stages of the cell cycle. PMID:6607793

  18. A new turbulence closure model for boundary layer flows with strong adverse pressure gradients and separation

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; King, L. S.

    1984-01-01

    A new turbulence closure model designed specifically to treat two-dimensional, turbulent boundary layers with strong adverse pressure gradients and attendant separation, is presented. The influence of history effects are modeled by using an ordinary differential equation (ODE) derived from the turbulence kinetic-energy equation, to describe the streamwise development of the maximum Reynolds shear stress in conjunction with an assumed eddy-viscosity distribution which has as its velocity scale the maximum Reynolds shear stress. In the outer part of the boundary layer, the eddy viscosity is treated as a free parameter which is adjusted in order to satisfy the ODE for the maximum shear stress. Because of this, the model s not simply an eddy-viscosity model, but contains features of a Reynolds-stress model. Comparisons with experiments are presented which clearly show the proposed model to be superior to the Cebeci-Smith model in treating strongly retarded and separated flows. In contrast to two-equation, eddy-viscosity models, it requires only slightly more computational effort than simple models like the Cebeci-Smith model.

  19. Removal and recovery of phosphorus in wastewater by superconducting high gradient magnetic separation with ferromagnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Ishiwata, T.; Miura, O.; Hosomi, K.; Shimizu, K.; Ito, D.; Yoda, Y.

    2010-11-01

    Prevention of eutrophication for semi-enclosed bays and ponds is serious and important challenge. In spite of the advanced wastewater treatment, typically 1 mg/L phosphorus is discharged into public water bodies from wastewater treatment plants. The total amount of the discharged water is so large that the further improvement of the removal efficiency of phosphorus in the discharged water is demanded. On the other hand, recently phosphorus has become increasingly recognized as the important strategic material due to the global food problem. Therefore, the recovery and recycling of phosphorus is also important issue. In this work, removal and recovery of phosphorus from treated wastewater by High Gradient Magnetic Separation (HGMS) with ferromagnetic zirconium ferrite adsorbent were studied. Phosphorus in the treated wastewater could be removed from 1.12 mg/L to 0.03 mg/L by the HGMS system with 500 mg/L zirconium ferrite adsorbent for 5 min in adsorption time. The magnetic separation speed achieved 1 m/s at 1 T which was necessary for practical use. We also confirmed that phosphorus could be desorbed from zirconium ferrite adsorbent by alkali treatment in a short time.

  20. The combination of analytical-scale HPLC separation with a TR-FRET assay to investigate JAK2 inhibitory compounds in a Boysenberry drink.

    PubMed

    McGhie, Tony K; Martin, Harry; Lunken, Rona C M

    2012-11-01

    We report the detection of JAK2 inhibitory activity in a Boysenberry (Rubus loganbaccus x R. baileyanus Britt.) drink using a combination of analytical-scale high performance liquid chromatography (HPLC) with a high-sensitivity time-resolved fluorescence coupled with fluorescence resonance energy transfer (TR-FRET) method. Phytochemical components of a Boysenberry drink were separated by reversed phase HPLC , and 84 separate fractions were collected. HPLC fractions corresponding to the ellagitannin and ellagic acid peaks observed in the chromatogram inhibited JAK2 activity. Anthocyanins, while they were the major phytochemical components of the Boysenberry drink, had no JAK2 inhibitory activity even though anthocyanins have previously been shown to be anti-inflammatory. This study demonstrates the usefulness of combining rapid analytical-scale HPLC separation with a highly sensitive fluorescence bioassay for characterising bioactivity in complex plant extracts. Ellagic acid was found to have an IC(50) of 92 nM against JAK2 and complete inhibition of JAK2 activity was observed in HPLC fractions of Boysenberry extract which had been diluted several hundred fold. To the best of our knowledge, this is the first demonstration that ellagitannins and other natural ellagic acid analogues are potent inhibitors of JAK2. Thus a drink containing Boysenberry juice concentrate may have anti-inflammatory properties.

  1. Efficient separation of semiconducting single-wall carbon nanotubes by surfactant-composition gradient in gel filtration

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-01-01

    Gel filtration is a powerful method of separating and purifying semiconducting single-wall carbon nanotubes (s-SWCNTs) from their metallic (m-) counterpart. However, a small amount of m-SWCNTs usually remains, thus reducing the purity of the s-SWCNTs obtained. We have investigated the effect of elution with a gradient concentration of the surfactant on the separation and purity of s-SWCNTs. By utilizing the controlled low-gradient elution (CLGE) that we have developed, the purity of s-SWCNTs is improved to 94% from the 90% obtained with the conventional separation. Furthermore, CLGE simultaneously allows diameter-based separation of small-diameter s-SWCNTs, which indicates a promising utilization of CLGE for s-SWCNT separation.

  2. Entamoeba invadens and E. histolytica: separation and purification of precysts and cysts by centrifugation on discontinuous density gradients of Percoll.

    PubMed

    Avron, B; Bracha, R; Deutsch, M R; Mirelman, D

    1983-06-01

    The different cell forms in the life cycle of Entamoeba invadens (trophozoites, precysts, and cysts) were rapidly and quantitatively separated on density step gradients of polyvinylpyrolidone-coated colloidal silica particles (Percoll). With this method, the gradual process of encystation by E. invadens trophozoites could be monitored. Percoll gradients were also efficient in separating trophozoites of Entamoeba histolytica and bacteria. After purification on Percoll, trophozoites display no evidence of damage when examined by light microscopy and no loss in viability as judged by their ability to multiply.

  3. Incorporation of carbon nanotubes in a silica HPLC column to enhance the chromatographic separation of peptides: theoretical and practical aspects.

    PubMed

    André, Claire; Aljhani, Rania; Gharbi, Tijani; Guillaume, Yves C

    2011-06-01

    The retention mechanism of a series of peptides on a single-wall carbon nanotube (SWCNT) stationary phase inside an HPLC column was investigated over a wide range of mobile phase compositions. While the similar size C18 column exhibited an efficiency of 11.5 μm, the SWCNT column increased the efficiency, i.e. 7.10 μm at a flow rate of 0.8 mL/min, and significantly affected the separation quality of the peptides. The values of enthalpy (ΔH) and entropy (ΔS(*)) of transfer of the peptides from the mobile to the SWCNT stationary phase were determined. The method studied each factor, i.e. ACN fraction x in the ACN/water mixture and column temperature. The changes in retention factor, ΔH and ΔS(*) as a function of the ACN fraction in the mobile phase were examined. These variations are explained using the organization of ACN in clusters in the ACN/water mixture and on the steric and electronic forces implied in the retention process. The information obtained in this work makes this SWCNT stationary phase useful for peptide research and demonstrated the role of ACN to improve the separation quality.

  4. Comparison of the quantitative performance of constant pressure versus constant flow rate gradient elution separations using concentration-sensitive detectors.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2012-04-06

    This contribution discusses the difference in chromatographic performance when switching from the customary employed constant flow rate gradient elution mode to the recently re-introduced constant pressure gradient elution mode. In this mode, the inlet pressure is maintained at a set value even when the mobile phase viscosity becomes lower than the maximum mobile phase viscosity encountered during the gradient program. This leads to a higher average flow rate compared to the constant flow rate mode and results in a shorter analysis time. When both modes carry out the same mobile phase gradient program in volumetric units, normally identical selectivities are obtained. However, small deviations in selectivity are found due to the differences in pressure and viscous heating effects. These selectivity differences are of the same type as those observed when switching from HPLC to UHPLC and are inevitable when speeding up the analysis by applying a higher pressure. It was also found that, when using concentration-sensitive detectors, the constant pressure elution mode leads to identical peak areas as the constant flow rate mode. Also the linearity is maintained. In addition, the repeatability of the peak area and retention time remains the same when switching between both elution modes.

  5. Chemical interferences when using high gradient magnetic separation for phosphate removal: consequences for lake restoration.

    PubMed

    de Vicente, I; Merino-Martos, A; Guerrero, F; Amores, V; de Vicente, J

    2011-09-15

    A promising method for lake restoration is the treatment of lake inlets through the specific adsorption of phosphate (P) on strongly magnetizable particles (Fe) and their subsequent removal using in-flow high gradient magnetic separation (HGMS) techniques. In this work, we report an extensive investigation on the chemical interferences affecting P removal efficiencies in natural waters from 20 Mediterranean ponds and reservoirs. A set of three treatments were considered based on different Fe particles/P concentration ratios. High P removal efficiencies (>80%) were found in freshwater lakes (conductivities<600 μ S cm(-1)). However, a significant reduction in P removal was observed for extremely high mineralized waters. Correlation analysis showed that major cations (Mg(2+), Na(+) and K(+)) and anions (SO(4)(2-) and Cl(-)) played an essential role in P removal efficiency. Comparison between different treatments have shown that when increasing P and Fe concentrations at the same rate or when increasing Fe concentrations for a fixed P concentration, there exist systematic reductions in the slope of the regression lines relating P removal efficiency and the concentration of different chemical variables. These results evidence a general reduction in the chemical competition between P and other ions for adsorption sites on Fe particles. Additional analyses also revealed a reduction in water color, dissolved organic carbon (DOC) and reactive silicate (Si) concentrations with the addition of Fe microparticles.

  6. Enantioselective separation and determination of the dinotefuran enantiomers in rice, tomato and apple by HPLC.

    PubMed

    Chen, Xiu; Dong, Fengshou; Liu, Xingang; Xu, Jun; Li, Jing; Li, Yuanbo; Wang, Yunhao; Zheng, Yongquan

    2012-01-01

    An effective chiral analytical method was developed for the resolution and determination of dinotefuran enantiomers in rice, tomato and apple samples. Dinotefuran enantiomers were baseline-separated and determined on a novel chiral column, ChromegaChiral CCA, with n-hexane-ethanol-methanol (85:5:10, v/v/v) as the mobile phase at a flow rate of 1.0 mL/min with UV detection at 270 nm. The resolution of dinotefuran enantiomers was about 1.8. The first eluted enantiomer was (+)-dinotefuran and the second eluted one was (-)-dinotefuran. The effects of mobile-phase composition and column temperature on the enantioseparation were evaluated. The method was validated for linearity, repeatability, accuracy, LOD and LOQ. LOD was 0.15 mg/kg in rice and tomato, 0.05 mg/kg in apple, with an LOQ of 0.5 mg/kg in rice and tomato, 0.2 mg/kg in apple. The average recoveries of the pesticide from all matrices ranged from 75.8 to 92.9% for all fortification levels The precision values associated with the analytical method, expressed as RSD values, were <16.5% for the pesticide in all matrices. The methodology was successfully applied for the enantioselective analysis of dinotefuran enantiomers in real samples, indicating its efficiency in investigating the environmental stereochemistry of dinotefuran in food matrix.

  7. Fast gradient HPLC method to determine compounds binding to human serum albumin. Relationships with octanol/water and immobilized artificial membrane lipophilicity.

    PubMed

    Valko, Klara; Nunhuck, Shenaz; Bevan, Chris; Abraham, Michael H; Reynolds, Derek P

    2003-11-01

    A fast gradient HPLC method (cycle time 15 min) has been developed to determine Human Serum Albumin (HSA) binding of discovery compounds using chemically bonded protein stationary phases. The HSA binding values were derived from the gradient retention times that were converted to the logarithm of the equilibrium constants (logK HSA) using data from a calibration set of molecules. The method has been validated using literature plasma protein binding data of 68 known drug molecules. The method is fully automated, and has been used for lead optimization in more than 20 company projects. The HSA binding data obtained for more than 4000 compounds were suitable to set up global and project specific quantitative structure binding relationships that helped compound design in early drug discovery. The obtained HSA binding of known drug molecules were compared to the Immobilized Artificial Membrane binding data (CHI IAM) obtained by our previously described HPLC-based method. The solvation equation approach has been used to characterize the normal binding ability of HSA, and this relationship shows that compound lipophilicity is a significant factor. It was found that the selectivity of the "baseline" lipophilicity governing HSA binding, membrane interaction, and octanol/water partition are very similar. However, the effect of the presence of positive or negative charges have very different effects. It was found that negatively charged compounds bind more strongly to HSA than it would be expected from the lipophilicity of the ionized species at pH 7.4. Several compounds showed stronger HSA binding than can be expected from their lipophilicity alone, and comparison between predicted and experimental binding affinity allows the identification of compounds that have good complementarities with any of the known binding sites.

  8. Separation of quercetin, sexangularetin, kaempferol and isorhamnetin for simultaneous HPLC determination of flavonoid aglycones in inflorescences, leaves and fruits of three Sorbus species.

    PubMed

    Olszewska, Monika

    2008-11-04

    A reversed-phase high-performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous determination of four flavonol aglycones (quercetin, QU; sexangularetin, SX; kaempferol, KA; isorhamnetin, IS) in hydrolyzed extracts from different plant parts of Sorbus aucuparia L., Sorbus aria (L.) Crantz. and Sorbus intermedia (Ehrh.) Pers. Separation of the four compounds was accomplished on a C18 Lichrosphere 100 column (5 microm, 250 mm x 4.6mm, i.d.) with a methanol gradient elution and recorded at 370 nm. The high resolution of critical bands - SX, KA and IS - was achieved with retention of the last peak (IS) in 19.5 min. The equilibration of the standard mixture by addition of HCl to an acid concentration equal that of hydrolyzed extracts injected was found to be necessary when minimizing calibration error. The correlation coefficients of all the calibration curves showed good linearity (r>0.9991) over the test range. The relative standard deviation of the method was less than 2.8% for intra- and inter-day assays, and the average recoveries were between 95.5 and 102.5%. High sensitivity was demonstrated with detection limits between 0.050 and 0.085 microg/ml. The level of total aglycones was found to be in the range of 687-1,515 mg/100g of dry weight in the inflorescences, 424-1,078 mg/100g in the leaves and 20-60 mg/100g in the fruits depending on the Sorbus species.

  9. Reverse-phase HPLC separation of D-amygdalin and neoamygdalin and optimum conditions for inhibition of racemization of amygdalin.

    PubMed

    Hwang, Eun-Young; Lee, Je-Hyun; Lee, Yong-Moon; Hong, Seon-Pyo

    2002-10-01

    In boiling aqueous solution, D-amygdalin usually begins to convert into neoamygdalin in 3 min and more than 30% of the initial D-amygdalin is found as neoamygdalin after 30 min. In this report, we establish methods for simple HPLC analysis and the inhibition of D-amygdalin conversion. D-Amygdalin and its conversion product, neoamygdalin, were clearly separated on reverse-phase column chromatography by an optimized eluent of 10 mM sodium phosphate buffer (pH 3.8) containing 6% acetonitrile. Linearity for analyzing D-amygdalin and neoamygdalin was observed in the range from 0.05 to 0.5 mM. The detection limits for D-amygdalin and neoamygdalin were ca. 5 microM per injected amount. We found that D-amygdalin conversion was completely inhibited by adding 0.05% citric acid to the aqueous solution before boiling. To prevent the loss of pharmaceutical potency of Tonin, we applied this method to measure the conversion rate of D-amygdalin. We confirmed that D-amygdalin conversion in Tonin is effectively inhibited by acidic boiling solution with 0.1% citric acid.

  10. Microfluidic device having an immobilized pH gradient and PAGE gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Singh, Anup K.; Wang, Ying-Chih

    2012-12-11

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  11. Microfluidic device having an immobilized pH gradient and page gels for protein separation and analysis

    DOEpatents

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-05-20

    Disclosed is a novel microfluidic device enabling on-chip implementation of a two-dimensional separation methodology. Previously disclosed microscale immobilized pH gradients (IPG) are combined with perpendicular polyacrylamide gel electrophoresis (PAGE) microchannels to achieve orthogonal separations of biological samples. Device modifications enable inclusion of sodium dodecyl sulfate (SDS) in the second dimension. The device can be fabricated to use either continuous IPG gels, or the microscale isoelectric fractionation membranes we have also previously disclosed, for the first dimension. The invention represents the first all-gel two-dimensional separation microdevice, with significantly higher resolution power over existing devices.

  12. Molecular and Quantum Mechanical Study for the Separation of Cefprozil in the Presence of Its Alkaline Degradation Product Using RP-HPLC with UV Detection.

    PubMed

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2017-03-01

    A reversed-phase HPLC method (RP-HPLC) with UV detection was developed and validated for the quantitative determination of cefprozil, a second-generation cephalosporin. Due to β-lactam ring instability under alkaline conditions, this RP-HPLC method was applied for the determination of cefprozil in the presence of its possible degradation product. The interactions that govern the separation process with stationary phase were investigated at both molecular and quantum mechanical levels. Moreover, electrostatic potential maps were generated to determine the sites of interaction with mobile phase. The suggested method was validated in compliance with International Conference on Harmonization guidelines and successfully applied for the determination of cefprozil in its commercial pharmaceutical formulation.

  13. Fast gradient separation by very high pressure liquid chromatography: reproducibility of analytical data and influence of delay between successive runs.

    PubMed

    Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges

    2013-11-29

    Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.

  14. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1998 annual progress report

    SciTech Connect

    Doctor, R.D.; Nunez, L.; Crawford, C.; Ritter, J.; Landsberger, S.

    1998-06-01

    'The objective is to reduce the volume and cost of high-level waste glass produced during US DOE remediation activities by demonstrating that magnetic separation can separate crystalline, amorphous, and colloidal constituents in vitrification feed streams known to be deleterious to the production of borosilicate glass. Magnetic separation will add neither chemicals nor generate secondary waste streams. The project includes the systematic study of magnetic interactions of waste constituents under controlled physical and chemical conditions (e.g., hydration, oxidation, temperature) to identify mechanisms that control the magnetic properties. Partitioning of radionuclides to determine their sorption mechanisms is also being studied. The identification of fundamental magnetic properties within the microscopic chemical environment in combination with hydrodynamic and electrodynamic models provides insights into the design of a system for optimal separation. Following this, experimental studies using superconducting open-gradient magnetic separation (OGMS) will be conducted to validate its effectiveness as a pretreatment technique.'

  15. Superconducting open-gradient magnetic separation for the pretreatment of radioactive or mixed waste vitrification feeds. 1997 annual progress report

    SciTech Connect

    Doctor, R.; Nunez, L.; Cicero-Herman, C.A.; Ritter, J.A.; Landsberger, S.

    1997-01-01

    'Vitrification has been selected as a final waste form technology in the US for long-term storage of high-level radioactive wastes (HLW). However, a foreseeable problem during vitrification in some waste feed streams lies in the presence of elements (e.g., transition metals) in the HLW that may cause instabilities in the final glass product. The formation of spinel compounds, such as Fe{sub 3}O{sub 4} and FeCrO{sub 4}, results in glass phase separation and reduces vitrifier lifetime, and durability of the final waste form. A superconducting open gradient magnetic separation (OGMS) system maybe suitable for the removal of the deleterious transition elements (e.g. Fe, Co, and Ni) and other elements (lanthanides) from vitrification feed streams due to their ferromagnetic or paramagnetic nature. The OGMS systems are designed to deflect and collect paramagnetic minerals as they interact with a magnetic field gradient. This system has the potential to reduce the volume of HLW for vitrification and ensure a stable product. In order to design efficient OGMS and High gradient magnetic separation (HGMS) processes, a fundamental understanding of the physical and chemical properties of the waste feed streams is required. Using HLW simulant and radioactive fly ash and sludge samples from the Savannah River Technology Center, Rocky Flats site, and the Hanford reservation, several techniques were used to characterize and predict the separation capability for a superconducting OGMS system.'

  16. One-pass separation of single-wall carbon nanotubes by gel chromatography with a gradient of surfactant concentration.

    PubMed

    Inori, Ryuji; Okada, Takako; Arie, Takayuki; Akita, Seiji

    2012-06-15

    We have investigated the diameter-selective separation of carbon nanotubes by one-pass gel chromatography with a gradient of surfactant concentration. The formation of surfactant gradient in a column was successfully measured and is explained by a simple diffusion process even in the gel. We found that the diameter of eluted nanotubes is inversely proportional to the surfactant concentration of eluate. The detailed analysis of the movement of the nanotubes in the gel revealed that the separation mechanism was qualitatively explained by a model based on the trapping and de-trapping events of the nanotube–surfactant micelle on the gel surface,where the probability of the trapping and de-trapping events is proportional to the product of the diameter of the nanotubes and the surfactant concentration.

  17. One-pass separation of single-wall carbon nanotubes by gel chromatography with a gradient of surfactant concentration

    NASA Astrophysics Data System (ADS)

    Inori, Ryuji; Okada, Takako; Arie, Takayuki; Akita, Seiji

    2012-06-01

    We have investigated the diameter-selective separation of carbon nanotubes by one-pass gel chromatography with a gradient of surfactant concentration. The formation of surfactant gradient in a column was successfully measured and is explained by a simple diffusion process even in the gel. We found that the diameter of eluted nanotubes is inversely proportional to the surfactant concentration of eluate. The detailed analysis of the movement of the nanotubes in the gel revealed that the separation mechanism was qualitatively explained by a model based on the trapping and de-trapping events of the nanotube-surfactant micelle on the gel surface, where the probability of the trapping and de-trapping events is proportional to the product of the diameter of the nanotubes and the surfactant concentration.

  18. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient

    PubMed Central

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-01

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect. PMID:28094279

  19. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient.

    PubMed

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S; Back, Christian H; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-17

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

  20. Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient

    NASA Astrophysics Data System (ADS)

    Reimer, Oliver; Meier, Daniel; Bovender, Michel; Helmich, Lars; Dreessen, Jan-Oliver; Krieft, Jan; Shestakov, Anatoly S.; Back, Christian H.; Schmalhorst, Jan-Michael; Hütten, Andreas; Reiss, Günter; Kuschel, Timo

    2017-01-01

    A thermal gradient as the driving force for spin currents plays a key role in spin caloritronics. In this field the spin Seebeck effect (SSE) is of major interest and was investigated in terms of in-plane thermal gradients inducing perpendicular spin currents (transverse SSE) and out-of-plane thermal gradients generating parallel spin currents (longitudinal SSE). Up to now all spincaloric experiments employ a spatially fixed thermal gradient. Thus, anisotropic measurements with respect to well defined crystallographic directions were not possible. Here we introduce a new experiment that allows not only the in-plane rotation of the external magnetic field, but also the rotation of an in-plane thermal gradient controlled by optical temperature detection. As a consequence, the anisotropic magnetothermopower and the planar Nernst effect in a permalloy thin film can be measured simultaneously. Thus, the angular dependence of the magnetothermopower with respect to the magnetization direction reveals a phase shift, that allows the quantitative separation of the thermopower, the anisotropic magnetothermopower and the planar Nernst effect.

  1. Simultaneous Separation of Negatively and Positively Charged Species in Dynamic Field Gradient Focusing Using a Dual Polarity Electric Field

    PubMed Central

    Burke, Jeffrey M.; Huang, Zheng; Ivory, Cornelius F.

    2011-01-01

    Dynamic field gradient focusing (DFGF) utilizes an electric field gradient established by a computer-controlled electrode array to separate and concentrate charged analytes at unique axial positions. Traditionally, DFGF has been restricted to the analysis of negatively charged species due to limitations in the software of our voltage controller. This paper introduces a new voltage controller capable of operating under normal polarity (positive potentials applied to the electrode array) and reversed polarity (negative potentials applied to the electrode array) for the separation of negatively and positively charged analytes, respectively. The experiments conducted under normal polarity and reversed polarity illustrate the utility of the new controller to perform reproducible DFGF separations (elution times showing less than 1% run-to-run variation) over a wide pH range (3.08 to 8.5) regardless of the protein charge. A dual polarity experiment is then shown in which the separation channel has been divided into normal polarity and reversed polarity regions. This simultaneous separation of negatively charged R-phycoerythrin (R-PE) and positively charged cytochrome c (CYTC) within the same DFGF apparatus is shown. PMID:19722517

  2. Simultaneous separation of negatively and positively charged species in dynamic field gradient focusing using a dual polarity electric field.

    PubMed

    Burke, Jeffrey M; Huang, Zheng; Ivory, Cornelius F

    2009-10-01

    Dynamic field gradient focusing (DFGF) utilizes an electric field gradient established by a computer-controlled electrode array to separate and concentrate charged analytes at unique axial positions. Traditionally, DFGF has been restricted to the analysis of negatively charged species due to limitations in the software of our voltage controller. This paper introduces a new voltage controller capable of operating under normal polarity (positive potentials applied to the electrode array) and reversed polarity (negative potentials applied to the electrode array) for the separation of negatively and positively charged analytes, respectively. The experiments conducted under normal polarity and reversed polarity illustrate the utility of the new controller to perform reproducible DFGF separations (elution times showing less than 1% run-to-run variation) over a wide pH range (3.08 to 8.5) regardless of the protein charge. A dual polarity experiment is then shown in which the separation channel has been divided into normal polarity and reversed polarity regions. This simultaneous separation of negatively charged R-phycoerythrin (R-PE) and positively charged cytochrome c (CYTC) within the same DFGF apparatus is shown.

  3. Optimisation of the separation of herbicides by linear gradient high performance liquid chromatography utilising artificial neural networks.

    PubMed

    Tran, Anh T K; Hyne, Ross V; Pablo, Fleur; Day, W Roy; Doble, P

    2007-02-28

    An artificial neural network (ANN) was employed to model the chromatographic response surface for the linear gradient separation of 10 herbicides that are commonly detected in storm run-off water in agricultural catchments. The herbicides (dicamba, simazine, 2,4-D, MCPA, triclopyr, atrazine, diuron, clomazone, bensulfuron-methyl and metolachlor) were separated using reverse phase high performance liquid chromatography and detected with a photodiode array detector. The ANN was trained using the pH of the mobile phase and the slope of the acetonitrile/water gradient as input variables. A total of nine experiments were required to generate sufficient data to train the ANN to accurately describe the retention times of each of the herbicides within a defined experimental space of mobile phase pH range 3.0-4.8 and linear gradient slope 1-4% acetonitrile/min. The modelled chromatographic response surface was then used to determine the optimum separation within the experimental space. This approach allowed the rapid determination of experimental conditions for baseline resolution of all 10 herbicides. Illustrative examples of determination of these components in Milli-Q water, Sydney mains water and natural water samples spiked at 0.5-1mug/L are shown. Recoveries were over 70% for solid-phase extraction using Waters Oasis((R)) HLB 6cm(3) cartridges.

  4. Determination of arsenic species in edible periwinkles (Littorina littorea) by HPLC-ICPMS and XAS along a contamination gradient

    SciTech Connect

    Whaley-Martin, K. J.; Koch, I.; Reimer, K. J.

    2013-06-12

    Arsenic is naturally found in the tissues of marine animals, usually as the non-toxic arsenical arsenobetaine, but exposure to elevated arsenic concentrations in the environment may alter the arsenic species distribution within tissues of the organism. This study examined the arsenic species in the tissues of the marine periwinkle (Littorina littorea) along an arsenic concentration gradient in the sediment. The arsenicals in L. littorea were examined using the complementary analytical methods high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC–ICPMS) and X-ray absorption spectroscopy (XAS). Total arsenic concentrations in the periwinkle tissues ranged from 56 to 840 mg · kg-1 dry weight (equivalent to 13 to 190 mg · kg-1 wet weight). Inorganic arsenicals were found to be positively correlated with total arsenic concentrations (R2 = 0.993) and reached 600 mg · kg-1 dry weight, the highest reported to date in marine organisms. These high inorganic arsenic concentrations within this low trophic organism pose a potential toxicological risk to higher trophic consumers.

  5. Apolipoprotein distribution in human lipoproteins separated by polyacrylamide gradient gel electrophoresis.

    PubMed

    Vézina, C A; Milne, R W; Weech, P K; Marcel, Y L

    1988-05-01

    The heterogeneity of serum lipoproteins (excluding very low density (VLDL) and intermediate density (IDL) lipoproteins) and that of lipoproteins secreted by HepG2 cells has been studied by immunoblot analysis of the apolipoprotein composition of the particles separated by polyacrylamide gradient gel electrophoresis (GGE) under nondenaturing conditions. The reactions of antibodies to apoA-I, apoA-II, apoE, apoB, apoD, and apoA-IV have revealed discrete bands of particles which differ widely in size and apolipoprotein composition. GGE of native serum lipoproteins demonstrated that apoA-II is present in lipoproteins of limited size heterogeneity (apparent molecular mass 345,000 to 305,000) and that apoB is present in low density lipoproteins (LDL) and absent from all smaller or denser lipoproteins. In contrast, serum apoA-I, E, D, and A-IV are present in very heterogeneous particles. Serum apoA-I is present mainly in particles of 305 to 130 kDa where it is associated with apoA-II, and in decreasing order of immunoreactivity in particles of 130-90 kDa, 56 kDa, 815-345 kDa, and finally within the size range of LDL, all regions where there is little detectable apoA-II. Serum apoE is present in three defined fractions, one within the size range of LDL, one containing heterogeneous particles between 640 and 345 kDa, and one defined fraction at 96 kDa. Serum apoD is also present in three defined fractions, one comigrating with LDL, one containing heterogeneous particles between 390 and 150 kDa, and one band on the migration front. Most of serum apoA-IV is contained in a band comigrating with albumin. GGE of centrifugally prepared LDL shows the presence of apoB, apoE, and apoD, but not that of apoA-I. However, the particles containing apoA-I, which, in serum, migrated within the LDL size range and as bands of 815 to 345 kDa, were recovered upon centrifugation in the d greater than 1.21 g/ml fraction. GGE of high density lipoproteins (HDL) indicated that most of apoA-I, A

  6. Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient.

    PubMed

    Goutal, Sébastien; Auvity, Sylvain; Legrand, Tiphaine; Hauquier, Fanny; Cisternino, Salvatore; Chapy, Hélène; Saba, Wadad; Tournier, Nicolas

    2016-05-10

    In clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n=3). The method was linear from 0.1 to 40 μg mL(-1) and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial Cmax was 2.1±0.2 fold higher than venous Cmax. The area under the curve (AUC) from 0 to 120 min was ∼80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase.

  7. Semi-preparative HPLC separation followed by HPLC/UV and tandem mass spectrometric analysis of phorbol esters in Jatropha seed.

    PubMed

    Kongmany, Santi; Hoa, Truong Thi; Hanh, Le Thi Ngoc; Imamura, Kiyoshi; Maeda, Yasuaki; Boi, Luu Van

    2016-12-01

    Phorbol esters (PEs) are well known as the main toxic compounds in Jatropha curcas Linnaeus (JCL), the seed oil of which has been considered as a major feedstock for the production of biodiesel. In the present study, we investigated a series of PEs extracted from JCL seed kernels with methanol (MeOH), and identified more than seven components contained in the PEs. The isolation of main five components of a series of PEs was revised using a semi-preparative reversed phase HPLC analysis of ODS-3 column. The five peaks of components were successfully isolated, and peaks of J2, J3, J5, and J7 were assigned to be Jatropha factors C1, C2, C3, and C4/5, but J6 was a mixture of Jatropha factor C6 and its isomer based on the data of UV and LC-MS/MS, and J2 was identified using (1)H NMR analysis. By characterization using LC-MS/MS analysis, all components of a series of PEs were elucidated to be the 12-deoxy-16-hydroxyphorbol esters composed of isomeric form of dicarboxylic groups with same m/z value of 380.

  8. HPLC Determination of Taurine in Sports Drinks

    NASA Astrophysics Data System (ADS)

    Orth, Dale L.

    2001-06-01

    The amino acid taurine (2-aminoethanesulfonic acid) is present as a nutritional supplement in many sports drinks. An experiment, suitable for a junior-senior level instrumental analysis course, is described to measure the amount of taurine in these sports drinks. A pre-column derivatization with Sanger's reagent, 2,4-dinitrofluorobenzene, is followed by an HPLC separation utilizing a gradient elution, and detection at 360 nm.

  9. Conventional Chiralpak ID vs. capillary Chiralpak ID-3 amylose tris-(3-chlorophenylcarbamate)-based chiral stationary phase columns for the enantioselective HPLC separation of pharmaceutical racemates.

    PubMed

    Ahmed, Marwa; Gwairgi, Marina; Ghanem, Ashraf

    2014-11-01

    A comparative enantioselective analysis using immobilized amylose tris-(3-chlorophenylcarbamate) as chiral stationary phase in conventional high-performance liquid chromatography (HPLC) with Chiralpak ID (4.6 mm ID × 250 mm, 5 µm silica gel) and micro-HPLC with Chiralpak ID-3 (0.30 mm ID × 150 mm, 3 µm silica gel) was conducted. Pharmaceutical racemates of 12 pharmacological classes, namely, α- and β-blockers, anti-inflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs, and antiarrhythmic drugs were screened under normal phase conditions. The effect of an organic modifier on the analyte retentions and enantiomer recognition was investigated. Baseline separation was achieved for 1-acenaphthenol, carprofen, celiprolol, cizolirtine carbinol, miconazole, tebuconazole, 4-hydroxy-3-methoxymandelic acid, 1-indanol, 1-(2-chlorophenyl)ethanol, 1-phenyl-2-propanol, flavanone, 6-hydroxyflavanone, 4-bromogluthethimide, and pentobarbital on the 4.6 mm ID packed with a 5 µm silica column using conventional HPLC. Nonetheless, baseline separation was achieved for aminoglutethimide, naftopidil, and thalidomide on the 0.3 mm ID packed with a 3 µm silica capillary column.

  10. A Computational Study on the Effects of Dynamic Roughness Application to Separated Transitional Flows Affected by Adverse Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Campitelli, Gennaro

    The study of transitional flows is considered crucial for many practical engineering applications. In fact, a comprehensive understanding of the laminar-turbulent transition phenomenon often helps to improve the overall performance of apparatuses such as airfoils, wind turbines, hulls and turbomachinery blades. In addition to understanding and prediction of transitional flows, active research continues in the area of boundary layer control, which includes control of phenomena such as flow separation and transition. For instance, optimum geometrical shaping may be followed by the adoption on the wall-surface of riblets to adjust pressure gradient and reduce drag. Further "flow control" may also be acquired by introducing active devices able to modify the flow field in order to accomplish a desired aerodynamic task. Such flow manipulation is often achieved by using time-dependent forcing mechanisms which promote natural instabilities amplifying the control effectiveness. Localized energy inputs such as Lorentz-force actuator, piezoelectric flaps and synthetic jets all produce a consistent boundary layer mixing enhancement with lift increase and drag abatement. The current numerical study attempts to demonstrate the efficacy of dynamic roughness (DR) on altering separated-reattached transitional flows under adverse pressure gradient. It has already been proven how DR, acting on the boundary sublayer perturbation, is able to suppress (partially or completely) the typical leading edge separation for an airfoil at different angles of attack. This makes DR particularly suitable for separated flow control applications where the shear layer reattaches presenting the characteristic laminar separation bubble. A numerical sensitivity study has been conducted with an efficient orthogonal design taking into account four different control parameters on three levels (actuation frequency, humps height, rows displacement, synchronization) to provide an optimum DR setup which limits

  11. pi-Conjugated Gradient Copolymers Suppress Phase Separation and Improve Stability in Bulk Heterojunction Solar Cells

    DTIC Science & Technology

    2014-01-01

    discussion Polymer synthesis The gradient copolymers described herein were prepared using a living, chain-growth polymerization method known as catalyst...and C. S. Hsu, Adv. Funct. Mater., 2011, 21, 1723–1732; (d) V. A. Kostyanovsky, D. K. Susarova, A. S. Peregudov and P. A. Troshin, Thin Solid Films ...bromohexyl)thiophene (10 mol%) were synthesized by catalyst transfer polycondensation. Post- polymerization conversion of the side-chain bromides into azides

  12. Measurement of the adhesion force between particles for high gradient magnetic separation of pneumatic conveyed powder products

    NASA Astrophysics Data System (ADS)

    Senkawa, K.; Nakai, Y.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2011-11-01

    In the industrial plants such as foods, medicines or industrial materials, there are big amount of issues on contamination by metallic wear debris originated from pipes of manufacturing lines. In this study, we developed a high gradient magnetic separation system (HGMS) under the dry process by using superconducting magnet to remove the ferromagnetic particles. One of the major problems of dry HGMS systems is, however, the blockage of magnetic filter caused by particle coagulation or deposition. In order to actualize the magnetic separation without blockage, we introduced pneumatic conveyance system as a new method to feed the powder. It is important to increase the drag force acting on the sufficiently dispersed particles, which require strong magnetic fields. To generate the strong magnetic fields, HGMS technique was examined which consists of a magnetic filter and a superconducting solenoid magnet. As a result of the magnetic separation experiment, it was shown that the separation efficiency changes due to the difference of the cohesive property of the particles. On the basis of the result, the adhesion force which acts between the ferromagnetic particles and the medium particles used for the magnetic separation was measured by Atomic Force Microscope (AFM), and cohesion of particles was studied from the aspect of interparticle interaction. We assessed a suitable flow velocity for magnetic separation according to the cohesive property of each particle based on the result.

  13. Development of a membrane-less dynamic field gradient focusing device for the separation of low-molecular-weight molecules.

    PubMed

    Burke, Jeffrey M; Smith, Colin D; Ivory, Cornelius F

    2010-03-01

    Dynamic field gradient focusing uses an electric field gradient generated by controlling the voltage profile of an electrode array to separate and concentrate charged analytes according to their individual electrophoretic mobilities. This study describes a new instrument in which the electrodes have been placed within the separation channel. The major challenge faced with this device is that when applied voltages to the electrodes are larger than the redox potential of water, electrolysis will occur, producing hydrogen ions (H+) plus oxygen gas on the anodes and hydroxide (OH(-)) plus hydrogen gas on the cathodes. The resulting gas bubbles and pH excursions can cause problems with system performance and reproducibility. An on-column, degassing system that can remove gas bubbles "on-the-fly" is described. In addition, the use of a high capacity, low-conductivity buffer to address the problem of the pH shift that occurs due to the production of H+ on the anodes is illustrated. Finally, the successful separation of three, low-molecular-weight dyes (amaranth, bromophenol blue and methyl red) is described.

  14. Surface-enhanced Raman detection of RNA and DNA bases following flow-injection analysis or HPLC separation

    NASA Astrophysics Data System (ADS)

    Cotton, Therese M.; Sheng, Rong-Sheng; Ni, Fan

    1990-11-01

    The goal of this study is to develop Surface-enhanced Raman scattering (SERS) detection methods for flow injection analysis (FIA) and high performance liquid chromatography (HPLC). Nucleic acid bases have been chosen for analysis because of their importance in life processes. The advantages to the use of SERS-based detection include its sensitivity, specificity and versatility. With the development of improved methodology, the detection limits should be comparable to UV spectroscopy. However, the specificity is considerably superior to that obtained with electronic spectroscopy in that the Raman spectrum provides a molecular fingerprint of the individual analytes. Raman spectroscopy is very versatile: aqueous samples, gases and solids can be analyzed with equal facility. The results presented here demonstrate that SERS can be used as a detection method for both FIA and HPLC detection. In the following experiments Ag sols have been used as the active substrate. The effect of various parameters such as temperature, pH, flow rate, and the nature of the interface between the HPLC system and the Raman spectrometer have been examined. One of the most significant findings is that the temperature of the Ag sol/HPLC effluent mixture has a dramatic effect on the SERS intensities. This effect is a result of increased colloid aggregation at higher temperatures. Aggregation is known to produce greater enhancement in SERS and proceeds much more rapidly at elevated temperatures. An increase in the temperature of the Ag sol enables SERS detection under flowing conditions and in real time. This is a substantial improvement over many of the previous attempts to interface SERS detection to FIA or HPLC. In most of the previous studies, it was necessary to stop the flow as the analyte eluted from the chromatogram and measure the SERS spectra under static conditions.

  15. Concentration influences on recovery in a high gradient magnetic separation axial filter

    SciTech Connect

    Murariu, V.; Rezlescu, N.; Rotariu, O.; Badescu, V.

    1998-05-01

    The buildup differential equations for the case of a single wire in high gradient magnetic filtration (HGMF)-axial configuration taking into account the suspension concentration are solved. A new equation for the deposit contour surface at different moments and for different suspension concentrations are obtained. The existence of a particulate suspension concentration, for which the radial extension velocity of deposit is maximum, is evidenced. The recovery for an ordered ferromagnetic matrix is calculated. The influence of the solid particle concentration from suspension on the filtration efficiency is presented.

  16. Comparative studies on performance of CCC and preparative RP-HPLC in separation and purification of steroid saponins from Dioscorea zingiberensis C.H.Wright.

    PubMed

    Zhang, Xinxin; Liang, Jinru; Zhang, Yongmin; Liu, Jianli; Sun, Wenji; Ito, Yoichiro

    2015-03-01

    Steroid saponins from Dioscorea zingiberensis C.H.Wright were separated for the first time using two chromatographic methods for comparison: counter-current chromatography (CCC) coupled with evaporative light scattering detector (ELSD) and preparative reversed phase high-performance liquid chromatography (RP-HPLC) with an ultraviolet detector. Ethyl acetate-n-butanol-methanol-water (4:1:2:4, v/v) was chosen as the two-phase solvent system for CCC, while the acetonitrile-water (25:75 for the first step and15:85 for the second step, v/v) was used as the mobile phase in the preparative RP-HPLC. The following five steroid saponins were purified by theses two chromatographic methods, in one-step operation by CCC and by two-step operation in preparative RP-HPLC: 1) 26-O-β-D- glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 26-triol-3-O-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (compound A), 2) 26-O-β-D-glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 4) 26-triol-3-O-[β-D-glucopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)]-β-D-glucopyranoside (compound B), 3) 26-O-β-D-glucopyranosyl-(25R)-furost-5-en-3β, 22ζ, 26-triol-3-O-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside (compound C), 4) 26-O-β-D-glucopyranosyl-(25R)-furost-5, 20(22)-diene-3β, 26-diol-3-O-{α-L-rhamnopyranosyl-(1→4)-[β-D-glucopyranosyl-(1→3)-β-D-glucopyranosyl-(1→2)]}-β-D-glucopyranoside (compound D) and 5) 26-O-β-D-glucopyranosyl-(25R)-furost-5, 20(22)-diene-3β, 26-diol-3-O-[β-D-glucopyranosyl-(1→4)-α-L-rhamnopyranosy-(1→2)]-β-D-glucopyranoside (compound E). The purities of these five steroid saponins separated by both methods were over 95%, and structural identification of these compounds was performed by ESI-MS, and (13)C NMR. Comparison of these two established approaches revealed that CCC required a longer separation time but with less solvent consumption, whereas preparative RP-HPLC gave a shorter separation time

  17. Investigation of the process of diamagnetic particle separation in a high-gradient ordered-structure magnetic field

    NASA Astrophysics Data System (ADS)

    Kashevskii, B. É.; Kashevskii, S. É.; Prokhorov, I. V.; Zholud', A. M.

    2011-05-01

    On the basis of the model of a flow-type magnetic filter with a transversely magnetized ordered system of long ferromagnetic rods of rectangular cross section, the process of high-gradient magnetic separation of microscopic diamagnetic particles (potato starch granules of sizes 8-30 μm) from a liquid suspension has been investigated. The registered laws of change in the concentration and size distribution of particles at the suspension outlet from the filter agree with the theoretical conclusions obtained from the analysis of the magnetic field structure and thecharacter of the particle motion in the filter volume.

  18. Behavior Learning Based on a Policy Gradient Method: Separation of Environmental Dynamics and State-Values in Policies

    NASA Astrophysics Data System (ADS)

    Ishihara, Seiji; Igarashi, Harukazu

    Policy gradient methods are useful approaches to reinforcement learning. Applying the method to behavior learning, we can deal with each decision problem in different time-steps as a problem of minimizing an objective function. In this paper, we give the objective function consists of two types of parameters, which represent state-values and environmental dynamics. In order to separate the learning of the state-value from that of the environmental dynamics, we also give respective learning rules for each type of parameters. Furthermore, we show that the same set of state-values can be reused under different environmental dynamics.

  19. Enantiomeric separation of mineralocorticoid receptor (hMR) antagonists using the Chiralcel OJ-H HPLC column with novel polar cosolvent eluent systems.

    PubMed

    Sharp, V Scott; Kennedy, Joseph H; Belvo, Matthew D; Williams, Jeffrey D; Risley, Donald S; Seest, Eric P

    2006-06-01

    This study demonstrates the increased versatility of the Chiralcel OJ-H stationary phase when using various alcohol/acetonitrile mobile phases. This chiral stationary phase has traditionally been employed in the normal phase mode and more recently with neat alcohols as eluents. Selected isomeric human mineralocorticoid receptor (hMR) antagonist pharmaceutical candidates and synthetic intermediates were separated using the Chiralcel OJ-H HPLC column with novel polar cosolvent eluent systems. The capacity factors, resolution, and selectivity of the chiral separations were assessed while varying the alcohol/acetonitrile composition and alcohol identity. The mixed polar eluents provide separations that are nearly always superior to both the traditional hexane-rich and single-alcohol "polar organic" eluents for the compounds tested in this article.

  20. Binary electroosmotic-pump nanoflow gradient generator for miniaturized high-performance liquid chromatography.

    PubMed

    Zhou, Lei; Lu, Joann Juan; Gu, Congying; Liu, Shaorong

    2014-12-16

    High-performance liquid chromatography (HPLC) plays an important role in biotechnology, and a majority of chromatographic separations use gradient elution. While gradient generators can be built in different formats, binary pumps or quaternary pumps are most frequently used for gradient generator constructions. We have recently developed a high-pressure electroosmotic pump (EOP); the pump can be manufactured at a cost of a few hundred dollars. However, it is challenging to use this pump to deliver a gradient eluent directly. In this study, we first improve the monolith preparation by applying a pressure to the monomer solution during polymerization. We assemble a binary EOP gradient generator and discuss the relationship between the gradient profile and voltage applied to the EOP. We demonstrate the feasibility of the binary EOP gradient generator for generating a smooth and reproducible nanoflow gradient. After integration of the gradient generator into a miniaturized HPLC system, we use the HPLC system for separating peptide mixtures from trypsin-digested proteins. The performance comparison between the above miniaturized HPLC system and an Agilent 1200 HPLC system exhibits comparable efficiencies, resolutions, and peak capacities.

  1. Enantiomeric separation of tolperisone and eperisone by reversed-phase HPLC with cellulose tris(3-chloro-4-methylphenylcarbamate)-coated chiral column.

    PubMed

    Owada, Yuri; Takahashi, Mizuho; Iwasa, Sumiko; Ichiba, Hideaki; Sadamoto, Kiyomi; Fukushima, Takeshi

    2014-01-01

    Enantiomeric separations of centrally acting muscle relaxants, that is, tolperisone (TOL) and eperisone (EP), that are marketed as racemates were investigated by reversed-phase high-performance liquid chromatography (HPLC) on a polysaccharide-based chiral column. Both TOL and EP are basic drugs because they contain a tertiary amino group and have similar chemical structures with the exception of the p-methylphenyl and p-ethylphenyl groups in TOL and EP, respectively. A reversed-phase chiral column, that is, a Chiralcel OZ-RH column, which bears cellulose tris(3-chloro-4-methylphenylcarbamate) as the chiral moiety, was effective for the enantiomeric separation of TOL and EP enantiomers. The separation factor and resolution values obtained for TOL were 1.22 and 1.66, respectively, and those for EP were 1.21 and 2.24, respectively, using a 20 mm ammonium acetate in H2 O (pH 8.0 and 7.0, respectively)-CH3 CN (70:30) mobile phase. Using the proposed HPLC conditions, it was found that (R)-TOL eluted faster than (S)-TOL, as revealed by the optical rotation and circular dichroism spectroscopy. In contrast, EP was easily racemized under the experimental conditions, and hence, the elution order was not determined.

  2. Rapid separation of desloratadine and related compounds in solid pharmaceutical formulation using gradient ion-pair chromatography.

    PubMed

    Zheng, Jinjian; Rustum, Abu M

    2010-01-05

    We reported the development of an ion-pair chromatographic method to separate desloratadine and all known related compounds in Clarinex Tablets, which use desloratadine as active pharmaceutical ingredient (API). For the first time, baseline separation for desloratadine and all known related compounds was achieved by utilizing a YMC-Pack Pro C(18) column (150 mm x 4.6 mm I.D., 3 microm particle size, 120A pore size) and a gradient elution method. The mobile phase A contains 3 mM sodium dodecylsulfate (SDS), 15 mM sodium citrate buffer at pH 6.2, and 40 mM sodium sulfate, while the mobile phase B is acetonitrile. Chromsword, an artificial intelligence method development tool, was used to optimize several key chromatographic parameters simultaneously including buffer pH/solvent strength, and temperature/gradient profile. The resolution of desloratadine and desloratadine 3,4-dehydropiperidine derivative, one of the critical pairs was improved by adding 40 mM sodium sulfate. Ultraviolet detection at 267 nm was used to achieve the detection for desloratadine and all compounds. This method has been successfully validated according to ICH guidelines in terms of linearity, accuracy, quantitation limit/detection limit, precision, specificity and robustness. It could be used as a stability indicating method for desloratadine drug substances or drug products that use desloratadine as active pharmaceutical ingredient.

  3. Separation of short-chain branched polyolefins by high-temperature gradient adsorption liquid chromatography.

    PubMed

    Macko, Tibor; Brüll, Robert; Alamo, Rufina G; Stadler, Florian J; Losio, Simone

    2011-02-01

    A new separation principle was recently introduced into the analytical characterization of polyolefins by researchers from the German Institute for Polymers in Darmstadt. It was demonstrated that polyolefins can be selectively separated via high-performance liquid chromatography on the basis of their adsorption/desorption behaviours at temperatures as high as 160 °C. A Hypercarb® column packed with porous graphite gave the best results. The mobile phase consisted of a mixture of 1-decanol and 1,2,4-trichlorobenzene. In this work, the same chromatographic system is applied to the separation of ethylene/alkene and ethylene/norbornene copolymers. It was found that the elution volumes of the samples correlate linearly with the average chemical composition of samples. The elution volume is indirectly proportional to the concentration of branches in the ethylene/alkene copolymer. Branching shortens the length of continuous methylene sequences of the polymer backbone, thus decreasing the probability of orientation of a methylene sequence in a flat conformation on the graphite surface, which enables the most intensive van der Waals interactions between the methylene backbone and the carbon surface. An opposite trend in the elution order has been found for ethylene/norbornene copolymers. The elution volume of the ethylene/norbornene copolymers increased with the concentration of norbornene. It indicates pronounced attractive interactions between graphite and the cyclic comonomer.

  4. Very high pressure liquid chromatography using fully porous particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois Ann; Guiochon, Georges

    2014-01-10

    Using a column packed with fully porous particles, four methods for controlling the flow rates at which gradient elution runs are conducted in very high pressure liquid chromatography (VHPLC) were tested to determine whether reproducible thermal conditions could be achieved, such that subsequent analyses would proceed at nearly the same initial temperature. In VHPLC high flow rates are achieved, producing fast analyses but requiring high inlet pressures. The combination of high flow rates and high inlet pressures generates local heat, leading to temperature changes in the column. Usually in this case a post-run time is input into the analytical method to allow the return of the column temperature to its initial state. An alternative strategy involves operating the column without a post-run equilibration period and maintaining constant temperature variations for subsequent analysis after conducting one or a few separations to bring the column to a reproducible starting temperature. A liquid chromatography instrument equipped with a pressure controller was used to perform constant pressure and constant flow rate VHPLC separations. Six replicate gradient separations of a nine component mixture consisting of acetophenone, propiophenone, butyrophenone, valerophenone, hexanophenone, heptanophenone, octanophenone, benzophenone, and acetanilide dissolved in water/acetonitrile (65:35, v/v) were performed under various experimental conditions: constant flow rate, two sets of constant pressure, and constant pressure operation with a programmed flow rate. The relative standard deviations of the response factors for all the analytes are lower than 5% across the methods. Programming the flow rate to maintain a fairly constant pressure instead of using instrument controlled constant pressure improves the reproducibility of the retention times by a factor of 5, when plotting the chromatograms in time.

  5. A sensitive emulsification liquid phase microextraction coupled with on-line phase separation followed by HPLC for trace determination of sulfonamides in water samples.

    PubMed

    Ebrahimpour, Behnam; Yamini, Yadollah; Rezazadeh, Maryam

    2015-01-01

    For the first time, ion-pair based emulsification liquid phase microextraction coupled with a novel approach for phase separation followed by high performace liquid chromatgraphy (HPLC) was utilized for trace determination of sulfonamides in water samples. After the formation of ion-pair complex with a cationic surfactant, sulfonamides were extracted into the drops of dispersed organic extracting solvent. Then, the cloudy solution was passed through an in-line filter located in a suitable holder and was separated based on emulsion filtration. By changing the HPLC valve position, the filter was laid in the mobile phase path, and the extraction phase was eluted by the mobile phase and introduced into the separation column for analysis. The effects of important parameters, such as type of extraction solvent, type of ion-pair agent and its concentration, pH of sample solution, ionic strength, and volume of extraction phase, on the extraction efficiency, were investigated and optimized. Under optimal conditions, the linear range, limits of detection, and precision (relative standard deviations) were 0.3-100, 0.1-0.3 μg L(-1), and 4.7-5.8%, respectively. Preconcentration factors (PFs) for the compounds studied were obtained in the range of 268-664. These PFs correspond to extraction recoveries in the range of 41-97%. The sample throughput of the method was 3 samples per hour, regarding 20 min analysis time for a single procedure. Finally, the method was successfully applied to determine the selected sulfonamides in some water samples.

  6. Comparative HPLC methods for β-blockers separation using different types of chiral stationary phases in normal phase and polar organic phase elution modes. Analysis of propranolol enantiomers in natural waters.

    PubMed

    Morante-Zarcero, Sonia; Sierra, Isabel

    2012-03-25

    The enantioselectivities of β-blockers (propranolol, metoprolol, atenolol and pindolol) on four different types of chiral stationary phases (CSPs): Chiralpak AD-H, Lux Cellulose-1, Chirobiotic T and Sumichiral OA-4900 were compared using polar organic (PO) elution mode and normal phase (NP) elution mode. Method optimizations were demonstrated by modifying parameters such as organic modifier composition (ethanol, 2-propanol and acetonitrile) and basic mobile phase additives (triethylamine, diethylamine, ethanolamine, and buthylamine). In normal phase elution mode with Lux Cellulose-1, the four pairs of enantiomers can be separated in the same run in gradient elution mode. Additionally, a simple chiral HPLC-DAD method using a newly commercialized polysaccharide-based CSP by Phenomenex (Lux Cellulose-1) in NP elution mode for enantioselective determination of propranolol in water samples by highly selective molecularly imprinted polymers extraction was validated. The optimized conditions were a mobile phase composed by n-hexane/ethanol/DEA (70/30/0.3, v/v/v) at a flow rate of 1.0 mL min(-1) and 25 °C. The method is selective, precise and accurate and was found to be linear in the range of 0.125-50 μg mL(-1) (R(2)>0.999) with a method detection limit (MLD) of 0.4 μg mL(-1) for both enantiomers. Recoveries achieved with both enantiomers ranged from 97 to 109%.

  7. HPLC Separation of Vitamin E and Its Oxidation Products and Effects of Oxidized Tocotrienols on the Viability of MCF-7 Breast Cancer Cells in Vitro.

    PubMed

    Drotleff, Astrid M; Büsing, Anne; Willenberg, Ina; Empl, Michael T; Steinberg, Pablo; Ternes, Waldemar

    2015-10-14

    Tocotrienols, a vitamin E subgroup, exert potent anticancer effects, but easily degrade due to oxidation. Eight vitamin E reference compounds, α-, β-, γ-, or δ-tocopherols or -tocotrienols, were thermally oxidized in n-hexane. The corresponding predominantly dimeric oxidation products were separated from the parent compounds by diol-modified normal-phase HPLC-UV and characterized by mass spectroscopy. The composition of test compounds, that is, α-tocotrienol, γ-tocotrienol, or palm tocotrienol-rich fraction (TRF), before and after thermal oxidation was determined by HPLC-DAD, and MCF-7 cells were treated with both nonoxidized and oxidized test compounds for 72 h. Whereas all nonoxidized test compounds (0-100 μM) led to dose-dependent decreases in cell viability, equimolar oxidized α-tocotrienol had a weaker effect, and oxidized TRF had no such effect. However, the IC50 value of oxidized γ-tocotrienol was lower (85 μM) than that of nonoxidized γ-tocotrienol (134 μM), thereby suggesting that γ-tocotrienol oxidation products are able to reduce tumor cell viability in vitro.

  8. Controllable Assembly and Separation of Colloidal Nanoparticles through a One-Tube Synthesis Based on Density Gradient Centrifugation.

    PubMed

    Qi, Xiaohan; Li, Minglin; Kuang, Yun; Wang, Cheng; Cai, Zhao; Zhang, Jin; You, Shusen; Yin, Meizhen; Wan, Pengbo; Luo, Liang; Sun, Xiaoming

    2015-05-04

    Self-assembly of gold nanoparticles into one-dimensional (1D) nanostructures with finite primary units was achieved by introducing a thin salt (NaCl) solution layer into density gradient before centrifugation. The electrostatic interactions between Au nanoparticles would be affected and cause 1D assembly upon passing through the salt layer. A negatively charged polymer such as poly(acrylic acid) was used as an encapsulation/stabilization layer to help the formation of 1D Au assemblies, which were subsequently sorted according to unit numbers at succeeding separation zones. A centrifugal field was introduced as the external field to overcome the random Brownian motion of NPs and benefit the assembly effect. Such a facile "one-tube synthesis" approach couples assembly and separation in one centrifuge tube by centrifuging once. The method can be tuned by changing the concentration of interference salt layer, encapsulation layer, and centrifugation rate. Furthermore, positively charged fluorescent polymers such as perylenediimide-poly(N,N-diethylaminoethyl methacrylate) could encapsulate the assemblies to give tunable fluorescence properties.

  9. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  10. Very high pressure liquid chromatography using core-shell particles: quantitative analysis of fast gradient separations without post-run times.

    PubMed

    Stankovich, Joseph J; Gritti, Fabrice; Stevenson, Paul G; Beaver, Lois A; Guiochon, Georges

    2014-01-17

    Five methods for controlling the mobile phase flow rate for gradient elution analyses using very high pressure liquid chromatography (VHPLC) were tested to determine thermal stability of the column during rapid gradient separations. To obtain rapid separations, instruments are operated at high flow rates and high inlet pressure leading to uneven thermal effects across columns and additional time needed to restore thermal equilibrium between successive analyses. The purpose of this study is to investigate means to minimize thermal instability and obtain reliable results by measuring the reproducibility of the results of six replicate gradient separations of a nine component RPLC standard mixture under various experimental conditions with no post-run times. Gradient separations under different conditions were performed: constant flow rates, two sets of constant pressure operation, programmed flow constant pressure operation, and conditions which theoretically should yield a constant net heat loss at the column's wall. The results show that using constant flow rates, programmed flow constant pressures, and constant heat loss at the column's wall all provide reproducible separations. However, performing separations using a high constant pressure with programmed flow reduces the analysis time by 16% compared to constant flow rate methods. For the constant flow rate, programmed flow constant pressure, and constant wall heat experiments no equilibration time (post-run time) was required to obtain highly reproducible data.

  11. Determination of lycopene in food by on-line SFE coupled to HPLC using a single monolithic column for trapping and separation.

    PubMed

    Pól, Jaroslav; Hyötylänen, Tuulia; Ranta-Aho, Outi; Riekkola, Marja-Liisa

    2004-10-15

    A method that would eliminate the degradation of lycopene during analysis was developed. Supercritical fluid extraction (SFE) with carbon dioxide as the extraction medium was connected on-line to high performance liquid chromatography (HPLC) where a single monolithic column was used for trapping and the subsequent separation of analytes. The method was linear over the studied range (0.1-2.5 microg), and it was repeatable (R.S.D. 3.9%), sensitive (LOD = 0.5 ng) and fast (35 min). Lycopene was determined in tomatoes, fruit and several food products. Because of the on-line construction, lycopene was not in contact with air or light during the whole procedure and the amount analysed should therefore correspond to the real amount in the sample.

  12. HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors.

    PubMed

    Saldanha, Tatiana; Sawaya, Alexandra Christine Helena Frankland; Eberlin, Marcos Nogueira; Bragagnolo, Neura

    2006-06-14

    A simple, fast, and sensitive method for the extraction through direct saponification, separation, quantification, and identification of 12 cholesterol oxidation products (COPs) and cholesterol in a single isocratic, normal-phase, high-performance liquid chromatography (HPLC) was developed. Three detectors were compared for determination of COPs and cholesterol in fish samples: refractive index (RI), ultraviolet (UV), and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). The results did not show significant differences (p > 0.05) between the concentration of the cholesterol oxides and cholesterol obtained with these detectors. The present study demonstrated the presence of 19-hydroxycholesterol, 22"R"-hydroxycholesterol, 22"S"-hydroxycholesterol, 24"S"-hydroxycholesterol, and 25"R"-hydroxycholesterol for the first time in fish samples.

  13. Density gradient centrifugation: Application to the separation of macerals of type I, II, and III sedimentary organic matter

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Crelling, J.C.; Salmon, G.L.

    1994-01-01

    Samples of organic matter from nine well-known geological units (Green River Fm., Tasmanian Tasmanite, Lower Toarcian Sh. of the Paris Basin, Duwi Fm., New Albany Sh., Monterey Fm., Herrin No. 6 coal, Eocene coal, and Miocene lignite from Kalimantan) were processed by density gradient centrifugation (DGC) to isolate the constituent macerals. Optimal separation, as well as the liberation of microcrystalline pyrite from the organic matter, was obtained by particle size minimization prior to DGC by treatment with liquid N2 and micronization in a fluid energy mill. The resulting small particle size limits the use of optical microscopy, thus microfluorimetry and analytical pyrolysis were also employed to assess the quality and purity of the fractions. Each of the samples exhibits one dominant DGC peak (corresponding to alginite in the Green River Fm., amorphinite in the Lower Toarcian Sh., vitrinite in the Herrin No. 6, etc.) which shifts from 1.05 g mL-1 for the Type I kerogens to between 1.18 and 1.23 g mL-1 for Type II and II-S. The characteristic densities for Type III organic matter are greater still, being 1.27 g mL-1 for the hydrogen-rich Eocene coal, 1.29 g mL-1 for the Carboniferous coal and 1.43 g mL-1 for the oxygen-rich Miocene lignite. Among Type II kerogens, the DGC profile represents a compositional continuum from undegraded alginite through (bacterial) degraded amorphinite; therefore chemical and optical properties change gradually with increasing density. The separation of useful quantities of macerals that occur in only minor amounts is difficult. Such separations require large amounts of starting material and require multiple processing steps. Complete maceral separation for some samples using present methods seems remote. Samples containing macerals with significant density differences due to heteroatom diversity (e.g., preferential sulfur or oxygen concentration in the one maceral), on the other hand, may be successfully separated (e.g., coals and

  14. Identification of candidate amino acids involved in the formation of pink-red pigments in onion (Allium cepa L.) juice and separation by HPLC.

    PubMed

    Lee, Eun Jin; Yoo, Kil Sun; Patil, Bhimanagouda S

    2010-10-01

    The formation of pink-red pigments ("pinking") by various amino acids was investigated by reacting amino acids with compounds present in onion juice. The unknown pink-red pigments were generated and separated using high-performance liquid chromatography (HPLC) and a diode array detector (DAD) in the range of 200 to 700 nm. To generate pink-red pigments, we developed several reaction systems using garlic alliinase, purified 1-propenyl-L-cysteine sulfoxide (1-PeCSO), onion thiosulfinate, natural onion juice, and 21 free amino acids. The compound 1-PeCSO was a key compound associated with pinking in the presence of both the alliinase and amino acids. Numerous naturally occurring pink-red pigments were detected and separated from pink onion juice using the HPLC-DAD system at 515 nm. Most free amino acids, with the exceptions of histidine, serine, and cysteine, formed various pink-red pigments when reacted with onion thiosulfinate. This observation indicated that onion pinking is caused not by a single pigment, but by many. Furthermore, more than one color compound could be produced from a single amino acid; this explains, in part, why there were many pink-red compound peaks in the chromatogram of discolored natural onion juice. We presumed that the complexity of the pink-red pigments was due to the involvement of more than 21 natural amino acids as well as several derivatives of the color products produced from each amino acid. We observed that the pinking process in onion juice is very similar to that of the greening process in crushed garlic, emphasizing that both thiosulfinate from flavor precursors and free amino acids are absolutely required for the discoloration.

  15. Isolation and characterization of mesenchymal stem cells from the fat layer on the density gradient separated bone marrow.

    PubMed

    Insausti, Carmen L; Blanquer, Miguel Blanquer; Olmo, Luis Meseguer; López-Martínez, María C; Ruiz, Xavier Férez; Lozano, Francisco J Rodríguez; Perianes, Valentín Cabañas; Funes, Consuelo; Nicolás, Francisco J; Majado, María J; Jiménez, José M Moraleda

    2012-01-20

    The density gradient centrifugation method was originally designed for the isolation of mononuclear peripheral blood cells and rapidly adapted to fractionate bone marrow (BM) cells. This method involves the use of gradient density solutions with low viscosity and low osmotic pressure that allows erythrocytes and more mature cells gravitate to the bottom at a density fraction superior to 1.080 g/dL; mononuclear cells (MNCs) held in the plasma-solution to interphase at a density between 1.053 and 1.073 g/dL; plasma, dilution medium and anticoagulant to occupy a density less than 1.050 g/dL and the fat cells to float due to their very low density. BM-mesenchymal stem cells (MSCs) are usually obtained after the separation and cultures of BM-MNCs from the plasma-solution interphase, which is traditionally considered the only source of progenitor cells (hematopoietic and nonhematopoietic). In this study evidences that MSCs could be isolated from the very low-density cells of the fat layer are presented. In addition, we demonstrated that the MSCs obtained from these cells have similar immunophenotypic characteristics, and similar proliferative and differentiation potential to those obtained from the MNCs at plasma-solution interphase. The method represents a simple and cost effective way to increase the MSCs yield from each BM donor, without the need to look for other sources, additional manipulation of cells, and risks of contamination or disturbances of the potential of differentiation. These cells might serve as a complementary source of MSCs to facilitate preclinical and clinical application in tissue engineering and cell therapy.

  16. Surfactant gradient methods using mixed systems of cethyltrimethylammonium chloride and nonionic surfactants possessing polyoxyethylene chains for electrokinetic separation of benzoate anions as model analytes.

    PubMed

    Esaka, Yukihiro; Sawamura, Mika; Murakami, Hiroya; Uno, Bunji

    2006-12-01

    Surfactant gradient methods for electrokinetic separation of 10 benzoates as model organic anions were investigated using mixed micellar solutions of cetyltrimethylammonium chloride (CTAC) and nonionic surfactants possessing polyoxyethylene chains, polyoxyethylene sorbitan monolaurate (Tween 20) or polyoxyethylene lauryl ether (Brij 35). Electroosmotic flow (EOF) was eliminated virtually by a coating of the inner wall of the capillaries, and then the benzoates were detected fundamentally in the order of their hydrophobicity. In a pure CTAC system, the synergistic influences of attractive electrostatic and hydrophobic interactions gave rise to quite large retention factors of many of the benzoate anions, resulting in their coelution. Addition of an adequate amount of Tween 20 to the pure CTAC system decreased the electrostatic interaction significantly to give remarkably improved separation of the analytes, but long analysis time was required. A surfactant gradient method would be useful to decrease analysis time and to improve separation simultaneously. Under slight EOF, the micelles in the inlet reservoir can pass through and, thus, interact with all of the analytes before they were detected. In the present system, surfactant gradient separations could be performed simply by changing compositions of the surfactant solutions in the inlet reservoir during a single run. Additionally, we carried out continuous gradient separation using a simple device. Brij 35 gave an effect parallel to that by Tween 20 in migration behavior of the analytes. A practically negligible change in the level of the baseline was observed in a stepwise gradient elution with the CTAC/Brij 35 system because of the small absorbance at the detection wavelength, while that with the CTAC/Tween 20 was considerable. All the benzoates were separated completely within reasonable analysis times using both stepwise and continuous gradient programs for the concentrations of Tween 20 or Brij 35 in the

  17. Separation and quantitative determination of cinacalcet metabolites in urine sample using RP-HPLC after derivation with a fluorescent labeling reagent.

    PubMed

    Farnoudian-Habibi, Amir; Jaymand, Mehdi

    2016-08-01

    In this investigation, a novel strategy for separation and quantitative determination of four metabolites of cinacalcet (M2a-Glu, M2b-Glu, M7-Gly, and M8-Gly) in human urine is suggested. The analytical assay is based on a pre-column derivation procedure of cinacalcet metabolites with 1-pyrenyldiazomethane (PDAM) as a fluorescent labeling reagent, and subsequently separation and quantitative determination with reverse-phase high-performance liquid chromatography (RP-HPLC) coupled with a fluorescence detector. Metabolites were separated on a Microsorb-MV 100-5 C18 chromatography column (250×4.6mm, 5μm) using acetate buffer (pH 3.5):methanol (30:70 v/v) as mobile phase at a flow rate of 1.0mLmin(-1). The method was fully validated in terms of linearity (r(2)>0.996; 1-10ngmL(-1)), precision (both intra-day and inter-day; RSD<6.2%), accuracy (92-110%), specificity, robustness (0.15%

  18. Enantiomeric separation of D,L-tryptophan and D,L-kynurenine by HPLC using pre-column fluorescence derivatization with R(-)-DBD-PyNCS.

    PubMed

    Iizuka, Hideaki; Hirasa, Yasushi; Kubo, Kazumi; Ishii, Kana; Toyo'oka, Toshimasa; Fukushima, Takeshi

    2011-07-01

    The enantiomeric separation of D,L-tryptophan (Trp) and D,L-kynurenine (KYN) was investigated by high-performance liquid chromatography using pre-column fluorescence derivatization with a chiral fluorescent labeling reagent, R(-)-4-(3-isothiocyanatopyrrolidin-1-yl)-7- (N,N-dimethylaminosulfonyl)-2,1,3-benzoxadiazole [R(-)-DBD-PyNCS]. Using an octadecylsilica column, namely, an Inertsil ODS-3 column (250 x 2.0 mm; i.d., 3 μm), four fluorescence peaks of D- and L-Trp as well as D- and L-KYN derivatized with R(-)-DBD-PyNCS were clearly observed, and their chemical structures were confirmed by HPLC-time-of-flight-mass spectrometry. Simultaneous separation was achieved under the mobile phase condition of 1.5% acetic acid in H₂O-CH₃CN (60:40), and the separation factors of D,L-Trp and D,L-KYN derivatized with R(-)-DBD-PyNCS were 1.22 and 1.19, respectively. Fluorescence detection was carried out by setting the emission wavelength at 565 nm, and the excitation wavelength at 440 nm, and the detection limits were approximately 0.3-0.5 pmol (signal-to-noise ratio of 3).

  19. Planar Mn4O cluster homochiral metal-organic framework for HPLC separation of pharmaceutically important (±)-ibuprofen racemate.

    PubMed

    Hailili, Reshalaiti; Wang, Li; Qv, Junzhang; Yao, Ruxin; Zhang, Xian-Ming; Liu, Huwei

    2015-04-20

    A planar tetracoordinated oxygen containing a homochiral metal-organic framework (MOF) has been synthesized and characterized that can be used as a new chiral stationary phase in high-performance liquid chromatography to efficiently separate racemates such as pharmaceutically important (±)-ibuprofen and (±)-1-phenyl-1,2-ethanediol.

  20. Separation of human thymocytes at different stages of maturation by centrifugation on a discontinuous gradient of colloidal silica gel.

    PubMed

    Goust, J M; Perry, L R

    1981-06-01

    Separation of human intrathymic cells on a discontinuous gradient of colloidal silica gel (Percoll) yielded four layers. The first (density 1.054 +/- 0.002 g/ml) contained stromal cells and a few thymocytes positive for terminal deoxynucleotidyl transferase (Tdt), most of which were bound to large Tdt-negative non-T cells. The second layer (1.069+/- 0.003 g/ml) contained large Tdt-negative thymocytes. The third and forth layers (1.075 +/-0.004 and 1.085 +/- 0.003 g/ml, respectively) contained smaller T cells, more than 95% of which were Tdt-positive. Functional studies revealed that cells from the first layer had a high level of spontaneous [3H]thymidine uptake but did not respond to lectins; the second layer responded to PHA, ConA, and allogeneic stimuli; and the third and fourth layers did not respond to lectin stimulation. Addition of cells from the first layer to the other layers at a 1 : 10 ratio significantly increased the mitogenic responses of the cells from the second layer, but not of those from the third or fourth layer. These results suggest that, as in mice and rats, low-density intrathymic thymocytes in humans represent more mature T cells, the percentage of which increases with age.

  1. HPLC method to characterize cyanogen bromide collagen fractions containing pyridinoline groups.

    PubMed

    Bruno, R; Mazza, R; Calafiori, A R; Covello, C; Falbo, L; Martino, G; Marotta, M

    1997-01-01

    The HPLC method here described allows to separate CNBr collagen peptides within 2.5 h by reversed phase and gradient elution. The method is useful to determine both peptide bond and pyridinoline groups by absorbance spectophotometry. The fractions can be recovered and then submitted to other characterization techniques.

  2. On-chip temperature gradient interaction chromatography.

    PubMed

    Shih, Chi-Yuan; Chen, Yang; Xie, Jun; He, Qing; Tai, Yu-Chong

    2006-04-14

    This paper reports the first integrated microelectromechanical system (MEMS) HPLC chip that consists of a parylene high-pressure LC column, an electrochemical sensor, a resistive heater and a thermal-isolation structure for on-chip temperature gradient interaction chromatography application. The separation column was 8 mm long, 100 microm wide, 25 microm high and was packed with 5 microm sized, C18-coated beads using conventional slurry-packing technique. A novel parylene-enhanced, air-gap thermal isolation technology was used to reduce heater power consumption by 58% and to reduce temperature rise in the off-column area by 67%. The fabricated chip consumed 400 mW when operated at 100 degrees C. To test the chromatography performance of the fabricated system, a mixture of derivatized amino acids was chosen for separation. A temporal temperature gradient scanning from 25 to 65 degrees C with a ramping rate of 3.6 degrees C/min was applied to the column during separation. Successful chromatographic separation of derivatized amino acids was carried out using our chip. Compared with conventional temperature gradient HPLC system which incorporates "macro oven" to generate temporal temperature gradient on the column, our chip's thermal performance, i.e., power consumption and thermal response, is greatly improved without sacrificing chromatography quality.

  3. [Simultaneous separation and detection of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate by RP-HPLC and structure confirmation].

    PubMed

    Zhao, Yan-Yan; Liu, Li-Yan; Han, Yuan-Yuan; Li, Yue-Qiu; Wang, Yan; Shi, Min-Jian

    2013-08-01

    A simple, fast and sensitive analytical method for the simultaneous separation and detection of 18alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B by RP-HPLC and drug quality standard was established. The structures of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate have been confirmed. Reference European Pharmacopoeia EP7.0 version, British Pharmacopoeia 2012 version, National Drug Standards of China (WS 1-XG-2002), domestic and international interrelated literature were referred to select the composition of mobile phase. The experimental parameters including salt concentration, pH, addition quantities of organic solvent, column temperature and flow rate were optimized. Finally, the assay was conducted on a Durashell-C18 column (250 mm x 4.6 mm, 5 microm) with 0.01 mol x mL(-1) ammonium perchlorate (add ammonia to adjust the pH value to 8.2) -methanol (48 : 52) as mobile phase at the flow rate of 0.8 mL x min(-1), and the detection wavelength was set at 254 nm. The column temperature was 50 degrees C and the injection volume was 10 microL. The MS, NMR, UV and RP-HPLC were used to confirm the structures of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate. Under the optimized separation conditions, the calibration curves of 18 alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B showed good linearity within the concentration of 0.50-100 microg x mL(-1) (r = 0.999 9). The detection limits for 18alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B were 0.15, 0.10, 0.10, 0.15 microg x mL(-1) respectively. The method is sensitive, reproducible and the results are accurate and reliable. It can be used for chiral resolution of 18alpha-glycyrrhizinic acid, 18Pbeta-glycyrrhizinic acid, and detection content of principal component and

  4. Enantioselective separation and determination of adrafinil and modafinil on Chiralcel OJ-H column in rat serum and urine using solid-phase extraction followed by HPLC.

    PubMed

    Rao, R Nageswara; Shinde, Dhananjay D

    2009-08-01

    A simple and rapid normal-phase HPLC method for enantiospecific separation of a psychostimulant, adrafinil (ADL), and its metabolite modafinil (MDL) in rat serum and urine was developed. The separation was accomplished on a normal-phase polysaccharide stationary phase Chiralcel OJ-H using n-hexane-ethanol (62:38 v/v) as a mobile phase at a flow rate of 1.0 mL/min. Detection was carried out at 225 nm using a photo diode array (PDA) detector. The elution order of the enantiomers was determined by a polarimeter connected in series with the PDA. ADL and its metabolite were recovered from rat serum and urine by solid phase extraction using Oasis HLB cartridges and the mean recoveries were >or=80%. The enantiomers were eluted within 15 min without any interference from endogenous substances. The calibration curves were linear (r(2) > 0.998) in the concentration range of 1.20-500 microg/mL for ADL and MDL. The assay was specific, accurate, precise and reproducible (intra- and inter-day precisions RSDs <7.2%). ADL in rat serum was stable over three freeze-thaw cycles at ambient temperature for 4 h. The method was successfully applied to pharmacokinetic studies of adrafinil after an oral administration to rats.

  5. Rapid separation and determination of process-related substances of paracetamol using reversed-phase HPLC with photo diode array as a detector.

    PubMed

    Rao, R Nageswara; Narasaraju, A

    2006-02-01

    A simple and rapid gradient reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of paracetamol and its related compounds in bulk drugs and pharmaceutical formulations has been developed. As many as nine process impurities and one degradation product of paracetamol have been separated on a Symmetry C18 column (4.6 x 250 mm i.d., particle size 5 microm) with gradient elution using 0.01 M potassium dihydrogen phosphate buffer (pH 3.0) and acetonitrile as mobile phase and photo diode array detection at 215 nm. The chromatographic behavior of all the compounds was examined under variable compositions of different solvents, temperatures, buffer concentrations and pH values. The correlation coefficients for calibration curves for paracetamol as well as impurities were in the range of 0.9951 - 0.9994. The proposed RP-LC method was successfully applied to the analysis of commercial formulations; the recoveries of paracetamol were in the range of 99-101%. The method could be of use not only for rapid and routine evaluation of the quality of paracetamol in bulk drug manufacturing units but also for detection of its impurities in pharmaceutical formulations.

  6. Microphase Separation and Shear Alignment of Gradient Copolymers: Melt Rheology and Small-Angle X-Ray Scattering Analysis

    SciTech Connect

    Mok, Michelle M.; Pujari, Saswati; Burghardt, Wesley R.; Dettmer, Christine M.; Nguyen, SonBinh T.; Ellison, Christopher J.; Torkelson, John M.

    2008-10-24

    The degree of microphase or nanophase segregation in gradient copolymers with compositions varying across the whole copolymer backbone is studied via low-amplitude oscillatory shear (LAOS) measurements and small-angle X-ray scattering (SAXS). Studies are done as a function of comonomer segregation strength, molecular weight (MW), gradient architecture and temperature. Controlled radical polymerization is used to synthesize strongly segregating styrene/4-acetoxystyrene (S/AS) and the more weakly segregating S/n-butyl acrylate (S/nBA) gradient copolymers. Results are compared to those from S/AS and S/nBA random and block copolymers. The higher MW S/AS gradient copolymer exhibits LAOS behavior similar to the highly microphase segregated S/AS block copolymer, while the lower MW S/AS gradient copolymer exhibits complex, nonterminal behavior indicative of a lower degree of microphase segregation. The S/nBA gradient copolymers demonstrate more liquidlike behavior, with the lower MW sample exhibiting near-Newtonian behavior, indicative of a weakly segregating structure, while the higher MW, steeper gradient sample shows behavior ranging from solidlike to more liquidlike with increasing temperature. With the exception of the lower MW S/nBA case, the gradient copolymers exhibit temperature-dependent LAOS behavior over a wide temperature range, reflecting their temperature-dependent nanodomain composition amplitudes. The S/AS samples have SAXS results consistent with the degree of microphase segregation observed via rheology. Shear alignment studies are done on the higher MW S/AS gradient copolymer, which is the most highly microphase segregated gradient copolymer. Rheology and SAXS provide evidence of shear alignment, despite the gradual variation in composition profile across the nanodomains of such gradient copolymers. A short review of the nomenclature and behavior of linear copolymer architectures is also provided.

  7. Separation and identification of an oligomeric light stabilizer Chimassorb 944 by gradient elution chromatography coupled with matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Kong, Xiu; Diao, Xingli; Wan, Qian-Hong

    2014-10-17

    A non-aqueous reversed-phase high-performance liquid chromatographic (HPLC) method has been developed to separate a light stabilizer Chimassorb 944 into individual oligomers, which are further identified using pre-column fluorescent derivatization and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Consistent with previous studies, we find that the Chimassorb 944 product is a complex mixture consisting of a homologous series with the amine end groups and the number of repeat units (n) span from 1 to 26. In addition to the dominant linear species, cyclic oligomers are present at relatively high levels in the low-mass range. Their concentration decreases rapidly with the length of the oligomer backbone and becomes undetectable when n>7. Moreover, comparison of the HPLC and MALDI-MS molar mass distributions of Chimassorb 944 shows that the HPLC analysis produces greater molar mass averages and thus offers an effective means for accurate measure of the relative abundances of the oligomers.

  8. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    PubMed

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  9. Implementation of gradients of organic solvent in micellar liquid chromatography using DryLab(®): separation of basic compounds in urine samples.

    PubMed

    Rodenas-Montano, J; Ortiz-Bolsico, C; Ruiz-Angel, M J; García-Alvarez-Coque, M C

    2014-05-30

    In micellar liquid chromatography (MLC), chromatographic peaks are more evenly distributed compared to conventional reversed-phase liquid chromatography (RPLC). This is the reason that most procedures are implemented using isocratic elution. However, gradient elution may be still useful in MLC to analyse mixtures of compounds within a wide range of polarities, decreasing the analysis time. Also, it benefits the determination of moderately to low polar compounds in physiological fluids performing direct injection: an initial micellar eluent with a low organic solvent content, or a pure micellar (without surfactant) solution, will provide better protection of the column against the proteins in the physiological fluid, and once the proteins are swept away, the elution strength can be increased using a positive linear gradient of organic solvent to reduce the analysis time. This work aims to encourage analysts to implement gradients of organic solvent in MLC, which is rather simple and allows rapid analytical procedures without pre-treatment or the need of re-equilibration. The implementation of gradient elution is illustrated through the separation of eight basic compounds (β-blockers) in urine samples directly injected into the chromatograph, the most hydrophobic showing large retention in both conventional RPLC and MLC. The use of the DryLab(®) software to optimise gradients of organic solvent with eluents containing a fixed amount of surfactant above the critical micellar concentration is shown to provide satisfactory predictions, and can facilitate greatly the implementation of gradient protocols.

  10. Preparation of a novel porous poly (trimethylol propane triacrylate-co-ethylene dimethacrylate) monolithic column for highly efficient HPLC separations of small molecules.

    PubMed

    Bai, Xiaomei; Liu, Haiyan; Wei, Dan; Yang, Gengliang

    2014-02-01

    A novel poly (trimethylol propane triacrylate-co-ethylene dimethacrylate) [poly (TMPTA-co-EDMA)] monolith was prepared by in situ free-radical polymerization in a 50 mm × 4.6mm i.d. stainless steel column and was investigated for high performance liquid chromatography (HPLC). The porous structure of monolith was optimized by changing the conditions of polymerization. The chemical group of the monolithic column was confirmed by a Fourier transform infrared spectroscopy (FT-IR) method and the morphology of column structure was characterized by scanning electron microscopy (SEM). The mechanical strength and permeability were also studied. Finally, a series of low-molecular-weight organic compounds were utilized to evaluate the retention behaviors of the monolithic column. The result demonstrated that the prepared column exhibited an RP-chromatographic behavior and good separation performance. The method reproducibility was obtained by evaluating the run-to-run and column-to-column with relative standard deviations (RSDs) less than 0.7% (n=6) and 2.9% (n=6), respectively, which indicated that prepared monolithic columns had good reproducibility and stability.

  11. Enantioselective preparative HPLC separation of the HBCD-Stereoisomers from the technical product and their absolute structure elucidation using X-ray crystallography.

    PubMed

    Koeppen, Robert; Becker, Roland; Emmerling, Franziska; Jung, Christian; Nehls, Irene

    2007-03-01

    1,2,5,6,9,10-Hexabromocyclododecane (HBCD) is a widely used flame retardant, which tends to persist in the environment and accumulates in biota. The six stereoisomers (three racemates named alpha-, beta-, and gamma-HBCD) of the technical mixture were isolated with high-performance liquid chromatography (HPLC). Direct separations were performed on a chiral stationary phase containing permethylated beta-cyclodextrin (NUCLEODEX beta-PM column) and the pure enantiomers of alpha-, beta-, and gamma-HBCD were physically characterized for the first time. The absolute configurations of all six isomers were determined by anomalous dispersion using single crystal X-ray crystallography. Optical rotations alphaD in tetrahydrofuran were +4.2/-4.0 (alpha-HBCD), +26.1/-27.5 (beta-HBCD), and +68.0/-66.3 (gamma-HBCD). The sense of rotation could be correlated with the absolute configurations of alpha-, beta-, and gamma-HBCD enantiomers and their order of elution on a chiral permethylated beta-cyclodextrin-bonded stationary phase. The diastereomersalpha-, beta-, and gamma-HBCD displayed distinctly different melting points as well as (1)H-, (13)C NMR, and IR spectra.

  12. Molecularly imprinted SPE coupled with HPLC for the selective separation and enrichment of alkyl imidazolium ionic liquids in environmental water samples.

    PubMed

    Xia, Gao; Jing, Fan; Guifen, Zhu; Xiaolong, Wang; Jianji, Wang

    2013-10-01

    A novel 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted solid-phase sorbent was synthesized. The as-prepared material was characterized by SEM, Brunauer-Emmett-Teller surface area analysis and Fourier Transform IR measurements. Then its adsorption properties for alkyl imidazolium ionic liquids, including adsorption capacities, adsorption kinetics, and properties of selective separation and enrichment were studied in detail. It was shown that the ionic liquid surface imprinted polymer exhibited high selective recognition characteristics for the imidazolium chloride ionic liquids with short alkyl chains (C(n)mimCl, n = 2, 4, 6, 8) and the adsorption equilibrium was achieved within 25 min. Various parameters were optimized for the 1-butyl-3-methylimidazolium chloride ionic liquid surface imprinted polymer SPE column, such as flow rate, eluent solvent, selectivity, and reusability of the column. Then, the SPE column coupled with HPLC was used for the determination of alkyl imidazolium ionic liquids. Experimental results showed that the existence of their structural analogs and common concomitants in environmental matrices did not affect the enrichment of 1-butyl-3-methyl imidazolium chloride ionic liquid. The average recoveries of 1-butyl-3-methylimidazolium chloride ionic liquid in spiked water samples were in the range of 92.0-102.0% with the RSD lower than 5.8%.

  13. Potassium tartrate-glycerol as a density gradient substrate for separation of small, round viruses from human feces.

    PubMed Central

    Ashley, C R; Caul, E O

    1982-01-01

    Cesium chloride density gradients are frequently used for virus concentration or purification in the preparation of human feces for examination by electron microscopy, Disruption of some of the fecal viruses occurs if they are pelleted from the density gradient in an additional concentration step. This report highlights an important limitation imposed by the use of cesium chloride as a density gradient substrate in attempting to recover small, round, virus-like particles from feces and suggests an alternative substrate which preserves virus morphology without the use of additional protective agents. Images PMID:6288767

  14. Application of an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum.

    PubMed

    Chen, Tao; Liu, Yongling; Zou, Denglang; Chen, Chen; You, Jinmao; Zhou, Guoying; Sun, Jing; Li, Yulin

    2014-01-01

    This study presents an efficient strategy based on liquid-liquid extraction, high-speed counter-current chromatography, and preparative HPLC for the rapid enrichment, separation, and purification of four anthraquinones from Rheum tanguticum. A new solvent system composed of petroleum ether/ethyl acetate/water (4:2:1, v/v/v) was developed for the liquid-liquid extraction of the crude extract from R. tanguticum. As a result, emodin, aloe-emodin, physcion, and chrysophanol were greatly enriched in the organic layer. In addition, an efficient method was successfully established to separate and purify the above anthraquinones by high-speed counter-current chromatography and preparative HPLC. This study supplies a new alternative method for the rapid enrichment, separation, and purification of emodin, aloe-emodin, physcione, and chrysophanol.

  15. Identification and quantification of coumarins in Peucedanum ostruthium (L.) Koch by HPLC-DAD and HPLC-DAD-MS.

    PubMed

    Vogl, Sylvia; Zehl, Martin; Picker, Paolo; Urban, Ernst; Wawrosch, Christoph; Reznicek, Gottfried; Saukel, Johannes; Kopp, Brigitte

    2011-05-11

    The rhizomes of Peucedanum ostruthium (L.) Koch (masterwort) are traditionally used in the alpine region as ingredient of liqueurs and bitters, and as a herbal drug. A sensitive and specific high-performance liquid chromatography-diode-array detection-mass spectrometry (HPLC-DAD-MS) method has been developed for the simultaneous identification and quantification of its main coumarins, oxypeucedanin hydrate, oxypeucedanin, ostruthol, imperatorin, osthole, isoimperatorin, and ostruthin. Fast HPLC separation could be achieved on an Acclaim C18 column (150 mm × 2.1 mm i.d., 3 μm) using a mobile phase gradient of acetonitrile-water modified with 0.01% acetic acid. The quantification by HPLC-DAD was performed with imperatorin as external standard and validated to demonstrate selectivity, linearity, precision, and accuracy. The content of the main coumarins was quantitated in various batches of commercial and field-collected rhizomes of Peucedanum ostruthium, as well as in beverages prepared thereof.

  16. A rapid technique for lymphocyte preparation prior to two-color immunofluorescence analysis of lymphocyte subsets using flow cytometry. Comparison with density gradient separation.

    PubMed

    Mansour, I; Bourin, P; Rouger, P; Doinel, C

    1990-02-20

    A technique is described for lymphocyte preparation which permits analyses by two-color immunofluorescence and flow cytometry. It consists, briefly, of the lysis of red blood cells and washing of white blood cells prior to labeling. We tested this technique with a large panel of monoclonal antibodies in mono- and dual immunofluorescence. By comparing these results to those obtained after density gradient separation, we found the following statistically significant differences: the count of the phenotype B1+ was higher after whole blood lysis preparation than after density gradient separation; whereas, the corresponding counts of OKT4+ and Leu-4-Leu-7+ phenotypes were lower. No difference was detected with OKT8+, Leu-4+, OKT8+Leu-4+, OKT8+Leu-4-, OKT8-Leu-4+, OKT8+Leu-7+, Leu-4+Leu-7+, Leu-4-Leu-11c+, OKT8+Leu-11c+ and OKT8+Leu-15+ phenotypes. We have studied the reproducibility of both methods and the correlation between them. The disparity of the lymphocyte subset count between these two methods, though statistically significant, was relatively weak and seems to be due to the density gradient separation. Since the preparation of lymphocytes using the density gradient method is time consuming, we propose whole blood lysis as an alternative lymphocyte separation method when assessing immune status in human disease by flow cytometry. It offers the following advantages: (i) it does not require additional steps, (ii) it permits two-color immunofluorescence through the labeling of white blood cells after washing, (iii) it is reliable, (iv) it is reproducible, and (v) it is helpful in studies of lymphopenia since it offers the possibility of lymphocyte enrichment.

  17. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS.

    PubMed

    Guo, Qiong; Qian, Steven Y; Mason, Ronald P

    2003-08-01

    Many electron spin resonance (ESR) spectra of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) radical adducts from the reaction of organic hydroperoxides with heme proteins or Fe(2+) were assigned to the adducts of DMPO with peroxyl, alkoxyl, and alkyl radicals. In particular, the controversial assignment of DMPO/peroxyl radical adducts was based on the close similarity of their ESR spectra to that of the DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the peroxyl adducts from the DMPO/superoxide adduct. Although recent reports assigned the spectra suggested to be DMPO/peroxyl radical adducts to the DMPO/methoxyl adduct based on independent synthesis of the adduct and/or (17)O-labeling, (17)O-labeling is extremely expensive, and both of these assignments were still based on hyperfine coupling constants, which have not been confirmed by independent techniques. In this study, we have used online high performance liquid chromatography (HPLC or LC)/ESR, electrospray ionization-mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) to separate and directly characterize DMPO oxygen-centered radical adducts formed from the reaction of Fe(2+) with t-butyl or cumene hydroperoxide. In each reaction system, two DMPO oxygen-centered radical adducts were separated and detected by online LC/ESR. The first DMPO radical adduct from both systems showed identical chromatographic retention times (t(R) = 9.6 min) and hyperfine coupling constants (a(N) = 14.51 G, a(H)(beta) = 10.71 G, and a(H)(gamma) = 1.32 G). The ESI-MS and MS/MS spectra demonstrated that this radical was the DMPO/methoxyl radical adduct, not the peroxyl radical adduct as was thought at one time, although its ESR spectrum is nearly identical to that of the DMPO/superoxide radical adduct. Similarly, based on their MS/MS spectra, we verified that the second adducts (a(N) = 14.86 G and a(H)(beta) = 16.06 G in the reaction system containing t

  18. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations.

    PubMed

    Rea, Jennifer C; Moreno, G Tony; Lou, Yun; Farnan, Dell

    2011-01-25

    Ion-exchange chromatography is widely used for profiling the charge heterogeneity of proteins, including monoclonal antibodies. Despite good resolving power and robustness, ionic strength-based ion-exchange separations are product-specific and time-consuming to develop. We have previously reported a novel pH-based separation of proteins by cation exchange chromatography that was multi-product, high-resolution, and robust against variations in sample matrix salt concentration and pH. In this study, a pH gradient-based separation method using cation exchange chromatography was evaluated in a mock validation. This method was shown to be robust for monoclonal antibodies and suitable for its intended purpose of charge heterogeneity analysis. Simple mixtures of defined buffer components were used to generate the pH gradients that separated closely related antibody species. Validation characteristics, such as precision and linearity, were evaluated. Robustness to changes in protein load, buffer pH and column oven temperature was demonstrated. The stability-indicating capability of this method was determined using thermally stressed antibody samples. In addition, intermediate precision was demonstrated using multiple instruments, multiple analysts, multiple column lots, and different column manufacturers. Finally, the precision for this method was compared to conventional ion-exchange chromatography and imaged capillary isoelectric focusing. These results demonstrate the superior precision and robustness of this multi-product method, which can be used for the high-throughput evaluation of in-process and final product samples.

  19. Separation of statistical poly[(N-vinyl pyrrolidone)-co-(vinyl acetate)]s by reversed-phase gradient liquid chromatography.

    PubMed

    Cheng, Guanglou; Cullen, Jim; Wu, Chi-san

    2011-01-14

    Although size exclusion chromatography (SEC) has been used successfully to determine the molecular weight distribution (MWD) of statistical poly[(N-vinyl pyrrolidone)-co-(vinyl acetate)]s [PVPVAs], SEC cannot separate the copolymers according to their chemical composition. In this article, the separation of commercial PVPVAs with varying chemical compositions is reported, by aqueous reversed-phase gradient liquid chromatography (RPLC) using polystyrene-divinylbenzene-based wide pore columns. RPLC-SEC cross-fractionation indicates the presence of molar mass dependant effects during RPLC separation due to broad MWD for the copolymer studied; therefore the width of the RPLC peak could not be associated entirely with chemical composition distribution of the copolymer. Coupling of RPLC with online FTIR spectroscopy reveals the increase of VA content with increasing THF gradient, an indication of interaction mechanism between VA repeating units and the stationary phase for water soluble PVPVAs. Separation of water insoluble PVPVAs and PVAs by the RPLC are possibly based on both interaction and precipitation/redissolution mechanisms.

  20. Application of linear pH gradients for the modeling of ion exchange chromatography: Separation of monoclonal antibody monomer from aggregates.

    PubMed

    Kluters, Simon; Wittkopp, Felix; Jöhnck, Matthias; Frech, Christian

    2016-02-01

    The mobile phase pH is a key parameter of every ion exchange chromatography process. However, mechanistic insights into the pH influence on the ion exchange chromatography equilibrium are rare. This work describes a mechanistic model capturing salt and pH influence in ion exchange chromatography. The pH dependence of the characteristic protein charge and the equilibrium constant is introduced to the steric mass action model based on a protein net charge model considering the number of amino acids interacting with the stationary phase. This allows the description of the adsorption equilibrium of the chromatographed proteins as a function of pH. The model parameters were determined for a monoclonal antibody monomer, dimer, and a higher aggregated species based on a manageable set of pH gradient experiments. Without further modification of the model parameters the transfer to salt gradient elution at fixed pH is demonstrated. A lumped rate model was used to predict the separation of the monoclonal antibody monomer/aggregate mixture in pH gradient elution and for a pH step elution procedure-also at increased protein loadings up to 48 g/L packed resin. The presented model combines both salt and pH influence and may be useful for the development and deeper understanding of an ion exchange chromatography separation.

  1. Monolithic polymer layer with gradient of hydrophobicity for separation of peptides using two-dimensional thin layer chromatography and MALDI-TOF-MS detection.

    PubMed

    Urbanova, Iva; Svec, Frantisek

    2011-08-01

    Superhydrophobic monolithic porous polymer layers supported onto glass plates with a gradient of hydrophobicity have been prepared and used for 2-D thin layer chromatography of peptides. The 50 μm-thin poly(glycidyl methacrylate-co-ethylene dimethacrylate) layers prepared using UV-initiated polymerization in a simple mold were first hydrolyzed using dilute sulfuric acid and then hydrophilized via two-step grafting of poly(ethylene glycol) methacrylate to obtain superhydrophilic plates. The hydrophobicity was then formed by photografting of lauryl methacrylate. The exposure to UV light that initiates photografting was spatially controlled using moving shutter that enabled forming of the diagonal gradient of hydrophobicity. This new concept enables the solutes to encounter the gradient for each of the two sequential developments. Practical application of our novel plates was demonstrated with a rapid 2-D separation of a mixture of model peptides gly-tyr, val-tyr-val, leucine enkephalin, and oxytocin in dual reversed-phase mode using different mobile phases in each direction. Detection of fluorescent-labeled peptides was achieved through UV light visualization while separation of native leucine enkephalin and oxytocin was monitored directly using MALDI mass spectrometry.

  2. Parameters affecting the separation of intact proteins in gradient-elution reversed-phase chromatography using poly(styrene-co-divinylbenzene) monolithic capillary columns.

    PubMed

    Detobel, Frederik; Broeckhoven, Ken; Wellens, Joke; Wouters, Bert; Swart, Remco; Ursem, Mario; Desmet, Gert; Eeltink, Sebastiaan

    2010-04-30

    An experimental study was performed to investigate the effects of column parameters and gradient conditions on the separation of intact proteins using styrene-based monolithic columns. The effect of flow rate on peak width was investigated at constant gradient steepness by normalizing the gradient time for the column hold-up time. When operating the column at a temperature of 60 degrees C a small C-term effect was observed in a flow rate range of 1-4 microL/min. However, the C-term effect on peak width is not as strong as the decrease in peak width due to increasing flow rate. The peak capacity increased according to the square root of the column length. Decreasing the macropore size of the polymer monolith while maintaining the column length constant, resulted in an increase in peak capacity. A trade-off between peak capacity and total analysis time was made for 50, 100, and 250 mm long monolithic columns and a microparticulate column packed with 5 microm porous silica particles while operating at a flow rate of 2 microL/min. The peak capacity per unit time of the 50mm long monolithic column with small pore size was superior when the total analysis time is below 120 min, yielding a maximum peak capacity of 380. For more demanding separations the 250 mm long monolith provided the highest peak capacity in the shortest possible time frame.

  3. Retinoid quantification by HPLC/MS(n)

    NASA Technical Reports Server (NTRS)

    McCaffery, Peter; Evans, James; Koul, Omanand; Volpert, Amy; Reid, Kevin; Ullman, M. David

    2002-01-01

    Retinoic acid (RA) mediates most of the biological effects of vitamin A that are essential for vertebrate survival. It acts through binding to receptors that belong to the nuclear receptor transcription factor superfamily (Mangelsdorf et al. 1994). It is also a highly potent vertebrate teratogen. To determine the function and effects of endogenous and exogenous RA, it is important to have a highly specific, sensitive, accurate, and precise analytical procedure. Current analyses of RA and other retinoids are labor intensive, of poor sensitivity, have limited specificity, or require compatibility with RA reporter cell lines (Chen et al. 1995. BIOCHEM: Pharmacol. 50: 1257-1264; Creech Kraft et al. 1994. BIOCHEM: J. 301: 111-119; Lanvers et al. 1996. J. Chromatogr. B Biomed. Appl. 685: 233-240; Maden et al. 1998. DEVELOPMENT: 125: 4133-4144; Wagner et al. 1992. DEVELOPMENT: 116: 55-66). This paper describes an HPLC/mass spectrometry/mass spectrometry product ion scan (HPLC/MS(n)) procedure for the analysis of retinoids that employs atmospheric pressure chemical ionization MS. The retinoids are separated by normal-phase column chromatography with a linear hexane-isopropanol-dioxane gradient. Each retinoid is detected by a unique series of MS(n) functions set at optimal collision-induced dissociation energy (30% to 32%) for all MS(n) steps. The scan events are divided into three segments, based on HPLC elution order, to maximize the mass spectrometer duty cycle. The all-trans, 9-cis, and 13-cis RA isomers are separated, if desired, by an isocratic hexane-dioxane-isopropanol mobile phase. This paper describes an HPLC/MS(n) procedure possessing high sensitivity and specificity for retinoids.

  4. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like 1H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  5. Spectroscopic characterization and quantitative determination of atorvastatin calcium impurities by novel HPLC method.

    PubMed

    Gupta, Lokesh Kumar

    2012-11-01

    Seven process related impurities were identified by LC-MS in the atorvastatin calcium drug substance. These impurities were identified by LC-MS. The structure of impurities was confirmed by modern spectroscopic techniques like (1)H NMR and IR and physicochemical studies conducted by using synthesized authentic reference compounds. The synthesized reference samples of the impurity compounds were used for the quantitative HPLC determination. These impurities were detected by newly developed gradient, reverse phase high performance liquid chromatographic (HPLC) method. The system suitability of HPLC analysis established the validity of the separation. The analytical method was validated according to International Conference of Harmonization (ICH) with respect to specificity, precision, accuracy, linearity, robustness and stability of analytical solutions to demonstrate the power of newly developed HPLC method.

  6. Separating natural from anthropogenic causes of impairment in Zebra mussel (Dreissena polymorpha) populations living across a pollution gradient.

    PubMed

    Faria, Melissa; Ochoa, Victoria; Blázquez, Mercedes; Juan, Maria Fernandes San; Lazzara, Raimondo; Lacorte, Silvia; Soares, Amadeu M V M; Barata, Carlos

    2014-07-01

    The relationship between the reproductive stage, the total lipid content and eight broadly used biochemical stress responses were used to assess seasonal and pollutant effects across eleven different zebra mussel (Dreissena polymorpha) populations from the Ebro and Mijares river basin, Spain. Biochemical markers included superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione S transferase (GST), multixenobiotic transporter activity (MXR), lactate dehydrogenase (LDH), lipid peroxidation (LPO) and single strand DNA breaks. Principal component analyses of zebra mussel responses across an annual cycle, showed a marked gonad stage component in total lipid content and biochemical responses. The same response pattern was observed across the populations sampled along a broad geographical and pollution gradient. Population differences on the gonad developmental stage were highly correlated with most of the measured responses and unrelated with the pollution gradient. Conversely, bioaccumulation of organic and inorganic contaminant residues was more related to pollution sources than with the reproductive cycle. These results indicate that the reproductive cycle is the major factor affecting the temporal and spatial variation of the studied markers in D. polymorpha.

  7. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    PubMed Central

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-01-01

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. This platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing. PMID:27054764

  8. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    SciTech Connect

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-04-07

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. Ultimately, this platform has great potential in both medical diagnostics and research applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.

  9. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water.

    PubMed

    Ren, Zhijun; Zhang, Lin; Shi, Yue; Leng, Xiaodong; Shao, Jingchao

    2016-07-15

    The patented technology of a High Gradient Magnetic Separation (HGMS)-Ultraviolet (UV) composite process was used to treat ballast water. Staphylococcus aureus (S. aureus) was selected as the reference bacteria. After treatment by the HGMS-UV process, the concentration of S. aureus on the log 10 scale was lower than 2 at different flow rates, S. aureus suffered the most serious damage, and K(+) leakage of the bacteria was 1.73mg/L higher than separate 60min UV irradiation (1.17mg/L) and HGMS (0.12mg/L) processes. These results demonstrated that the HGMS-UV composite process was an effective approach to treat ballast water. Further, the HGMS process had synergistic action on the subsequent UV irradiation process and accelerated cell membrane damage. Meanwhile, the results of superoxide dismutase (SOD) activities of bacteria and DNA band analyses indicated that the inactivation mechanisms were different for HGMS and UV irradiation.

  10. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections

    DOE PAGES

    Moen, Scott T.; Hatcher, Christopher L.; Singh, Anup K.

    2016-04-07

    We present a miniaturized centrifugal platform that uses density centrifugation for separation and analysis of biological components in small volume samples (~5 μL). We demonstrate the ability to enrich leukocytes for on-disk visualization via microscopy, as well as recovery of viable cells from each of the gradient partitions. In addition, we simplified the traditional Modified Wright-Giemsa staining by decreasing the time, volume, and expertise involved in the procedure. From a whole blood sample, we were able to extract 95.15% of leukocytes while excluding 99.8% of red blood cells. Ultimately, this platform has great potential in both medical diagnostics and researchmore » applications as it offers a simpler, automated, and inexpensive method for biological sample separation, analysis, and downstream culturing.« less

  11. Efficient application of monolithic silica column to determination of illicit heroin street sample by HPLC.

    PubMed

    Macchia, Marco; Bertini, Simone; Mori, Claudio; Orlando, Caterina; Papi, Chiara; Placanica, Giorgio

    2004-03-01

    In this paper, an HPLC method is proposed for a routine, rapid and simple analysis of heroin samples confiscated from the illicit market, based on a new type of packing for HPLC columns (monolithic silica). Acetonitrile and pH 3.5 phosphate buffer solution were used under both isocratic and gradient conditions. Under our analytical conditions, all the components of a typical mixture of an illicit heroin sample proved to be fully separated into well-resolved peaks in 7 min. Analytical linearity and accuracy of the method were also studied for all analytes using tetracaine hydrochloride as the internal standard.

  12. Separation of single-walled carbon nanotubes by gel-based chromatography using surfactant step-gradient techniques and development of new instrumentation for studying SWCNT reaction processes

    NASA Astrophysics Data System (ADS)

    Breindel, Leonard M.

    Single-walled carbon nanotube (SWCNT) synthesis methods such as CoMoCATTM, HiPcoTM, pulsed laser vaporization (PLV), and catalytic chemical vapor deposition (CCVD) produce several different distributions of (n,m) SWCNT structures, where ( n,m) defines the nanotube diameter and chiral wrapping angle. Post-synthesis processing such as functionalization and/or separations must therefore be employed to yield high purity electronic or single (n,m) samples. Through the use of a surfactant gradient across a gel-based chromatographic column, separations of single (n,m) species can be achieved. Anionic surfactants such as SDS, SDBS, and AOT display different separation effectiveness for single (n,m) species. Results of near-infrared optical absorption for separated SWCNT surfactant suspensions will be discussed, leading to a broader understanding of the important factors necessary for the gel chromatography separation technique. In particular, the effects of SWCNT/surfactant micelle structure are found to be key to achieving fast, simple SWCNT electronic type separations. Additionally, development of new instrumentation for the near-infrared spectrofluorimetric analysis (NIR-SFA) of SWCNTs is useful to the advancement of fundamental SWCNT research and applications. NIR-SFA, for instance, allows for the (n,m) structures of a sample to be identified and monitored during the progress of a chemical reaction or separation experiment. Seeking to achieve the time resolutions necessary for such experiments, the design and optimizations of a system utilizing single-wavelength excitation by diode lasers coupled with a fast NIR detection system are presented.

  13. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients.

    PubMed Central

    Heuer, H; Krsek, M; Baker, P; Smalla, K; Wellington, E M

    1997-01-01

    A group-specific primer, F243 (positions 226 to 243, Escherichia coli numbering), was developed by comparison of sequences of genes encoding 16S rRNA (16S rDNA) for the detection of actinomycetes in the environment with PCR and temperature or denaturing gradient gel electrophoresis (TGGE or DGGE, respectively). The specificity of the forward primer in combination with different reverse ones was tested with genomic DNA from a variety of bacterial strains. Most actinomycetes investigated could be separated by TGGE and DGGE, with both techniques giving similar results. Two strategies were employed to study natural microbial communities. First, we used the selective amplification of actinomycete sequences (E. coli positions 226 to 528) for direct analysis of the products in denaturing gradients. Second, a nested PCR providing actinomycete-specific fragments (E. coli positions 226 to 1401) was used which served as template for a PCR when conserved primers were used. The products (E. coli positions 968 to 1401) of this indirect approach were then separated by use of gradient gels. Both approaches allowed detection of actinomycete communities in soil. The second strategy allowed the estimation of the relative abundance of actinomycetes within the bacterial community. Mixtures of PCR-derived 16S rDNA fragments were used as model communities consisting of five actinomycetes and five other bacterial species. Actinomycete products were obtained over a 100-fold dilution range of the actinomycete DNA in the model community by specific PCR; detection of the diluted actinomycete DNA was not possible when conserved primers were used. The methods tested for detection were applied to monitor actinomycete community changes in potato rhizosphere and to investigate actinomycete diversity in different soils. PMID:9251210

  14. A high gradient and strength bioseparator with nano-sized immunomagnetic particles for specific separation and efficient concentration of E. coli O157:H7

    NASA Astrophysics Data System (ADS)

    Lin, Jianhan; Li, Min; Li, Yanbin; Chen, Qi

    2015-03-01

    Sample pretreatment is a key to rapid screening of pathogens for prevention and control of foodborne diseases. Magnetic immunoseparation is a specific method based on antibody-antigen reaction to capture the target bacteria and concentrate them in a smaller-volume buffer. The use of nano-sized magnetic particles could improve the separation efficiency of bacteria but require much higher gradient and strength magnetic field. In this study, a strong magnetic bioseparator with a mean field strength of 1.35 T and a mean gradient of 90 T/m was developed with the use of the 30 nm and 180 nm magnetic particles to specifically separate and efficiently concentrate foodborne bacterial pathogens using Escherichia coli O157:H7 as a model bacterium. The polyclonal antibodies against E. coli were evaluated using Dot ELISA analysis for their good affinity with the target bacteria and then used to modify the surface of the magnetic nanoparticles by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) method and streptavidin-biotin binding. The magnetic particle concentrations were optimized to be 40 μg/ml and 100 μg/ml for the 30 nm and 180 nm particles, respectively, the immunoreaction time was optimized to be 45 min for both sizes of particles, and the separation times were optimized to be 60 min and 2 min for the 30 nm and 180 nm particles, respectively. The total magnetic separation time was 2 h and 1 h for the 30 nm and 180 nm particles, respectively. The experimental results demonstrated that the bioseparator with the use of either 30 nm or 180 nm immunomagnetic particles could achieve a separation efficiency of >90% for E. coli O157:H7 at the concentrations ranging from 102 to 105 cfu/ml. No obvious interferences from non-target foodborne pathogens, such as SalmonellaTyphimurium and Listeria innocua, were found. For overall consideration of the consuming time, the cost, and the separation efficiency, the 180 nm magnetic particles are practical for rapid

  15. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD(+)-dependent DNA ligase inhibitor.

    PubMed

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-09-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria.

  16. Preparation of a novel ionic hybrid stationary phase by non-covalent functionalization of single-walled carbon nanotubes with amino-derivatized silica gel for fast HPLC separation of aromatic compounds.

    PubMed

    Aral, Hayriye; Çelik, K Serdar; Aral, Tarık; Topal, Giray

    2016-03-01

    Single-walled carbon nanotubes (SWCNTs) were immobilized on spherical silica gel with a 4-μm average particle size and a 60-Å average pore size. The amino-derivatized silica gel was non-covalently coated with carboxylated SWCNTs to preserve the structure of the nanotubes and their physico-chemical properties. The novel ionic hybrid stationary phase was characterized by scanning electron microscopy (SEM), infra-red (IR) spectroscopy and elemental analysis, and then, it was used to fill an empty 150×4.6mm(2) high-performance liquid chromatography (HPLC) column. Chromatographic parameters, such as the theoretical plate number, retention factor and peak asymmetry factor, and analytical parameters, such as the limit of detection (LOD), limit of quantification (LOQ), linear range, calibration equation, and R(2) value, and quantitative analysis parameters were calculated for all of the analytes. Using different mobile phases, five different classes of aromatic hydrocarbons were separated in a very short analysis time of 4-8min. Furthermore, a high theoretical plate number (up to 25000) and an excellent peak asymmetry factor (1.0) were obtained. The results showed that the surface of the SWNTs had very strong interactions with aromatic groups, therefore providing high selectivity for the separation of different classes of aromatic compounds. This study indicates that SWCNTs enable the extension of the application range of the newly prepared stationary phases for the fast separation of aromatic compounds by HPLC.

  17. New solvent systems for gradient counter-current chromatography in separation of betanin and its derivatives from processed Beta vulgaris L. juice.

    PubMed

    Spórna-Kucab, Aneta; Garrard, Ian; Ignatova, Svetlana; Wybraniec, Sławomir

    2015-02-06

    Betalains, natural plant pigments, are beneficial compounds due to their antioxidant and possible chemoprotective properties. A mixture of betalains: betanin/isobetanin, decarboxybetanins and neobetanin from processed red beet roots (Beta vulgaris L.) juice was separated in food-grade, gradient solvent systems using high-performance counter-current chromatography (HPCCC). The decarboxylated and dehydrogenated betanins were obtained by thermal degradation of betanin/isobetanin from processed B. vulgaris L. juice under mild conditions. Two solvent systems (differing in their composition by phosphoric acid and ethanol volume gradient) consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-1000:1300:700:2.5-10) in the 'tail-to-head' mode were run. The flow rate of the mobile phase (organic phase) was 1.0 or 2.0 ml/min and the column rotation speed was 1,600 rpm (20°C). The retention of the solvent system stationary phase (aqueous phase) was ca. 80%. The system with the acid and ethanol volume gradient consisting of BuOH-EtOH-NaClsolution-H2O-H3PO4 (v/v/v/v/v, 1300:200-240:1300:700:2.5-4.5) pumped at 2.0 ml/min was the most effective for a separation of betanin/isobetanin, 17-decarboxy-betanin/-isobetanin, 2-decarboxy-betanin/-isobetanin, 2,17-bidecarboxy-betanin/-isobetanin pairs as well as neobetanin. The pigments were detected by LC-DAD and LC-MS. The results are crucial in the application of completely food-grade solvent systems in separation of food-grade compounds as well, and the systems can possibly be extended to other ionizable and polar compounds with potential health benefits. In particular, the method is applicable for the isolation and purification of betalains present in such rich sources as B. vulgaris L. roots as well as cacti fruits and Amaranthaceae flowering plants due to modification possibilities of the solvent systems polarity.

  18. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods.

    PubMed

    Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J

    2015-01-01

    Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).

  19. The role of cell size in density gradient electrophoretic separation of mouse leukemia cells according to position in the cell cycle

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.

  20. Enrichment of the glycoalkaloids alpha-solanine and alpha-chaconine from potato juice by adsorptive bubble separation using a pH gradient.

    PubMed

    Backleh, Marlène; Ekici, Perihan; Leupold, Günther; Coelhan, Mehmet; Parlar, Harun

    2004-08-01

    For the first time, the solanidine alkaloids alpha-solanine and alpha-chaconine could be quantitatively enriched from potato juice by Adsorptive Bubble Separation (ABS) with a pH gradient. The enrichment into the foam was influenced by the pH value, bubble size, and gas flow rate. The efficiency was highest on using diluted samples with a concentration between 2 and 6 mg L(-1) of the alkaloids at pH 6.0. The experiments with a standard solution of each alkaloid confirmed that these substances can be quantitatively enriched into the 'spumat' without surface active potato proteins. The transfer into the foam fraction under these conditions was similar to that from the aqueous potato extract.

  1. Separation of cordycepin from Cordyceps militaris fermentation supernatant using preparative HPLC and evaluation of its antibacterial activity as an NAD+-dependent DNA ligase inhibitor

    PubMed Central

    Zhou, Xiaofeng; Cai, Guoqiang; He, Yi; Tong, Guotong

    2016-01-01

    Cordycepin exhibits various bio-activities, including anticancer, antibacterial, antiviral and immune regulation activities, and is a significant focus of research. However, the preparation of high-purity cordycepin remains challenging. Also, the molecular target with which cordycepin interacts to cause an antibacterial effect remains unknown. In the present study, cordycepin was prepared by preparative high-performance liquid chromatography (prep-HPLC) and the purity obtained was 99.6%, indicating that this technique may be useful for the large-scale isolation of cordycepin in the future. The results of computational molecular docking analysis indicated that the interaction energy between cordycepin and NAD+-dependent DNA ligase (LigA) was lower than that between cordycepin and other common antibacterial targets. The highly pure cordycepin obtained by prep-HPLC demonstrated inhibitory activity against LigA from various bacteria in vitro. In conclusion, cordycepin may be useful as a broad-spectrum antibiotic targeting LigA in various bacteria. PMID:27588098

  2. Monitoring gradient profile on-line in micro- and nano-high performance liquid chromatography using conductivity detection.

    PubMed

    Zhang, Min; Chen, Apeng; Lu, Joann J; Cao, Chengxi; Liu, Shaorong

    2016-08-19

    In micro- or nano-flow high performance liquid chromatography (HPLC), flow-splitters and gradient elutions are commonly used for reverse phase HPLC separations. When a flow splitter was used at a high split-ratio (e.g., 1000:1 or higher), the actual gradient may deviate away from the programmed gradient. Sometimes, mobile phase concentrations can deviate by as much as 5%. In this work, we noticed that the conductivity (σ) of a gradient decreased with the increasing organic-solvent fraction (φ). Based on the relationship between σ and φ, a method was developed for monitoring gradient profile on-line to record any deviations in these HPLC systems. The conductivity could be measured by a traditional conductivity detector or a capacitively coupled contactless conductivity detector (C(4)D). The method was applied for assessing the performance of an electroosmotic pump (EOP) based nano-HPLC. We also observed that σ value of the gradient changed with system pressure; a=0.0175ΔP (R(2)=0.964), where a is the percentage of the conductivity increase and ΔP is the system pressure in bar. This effect was also investigated.

  3. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: Local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections

    SciTech Connect

    Mardirossian, Narbe; Head-Gordon, Martin

    2014-05-14

    The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.

  4. Exploring the limit of accuracy for density functionals based on the generalized gradient approximation: Local, global hybrid, and range-separated hybrid functionals with and without dispersion corrections

    NASA Astrophysics Data System (ADS)

    Mardirossian, Narbe; Head-Gordon, Martin

    2014-05-01

    The limit of accuracy for semi-empirical generalized gradient approximation (GGA) density functionals is explored by parameterizing a variety of local, global hybrid, and range-separated hybrid functionals. The training methodology employed differs from conventional approaches in 2 main ways: (1) Instead of uniformly truncating the exchange, same-spin correlation, and opposite-spin correlation functional inhomogeneity correction factors, all possible fits up to fourth order are considered, and (2) Instead of selecting the optimal functionals based solely on their training set performance, the fits are validated on an independent test set and ranked based on their overall performance on the training and test sets. The 3 different methods of accounting for exchange are trained both with and without dispersion corrections (DFT-D2 and VV10), resulting in a total of 491 508 candidate functionals. For each of the 9 functional classes considered, the results illustrate the trade-off between improved training set performance and diminished transferability. Since all 491 508 functionals are uniformly trained and tested, this methodology allows the relative strengths of each type of functional to be consistently compared and contrasted. The range-separated hybrid GGA functional paired with the VV10 nonlocal correlation functional emerges as the most accurate form for the present training and test sets, which span thermochemical energy differences, reaction barriers, and intermolecular interactions involving lighter main group elements.

  5. Determination of the major constituents in fruit of Arctium lappa L. by matrix solid-phase dispersion extraction coupled with HPLC separation and fluorescence detection.

    PubMed

    Liu, He; Zhang, Yupu; Sun, Yantao; Wang, Xue; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Yu, Aimin; Zhang, Hanqi; Wang, Yinghua

    2010-10-15

    The arctiin and arctigenin in the fruit of Arctium lappa L. were extracted by matrix solid-phase dispersion (MSPD) and determined by high-performance liquid chromatography (HPLC) with fluorescence detection. The experimental conditions for the MSPD were optimized. Silica gel was selected as dispersion adsorbent and methanol as elution solvent. The calibration curve showed good relationship (r>0.9998) in the concentration range of 0.010-5.0μgmL(-1) for arctiin and 0.025-7.5μgmL(-1) for arctigenin. The recoveries were between 74.4% and 100%. The proposed method consumed less sample, time and solvent compared with conventional methods, including ultrasonic and Soxhlet extraction.

  6. Comprehensive off-line, two-dimensional liquid chromotography. Application to the separation of peptide digest

    SciTech Connect

    Marchetti, Nicola; Guiochon, Georges A

    2008-01-01

    The separation of the peptide digests of myoglobin and bovine serum albumin was performed with an off-line combination of two commercial, conventional HPLC columns. The first column was packed with a strong ion exchanger and eluted with a KCl gradient. The second column was packed with particles of C{sub 18}-bonded silica and eluted with an acetonitrile gradient. The conditional peak capacities of the 2D separations achieved exceed 7000 under the experimental conditions investigated. This performance is achieved at the cost of an analysis time of the order of 28 hours. Possible improvements to the separation method described here are discussed.

  7. Separation and pre-concentration of glucocorticoids in water samples by ionic liquid supported vortex-assisted synergic microextraction and HPLC determination.

    PubMed

    Qin, Hui; Li, Bi; Liu, Mou Sheng; Yang, Ya Ling

    2013-04-01

    We have developed a synergic microextraction procedure based on ionic liquid for the pre-concentration and determination of glucocorticoids in water samples. Using nonionic surfactant Triton X-100 (TX-100) as synergic reagent, 1-butyl-3-methylimidazolium hexa-fluorophosphate accomplished extraction rapidly without heating in water bath. One key property of ionic liquids that highlights their potential is their wide liquid temperature range. The improved extraction was named as ionic liquid supported vortex-assisted synergic microextraction. Compared with the traditional liquid-liquid extraction and cloud point extraction, ionic liquid supported vortex-assisted synergic microextraction was accomplished in 8 min with considerably high recovery. The proposed method greatly improved the sensitivity of HPLC for the determination of glucocorticoids. The results obtained indicated a good linearity with the correlation coefficient of 0.997 over the range of 0.6-300 ng/mL and high sensitivity with LODs of 4.11, 9.19, and 7.50 ng/mL for hydrocortisone butyrate, beclomethasone dipropionate, and nandrolone phenylpropionate, respectively. The RSD of the method was 1.57-1.81% (n = 6) with enrichment factor of 99.85, and good recovery (≥97.24%). The method was successfully applied to the determination of glucocorticoids in mineral water, water of Dianchi lake, and tap water samples.

  8. Purification of equine chorionic gonadotropin (eCG) using magnetic ion exchange adsorbents in combination with high-gradient magnetic separation.

    PubMed

    Müller, Christine; Heidenreich, Elena; Franzreb, Matthias; Frankenfeld, Katrin

    2015-01-01

    Current purification of the glycoprotein equine chorionic gonadotropin (eCG) from horse serum includes consecutive precipitation steps beginning with metaphosphoric acid pH fractionation, two ethanol precipitation steps, and dialysis followed by a numerous of fixed-bed chromatography steps up to the specific activity required. A promising procedure for a more economic purification procedure represents a simplified precipitation process requiring only onethird of the solvent, followed by the usage of magnetic ion exchange adsorbents employed together with a newly designed 'rotor-stator' type High Gradient Magnetic Fishing (HGMF) system for large-scale application, currently up to 100 g of magnetic adsorbents. Initially, the separation process design was optimized for binding and elution conditions for the target protein in mL scale. Subsequently, the magnetic filter for particle separation was characterized. Based on these results, a purification process for eCG was designed consisting of (i) pretreatment of the horse serum; (ii) binding of the target protein to magnetic ion exchange adsorbents in a batch reactor; (iii) recovery of loaded functionalized adsorbents from the pretreated solution using HGMF; (iv) washing of loaded adsorbents to remove unbound proteins; (v) elution of the target protein. Finally, the complete HGMF process was automated and conducted with either multiple single-cycles or multicycle operation of four sequential cycles, using batches of pretreated serum of up to 20 L. eCG purification with yields of approximately 53% from single HGMF cycles and up to 80% from multicycle experiments were reached, with purification and concentration factors of around 2,500 and 6.7, respectively.

  9. Two variables dominating the retention of intact proteins under gradient elution with simultaneous ultrafast high-resolution separation by hydrophobic interaction chromatography.

    PubMed

    Geng, Xindu; Jia, Xiaodan; Liu, Peng; Wang, Fei; Yang, Xiaoming

    2015-10-07

    The retention of intact proteins under gradient elution in hydrophobic interaction chromatography (HIC) was found to be governed by two variables, the steady region (SR) and the migration region (MR). In the SR, the proteins are immobilized by the strong interactions with the stationary phase such that the retention time is independent of the column length. In the MR, the proteins also interact with the stationary phase, but they move normally, thus the retention time depends on their partition coefficients and the column length. The SR can be used as an operation space (OP) for high-throughput protein analysis by 1D-LC using short columns at high flow rates to maintain a high resolution. The OP can also be employed for all assisted operations in online 2D-LC. Based on the steady region/migration region optimization strategy developed in this study, five successive complete separations of seven intact proteins were performed in a HIC cake in less than 5 min, and a crude extract of ribonuclease A from bovine pancreas was purified using online 2D-LC to 95.8% purity with 93.2% mass recovery in 45 min. This approach can be used to expedite the purification of drug-target proteins and should therefore be of interest to the pharmaceutical industry.

  10. SEPARATION AND CHARACTERIZATION OF TETROL METABOLITES OF BENZO[A]PYRENE-DNA ADDUCTS USING HPLC AND SOLID-MATRIX ROOM TEMPERATURE LUMINESCENCE. (R824100)

    EPA Science Inventory

    Abstract

    Four tetrols of benzo[a]pyrene-DNA adducts were separated using reversed-phase high performance liquid chromatography. Chromatographic fractions containing a given tetrol were readily characterized with solid-matrix room temperature luminescence techniques. So...

  11. Development and application of HPLC-RI and HPLC-MS/MS based methods for quantification of residual deoxycholate levels in pneumococcal polysaccharides.

    PubMed

    Gairola, Sunil; Gautam, Manish; Patil, Dada; Manoj Kumar, Krishna; Shinde, Pravin; Jana, S K; Dhere, Rajeev; Jadhav, Suresh

    2016-11-01

    The analysis of residual sodium deoxycholate (DOC); a detergent of biological origin used in manufacturing of polysaccharide vaccines is challenging due to complex sample matrices and the lack of suitable methods. Here we report, rapid and sensitive high-performance liquid chromatography-refractive index (HPLC-RI) and tandem mass spectrometry (HPLC-MS/MS) methods for estimation of residual DOC in pneumococcal polysaccharides. For HPLC-RI method, separation was achieved using Luna C18 column and mobile phase compositions of acetonitrile: methanol: 20 mM sodium acetate (60:05:35% v/v). For HPLC-MS/MS method, separation was achieved using a Hypersil BDS C18 column with gradient elution of methanol and water (0.1% formic acid). MS/MS method showed linearity (r(2) = 0.997) over the range of 10-320 ng/mL with limits of detection (LOD) and lower limit of quantitation (LOQ) of 3 and 10 ng/mL respectively. Precision (% RSD) and accuracy (% recovery) for both methods were in the range of 0.74-8.29% and 82.33-117.86% respectively. Sample matrices interferences were addressed following novel sample clean-up method based on liquid-liquid extraction. Both methods enabled traceable quantitation of DOC in intermediate and purified pneumococcal polysaccharides of serotypes: 1, 5, 6A, 6B, 7F, 9V, 14, 19A, 19F and 23F.

  12. A simple and high resolution ion-pair HPLC method for separation and simultaneous determination of nitrate and thiocyanate in different water samples.

    PubMed

    Soleimani, Majid; Yamini, Yadollah; Mohazab Rad, Farzane

    2012-10-01

    An ion-pair reversed-phase high-performance liquid chromatography method with isocratic elution and ultraviolet detection was developed and validated for the separation and simultaneous determination of nitrate and thiocyanate. The separation was performed on a C18 analytical column with mobile phase containing 0.08 mM hexadecyltrimethylammonium bromide as an ion-pair reagent, 40 mM of acetate buffer and 30% methanol at pH 3.2. The detection was monitored at 206 nm. The response was linear from 1 to 10 mM for nitrate, with a detection limit of 0.05 mM, and 1 to 10 mM for thiocyanate, with a detection limit of 0.31 mM. Calibration curves were found to be linear in these concentration ranges with correlation coefficient better than 0.99.

  13. A simple, rapid method for HPLC analysis of lycopene isomers.

    PubMed

    Ishida, B K; Ma, J; Chan, B

    2001-01-01

    A rapid method for the extraction, separation and quantification of the geometric isomers of lycopene and beta-carotene from tomato fruit is described. Carotenoids in tomato were separated and eluted using a reversed-phase HPLC with a C30 column and a mobile phase consisting of methyl-t-butyl ether, methanol and ethyl acetate. The system provided sharp resolution of cis- and trans-isomers of lycopene within approximately 23 min in contrast to the longer and more complex gradient procedures required by previously described methods. Experiments indicate that the stability of extracts of fresh tomato may be improved if stored at -20 degrees C, and that the presence of the antioxidant BHA has no apparent effect on stability.

  14. Analysis of munitions constituents in IMX formulations by HPLC and HPLC-MS.

    PubMed

    Russell, A L; Seiter, J M; Coleman, J G; Winstead, B; Bednar, A J

    2014-10-01

    The use of Insensitive Munitions eXplosives (IMX) is increasing as the Army seeks to replace certain conventional munitions constituents, such as 2,4,6-trinitrotolene (TNT), for improved safety. The IMX formulations are more stable and therefore less prone to accidental detonation while designed to match the performance of legacy materials. Two formulations, IMX 101 and 104 are being investigated as a replacement for TNT in artillery rounds and composition B Army mortars, respectively. The chemical formulations of IMX-101 and 104 are comprised of four constituents;2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), 1-nitroguanidine (NQ), and Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) which are mixed in various ratios to achieve the desired performance. The current work details the analysis of the IMX constituents by single column HPLC-UV-ESI-MS. Detection limits determined are in agreement with similar HPLC analysis of compounds, ranging from 7 to 9μg/L. Gradient mobile phases are used to allow separation of the 4 target compounds in more complex mixture of other concomitant compounds. Mass spectra are used to confirm analyte identity with chromatographic retention time.

  15. Additives for immobilized pH gradient two-dimensional separation of particulate material: comparison between commercial and new synthetic detergents.

    PubMed

    Gianazza, E; Rabilloud, T; Quaglia, L; Caccia, P; Astrua-Testori, S; Osio, L; Grazioli, G; Righetti, P G

    1987-09-01

    We describe the synthesis of two detergents, L and A15, whose performances as solubilizing agents and as additives in the first-dimension step of a two-dimensional separation are compared with those of some commercial compounds, i.e., Nonidet P-40, 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonate(Chaps), and sulfobetaine, on three membrane protein preparations: rat RBC ghosts, beef kidney microvilli, and spinach thylakoids. L is 3-]3-dodecylamidoprophylcbdimethylammonio propane-1-sulfonate; owing to the substitution of a dodecylamido for the dodecyl residue of SB 3-12, the concentration of urea compatible with 2% detergent increases from 4.5 M for the parent molecule up to 7 M. With all three biological samples on which the panel of different detergents has been tested in parallel, L + urea scores as the most effective solubilization medium. On red blood cells a notable qualitative difference is observed with the selective extraction by L as well as by N-dodecyl-N,N-dimethylammonio-3-propanesulfonate of a major protein (pI = ca. 5.5, Mr = ca. 100,000). A15 is derived from a tertiary amine, with one alkylic substituent (either C11 or C13) and two poly(ethylene oxide) tails (totaling 15 ethoxy residues), which is reacted with propane sultone. Approximately 30% of the product corresponds to the N-adduct and is a truly zwitterionic detergent, while 60% is an O-derivative and still contains a titratable amino group (with a pK of 7.2). A15 can thus be used for isoelectric focusing on immobilized pH gradients, as in this work, but would not be compatible with carrier ampholyte isoelectric focusing.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Development and validation of a reversed-phase HPLC method for separation and simultaneous determination of process-related substances of mirtazapine in bulk drugs and formulations.

    PubMed

    Rao, R Nageswara; Raju, A Narasa

    2009-03-01

    A simple and rapid reversed-phase high-performance liquid chromatographic method has been developed for the separation and simultaneous determination of related substances of mirtazapine in bulk drugs and pharmaceutical formulations. Six impurities, including one degradation product of mirtazapine, have been separated on a BDS Hypersil (4.6 x 250 mm; particle size 5 microm) column with a mobile phase consisting of 0.3% triethylamine (pH 3.0)-acetonitrile (78:22 v/v) eluted in an isocratic mode and monitored with a photo diode array detector at 215 nm. The chromatographic behavior of all the analytes was studied under variable compositions of different solvent systems, temperatures, buffer concentrations, and pH values. The method was validated in terms of accuracy, precision, and linearity. The inter- and intra-day assay precision was found to be < 0.98% [relative standard deviation; (RSD)] and the recoveries were in the range 95.54-102.22% with RSD < 2.21%. The correlation coefficients for calibration curves for mirtazapine as well as impurities were in the range of 0.9941-0.9999. The method was successfully applied to the analysis of commercial formulations and the recoveries of mirtazapine were in the range of 99.38-100.73% with < 0.52% RSD. The method is useful not only for rapid evaluation of the purity of mirtazapine, but also for the simultaneous determination of related substances in bulk drugs and pharmaceutical formulations.

  17. Quantification and comparison of extraction methods for alkaloids in Aegle marmelos leaves by HPLC.

    PubMed

    Karmase, Aniket; Prasanna, K; Rasabattula, Sruti; Bhutani, Kamlesh K

    2014-07-01

    The leaves of Aegle marmelos are reported to contain multi-bioactive classes of compounds including coumarins, furanocoumarins and alkaloids. HPLC analysis of the crude extract was challenging due to low concentrations of the compounds in the leaves. Five compounds visible in the HPLC chromatogram were separated and identified by HPLC and further elaborated for quantification as marker compounds of A. marmelos leaves using a C18 column with detection at 275 nm. A gradient mobile phase consisting of acetonitrile and water was used. The developed HPLC method showed good linearity (r2 > 0.994), high precision (RSD<5%), and good recovery (99.27-99.98%) of the compounds. The lowest detection limit was 5 ng and the method was found to be robust. All the validation parameters were within the permissible limits. Therefore, the developed method is accurate and reliable for the quality control of A. marmelos. This is the first report of extensive quantitative HPLC analysis of marker compounds in A. marmelos leaves and method validation.

  18. Simultaneous separation/enrichment and detection of trace ciprofloxacin and lomefloxacin in food samples using thermosensitive smart polymers aqueous two-phase flotation system combined with HPLC.

    PubMed

    Lu, Yang; Chen, Bo; Yu, Miao; Han, Juan; Wang, Yun; Tan, Zhenjiang; Yan, Yongsheng

    2016-11-01

    Smart polymer aqueous two phase flotation system (SPATPF) is a new separation and enrichment technology that integrated the advantages of the three technologies, i.e., aqueous two phase system, smart polymer and flotation sublation. Ethylene oxide and propylene oxide copolymer (EOPO)-(NH4)2SO4 SPATPF is a pretreatment technique, and it is coupled with high-performance liquid chromatography to analyze the trace ciprofloxacin and lomefloxacin in real food samples. The optimized conditions of experiment were determined in the multi-factor experiment by using response surface methodology. The flotation efficiency of lomefloxacin and ciprofloxacin was 94.50% and 98.23% under the optimized conditions. The recycling experimentsshowed that the smart polymer EOPO could use repeatedly, which will reduce the cost in the future application.

  19. HPLC for Undergraduate Introductory Laboratories

    NASA Astrophysics Data System (ADS)

    van Arman, Scott A.; Thomsen, Marcus W.

    1997-01-01

    Undergraduate laboratories continue increasing the use of instrumentation in teaching. One technique that is growing in popularity is HPLC. We have designed a set of simple HPLC separations as part of an introductory set of projects that serve as an introduction to chromatography early in the organic course. We have introduced quantitative analysis to the common separation of analgesics so that students may identify the composition of an unknown commercial tablet. Derived from this system is a Ån adaptation of the well known separation of nucleosides by reversed-phase HPLC such that students can quantitatively identify the components of an unknown "RNA digest." Students must determine retention times and an instrumental response factor for each component. For both separations all components elute in × 6 min. and baseline separation is excellent. From the retention times of standard individual component samples the identity of each component in the sample can be ascertained. From the instrumental response factors of standard individual component samples the percent composition of each component can be calculated.

  20. Microchip electrospray: improvements in spray and signal stability during gradient elution by an inverted postcolumn makeup flow.

    PubMed

    Jung, Stephanie; Effelsberg, Uwe; Tallarek, Ulrich

    2011-12-01

    Dynamic changes in mobile phase composition during high-performance liquid chromatography (HPLC) gradient elution coupled to mass spectrometry (MS) sensitively affect electrospray modes. We investigate the impact of the eluent composition on spray stability and MS response by infusion and injection experiments with a small tetrapeptide in water-acetonitrile mixtures. The employed HPLC/electrospray (ESI)-MS configuration uses a microchip equipped with an enrichment column, a separation column, and a makeup flow (MUF) channel. One nano pump is connected to the separation column, while a second one delivers solvent of exactly inverted composition to the MUF channel. Both solvent streams are united behind the separation column, before the ESI tip, such that the resulting electrosprayed solution always has identical composition during a gradient elution. Analyte peak parameters without and with MUF compensation are determined and discussed with respect to the electrospray mode and eluent composition. The postcolumn MUF significantly improves spray and signal stability over the entire solvent gradient, without compromising the performance of the HPLC separation column. It can also be conveniently implemented on microchip platforms.

  1. Crater Detection Algorithms Based on Pixel-Difference, Separated-Pixel-Difference, Roberts, Prewitt, Sobel and Frei-Chen Gradient Edge Detectors

    NASA Astrophysics Data System (ADS)

    Novosel, H.; Salamuniccar, G.; Loncaric, S.

    2007-03-01

    Implementations of six different crater detection algorithms based on six different well-known gradient edge detectors are presented. They are analyzed and compared using free-response receiver operating characteristics.

  2. Microfabricated refractive index gradient based detector for reversed-phase liquid chromatography with mobile phase gradient elution.

    PubMed

    McBrady, Adam D; Synovec, Robert E

    2006-02-10

    Typical refractive index (RI) detectors for liquid chromatography (LC) are not well suited to application with mobile phase gradient elution, due to the difficulty in correcting for the detected baseline shift during the gradient. We report a sensitive, highly reproducible, microfabricated refractive index gradient (micro-RIG) detector that performs well with mobile phase gradient elution LC. Since the micro-RIG signal remains on-scale throughout the mobile phase gradient, one can apply a baseline correction procedure. We demonstrate that by collecting two mobile phase gradient blanks and subtracting one of them from the other, a reproducible, flat baseline is achieved. Therefore, subtracting a blank from a separation provides a baseline corrected chromatogram with reasonably high signal-to-noise ratio for eluting analytes. The micro-RIG detector uses a collimated diode laser beam to optically probe a RIG formed perpendicular to the laminar flow direction within a microfabricated borosilicate glass chip. The chip-based design of the detector is suitable for either traditional bench-top or LC-on-a-chip technologies. We report reversed phase high performance liquid chromatography (RP-HPLC) separations of proteins and polymers, over mobile phase gradient conditions of 67% A:33% B to 3% A:97% B by volume, where A is 96% methanol:3.9% water:0.1% trifluoroacetic acid (TFA), and B is 3.9% methanol:96% water:0.1% TFA. The separations were performed on a Jupiter 5 mu C4 300 A 150 mm x 1.0 mm Phenomenex column at a flow rate of 20 microl/min. Viscosity changes during the mobile phase gradient separation are found to shift the on-chip merge position of the detected concentration gradient (i.e., RIG), in a reproducible fashion. However, this viscosity effect makes detection sensitivity vary throughout the mobile phase gradient, due to moving the optimized position of the probe beam in relation to the analyte concentration gradient being probed. None-the-less, consistent limits

  3. Analyses of procyanidins in foods using Diol phase HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of procyanidins using silica-based HPLC suffered from poor resolution for higher oligomers and low sensitivity due to the fluorescence quenching effects of methylene chloride in the mobile phase. Optimization of a published Diol-phase HPLC method resulted in near baseline separation for p...

  4. HPLC for quality control of polyimides

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Sykes, G. F.

    1979-01-01

    High Pressure Liquid Chromatography (HPLC) as a quality control tool for polyimide resins and prepregs are presented. A data base to help establish accept/reject criteria for these materials was developed. This work is intended to supplement, not replace, standard quality control tests normally conducted on incoming resins and prepregs. To help achieve these objectives, the HPLC separation of LARC-160 polyimide precursor resin was characterized. Room temperature resin aging effects were studied. Graphite reinforced composites made from fresh and aged resin were fabricated and tested to determine if changes observed by HPLC were significant.

  5. Purification, separation and extraction of inner tubes from double-walled carbon nanotubes by tailoring density gradient ultracentrifugation using optical probes

    PubMed Central

    Rohringer, Philip; Shi, Lei; Liu, Xianjie; Yanagi, Kazuhiro; Pichler, Thomas

    2014-01-01

    We studied the effect of varying sonication and centrifugation parameters on double-walled carbon nanotubes (DWCNT) by measuring optical absorption and photoluminescence (PL) of the samples. We found that by using a low sonication intensity before applying density gradient ultracentrifugation (DGU), only inner tube species with a diameter ⩽0.8 nm can be identified in absorption measurements. This is in stark contrast to the result after sonicating at higher intensities, where also bigger inner tubes can be found. Furthermore, by comparing PL properties of samples centrifugated either with or without a gradient medium, we found that applying DGU greatly enhances the PL intensity, whereas centrifugation at even higher speeds but without a gradient medium results in lower intensities. This can be explained by extraction of inner tubes from their host outer tubes in a two-stage process: the different shearing forces from the sonication treatments result in some DWCNT to be opened, whereas others stay uncut. A subsequent application of DGU leads to the extraction of the inner tubes or not if the host nanotube stayed uncut or no gradient medium was used. This work shows a pathway to avoid this phenomenon to unravel the intrinsic PL from inner tubes of DWCNT. PMID:25843961

  6. Development of an HPLC post-column antioxidant assay for Solidago canadensis radical scavengers.

    PubMed

    Marksa, Mindaugas; Radušienė, Jolita; Jakštas, Valdas; Ivanauskas, Liudas; Marksienė, Rūta

    2016-01-01

    The aim of this work was to modify and validate the post-column high-performance liquid chromatography (HPLC)-ABTS and DPPH methods for evaluating the antioxidant activity of the methanolic extracts of Solidago canadensis (Canadian goldenrod) leaves and flowers. Separation of the analytes was performed via the HPLC-PDA method on a YMC analytical column using a gradient elution program. Three compounds with antioxidant properties - chlorogenic acid, rutin and isoquercitrin - and two unidentified antioxidants were established. The research showed that the coil temperature regimes and loop length combinations influence the optimised post-column assay method for detecting the antioxidant activity of goldenrod radical scavengers. Investigations established that the temperature in the reaction coil was a substantial factor contributing to the signal strength of the analytes after reacting with the DPPH and ABTS radicals.

  7. Analysis of the monosaccharide composition of fucoidan by precolumn derivation HPLC

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Zhang, Quanbin; Wang, Jing; Shi, Xuelian; Zhang, Zhongshan

    2009-09-01

    We developed an HPLC method for analysis of the monosaccharide composition of fucoidans. The fucoidan was hydrolyzed into monosaccharides with 2 mol/L trifluoroacetic acid. Using ribose as the internal standard, the monosaccharide derivatives, obtained with 1-Phenyl-3-methyl-5-pyrazolone (PMP), were separated by reverse-phase HPLC using a gradient elution process, and monitored by ultraviolet detection at 245 nm. In the concentration range of 0.1-2.0 mmol/L, the peak area of each monosaccharide had a good linear relationship with its concentration ( r 2>0.998). The average recoveries of mannose, rhamnose, glucuronic acid, glucose, galactose, xylose, and fucose were 86.2%, 95.1%, 62.5%, 102.0%, 94.8%, 66.6%, and 105.1%, respectively. This method was accurate and had good reproducibility and could be used to determine the monosaccharide contents of fucoidans.

  8. Simultaneous analysis of 17 diuretics in dietary supplements by HPLC and LC-MS/MS.

    PubMed

    Woo, H; Kim, J W; Han, K M; Lee, J H; Hwang, I S; Lee, J H; Kim, J; Kweon, S J; Cho, S; Chae, K R; Han, S Y; Kim, J

    2013-01-01

    In order to test health foods for illegally added diuretics for weight loss, we developed simple, rapid, selective, and sensitive methods using HPLC and LC-MS/MS for the simultaneous analysis of 17 diuretics in dietary supplements. HPLC conditions were set with a Capcell-pak C18, using a mobile phase consisting of gradient conditions, UV detection at 254 nm and validated for linearity (r(2)> 0.999), precision (CV ≤ 3%), recoveries (90.4-102.8%) and reproducibility. Identification and quantification of 17 diuretics were accomplished by ion-spray LC-MS/MS using multiple reaction monitoring (MRM). The chromatographic separation was carried out under the reversed-phase mechanism on an HSS-T3 column. The LC-MS/MS method was validated for linearity (r(2)> 0.99) and precision (CV < 13%). Sixteen dietary supplements were tested with the developed methods. Diuretics were not detected in all samples. Extraction recovery was also investigated and the extraction recoveries in different formulations were from 88% to 110% and from 81% to 116% using HPLC and LC-MS/MS, respectively. There was no significant difference in recoveries in the type of dietary supplements. Based on this result, the developed methods to monitor illegal drug adulterations in dietary supplements using HPLC and LC-MS/MS are simple, fast and reliable. Therefore, it is applicable to routine drug-adulteration screening.

  9. Chromatographic Analysis of a Multicomponent Mixture of B1, B6, B12, Benfotiamine, and Diclofenac; Part I: HPLC and UPLC Methods for the Simultaneous Quantification of These Five Components in Tablets and Capsules.

    PubMed

    Fayed, Ahmed Salah; Hegazy, Maha Abdel-Monem; Wahab, Nada Sayed Abdel

    2016-11-01

    New, simple, highly sensitive, precise, and accurate gradient reversed-phase chromatographic methods were developed using HPLC and ultra-HPLC (UPLC) systems for the determination of five components, namely thiamine, pyridoxine, cyanocobalamin, benfotiamine, and diclofenac in tablets and capsules. The methods were compared for their efficiency in the separation and determination of these five compounds using two different C18 columns (250 × 4.6 mm, 5 μm; and 100 × 4.6 mm, 2.6 μm) for HPLC and UPLC, respectively. Chromatographic separation was performed with a mobile phase containing acetonitrile and 0.025 M phosphate buffer (pH 3.5), with a gradient program and a flow rate of 1.5 and 1.0 mL/min for both methods, respectively. The methods were validated according to International Conference on Harmonization guidelines. Linearity was achieved in the range of 5.00 to 150.00 μg/mL for each of the five compounds. Ruggedness and intermediate precision were confirmed by different analysts on different columns on different days. Moreover, the components were subjected to an accelerated stability study under acidic, alkaline, and oxidative stress conditions and no interfering peaks were observed. The five compounds were efficiently separated in <20 min by HPLC, whereas for UPLC, separation was achieved in <8 min, which dramatically decreased the consumption of organic solvents.

  10. Fast separation of (poly)phenolic compounds from apples and pears by high-performance liquid chromatography with diode-array detection.

    PubMed

    Escarpa, A; González, M C

    1999-01-15

    Polyphenolic compounds in apples and pears were analysed by HPLC on C18-modified silica. Gradient elution with phosphoric acid-methanol mixtures and phosphoric acid-acetonitrile mixtures gave complete separation of all polyphenolics of interest. The use of methanol as modifier was preferred because it provides a more rapid separation (20 min). Diode-array detection was used for the provisional identification of polyphenolic compounds not available as standards.

  11. Direct characterization of aqueous extract of Hibiscus sabdariffa using HPLC with diode array detection coupled to ESI and ion trap MS.

    PubMed

    Rodríguez-Medina, Inmaculada C; Beltrán-Debón, Raúl; Molina, Vicente Micol; Alonso-Villaverde, Carlos; Joven, Jorge; Menéndez, Javier A; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2009-10-01

    The phenolic fraction and other polar compounds of the Hibiscus sabdariffa were separated and identified by HPLC with diode array detection coupled to electrospray TOF and IT tandem MS (DAD-HPLC-ESI-TOF-MS and IT-MS). The H. sabdariffa aqueous extract was filtered and directly injected into the LC system. The analysis of the compounds was carried out by RP HPLC coupled to DAD and TOF-MS in order to obtain molecular formula and exact mass. Posterior analyses with IT-MS were performed and the fragmentation pattern and confirmation of the structures were achieved. The H. sabdariffa samples were successfully analyzed in positive and negative ionization modes with two optimized linear gradients. In positive mode, the two most representative anthocyanins and other compounds were identified whereas the phenolic fraction, hydroxycitric acid and its lactone were identified using the negative ionization mode.

  12. Evaluation of mobile phase gradient supercritical fluid chromatography for impurity profiling of pharmaceutical compounds.

    PubMed

    Alexander, A J; Hooker, T F; Tomasella, F P

    2012-11-01

    The use of gradient supercritical fluid chromatography (SFC) for the impurity profiling of pharmaceutical products is not widely practiced. Historically, the limited advancement in SFC instrumentation and the lag in column development have resulted in marginal sensitivity, selectivity and reproducibility when compared with high performance liquid chromatography (HPLC). Using a recently developed commercial module, which allows an ordinary HPLC to be converted to a SFC system, a significant improvement in sensitivity (up to ~12-fold) has been obtained over previous studies. This has allowed for the first time a "real-world" head-to-head comparison of SFC to HPLC for impurity profiling of pharmaceutical products in a regulated environment. Retention time reproducibility and low level impurity detection were found to be comparable to reversed phase liquid chromatography (RPLC), that is, single digit %relative standard deviations (RSDs) were obtained for impurities present at less than 0.1 area%. Furthermore, these results were obtained with drug loading levels (≤2 mg/mL) that are not only comparable to those employed with HPLC, but are dictated by the limited solubility of many drug candidates. The elution of impurities was generally found to be orthogonal to that obtained with RPLC, but it was still challenging to find SFC conditions that would separate all of the components in the mixtures studied. In terms of enhancing selectivity, small amounts of mobile phase additives (0.1-1%) and temperature optimization were found to have a greater impact in SFC method development versus RPLC. However, unlike gradient RPLC, the relative changes in baseline noise and slope were found to be a complex function of the experimental conditions, with the largest differences in noise levels being generally observed for the widest and steepest gradients. It is likely that this gradient related noise is more apparent now because other sources of noise in SFC have been reduced

  13. Analysis of Trichothecene Mycotoxins by Combined HPLC/MS.

    DTIC Science & Technology

    1986-04-15

    The development of HPLC/MS assays for the analysis of selected trichothecene mycotoxins in urine is the goal of this program. T-2 toxin has been the initial target of this investigation. Three important issues have been addressed before proceeding with the actual HPLC/MS experiments: the synthesis of isotopically labelled internal standards, efficient recovery of the target compounds from the urine matrix, and determination of HPLC conditions for their separation. Keywords: Mass spectrometry, High performance liquid chromatography , Phytotoxins.

  14. The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method.

    PubMed

    Bandoniene, Donata; Murkovic, Michael

    2002-01-01

    The rapid evaluation of antioxidant activity of crude borage (Borago officinalis L.) extract was determined by using DPPH free radical method. This borage extract resulted in a rapid decrease of the absorbance and showed very high hydrogen-donating capacity towards the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical. A new HPLC-DPPH on-line method was applied for a screening of several radical scavenging components in this borage extract as well as for quantitative analysis. This on-line HPLC-DPPH method was developed using a methanolic solution of DPPH-stable radical. The HPLC-separated analytes reacted post-column with the DPPH solution in methanol. The induced bleaching was detected as a negative peak photometrically at 515 nm. The separation of antioxidative components was carried out by gradient HPLC with mobile-phase composition ranging from 2% to 80% acetonitrile with 2% acetic acid in water, UV detection was carried out at 280 nm. The HPLC analysis of borage extract revealed the presence of several radical scavenging components in the borage extract. The results obtained from the chromatograms suggest that some compounds present in the extract possess high radical quenching ability. The dominant antioxidative compound in the crude extract of borage leaves was identified as rosmarinic acid.

  15. Aqueous Reversed-Phase HPLC/FT-IR Using Diffuse Reflectance Detections

    NASA Astrophysics Data System (ADS)

    Kalasinsky, Victor F.; Pai, T. H.; Kenton, R. C.; Kalasinsky, Kathryn S.

    1989-12-01

    Solvent-elimination HPLC/FT-IR has become a viable combination of two important techniques, and we have been developing a system which is adaptable to both normal and reversed-phase liquid chromatography. The interface involves the deposition of HPLC eluites onto a KCI-laden train with subsequent analysis via diffuse reflectance spectroscopy, and with minor modifications, the system can be used with microbore and analytical columns. With aqueous solvents, the water is converted to methanol and acetone in a post-column reaction with 2,2-dimethoxypropane before the eluites are deposited. A number of different samples have been used to demonstrate the interface and its flexibility. Steroids, analgesics, and other pharmaceutical preparations have been separated with reverse-phase solvents and identified by their infrared spectra. For some of the compounds studied, different infrared spectra of a given compound have been found to exhibit intensity variations, which arise from different crystalline states. The differences can be concentration dependent and may be useful in obtaining semi-quantitative information from the infrared spectra. Applications involving both gradient elution and isocratic separations have been successful. The former provides the same advantages for HPLC/FT-IR as one finds in conventional HPLC. More recent work has been applied to the use of buffers such as those frequently used in bioanalytical separations. In trying to simplify the post-column reaction with water, we have immobilized dehydration reagents onto silica particles and packed these materials into a column which is inserted in-line after the analytical column. Of the reagents utilized to date, 3,3-dimethoxypropyltrimethoxysilane has been found to perform most efficiently. It has advantages over the simpler reagents because it can be regenerated in the reaction column. Results and the efficiency of the dehydration process and its relation to the type of reagent and its coverage will be

  16. Magnetic separation of algae

    SciTech Connect

    Nath, Pulak; Twary, Scott N.

    2016-04-26

    Described herein are methods and systems for harvesting, collecting, separating and/or dewatering algae using iron based salts combined with a magnetic field gradient to separate algae from an aqueous solution.

  17. Determination of CMPO using HPLC -UV

    SciTech Connect

    Gracy Elias; Gary S. Groenewold; Bruce J. Mincher; Stephen P. Mezyk

    2012-06-01

    Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) is an extractant proposed for selective separation of radionuclide metals from used nuclear fuel solutions using solvent extraction. Radiolysis reactions can degrade CMPO and reduce separation performance and hence methods for measuring concentration of CMPO and identifying degradation products are needed. A novel high performance liquid chromatography (HPLC) method employing ultraviolet detection (UV) was developed to detect and quantitate CMPO in dodecane. Some radiolysis products in gamma and alpha irradiated CMPO solutions were identified using HPLC/electrospray ionization-mass spectrometry (ESI-MS). Validation data indicated that the HPLC-UV method for CMPO determination provided good linearity, sensitivity, procedure accuracy and system precision. CMPO-nitric acid complexes were also identified, that account for the apparent loss of CMPO in acidic environment, independent of irradiation.

  18. Sequential elution liquid chromatography can significantly increase the probability of a successful separation by simultaneously increasing the peak capacity and reducing the separation disorder.

    PubMed

    Socia, Adam; Foley, Joe P

    2014-01-10

    This paper demonstrates that sequential elution liquid chromatography (SE-LC), an approach in which two or more elution modes are employed in series for the separation of two or more groups of compounds, can be used to separate not only weak acids (or weak bases) from neutral compounds, but weak acids and weak bases from neutral compounds (and each other) by the sequential application of either of two types of an extended pH gradient prior to a solvent gradient. It also details a comparison, based on peak capacity and separation disorder, of the probability of success of this approach with the unimodal elution approach taken by conventional column liquid chromatography. For an HPLC peak capacity of 120 and samples of moderate complexity (e.g., 12 components), the probability of success (Rs≥1) increases from 37.9% (HPLC) to 85.8% (SE-LC). Different columns were evaluated for their utility for SE-LC using the following criteria: (1) the prediction of the elution order of the groups based on the degree of ionization of the compounds; and (2) the closeness of the peak shape to the ideal Gaussian distribution. The best columns overall were the Zorbax SB-AQ and Waters XBridge Shield columns, as they provided both between-class and within-class separations of all compounds, as well as the lowest degree of tailing of 4-ethylaniline using the pH 2 to pH 8 gradient.

  19. Multiecho IDEAL Gradient-Echo Water-Fat Separation for Rapid Assessment of Cartilage Volume at 1.5 T: Initial Experience1

    PubMed Central

    Chen, Christina A.; Lu, Wenmiao; John, Chand T.; Hargreaves, Brian A.; Reeder, Scott B.; Delp, Scott L.; Siston, Robert A.; Gold, Garry E.

    2009-01-01

    Institutional review board approval and informed consent were obtained for this HIPAA-compliant study. The purpose was to prospectively compare multiecho iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) gradient-echo (GRE) magnetic resonance (MR) imaging with three-dimensional fat-suppressed (FS) spoiled GRE (SPGR) MR imaging to evaluate the articular cartilage of the knee. Six healthy volunteer and 10 cadaver knees were imaged at 1.5 T. Signal-to-noise ratio (SNR), SNR efficiency, and cartilage volume were measured. SNR and SNR efficiency were significantly higher with multiecho IDEAL GRE than with FS SPGR imaging (P < .031). Both methods produced equivalent cartilage volumes (overall concordance correlation coefficient, 0.998) with high precision and accuracy. The use of a cartilage phantom confirmed high accuracy in volume measurements and high reproducibility for both methods. Multiecho IDEAL GRE provides high signal intensity in cartilage and synovial fluid and is a promising technique for imaging articular cartilage of the knee. PMID:19528355

  20. Development and Validation of HPLC and HPTLC Methods for Estimation of Glabridin in Extracts of Glycyrrhiza glabra.

    PubMed

    Viswanathan, Vivek; Mukne, Alka P

    2016-01-01

    Glabridin is a major bioactive phytoconstituent of licorice. This work discusses the development and validation of HPLC and HPTLC methods for analysis of glabridin in licorice. The HPLC separation was performed using a Purospher STAR RP-18e column (5 μm silica particle size, 250 mm × 4.6 mm inner diameter) with gradient elution of 0.2% acetic acid in water-acetonitrile. The flow rate was 1 mL/min. Quantification was performed at a detection wavelength of 280 nm. HTPLC separation was performed on precoated silica gel 60 F254 aluminum plate (10 × 10 cm, 250 μm thickness). A linear ascending development was done using a mobile phase of hexane-ethyl acetate-chloroform (5 + 4 + 3, v/v/v). After development, the plates were scanned at 285 nm. Both of the methods provided good separation of glabridin from other constituents of licorice extract. The methods were validated as per ICH guidelines. Comparison by Student t-test showed that there was a statistically insignificant difference between the mean glabridin content estimated by both methods at 95% confidence interval. The glabridin content in licorice extract was 3.90% by HPLC and 3.79% by HPTLC.

  1. Simultaneous Determination of Five Active Components in the Chinese Patent Medicine Niuhuang Jiangya Pill by HPLC-MS/MS.

    PubMed

    Xiong, Shan; Lei, Shanshan

    2016-12-16

    Niuhuang Jiangya (NHJY) pill is one of the well-known Chinese patent medicines in China used in the treatment of high blood pressure. The primary purpose of this study was to establish and validate a method using HPLC with tandem MS for the quality evaluation of NHJY pill through simultaneous determination of the following five active components: baicalin, paeoniflorin, astragaloside IV, ferulic acid, and emodin. Chromatographic separation was carried out on a Hypersil GOLD HPLC C18 column (50 × 4.6 mm, 3 μm) with acetonitrile and water as mobile phase and gradient elution at a flow rate of 0.4 mL/min. The method established in this study was selective, linear, precise, and accurate and was successfully applied to evaluate five active components in NHJY pill collected from different production batches, which could be considered a good approach to control the quality of NHJY pill and other related botanical drugs.

  2. Simple and fast HPLC method for simultaneous determination of retinol, tocopherols, coenzyme Q(10) and carotenoids in complex samples.

    PubMed

    Gleize, Béatrice; Steib, Marlène; André, Marc; Reboul, Emmanuelle

    2012-10-15

    The effects of fat-soluble vitamins (such as vitamins A and E) and lipid microconstituents (such as carotenoids) on human health are now well established. However, high-performance liquid chromatography (HPLC) methods able to detect these molecules in simultaneous runs are often difficult to set up. We report here a 35-min reversed-phase HPLC method using a single C30 column kept at 35°C with a gradient system of methanol, methyl-tert-butyl ether and water at a flow-rate of 1 mL/min. This method resolves 11 carotenoids, retinol, α- and γ-tocopherol from complex matrixes such as food samples, human plasma and human adipose tissue within 35 min. The method is also able to separate coenzyme Q(10). The intra-day and inter-day coefficients of variation are suitable for routine clinical and scientific applications for the determination of lipid micronutrients from various sample types.

  3. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  4. High-performance liquid chromatographic separation of subcomponents of antimycin A.

    PubMed

    Abidi, S L

    1988-08-05

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, A1a, A1b, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins A1, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpreted based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  5. Extraction and identification of flavonoids from parsley extracts by HPLC analysis

    NASA Astrophysics Data System (ADS)

    Stan, M.; Soran, M. L.; Varodi, C.; Lung, I.

    2012-02-01

    Flavonoids are phenolic compounds isolated from a wide variety of plants, and are valuable for their multiple properties, including antioxidant and antimicrobial activities. In the present work, parsley (Petroselinum crispum L.) extracts were obtained by three different extraction techniques: maceration, ultrasonic-assisted and microwave-assisted solvent extractions. The extractions were performed with ethanol-water mixtures in various ratios. From these extracts, flavonoids like the flavones apigenin and luteolin, and the flavonols quercetin and kaempferol were identified using an HPLC Shimadzu apparatus equipped with PDA and MS detectors. The separation method involved a gradient step. The mobile phase consisted of two solvents: acetonitrile and distilled water with 0.1% formic acid. The separation was performed on a RP-C18 column.

  6. Analysis of Piperaceae germplasm by HPLC and LCMS: a method for isolating and identifying unsaturated amides from Piper spp extracts.

    PubMed

    Scott, Ian M; Puniani, Evaloni; Jensen, Helen; Livesey, John F; Poveda, Luis; Sanchez-Vindas, Pablo; Durst, Tony; Arnason, John T

    2005-03-23

    A method for extraction and high performance liquid chromatography-mass spectrometer (HPLC-MS) analysis of the medicinally important genus Piper (Piperaceae) was developed. This allows for a rapid and accurate measure of unsaturated amides, or piperamides, in black pepper, Piper nigrum L., and in wild species from Central America. Reflux extraction provided the highest recovery of piperine (>80%) from leaf and peppercorn material. HPLC analysis using a binary gradient of acetonitrile and water separated the major amide peaks between 5 and 12 min. Atmospheric pressure chemical ionization (APCI)-MS improved the detection limit to 0.2 ng, 10-fold below the 2 ng limit of the HPLC-diode array detector (DAD) based on linear standard curves between 0.1 and 250 microg/mL (R2 = 0.999). The HPLC-MS method identified pellitorine, piperylin, 4,5-dihydropiperlonguminine, piperlonguminine, 4,5-dihydropiperine, piperine, and pipercide. The biological activity of six Costa Rican Piper species assessed by mosquito larval bioassays correlated well with piperamide content.

  7. A Validated Stability-Indicating HPLC Method for Simultaneous Determination of Amoxicillin and Enrofloxacin Combination in an Injectable Suspension.

    PubMed

    Batrawi, Nidal; Wahdan, Shorouq; Al-Rimawi, Fuad

    2017-02-16

    The combination of amoxicillin and enrofloxacin is a well-known mixture of veterinary drugs; it is used for the treatment of Gram-positive and Gram-negative bacteria. In the scientific literature, there is no high-performance liquid chromatography (HPLC)-UV method for the simultaneous determination of this combination. The objective of this work is to develop and validate an HPLC method for the determination of this combination. In this regard, a new, simple and efficient reversed-phase HPLC method for simultaneous qualitative and quantitative determination of amoxicillin and enrofloxacin, in an injectable preparation with a mixture of inactive excipients, has been developed and validated. The HPLC separation method was performed using a reversed-phase (RP)-C18e (250 mm × 4.0 mm, 5 μm) column at room temperature, with a gradient mobile phase of acetonitrile and phosphate buffer containing methanol at pH 5.0, a flow rate of 0.8 mL/min and ultraviolet detection at 267 nm. This method was validated in accordance with the Food and Drug Administration (FDA) and the International Conference on Harmonisation (ICH) guidelines and showed excellent linearity, accuracy, precision, specificity, robustness, ruggedness, and system suitability results within the acceptance criteria. A stability-indicating study was also carried out and indicated that this method can also be used for purity and degradation evaluation of these formulations.

  8. Evaluation of proposed sulphoxidation pathways of carbocysteine in man by HPLC quantification.

    PubMed

    Brockmöller, J; Staffeldt, B; Roots, I

    1991-01-01

    A quantitative study has been made of the metabolism of S-carboxymethyl-L-cysteine (CMC) and its sulphoxides in volunteers by HPLC. Precolumn derivatization was applied prior to gradient reversed phase HPLC separation and fluorescence detection. For CMC and its metabolites containing a primary amino group the reagent 9-fluorenylmethylchloroformate was used. The other metabolites of CMC were derivatized at their carboxylic group with 1-pyrenyldiazomethane to give stable fluorescent products. Urine samples were collected for 8 h after oral administration of 1.125 g CMC to 33 healthy volunteers. Elimination of CMC in urine as sulphoxides did not account for more than 1% of the dose in any of the volunteers. Thus, CMC-sulphoxide metabolites are not quantitatively important. Recovery of the original substance in 8-hour urines ranged from 10 to 30% and a further 2 to 20% was recovered as the metabolite thiodiglycolic acid. Oral doses of 0.19, 1.125, and 2.25 g CMC in a second group of 12 healthy volunteers did not reveal dose dependence of the urinary excretion of the sulphoxides or of thiodiglycolic acid. Serum concentration-time-curves of CMC, (S)- and (R)-CMC sulphoxide were measured in a group of 9 healthy volunteers. The CMC sulphoxides in serum reached 1.5% of the parent substance after 4 hours. The ratio of CMC to its sulphoxide metabolites was similar in serum and urine. Pharmacogenetic polymorphism of sulphoxidation was not confirmed by the specific HPLC methods used.

  9. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  10. HPLC-DAD and HPLC-ESI-MS analyses of Tiliae flos and its preparations.

    PubMed

    Karioti, A; Chiarabini, L; Alachkar, A; Fawaz Chehna, M; Vincieri, F F; Bilia, A R

    2014-11-01

    In the present study extensive HPLC-DAD, HPLC-ESI-MS and NMR analyses were undertaken in the aqueous preparations (decoctions, infusions) and tinctures of Tilia platyphyllos Scop inflorescences. The aim of this work was to examine in depth the qualitative and quantitative profile of the investigated preparations, which find until today wide applications in pharmaceutical and cosmetic industry, and to propose a validated method for their quality control. An HPLC-DAD-ESI-MS method was developed and optimised for the quantitative determination of the constituents. Marker constituents of Tiliae flos are the flavonoids, while the volatile content is also used for the quality control. However, the analyses of the non-volatile fraction gave complex chromatographic fingerprints containing simple phenolics and low molecular weight procyanidins. The use of different HPLC columns permitted a good separation of the constituents and enabled their quantitation, while HPLC-MS analyses permitted the detection of procyanidin oligomers. Overall, 31 constituents were detected and identified. Extensive preparative chromatographic investigations and 2D-NMR analyses allowed the characterisation of procyanidins as epicatechin derivatives. Finally, the HPLC method was validated and complied with ICH guidelines. This is the first report of detailed analysis of the chemical composition of Tiliae flos.

  11. Application of HPLC and MALDI-TOF MS for studying as-synthesized ligand-protected gold nanoclusters products.

    PubMed

    Zhang, Yan; Shuang, Shaomin; Dong, Chuan; Lo, Chung Keung; Paau, Man Chin; Choi, Martin M F

    2009-02-15

    Samples of polydisperse gold nanoclusters (AuNCs) protected with monolayers of N-acetyl-L-cysteine (NAC) have been chromatographically separated by a C18 column (4.6 mm x 250 mm) using a gradient elution program with a mobile phase of methanol (MeOH)/water containing tetrabutylammonium fluoride (Bu(4)N(+)F(-)) and sodium chloride. The effects of Bu(4)N(+)F(-) and MeOH on the separation have been investigated in detail. In conjunction with absorbance-based, fluorescence, and electrochemical detectors, the elution order of these water-soluble AuNCs is confirmed according to their core size in an ascending order. The onset oxidation potential closely follows the core size of AuNC. The separated fractions from high-performance liquid chromatography (HPLC) were collected and analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry to determine the number of Au atoms in the fractions. The sizes of AuNCs in some selected HPLC fractions were also assessed by transmission electron microscopy and high-resolution transmission electron microscopy. Photoluminescence spectra of the fractions show that the luminescent shift in the visible/near-infrared region does not follow with the core size of AuNC. More importantly, the proposed HPLC methodology has been successfully applied to analyze various polydisperse AuNC products synthesized from different gold-to-ligand mole ratios (Au/NAC) and reaction temperatures. The results confirm that larger Au/NAC and higher temperature will produce larger core size AuNCs products with narrower dispersity. In addition, AuNC samples obtained from various synthesis reaction times were analyzed by our HPLC methodology, demonstrating that the reaction's behavior follows the nucleation-growth-disintegration process.

  12. Determination and validation of six sunscreen agents in suncare products by UPLC and HPLC.

    PubMed

    Lee, So-Mi; Jeong, Hye-Jin; Chang, Ih Seop

    2008-01-01

    Methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine are sunscreen agents that have hydrophobic behaviors in common. They were not normally assayed with the following four sunscreen agents that have hydrophilic behaviors in a single chromatographic run: ethylhexyl methoxycinnamate, isoamyl p-methoxycinnamate, ethylhexyl salicylate, and ethylhexyl triazone. For that reason, methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine require much time in order to assay products with those materials. A rapid, selective, and reproducible determination method needs to be developed for the simultaneous examination of methylene bis-benzotriazolyl tetramethyl butylphenol and bis-ethylhexyloxy phenol methoxyphenyl triazine with the sunscreen agents, ethylhexyl methoxycinnamate, isoamyl p-methoxycinnamate, ethylhexyl salicylate, and ethylhexyl triazone. This new technique could reduce time in examining the sunscreen agents and be effective for quality control of suncare products. In this paper, the HPLC and UPLC system is used for developing the determination of the sunscreen agents. Several evaluations of some mixtures of eluents and columns were obtained for the optimal condition of separation. In HPLC, the optimal peak resolution was obtained through ethanol-water gradient elution and a 75-mm C18 column with a 3.5-microm-sized particle on a flow rate of 1.0 ml/min. In UPLC, the most distinctive peak resolution was obtained through methanol-water gradient elution and a 50-mm C18 column with a 1.7-microm-sized particle on a flow rate 0.4 ml/min. Both of those chromatographic determination methods could be used in the examination of six types of sunscreen agents without any interference from other product excipients in the agents. The proposed determination methods were validated for specificity, linearity, repeatability, system stability, intermediate precision, and accuracy

  13. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols.

    PubMed

    Lísa, Miroslav; Holčapek, Michal

    2013-02-05

    In this work, the first systematic characterization of triacylglycerol (TG) enantiomers in real samples using chiral high-performance liquid chromatography (HPLC) with atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is performed. Our chiral HPLC/APCI-MS method is based on the use of two cellulose-tris-(3,5-dimethylphenylcarbamate) columns connected in series using a gradient of hexane-2-propanol mobile phase. All TG enantiomers containing 1-8 DBs and different fatty acyl chain lengths are separated using our chiral HPLC method except for TGs having a combination of saturated and di- or triunsaturated fatty acyls in sn-1 and sn-3 positions. In our work, the randomization reaction of monoacyl TG standards is used for the preparation of all TG enantiomers and regioisomers in a mixture, while the stereospecific esterification of 1,2- or 2,3-isopropylidene-sn-glycerols by selected fatty acids is used for the synthesis of TG enantiomers. The composition of TG enantiomers and regioisomers in hazelnut oil and human plasma samples is determined. Unsaturated fatty acids are preferentially esterified in sn-2 position in hazelnut oil, while no significant preference of saturated or unsaturated fatty acyls is observed in case of human plasma sample. Fatty acids with the higher number of DBs are preferred in sn-1 position of TG enantiomers in hazelnut oil unlike to moderate sn-3 preference in human plasma. The characterization of cholesteryl esters from TG fraction of human plasma sample using our chiral HPLC/APCI-MS method is presented as well.

  14. Identification of Rhodiola species by using RP-HPLC*

    PubMed Central

    Wang, Qiang; Ruan, Xiao; Jin, Zhi-hua; Yan, Qi-chuan; Tu, Shan-jun

    2005-01-01

    An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to identify ten species of Rhodiola, R. coccinea A. Bor, R. junggarica C.Y. Yang et N.R. Cui spn., R. heterodonta A. Bor, R. linearifolia A. Bor, R. pamiro alaiucm A. Bor, R. kaschgarica A. Bor, R. litwinowii A. Bor, R. gelida schrenk, R. rosea L. and R. quadrifide Fisch et Mey collected from the Tianshan Mountains areas of China. Chromatograms of alcohol-soluble proteins, generated from these ten Rhodiola spp. were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild species only. The results showed that when using a Waters Delta Pak. C18, 5 μm particle size reversed phase column (150 mm×3.9 mm), a linear gradient of 22%–55% solvent B with a flow rate of 1 ml/min and a run time of 67 min, the chromatography gave optimum separation of Rhodiola alcohol-soluble proteins. Chromatogram of each species was different and could be used to identify those species. Cluster analysis of genetic similarity coefficients of 37% to 60% showed a medium degree of genetic diversity among the species in these eco-areas. Cluster analysis showed that the ten species of Rhodiola can be divided into four clusters and yielded the general and unique biochemical markers of these species. RP-HPLC was shown to be a rapid, repeatable and reliable method for Rhodiola species identification and analysis of genetic diversity. PMID:15909330

  15. Structural elucidation of potential impurities in Azilsartan bulk drug by HPLC.

    PubMed

    Zhou, Wentao; Zhou, Yuxia; Sun, Lili; Zou, Qiaogen; Wei, Ping; Ouyang, Pingkai

    2014-01-01

    During the synthesis of Azilsartan (AZS), it was speculated that 15 potential impurities would arise. This study investigated the possible mechanism for the formation of 14 of them, and their structures were characterized and confirmed by IR, NMR, and MS techniques. In addition, an efficient chromatographic method was developed to separate and quantify these impurities, using an Inertsil ODS-3 column (250 x 4.6 mm, 5 pm) in gradient mode with a mixture of acetonitrile and the potassium dihydrogen orthophosphate buffer (10 mM, pH adjusted to 3.0 with phosphoric acid). The HPLC method was validated for specificity, precision, accuracy, and sensitivity. LOQ of impurities were in the range of 1.04-2.20 ng. Correlation coefficient values of linearity were >0.9996 for AZS and its impurities. The mean recoveries of all impurities in AZS were between 93.0 and 109.7%. Thus, the validated HPLC method is suitable for the separation and quantification of all potential impurities in AZS.

  16. HPLC and chemometric methods for the simultaneous determination of cyproheptadine hydrochloride, multivitamins, and sorbic acid.

    PubMed

    el-Gindy, Alaa; el-Yazby, Fawzy; Mostafa, Ahmed; Maher, Moustafa M

    2004-06-29

    Three methods are presented for the simultaneous determination of cyproheptadine hydrochloride (CP), thiamine hydrochloride (B1), riboflavin-5-phosphate sodium dihydrate (B2), nicotinamide (B3), pyridoxine hydrochloride (B6), and sorbic acid (SO). The chromatographic method depends on a high performance liquid chromatographic (HPLC) separation on a reversed-phase, RP 18 column. Elution was carried out with 0.1% methanolic hexane sulphonic acid sodium salt (solvent A) and 0.01 M phosphate buffer containing 0.1% hexane sulphonic acid sodium salt, adjusted to an apparent pH of 2.7 (solvent B). Gradient HPLC was used with the solvent ratio changed from 20:80 to 70:30 (over 9 min), then to 80:20 (over 11 min) for solvent A:B, respectively. Quantitation was achieved with UV detection at 220 and 288 nm based on peak area. The other two chemometric methods applied were principal component regression (PCR) and partial least squares (PLS). These approaches were successfully applied to quantify each drug in the mixture using the information included in the UV absorption spectra of appropriate solutions in the range 250-290 nm with the intervals Deltalambda = 0.4 nm at 100 wavelengths. The chemometric methods do not require any separation step. The three methods were successfully applied to a pharmaceutical formulation and the results were compared with each other.

  17. Application of Statistical Thermodynamics To Predict the Adsorption Properties of Polypeptides in Reversed-Phase HPLC.

    PubMed

    Tarasova, Irina A; Goloborodko, Anton A; Perlova, Tatyana Y; Pridatchenko, Marina L; Gorshkov, Alexander V; Evreinov, Victor V; Ivanov, Alexander R; Gorshkov, Mikhail V

    2015-07-07

    The theory of critical chromatography for biomacromolecules (BioLCCC) describes polypeptide retention in reversed-phase HPLC using the basic principles of statistical thermodynamics. However, whether this theory correctly depicts a variety of empirical observations and laws introduced for peptide chromatography over the last decades remains to be determined. In this study, by comparing theoretical results with experimental data, we demonstrate that the BioLCCC: (1) fits the empirical dependence of the polypeptide retention on the amino acid sequence length with R(2) > 0.99 and allows in silico determination of the linear regression coefficients of the log-length correction in the additive model for arbitrary sequences and lengths and (2) predicts the distribution coefficients of polypeptides with an accuracy from 0.98 to 0.99 R(2). The latter enables direct calculation of the retention factors for given solvent compositions and modeling of the migration dynamics of polypeptides separated under isocratic or gradient conditions. The obtained results demonstrate that the suggested theory correctly relates the main aspects of polypeptide separation in reversed-phase HPLC.

  18. Chemometric determination of naproxen sodium and pseudoephedrine hydrochloride in tablets by HPLC.

    PubMed

    Dinç, Erdal; Ozdemir, Abdil; Aksoy, Halil; Ustündağ, Ozgür; Baleanu, Dumitru

    2006-04-01

    A new chemometric determination by high-performance liquid chromatography (HPLC) with photodiode array (PDA) detection was implemented for the simultaneous determination of naproxen sodium and pseudoephedrine hydrochloride in tablets. Three chemometric calibration techniques, classical least squares (CLS), principle component regression (PCR) and partial least squares (PLS) were applied to the peak area at multiwavelength PDA detector responses. The combinations of HPLC with chemometric calibration techniques were called HPLC-CLS, HPLC-PCR and HPLC-PLS. For comparison purposes the HPLC method called the classic HPLC method was used to confirm the results obtained from combined HPLC-chemometric calibration techniques. A good chromatographic separation between two drugs with losartan potassium as an internal standard was achieved using a Waters Symmetry C18 Column 5 microm 4.6+/-250 mm and a mobile phase containing 0.2 M acetate buffer and acetonitrile (v/v, 40:60). The multiwavelength PDA detection was measured at five different wavelengths. The chromatograms were recorded as a training set in the mobile phase. Three HPLC-chemometric calibrations and the classic-HPLC method were used to test the synthetic mixtures of naproxen sodium and pseudoephedrine hydrochloride in the presence of the internal standard. The HPLC-chemometric approaches were applied to real samples containing drugs of interest. The experimental results obtained from HPLC-chemometric calibrations were compared with those obtained by a classic HPLC method.

  19. HPLC-fluorescence determination of chlorocresol and chloroxylenol in pharmaceuticals.

    PubMed

    Gatti, R; Roveri, P; Bonazzi, D; Cavrini, V

    1997-11-01

    The use of 2-chloro-6,7-dimethoxy-3-quinolinecarboxaldehyde as a fluorogenic labelling reagent in pre-column derivatization for the HPLC separation of chlorophenols has been investigated. The compound reacts (50 min at 110 degrees C) with 2- and 4-chlorophenols to give fluorescent ethers that can be separated by reversed-phase HPLC and detected at lambda exc = 360 nm, lambda em = 500 nm. The experimental conditions for derivatization and chromatographic separation are discussed. Applications for the determination of chlorocresol (4-chloro-3-cresol) and chloroxylenol (4-chloro-3,5-xylenol) in pharmaceutical formulations (creams, ointments) are described.

  20. HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots.

    PubMed

    Arnoldi, Lolita; Ballero, Mauro; Fuzzati, Nicola; Maxia, Andrea; Mercalli, Enrico; Pagni, Luca

    2004-06-01

    A simple HPLC method was developed to distinguish between 'poisonous' and 'non-poisonous' chemotypes of Ferula communis. The method was performed on a C8 reverse phase analytical column using a binary eluent (aqueous TFA 0.01%-TFA 0.01% in acetonitrile) under gradient condition. The two chemotypes showed different fingerprints. The identification of five coumarins and eleven daucane derivatives by HPLC-diode array detection (HPLC-DAD) and HPLC-MS is described. A coumarin, not yet described, was detected.

  1. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.

  2. Development of an HPLC method for the identification and dosage of non-allowed substances in cosmetic products. Part I: local anaesthetics and antihistaminics.

    PubMed

    Porrà, Rita; Berri, Simona; Gagliardi, Luigi; Chimenti, Paola; Granese, Arianna; De Orsi, Daniela; Carpani, Irene; Tonelli, Domenica

    2004-11-01

    An HPLC method with ultraviolet detection coupled with a solid-phase extraction sample clean up was developed for the analysis of five local anaesthetics and four antihistaminics in cosmetic products. The presence of these compounds in commercial cosmetic samples is fordbidden. Extracts from real samples were applied to a solid-phase extraction C18 cartridge, and the analytes were eluted with 8:2 (v/v) acetonitrile/water containing 1% trifluoroacetic acid. HPLC separation was then performed for the identification and determination of the analytes using a Purospher RP-18 column, two gradient eluting systems and a photodiode-array detector. The accuracy of the method was verified by spiking experiments on home-made cosmetic samples. The analytical recoveries were satisfactory.

  3. HPLC method for identification and quantification of benzimidazole derivatives in antiparasitic drugs.

    PubMed

    Kulik, Anna; Białecka, Wanda; Podolska, Marzena; Kwiatkowska-Puchniarz, Barbara; Mazurek, Aleksander

    2011-01-01

    The subject of the study was to develop a versatile HPLC system for identification and determination of four benzimidazole derivatives in the antiparasitic drugs. The tests covered: Zentel, Panacur, Vermox tablets and Systamex suspension. A satisfactory separation was obtained using the Nucleosil C8 column in the gradient system composed of mobile phase A: 85% orthophosphoric acid / water / acetonitrile in 0.05:75:25, v/v/v ratio, and mobile phase B: 85% orthophosphoric acid / water / acetonitrile in 0.05:50:50, v/v/v ratio. Both phases were adjusted to pH = 4.5 with 15% sodium hydroxide solution. A detection at 288 nm for oxfendazole and 254 nm for albendazole, fenbendazole and mebendazole was applied. The correlation coefficients in the range 0,9997 - 0,9999 proved that the calibration curves were linear. The method was validated in terms of selectivity, accuracy and precision.

  4. Discrimination of red and white rice bran from Indonesia using HPLC fingerprint analysis combined with chemometrics.

    PubMed

    Sabir, Aryani; Rafi, Mohamad; Darusman, Latifah K

    2017-04-15

    HPLC fingerprint analysis combined with chemometrics was developed to discriminate between the red and the white rice bran grown in Indonesia. The major component in rice bran is γ-oryzanol which consisted of 4 main compounds, namely cycloartenol ferulate, cyclobranol ferulate, campesterol ferulate and β-sitosterol ferulate. Separation of these four compounds along with other compounds was performed using C18 and methanol-acetonitrile with gradient elution system. By using these intensity variations, principal component and discriminant analysis were performed to discriminate the two samples. Discriminant analysis was successfully discriminated the red from the white rice bran with predictive ability of the model showed a satisfactory classification for the test samples. The results of this study indicated that the developed method was suitable as quality control method for rice bran in terms of identification and discrimination of the red and the white rice bran.

  5. Combination of TREF, high-temperature HPLC, FTIR and HPer DSC for the comprehensive analysis of complex polypropylene copolymers.

    PubMed

    Cheruthazhekatt, Sadiqali; Pijpers, Thijs F J; Mathot, Vincent B F; Pasch, Harald

    2013-11-01

    A novel, powerful analytical technique, preparative temperature rising elution fractionation (prep TREF)/high-temperature (HT)-HPLC/Fourier transform infrared spectroscopy (FTIR)/high-performance differential scanning calorimetry (HPer DSC)), has been introduced to study the correlation between the polymer chain microstructure and the thermal behaviour of various components in a complex impact polypropylene copolymer (IPC). For the comprehensive analysis of this complex material, in a first step, prep TREF is used to produce less complex but still heterogeneous fractions. These chemically heterogeneous fractions are completely separated by using a highly selective chromatographic separation method--high-temperature solvent gradient HPLC. The detailed structural and thermal analysis of the HPLC fractions was conducted by offline coupling of HT-HPLC with FTIR spectroscopy and a novel DSC method--HPer DSC. Three chemically different components were identified in the mid-elution temperature TREF fractions. For the first component, identified as isotactic polypropylene homopolymer by FTIR, the macromolecular chain length is found to be an important factor affecting the melting and crystallisation behaviour. The second component relates to ethylene-propylene copolymer molecules with varying ethylene monomer distributions and propylene tacticity distributions. For the polyethylene component (last eluting component in all semi-crystalline TREF fractions), it was found that branching produced defects in the long crystallisable ethylene sequences that affected the thermal properties. The different species exhibit distinctively different melting and crystallisation behaviour, as documented by HPer DSC. Using this novel approach of hyphenated techniques, the chain structure and melting and crystallisation behaviour of different components in a complex copolymer were investigated systematically.

  6. New validated method for piracetam HPLC determination in human plasma.

    PubMed

    Curticapean, Augustin; Imre, Silvia

    2007-01-10

    The new method for HPLC determination of piracetam in human plasma was developed and validated by a new approach. The simple determination by UV detection was performed on supernatant, obtained from plasma, after proteins precipitation with perchloric acid. The chromatographic separation of piracetam under a gradient elution was achieved at room temperature with a RP-18 LiChroSpher 100 column and aqueous mobile phase containing acetonitrile and methanol. The quantitative determination of piracetam was performed at 200 nm with a lower limit of quantification LLQ=2 microg/ml. For this limit, the calculated values of the coefficient of variation and difference between mean and the nominal concentration are CV%=9.7 and bias%=0.9 for the intra-day assay, and CV%=19.1 and bias%=-7.45 for the between-days assay. For precision, the range was CV%=1.8/11.6 in the intra-day and between-days assay, and for accuracy, the range was bias%=2.3/14.9 in the intra-day and between-days assay. In addition, the stability of piracetam in different conditions was verified. Piracetam proved to be stable in plasma during 4 weeks at -20 degrees C and for 36 h at 20 degrees C in the supernatant after protein precipitation. The new proposed method was used for a bioequivalence study of two medicines containing 800 mg piracetam.

  7. Determination of paraquat in vegetables using HPLC-MS-MS.

    PubMed

    Zou, Tingting; He, Pingli; Cao, Jingjing; Li, Zhen

    2015-02-01

    A simple, sensitive, reliable and economical method was developed for the determination of paraquat (a widely used herbicide) in four edible vegetables (cabbage, lettuce, spinach and Chinese cabbage) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS). The samples were extracted with water under sonication and cleaned up by weak cation exchange solid-phase extraction. Chromatographic separation of paraquat was achieved on a hydrophilic interaction liquid chromatography column (2.1 × 100 mm, 3 µm) with a gradient program using 10 mM ammonium acetate in 0.1% formic acid and acetonitrile as mobile phase. The low salt concentration used in the eluting buffer ensured extended LC-MS analysis of paraquat in different matrices without the necessity of frequent source cleaning. The validity of the developed method was evaluated by spiking paraquat in four edible vegetables at 50 and 500 ng g(-1). Recovery ranged from 43.6 to 73.5%. The limit of detection is 0.94 ng g(-1). With the developed method, the kinetic of paraquat entering plant tissue was also evaluated.

  8. HPLC retention thermodynamics of grape and wine tannins.

    PubMed

    Barak, Jennifer A; Kennedy, James A

    2013-05-08

    The effect of grape and wine tannin structure on retention thermodynamics under reversed-phase high-performance liquid chromatography conditions on a polystyrene divinylbenzene column was investigated. On the basis of retention response to temperature, an alternative retention factor was developed to approximate the combined temperature response of the complex, unresolvable tannin mixture. This alternative retention factor was based upon relative tannin peak areas separated by an abrupt change in solvent gradient. Using this alternative retention factor, retention thermodynamics were calculated. Van't Hoff relationships of the natural log of the alternative retention factor against temperature followed Kirchoff's relationship. An inverse quadratic equation was fit to the data, and from this the thermodynamic parameters for tannin retention were calculated. All tannin fractions exhibited exothermic, spontaneous interaction, with enthalpy-entropy compensation observed. Normalizing for tannin size, distinct tannin compositional effects on thermodynamic parameters were observed. The results of this study indicate that HPLC can be valuable for measuring the thermodynamics of tannin interaction with a hydrophobic surface and provides a potentially valuable alternative to calorimetry. Furthermore, the information gathered may provide insight into understanding red wine astringency quality.

  9. Bigravity from gradient expansion

    SciTech Connect

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-05-04

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  10. Identification, characterization, synthesis and HPLC quantification of new process-related impurities and degradation products in retigabine.

    PubMed

    Douša, Michal; Srbek, Jan; Rádl, Stanislav; Cerný, Josef; Klecán, Ondřej; Havlíček, Jaroslav; Tkadlecová, Marcela; Pekárek, Tomáš; Gibala, Petr; Nováková, Lucie

    2014-06-01

    Two new impurities were described and determined using gradient HPLC method with UV detection in retigabine (RET). Using LC-HRMS, NMR and IR analysis the impurities were identified as RET-dimer I: diethyl {4,4'-diamino-6,6'-bis[(4-fluorobenzyl)amino]biphenyl-3,3'-diyl}biscarbamate and RET-dimer II: ethyl {2-amino-5-[{2-amino-4-[(4-fluorobenzyl) amino] phenyl} (ethoxycarbonyl) amino]-4-[(4-fluorobenzyl)amino] phenyl}carbamate. Reference standards of these impurities were synthesized followed by semipreparative HPLC purification. The mechanism of the formation of these impurities is also discussed. An HPLC method was optimized in order to separate, selectively detect and quantify all process-related impurities and degradation products of RET. The presented method, which was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ) and selectivity is very quick (less than 11min including re-equilibration time) and therefore highly suitable for routine analysis of RET related substances as well as stability studies.

  11. Development of a simple technique for the coating of monolithic silica with pristine boron nitride nanotubes (BNNTs): HPLC chromatographic applications.

    PubMed

    Guillaume, Yves Claude; André, Claire

    2017-03-01

    In this paper, a novel and very simple homogeneous coating of a monolithic silica HPLC support using pristine boron nitride nanotubes (BNNTs) was d0.escribed. The chromatographic support was coated with BNNTs in a non covalent way to preserve the nanotube structure. A solution of BNNTs dispersed in dimethylacetamide (DMAc) was pumped through the column at a flow-rate of 0.3mL/min for 24h at room temperature. Strong interaction between amino groups and the BNNT surfaces induces the adsorption of the BNNTs on the silica, while the stable solvation in DMAc hampers further adsorption of the tubes. The excellent stability of the non covalent BNNT-coating on the monolithic silica in view of application for HPLC was also demonstrated. It was shown that this novel stationary phase was efficient for the HPLC isocratic or gradient mode separation of molecules of different structure such as phenol derivatives, alkylbenzene or doping agents (steroids). As well, this simple technique of BNNT immobilization offers new perspectives for the BNNT-coating on the surfaces of a wide range of solid substrates.

  12. Determination of flavonol glycosides in green tea, oolong tea and black tea by UHPLC compared to HPLC.

    PubMed

    Jiang, Heyuan; Engelhardt, Ulrich H; Thräne, Claudia; Maiwald, Beate; Stark, Janina

    2015-09-15

    An UHPLC method for the determination of flavonol glycosides (FOG) from green and oolong tea vs. black tea has been developed for the first time. Sample clean-up method by means of polyamide column chromatography was optimized with multiple-step elution. Using UHPLC and HPLC with gradient elution and photodiode array detection, eighteen FOG compounds were determined with the aid of electrospray tandem mass spectrometry. These FOG compounds were qualified on both UHPLC and HPLC, and this UHPLC method successfully separated rutin (quercetin-3-O-rutinoside) and K-grg (kaempferol-3-O-glucorhamnoglucoside) while conventional HPLC method did not. The total amounts of FOG compounds in the tea samples were 2.32-5.67g/kg dry weight (calculated as aglycones), and there is no significant difference for the total FOG content among green tea, oolong tea and black tea. However, kaempferol glycosides are more abundant in green teas, while oolong tea has more quercetin and myricetin glycosides. In black tea quercetin glycosides were most abundant.

  13. Adventures in maceral separation

    SciTech Connect

    Dyrkacz, G.R.

    1994-02-01

    Progress has been made in recent years in the science of maceral separation. However, there are many areas that can be improved and new areas investigated. Power of density gradient centrifugation to physically resolve macerals and submaceral species coupled with other instrumental techniques is attractive for defining the limits of coal heterogeneity as well as investigating the ability of other separation methods.

  14. RP-HPLC analysis of phenolic compounds and flavonoids in beverages and plant extracts using a CoulArray detector.

    PubMed

    Jandera, Pavel; Skeifíková, Veronika; Rehová, Lucie; Hájek, Tomás; Baldriánová, Lucie; Skopová, Gabriela; Kellner, Vladimír; Horna, Ales

    2005-06-01

    Methods were developed for the analysis of natural antioxidants including phenolic compounds and flavonoids in beverages and plant extracts using gradient HPLC with multi-channel electrochemical coulometric detection. Suitability of various reversed-phase columns for this purpose was compared; pH and mobile phase gradients were optimized with respect to the separation selectivity and sensitivity of detection. Because of different target compounds in various sample types, the overlapping resolution maps and the normalized resolution product approaches described earlier were used to select optimum columns and gradients to suit the analysis of the individual sample types. The methods were applied to the analysis of phenolic compounds and flavonoids in beer, wine, tea, and yacon extracts. 32 phenolic compounds were identified and determined, including derivatives of benzoic and cinnamic acids, flavones, and a few related glycosides. Eight-channel CoulArray detection offers high selectivity and sensitivity with limits of detection in the low microg L(-1) range, at least an order of magnitude lower than single-channel coulometric detection using the Coulochem detector. No special sample pretreatment is necessary and, because of the compatibility of the CoulArray detector with gradient elution, phenolic antioxidants of different polarities can be determined in a single run. In addition to the retention times, the ratios of the areas of the pre-dominant and post-dominant peaks to the area of the dominant peak can be used for improved identification of natural antioxidants.

  15. Determination of the design space of the HPLC analysis of water-soluble vitamins.

    PubMed

    Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y

    2013-06-01

    Analysis of water-soluble vitamins has been tremendously approached through the last decades. A multitude of HPLC methods have been reported with a variety of advantages/shortcomings, yet, the design space of HPLC analysis of these vitamins was not defined in any of these reports. As per the food and drug administration (FDA), implementing the quality by design approach for the analysis of commercially available mixtures is hypothesized to enhance the pharmaceutical industry via facilitating the process of analytical method development and approval. This work illustrates a multifactorial optimization of three measured plus seven calculated influential HPLC parameters on the analysis of a mixture containing seven common water-soluble vitamins (B1, B2, B6, B12, C, PABA, and PP). These three measured parameters are gradient time, temperature, and ternary eluent composition (B1/B2) and the seven calculated parameters are flow rate, column length, column internal diameter, dwell volume, extracolumn volume, %B (start), and %B (end). The design is based on 12 experiments in which, examining of the multifactorial effects of these 3 + 7 parameters on the critical resolution and selectivity, was carried out by systematical variation of all these parameters simultaneously. The 12 basic runs were based on two different gradient time each at two different temperatures, repeated at three different ternary eluent compositions (methanol or acetonitrile or a mixture of both). Multidimensional robust regions of high critical R(s) were defined and graphically verified. The optimum method was selected based on the best resolution separation in the shortest run time for a synthetic mixture, followed by application on two pharmaceutical preparations available in the market. The predicted retention times of all peaks were found to be in good match with the virtual ones. In conclusion, the presented report offers an accurate determination of the design space for critical resolution in the

  16. Reversed phase-HPLC for rapid determination of polyphenols in flowers of rose species.

    PubMed

    Kumar, Neeraj; Bhandari, Pamita; Singh, Bikram; Gupta, Ajai P; Kaul, Vijay K

    2008-02-01

    A rapid, simple, sensitive, robust, and improved HPLC method was developed and validated for determination of 10 polyphenols, namely gallic acid, catechin, epicatechin, rutin, m-coumaric acid, quercitrin, myricetin, quercetin, apigenin, and kaempferol in fresh flowers of Rosa bourboniana and R. brunonii and in both fresh flowers and marc (left after industrial distillation of rose oil) of R. damascena. Six polyphenols, gallic acid, rutin, quercitrin, myricetin, quercetin, and kaempferol, were detected and quantified in all extracts. The chromatographic separation of 10 polyphenols was achieved in less than 16 min by RP-HPLC (Phenomenex, Luna C18 (2) column, 5 microm, 250 mm x 4.6 mm) using linear gradient elution of water and acetonitrile (0.02% trifluroacetic acid) with a flow rate of 1 mL/min at lambda 280 nm. Standard calibration curves were linear in the range of 0.39-500 microg/mL. Good results were achieved with respect to repeatability (RSD <3%) and recovery (98.6-100.8%). The method was validated for linearity, accuracy, repeatability, LOD, and LOQ.

  17. HPLC method validation for Digitalis and its analogue by pulsed amperometric detection.

    PubMed

    Kwon, Ha-Jeong; Sim, Hee-Jung; Lee, Sa-im; Lee, Yong-Moon; Park, Yong-Duk; Hong, Seon-Pyo

    2011-01-05

    We developed a highly sensitive and selective reversed-phase HPLC-pulsed amperometric detection (RP-HPLC-PAD) method for cardiac glycoside detection. Eight cardiac glycosides were completely separated within 45 min on a reversed-phase column using a water-acetonitrile gradient, and were detected using a PAD under NaOH alkaline conditions. The detection (S/N=3) and quantification (S/N=10) limits for the cardiac glycosides were 0.1-0.3 and 0.3-0.8 ng, respectively. The linear regression coefficient was 0.9962-0.9998 for concentrations of 1-25 μg/mL. Cardiac glycosides in the Digitalis purpurea leaf displayed intra- and inter-day precisions (RSDs) of <9.30% and average recoveries of 98.63-99.94%. The contents of gitoxin, digitonin, and digitoxin in the D. purpurea were 0.197, 0.11, and 0.379 mg/g for leaf dried at 60 °C, 0.058, 0.11, and 0.090 mg/g for leaf dried at ambient temperature, and N.D. (not detected), and 18.379 mg/g, N.D. for seed, respectively. We conclude that our method shows good precision and accuracy.

  18. Simultaneous determination of prenylflavonoid and hop bitter acid in beer lee by HPLC-DAD-MS.

    PubMed

    Kao, T H; Wu, G Y

    2013-11-15

    An HPLC-DAD-MS method with high accuracy and precision was developed for determination of prenylflavonoids and hop bitter acids in beer lee, a by-product from beer brewing process. Four prenylflavonoids and nine hop bitter acids can be simultaneously separated in 29 min using a Thermo HyPURITY C18 column in combination with diode array dectector and mass spectrometer with HPLC solvent gradient system of phosphoric acid aqueous solution at pH 1.6 and acetonitrile at a flow rate of 1.5 mL/min and detection wavelength at 314 nm. Beer lee is found to contain isoxanthohumol (36.2 μg/g), xanthohumol (29.6 μg/g), 8-prenylnaringenin (7.84 μg/g), 6-prenylnaringenin (19.2 μg/g), cohumulone (44.7 μg/g), humulone (123 μg/g), adhumulone (21.8 μg/g), colupulone (44.2 μg/g), lupulone (33.2 μg/g), and adlupulone (5.76 μg/g).

  19. Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction.

    PubMed

    Li, Jing; Liu, Xiaomei; Zhou, Bin; Zhao, Jing; Li, Shaoping

    2013-06-19

    The root of burdock ( Arctium lappa L.) is a commonly used vegetable in Asia. Fructooligosaccharides (FOS) are usually considered as its main bioactive components. Thus, quantitative analysis of these components is very important for the quality control of burdock. In this study, an HPLC-ELSD and microwave-assisted extraction method was developed for the simultaneous determination of seven FOS with degrees of polymerization (DP) between 3 and 9, as well as fructose, glucose, and sucrose in burdock from different regions. The separation was performed on a Waters XBridge Amide column (4.6 × 250 mm i.d., 3.5 μm) with gradient elution. All calibration curves for investigated analytes showed good linear regression (r > 0.9990). Their LODs and LOQs were lower than 3.63 and 24.82 μg/mL, respectively. The recoveries ranged from 99.2 to 102.6%. The developed method was successfully applied to determination of ten sugars in burdock from different locations of Asia. The results showed that the contents of FOS in different samples of burdock collected at appropriate times were similar, and the developed HPLC-ELSD with microwave-assisted extraction method is helpful to control the quality of burdock.

  20. A Simple HPLC-UV Method for the Determination of Glutathione in PC-12 Cells

    PubMed Central

    Appala, Raju N.; Appala, Raju V. V. S. S.

    2016-01-01

    A highly sensitive and simple HPLC-UV method was developed and validated for the assay of glutathione (GSH) in PC-12 cells. Glutathione is a major intracellular antioxidant having multiple biological effects, best known for its cytoprotective effects against cell damage from reactive oxygen species and toxic reactive metabolites and regulating the cellular redox homeostasis. Due to its own sulfhydryl (SH) group, GSH readily reacts with Ellman's reagent to form a stable dimer which allows for quantitative estimation of GSH in biological systems by UV detection. The separation was achieved using a C8 column with a mobile phase consisting of phosphate buffer adjusted to pH 2.5 (mobile phase A) and acetonitrile (mobile phase B), running in a segmented gradient manner at a flow rate of 0.8 mL/min, and UV detection was performed at 280 nm. The developed HPLC-UV method was validated with respect to precision, accuracy, robustness, and linearity within a range of 1–20 μg/mL. Limit of detection (LOD) and limit of quantification (LOQ) were 0.05 and 0.1 μg/mL, respectively. Furthermore, the method shows the applicability for monitoring the oxidative stress in PC-12 cells. PMID:27127683

  1. A validated bioanalytical HPLC method for pharmacokinetic evaluation of 2-deoxyglucose in human plasma.

    PubMed

    Gounder, Murugesan K; Lin, Hongxia; Stein, Mark; Goodin, Susan; Bertino, Joseph R; Kong, Ah-Ng Tony; DiPaola, Robert S

    2012-05-01

    2-Deoxyglucose (2-DG), an analog of glucose, is widely used to interfere with glycolysis in tumor cells and studied as a therapeutic approach in clinical trials. To evaluate the pharmacokinetics of 2-DG, we describe the development and validation of a sensitive HPLC fluorescent method for the quantitation of 2-DG in plasma. Plasma samples were deproteinized with methanol and the supernatant was dried at 45°C. The residues were dissolved in methanolic sodium acetate-boric acid solution. 2-DG and other monosaccharides were derivatized to 2-aminobenzoic acid derivatives in a single step in the presence of sodium cyanoborohydride at 80°C for 45 min. The analytes were separated on a YMC ODS C₁₈ reversed-phase column using gradient elution. The excitation and emission wavelengths were set at 360 and 425 nm. The 2-DG calibration curves were linear over the range of 0.63-300 µg/mL with a limit of detection of 0.5 µg/mL. The assay provided satisfactory intra-day and inter-day precision with RSD less than 9.8%, and the accuracy ranged from 86.8 to 110.0%. The HPLC method is reproducible and suitable for the quantitation of 2-DG in plasma. The method was successfully applied to characterize the pharmacokinetics profile of 2-DG in patients with advanced solid tumors.

  2. Simultaneous determination of abietane-type diterpenes, flavonolignans and phenolic compounds in compound preparations of Silybum marianum and Salvia miltiorrhiza by HPLC-DAD-ESI MS.

    PubMed

    Zhao, Yu; Chen, Bo; Yao, Shouzhuo

    2005-07-01

    A gradient HPLC-DAD-ESI MS method has been developed for simultaneous determination of multiple bioactive compounds such as abietane-type diterpenes, flavonolignans and phenolic compounds in compound preparations of Silybum marianum and Salvia miltiorrhiza. The separation was completed on an ODS column using 0.5% (v/v) formic acid aqueous solution and methanol as gradient mobiles. Fourteen components can be identified by ESI MS working on ESI(-) and ESI(+) switching mode, respectively. Ten components can be quantified by using external standard method with UV detecting at 254 and 280 nm, respectively. The correlation coefficients of all the calibration curves were found to be higher than 0.992. The recoveries of the standards were about 96-101%. Besides quantification of the components, the chromatograms acquired by this method can be used as the bioactive components fingerprints for the quality control of compound preparations of S. marianum and S. miltiorrhiza.

  3. Assessment of the hemolysis and endothelial cell cytotoxicity induced by residual linear alkylbenzene sulfonates on pharmaceutical rubber stoppers based on HPLC-ESI-MS.

    PubMed

    Li, Xianghui; Qiu, Lu; Li, Yueyue; Chen, Xiaofei; Zhu, Zhenyu; Chai, Yifeng

    2015-09-01

    This study was designed to develop a high-performance liquid chromatographic-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method for quantitative determination of residual surfactant linear alkylbenzene sulfonate (LAS) compounds on pharmaceutical rubber stoppers. An HPLC-ESI-MS method was developed for separation and determination of five LAS homologs (C10-C14) under gradient conditions using methanol and ammonium acetate as mobile phases. Hemolysis activity of residual LAS compounds was analyzed by spectrophotometry. Expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α in human umbilical vein endothelial cells (HUVECs) after LAS compound treatment was examined by enzyme-linked sorbent assay. LAS compounds were well separated and determined by the established gradient conditions. The linear range was 0.05-8 µg/mL with correlation coefficients ≥0.997. Recoveries were from 73 to 134% and the relative standard deviation was <13.7%. There was a correlation between hemolysis rate and LAS compounds concentration when it was ≥0.8 µg/cm(2). LAS compounds decreased the viability of HUVECs and promoted the production of IL-6 and TNF-α. The developed analytical method was successful for quantitative determination of residual LAS compounds on pharmaceutical rubber stoppers and it is important to monitor and control the amount of LAS compounds on rubber stoppers.

  4. HPLC-Diode Array Detector Fingerprints of Various Mentha Species.

    PubMed

    Hawrył, Mirosław A

    2014-01-01

    Gradient elution HPLC was applied to develop fingerprints of 12 extracts obtained from selected mint species. The gradient was optimized by use of Merck ChromSword computer software on the basis of retention data of some standard compounds occurring in the investigated plant material. Two column types (RP18 and pentafluorophenyl) and two mobile phases (methanol-water and acetonitrile-water) were used during the experiments. Fingerprints of all extracts were generated, and on the basis of the fingerprints identification of the mints was possible.

  5. Determination of the rodenticides warfarin, diphenadione and chlorophacinone in soil samples by HPLC-DAD.

    PubMed

    Medvedovici, A; David, F; Sandra, P

    1997-09-01

    A HPLC-DAD method is described for the analysis of the rodenticides warfarin, diphenadione and chlorophacinone, together with the phenylurea herbicides isoproturon and diuron, in soil samples. The HPLC parameters have been optimised to provide baseline separation with symmetrical peakshapes in short analysis times. The sample preparation consists of Soxhlet extraction followed by SPE clean-up on cyanopropyl silica.

  6. Simultaneous determination of selected endocrine disrupter compounds in wastewater samples in ultra trace levels using HPLC-ES-MS/MS.

    PubMed

    Komesli, Okan Tarık; Bakırdere, Sezgin; Bayören, Ceren; Gökçay, Celal Ferdi

    2012-08-01

    An analytical procedure for the simultaneous determination of six selected endocrine disrupter compounds (EDCs: diltiazem, progesterone, benzyl butyl phthalate (BBP), estrone, carbamazepine (Cbz), acetaminophen) was developed by liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). All of the parameters for HPLC and ES-MS/MS systems including mobile phase composition, flow rate, and sample injection volume were optimized to obtain not only the best separation of species interested but also low detection limits. Reverse phase chromatography coupled to ES-MS/MS was used for the separation and detection of EDCs. Formic acid (0.10% ) and 5.0 mM ammonium formate were selected as mobile phase composition in gradient elution. Detection limits for diltiazem, progesterone, BBP, estrone, Cbz, and acetaminophen were found to be 0.13, 0.12, 0.04, 0.13, 0.12, and 0.05 ng/mL, respectively. Influent and effluents from three different wastewater treatment plants located in Ankara, i.e., rotating flat-sheet membrane unit, pilot type flat-sheet membrane unit located at METU Campus and samples from Ankara central wastewater treatment plant were analyzed for their EDCs contents under the optimum conditions.

  7. HPLC: Early and Recent Perspectives.

    ERIC Educational Resources Information Center

    Karger, Barry L.

    1997-01-01

    Provides a perspective on what it was like in the early days of high-performance liquid chromatography (HPLC) and several of the key developments. Focuses on the advances in HPLC generally, and more specifically for the biological sciences, that were necessary for the method to reach the preeminent stage of today. Contains 20 references. (JRH)

  8. Union of capillary high-performance liquid chromatography and microcoil nuclear magnetic resonance spectroscopy applied to the separation and identification of terpenoids.

    PubMed

    Lacey, M E; Tan, Z J; Webb, A G; Sweedle, J V

    2001-07-13

    This paper describes the first coupling of a commercial capillary HPLC system with a diode array spectrophotometric detector and a custom-built nuclear magnetic resonance (NMR) flow microprobe. The eluent from a 3-microm diameter C18 HPLC column is linked to a 500 MHz 1H-NMR microcoil probe with an observe volume of 1.1 microl. The separation and structurally-rich detection of a mixture of terpenoids under both isocratic and gradient solvent elution conditions is presented. The lowest limits of detection yet reported for capillary HPLC on-line measurement (i.e., 37 ng for alpha-pinene) are achieved with this system. The complementary nature of diode array and NMR detection allows stopped-flow data collection from analytes which would otherwise go unnoticed in continuous-flow NMR. Moreover, stopped-flow NMR data is presented for the detection of a trace (sub-nmol) impurity in the sample mixture. Since NMR signals degrade and shift during solvent gradients, flow injection analysis studies are conducted with injected solvent plugs differing in mobile phase composition. The NMR signal degradation accompanying these injections is largely due to the variance in chemical shift with the solvent composition rather than to changes in magnetic susceptibility of the solvent. Characterization of such effects enables the development of improved NMR probes for the coupling of capillary HPLC and NMR.

  9. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  10. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography.

    PubMed

    Prabhu, K N; Brüll, R; Macko, T; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2015-11-06

    High-temperature two-dimensional liquid chromatography (HT 2D-LC) using HT-HPLC as first dimension and HT-SEC as second dimension holds enormous potential to investigate the distribution according to molar mass and chemical composition of bimodal high density polyethylene (BiHDPE), as it avoids drawbacks of crystallization-based techniques. In this study, we have stepwise optimized the chromatographic parameters of 1D, comprising gradient slope and temperature, using model homo- and copolymers of ethylene with the aim to minimize the impact of molar mass on the compositional separation. Then the HT-HPLC was hyphenated to HT-SEC and optimum conditions for the volume of the sample transfer loop were probed with regard to the resolution of BiHDPE into the individual constituents HDPE and LLDPE. A particular important aspect was the use of infrared (IR) detection, and the demands it puts on the chromatographic aspects: We have shown that IR detection can be successfully applied in HT 2D-LC of BiHDPE, which is broadly distributed with regard to short chain branching and molar mass, only when the separation in 2D is optimized with regard to chromatographic resolution. As final result a bimodality is evident in the contour and the 3D surface plots as well as in both HPLC and SEC projections generated from HT 2D-LC.

  11. Separation of α-tocotrienol oxidation products and eight tocochromanols by HPLC with DAD and fluorescence detection and identification of unknown peaks by DAD, PBI-EIMS, FTIR, and NMR.

    PubMed

    Büsing, Anne; Ternes, Waldemar

    2011-11-01

    Tocotrienols, like tocopherols, are members of the vitamin E family. While tocopherols (T) have been studied intensively, only recently have tocotrienols (T3) received increased attention due to their special health benefits. However, these positive attributes of T3 are probably lost as a result of degradation during food storage and processing, and there is little information about their oxidation products. Of particular interest are the oxidation products of α-tocotrienol (α-T3) as this is the least thermostable T3 isomer with the highest rate of degradation. The objective of this study was therefore to develop a reliable method for the determination of the most important oxidation products of α-T3 along with other tocochromanol isomers. We developed a high-performance liquid chromatography method with diode array detection, fluorescence detection, and a particle beam interface electron impact mass spectroscopy in order to separate the most important oxidation products of α-T3 (α-T3 spirodimers/spirotrimers, α-tocotrienoldihydroxy dimer, 7-formyl-β-tocotrienol (7-FβT3), 5-formyl-γ-tocotrienol (5-FγT3), α-tocotrienolquinone (α-T3Q), and α-T3Q dimers and α-tocotrienolquinone epoxides (α-T3QE)) from eight tocochromanol isomers. Furthermore, we sought to identify the as yet unknown oxidation products 5-FγT3, 7-FβT3, α-T3Q-dimer, and α-T3QE. Of these, 5-FγT3 was fully characterized by Fourier transform infrared spectroscopy and (1)H and (13)C nuclear magnetic resonance spectroscopy.

  12. Enhancing Centrifugal Separation With Electrophoresis

    NASA Technical Reports Server (NTRS)

    Herrmann, F. T.

    1986-01-01

    Separation of biological cells by coil-planet centrifuge enhanced by electrophoresis. By itself, coil-planet centrifuge offers relatively gentle method of separating cells under low centrifugal force in physiological medium that keeps cells alive. With addition of voltage gradient to separation column of centrifuge, separation still gentle but faster and more complete. Since separation apparatus contains no rotary seal, probability of leakage, contamination, corrosion, and short circuits reduced.

  13. Validation of a HPLC quantification of acetaminophen, phenylephrine and chlorpheniramine in pharmaceutical formulations: capsules and sachets.

    PubMed

    Marín, A; García, E; García, A; Barbas, C

    2002-07-20

    Acetaminophen, phenylephrine and chlorpheniramine are frequently associated in pharmaceutical formulations against the common cold. Their quantification presents several problems. A HPLC method for the simultaneous determination of these compounds in pharmaceutical formulations such as capsules and sachets, including the separation of impurities and excipients has been developed and validated. The selectivity of the method was also tested to be used if phenylpropanolamine hydrochloride were employed instead of phenylephrine. Final chromatographic conditions were a gradient elution, being solvent A: phosphate buffer 40 mM at pH 6.0 and solvent B: acetonitrile. At t=0, the mobile phase consisted of 92% A and 8% B and it changed with a linear gradient during 8 min to 75% A and 25% B. At min 8, it changed to 30% A and 70% B for 5 min and at t=15 min, it returns to the initial conditions (92% A and 8% B) during 1 min remaining at this composition until t=20 min. UV detection was performed at 215 nm for phenylephrine and chlorpheniramine, because at this wavelength sensitivity was higher than in other more characteristic wavelengths and it was necessary for the detection of minor compounds. For acetaminophen 280 nm was employed. Validation parameters permit to consider the method adequate.

  14. Validation of HPLC method for the simultaneous and quantitative determination of 12 UV-filters in cosmetics.

    PubMed

    Nyeborg, M; Pissavini, M; Lemasson, Y; Doucet, O

    2010-02-01

    The aim of the study was the validation of a high-performance liquid chromatography (HPLC) method for the simultaneous and quantitative determination of twelve commonly used organic UV-filters (phenylbenzimidazole sulfonic acid, benzophenone-3, isoamyl p-methoxycinnamate, diethylamino hydroxybenzoyl hexyl benzoate, octocrylene, ethylhexyl methoxycinnamate, ethylhexyl salicylate, butyl methoxydibenzoylmethane, diethylhexyl butamido triazone, ethylhexyl triazone, methylene bis-benzotriazolyl tetramethylbutylphenol and bis-ethylhexyloxyphenol methoxyphenyl triazine) contained in suncare products. The separation and quantitative determination was performed in <30 min, using a Symmetry Shield(R) C18 (5 microm) column from Waters and a mobile phase (gradient mode) consisting of ethanol and acidified water. UV measurements were carried out at multi-wavelengths, according to the absorption of the analytes.

  15. Development and validation of stability-indicating HPLC method for simultaneous determination of meropenem and potassium clavulanate.

    PubMed

    Zalewski, Przemysław; Cielecka-Piontek, Judyta; Paczkowska, Magdalena

    2014-01-01

    A stability-indicating LC assay method was developed and validated for a simultaneous determination of meropenem and potassium clavulanate in the presence of degradation products formed during acid-base hydrolysis, oxidation and thermolysis. The isocratic RP-HPLC method was developed with a LiChrospher RP-18 (250 mm x 4.6 mm, 5 microm) column and gradient elution of 12 mmol/L ammonium acetate and acetonitrile. The flow rate of the mobile phase was 1.0 mL/min, the detection wavelength 220 nm and the temperature 303 K. The method was validated with regard to linearity, accuracy, precision, selectivity and robustness, and was applied successfully for the determination of meropenem and potassium clavulanate separately as well as jointly in pharmaceutical formulations.

  16. Selenium speciation analysis of Misgurnus anguillicaudatus selenoprotein by HPLC-ICP-MS and HPLC-ESI-MS/MS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Analytical methods for selenium (Se) speciation were developed using high performance liquid chromatography (HPLC) coupled to either inductively coupled plasma mass spectrometry (ICP-MS) or electrospray ionization tandem mass spectrometry (ESI-MS/MS). Separations of selenomethionine (Se-Met) and sel...

  17. Development and validation of a stability-indicating HPLC method for simultaneous determination of salicylic acid, betamethasone dipropionate and their related compounds in Diprosalic Lotion.

    PubMed

    Shou, Minshan; Galinada, Wilmer A; Wei, Yu-Chien; Tang, Qinglin; Markovich, Robert J; Rustum, Abu M

    2009-10-15

    Diprosalic Lotion is an anti-inflammatory drug product that contains salicylic acid and betamethasone dipropionate as active pharmaceutical ingredients (APIs). A reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for simultaneous determination of salicylic acid, betamethasone dipropionate, and their related compounds in Diprosalic Lotion. A 150 mm x 4.6 mm I.D. YMC J'sphere ODS-H80 column at 35 degrees C and UV detection at 240 nm was used. A gradient elution was employed using 0.05% (v/v) methanesulfonic acid solution and acetonitrile as mobile phases. A total of thirty three compounds from Diprosalic Lotion samples were separated in 38 min. The stability-indicating capability of this method has been demonstrated by the adequate separation of all the impurities and degradation products in expired stability samples of Diprosalic Lotion. The method was validated as per the current ICH guidelines.

  18. Quantitation of chlorophylls and 22 of their colored degradation products in culinary aromatic herbs by HPLC-DAD-MS and correlation with color changes during the dehydration process.

    PubMed

    Lafeuille, Jean-Louis; Lefèvre, Stéphane; Lebuhotel, Julie

    2014-02-26

    Chlorophylls and their green and olive-brown derivatives were successfully separated from culinary herb extracts by HPLC with photodiode-array and mass spectrometry detection. The method involved a ternary gradient elution and reverse-phase separation conditions capable of resolving 24 different pigments (2 chlorophylls and 22 of their derivatives) of different polarities within 28 min. The method was applied to monitor color changes in 50 samples of culinary aromatic herbs subjected to five different drying treatments. Of the 24 pigments, 14 were key to understanding the differences between the primary degradation pathways of chlorophyll a and chlorophyll b in culinary herbs during drying processes. A color degradation ladder based on the total molar percentage of all the remaining green pigments was also proposed as a tool to measure the impact of drying treatments on aromatic herb visual aspects.

  19. Chiral separation of agricultural fungicides.

    PubMed

    Pérez-Fernández, Virginia; García, Maria Ángeles; Marina, Maria Luisa

    2011-09-23

    Fungicides are very important and diverse environmental and agricultural concern species. Their determination in commercial formulations or environmental matrices, requires highly efficient, selective and sensitive methods. A significant number of these chemicals are chiral with the activity residing usually in one of the enantiomers. The different toxicological and degradation behavior observed in many cases for fungicide enantiomers, results in the need to investigate them separately. For this purpose, separation techniques such as GC, HPLC, supercritical fluid chromatography (SFC) and CE have widely been employed although, at present, HPLC still dominates chromatographic chiral analysis of fungicides. This review covers the literature concerning the enantiomeric separation of fungicides usually employed in agriculture grouping the chiral separation methodologies developed for their analysis in environmental, biological, and food samples.

  20. Factors influencing the separation of oligonucleotides using reversed-phase/ion-exchange mixed-mode high performance liquid chromatography columns.

    PubMed

    Biba, Mirlinda; Jiang, Eileen; Mao, Bing; Zewge, Daniel; Foley, Joe P; Welch, Christopher J

    2013-08-23

    New mixed-mode columns consisting of reversed-phase and ion-exchange separation modes were evaluated for the analysis of short RNA oligonucleotides (∼20mers). Conventional analysis for these samples typically involves using two complementary methods: strong anion-exchange liquid chromatography (SAX-LC) for separation based on charge, and ion-pair reversed-phase liquid chromatography (IP-RPLC) for separation based on hydrophobicity. Recently introduced mixed-mode high performance liquid chromatography (HPLC) columns combine both reversed-phase and ion-exchange modes, potentially offering a simpler analysis by combining the benefits of both separation modes into a single method. Analysis of a variety of RNA oligonucleotide samples using three different mixed-mode stationary phases showed some distinct benefits for oligonucleotide separation and analysis. When using these mixed-mode columns with typical IP-RPLC mobile phase conditions, such as ammonium acetate or triethylammonium acetate as the primary ion-pair reagent, the separation was mainly based on the IP-RPLC mode. However, when changing the mobile phase conditions to those more typical for SAX-LC, such as salt gradients with NaCl or NaBr, very different separation patterns were observed due to mixed-mode interactions. In addition, the Scherzo SW-C18 and SM-C18 columns with sodium chloride or sodium bromide salt gradients also showed significant improvements in peak shape.

  1. Gradient Index Lens Research

    DTIC Science & Technology

    1981-10-19

    Finally, an assessment of the current technologies in gradient index has been made. This includes a series of recommendations w’iich will be...17 III. Ray Tracing in Anamorphic Gradient Index Media ......... 20 IV. Fabrication of Six Gradient Index Samples ............. 27 V. Technology ...for a basic understanding of what can and cannot be done with gradient index lenses, aside from any lack of technology for making a paricular gradient

  2. Effects of berberine and pomegranate seed oil on plasma phospholipid metabolites associated with risks of type 2 diabetes mellitus by U-HPLC/Q-TOF-MS.

    PubMed

    Wu, Xia; Li, Yan; Wang, Qiu; Li, Weimin; Feng, Yifan

    2015-12-15

    A rapid and reliable ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry (U-HPLC/Q-TOF-MS) has been firstly used to analyze the changes of plasma phospholipids, in type 2 diabetes mellitus (T2DM) mice after administration of berberine and pomegranate seed oil (PSO). The separation of plasma phospholipids was carried out on an Acquity U-HPLC BEH C18 column (2.1mm×50mm, 1.7μm, Waters) by linear gradient elution using a mobile phase consisting of 10mM ammonium formate in water and acetonitrile: isopropanol (1:1, v/v) mixed solution added by 0.25% water and 10mM ammonium formate. The method demonstrated a good precision and reproducibility. Linear regression analysis showed a good linearity. And potential biomarkers were discovered based on their mass spectra and chemometrics methods. The results demonstrated that the proposed U-HPLC/Q-TOF-MS method was successfully applied to analyze the dynamic changes of phospholipids components in plasma of T2DM mice after drug treatment and could provide a useful data base for meriting further study in humans and investigating pharmacological actions of drugs.

  3. Simultaneous Determination of 5 Flavonoids and 7 Saponins for Quality Control of Traditional Chinese Medicine Preparation Xinnaoshutong Capsule Using HPLC-VWD-ELSD

    PubMed Central

    Li, Jin; Bai, Yang; Zhang, Peng; An, Mingrui; Hu, Li-min

    2017-01-01

    Xinnaoshutong capsule (XC) is a traditional Chinese prescription derived from the ripe fruit of Tribulus terrestris L. (TT). Although XC has long been considered as an important herbal medicine, no analytical method of marker compounds for quality assessment is registered in the Chinese Pharmacopoeia. A simple analytical method of twelve marker components was developed and validated by HPLC-VWD-ELSD method. Chromatographic separation by HPLC was carried out on a Hedera ODS 2 column (4.6 × 250 mm, 5 μm) by gradient elution with acetonitrile-water (0.1% formic acid) as the mobile phase. Various extraction conditions were optimized to achieve twelve marker compounds with faster extraction and higher recovery. The analytical condition was then validated in terms of the linearity, accuracy and precision, repeatability, and stability. The twelve markers were successfully quantified in 30 batches of commercial samples. The developed HPLC-VWD-ELSD could be used as a rapid and reliable way in the assessment and quality control of XC and TT. PMID:28191359

  4. Analysis of benzalkonium chloride and its homologs: HPLC versus HPCE.

    PubMed

    Prince, S J; McLaury, H J; Allen, L V; McLaury, P

    1999-05-01

    Benzalkonium chloride (BAK) is a mixture of alkylbenzyldimethylammonium chloride homologs with n-C,2H25, n-C,4H29, and n-C16H33 comprising a major portion of the alkyl groups present. An analytical method for BAK must differentiate and quantitate the homologs in the BAK mixture. Reversed-phase high performance liquid chromatography (HPLC) separates compounds based on their affinity for a nonpolar column, which is a direct correlation to the compounds' polarity. High performance capillary electrophoresis (HPCE), however, separates compounds in an electric field according to their charge and size. The BAK homologs are suitable for separation by either of these methods because their polarity and sizes differ significantly. The HPLC method employed a mobile phase of 60% acetonitrile and 40% 0.1 M sodium acetate buffer pH 5 pumped at 1.0 ml min(-1), a 4.6 x 250 mm cyano column with 5 microm packing, and UV detection at 254 nm. The HPCE method utilized a run buffer of 30% acetonitrile and 70% 0.05 M sodium phosphate pH 3.06, a 50 microm x 20 cm open silica capillary, 7.5 kV electric field and UV detection at 214 nm. Both HPLC and HPCE demonstrated good linearity in the range of 0.025 to 0.8 mg ml(-1) with r2 values of approximately 0.99. The HPLC method produced good separation of the homolog peaks with a total analysis time of 25 min. HPCE run time was less than 5 min and demonstrated good separation of the three homologs. The HPLC method, however, was superior to HPCE in the areas of sensitivity and precision. The HPLC has been extensively used in the routine quantitation and qualitation of benzalkonium chloride concentrations in various products; however, long analysis times make this method inefficient. The HPCE method produced comparable results to the HPLC method but with much shorter analysis times. An HPCE analysis method, as presented here, may prove to be a much more useful and efficient method for the analysis of benzalkonium chloride and its homologs.

  5. Quantification of Aconitum alkaloids in aconite roots by a modified RP-HPLC method.

    PubMed

    Jiang, Zhi-Hong; Xie, Ying; Zhou, Hua; Wang, Jing-Rong; Liu, Zhong-Qiu; Wong, Yuen-Fan; Cai, Xiong; Xu, Hong-Xi; Liu, Liang

    2005-01-01

    The three Aconitum alkaloids, aconitine (1), mesaconitine (2) and hypaconitine (3), are pharmacologically active but also highly toxic. A standardised method is needed for assessing the levels of these alkaloids in aconite roots in order to ensure the safe use of these plant materials as medicinal herbs. By optimising extraction, separation and measurement conditions, a reliable, reproducible and accurate method for the quantitative determination of all three Aconitum alkaloids in unprocessed and processed aconite roots has been developed. This method should be appropriate for use in the quality control of Aconitum products. The three Aconitum alkaloids were separated by a modified HPLC method employing a C18 column gradient eluted with acetonitrile and ammonium bicarbonate buffer. Quantification of Aconitum alkaloids, detected at 240 nm, in different batches of samples showed that the content of 1, 2 and 3 varied significantly. In general, the alkaloid content of unprocessed roots was higher than that of processed roots. These variations were considered to be the result of differences in species, processing methods and places of origin of the samples.

  6. Qualitative and quantitative analysis of tocopherols in toothpastes and gingival tissue employing HPLC NMR and HPLC MS coupling.

    PubMed

    Lienau, Annette; Glaser, Tobias; Krucker, Manfred; Zeeb, Daniel; Ley, Fritz; Curro, Frederick; Albert, Klaus

    2002-10-15

    Gingival samples treated with toothpastes containing tocopherols (vitamin E) were investigated employing HPLC chromatography. The aim was to verify that vitamin E is actually enriched in the tissue, which could have beneficial effects on oral health. After determination of the tocopherols available in the toothpastes, control samples from healthy test persons and subjects suffering from gingivitis were analyzed. Subsequently, gingival tissues from diseased test persons who treated their teeth with the toothpastes containing tocopherols using various kinds of concentrations or applications were investigated. The first step of the analysis was a fast and careful extraction employing matrix solid-phase dispersion (MSPD). Afterward, the separation of the different tocopherol homologues existing was performed by HPLC chromatography on highly selective C30 RP phases. The identification of the tocopherol homologues was performed using the on-line coupling of HPLC with NMR spectroscopy and mass spectrometry.

  7. Validated stability-indicating assay method for simultaneous determination of aceclofenac and thiocolchicoside using RP-HPLC.

    PubMed

    Samanthula, G; Shrigod, V V; Patel, P N

    2014-08-01

    A rapid, accurate, precise, robust and specific stability indicating RP-HPLC method has been developed and validated for simultaneous determination of fixed dose combination of Aceclofenac (ACF) and Thiocolchicoside (THC). Combinations and marketed tablets were subjected to stress conditions such as oxidation, hydrolysis, photolysis and heat. Successful separation of drugs from stress degradation products was achieved on Kromasil C18 (250 × 4.6 mm, 5 μm) column at 30 °C using gradient mobile phase system consisting of (A) 10 mM ammonium acetate pH 5.00 buffer and (B) acetonitrile: water (70:30 v/v). The flow rate was 1.0 mL/min with UV detection at 265 nm. The retention time of THC and ACF was 13.29 and 22.20 min respectively. Peak purity of both the drugs was passing in all degradation conditions demonstrates the specificity of assay method for their estimation in presence of degradation products. The developed HPLC method was validated for linearity, accuracy, precision and robustness. The linearity of the proposed method was investigated in the range of 80-280 µg/mL for ACF and 6.4-22.4 µg/mL for THC. The utility of the procedure was verified by its application to marketed formulations.

  8. Quantitative Clinical Diagnostic Analysis of Acetone in Human Blood by HPLC: A Metabolomic Search for Acetone as Indicator

    PubMed Central

    Akgul Kalkan, Esin; Sahiner, Mehtap; Ulker Cakir, Dilek; Alpaslan, Duygu; Yilmaz, Selehattin

    2016-01-01

    Using high-performance liquid chromatography (HPLC) and 2,4-dinitrophenylhydrazine (2,4-DNPH) as a derivatizing reagent, an analytical method was developed for the quantitative determination of acetone in human blood. The determination was carried out at 365 nm using an ultraviolet-visible (UV-Vis) diode array detector (DAD). For acetone as its 2,4-dinitrophenylhydrazone derivative, a good separation was achieved with a ThermoAcclaim C18 column (15 cm × 4.6 mm × 3 μm) at retention time (tR) 12.10 min and flowrate of 1 mL min−1 using a (methanol/acetonitrile) water elution gradient. The methodology is simple, rapid, sensitive, and of low cost, exhibits good reproducibility, and allows the analysis of acetone in biological fluids. A calibration curve was obtained for acetone using its standard solutions in acetonitrile. Quantitative analysis of acetone in human blood was successfully carried out using this calibration graph. The applied method was validated in parameters of linearity, limit of detection and quantification, accuracy, and precision. We also present acetone as a useful tool for the HPLC-based metabolomic investigation of endogenous metabolism and quantitative clinical diagnostic analysis. PMID:27298750

  9. HPLC-based activity profiling of anti-hepatocellular carcinoma constituents from the Tibetan medicine, Caragana tibetica.

    PubMed

    Song, Ping; Wang, Qiang; Lv, Jing-Nan; Xu, Chan; Lin, Qin-Xiong; Ma, Xin-Hua; Huang, Mi; Yang, Xin-Zhou

    2015-06-01

    During the screening of a traditional Chinese folk herb library against HepG2 and Hep3B cell lines, the EtOAc extract from the Tibetan medicine, Caragana tibetica (CT-EtOAc) exhibited potential anti-hepatocellular carcinoma (anti-HCC) activity. HPLC-based activity profiling was performed for targeted identification of anti-HCC activity from CT-EtOAc by MS-directed purification method. CT-EtOAc was separated by time-based fractionation for further anti-HCC bioassay by a semipreparative HPLC column (150 mm × 10 mm i.d., 5 μm) with a single injection of 5 mg. Bioassay-guided and ESIMS-directed large scale purification was performed with a single injection of 400 mg of CT-EtOAc by peak-based fractionation. A 1.4-mm heavy wall micro NMR tube with z-gradient was used to measure one and two dimensional NMR spectra for the minor or trace amounts of components of the extract. Two active compounds could be elucidated as naringenin chalcone (CT-1) and 3-hydroxy-8, 9-dimethoxypterocarpan (CT-2) relevant to anti-HCC effects for the EtOAc extract of C. tibetica rapidly and unambiguously by this protocol.

  10. Separation properties of saccharides on a hydrophilic stationary phase having hydration layer formed zwitterionic copolymer.

    PubMed

    Kamichatani, Waka; Inoue, Yoshinori; Yamamoto, Atsushi

    2015-01-01

    A novel water-holding adsorbent bonded with a zwitterionic polymer, diallylamine-maleic acid copolymer, was developed. With this adsorbent, hydrophilic solutes are partitioned by a hydration layer that forms on the zwitterions, as a main separating force. When the adsorbent was used to separate saccharides by normal-phase partition chromatography, the saccharides eluted in the order, mono-, di- and trisaccharide. The elution profile for mono- and di-saccharides was similar but not identical to that on anion exchange columns. This indicated that the adsorbent exhibited a complex retention behavior by the existence of both anion and cation exchange moieties in the functional polymer. Selecting Na(+) as a counter-ion of the maleate moiety enhanced the retention of saccharide. When used in an high performance liquid chromatography (HPLC) system with gradient elution, the adsorbent enabled the simultaneous analysis of mono-, di- and oligosaccharides.

  11. The reproducibility of liquid chromatography separation technology and its potential impact on large scale plant metabolomics experiments.

    PubMed

    Arens, Nadja; Döll, Stefanie; Mock, Hans-Peter

    2015-06-01

    Unraveling the constituents of biological samples using HPLC is a central core technology in metabolomics experiments. Consistency in retention time across many samples is a critical criterion for judging the quality of a data set, which must be met before further analysis are possible. Here, the performance of two ultra high-performance liquid chromatography (UHPLC) systems has been compared using an established separation protocol optimized for phenylpropanoids, a class of secondary compounds found in plants displaying intermediate polarity. The two systems differed markedly with respect to their reproducibility and pressure stability. The standard deviation of the retention time of representative peaks differs up to 30-folds between the systems. Adjustments made to the gradient profiles succeeded in equalizing their level of performance. However, the modifications made to the separation protocol reduced the quality of the separation, particularly of the more rapidly eluting components, and lengthened the run time.

  12. Separation of maleic anhydride grafted polypropylene using multidimensional high-temperature liquid chromatography.

    PubMed

    Prabhu, K N; Macko, T; Brüll, R; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2016-04-08

    Functionalization addresses a property gap of polyolefins and opens new perspectives due to improved surface properties in applications like composites (e.g., glass fiber reinforced polypropylene) and anti-corrosive coatings for metals. Various techniques have been developed to characterize functionalized polyolefins, yet no analytical approach addressing their chemical heterogeneity exists. Using High Temperature Size Exclusion Chromatography (HT-SEC) coupled to infrared spectroscopy we could show for two model samples of polypropylene grafted maleic anhydride (PP-g-MA), differing in their nominal MA content, that the grafting density increases with decreasing molar mass. Crystallization Analysis Fractionation (CRYSTAF) does not enable to separate these samples according to their composition to the extent required. Yet, when using High Temperature High Performance Liquid Chromatography (HT-HPLC), with either silica gel or Mica as stationary phase and a gradient mobile phase, a deformulation into a grafted and a non-grafted fraction could be achieved. This was confirmed by analyzing the eluted fractions by infrared spectroscopy. Hyphenating the separation according to composition with a separation according to molar mass (HT-HPLC x HT-SEC) enabled for the first time to reveal the bivariate distribution of PP-g-MA with regard to the molar mass and composition. Using on-line infrared detection quantitative information on the compositional and molar mass parameters of the individual fractions could be obtained.

  13. Preliminary Study of High Resolution HPLC Analytical Method for Sedimentary Pigments Based on Coupled C8 Columns

    NASA Astrophysics Data System (ADS)

    Yao, P.; Yu, Z.; Deng, C.; Liu, S.; Zhao, J.

    2008-05-01

    The pigments in marine water columns can provide accurate estimates of community composition and abundance of phytoplankton. In addition, the sedimentary pigments, especially the derivatives of chlorophyll such as pyrophaeophytins, pyrophaeophorbides and steryl chlorin esters (SCEs) formed during early diagenesis can also provide information on the primary producer community and the changes in paleoproductivity. Accordingly, analysis of pigments and their derivatives is of great importance for oceanography, limnology and geochemistry. Many methods have been developed for the separation of chlorophylls, carotenoids and their derivatives derived from phytoplankton and water column samples using high-performance liquid chromatography (HPLC). Methods widely cited in the literatures include those developed by Wright et al. (1991) and Zapata et al. (2000). Both methods use reversed-phase columns, but C18 column was employed in Wright et al. (1991) and C8 column in Zapata et al. (2000). However, evident coelutions are observed in published works. This will particularly cause problematic identification and quantification in dealing with sedimentary pigments which are highly complex and often display a broad range in polarity. Clearly, it is necessary to improve the separation of the complex pigments if the information carried by the pigments is to be used fully. Coupled C18 columns were used in the HPLC method developed by Airs et al. (2001) for the analysis of complex pigment distributions. Improved chromatographic resolution, more pigment components and novel bacteriochlorophyll derivatives were obtained by this method. It indicates a new road for HPLC method development. C8 column has shorter carbon chains than that of C18 column and can provide less retention of apolar compounds which is of particular advantaged to hydrophobic chlorophyll a, b and their derivatives. That is one of the reasons why the C8 method developed by Zapata et al. (2000) is admittedly better than

  14. Intra-specific genetic relationship analyses of Elaeagnus angustifolia based on RP-HPLC biochemical markers.

    PubMed

    Wang, Qiang; Ruan, Xiao; Huang, Jun-hua; Xu, Ning-yi; Yan, Qi-chuan

    2006-04-01

    Elaeagnus angustifolia Linn. has various ecological, medicinal and economical uses. An approach was established using RP-HPLC (reversed-phase high-performance liquid chromatography) to classify and analyse the intra-specific genetic relationships of seventeen populations of E. angustifolia, collected from the Xinjiang areas of China. Chromatograms of alcohol-soluble proteins produced by seventeen populations of E. angustifolia, were compared. Each chromatogram of alcohol-soluble proteins came from a single seed of one wild plant only. The results showed that when using a Waters Delta Pak. C18, 5 microm particle size reversed phase column (150 mm x 3.9 mm), a linear gradient of 25%-60% solvent B with flow rate of 1 ml/min and run time of 67 min, the chromatography yielded optimum separation of E. angustifolia alcohol-soluble proteins. Representative peaks in each population were chosen according to peak area and occurrence in every seed. The converted data on the elution peaks of each population were different and could be used to represent those populations. GSC (genetic similarity coefficients) of 41% to 62% showed a medium degree of genetic diversity among the populations in these eco-areas. Cluster analysis showed that the seventeen populations of E. angustifolia could be divided into six clusters at the GSC=0.535 level and indicated the general and unique biochemical markers of these clusters. We suggest that E. angustifolia distribution in these eco-areas could be classified into six variable species. RP-HPLC was shown to be a rapid, repeatable and reliable method for E. angustifolia classification and identification and for analysis of genetic diversity.

  15. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts.

  16. A Rapid, Validated RP-HPLC Method for the Simultaneous Determination of Cleaning Validation and Cross-Contamination of 12 Beta-Lactam Compounds.

    PubMed

    Trivedi, Harshal Kanubhai; Kshtri, Nayan; Patel, Mukesh C

    2013-01-01

    The present work reports a rapid reversed-phase high-performance liquid chromatography (RP-HPLC) method for the simultaneous determination of 12 beta-lactam components for cleaning validation and cross-contamination. A strategic experimental approach was implemented for the method development. The desired chromatographic separation was achieved on a Symmetry C18 (4.6 X 75 mm, 3.5 μm) column using gradient elution. The optimized mobile phase consisted of the buffer tetrabutylammonium hydroxide pH-6.8 and acetonitrile. The eluted compounds were monitored at 215 nm and 254 nm wavelength using a photodiode array detector. The developed method separated 12-beta-lactam compounds from each other within a run time of 50 min. The method is effective for the determination of cross-contamination of penicillin and cephalosporin production blocks. The present method is specific and a lower limit of quantification was determined on the basis of the signal-to-noise ratio method; it is 1 μg/mL for all components. The developed RP-HPLC method was validated according to the International Conference on Harmonization (ICH) guidelines.

  17. Planar gradient metamaterials

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2016-12-01

    Metamaterials possess exotic properties that do not exist in nature. Gradient metamaterials, which are characterized by a continuous spatial variation of their properties, provide a promising approach to the development of both bulk and planar optics. In particular, planar gradient metamaterials can be classified into three categories: gradient metasurfaces, gradient index metamaterials and gradient metallic gratings. In this Review, we summarize the progress made in the theoretical modelling of these materials, in their experimental implementation and in the design of functional devices. We discuss the use of planar gradient metamaterials for wave bending and focusing in free space, for supporting surface plasmon polaritons and for the realization of trapped rainbows. We also focus on the implementation of these materials in waveguide systems, which can enable electromagnetic cloaking, Fano resonances, asymmetric transmission and guided mode conversion. Finally, we discuss promising trends, such as the use of dielectric rather than metallic unit elements and the use of planar gradient metamaterials in 3D systems.

  18. [Quantitative determination of niphensamide by high performance liquid chromatography (HPLC)].

    PubMed

    Long, C; Chen, S; Shi, T

    1998-01-01

    An HPLC method for the quantitative determination of Niphensamide in pesticide powder was developed. Column:Micropak-CH 5 microns (300 mm x 4.0 mm i.d.), mobile phase: CH3OH-H2O(1:1), detector: UV 254 nm, flow rate: 0.7 mL/min, column temperature: 25 degrees C. Under the above conditions, Niphensamide and other components were separated from each other. The method is simple, rapid, sensitive and accurate.

  19. The Use of HPLC for the Characterization of Phytoplankton Pigments.

    PubMed

    Garrido, José L; Roy, Suzanne

    2015-01-01

    HPLC is still the technique of choice for the analysis and characterization of phytoplankton pigments. In this chapter we describe procedures for sample preparation and pigment extraction, and the use of octyl silica columns and pyridine-containing mobile phases to separate chlorophylls and carotenoids. The identification of pigments on the basis of their retention times and visible spectra, the preparation of pigment standards, and the quantitative analysis by either external or internal standard procedures are also described.

  20. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS.

  1. Determination of selectivity differences for basic compounds in gradient reverse phase high performance liquid chromatography under high pH conditions by partial least squares modelling.

    PubMed

    Fornal, Emilia; Borman, Phil; Luscombe, Christopher

    2006-06-16

    The retention behaviour of compounds in a chromatographic system is believed to be multivariate by nature, i.e. many physico-chemical properties of an analyte can influence its retention. Principal component analysis (PCA) and partial least squares (PLS) can therefore be particularly useful tools for visualising, exploring and modelling the complex interactions between solutes and the mobile and stationary phase. PCA allows the relationships between compounds (the observations) and their retention parameters (the variables) to be visualised in usually just two or three dimensions. PLS can be used to model quantitative structure-retention relationships (QSRRs) and may lead to better understanding of retention and selectivity changes in chromatographic systems. The objective of the study was to investigate the chromatographic behaviour of basic compounds under optimised gradient conditions using octadecyl high performance liquid chromatography (HPLC) columns designed for high pH separations. Three pharmaceutical mixtures were analysed by linear gradient reverse phase HPLC (RP-HPLC) at high pH using ammonia as a pH modifier, and methanol and/or acetonitrile as the organic modifier. The separations were carried out on three octadecyl columns: Waters XTerra MS C18, Agilent Zorbax Extend C18 and Thermo Hypersil-Keystone BetaBasic-18. Multivariate PCA and PLS modelling were employed to explore and explain the differences in selectivity between the chromatographic systems studied when the basic compounds were analysed under the high pH conditions. The interactions between the analytes and the mobile-stationary phases were described by relating the compound molecular descriptors with the selectivity of each chromatographic system. The selectivity differences between the chromatographic systems were identified.

  2. Optimization and qualification of a quantitative reversed-phase HPLC method for hemagglutinin in influenza preparations and its comparative evaluation with biochemical assays.

    PubMed

    Lorbetskie, Barry; Wang, Jun; Gravel, Caroline; Allen, Cynthia; Walsh, Mike; Rinfret, Aline; Li, Xuguang; Girard, Michel

    2011-04-18

    A previously described reversed-phase HPLC (RP-HPLC) method based on fast separations on a non-porous silica stationary phase [1] was optimized and qualified for the quantitative determination of hemagglutinin (HA) in influenza vaccine preparations. Optimization of the gradient elution conditions led to improved separation of the HA1 subunit from other vaccine constituents. The sensitivity of the method was significantly increased by using native fluorescence detection, resulting in an approximately 10-fold increase as compared to UV-vis detection. This enabled the elimination of the concentration step described in the original method and allowed direct analysis of vaccine preparations. The method was qualified for linearity, range, limit of detection, limit of quantitation and precision. Overall, it was found to be linear over the range of 2.5-100 μg HA/mL for all subtypes examined. This range covered 50-150% of the concentration found for individual strains in seasonal influenza vaccines and in the pandemic H1N1 vaccine. The limit of detection and limit of quantitation for each subtype were found to be suitable for the method's intended purpose and compared well to values found by the single radial immunodiffusion (SRID). The repeatability of the method gave RSD values below 5% for both retention time and peak areas. As expected for intermediate precision, larger RSD values for peak area were obtained but were below 10% and deemed acceptable. The RP-HPLC results were compared to Western blot analysis using a HA universal antibody for a set of 15 monovalent A/California H1N1 preparations and showed good correlation. Similarly, the quantitative nature of the RP-HPLC method was assessed in relation to the SRID assay currently used for the determination of the HA content in bulk antigen and final vaccine preparations. Thus, for a series of 23 monovalent A/Brisbane/59/2007 H1N1 bulks, ranging between 12.7 and 15.9 μg HA/mL by SRID, the RP-HPLC values were found to

  3. Separated Shoulder

    MedlinePlus

    Separated shoulder Overview By Mayo Clinic Staff A separated shoulder is an injury to the ligaments that hold your collarbone (clavicle) to your shoulder blade. In a mild separated shoulder, the ligaments ...

  4. Moving thermal gradients in gas chromatography.

    PubMed

    Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L

    2014-12-29

    This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.

  5. Electrochemically Pretreated Carbon Microfiber Electrodes as Sensitive HPLC-EC Detectors

    PubMed Central

    Bartosova, Zdenka; Riman, Daniel; Jakubec, Petr; Halouzka, Vladimir; Hrbac, Jan; Jirovsky, David

    2012-01-01

    The paper focuses on the analysis and detection of electroactive compounds using high-performance liquid chromatography (HPLC) combined with electrochemical detection (EC). The fabrication and utilization of electrochemically treated carbon fiber microelectrodes (CFMs) as highly sensitive amperometric detectors in HPLC are described. The applied pretreatment procedure is beneficial for analytical characteristics of the sensor as demonstrated by analysis of the model set of phenolic acids. The combination of CFM with separation power of HPLC technique allows for improved detection limits due to unique electrochemical properties of carbon fibers. The CFM proved to be a promising tool for amperometric detection in liquid chromatography. PMID:22654586

  6. ANALYSIS OF VITAMIN E BY HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    HPLC (High-performance liquid chromatography) is the most comon technique for identifying and measuring vitamin E concentrations. A variety of good HPLC methods are available for vitamin E analysis. Reliable and sensitive methods have been developed using reversed-phased and normal-phase HPLC column...

  7. Simultaneous Determination of Eight Phenolic Acids, Five Saponins and Four Tanshinones for Quality Control of Compound Preparations Containing Danshen-Sanqi Herb-pair by HPLC-DAD

    PubMed Central

    Yao, Hong; Huang, Xiaomei; Li, Shaoguang; Wu, Youjia; Lin, Xinhua; Shi, Peiying

    2017-01-01

    Background: The herb-pair, Salviaemiltiorrhizae (Danshen, DS) and Panaxnotoginseng (Sanqi,SQ), often occurs in traditional Chinese medicine prescriptions used for the treatment of cardiovascular diseases in clinics in Asian areas. Many commercial preparations containing the DS-SQ herb-pair were produced by various manufactures with the different production process. The raw materials were from different sources, which raised a challenge to control the quality of the herb-pair medicines. Objective: In this paper, a high-performance liquid chromatography (HPLC) method was developed to simultaneously determine seventeen bioactive components, including 8 phenolic acids, 4 tanshinones, and 5 saponins, for quality control of compound preparations containing DS-SQ herb-pair. The chromatographic separation was studied on an Ultimate™ XB-C18 column (150 mm × 4.6 mmi.d., 3.5 μm) with a mobile phase composed of 0.5% aqueous acetic acid and acetonitrile using a gradient elution in 70 min. Results: The optimum detection wavelength was set at 288 nm for phenolic acids and tanshinones, and 203 nm for saponins. The method was validated sufficiently by examining the precision, recoveries, linearity, range, LOD and LOQ, and was successfully applied to quantify the seventeen compounds in five commercial preparations containing DS-SQ herb-pair. Conclusions: It is the first time to report the rapid and simultaneous analysis of the seventeen compounds with the base-line separation of peaks for ginsenoside Rg1 and Re in 70 min by routine HPLC. This HPLC method could be considered as good quality criteria to control the quality of preparations containing DS-SQ herb-pair. SUMMARY An HPLC method was originally developed to simultaneously quantify 8 phenolic acids, 4 tanshinones and 5 saponins in DS-SQ herb-pair preparations.The rapid and simultaneous analysis of the 17 compounds with the base-line separation of peaks for ginsenoside Rg1 and Re within 70 min was achieved for the first

  8. Separation of Peptides on HALO 2-Micron Particles.

    PubMed

    Mant, Colin T; Hodges, Robert S

    2016-08-01

    Reversed-phase high-performance liquid chromatography (RP-HPLC) is of fundamental importance to the isolation and separation of peptides, proteins, and other biomolecules. Hence, there is a continuing high demand for the development of RP-HPLC stationary-phase materials with enhanced separation efficiency. HALO packing materials began the revolution in "core-shell" technology with the advantages of faster separations, higher resolution and peak capacity, high temperature stability, and rugged reliable performance compared to traditional HPLC and UHPLC. These materials are characterized by a solid core surrounded by a thin layer of porous material, and represent a technology for the future with continuing refinements. Such refinements are aided via the use of designed synthetic peptide standards during stationary-phase development. Concomitantly, such standards also enable the researcher to monitor RP-HPLC column performance and develop optimized separation protocols for peptides from a wide array of sources. © 2016 by John Wiley & Sons, Inc.

  9. Optimization of ion exchange sigmoidal gradients using hybrid models: Implementation of quality by design in analytical method development.

    PubMed

    Joshi, Varsha S; Kumar, Vijesh; Rathore, Anurag S

    2017-03-31

    Thorough product understanding is one of the basic tenets for successful implementation of Quality by Design (QbD). Complexity encountered in analytical characterization of biotech therapeutics such as monoclonal antibodies (mAbs) requires novel, simpler, and generic approaches towards product characterization. This paper presents a methodology for implementation of QbD for analytical method development. Optimization of an analytical cation exchange high performance liquid chromatography (CEX-HPLC) method utilizing a sigmoidal gradient has been performed using a hybrid mechanistic model that is based on Design of experiment (DOE) based studies. Since sigmodal gradients are much more complex than the traditional linear gradients and have a large number of input parameters (five) for optimization, the number of DOE experiments required for a full factorial design to estimate all the main effects as well as the interactions would be too large (243). To address this problem, a mechanistic model was used to simulate the analytical separation for the DOE and then the results were used to build an empirical model. The mechanistic model used in this work is a more versatile general rate model in combination of modified Langmuir binding kinetics. The modified Langmuir model is capable of modelling the impact of nonlinear changes in the concentration of the salt modifier. Further, to get the input and output profiles of mAb and salts/buffers, the HPLC system, consisting of the mixer, detectors, and tubing was modelled as a sequence of dispersed plug flow reactors and continuous stirred tank reactors (CSTR). The experimental work was limited to calibration of the HPLC system and finding the model parameters through three linear gradients. To simplify the optimization process, only three peaks in the centre of the profile (main product and the adjacent acidic and basic variants) were chosen to determine the final operating condition. The regression model made from the DoE data

  10. Quantitative determination of chemical constituents from seeds of Nigella sativa L. using HPLC-UV and identification by LC-ESI-TOF.

    PubMed

    Avula, Bharathi; Wang, Yan-Hong; Ali, Zulfiqar; Khan, Ikhlas A

    2010-01-01

    An HPLC method was developed for the simultaneous determination of nine compounds of Nigella sativa L. The separation was achieved within 23 min by using C18 column material, a water-acetonitrile mobile phase, both containing 0.1% acetic acid gradient system and a temperature of 35 degrees C. The method was validated for linearity, repeatability, LOD, and LOQ. The LOD and LOQ of nine compounds were in the range of 0.09-10 and 0.3-25 microg/mL, respectively. The wavelength used for quantification with the diode array detector was 205 and 260 nm. LC/MS coupled with electrospray ionization interface method is described for the identification of compounds in N. sativa L. samples. This method involved the use of [M+H]+ and [M+Na]+ ions in the positive ion mode with extracted ion chromatogram.

  11. Synchronous determination with double-wavelength by RP-HPLC-UV and optimization of ultrasound-assisted extraction of phenolic acids from Caragana species using response surface methodology.

    PubMed

    Zeng, Zhi; Ji, Zhongyin; Hu, Na; Chen, Shasha; Bai, Bo; Wang, Honglun; Suo, Yourui

    2017-03-14

    The utilization of Caragana korshinskii Kom. (CK) is currently concentrated on its ecological and fuel functions. Little attention has been devoted to the analysis of their phenolic acid (PA) components. To obtain more data for further utilization of CK, a new analysis protocol was tested to determine PAs synchronously by RP-HPLC-UV with double-wavelength (280nm and 320nm) detection. Specifically, separation of PA components was performed on a Hypersil Gold C18 reverse phase column with gradient elution. A four-factor-three-level Box-Behnken design was implemented for optimization of PA extraction. The results demonstrated that CK were rich primarily in chlorogenic acid, vanillic acid, caffeic acid and rosmarinic acid. The total content of PAs in CK leaves was the highest compared with its other parts. The distribution of total flavonoid content of CK was leaves>flowers>bark, while that of the total phenolic content of CK was flowers>leaves>bark.

  12. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  13. Investigation of Gravity Lanthanide Separation Chemistry

    SciTech Connect

    Payne, Rosara F.; Schulte, Shannon M.; Douglas, Matthew; Friese, Judah I.; Farmer, Orville T.; Finn, Erin C.

    2011-03-01

    Lanthanides are common fission products and the ability to separate and quantify these elements is critical to rapid radiochemistry applications. Published lanthanide separations using Eichrom Ln Spec resin utilize an HCl gradient. Here it is shown that the efficacy and resolution of the separation is improved when a nitric acid gradient is used instead. The described method allows parallel processing of many samples in 1.5 hours followed by 60 minute counting for quantification of 9 isotopes of 7 lanthanide elements.

  14. Methods and applications of HPLC-AMS (WBio 5)

    SciTech Connect

    Bucholz, B A; Clifford, A J; Duecker, S R; Lin, Y; Vogel, J S

    1999-09-29

    Pharmacokinetics of physiologic doses of nutrients, pesticides, and herbicides can easily be traced in humans using a {sup 14}C-labelled compound. Basic kinetics can be monitored in blood or urine by measuring the elevation in the {sup 14}C content above the control predose tissue and converting to equivalents of the parent compound. High Performance Liquid Chromatography (HPLC) is an excellent method for the chemical separation of complex mixtures whose profiles afford estimation of biochemical pathways of metabolism. Compounds elute from the HPLC systems with characteristic retention times and can be collected in fractions that can then be graphitized for AMS measurement. Unknowns are identified by coelution with known standards and chemical tests that reveal functional groupings. Metabolites are quantified with the {sup 14}C signal. Thoroughly accounting for the carbon inventory in the LC solvents, ion-pairing agents, samples, and carriers adds some complexity to the analysis. In most cases the total carbon inventory is dominated by carrier. Baseline background and stability need to be carefully monitored. Limits of quantitation near 10 amol of {sup 14}C per HPLC fraction are typically achieved. Baselines are maintained by limiting injected {sup 14}C activity <0.17 Bq (4.5 pCi) on the HPLC column.

  15. Quantitative determination of four constituents of Tinospora sps. by a reversed-phase HPLC-UV-DAD method. Broad-based studies revealing variation in content of four secondary metabolites in the plant from different eco-geographical regions of India.

    PubMed

    Ahmed, S M; Manhas, L R; Verma, V; Khajuria, R K

    2006-09-01

    This paper describes the separation and quantitation of important markers, such as 20beta-hydroxyecdysone, tinosporaside, cordioside, and columbin, present in three species of Tinospora viz, T. cordifolia, T. malabrica, and T. crispa. A reverse-phase (RP) high-performance liquid chromatography (HPLC)-UV-diode array detection (DAD) method employing gradient elution is thus developed. The marker compounds isolated from 70% ethanolic extract of T. cordfolia by repeated column chromatography are identified on the basis of (1)H NMR, (13)C NMR, and mass spectral data. The compounds are separated on a RP (RP-18, 5 microm, 250 x 4.6-mm i.d.) column using water-acetonitrile gradient and are detected by the HPLC-UV-DAD method. The calibration curves that result from marker compounds in the concentration range of 100-2000 ng on column exhibit a good correlation (r(2) > or = 0.99978). The method is successfully applied to separate and study the content of four marker compounds in 40 different accessions of three Tinospora species collected from different regions of India. The studies reveal that the maximum amount of the marker compounds is present in Tinospora cordifolia species, especially from accessions collected from higher altitudes of the Jammu province (North India).

  16. Analytical methods for determination of magnoflorine and saponins from roots of Caulophyllum thalictroides (L.) Michx. using UPLC, HPLC and HPTLC.

    PubMed

    Avula, Bharathi; Wang, Yan-Hong; Rumalla, Chidananda Swamy; Ali, Zulfiqar; Smillie, Troy J; Khan, Ikhlas A

    2011-12-15

    Analytical methods including HPLC, UPLC and HPTLC are presented for the determination of major alkaloid and triterpene saponins from the roots of Caulophyllum thalictroides (L.) Michx. (blue cohosh) and dietary supplements claiming to contain blue cohosh. A separation by LC was achieved using a reversed phase column, PDA with ELS detection, and ammonium acetate/acetonitrile gradient as the mobile phase. Owing to their low UV absorption, the triterpene saponins were detected by evaporative light scattering. The eight triterpene saponins (cauloside H, leonticin D, cauloside G, cauloside D, cauloside B, cauloside C, cauloside A and saponin PE) and the alkaloid magnoflorine could be separated within 35 min using HPLC method and within 8.0 min using UPLC method with detection limits of 10 μg/mL for saponins and 1 μg/mL for magnoflorine. The detection wavelength was 320 nm for magnoflorine and ELS detection was used for the eight saponins. The methods were also successfully applied to analyze different dietary supplements. For the products claiming to contain blue cohosh, there was a significant variability in the amounts of triterpene saponins detected. Calculations based on the analysis results for dietary supplements showed that maximum daily intake of alkaloid and saponins vary with the form (solids/liquids) and recommended doses according to the products label. Intakes varied from 0.57 to 15.8 mg/day for magnoflorine and from 5.97 to 302.4 mg/day for total saponins. LC-mass spectrometry coupled with electrospray ionization (ESI) method is described for the identification and confirmation of nine compounds in plant samples and dietary products. A HPTLC method was also developed for the fast chemical fingerprint analysis of C. thalictroides samples.

  17. HPTLC and RP-HPLC methods for simultaneous determination of Paracetamol and Pamabrom in presence of their potential impurities.

    PubMed

    Abdelaleem, Eglal A; Naguib, Ibrahim A; Hassan, Eman S; Ali, Nouruddin W

    2015-10-10

    Two chromatgraphic methods were developed for determination of Paracetamol (PCM) and Pamabrom (PAM) in presence of P-aminophenol (PAP) and Theophylline (THEO) as potential impurities of both drugs respectively. First method is HPTLC which depends on separation and quantitation of the studied drugs on aluminum plates pre-coated with silica gel 60 F₂₅₄ as a stationary phase using chloroform:methanol:ethyl acetate:glacial acetic acid (8:0.8:0.6:0.2, v/v/v/v) as mobile phase followed by densitometric measurement of the bands at 254 nm. Second method is RP-HPLC which comprises separation of the studied drugs on a Phenomenex C8 column by gradient elution using mobile phase consisting of sodium dihydrogen phosphate buffer (0.05 M): methanol:acetonitrile (85:10:5, v/v/v) at a flow rate of 1 mL/min for first 7.5 min and (70:20:10, v/v/v) at a flow rate of 1.5 mL/min for the next 5 min. The proposed methods were successfully applied for determination of the potential impurities of PCM and PAM after resolving them from the pure drugs. The developed methods have been validated and proved to meet the requirements delineated by ICH guidelines with respect to linearity, accuracy, precision, specificity and robustness. The validated methods were successfully applied for determination of the studied drugs in their pharmaceutical formulation. The results were statistically compared to those obtained by the reported RP-HPLC method where no significant difference was found; indicating the ability of proposed methods to be used for routine quality control analysis of these drugs.

  18. A versatile method for analysis of saliva, plasma and urine for total thiols using HPLC with UV detection.

    PubMed

    Stachniuk, Justyna; Kubalczyk, Paweł; Furmaniak, Paulina; Głowacki, Rafał

    2016-08-01

    A simple and rapid HPLC method using 2-chloro-1-methyllepidinium tetrafluoroborate (CMLT) as a derivatization reagent was developed for simultaneous determination of homocysteine (Hcy), glutathione (GSH), γ-glutamylcysteine (γ-GluCys), cysteinylglycine (CysGly), N-acetylcysteine (NACys) and cysteine (Cys) in human saliva, plasma and urine. Separation of the analytes was achieved in just 7min using an HPLC, followed by UV detection at 355nm. Chromatographic separation was accomplished on Aeris PEPTIDE XB-C18 (150mm×4.6mm, 3.6µm) column from Phenomenex with a gradient elution: 0-4.0min, 7-30% B; 4.0-5.5min, 30-7% B; 5.5-7.5min, 7% B; (A: B, v/v); (A) 0.5% CH3COOH and (B) EtOH. Mobile phase was delivered at a flow rate 1.0mLmin(-1). Linearity in detector response for total thiols was observed over the range of 0.1-20μmolL(-1) for Hcy, GSH and γ-GluCys, 0.25-50μmolL(-1) for NACys and CysGly and 5-300 for Cys. The LOQ values for Hcy, GSH, γ-GluCys, NACys, CysGly and Cys were 0.05, 0.05, 0.10, 0.06, 0.12 and 0.08μmolL(-1), respectively. The method was successfully implemented to analysis of the samples donated by 15 apparently healthy volunteers and 10 patients.

  19. Development and validation of an HPLC-MS/MS method for the early diagnosis of aspergillosis.

    PubMed

    Cerqueira, Letícia B; de Francisco, Thais M G; Gasparetto, João C; Campos, Francinete R; Pontarolo, Roberto

    2014-01-01

    Invasive aspergillosis is an opportunistic infection that is mainly caused by Aspergillus fumigatus, which is known to produce several secondary metabolites, including gliotoxin, the most abundant metabolite produced during hyphal growth. The diagnosis of invasive aspergillosis is often made late in the infection because of the lack of reliable and feasible diagnostic techniques; therefore, early detection is critical to begin treatment and avoid more serious complications. The present work reports the development and validation of an HPLC-MS/MS method for the detection of gliotoxin in the serum of patients with suspected aspergillosis. Chromatographic separation was achieved using an XBridge C18 column (150 × 2.1 mm id; 5 mm particle size) maintained at 25 °C with the corresponding guard column (XBridge C18, 10 × 2.1 mm id, 5 mm particle size). The mobile phase was composed of a gradient of water and acetonitrile/water (95:5 v/v), both containing 1 mM ammonium formate with a flow rate of 0.45 mL min(-1). Data from the validation studies demonstrate that this new method is highly sensitive, selective, linear, precise, accurate and free from matrix interference. The developed method was successfully applied to samples from patients suspected of having aspergillosis. Therefore, the developed method has considerable potential as a diagnostic technique for aspergillosis.

  20. An HPLC method for the determination of selected amino acids in human embryo culture medium.

    PubMed

    Drábková, Petra; Andrlová, Lenka; Kanďár, Roman

    2017-02-01

    A method for the determination of selected amino acids in culture medium using HPLC with fluorescence detection is described. Twenty hours after intra-cytoplasmic sperm injection, one randomly selected zygote was transferred to the culture medium. After incubation (72 h after fertilization), the culture medium in which the embryo was incubated and blank medium was immediately stored at -80°C. Filtered medium samples were derivatized with ortho-phthalaldehyde (naphthalene-2,3-dicarboxaldehyde), forming highly fluorescent amino acids derivatives. Reverse-phase columns (LichroCART, Purospher STAR RP18e or Ascentis Express C18 ) were used for the separation. The derivatives were analyzed by gradient elution with a mobile phase containing ethanol and sodium dihydrogen phosphate. The analytical performance of this method is satisfactory for all amino acids; the intra-assay coefficients of variation were <10% and quantitative recoveries were between 95.5 and 104.4%. Changes in the levels of selected amino acids before and after human embryo cultivation were observed. After embryo incubation, the levels of all amino acids in the medium were increased, apart from aspartate and asparagine. After the cultivation of some embryos, amino acids which were not part of the medium were detected. Low amino acids turnover was observed in some embryos.

  1. Simultaneous determination of grepafloxacin, ciprofloxacin, and theophylline in human plasma and urine by HPLC.

    PubMed

    Kamberi, M; Hajime, N; Kamberi, P; Uemura, N; Nakamura, K; Nakano, S

    1999-06-01

    A specific and sensitive reversed-phase high-performance liquid chromatographic (HPLC) method has been developed and validated for the simultaneous determination of grepafloxacin, ciprofloxacin, and theophylline in human plasma and urine. This assay allows these drugs to elute and be resolved in a single chromatogram at 280 nm, using a linear gradient. The procedure involves liquid-liquid extraction. Separation was achieved on a C18 reversed-phase column. The quantification limits were 0.05 mg/L in plasma and 0.5 mg/L in urine for grepafloxacin and ciprofloxacin and 0.5 mg/L in plasma and urine for theophylline. Standard curves were linear (correlation coefficients >0.999) over the ranges 0.05 to 5 mg/L for grepafloxacin and ciprofloxacin in plasma, from 0.5 to 20 mg/L for theophylline in plasma, and from 0.5 to 500 mg/L for the three drugs in urine. The coefficients of variation for the three drugs were less than 10% for within- and between-day analyses. The recoveries averaged 94.5% for theophylline, 93% for ciprofloxacin, 93.7% for grepafloxacin, and 95.1% for the internal standard (IS). The assay can be used for pharmacokinetic studies of these drugs, to investigate the interaction of grepafloxacin and ciprofloxacin with theophylline, or for routine simultaneous monitoring of theophylline, grepafloxacin, and ciprofloxacin.

  2. Determination of phenolic compounds derived from hydrolysable tannins in biological matrices by RP-HPLC.

    PubMed

    Díez, María Teresa; García del Moral, Pilar; Resines, José Antonio; Arín, María Jesús

    2008-08-01

    An RP-HPLC method for the determination of four phenolic compounds: gallic acid (GA), pyrogallol (PY), resorcinol (RE) and ellagic acid (EA), derived from hydrolysable tannins is reported. Separation was achieved on a SunFire C18 (250 x 4.6 mm id, 5 microm) column at 40 degrees C with gradient elution. UV detection at 280 nm was applied. The developed method was validated in terms of linearity, accuracy and precision. Satisfactory repeatability and between day precision were noticed with RSD values lower than 3%. Recoveries from different biological samples ranged from 91.50 to 105.25%. The LODs were estimated as 1.70 mg/L for PY, 1.68 mg/L for GA, 1.52 mg/L for RE and 0.98 mg/L for EA with a 20 microL injection volume. The method was applied for the determination of these compounds in oak leaves and in ruminal fluid and urine samples taken from beef cattle fed with oak leaves. The proposed method could be used in ruminant nutrition studies to verify the effect that a diet rich in tannins have on ruminal fermentation and to determine the toxicity of these compounds.

  3. [Simultaneous determination of neotame, alitame and aspartame in foods by HPLC].

    PubMed

    Matsumoto, Hiroko; Hirata, Keiko; Sakamaki, Narue; Hagino, Kayo; Ushiyama, Hirofumi

    2008-02-01

    Simultaneous determination of three artificial sweeteners, neotame (NE), alitame (AL) and aspartame (APM) in various foods by high-performance liquid chromatography (HPLC) was developed. Chopped or homogenized samples were packed into cellulose tubing with 0.01 mol/L hydrochloric acid containing 10% sodium chloride, and dialyzed against 0.01 mol/L hydrochloric acid for 24-48 hours. The dialyzate was passed through an Oasis MCX cartridge, and the cartridge was washed with water and methanol. Then the three sweeteners were eluted from the cartridge with a mixture of 0.5 mol/L ammonium chloride-acetonitrile (3 : 2). The sweeteners were separated on a Cosmosil 5C18-AR column using a gradient mode with a mobile phase of 0.01 mol/L phosphate buffer (pH 4.0)-acetonitrile and were detected at 210 nm. The recoveries of NE, AL and APM from 8 kinds of foods spiked with 10 and 100 microg/g were 86-100% and 89-104%, respectively. The detection limits of NE, AL and APM were 1 microg/g in samples. Furthermore, the three sweeteners were successfully identified by using liquid chromatography with tandem mass spectrometry.

  4. Simultaneous determination of 15 nitroimidazoles in cosmetics by HPLC coupled with electrospray ionization- tandem mass spectrometry.

    PubMed

    Meng, Xian-Shuang; Bai, Hua; Zhang, Qing; Lv, Qing; Chen, Yun-Xia; Ma, Hui-Juan; Li, Jing-Rui; Ma, Qiang

    2014-01-01

    A sensitive and reliable analytical method based on HPLC/MSIMS has been developed for the simultaneous determination of 15 nitroimidazoles in cosmetics. A diversity of cosmetic samples, including powder, lotion, shampoo, and cream were collected. The samples were ultrasonically extracted with aqueous methanol, and the extracts were then subjected to cleanup bySPE using an Oasis HLB cartridge followed by filtration with a 0.20 pm membrane filter. Afterwards, chromatographic separation was performed on an XSelect CSH C18 column (2.1 x 150 mm, 3.5 pm) maintained at 30°C within 15 min by a gradient of acetonitrile-0.1% aqueous formic acid solution at a flow rate of 0.25 mL/min. The mass spectrometric detection was carried, out using electrospray positive ionization under the multiple reaction monitoring mode. A good linearity was observed over the concentration range from 0.5 to 500 ng/mL. The intraday and interday precisions, which were investigated by determining all target compounds in cosmetics seven times/day and on 7 consecutive days, were below 5.00%. The mean recoveries at three spiked levels ranged from 80.42 to 100.83% with the RSDs from 0.45 to 9.02%. The LOQs were determined to be between 0.01 and 0.1 mg/kg. The method was sufficiently rapid, reliable, and sensitive for the determination of 15 nitroimidazoles in cosmetics.

  5. Ultracapacitor separator

    DOEpatents

    Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris

    2001-03-06

    An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.

  6. Pharmacokinetics of ammonium sulfate gradient loaded liposome-encapsulated oxymorphone and hydromorphone in healthy dogs

    PubMed Central

    Smith, Lesley J.; Kukanich, Butch K.; Krugner-Higby, Lisa A.; Schmidt, Brynn H.; Heath, Timothy D.

    2013-01-01

    Objective To evaluate the pharmacokinetics, in dogs, of liposome-encapsulated oxymorphone and hydromorphone made by the ammonium sulfate gradient loading technique (ASG). Animals Four healthy purpose-bred Beagles aged 9.5 ± 3.2 months and weighing 13.4 ± 2.3 kg. Study Design Randomized cross-over design. Methods Each dog was given either 4.0 mg kg−1 of ASG-oxymorphone or 8.0 mg kg−1 of ASG-hydromorphone SC on separate occasions with a 3-month washout period. Blood was collected at baseline and at serial time points up to 1032 hours (43 days) after injection for determination of serum opioid concentrations. Serum opioid concentrations were measured with HPLC-MS and pharmacokinetic parameters were calculated using commercial software and non-compartmental methods. Results Serum concentrations of oxymorphone remained above the limit of quantification for 21 days, while those for hydromorphone remained above the limit of quantification for 29 days. Cmax for ASG-oxymorphone was 7.5 ng mL−1; Cmax for ASG-hydromorphone was 5.7 ng mL−1. Conclusions and clinical relevance Oxymorphone and hydromorphone, when encapsulated into liposomes using the ammonium sulfate gradient loading technique, result in measureable serum concentrations for between 3 to 4 weeks. This formulation may have promise in the convenient use of opioids for clinical treatment of chronically painful conditions in dogs. PMID:23601353

  7. Determination of RS,E/Z-tocotrienols by HPLC.

    PubMed

    Drotleff, A M; Ternes, W

    2001-02-16

    Synthetic alpha-tocotrienol was separated into four geometrical E/Z side chain isomers by preparative HPLC (permethylated beta-cyclodextrin phase). The isolated isomers were resolved in ethylene glycol dimethyl ether, converted into the corresponding methyl ether using dimethyl sulfate, and the tocotrienol methyl ethers were extracted with n-hexane. A subsequent HPLC separation on a chiral phase (adsorbent cellulose derivated with 3,5-dimethyl phenyl carbamate) discriminates between the enantiomers of each E/Z side chain isomer, achieving the complete resolution of the eight occurring synthetic RS,E/Z-alpha-tocotrienols. The method can be shortened by omitting the preparative separation of the E/Z tocotrienol isomers prior to the chromatography on the chiral dimethyl phenyl carbamate phase. The simplified method achieved the following separation: RS,E/Z-alpha-tocotrienol separated into five peaks, RS,E/Z-beta-tocotrienol into eight, RS,E/Z-gamma-tocotrienol into six and RS,E/Z-delta-tocotrienol into eight peaks. The naturally occurring R,E-E-tocotrienol isomer could be identified within the synthetic RS,E/Z-isomers by co-chromatography with tocotrienol methyl ethers derived from natural sources, respectively.

  8. MultiSimplex and experimental design as chemometric tools to optimize a SPE-HPLC-UV method for the determination of eprosartan in human plasma samples.

    PubMed

    Ferreirós, N; Iriarte, G; Alonso, R M; Jiménez, R M

    2006-05-15

    A chemometric approach was applied for the optimization of the extraction and separation of the antihypertensive drug eprosartan from human plasma samples. MultiSimplex program was used to optimize the HPLC-UV method due to the number of experimental and response variables to be studied. The measured responses were the corrected area, the separation of eprosartan chromatographic peak from plasma interferences peaks and the retention time of the analyte. The use of an Atlantis dC18, 100mmx3.9mm i.d. chromatographic column with a 0.026% trifluoroacetic acid (TFA) in the organic phase and 0.031% TFA in the aqueous phase, an initial composition of 80% aqueous phase in the mobile phase, a stepness of acetonitrile of 3% during the gradient elution mode with a flow rate of 1.25mL/min and a column temperature of 35+/-0.2 degrees C allowed the separation of eprosartan and irbesartan used as internal standard from plasma endogenous compounds. In the solid phase extraction procedure, experimental design was used in order to achieve a maximum recovery percentage. Firstly, the significant variables were chosen by way of fractional factorial design; then, a central composite design was run to obtain the more adequate values of the significant variables. Thus, the extraction procedure for spiked human plasma samples was carried out using C8 cartridges, phosphate buffer pH 2 as conditioning agent, a drying step of 10min, a washing step with methanol-phosphate buffer (20:80, v/v) and methanol as eluent liquid. The SPE-HPLC-UV developed method allowed the separation and quantitation of eprosartan from human plasma samples with an adequate resolution and a total analysis time of 1h.

  9. Resonance Rayleigh scattering for detection of proteins in HPLC.

    PubMed

    Lu, Xin; Luo, Zhihui; Liu, Chengwei; Zhao, Shulin

    2008-09-01

    An HPLC-resonance Rayleigh scattering (RRS) (HPLC-RRS) detection system is described for separation and detection of proteins. This system is based on the modification of a commercial HPLC instrument involving the addition of a pump and a T-shaped interface, and a common fluorescence detector was used for detection. The detection principle is based on the change of RRS intensity of the ion-association complex formed from biebrich scarlet (BS) and protein. The RRS signal was detected at lambdaex=lambdaem=376 nm. The utility of the presented method was demonstrated by the separation and determination of four proteins involving cytochrome (Cyt-c), lysozyme (Lys), HSA, and gamma-globulin (gamma-Glo). An LOD of 0.2-1.0 microg/mL was reached and a linear range was found between peak area and concentration in the range of 0.20-3.0 microg/mL for Cyt-c, 0.25-2.5 microg/mL for Lys, 1.5-10 microg/mL for HSA, and 2.0-15 microg/mL for gamma-Glo, with linear regression coefficients all above 0.99. The method presented has been applied to determine HSA and gamma-Glo in human serum samples synchronously.

  10. Rapid separation and quantitation of curcuminoids combining pseudo two-dimensional liquid flash chromatography and NMR spectroscopy.

    PubMed

    Jayaprakasha, G K; Nagana Gowda, G A; Marquez, Sixto; Patil, Bhimanagouda S

    2013-10-15

    Rapid separation, characterization and quantitation of curcuminoids are important owing to their numerous pharmacological properties including antimicrobial, antiviral, antifungal, anticancer, and anti-inflammatory activities. In the present study, pseudo two-dimensional liquid flash chromatography was used for the separation of four curcuminoids (curcumin, demethoxy curcumin, bisdemethoxy curcumin and dihydro bisdemethoxy curcumin) for the first time. Silica and diol columns were used for separation of curcuminoids using gradient mobile phase. The separated peaks were monitored at 244, 360nm to obtain four compounds. The purity of compounds were determined by rapid quantitative (1)H NMR (qNMR) using 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt (TSP-d4) (0.012%) in D2O. These results were compared with those obtained by HPLC method. The purity of isolated curcuminoids using pseudo 2D chromatography was found to be in the range of 92.4-95.45%. The structures of these compounds were characterized unambiguously using (13)C (APT) NMR spectra. The developed pseudo 2D separation technique has the advantage of simplified automation with shorter run time compared to conventional separation techniques. The method that combines rapid pseudo 2D separation and simple quantitation using qNMR reported herein can be of wide utility for routine analysis of curcuminoids in complex mixtures.

  11. Divergent-flow isoelectric focusing for separation and preparative analysis of peptides.

    PubMed

    Duša, Filip; Křenková, Jana; Moravcová, Dana; Kahle, Vladislav; Slais, Karel

    2012-07-01

    A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.

  12. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  13. Rapid and sensitive step gradient assays of glutamate, glycine, taurine and gamma-aminobutyric acid by high-performance liquid chromatography-fluorescence detection with o-phthalaldehyde-mercaptoethanol derivatization with an emphasis on microdialysis samples.

    PubMed

    Piepponen, T P; Skujins, A

    2001-06-15

    We developed a rapid step-gradient HPLC method for determination of glutamate, glycine and taurine, and a separate method for determination of gamma-aminobutyric acid (GABA) in striatal microdialysates. The amino acids were pre-column derivatized with o-phthalaldehyde-2-mercaptoethanol by using an automated refrigerated autoinjector. Separation of the amino acids was established with a non-porous ODS-II HPLC column, late-eluting substances were washed out with a one-step low-pressure gradient. Concentrations of the amino acids were determined with a fixed-wavelength fluorescence detector. The detection limit for GABA was 80 fmol in a 15 microl sample, detection limits for glutamate, glycine and taurine were not determined because their concentrations in striatal perfusates were far above their detection limits. Total analysis time was less than 12 min, including the wash-out step. The methods described are relatively simple, sensitive, inexpensive, and fast enough to keep up with the microdialysis sampling.

  14. Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David

    2005-01-01

    We have worked with our collaborators at the University of Milan (Professor Marzio Giglio and his group-supported by ASI) to define the science required to measure gradient driven fluctuations in the microgravity environment. Such a study would provide an accurate test of the extent to which the theory of fluctuating hydrodynamics can be used to predict the properties of fluids maintained in a stressed, non-equilibrium state. As mentioned above, the results should also provide direct visual insight into the behavior of a variety of fluid systems containing gradients or interfaces, when placed in the microgravity environment. With support from the current grant, we have identified three key systems for detailed investigation. These three systems are: 1) A single-component fluid to be studied in the presence of a temperature gradient; 2) A mixture of two organic liquids to be studied both in the presence of a temperature gradient, which induces a steady-state concentration gradient, and with the temperature gradient removed, but while the concentration gradient is dying by means of diffusion; 3) Various pairs of liquids undergoing free diffusion, including a proteidbuffer solution and pairs of mixtures having different concentrations, to allow us to vary the differences in fluid properties in a controlled manner.

  15. Chemotactic separation of enzymes.

    PubMed

    Dey, Krishna Kanti; Das, Sambeeta; Poyton, Matthew F; Sengupta, Samudra; Butler, Peter J; Cremer, Paul S; Sen, Ayusman

    2014-12-23

    We demonstrate a procedure for the separation of enzymes based on their chemotactic response toward an imposed substrate concentration gradient. The separation is observed within a two-inlet, five-outlet microfluidic network, designed to allow mixtures of active (ones that catalyze substrate turnover) and inactive (ones that do not catalyze substrate turnover) enzymes, labeled with different fluorophores, to flow through one of the inlets. Substrate solution prepared in phosphate buffer was introduced through the other inlet of the device at the same flow rate. The steady-state concentration profiles of the enzymes were obtained at specific positions within the outlets of the microchannel using fluorescence microscopy. In the presence of a substrate concentration gradient, active enzyme molecules migrated preferentially toward the substrate channel. The excess migration of the active enzyme molecules was quantified in terms of an enrichment coefficient. Experiments were carried out with different pairs of enzymes. Coupling the physics of laminar flow of liquid and molecular diffusion, multiphysics simulations were carried out to estimate the extent of the chemotactic separation. Our results show that, with appropriate microfluidic arrangement, molecular chemotaxis leads to spontaneous separation of active enzyme molecules from their inactive counterparts of similar charge and size.

  16. Determination of terpene trilactones in Ginkgo biloba solid oral dosage forms using HPLC with evaporative light scattering detection.

    PubMed

    Dubber, M-J; Kanfer, I

    2006-04-11

    A reversed phase high performance liquid chromatographic method with evaporative light scattering detection (RP-HPLC-ELSD) was developed for the quantitative determination of the terpene trilactones, ginkgolide A, B, C and J and the sesquiterpene, bilobalide in Ginkgo biloba solid oral dosage forms. Separation was achieved using a minibore Phenomenex Luna (5 microm) C18 column with dimensions 250 mm x 2.00 mm maintained at a temperature of 45 degrees C. A simple gradient method using a mobile phase of methanol:water and a flow rate of 350 microl/min facilitated baseline separation of the selected marker compounds within 14 min. The ELSD parameters affecting the detector response were optimized prior to the validation. The limits of detection and quantification were 31.25 and 62.50 ng, respectively. The percentage relative errors of the recovery ranged between -3.16 and +1.88 and both intra-day and inter-day percentage standard deviations were all better than 6%. This method was used to assay commercially available Ginkgo biloba products and proved to be suitable for the routine analysis of such products for quality control purposes.

  17. A reversed-phase HPLC-UV method developed and validated for simultaneous quantification of six alkaloids from Nicotiana spp.

    PubMed

    Moghbel, Nahid; Ryu, BoMi; Steadman, Kathryn J

    2015-08-01

    A reversed-phase HPLC-UV method was developed, optimized, and validated for the separation and quantitation of six target alkaloids from leaves of Nicotiana species (nicotine, nornicotine, anatabine, anabasine, myosmine, and cotinine). A bidentate reversed-phase C18 column was used as stationary phase and an alkaline ammonium formate buffer and acetonitrile as mobile phase. The alkaloids were well separated in a short run time of 13min with mobile phase pH 10.5 and a small gradient of 9-13% acetonitrile, and detected using UV at 260nm. Peak parameters were acceptable for all six closely related alkaloids. The proposed method has enough linearity with correlation coefficient >0.999 within the investigated range for all tested alkaloids. Satisfactory precision was achieved for both intra- and inter-day assay, with RSD less than 2% for all alkaloid standards. Reproducibility was also within the acceptable range of RSD <2%. Limit of detection was 1.6μg/mL for nicotine and below 1μg/mL for all other alkaloids. The limit of quantification was 2.8 and 4.8μg/mL for nornicotine and nicotine respectively, and below 2μg/mL for all other alkaloids. The method was successfully applied for simultaneous analysis of alkaloids in leaves of Nicotiana benthamiana.

  18. Analysis of gemcitabine liposome injection by HPLC with evaporative light scattering detection.

    PubMed

    Zhou, Qinmei; Liu, Liucheng; Zhang, Dengshan; Fan, XingFeng

    2012-12-01

    Gemcitabine liposome injection (i.e., stealth liposomes) has facilitated the targeting of gemcitabine for cancer treatment. We systemically reviewed liposome-based drug-delivery systems, which can improve pharmacokinetics, reduce side effects, and potentially increase tumor uptake, for pancreatic cancer therapy. A novel liposomal formulation, which allows for higher tumor-targeting efficiencies and can be used in current clinical trials to treat this challenging disease, has gained great popularity and attention. In this work, a simple, rapid high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of N-(carbonyl-methoxypolyethylene glycol 2000)-1, 2-distearoyl-sn-glycero-3-phosphoethanolamine sodium salt and neutral colipids cholesterol and hydrogenated soy phosphatidylcholine or distearoyl phosphatidylcholine. Because of the poor ultraviolet absorbance of the lipids, evaporative light-scattering detection (ELSD) was used to monitor the separation. The separation was carried out on a YMC-Pack column (YMC Co., Ltd., Kyoto, Japan). Lipids were eluted using binary linear gradients starting from a mixture of 80% A and 20% B to 100% B in 10 minutes, followed by a 6-minute plateau at 100% B, where A is chloroform/isopropyl alcohol/diethylamine/trifluoroacetic acid (TFA) (50:50:0.01:0.0025) and B is chloroform/isopropyl alcohol/H₂O/diethylamine/TFA (41:50:9:0.01:0.0025). The mobile phase composition was then changed back to initial solvent mixture in 1 minute, and the column was equilibrated for 13 minutes before every subsequent run. Then, 0.025% (v/v) TFA was added into the mobile phase to enhance the retaining of the stealth lipids. This newly developed method enabled direct analysis of liposomes without solvent lipid extraction and was validated to be linear, precise, accurate, specific, and sensitive. The method has been successfully employed in a wide range of lipid-based formulation screening, process development, and

  19. [Separation and identification of oligosaccharides labeled with 3-amino-9-ethylcarbazole using high performance liquid chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry].

    PubMed

    Mou, Qing; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2009-01-01

    A pre-column derivatization method for the determination of oligosaccharides based ion a labeling reagent 3-amino-9-ethylcarbazole (AEC) was proposed. The enamines were generated by the reaction of the reducing ends of oligosaccharides and the primary amines of AEC, and then reduced to secondary amines by NaBH3CN, making oligosaccharides labeled by AEC. The derivatives were separated by reversed-phase high performance liquid chromatography (RP-HPLC), and then directly analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The HPLC separation was carried out on a Waters Symmetry C18 column (3.9 mm x 150 mm, 5 microm) with a gradient elution (acetonitrile and ammonium acetate as mobile phases at a flow rate of 1 mL/min) and ultraviolet detection at 254 nm. Under the optimized derivatization and HPLC conditions, the derivatized oligosaccharides were separated, and the derivatization with AEC increased the sensitivity of MS detection. The developed method for the analysis of oligosaccharides is satisfactory.

  20. A thin film degradation study of a fluorinated polyether liquid lubricant using an HPLC method

    NASA Technical Reports Server (NTRS)

    Morales, W.

    1986-01-01

    A High Pressure Liquid Chromatography (HPLC) separation method was developed to study and analyze a fluorinated polyether fluid which is promising liquid lubricant for future applications. This HPLC separation method was used in a preliminary study investigating the catalytic effect of various metal, metal alloy, and ceramic engineering materials on the degradation of this fluid in a dry air atmosphere at 345 C. Using a 440 C stainless steel as a reference catalytic material it was found that a titanium alloy and a chromium plated material degraded the fluorinated polyether fluid substantially more than the reference material.

  1. Development and validation of an HPLC method for quantitation of BA-TPQ, a novel iminoquinone anticancer agent, and an initial pharmacokinetic study in mice.

    PubMed

    Li, Haibo; Ezell, Scharri J; Zhang, Xiangrong; Wang, Wei; Xu, Hongxia; Rayburn, Elizabeth R; Zhang, Xu; Gurpinar, Evrim; Yang, Xinyi; Sommers, Charnell I; Velu, Sadanandan E; Zhang, Ruiwen

    2011-05-01

    We herein describe the development and validation of an HPLC method for the quantitation of 7-(benzylamino)-1,3,4,8-tetrahydropyrrolo [4,3,2-de]quinolin-8(1H)-one (BA-TPQ), a newly synthesized iminoquinone anticancer agent. BA-TPQ was extracted from plasma and tissue samples by first precipitating proteins with acetonitrile followed by a liquid-liquid extraction with ethyl acetate. Chromatographic separation was carried out using a gradient flow rate on a Zorbax SB C(18) column, and the effluent was monitored by UV detection at 346 nm. The method was found to be precise, accurate, and specific, with a linear range of 3.91-1955.0  ng/mL in plasma, 19.55-1955.0  ng/mL in spleen, brain, and liver homogenates and 19.55-3910.0  ng/mL in heart, lung and kidney homogenates. The method was stable under all relevant conditions. Using this method, we also carried out an initial study determining plasma pharmacokinetics and tissue distribution of BA-TPQ in mice following intravenous administration. In summary, this simple and sensitive HPLC method can be used in future preclinical and clinical studies of BA-TPQ.

  2. Sensitive determination of taurine, γ-aminobutyric acid and ornithine in wolfberry fruit and cortex lycii by HPLC with fluorescence detection and online mass spectrometry identification.

    PubMed

    Chen, Xiangming; You, Jinmao; Suo, Yourui; Fan, Baolei

    2015-04-01

    A new, simple and highly sensitive method for the determination of taurine, γ-aminobutyric acid and ornithine using high-performance liquid chromatography (HPLC) with fluorescence detection is described. Three non-protein amino acids were derivatized by a novel precolumn derivatization reagent 2-[2-(dibenzocarbazol)-ethoxy]ethyl chloroformate before injected. Optimum derivatization was obtained at 40°C for 5 min in the presence of sodium borate buffer (pH 9.0). Derivatives were sufficiently stable to be efficiently analyzed by HPLC without pretreatment. On a reversed-phase Hypersil BDS C8 column, the amino acids were separated in conjunction with a gradient elution with a good baseline resolution. The identification of derivatives was carried out by online postcolumn mass spectrometry with an electrospray ionization source in positive ion mode. Excellent linear responses were observed with the correlation coefficients of >0.9996, and instrument detection limits (at a signal to noise of 3 : 1) were in the range of 0.30-0.33 nmol/L. The proposed method is sensitive and reproducible for the precise determination of the amino acids from wolfberry fruit and cortex lycii samples.

  3. Development of a simple and stability-indicating RP-HPLC method for determining olanzapine and related impurities generated in the preparative process.

    PubMed

    Cui, Daoping; Li, Yueqing; Lian, Mingming; Yang, Feng; Meng, Qingwei

    2011-08-07

    A simple and stability-indicating reverse phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for the determination of olanzapine (OLN) and related impurities in bulk drugs. Eight impurities were characterized respectively, and particularly a new process impurity from OLN synthesis was structurally confirmed as 1-(5-methylthionphen-2-yl)-1H-benzimidazol-2(3H)-one (Imp-7) by X-ray single crystal diffraction, MS, (1)H NMR, (13)C NMR and HSQC. A mechanism of formation pathway for Imp-7 was proposed. Optimum separation for OLN and eight related impurities was carried out on an Agilent Octyldecyl silica column (TC-C(18), 4.6 mm × 250 mm, 5 μm) using a gradient HPLC method. The method was validated with respect to specificity, linearity, accuracy, precision, LOD and LOQ. Regression analysis showed good correlation (r(2) > 0.9985) between the investigated component concentrations and their peak areas within the test ranges for OLN and eight impurities. The repeatability and intermediate precision, expressed as RSD, were less than 1.74%. The proposed stability-indicating method was suitable for routine quality control and drug analysis of OLN in bulk drugs.

  4. Isolation, Chemical Fingerprinting and Simultaneous Quantification of Four Compounds from Tanacetum gracile Using a Validated HPLC-ESI-QTOF-Mass Spectrometry Method.

    PubMed

    Sharma, Neha; Kumar, Chetan; Dutt, Prabhu; Gupta, Suphla; Satti, Naresh K; Chandra, Suresh; Kitchlu, Surinder; Paul, Satya; Vishwakarma, Ram A; Verma, Mahendra K

    2016-01-01

    The present study was conducted to carry out the phytochemical investigation of Tanacetum gracile Hook. f. & Thomson and to develop a method for the simultaneous quantification of the isolated compounds in the extracts ofT. gracile growing in different locations. Cluster analysis rectangular similarity matrix was performed to understand the chemical fingerprinting variations in the extracts. High-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight-mass spectrometry (HPLC-ESI-QTOF-MS) was used to quantify four bioactive compounds, and separation of the compounds was achieved on a reverse-phase C8 column using a mobile phase of acetonitrile: 0.1% formic acid in water with a gradient elution by maintaining the flow rate of 300 μL/min. The QTOF-MS was operated using the electro-spray ionization technique with the positive ion polarity mode. The calibration curves of four marker compounds were linear over the concentration range of 3.12-100 ng/µL (R(2)> 0.996). A specific, accurate and precise HPLC-ESI-QTOF-MS method was optimized for the determination of kaempferol, ketoplenolide, tetramethoxyflavone and artemetin both individually and simultaneously. Quantification of these chemical markers in different extracts was carried out using this validated method. Kaempferol was isolated for the first time from T. gracile.

  5. A validated HPLC-PDA method for identification and quantification of two bioactive alkaloids, ephedrine and cryptolepine, in different Sida species.

    PubMed

    Chatterjee, Arnab; Kumar, Satyanshu; Chattopadhyay, Sunil K

    2013-12-01

    A simple, rapid, accurate and reproducible reverse-phase HPLC method has been developed for the identification and quantification of two alkaloids ephedrine and cryptolepine in different extracts of Sida species using photodiode array detection. Baseline separation of the two alkaloids was achieved on a Waters RP-18 X-terra column (250 × 4.6 mm, 5 µm) using a solvent system consisting of a mixture of water containing 0.1% Trifluoroacetic acid (TFA) and acetonitrile in a gradient elution mode with detection at 210 and 280 nm for ephedrine and cryptolepine, respectively. The calibration curves were linear in a concentration range of 10-250 µg/mL for both the alkaloids with correlation coefficient values >0.99. The limits of detection and quantification for ephedrine and cryptolepine were 5 and 10 µg/mL and 2.5 and 5 µg/mL, respectively. Relative standard deviation values for intra-day and inter-day precision were 1.22 and 1.04% for ephedrine and 1.71 and 2.06% for cryptolepine, respectively. Analytical recovery ranged from 92.46 to 103.95%. The developed HPLC method was applied to identify and quantify ephedrine and cryptolepine in different extracts of Sida species.

  6. Development and Validation of a Precise, Single HPLC Method for the Determination of Tolperisone Impurities in API and Pharmaceutical Dosage Forms

    PubMed Central

    Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao

    2013-01-01

    A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged. PMID:23641333

  7. Development and Validation of a Precise, Single HPLC Method for the Determination of Tolperisone Impurities in API and Pharmaceutical Dosage Forms.

    PubMed

    Raju, Thummala Veera Raghava; Seshadri, Raja Kumar; Arutla, Srinivas; Mohan, Tharlapu Satya Sankarsana Jagan; Rao, Ivaturi Mrutyunjaya; Nittala, Someswara Rao

    2013-01-01

    A novel, sensitive, stability-indicating HPLC method has been developed for the quantitative estimation of Tolperisone-related impurities in both bulk drugs and pharmaceutical dosage forms. Effective chromatographic separation was achieved on a C18 stationary phase with a simple mobile phase combination delivered in a simple gradient programme, and quantitation was by ultraviolet detection at 254 nm. The mobile phase consisted of a buffer and acetonitrile delivered at a flow rate 1.0 ml/min. The buffer consisted of 0.01 M potassium dihydrogen phosphate with the pH adjusted to 8.0 by using diethylamine. In the developed HPLC method, the resolution between Tolperisone and its four potential impurities was found to be greater than 2.0. Regression analysis showed an R value (correlation coefficient) of greater than 0.999 for the Tolperisone impurities. This method was capable of detecting all four impurities of Tolperisone at a level of 0.19 μg/mL with respect to the test concentration of 1000 μg/mL for a 10 µl injection volume. The tablets were subjected to the stress conditions of hydrolysis, oxidation, photolysis, and thermal degradation. Considerable degradation was found to occur in base hydrolysis, water hydrolysis, and oxidation. The stress samples were assayed against a qualified reference standard and the mass balance was found to be close to 100%. The established method was validated and found to be linear, accurate, precise, specific, robust, and rugged.

  8. An Experimental Design Approach for Impurity Profiling of Valacyclovir-Related Products by RP-HPLC

    PubMed Central

    Katakam, Prakash; Dey, Baishakhi; Hwisa, Nagiat T; Assaleh, Fathi H; Chandu, Babu R; Singla, Rajeev K; Mitra, Analava

    2014-01-01

    Abstract Impurity profiling has become an important phase of pharmaceutical research where both spectroscopic and chromatographic methods find applications. The analytical methodology needs to be very sensitive, specific, and precise which will separate and determine the impurity of interest at the 0.1% level. Current research reports a validated RP-HPLC method to detect and separate valacyclovir-related impurities (Imp-E and Imp-G) using the Box-Behnken design approach of response surface methodology. A gradient mobile phase (buffer: acetonitrile as mobile phase A and acetonitrile: methanol as mobile phase B) was used. Linearity was found in the concentration range of 50–150 μg/mL. The mean recovery of impurities was 99.9% and 103.2%, respectively. The %RSD for the peak areas of Imp-E and Imp-G were 0.9 and 0.1, respectively. No blank interferences at the retention times of the impurities suggest the specificity of the method. The LOD values were 0.0024 μg/mL for Imp-E and 0.04 μg/mL for Imp-G and the LOQ values were obtained as 0.0082 μg/mL and 0.136 μg/mL, respectively, for the impurities. The S/N ratios in both cases were within the specification limits. Proper peak shapes and satisfactory resolution with good retention times suggested the suitability of the method for impurity profiling of valacyclovir-related drug substances. PMID:25853072

  9. High Gradient Induction Cell

    SciTech Connect

    Caporaso, G J

    2004-11-29

    A concept being developed for high current electron beams may have application to HEDP and is described here. It involves the use of planar Blumlein stacks placed inside an induction cell. The output end of the Blumlein stack is applied across a high gradient insulator (HGI). These insulators have been used successfully in the presence of kilo Ampere-level electron beam currents for tens of nanoseconds at gradients of 20 MV/meter.

  10. New approaches with two cyano columns to the separation of acetaminophen, phenylephrine, chlorpheniramine and related compounds.

    PubMed

    Olmo, B; García, A; Marín, A; Barbas, C

    2005-03-25

    The development of new pharmaceutical forms with classical active compounds generates new analytical problems. That is the case of sugar-free sachets of cough-cold products containing acetaminophen, phenylephrine hydrochloride and chlorpheniramine maleate. Two cyanopropyl stationary phases have been employed to tackle the problem. The Discovery cyanopropyl (SUPELCO) column permitted the separation of the three actives, maleate and excipients (mainly saccharine and orange flavour) with a constant proportion of aqueous/ organic solvent (95:5, v/v) and a pH gradient from 7.5 to 2. The run lasted 14 min. This technique avoids many problems related to baseline shifts with classical organic solvent gradients and opens great possibilities to modify selectivity not generally used in reversed phase HPLC. On the other hand, the Agilent Zorbax SB-CN column with a different retention profile permitted us to separate not only the three actives and the excipients but also the three known related compounds: 4-aminophenol, 4-chloracetanilide and 4-nitrophenol in an isocratic method with a run time under 30 min. This method was validated following ICH guidelines and validation parameters showed that it could be employed as stability-indicating method for this pharmaceutical form.

  11. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  12. Water separator

    NASA Technical Reports Server (NTRS)

    Dunn, W. F.; Austin, I. G. (Inventor)

    1964-01-01

    An apparatus for separating liquids from gases or gaseous fluids is described. Features of the apparatus include: (1) the collection and removal of the moisture in the fluid is not dependent upon, or affected by gravity; (2) all the collected water is cyclically drained from the apparatus irrespective of the attitude of the separator; and (3) a fluid actuator is utilized to remove the collected water from the separator.

  13. Battery separators.

    PubMed

    Arora, Pankaj; Zhang, Zhengming John

    2004-10-01

    The ideal battery separator would be infinitesimally thin, offer no resistance to ionic transport in electrolytes, provide infinite resistance to electronic conductivity for isolation of electrodes, be highly tortuous to prevent dendritic growths, and be inert to chemical reactions. Unfortunately, in the real world the ideal case does not exist. Real world separators are electronically insulating membranes whose ionic resistivity is brought to the desired range by manipulating the membranes thickness and porosity. It is clear that no single separator satisfies all the needs of battery designers, and compromises have to be made. It is ultimately the application that decides which separator is most suitable. We hope that this paper will be a useful tool and will help the battery manufacturers in selecting the most appropriate separators for their batteries and respective applications. The information provided is purely technical and does not include other very important parameters, such as cost of production, availability, and long-term stability. There has been a continued demand for thinner battery separators to increase battery power and capacity. This has been especially true for lithiumion batteries used in portable electronics. However, it is very important to ensure the continued safety of batteries, and this is where the role of the separator is greatest. Thus, it is essential to optimize all the components of battery to improve the performance while maintaining the safety of these cells. Separator manufacturers should work along with the battery manufacturers to create the next generation of batteries with increased reliability and performance, but always keeping safety in mind. This paper has attempted to present a comprehensive review of literature on separators used in various batteries. It is evident that a wide variety of separators are available and that they are critical components in batteries. In many cases, the separator is one of the major factors

  14. Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS.

    PubMed

    Inbaraj, B Stephen; Lu, H; Kao, T H; Chen, B H

    2010-02-05

    A high-performance liquid chromatography-diode array detection-mass spectrometry method with electrospray ionization mode (HPLC-DAD-ESI-MS) was developed for simultaneous determination of phenolic acids and flavonoids in fruits of Lycium barbarum Linnaeus, a widely used traditional Chinese herb possessing vital biological activity. Both phenolic acids and flavonoids were extracted with 50% ethanol and purified using a polymeric solid phase extraction cartridge followed by HPLC-DAD-ESI-MS analysis. By employing a Vydac C18 column, a total of 52 phenolic acids and flavonoids were separated within 70min using a gradient mobile phase of 0.5% (v/v) formic acid in water and acetonitrile-water (94:6, v/v) with flow rate at 1mL/min, column temperature at 30 degrees C and detection wavelength at 280nm. Of 52 compounds, 15 phenolic acids and flavonoids were positively identified based on both absorption and mass spectra, with the remaining 37 tentatively identified by comparison of absorption spectra with reported values in the literature. Internal standards 3-hydroxybenzoic acid and hesperidin were used for quantitation of phenolic acids and flavonoids, respectively. Among the 15 positively identified compounds, quercetin-rhamno-di-hexoside was present in largest mass fraction (438.6microg/g), followed by quercetin-3-O-rutinoside (281.3microg/g), dicaffeoylquinic acid isomers (250.1microg/g), chlorogenic acid (237.0microg/g), quercetin-di-(rhamnohexoside) (117.5microg/g), quercetin-di-(rhamno)-hexoside (116.8mug/g), kaempferol-3-O-rutinoside (97.7microg/g), isorhamnetin-3-O-rutinoside (72.1microg/g), p-coumaric acid (64.0microg/g), caffeic acid (23.7microg/g) and vanillic acid (22.8microg/g).

  15. High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  16. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  17. Short communication: separation and quantification of caseins and casein macropeptide using ion-exchange chromatography.

    PubMed

    Holland, B; Rahimi Yazdi, S; Ion Titapiccolo, G; Corredig, M

    2010-03-01

    The aim of this work was to improve an existing method to separate and quantify the 4 major caseins from milk samples (i.e., containing whey proteins) using ion-exchange chromatography. The separation process was carried out using a mini-preparative cation exchange column (1 or 5mL of column volume), using urea acetate as elution buffer at pH 3.5 with a NaCl gradient. All 4 major caseins were separated, and the purity of each peak was assessed using sodium dodecyl sulfate-PAGE. Purified casein fractions were also added to raw milk to confirm their elution volumes. The quantification was carried out using purified caseins in buffer as well as added directly to fresh skim milk. This method can also be employed to determine the decrease in kappa-casein and the release of the casein-macropeptide during enzymatic hydrolysis using rennet. In this case, the main advantage of using this method is the lack of organic solvents compared with the conventional method for separation of macropeptide (using reversed phase HPLC).

  18. Optimization and validation of a HPLC method for simultaneous determination of aflatoxin B1, B2, G1, G2, ochratoxin A and zearalenone using an experimental design.

    PubMed

    Rahmani, Anosheh; Selamat, Jinap; Soleimany, Farhang

    2011-01-01

    A reversed-phase HPLC optimization strategy is presented for investigating the separation and retention behavior of aflatoxin B1, B2, G1, G2, ochratoxin A and zearalenone, simultaneously. A fractional factorial design (FFD) was used to screen the significance effect of seven independent variables on chromatographic responses. The independent variables used were: (X1) column oven temperature (20-40°C), (X2) flow rate (0.8-1.2 ml/min), (X3) acid concentration in aqueous phase (0-2%), (X4) organic solvent percentage at the beginning (40-50%), and (X5) at the end (50-60%) of the gradient mobile phase, as well as (X6) ratio of methanol/acetonitrile at the beginning (1-4) and (X7) at the end (0-1) of gradient mobile phase. Responses of chromatographic analysis were resolution of mycotoxin peaks and HPLC run time. A central composite design (CCD) using response surface methodology (RSM) was then carried out for optimization of the most significant factors by multiple regression models for response variables. The proposed optimal method using 40°C oven temperature, 1 ml/min flow rate, 0.1% acetic acid concentration in aqueous phase, 41% organic phase (beginning), 60% organic phase (end), 1.92 ratio of methanol to acetonitrile (beginning) and 0.2 ratio (end) for X1-X7, respectively, showed good prediction ability between the experimental data and predictive values throughout the studied parameter space. Finally, the optimized method was validated by measuring the linearity, sensitivity, accuracy and precision parameters, and has been applied successfully to the analysis of spiked cereal samples.

  19. Improved Method for HPLC Analysis of Polyamines, Agmatine and Aromatic Monoamines in Plant Tissue

    PubMed Central

    Slocum, Robert D.; Flores, Hector E.; Galston, Arthur W.; Weinstein, Leonard H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucus carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues. Images Figure 4 Figure 5 PMID:11537449

  20. Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.

    1989-01-01

    The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.

  1. Enantioselective isolation of methyl jasmonate using permethyl-beta-cyclodextrin HPLC.

    PubMed

    Blanch, Gracia Patricia; Flores, Gema; Del Mar Caja, Maria; Ruiz Del Castillo, Maria Luisa

    2009-01-01

    A method based on the use of HPLC for the enantioselective resolution of the four stereoisomers of methyl jasmonate (MJ) with no need for the previous formation of the diastereoisomers is developed. To that end, a Nucleodex-beta-PM column as well as an optimization process considering different flow rates and mobile phase compositions were required. As a result, 0.8 mL/min and 55:45 methanol/water composition were the conditions selected to carry out the separation of the stereoisomers. Isolation of pure (-)- and (+)-MJ was accomplished by collecting the HPLC fractions corresponding to their elution time. SPE was subsequently used to concentrate and change the solvent of the HPLC fractions collected. Chiral GC and polarimetry were additionally employed to evaluate the purity and optical rotation, respectively, of the enantiomers separated. The results found in this study are particularly relevant considering that MJ stereoisomers are not commercially available.

  2. Surface confined ionic liquid as a stationary phase for HPLC

    SciTech Connect

    Wang, Qian; Baker, Gary A; Baker, Sheila N; Colon, Luis

    2006-01-01

    Trimethoxysilane ionosilane derivatives of room temperature ionic liquids based on alkylimidazolium bromides were synthesized for attachment to silica support material. The derivatives 1-methyl-3-(trimethoxysilylpropyl)imidazolium bromide and 1-butyl-3-(trimethoxysilylpropyl)imidazolium bromide were used to modify the surface of 3 {micro}m diameter silica particles to act as the stationary phase for HPLC. The modified particles were characterized by thermogravimetric analysis (TGA) and {sup 13}C and {sup 29}Si NMR spectroscopies. The surface modification procedure rendered particles with a surface coverage of 0.84 {micro}mol m{sup -2} for the alkylimidazolium bromide. The ionic liquid moiety was predominantly attached to the silica surface through two siloxane bonds of the ionosilane derivative (63%). Columns packed with the modified silica material were tested under HPLC conditions. Preliminary evaluation of the stationary phase for HPLC was performed using aromatic carboxylic acids as model compounds. The separation mechanism appears to involve multiple interactions including ion exchange, hydrophobic interaction, and other electrostatic interactions.

  3. [Simple analysis of maleic hydrazide in agricultural products by HPLC].

    PubMed

    Kobayashi, Maki; Nagayama, Toshihiro; Takano, Ichiro; Tamura, Yasuhiro; Tateishi, Yukinari; Tomizawa, Sanae; Kimura, Naoko; Kitayama, Kyoko; Saito, Kazuo

    2002-12-01

    A simplified HPLC determination method for maleic hydrazide in agricultural products was developed, and commercial agricultural crops were investigated. The homogenate of agricultural products was extracted with water. The crude extract was purified on an ACCUCAT Bond Elut extraction cartridge using water. Maleic hydrazide was analyzed by HPLC with UV detection (303 nm). The HPLC separation was performed on a ZORBAX SB-Aq column with acetonitrile-water-phosphoric acid(5:95:0.01) as the mobile phase. Recoveries of maleic hydrazide from 15 agricultural products fortified at 1.0 and 10 micrograms/g were in the ranges of 92.6-104.9% and 94.2-101.3%, respectively. The limit of detection was 0.5 microgram/g in samples. The proposed method was applied to the determination of 242 commercial vegetables and fruits. Maleic hydrazide was detected in 2 samples of imported onion at the levels of 4.9 and 7.2 micrograms/g.

  4. Determination of Sinomenine in Cubosome Nanoparticles by HPLC Technique

    PubMed Central

    Zhou, Yanfang; Guo, Chunlian; Chen, Hongying; Zhang, Yudai; Peng, Xinsheng; Zhu, Ping

    2015-01-01

    We applied HPLC technique to quantitatively analyze sinomenine in cubosome nanoparticles. The chromatographic method was performed by using an isocratic system. The mobile phase was composed of methanol-PBS(pH6.8)-triethylamine (50 : 50 : 0.1%) with a flow rate of 1 mL/min; the detection wavelength was at 265 nm. Sinomenine can be successfully separated with good linearity (the regression equation is A = 10835C + 1058; R2 = 1.0) and perfect recovery (102.2%). The chromatograph technique was proper for quality control of sinomenine in cubosome nanoparticles. PMID:25734024

  5. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  6. Combined HPLC-CUPRAC (cupric ion reducing antioxidant capacity) assay of parsley, celery leaves, and nettle.

    PubMed

    Yildiz, Leyla; Başkan, Kevser Sözgen; Tütem, Esma; Apak, Reşat

    2008-10-19

    This study aims to identify the essential antioxidant compounds present in parsley (Petroselinum sativum) and celery (Apium graveolens) leaves belonging to the Umbelliferae (Apiaceae) family, and in stinging nettle (Urtica dioica) belonging to Urticaceae family, to measure the total antioxidant capacity (TAC) of these compounds with CUPRAC (cupric ion reducing antioxidant capacity) and ABTS spectrophotometric methods, and to correlate the TAC with high performance liquid chromatography (HPLC) findings. The CUPRAC spectrophotometric method of TAC assay using copper(II)-neocuproine (2,9-dimethyl-1,10-phenanthroline) as the chromogenic oxidant was developed in our laboratories. The individual antioxidant constituents of plant extracts were identified and quantified by HPLC on a C18 column using a modified mobile phase of gradient elution comprised of MeOH-0.2% o-phosphoric acid and UV detection for polyphenols at 280 nm. The TAC values of HPLC-quantified antioxidant constituents were found, and compared for the first time with those found by CUPRAC. The TAC of HPLC-quantified compounds accounted for a relatively high percentage of the observed CUPRAC capacities of plant extracts, namely 81% of nettle, 60-77% of parsley (in different hydrolyzates of extract and solid sample), and 41-57% of celery leaves (in different hydrolyzates). The CUPRAC total capacities of the 70% MeOH extracts of studied plants (in the units of mmol trolox g(-1)plant) were in the order: celery leaves>nettle>parsley. The TAC calculated with the aid of HPLC-spectrophotometry did not compensate for 100% of the CUPRAC total capacities, because all flavonoid glycosides subjected to hydrolysis were either not detectable with HPLC, or not converted to the corresponding aglycons (i.e., easily detectable and quantifiable with HPLC) during the hydrolysis step.

  7. [Influences of ion-suppressors on retention behaviors of nine food additives in reversed-phase high performance liquid chromatographic separation].

    PubMed

    Zhao, Yonggang; Chen, Xiaohong; Li, Xiaoping; Yao, Shanshan; Jin, Micong

    2011-10-01

    The influences of ion-suppressors on retention behaviors of nine food additives, i.e., acesulfame, saccharin, caffeine, aspartame, benzoic acid, sorbic acid, stevioside, dehydroacetic acid and neotame in reversed-phase high performance liquid chromatographic (RP-HPLC) separation were investigated. The organic modification effects of acids, i. e. , trifluoroacetic acid (TFA) and buffer salts, i. e. , TFA-ammonium acetate (AmAc) were studied emphatically. The relationships between retention factors of solutes and volume percentages of ion-suppressors in the mobile phase systems of acetonitrile-TFA aqueous solution and acetonitrile-TFA-AmAc aqueous solution were quantitatively established, separately. The separation of nine food additives was completed by a gradient elution with acetonitrile-TFA (0.01%, v/v)-AmAc (2. 5 mmol/L) aqueous solution as the mobile phases. An RP-HPLC method was established for the simultaneous determination of nine food additives in red wine. In the range of 10. 0 - 100. 0 mg/L, nine food additives showed good linearity with the correlation coefficients ( r2 ) larger than 0. 999 1. The limits of detection (LODs) were in the range of 0. 33 - 2. 36 mg/L and the limits of quantification (LOQs) were in the range of 1. 11 - 7. 80 mg/L. The spiked recoveries were between 87. 61% and 108. 4% with the relative standard deviations (RSDs) of 2. 2% -9. 4%. These results are of referential significance for the rapid establishment and accu- rate optimization of RP-HPLC separation for the simultaneous determination of food additives in other foods.

  8. The Mysterious Death: An HPLC Lab Experiment. An Undergraduate Forensic Lab

    ERIC Educational Resources Information Center

    Beussman, Douglas J.

    2007-01-01

    A high-performance liquid chromatography (HPLC) laboratory experiment based on the separation of four prescription drugs (disopyramide, lidocaine, procainamide, and quinidine) is presented. The experiment is set within the forensic science context of the discovery of a patient's mysterious death where a drug overdose is suspected. Each lab group…

  9. Hyphenation of capillary HPLC to microcoil (1)H NMR spectroscopy for the determination of tocopherol homologues.

    PubMed

    Krucker, Manfred; Lienau, Annette; Putzbach, Karsten; Grynbaum, Marc David; Schuler, Paul; Albert, Klaus

    2004-05-01

    Highly selective reversed phases (C(30) phases) are self-packed in 250 microm inner diameter fused-silica capillaries and employed for capillary HPLC separation of shape-constrained natural compounds (tocopherol homologues, vitamin E). Miniaturized hyphenated systems such as capillary HPLC-ESI-MS (positive ionization mode) and, with special emphasis, continuous-flow capillary HPLC- NMR are used for structural determination of the separated compounds. Despite the small amount of sample available (1.33 microg of each tocopherol), the authors have been able to monitor the capillary HPLC separation under continuous-flow (1)H NMR conditions, thus allowing an immediate peak identification. Further structural assignment was carried out in the stopped-flow NMR mode as shown, for example, by a 2D (1)H,(1)H COSY NMR spectrum of alpha-tocopherol. We demonstrate in this paper the considerable potential of hyphenated capillary separations coupled to MS and NMR for the investigation of restricted amounts of sample.

  10. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D. ); Tolt, T.L. )

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  11. Magnetic separation for soil decontamination

    SciTech Connect

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-02-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology.

  12. Optimal antenna topologies for spatial gradient detection in differential GNSS

    NASA Astrophysics Data System (ADS)

    Jing, Jing; Khanafseh, Samer; Langel, Steven; Chan, Fang-Cheng; Pervan, Boris

    2015-07-01

    This paper describes new methods to determine optimal reference antenna topologies for detection of spatial gradients in differential Global Navigation Satellite Systems (GNSS). Such gradients can be caused by ionospheric fronts and orbit ephemeris faults, and if undetected, represent major threats to aircraft navigation integrity. Differential carrier phase measurements between ground antennas are highly sensitive to spatial gradients. Therefore, monitors using spatially separated ground antennas have recently attracted great interest. However, they cannot detect gradients of all sizes and directions due to the presence of integer ambiguities. These ambiguities cannot be resolved because the gradient magnitude is unknown a priori. Furthermore, the performance of such monitors is highly dependent on the spatial distribution of reference antennas. In this work, we introduce new methods to find optimized antenna topologies for spatial gradient detection.

  13. Manipulating the Gradient

    ERIC Educational Resources Information Center

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  14. Quality control of roots of Eleutherococcus senticosus by HPLC.

    PubMed

    Apers, Sandra; Naessens, Tania; Van Miert, Sabine; Pieters, Luc; Vlietinck, Arnold

    2005-01-01

    An HPLC method based on several known methods for the determination of eleutherosides B and E was developed, optimised and validated in terms of linearity, precision (repeatability and intermediate precision on different days and at different concentration levels) and accuracy (recovery). The extraction procedure, the extraction solvent and the extraction yield were evaluated and optimised. A reversed-phase RP-18 column gradient eluted with a two-phase system consisting of phosphoric acid:water (0.5:99.5) and acetonitrile was used to evaluate the samples; detection was at 220 nm. Although eleutherosides B and E are commercially available, they are very costly, and therefore ferulic acid was chosen as external standard. The correction factors for the response of ferulic acid against both eleutherosides were determined and validated. This method, accepted by the European Pharmacopoeia Commission, will be included in the monograph on Eleutherococcus senticosus roots to assay the content of eleutherosides B and E.

  15. [HPLC-MS identification of degradation products of levofloxacin].

    PubMed

    Wang, Wei-Jian; Li, Tao; Li, Jun; Liu, Qi; Xie, Yuan-Chao

    2012-04-01

    The study aims to identify the degradation products of levofloxacin by HPLC-MS. The degradation products of levofloxacin were chromatographed on Agilent Zorbax Extend-C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase was 0.1% ammonium acetate solution (using methanoic acid to adjust to pH 3.5)-acetonitrile at the flow rate of 0.5 mL x min(-1) (gradient elution), the column temperature was 40 degrees C. Descarboxyl levofloxacin, desmethyl levofloxacin and levofloxacin N-oxide were identified through comparing with the standard spectrum and the results of mass spectrometry, i.e. m/z 318.2 was descarboxyl levofloxacin, m/z 348.2 was desmethyl levofloxacin, m/z 378.1 was levofloxacin-N-oxide. This method is simple, fast, accurate and suitable for the identification of degradation products of levofloxacin.

  16. Stereoisomers Separation

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr

    The use of capillary electrophoresis for enantiomer separation and optical purity determination is presented. The contents start with basic information about the nature of stereoizomers and the mechanism of enantioseparation using capillary electrophoresis techniques. The molecules to be separated show identical chemical structure and electrochemical behavior. Therefore, the chiral recognition of enantiomers is possible only by bonding to chiral selector and the separation based on very small differences in complexation energies of diastereomer complexes formed. This method is useful for this purpose due to the fact that different compounds can be used as chiral selectors. The mostly used chiral selectors like cyclodextrins, crown ethers, chiral surfactants, macrocyclic antibiotics, transition metal complexes, natural, and synthetic polymers and their application for this purpose is also discussed. Finally, examples of practical applications of electromigration techniques for enantiomers separation and determination are presented.

  17. Development and validation of a rapid HPLC method for the quantification of GSE4 peptide in biodegradable PEI-PLGA nanoparticles.

    PubMed

    Egusquiaguirre, Susana P; Manguán-García, Cristina; Perona, Rosario; Pedraz, José Luís; Hernández, Rosa Maria; Igartua, Manuela

    2014-12-01

    In this work a high performance liquid chromatographic (HPLC) method has been developed and validated for the content determination of GSE4 peptide in PEI-PLGA nanoparticles. Chromatographic separation was performed on a C18 column, and a gradient elution with a mobile phase composed of methanol and 0.1% aqueous trifluoroacetic acid (TFA) solution, at a flow rate of 1ml/min, was used. GSE4 peptide identification was made by fluorescence detection at 290nm. The elution of methanol:TFA was initially maintained at (20:80, v/v) for one min and the gradient changed to (80:20, v/v) in 6min. This ratio was then followed by isocratic elution at (80:20, v/v) during another min and for further 3min it was linearly modified to (20:80, v/v). The developed method was validated according to the ICH guidelines, being specific, linear in the range 10-100μg/ml (R(2)=0.9996), precise, exhibiting good inter-day and intra-day precision reflected by the relative standard deviation values (less than 3.88%), accurate, with a recovery rate of 100.18±0.95%, and stable for 48h at 5°C or at RT when encapsulated in nanoparticles. The method was simple, fast, and successfully used to determine the peptide content in GSE4-loaded PEI-PLGA nanoparticles.

  18. Mist separator

    SciTech Connect

    Moran, T.M.

    1984-04-17

    An apparatus for the removal of particulates from a flowing gas stream and a process for its use are provided. A perforated screen separator formed as a plate having parallel rows of perforations formed by pushing alternating strips of the plate material forward and backward from the plane of the plate is used. The perforated screen separator may be used alone or with a fiber bed mist eliminator for increased particulate removal.

  19. Product separator

    DOEpatents

    Welsh, Robert A.; Deurbrouck, Albert W.

    1976-01-20

    A secondary light sensitive photoelectric product separator for use with a primary product separator that concentrates a material so that it is visually distinguishable from adjacent materials. The concentrate separation is accomplished first by feeding the material onto a vibratory inclined surface with a liquid flow, such as a wet concentrating table. Vibrations generally perpendicular to the stream direction of flow cause the concentrate to separate from its mixture according to its color. When the concentrate and its surrounding stream reach the recovery end of the table, a detecting device notes the line of color demarcation and triggers a signal if it differs from a normal condition. If no difference is noted nothing moves on the second separator. However, if a difference is detected in the constant monitoring of the color line's location, a product splitter and recovery unit normally positioned near the color line at the recovery end, moves to a new position. In this manner the selected separated concentrate is recovered at a maximum rate regardless of variations in the flow stream or other conditions present.

  20. Determination of PCQs by HPLC and its application to the analysis of Yusho patient blood and toxic rice oil and to the distribution of synthetic PCQs in mice

    SciTech Connect

    Mochiike, A.; Matsuo, T.; Kanamori, H.; Hoshita, N.; Sakamoto, I.

    1986-01-01

    An excellent separation of six PCQ skeletal isomers was achieved by HPLC. This method was applied to the analysis of Yusho patient blood, toxic rice oil causing Yusho and various tissues and feces of mice dosed with synthetic PCQs.

  1. HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.

    ERIC Educational Resources Information Center

    Silveira, Augustine, Jr.; And Others

    1984-01-01

    High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)

  2. The application of preparative batch HPLC, supercritical fluid chromatography, steady-state recycling, and simulated moving bed for the resolution of a racemic pharmaceutical intermediate.

    PubMed

    Yan, Tony Q; Orihuela, Carlos; Swanson, David

    2008-02-01

    This article discusses the chromatographic resolution of a racemic pharmaceutical intermediate. Preparative batch high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC), steady-state recycling (SSR), and simulated moving bed (SMB) were used to resolve a total of 12.2 kg of a racemic pharmaceutical intermediate. In this study, a first batch of 0.8 kg of racemate was separated on the preparative batch HPLC and SFC, and subsequently another 5.9 kg of racemate was separated on the SSR. Lastly, a third batch of 5.5 kg was separated on the SMB. The separation conditions and results of these techniques are discussed. The productivities and solvent costs of SFC versus HPLC are compared. The productivities and solvent costs of SMB, SSR, and HPLC are also compared. The analytical method development and process optimization of these processes are also discussed in this article.

  3. Adaptive microfluidic gradient generator for quantitative chemotaxis experiments

    NASA Astrophysics Data System (ADS)

    Anielski, Alexander; Pfannes, Eva K. B.; Beta, Carsten

    2017-03-01

    Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell.

  4. LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF TRANS-CHLORDANE, CIS-CHLORDANE, HEPTACHLOR, HEPTACHLOR EPOXIDE AND ALPHA-HEXACHLOROCYCLOHEXANE WITH APPLICATION TO SMALL-SCALE PREPARATIVE SEPARATION

    EPA Science Inventory

    Analytical high-performance liquid chromatographic separations of the individual enantiomers of five polychlorinated compounds were obtained on polysaccharide stereoselective HPLC columns. The enantiomers of the pesticides trans-chlordane, cis-chlordane and heptachlor were separa...

  5. A nitromethane-based HPLC system alternative to acetonitrile for carotenoid analysis of fruit and vegetables.

    PubMed

    Sandmann, Gerhard

    2010-01-01

    Acetonitrile-based HPLC systems are the most commonly used for carotenoid analysis from different plant tissues. Because of the acetonitrile shortage, an HPLC system for the separation of carotenoids on C(18) reversed-phase columns was developed in which an acetonitrile-alcohol-based mobile phase was replaced by nitromethane. This solvent comes closest to acetonitrile with respect to its elutrophic property. Our criterion was to obtain similar separation and retention times for a range of differently structured carotenoids. This was achieved by further increase in the lipophilicity with ethylacetate. For all the carotenoids which we tested, we found co-elution only of β-cryptoxanthin and lycopene. By addition of 1% of water, separation of this pair of carotenoids was also achieved. The final recommended mobile phase consisted of nitromethane : 2-propanol : ethyl acetate : water (79 : 10 : 10 : 1, by volume). On Nucleosil C(18) columns and related ones like Hypersil C(18), we obtained separation of carotenes, hydroxyl, epoxy and keto derivatives, which resembles the excellent separation properties of acetonitrile-based mobile phases on C(18) reversed phase columns. We successfully applied the newly developed HPLC system to the separation of carotenoids from different vegetables and fruit.

  6. Toxicological screening of human plasma by on-line SPE-HPLC-DAD: identification and quantification of acidic and neutral drugs.

    PubMed

    Mut, Ludmila; Grobosch, Thomas; Binscheck-Domaß, Torsten; Frenzel, Wolfgang

    2016-03-01

    A multi-analyte screening method for the quantification of 50 acidic/neutral drugs in human plasma based on on-line solid-phase extraction (SPE)-HPLC with photodiode array detection (DAD) was developed, validated and applied for clinical investigation. Acetone and methanol for protein precipitation, three different SPE materials (two electro-neutral, one strong anion-exchange, one weak cation-exchange) for on-line extraction, five HPLC-columns [one C18 (GeminiNX), two phenyl-hexyl (Gemini C6 -Phenyl, Kinetex Phenyl-Hexyl) and two pentafluorophenyl (LunaPFP(2), KinetexPFP)] for analytical separation were tested. For sample pre-treatment, acetone in the ratio 1:2 (plasma:acetone) showed a better baseline and fewer matrix peaks in the chromatogram than methanol. Only the strong anion-exchanger SPE cartridge (StrataX-A, pH 6) allowed the extraction of salicylic acid. Analytical separation was carried out on a Gemini C6 -Phenyl column (150 × 4.6 mm, 3 µm) using gradient elution with acetonitrile-water 90:10 (v/v) and phosphate buffer (pH 2.3). Linear calibration curves with correlation coefficients r ≥ 0.9950/0.9910 were obtained for 46/four analytes. Additionally, this method allows the quantification of 23 analytes for therapeutic drug monitoring. Limits of quantitation ranged from 0.1 (amobarbital) to 23 mg/L (salicylic acid). Inter-/intra-day precisions of quality control samples (low/high) were better than 13% and accuracy (bias) ranged from -14 to 10%. A computer-assisted database was created for automated detection of 223 analytes of toxicological interests. Four cases of multi-drug intoxications are presented.

  7. Measurement of caffeine and its three primary metabolites in human plasma by HPLC-ESI-MS/MS and clinical application.

    PubMed

    Chen, Feng; Hu, Zhe-Yi; Parker, Robert B; Laizure, S Casey

    2016-11-18

    Caffeine is a mild stimulant with significant potential for abuse, being consumed in larger doses with the widespread availability of energy drinks and by novel routes of administration such as inspired powder, oral sprays and electronic cigarettes. How these recent changes in caffeine consumption affecting caffeine disposition and abuse potential is of growing concern. In the study of caffeine disposition in humans, it is common to only measure the caffeine concentration; however, caffeine's three major metabolites (paraxanthine, theobromine and theophylline) retain central nervous system stimulant activity that may contribute to the overall pharmacological activity and toxicity. Therefore, it would be scientifically more rigorous to measure caffeine and its major metabolites in the evaluation of caffeine disposition in human subjects. Herein, we report a method for the simultaneous quantification of caffeine and its three major metabolites in human plasma by high-performance liquid chromatography coupled to electrospray tandem mass spectrometry (HPLC-ESI-MS/MS). Human plasma samples were treated by simple protein precipitation and the analytes were separated using a 6 min gradient program. Precision and accuracy were well within in the 15% acceptance range. The simple sample preparation, short runtime, sensitivity and the inclusion of caffeine's major metabolites make this assay methodology optimal for the study of caffeine's pharmacokinetics and pharmacodynamics in human subjects.

  8. Simultaneous determination of bioactive compounds in Piper nigrum L. and a species comparison study using HPLC-PDA.

    PubMed

    Rao, Vidadala Rama Subba; Raju, Sagi Satyanarayana; Sarma, Vanka Umamaheswara; Sabine, Fouriner; Babu, Kothapalli Hari; Babu, Katragadda Suresh; Rao, Janaswamy Madhusudana

    2011-08-01

    Piper nigrum L. is a traditional medicine widely used in India for illnesses such as constipation, diarrhoea, earache, gangrene, heart disease, hernia, hoarseness, indigestion, insect bites, insomnia, joint pain, liver problems, lung disease, oral abscesses, sunburn, tooth decay and toothaches. In this study, six bioactive compounds, namely piperine (1), pellitorine (2), guineensine (3), pipnoohine (4), trichostachine (5) and piperonal (6) were quantified in different extracts of P. nigrum L. and compared with those of P. longum L. and P. chaba Hunter. To evaluate the quality of P. nigrum, a simple, accurate and precise HPLC-PDA method was developed for the simultaneous determination of the above-mentioned six compounds. The separation was achieved by Phenomenex Luna RP C(18) column (150 × 4.6 mm, 5 µm, Phenomenex Inc, CA, USA) with a binary gradient solvent system of water-acetonitrile, at a flow rate of 1.0 mL min(-1) and detected at 210, 232, 262 and 343 nm. All six calibration curves showed good linearity (R (2) > 0.9966). The method was reproducible with intra- and inter-day variations of less than 2% and 5%, respectively. The results demonstrated that this method is simple, reliable and suitable for the quality control of these plants.

  9. A Validated RP HPLC-PAD Method for the Determination of Hederacoside C in Ivy-Thyme Cough Syrup

    PubMed Central

    Khdair, Ayman; Mohammad, Mohammad K.; Tawaha, Khaled; Al-Hamarsheh, Eman; AlKhatib, Hatim S.; Al-khalidi, Bashar; Bustanji, Yasser; Najjar, Samer; Hudaib, Mohammad

    2010-01-01

    A simple reversed phase high-performance liquid chromatographic (RP-HPLC) method coupled with a photodiode array detector (PAD) has been developed and validated for the analysis of hederacoside C, the marker of ivy plant, in Ivy-Thyme cough syrup. Separation of hederacoside C was achieved using a Phenomenex-Gemini C18 column isothermally at 40°C. A mobile phase system constituted of solvent A (water: acetonitrile: orthophosphoric acid (85%), 860 : 140 : 2 v/v) and solvent B (acetonitrile: orthophosphoric acid (85%), 998 : 2 v/v) was used, at gradient conditions, at a flow rate of 1.5 mL/min. Analysis was performed using UV-detection (205 nm). The method was linear over the range (0.03–0.15) mg/mL of hederacoside C (r = 0.9992). Repeatability and intermediate precision were acceptable (RSD <2%). Limits of detection (LOD) and quantitation (LOQ) were 0.011 and 0.032 mg/mL, respectively. Percentage recovery was found to lie between 99.69% and 100.90% (RSD <2%). The method was also proved to be specific (peak-purity coefficient = 0.996). PMID:20862201

  10. Quantification of active principles and pigments in leaf extracts of Isatis tinctoria by HPLC/UV/MS.

    PubMed

    Mohn, Tobias; Potterat, Olivier; Hamburger, Matthias

    2007-02-01

    An HPLC method has been developed and validated for the quantification of the pharmacologically active principles tryptanthrin (1), 1,3-dihydro-3-[(4-hydroxy-3,5-dimethoxyphenyl)methylene]-2 H-indol-2-one (indolinone) (3), indirubin (4), alpha-linolenic acid (2), and indigo (5), an isomer of indirubin, in extracts from the traditional anti-inflammatory plant Isatis tinctoria (woad). The chromatographic separation was performed on a C-18 column with a linear gradient of acetonitrile in water containing 0.1% formic acid. The method combines UV and electrospray MS detection in the positive ion mode for the detection of the alkaloids, with a switch to the negative mode for the analysis of alpha-linolenic acid. The method was applied to the analysis of woad extracts obtained by supercritical fluid (SFE) CO2 extraction, and by pressurized liquid extraction (PLE) with dichloromethane and methanol, respectively. While the highest concentration of alpha-linolenic acid was found in the SFE extract (7.43%), the concentrations of tryptanthrin , indolinone, indirubin and indigo were the highest in the dichloromethane extract (0.30, 0.035, 2.48 and 0.84%, respectively). Compound 3 was not detected in the methanolic extract and only traces of compounds 1, 4 and 5 and low amount of alpha-linolenic acid (0.39%) were present in this extract.

  11. Stability-Indicating RP-HPLC Method for Simultaneous Estimation of Enrofloxacin and Its Degradation Products in Tablet Dosage Forms

    PubMed Central

    Chakravarthy, V. Ashok; Sailaja, B. B. V.; Kumar, Avvaru Praveen

    2015-01-01

    The present work was the development of a simple, efficient, and reproducible stability-indicating reverse-phase high performance liquid chromatographic (RP-HPLC) method for simultaneous determination enrofloxacin (EFX) and its degradation products including ethylenediamine impurity, desfluoro impurity, ciprofloxacin impurity, chloro impurity, fluoroquinolonic acid impurity, and decarboxylated impurity in tablet dosage forms. The separation of EFX and its degradation products in tablets was carried out on Kromasil C-18 (250 × 4.6 mm, 5 μm) column using 0.1% (v/v) TEA in 10 mM KH2PO4 (pH 2.5) buffer and methanol by linear gradient program. Flow rate was 1.0 mL min−1 with a column temperature of 35°C and detection wavelength was carried out at 278 nm and 254 nm. The forced degradation studies were performed on EFX tablets under acidic, basic, oxidation, thermal, humidity, and photolytic conditions. The degraded products were well resolved from the main active drug and also from known impurities within 65 minutes. The method was validated in terms of specificity, linearity, LOD, LOQ, accuracy, precision, and robustness as per ICH guidelines. The results obtained from the validation experiments prove that the developed method is a stability-indicating method and suitable for routine analysis. PMID:25705547

  12. Map Separates

    USGS Publications Warehouse

    ,

    2001-01-01

    U.S. Geological Survey (USGS) topographic maps are printed using up to six colors (black, blue, green, red, brown, and purple). To prepare your own maps or artwork based on maps, you can order separate black-and-white film positives or negatives for any color printed on a USGS topographic map, or for one or more of the groups of related features printed in the same color on the map (such as drainage and drainage names from the blue plate.) In this document, examples are shown with appropriate ink color to illustrate the various separates. When purchased, separates are black-and-white film negatives or positives. After you receive a film separate or composite from the USGS, you can crop, enlarge or reduce, and edit to add or remove details to suit your special needs. For example, you can adapt the separates for making regional and local planning maps or for doing many kinds of studies or promotions by using the features you select and then printing them in colors of your choice.

  13. Gradient magnetometer system balloons

    NASA Astrophysics Data System (ADS)

    Korepanov, Valery; Tsvetkov, Yury

    2005-08-01

    Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.

  14. Stress-gradient plasticity

    PubMed Central

    Chakravarthy, Srinath S.; Curtin, W. A.

    2011-01-01

    A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403

  15. Gradient Index Lens Research.

    DTIC Science & Technology

    1982-11-25

    over six to nine readings at two to three input polarizations each. The first set of index values is calculated assuming ei = 450 These values are...TECHNICAL REPORT RG-CR-84-2 Sli GRADIENT INDEX LENS RESEARCH Prepared by: Duncan T. Moore The Institute of Optics University of Rochester Rochester...CLASSIFICATION OF THIS PAGE (Miten Data Fntered) READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NU14MU R GOVT ACCESSION No. 3

  16. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  17. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  18. SEPARATION PROCESS

    DOEpatents

    Stoughton, R.W.

    1961-10-24

    A process for separating tetravalent plutonium from aqueous solutions and from niobium and zirconium by precipitation on lanthanum oxalate is described. The oxalate ions of the precipitate may be decomposed by heating in the presence of an oxidizing agent, forming a plutonium compound readily soluble in acid. (AEC)

  19. Plasma separation

    NASA Technical Reports Server (NTRS)

    Steurer, Wolfgang

    1992-01-01

    This process employs a thermal plasma for the separation and production of oxygen and metals. It is a continuous process that requires no consumables and relies entirely on space resources. The almost complete absence of waste renders it relatively clean. It can be turned on or off without any undesirable side effects or residues. The prime disadvantage is its high power consumption.

  20. Magnetic Separation Dynamics of Colloidal Magnetic Nanoparticles

    SciTech Connect

    Kaur, M.; Huijin Zhang,; You Qiang,

    2013-01-01

    Surface functionalized magnetic nanoparticles (MNPs) are appealing candidates for analytical separation of heavy metal ions from waste water and separation of actinides from spent nuclear fuel. This work studies the separation dynamics and investigates the appropriate magnetic-field gradients. A dynamic study of colloidal MNPs was performed for steady-state flow. Measurements were conducted to record the separation time of particles as a function of magnetic field gradient. The drag and magnetic forces play a significant role on the separation time. A drop in saturation magnetization and variation of particle size occurs after surface functionalization of the MNPs; these are the primary factors that affect the separation time and velocity of the MNPs. The experimental results are correlated to a theoretical one-dimensional model.

  1. Validation a solid-phase extraction-HPLC method for determining the migration behaviour of five aromatic amines from packaging bags into seafood simulants.

    PubMed

    OuYang, Xiao-Kun; Luo, Yu-Yang; Wang, Yang-Guang; Yang, Li-Ye

    2014-01-01

    The simultaneous determination of five aromatic amines and their potential migration from packaging bags into seafood simulants were investigated. A validated HPLC method was developed for the separation and qualification of five aromatic amines in seafood simulants. By combining solid-phase extraction (SPE), these amines were efficiently separated on a Halo C18 column (150 × 4.6 mm i.d., 2.7 μm, particle size) using a mobile phase of methanol/phosphate buffer solution (5 mmol l(-1), pH 6.9) with gradient elution. The linear range was 0.1-10.0 mg l(-1); the absolute recoveries ranged from 85.3% to 98.4%; and the limits of detection of the five aromatic amines were between 0.015 and 0.08 mg l(-1). In this work the migration profile of aromatic amines from black plastic bags was investigated at temperatures of 4°C with water, 3% acetic acid solution, 10% ethanol solution and 50% ethanol solution as seafood simulants, respectively. The migration of the five aromatic amines under different conditions showed that residual o-methoxyaniline, p-chloroaniline, aniline and 2,6-dimethylaniline leaching from black plastic bags increased with incubation time. No detectable 3,3´-dimethylbenzidine was found to leach from the bags.

  2. HIGH PERFORMANCE LIQUID CHROMATOGRAPHIC SEPARATION OF THE ENANTIOMERS OF ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    EPA Science Inventory

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) was obtained on polysaccharide enantioselective HPLC columns using alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, fonofos, fenamiph...

  3. Escalation of polymerization in a thermal gradient.

    PubMed

    Mast, Christof B; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-05-14

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10(600) compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers.

  4. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  5. Gas separating

    DOEpatents

    Gollan, Arye Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  6. Gas separating

    DOEpatents

    Gollan, Arye

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  7. Dust separator

    SciTech Connect

    Borow, H.

    1987-01-27

    This patent describes a gas filter apparatus for separating solids from a gas stream comprising a housing having a top, base, and side walls defining a chamber, a partition wall extending across the chamber and separating the chamber into an upper compartment and a lower compartment. A gas inlet conveyor tube in the chamber passes downwardly of the partition and into the lower compartment, the portion of the conveyor tube passing through the upper compartment being impervious and the portion of the conveyor tube extending downwardly into the lower compartment being provided with exit means including exit apertures at least in the area of the conveyor tube adjacent the partition wall. The partition wall is provided with openings surrounding the conveyor tube and communicates the lower compartment with the upper compartment. A filter means in the form of filter tubes covers each opening in the partition wall and extends downwardly in the lower compartment and parallel to the conveyor tube, at least one gas outlet communicating with the upper compartment. A suction means is associated with the gas outlet to provide a reduced pressure within the chamber. A discharge means at the base of the housing is associated with the lower compartment for discharging solid matter separated from the gas stream. The solid laden gas is conveyed into the lower compartment downwardly by the conveying tube and the gas of the stream is drawn from the conveyor tube immediately past the partition, through the surrounding filter tubes in order to prevent the formation of counter gas flows to the gravity discharge of the solids being separated from the gas stream.

  8. Separation system

    DOEpatents

    Rubin, Leslie S.

    1986-01-01

    A separation system for dewatering radioactive waste materials includes a disposal container, drive structure for receiving the container, and means for releasably attaching the container to the drive structure. Separation structure disposed in the container adjacent the inner surface of the side wall structure retains solids while allowing passage of liquids. Inlet port structure in the container top wall is normally closed by first valve structure that is centrifugally actuated to open the inlet port and discharge port structure at the container periphery receives liquid that passes through the separation structure and is normally closed by second valve structure that is centrifugally actuated to open the discharge ports. The container also includes coupling structure for releasable engagement with the centrifugal drive structure. Centrifugal force produced when the container is driven in rotation by the drive structure opens the valve structures, and radioactive waste material introduced into the container through the open inlet port is dewatered, and the waste is compacted. The ports are automatically closed by the valves when the container drum is not subjected to centrifugal force such that containment effectiveness is enhanced and exposure of personnel to radioactive materials is minimized.

  9. Determination of zinc pyrithione in shampoos by HPLC and HPLC-MS/MS.

    PubMed

    Gu, Yu-Xiang; Wang, Qing-He; Zhou, Ze-Lin; Lv, Qing; Mai, Cheng-Hua

    2014-01-01

    Methods have been developed for the determination of zinc pyrithione (ZPT) in shampoos using high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS). Samples were washed by water first to remove surfactant and water-soluble impurities, then ultrasonic-extracted by acetonitrile-methanol for 30 min, and finally analyzed by MG C18 column (250 mm x 4.6 mm, 5 μm) or RP-18e (100 mm x 3 mm, 2 μm) plus APCI-MS/MS. Limits of detection were determined as 0.015% (HPLC) and 0.003% (HPLC-MS/MS), with a limit of quantization of 0.05% and 0.01%, respectively. The recoveries were 85.8-104% (HPLC) and 87.6-107% (HPLC-MS/MS). A good linear relationship was obtained from 3.20 μg·ml(-1) to 200 μg·ml(-1) (HPLC) and 1.00 μg·ml(-1) to 200 μg·ml(-1) (HPLC-MS/MS). The proposed methods have been successfully applied to the analysis of ZPT in many shampoos. The established two methods were rapid and reproducible with low interference.

  10. Nickel gradient electrode

    SciTech Connect

    Zimmerman, A.H.

    1988-03-31

    This invention relates generally to rechargeable batteries, and, in particular, relates to batteries that use nickel electrodes. It provides an improved nickel electrode with a selected gradient of additive materials. The concentration of additives in the impregnating solution are controlled during impregnation such that an additive gradient is generated. In the situation where the highest ionic conductivity is needed at the current collector boundary with the active material, the electrochemical impregnating solution is initially high in additive, and at the end of impregnation has been adjusted to significantly lower additive concentration. For chemical impregnation, the electrodes are similarly dipped in solutions that are initially high in additive. This invention is suitable for conventional additives such as cobalt, cadmium, barium, manganese, and zinc. It is therefore one objective of the invention to provide an improved nickel electrode of a battery cell with an additive in the active material to increase the life of the battery cell. Another objective is to provide for an improved nickel electrode having a greater concentration of additive near the current collector of nickel.

  11. Energy in density gradient

    SciTech Connect

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  12. Simultaneous determination of five free and total flavonoids in rat plasma by ultra HPLC-MS/MS and its application to a comparative pharmacokinetic study in normal and hyperlipidemic rats.

    PubMed

    Wang, Xiaofan; Zhao, Xu; Gu, Liqiang; Lv, Chunxiao; He, Bosai; Liu, Zhenzhen; Hou, Pengyi; Bi, Kaishun; Chen, Xiaohui

    2014-03-15

    A simple and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (uHPLC-MS/MS) method has been developed for the simultaneous determination of five free flavonoids (amentoflavone, isorhamnetin, naringenin, kaempferol and quercetin) and their total (free and conjugated) forms, and to compare the pharmacokinetics of these active ingredients in normal and hyperlipidemic rats. The free and total forms of these flavonoids were extracted by liquid-liquid extraction with ethyl acetate. The conjugated flavonoids were deconjugated by the enzyme β-Glucuronidase and Sulfatase. Chromatographic separation was accomplished on a ZORBAX Eclipse XDB-C8 USP L7 column using gradient elution. Detection was performed on a 4000Q uHPLC-MS/MS system from AB Sciex using negative ion mode in the multiple reaction monitoring (MRM) mode. The lower limits of quantification were 2.0-5.0ng/mL for all the analytes. Intra-day and inter-day precision were less than 15% and accuracy ranged from -9.3% to 11.0%, and the mean extraction recoveries of analytes and internal standard (IS) from rat plasma were all more than 81.7%. The validated method was successfully applied to a comparative pharmacokinetic study of five free and total analytes in rat plasma. The results indicated that the absorption of five total flavonoids in hyperlipidemia group were significantly higher than those in normal group with similar concentration-time curves.

  13. Gas separating

    DOEpatents

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  14. Gas separating

    DOEpatents

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  15. Chromatographic Separations Using Solid-Phase Extraction Cartridges: Separation of Wine Phenolics

    NASA Astrophysics Data System (ADS)

    Brenneman, Charles A.; Ebeler, Susan E.

    1999-12-01

    We describe a simple laboratory experiment that demonstrates the principles of chromatographic separation using solid-phase extraction columns and red wine. By adjusting pH and mobile phase composition, the wine is separated into three fractions of differing polarity. The content of each fraction can be monitored by UV-vis spectroscopy. When the experiment is combined with experiments involving HPLC or GC separations, students gain a greater appreciation for and understanding of the highly automated instrumental systems currently available. In addition, they learn about the chemistry of polyphenolic compounds, which are present in many foods and beverages and which are receiving much attention for their potentially beneficial health effects.

  16. Selenite biotransformation during brewing. Evaluation by HPLC-ICP-MS.

    PubMed

    Sánchez-Martínez, Maria; da Silva, Erik Galvão P; Pérez-Corona, Teresa; Cámara, Carmen; Ferreira, Sergio L C; Madrid, Yolanda

    2012-01-15

    Yeast (Saccharomyces cerevisiae) and lactic bacteria have shown their ability to accumulate and transform inorganic selenium into organo Se compounds. The objective of this work was to evaluate selenium biotransformation during brewing by using S. cerevisiae and Saccharomyces uvarum for Ale and Lager fermentation, respectively. Se-enriched beer was produced by the addition of sodium selenite (0, 0.2, 1.0, 2.0, 10.0, 20.0 μg Se mL(-1), respectively) to the fermentation media composed of yeast, malt extract and water. The alcoholic fermentation process was not affected by the presence of selenium regardless of the type of Saccharomyces being used. The percentage of selenium incorporated into beer, added between 1.0 and 10 μg mL(-1) was 55-60% of the selenium initially present. Se-compounds in post-fermentation (beer and yeast) products were investigated by using an analytical methodology based on HPLC-ICP-MS. For this purpose, several sample treatments, including ultrasonic-assisted enzymatic hydrolysis, in conjunction with different separation mechanisms like dialysis and anion exchange HPLC chromatography were applied for unambiguously identifying Se-species that produce during brewing. Selenomethionine was the main selenium compound identified in beer and yeast, being this species in the only case of the former not associated to peptides or proteins.

  17. Non Linear Conjugate Gradient

    SciTech Connect

    Newman, Gregory A.; Commer, Michael

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria. The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.

  18. Generalized conjugate gradient squared

    SciTech Connect

    Fokkema, D.R.; Sleijpen, G.L.G.

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  19. Flow separation of currents in shallow water

    USGS Publications Warehouse

    Signell, Richard P.

    1989-01-01

    Flow separation of currents in shallow coastal areas is investigated using a boundary layer model for two-dimensional (depth-averaged) tidal flow past an elliptic headland. If the shoaling region near the coast is narrow compared to the scale of the headland, bottom friction causes the flow to separate just downstream of the point where the pressure gradient switches from favoring to adverse. As long as the shoaling region at the coast is well resolved, the inclusion of eddy viscosity and a no-slip boundary condition have no effect on this result. An approximate analytic solution for the pressure gradient along the boundary is obtained by assuming the flow away from the immediate vicinity of the boundary is irrotational. On the basis of the pressure gradient obtained from the irrotational flow solution, flow separation is a strong function of the headland aspect ratio, an equivalent Reynolds number, and a Keulegan-Carpenter number.

  20. Improved HPLC determination of urinary neopterin.

    PubMed

    Dewitte, J D; Berthou, F; Dreano, Y; Floch, H H

    1987-01-01

    In order to improve the urinary neopterin measurement, the reversed-phase HPLC method has been reevaluated. The parameters which influence the chromatographic behavior of 12 pteridines were studied: nature of buffer, pH, ionic strength, addition of organic modifier to the mobile phase. Accordingly, an isocratic HPLC method is described which offers a good compromise between specificity and analysis time. This method is well-suited to automation in routine clinical laboratory use. Using this HPLC method, urinary neopterin related to creatinine was determined in lung diseases (neoplasm, sarcoïdosis and bronchial asthma) and in kidney allografts. This method was shown to be useful in the diagnosis and in the monitoring of treatment of rejection episodes.

  1. Coral Pigments: Quantification Using HPLC and Detection by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Cottone, Mary C.

    1995-01-01

    Widespread coral bleaching (loss of pigments of symbiotic dinoflagellates), and the corresponding decline in coral reef health worldwide, mandates the monitoring of coral pigmentation. Samples of the corals Porites compressa and P. lobata were collected from a healthy reef at Puako, Hawaii, and chlorophyll (chl) a, peridinin, and Beta-carotene (Beta-car) were quantified using reverse-phase high performance liquid chromatography (HPLC). Detailed procedures are presented for the extraction of the coral pigments in 90% acetone, and the separation, identification, and quantification of the major zooxanthellar pigments using spectrophotometry and a modification of the HPLC system described by Mantoura and Llewellyn (1983). Beta-apo-8-carotenal was found to be inadequate as in internal standard, due to coelution with chl b and/or chl a allomer in the sample extracts. Improvements are suggested, which may result in better resolution of the major pigments and greater accuracy in quantification. Average concentrations of peridinin, chl a, and Beta-car in corals on the reef were 5.01, 8.59, and 0.29, micro-grams/cm(exp 2), respectively. Average concentrations of peridinin and Beta-car did not differ significantly between the two coral species sampled; however, the mean chl a concentration in P. compressa specimens (7.81 ,micro-grams/cm(exp 2) was significantly lower than that in P. lobata specimens (9.96 11g/cm2). Chl a concentrations determined spectrophotometrically were significantly higher than those generated through HPLC, suggesting that spectrophotometry overestimates chl a concentrations. The average ratio of chl a-to-peridinin concentrations was 1.90, with a large (53%) coefficient of variation and a significant difference between the two species sampled. Additional data are needed before conclusions can be drawn regarding average pigment concentrations in healthy corals and the consistency of the chl a/peridinin ratio. The HPLC pigment concentration values

  2. Characterization of voltage degradation in dynamic field gradient focusing

    PubMed Central

    Burke, Jeffrey M.; Ivory, Cornelius F.

    2010-01-01

    Dynamic field gradient focusing (DFGF) is an equilibrium gradient method that utilizes an electric field gradient to simultaneously separate and concentrate charged analytes based on their individual electrophoretic mobilities. This work describes the use of a 2-D nonlinear, numerical simulation to examine the impact of voltage loss from the electrodes to the separation channel, termed voltage degradation, and distortions in the electric field on the performance of DFGF. One of the design parameters that has a large impact on the degree of voltage degradation is the placement of the electrodes in relation to the separation channel. The simulation shows that a distance of about 3 mm from the electrodes to the separation channel gives the electric field profile with least amount of voltage degradation. The simulation was also used to describe the elution of focused protein peaks. The simulation shows that elution under constant electric field gradient gives better performance than elution through shallowing of the electric field. Qualitative agreement between the numerical simulation and experimental results is shown. The simulation also illustrates that the presence of a defocusing region at the cathodic end of the separation channel causes peak dispersion during elution. The numerical model is then used to design a system that does not suffer from a defocusing region. Peaks eluted under this design experienced no band broadening in our simulations. Preliminary experimental results using the redesigned chamber are shown. PMID:18306183

  3. HPLC Enantioseparation of β-Blockers on Ovomucoid Stationary Phase.

    PubMed

    Imre, Silvia; Ormenişan, Anca; Tero-Vescan, Amelia; Muntean, Daniela-Lucia; Vari, Camil-Eugen

    2016-07-07

    The purpose of this study was to separate single and multiple pairs of six β-blockers enantiomers by high performance liquid chromatography on ovomucoid (OM) column in optimal conditions. The separation was performed isocratically or in gradient elution at 25°C, flow rate of 1 mL/min and 220 nm. The mobile phase consisted of phosphate buffer/acetonitrile or methanol. The effect of the organic modifier, the influence of pH and the percentage of the aqueous phase on resolution were investigated. The elution order of propranolol (PRP) enantiomers was established as well as the detection and quantification limits. The results show that OM was suitable for enantiomeric separation of the nonselective β-blockers carvedilol, PRP, pindolol and oxprenolol, and not for the two β-1 selective blockers, atenolol and metoprolol. A hypothesis regarding a possible correlation between structure-pharmacological activity-chromatographic behavior is proposed.

  4. Nanoparticle manipulation by thermal gradient

    PubMed Central

    2012-01-01

    A method was proposed to manipulate nanoparticles through a thermal gradient. The motion of a fullerene molecule enclosed inside a (10, 10) carbon nanotube with a thermal gradient was studied by molecular dynamics simulations. We created a one-dimensional potential valley by imposing a symmetrical thermal gradient inside the nanotube. When the temperature gradient was large enough, the fullerene sank into the valley and became trapped. The escaping velocities of the fullerene were evaluated based on the relationship between thermal gradient and thermophoretic force. We then introduced a new way to manipulate the position of nanoparticles by translating the position of thermostats with desirable thermal gradients. Compared to nanomanipulation using a scanning tunneling microscope or an atomic force microscope, our method for nanomanipulation has a great advantage by not requiring a direct contact between the probe and the object. PMID:22364240

  5. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  6. Particle separator

    DOEpatents

    Hendricks, Charles D.

    1990-01-01

    Method and apparatus (10) are provided for separating and classifying particles (48,50,56) by dispersing the particles within a fluid (52) that is upwardly flowing within a cone-shaped pipe (12) that has its large end (20) above its small end (18). Particles of similar size and shape (48,50) migrate to individual levels (A,B) within the flowing fluid. As the fluid is deflected by a plate (42) at the top end of the pipe (12), the smallest particles are collected on a shelf-like flange (40). Ever larger particles are collected as the flow rate of the fluid is increased. To prevent particle sticking on the walls (14) of the pipe (12), additional fluid is caused to flow into the pipe (12) through holes (68) that are specifically provided for that purpose. Sticking is further prevented by high frequency vibrators (70) that are positioned on the apparatus (10).

  7. Particle separation

    DOEpatents

    Moosmuller, Hans [Reno, NV; Chakrabarty, Rajan K [Reno, NV; Arnott, W Patrick [Reno, NV

    2011-04-26

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  8. Particle separation

    NASA Technical Reports Server (NTRS)

    Moosmuller, Hans (Inventor); Chakrabarty, Rajan K. (Inventor); Arnott, W. Patrick (Inventor)

    2011-01-01

    Embodiments of a method for selecting particles, such as based on their morphology, is disclosed. In a particular example, the particles are charged and acquire different amounts of charge, or have different charge distributions, based on their morphology. The particles are then sorted based on their flow properties. In a specific example, the particles are sorted using a differential mobility analyzer, which sorts particles, at least in part, based on their electrical mobility. Given a population of particles with similar electrical mobilities, the disclosed process can be used to sort particles based on the net charge carried by the particle, and thus, given the relationship between charge and morphology, separate the particles based on their morphology.

  9. HPLC-MS/MS method for the simultaneous determination of MB07133 and its metabolites, cytarabine and arabinofuranosyluracil, in rat plasma.

    PubMed

    Wang, Dan; Xiao, Qingqing; Yang, Wanqiu; Qian, Wei; Yang, Jin

    2016-02-20

    MB07133 is an intravenously administered cytarabine mononucleotide (araCMP) prodrug, for the treatment of hepatocellular carcinoma (HCC). A simple, selective and sensitive HPLC-MS/MS method using high pressure liquid chromatography (HPLC) coupled to triple-quadrupole mass spectrometer, was developed and validated for the detection of prodrug MB07133 and its metabolites, cytarabine (araC) and arabinofuranosyluracil (araU) in rat plasma. Protein precipitation using 3% trichloroacetic acid (TCA) was employed to extract analytes from 100μL rat plasma. Adequate separation of araC and araU from their endogenous compounds was achieved on the Synergi(®) fusion-RP column (150mm×4.6mm, 4μm) by a gradient-elution with a mobile phase consisting of ammonium formate (1mM) and methanol at a flow rate of 1mL/min. Multiple reaction monitoring mode (MRM) was applied in the detection of MB07133, araC, araU and Ganciclovir (internal standard) with ion pairs 441.2/330.2, 244.2/112.2, 245.2/113.2 and 256.1/152.2, respectively. The assays were validated with respect to specificity, linearity (100-50000ng/mL for MB07133, 2-1000ng/mL for araC and araU), accuracy and precision, extraction recovery, matrix effect and stability. The validated method has been successfully applied to an intravenous bolus pharmacokinetic study of MB07133 in male Sprague-Dawley rats (18mg/kg i.v.).

  10. High performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI) method for simultaneous determination of venlafaxine and its three metabolites in human plasma.

    PubMed

    Liu, Wen; Cai, Hua-Lin; Li, Huan-de

    2007-05-01

    A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI) method for simultaneous determination of venlafaxine (VEN) and its three metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in human plasma has been developed and validated. Estazolam was used as the internal standard. The compounds and internal standard were extracted from plasma by a liquid-liquid extraction. The HPLC separation of the analytes was performed on a Thermo BDS HYPERSIL C18 (250 mm x 4.6 mm, 5 microm, USA) column, using a gradient elution program with solvents constituted of water (ammonium acetate: 30 mmol/l, formic acid 2.6 mmol/l and trifluoroacetic acid 0.13 mmol/l) and acetonitrile (60:40, V/V) at a flow-rate of 1.0 ml/min. All of the analytes were eluted within 6 min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and were detected in the selected ion recording (SIR) mode. Calibration curves in spiked whole blood were linear from 4.0-700 ng/ml, 2.0-900 ng/ml, 3.0-800 ng/ml and 2.0-700 ng/ml for VEN, ODV, NDV and DDV, respectively, all of them with coefficients of determination above 0.9991. The average extraction recoveries for all the four analytes were above 77%. The methodology recoveries were higher than 91%. The limits of detection were 0.4, 0.2, 0.3, and 0.2 ng/ml for VEN, ODV, NDV and DDV, respectively. The intra- and inter-day variation coefficients were less than 11%. The method is accurate, sensitive and reliable for the pharmacokinetic study of venlafaxine as well as therapeutic drug monitoring (TDM).

  11. Step-gradient capillary electrochromatography.

    PubMed

    Euerby, M R; Gilligan, D; Johnson, C M; Bartle, K D

    1997-10-01

    The analytical benefits of using a step-gradient in capillary electrochromatography (CEC) are demonstrated. The application of step-gradient CEC to the analysis of six diuretics of widely differing lipophilicities was evaluated and shown to result in a marked reduction in the analysis time and an improvement in the peak shape for later-eluting lipophilic components. When the step-gradient approach was performed in an automated mode, the retention time RSD for repeated injections was below 1%.

  12. Separation of carbon nanotubes into chirally enriched fractions

    DOEpatents

    Doorn, Stephen K [Los Alamos, NM; Niyogi, Sandip [Los Alamos, NM

    2012-04-10

    A mixture of single-walled carbon nanotubes ("SWNTs") is separated into fractions of enriched chirality by preparing an aqueous suspension of a mixture of SWNTs and a surfactant, injecting a portion of the suspension on a column of separation medium having a density gradient, and centrifuging the column. In some embodiments, salt is added prior to centrifugation. In other embodiments, the centrifugation is performed at a temperature below room temperature. Fractions separate as colored bands in the column. The diameter of the separated SWNTs decreases with increasing density along the gradient of the column. The colored bands can be withdrawn separately from the column.

  13. Characterization of nutraceuticals and functional foods by innovative HPLC methods.

    PubMed

    Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella

    2002-04-01

    In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.

  14. Anion exchange chromatographic separation of inositol phosphates and their quantification by gas chromatography.

    PubMed

    Heathers, G P; Juehne, T; Rubin, L J; Corr, P B; Evers, A S

    1989-01-01

    The direct measurement of mass of inositol trisphosphate from biologic samples is described. Separation of inositol monophosphate, bisphosphate, trisphosphate, and inositol tetrakisphosphate was achieved using anion exchange chromatography with a sodium sulfate gradient. In addition, separation of the isomers of each inositol phosphate was performed using HPLC procedures. The individual inositol phosphate fractions were subsequently dephosphorylated and desalted. The myo-inositol from each fraction was then derivatized to the hexatrimethylsilyl derivative and the myo-inositol derivatives were quantified by a novel gas chromatographic analysis using the hexatrimethylsilyl derivative of chiro-inositol as an internal concentration reference. This method is a reproducible and relatively rapid procedure for the direct quantification of inositol phosphate mass which overcomes many of the problems associated with the use of radiolabeled precursors. The method is a significant improvement over existing procedures for the quantitative determination of the mass of inositol phosphate by virtue of improved recovery, sensitivity, and technical simplicity. The applicability of this method is illustrated by the quantitative determination of inositol trisphosphate in response to norepinephrine stimulation of adult canine myocytes and cerebral cortical brain slices and by measurement of the isomers of inositol trisphosphate in isolated myocytes.

  15. Gradient forests: calculating importance gradients on physical predictors.

    PubMed

    Ellis, Nick; Smith, Stephen J; Pitcher, C Roland

    2012-01-01

    In ecological analyses of species and community distributions there is interest in the nature of their responses to environmental gradients and in identifying the most important environmental variables, which may be used for predicting patterns of biodiversity. Methods such as random forests already exist to assess predictor importance for individual species and to indicate where along gradients abundance changes. However, there is a need to extend these methods to whole assemblages, to establish where along the range of these gradients the important compositional changes occur, and to identify any important thresholds or change points. We develop such a method, called "gradient forest," which is an extension of the random forest approach. By synthesizing the cross-validated R2 and accuracy importance measures from univariate random forest analyses across multiple species, sampling devices, and surveys, gradient forest obtains a monotonic function of each predictor that represents the compositional turnover along the gradient of the predictor. When applied to a synthetic data set, the method correctly identified the important predictors and delineated where the compositional change points occurred along these gradients. Application of gradient forest to a real data set from part of the Great Barrier Reef identified mud fraction of the sediment as the most important predictor, with highest compositional turnover occurring at mud fraction values around 25%, and provided similar information for other predictors. Such refined information allows for more accurate capturing of biodiversity patterns for the purposes of bioregionalization, delineation of protected areas, or designing of biodiversity surveys.

  16. Separation and identification of highly fluorescent compounds derived from trans-resveratrol in the leaves of Vitis vinifera infected by Plasmopara viticola.

    PubMed

    Tříska, Jan; Vrchotová, Naděžda; Olejníčková, Julie; Jílek, Rudolf; Sotolář, Radek

    2012-03-06

    A method for identification of highly fluorescent compounds in vine leaves infected by Plasmopara viticola was developed using reversed phase liquid chromatography with simultaneous diode array and fluorometric detection. Fluorescent compounds were extracted from leaves with a methanol-water mixture (70:30). Separation by HPLC was performed using a C(18) column and gradient elution with water-acetonitrile mixtures (20-80% of acetonitrile). The main unknown fluorescent compound was identified by line spectral comparison with a standard obtained by UV photoisomerization of trans-resveratrol glucoside, and its structure was confirmed by liquid chromatography-mass spectrometry. Identification and structural elucidation of the fluorescent compound in the leaves of Vitis vinifera allows early detection of Plasmopara viticola invasion.

  17. Development of a validated RP-LC/ESI-MS-MS method for separation, identification and determination of related substances of tamsulosin in bulk drugs and formulations.

    PubMed

    Nageswara Rao, R; Kumar Talluri, M V N; Narasa Raju, A; Shinde, Dhananjay D; Ramanjaneyulu, G S

    2008-01-07

    A reversed-phase high performance liquid chromatographic (RP-HPLC) method for evaluation of purity of tamsulosin in bulk drugs and pharmaceuticals was developed. The separation was accomplished on an Inertsil C(18) column using 10 mM ammonium acetate: acetonitrile as a mobile phase in a gradient elution mode. A photodiode array detector set at 280 nm was used for detection. The impurities were identified by ESI-MS-MS. The detection limits were 0.06-0.11 microg/ml. The method was validated with respect to accuracy, precision, linearity, ruggedness and limits of detection and quantification. It finds application not only for monitoring the reactions during the process development but also on quality assurance of tamsulosin.

  18. [Simultaneous determination of five cold medicine ingredients in paracetamol triprolidine hydrochloride and pseudoephedrine hydrochloride tablets by pH/organic solvent double-gradient high performance liquid chromatography].

    PubMed

    Xuan, Xueyi; Huang, Lina; Pan, Xiaoling; Li, Ning

    2013-02-01

    A pH/organic solvent double-gradient mode in reversed-phase high performance liquid chromatography (HPLC) has been established as a new approach to the simultaneous determination of acetaminophen, caffeine, salicylamide, pseudoephedrine hydrochloride and triprolidine hydrochloride in paracetamol triprolidine hydrochloride and pseudoephedrine hydrochloride tablets. Through the optimization of the organic solvent gradient mode and pH/organic solvent double-gradient mode, the optimum double-gradient HPLC system of the five cold medicine ingredients has been built. The determination was carried out on a Diamonsiol C18 column (250 mm x 4.6 mm, 5 microm). The mobile phase consisted of methanol, 0.05 mol/L ammonium acetate solution and 0.08 mol/L acetic acid solution. The column temperature was set at 30 degrees C. The flow rate was 1.0 mL/min. The sample was measured at multiple wavelengths: 0-6 min, 280 nm; 6-7 min, 257 nm; 7-14 min, 280 nm; 14 min, 233 nm. The separation of the five cold medicine ingredients in the tablets was achieved in 25.5 min. The linear ranges of acetaminophen, pseudoephedrine hydrochloride, caffeine, salicylamide and triprolidine hydrochloride were 0.055 -0.998 g/L, 0.053-0.946 g/L, 0.007-0.129 g/L, 0.035-0.622 g/L and 0.002-0.039 g/L, respectively, with their correlation coefficients greater than 0.999 0. The detection limits (S/N = 3) were 0.09, 6, 0.02, 0.128 and 0.02 mg/L, respectively. Their mean recoveries were 97.9%-102.8%. The advantage of the method is the simultaneous determination of acidic, neutral and basic compounds. It also can improve the column efficiency of the analyte, compress the half-peak width and reduce the trailing. The optimized and validated method can be used for the simultaneous determination of the five cold medicine ingredients in the tablets.

  19. [HPLC-FPS establishment of Iris japonica Thunb].

    PubMed

    Zhang, Jin-zhuan; Luo, Ai-qin; Liu, Li-wen; Fang, Min; Deng, Yu-lin

    2006-09-01

    Samples extracted from the root of Iris japonica Thunb were analyzed and the optimal HPLC chromatographic conditions was confirmed. Through analyzing the chromatography, the HPLC-FPS of Iris japonica Thunb was established.

  20. Measurement of Menadione in urine by HPLC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menadione may be an important metabolite of vitamin K that is excreted in urine. A high performance liquid chromatography (HPLC) method with a C30 column, fluorescence detection and post-column zinc reduction was developed to measure menadione in urine. The mobile phase was composed of 95% methanol...

  1. Fingerprint analysis of anti-tumor active polypeptides from Arca subcrenata by HPLC.

    PubMed

    Ren, Sheng-fang; Song, Li-yan; Yan, Chun-yan; Li, Ting-fei; Zhao, Yu; Yu, Rong-min

    2008-08-01

    RP-HPLC was applied to analyze active polypeptides in Arca subcrenata, and the optimal condition for separation was also set up: temperature: 30 degrees C; wavelength: 280 nm; flow rate: 1.0 ml/min; Solvent A consisted of 80% acetonitrile and 0.1% trifluoroacetic acid (TFA) and solvent B contained 0.1% TFA. In this condition, ten samples' fingerprints were gained, in one of which the genuine fraction exhibited fourteen "common peaks" representing the characteristics of the constituents.

  2. Dual-rail optical gradient echo memory

    NASA Astrophysics Data System (ADS)

    Higginbottom, D. B.; Geng, J.; Campbell, G. T.; Hosseini, M.; Cao, M. T.; Sparkes, B. M.; Bernu, J.; Robins, N. P.; Lam, P. K.; Buchler, B. C.

    2015-09-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  3. Validated HPLC and Ultra-HPLC Methods for Determination of Dronedarone and Amiodarone Application for Counterfeit Drug Analysis.

    PubMed

    El-Bagary, Ramzia I; Elkady, Ehab F; Mowaka, Shereen; Attallah, Maria

    2015-01-01

    Two simple, accurate, and precise chromatographic methods have been developed and validated for the determination of dronedarone (DRO) HCl and amiodarone (AMI) HCl either alone or in binary mixtures due to the possibility of using AMI as a counterfeit of DRO because of its lower price. First, an RP-HPLC method is described for the simultaneous determination of DRO and AMI. Chromatographic separation was achieved on a BDS Hypersil C18 column (150×4.6 mm, 5 μm). Isocratic elution based on potassium dihydrogen phosphate buffer with 0.1% triethylamine pH 6-methanol (10+90, v/v) at a flow rate of 2 mL/min with UV detection at 254 nm was performed. The second method is RP ultra-HPLC in which the chromatographic separation was achieved on an AcclaimTM RSLC 120 C18 column (100×2.1 mm, 2.2 μm) using isocratic elution with potassium dihydrogen phosphate buffer with 0.1% triethylamine pH 6-methanol (5+95, v/v) at a flow rate of 1 mL/min with UV detection at 254 nm. Linearity, accuracy, and precision of the two methods were found to be acceptable over the concentration ranges of 5-80 μg/mL for both DRO and AMI. The results were statistically compared using one-way analysis of variance. The optimized methods were validated and proved to be specific, robust, precise, and accurate for the QC of the drugs in their pharmaceutical preparations.

  4. Gradient expansion, curvature perturbations, and magnetized plasmas

    SciTech Connect

    Giovannini, Massimo; Rezaei, Zahra

    2011-04-15

    The properties of magnetized plasmas are always investigated under the hypothesis that the relativistic inhomogeneities stemming from the fluid sources and from the geometry itself are sufficiently small to allow for a perturbative description prior to photon decoupling. The latter assumption is hereby relaxed and predecoupling plasmas are described within a suitable expansion where the inhomogeneities are treated to a given order in the spatial gradients. It is argued that the (general relativistic) gradient expansion shares the same features of the drift approximation, customarily employed in the description of cold plasmas, so that the two schemes are physically complementary in the large-scale limit and for the low-frequency branch of the spectrum of plasma modes. The two-fluid description, as well as the magnetohydrodynamical reduction, is derived and studied in the presence of the spatial gradients of the geometry. Various solutions of the coupled system of evolution equations in the anti-Newtonian regime and in the quasi-isotropic approximation are presented. The relation of this analysis to the so-called separate universe paradigm is outlined. The evolution of the magnetized curvature perturbations in the nonlinear regime is addressed for the magnetized adiabatic mode in the plasma frame.

  5. RP-HPLC Determination of Phenylalkanoids and Monoterpenoids in Rhodiola rosea and Identification by LC-ESI-TOF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An HPLC method permitting the simultaneous determination of fourteen compounds (phenylalkanoids and monoterpenoids) from the roots of Rhodiola rosea was developed. A separation was achieved within 35 minutes by using C-18 column material, a water/acetonitrile mobile phase, both containing 0.05% phos...

  6. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  7. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  8. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  9. Method performance and multi-laboratory assessment of a normal phase HPLC/FLD method for the quantitation of flavanols and procyanidins in cocoa and chocolate containing samples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The quantitative parameters and method performance for a normal-phase HPLC separation of flavanols and procyanidins in chocolate and cocoa-containing food products were optimized and assessed. The chromatographic separation based on degree of polymerization (DP) was achieved on a diol stationary ph...

  10. Density-Gradient Determination of Osmotic Potential in Plant Cells

    ERIC Educational Resources Information Center

    Nabors, Murray W.

    1973-01-01

    Describes a method for measuring osmotic potential which is suitable for high school and college biology classes. This method introduces students to the hard-to-visualize technique of using density gradients to separate cells or cell constituents of differing densities. (JR)

  11. Quantification of lipoic acid from skin samples by HPLC using ultraviolet, electrochemical and evaporative light scattering detectors.

    PubMed

    Campos, Patrícia Mazureki; Praça, Fabíola Silva Garcia; Bentley, Maria Vitória Lopes Badra

    2016-04-15

    Lipoic acid (LA) is an endogenous organosulfur compound with potent antioxidant property. LA is often used as a drug for the treatment of skin disorders. For the accomplishment of topical applications of LA appropriate drug quantification methods are essential. Thus far, no HPLC methods have been reported for the measurement of LA extracted from skin. In this article we report on the development and validation of three sensitive and specific HPLC methods for LA and dihydrolipoic acid (DHLA) using ultraviolet (UV), electrochemical (EC) or evaporative light scattering (ELS) detection. These methods demonstrate different linearity ranges. The chromatographic separations were performed by RP-HPLC (250 × 4 mm, 5 μm) with isocratic elution using an acidic mobile phase for the three detection techniques. The lower limits of detection and quantification were 0.04 and 0.08 ng LA, respectively, for HPLC coupled to ELS, an innovative detector for LA with high sensitivity. The extraction of LA from skin samples showed recoveries greater than 71%. The recovered LA concentrations from stratum corneum and epidermis+dermis layers were: 5.41 ± 0.56 and 4.92 ± 0.33 μg/mL, respectively for HPLC/UV and 6.52 ± 0.49 and 5.01 ± 0.41 μg/mL, respectively, for HPLC/EC for the added LA concentration (6.67 μg/mL), and 8.88 ± 0.46 and 8.95 ± 0.08 μg/mL, respectively, for HPLC/ELS for the added LA concentration (10 μg/mL). These three optimized HPLC methods allowed for a simple, rapid and reliable determination of LA in human skin. They should be useful for the development of drug delivery systems for topical applications of LA.

  12. Development of a Single Ion Pair HPLC Method for Analysis of Terbinafine, Ofloxacin, Ornidazole, Clobetasol, and Two Preservatives in a Cream Formulation: Application to In Vitro Drug Release in Topical Simulated Media-Phosphate Buffer Through Rat Skin.

    PubMed

    Dewani, Anil P; Bakal, Ravindra L; Kokate, Pranjali G; Chandewar, Anil V; Patra, Srdhanjali

    2015-01-01

    Present work reports an HPLC method with UV detection for quantification of terbinafine, ofloxacin, ornidazole, and clobetasol in a cream formulation along with two preservatives methyl and propyl paraben. The chromatographic separation and quantification was achieved by an octyl bonded column and a gradient elution program involving an ion-pairing reagent, hexanesulfonic acid (0.2%, pH modified to 2.7 using orthophosphoric acid) and acetonitrile. The method was simple and devoid of buffer salts and therefore advantageous for system and column life. The three step gradient program was initiated with 30% (v/v) acetonitrile for the first 5 min and ramped linearly to 60% in the next 7 min. The mobile phase remained constant for the next 11 min and then concluded at 30% (v/v) of acetonitrile. Flow rate throughout was 0.8 mL/min, and all the signals were monitored at 243 nm. The method was applied for assay of a cream formulation and its in vitro permeation studies to determine the penetration profile of the four drugs and two preservatives. A marketed cream formulation was selected for the permeation study, which was carried out using a diffusion cell consisting of topical simulated media, phosphate buffer (pH=6.8) solution containing 1% sodium lauryl sulfate as a receiver medium.

  13. Ionic liquid-assisted separation and determination of selenium species in food and beverage samples by liquid chromatography coupled to hydride generation atomic fluorescence spectrometry.

    PubMed

    Castro Grijalba, Alexander; Fiorentini, Emiliano F; Wuilloud, Rodolfo G

    2017-03-31

    Different ionic liquids (ILs) were assayed as mobile phase modifiers for the separation and determination of selenite [Se(IV)], selenate [Se(VI)], selenomethionine (SeMet) and Se-methylselenocysteine (SeMeSeCys) by reversed-phase high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry (RP-HPLC-HG-AFS). The use of several ILs: 1-butyl-3-methylimidazolium chloride, 1-hexyl-3-methylimidazolium chloride ([C6mim]Cl), 1-octyl-3-methylimidazolium chloride, 1-dodecyl-3-methylimidazolium bromide, 1-hexadecyl-3-methylimidazolium bromide and tributyl(methyl)phosphonium methylsulphate was evaluated. Also, the effect of pH, buffer type and IL concentration on the separation of Se species was studied. Complete separation was attained within 12min using a C8 column and a gradient performed with a mobile phase containing 0.1% (v/v) [C6mim]Cl at pH 6.0. The proposed method allows the separation of inorganic and organic Se species in a single chromatographic run, adding further benefits over already reported methods based on RP-HPLC. In addition, the influence of ILs on the AFS signals of each Se species was evaluated and a multivariate methodology was used for optimization of AFS sensitivity. The limits of detection were 0.92, 0.86, 1.41 and 1.19μgL(-1) for Se(IV), Se(VI), SeMet and SeMeSeCys, respectively. The method was successfully applied for speciation analysis of Se in complex samples, such as wine, beer, yeast and garlic.

  14. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  15. Stochastic approach for an unbiased estimation of the probability of a successful separation in conventional chromatography and sequential elution liquid chromatography.

    PubMed

    Ennis, Erin J; Foley, Joe P

    2016-07-15

    A stochastic approach was utilized to estimate the probability of a successful isocratic or gradient separation in conventional chromatography for numbers of sample components, peak capacities, and saturation factors ranging from 2 to 30, 20-300, and 0.017-1, respectively. The stochastic probabilities were obtained under conditions of (i) constant peak width ("gradient" conditions) and (ii) peak width increasing linearly with time ("isocratic/constant N" conditions). The isocratic and gradient probabilities obtained stochastically were compared with the probabilities predicted by Martin et al. [Anal. Chem., 58 (1986) 2200-2207] and Davis and Stoll [J. Chromatogr. A, (2014) 128-142]; for a given number of components and peak capacity the same trend is always observed: probability obtained with the isocratic stochastic approachgradient stochastic approach≤probability predicted by Davis and Stoll < probability predicted by Martin et al. The differences are explained by the positive bias of the Martin equation and the lower average resolution observed for the isocratic simulations compared to the gradient simulations with the same peak capacity. When the stochastic results are applied to conventional HPLC and sequential elution liquid chromatography (SE-LC), the latter is shown to provide much greater probabilities of success for moderately complex samples (e.g., PHPLC=31.2% versus PSE-LC=69.1% for 12 components and the same analysis time). For a given number of components, the density of probability data provided over the range of peak capacities is sufficient to allow accurate interpolation of probabilities for peak capacities not reported, <1.5% error for saturation factors <0.20. Additional applications for the stochastic approach include isothermal and programmed-temperature gas chromatography.

  16. RP-LC gradient elution method for simultaneous determination of thiocolchicoside, aceclofenac and related impurities in tablet formulation

    PubMed Central

    Karbhari, Pradnya A.; Joshi, Sneha J.; Bhoir, Suvarna I.

    2014-01-01

    Objective: The aim of the present study is to develop a simple and precise HPLC method for simultaneous determination of thiocolchicoside, aceclofenac and related impurities in a tablet formulation and validate as per ICH guidelines. The aim of study extends to perform forced degradation study to trace the degradation pathways of potential degradant impurities. Materials and Methods: The separation was achieved on a 4.6 mm × 100 mm, 3 μm C18 column at 40°C with the mobile phase containing 0.1 M ammonium acetate buffer and methanol in a gradient mode at a flow rate of 1.0 mL min−1. The UV detection was carried out at 257 nm. Results: Acelofenac, thiocolchicoside and their related compounds were well separated from each other with good resolution and symmetry factor without interference of excipients. The method for assay was linear in the range of 10-200 μg mL−1 for aceclofenac and 0.4 to 8 μg mL−1 for thiocolchicoside. Conclusion: The method was validated according to ICH guidelines and the acceptance criteria for accuracy, precision, linearity, specificity, robustness, ruggedness and system suitability were met in all cases. The method was highly specific, as two related compounds of thiocolchicoside and nine related compounds of aceclofenac were well separated from each other. Stress study ensured the specificity of the method as the unknown degradation products formed during stress studies did not interfere with the determination of thiocolchicoside and aceclofenac, thus proving the stability indicating capacity of the method. PMID:25400407

  17. Simultaneous determination of synthetic colorants in yogurt by HPLC.

    PubMed

    de Araújo Siqueira Bento, Waleska; Lima, Bruno Parente; Paim, Ana Paula S

    2015-09-15

    This article reports on a method to determine synthetic dyes in yogurts and milk drinks. Initially a method for extraction of artificial dyes was developed to pretreat samples in order to extract most of the artificial colorants. Then, the colorants were analyzed by HPLC-PAD using gradient elutions. The method was linear in the range of 0.5-25mgL(-1) colorants (0.9991

  18. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  19. Status and use of HPLC-DAD/APCI-MS and direct flame sampling/APCI-MS for fullerenes and PAH research. First annual technical report for instrumentation grant, Project period 1 August 1992--31 July 1994

    SciTech Connect

    Howard, J.B.; Lafleur, A.L.; Taghizadeh, K.

    1994-08-01

    The PE/Sciex APCI/LC-MS equipment consists of a high performance liquid chromatograph (HPLC) with diode array spectrophotometric detector (DAD) interfaced to an atmospheric pressure ionizer with a single quadrupole mass spectrometer (MS) through a heated nebulizer. The interface between the HPLC and the MS is designed to minimize thermal input to the HPLC eluents and is of great importance for the authors intended application. Ionization occurs in a unique fashion at atmospheric pressure using a chemical ionization source (APCI). The equipment is being used for the identification and quantification of flame-generated fullerenes and polycyclic aromatic hydrocarbons (PAH). The mode of operation of this instrument is as follows: (1) complex mixtures are separated by the HPLC; (2) UV spectra of separated components are obtained by the diode array detector (DAD) as they elute from the HPLC; (3) components undergo mild ionization in the APCI source; and, (4) mass spectra are acquired by the mass spectrometer.

  20. Microwave-assisted extraction in combination with HPLC-UV for quantitative analysis of six bioactive oxoisoaporphine alkaloids in Menispermum dauricum DC.

    PubMed

    Wei, Jinxia; Chen, Jing; Liang, Xinlei; Guo, Xingjie

    2016-02-01

    A novel and reliable method based on microwave-assisted extraction (MAE) followed by HPLC-UV was developed and validated for the simultaneous quantification of six pharmacologically important oxoisoaporphine alkaloids in the total plants of Menispermum dauricum DC. The optimal MAE extraction condition was performed at 60°C for 11 min with ethanol-water (70:30, v/v) as the extracting solvent, and the solvent to solid ratio was 20:1. Chromatographic separation was achieved on a reversed-phase YMC C18 column (250 × 4.6 mm, i.d., 5 µm) with a gradient mobile phase consisting of A (1% aqueous formic acid) and B (acetonitrile containing 1% formic acid) at a flow rate of 1.5 mL/min. The detection wavelength was set at 422 nm. Excellent linearity over the investigated concentration ranges was observed with values of r >0.999 for all analytes. The method developed was validated with acceptable sensitivity, intra- and inter-day precision and extraction recoveries. It was successfully applied to the determination of six alkaloids in Menispermum dauricum DC from different sources and different parts of Menispermum dauricum DC. The results obtained indicated that the method is suitable for the quality control of Menispermum dauricum DC.

  1. An HPLC method for determination of inosine and hypoxanthine in human plasma from healthy volunteers and patients presenting with potential acute cardiac ischemia.

    PubMed

    Farthing, Don; Sica, Domenic; Gehr, Todd; Wilson, Bill; Fakhry, Itaf; Larus, Terri; Farthing, Christine; Karnes, H Thomas

    2007-07-01

    A simple and sensitive high-performance liquid chromatography (HPLC) method utilizing ultraviolet (UV) detection was developed for the determination of inosine and hypoxanthine in human plasma. For component separation, a monolithic C(18) column at a flow rate of 1.0 mL/min with an aqueous mobile phase of trifluoroacetic acid (0.1% TFA in deionized water pH 2.2, v/v) and methanol gradient was used. The method employed a one-step sample preparation utilizing centrifugal filtration with high component recoveries (approximately 98%) from plasma, which eliminated the need of an internal standard. The method demonstrated excellent linearity (0.25-5 microg/mL, R>0.9990) for both inosine and hypoxanthine with detection limits of 100 ng/mL. This simple and cost effective method was utilized to evaluate potential endogenous plasma biomarker(s), which may aid hospital emergency personnel in the early detection of acute cardiac ischemia in patients presenting with non-traumatic chest pain.

  2. Pharmacokinetic study of six flavones in rat plasma and tissues after oral administration of 'JiangYaBiFeng' using SPE-HPLC-DAD.

    PubMed

    Zeng, Hua-jin; Yang, Ran; Guo, Cheng; Wang, Qing-wen; Qu, Ling-bo; Li, Jian-jun

    2011-12-05

    In this study, a high performance liquid chromatography (HPLC) coupled with diode array detection (DAD) for simultaneous determination of six flavones including baicalein, sophoricoside, rutin, baicalin, quercetin and genistein in rat plasma and tissues after oral administration of JiangYaBifeng (JYBF) tablets was developed. The investigated analytes in plasma and tissues were extracted and purified with liquid-liquid extraction and solid phase extraction (SPE). Chromatographic separation was accomplished on a DIONEX Acclaim C18 column (250mm×4.6mm, 5.0μm particle size) with a simple linear gradient elution. The calibration curves for all the flavones had good linearity in the measured range with R(2) higher than 0.9983. The relative errors (REs) of the intra- and inter-day accuracy at different flavones levels were all less than ±10%. The proposed method enables unambiguous identification and quantification of investigated flavones in vivo. This is the first report on determination of the major flavones in rat plasma and tissues after oral administration of JYBF tablets. The results provided a meaningful basis for evaluating the clinical application of this medicine.

  3. Development and validation of a HPLC-UV method for the simultaneous determination of the antipsychotics clozapine, olanzapine and quetiapine, several beta-blockers and their metabolites.

    PubMed

    Gracia, Margarete Silva; Köppl, Alexandra; Unholzer, Sandra; Haen, Ekkehard

    2017-03-07

    A simple, accurate and selective column-switching high performance liquid chromatography (HPLC) method was developed and validated for simultaneous quantification of six beta-blockers (metoprolol MET, timolol TIM, bisoprolol BIS, propranolol PRO, carvedilol CAR and nebivolol NEB), three of their metabolites (α-hydroxy metoprolol α-HMET, N-desisopropyl propranolol DIPRO and 4'-hydroxy carvedilol 4-HCAR), three antipsychotics (olanzapine OLA, clozapine CLO and quetiapine QUE) and three of their metabolites (N-desmethyl olanzapine DMOLA, N-desmethyl clozapine DMCLO and N-desalkyl quetiapine DAQUE) in human serum. After pretreatment on a Merck LiChrospher RP-4 ADS column (25 μm) drugs were separated on a Phenomenex Gemini Phenyl Hexyl 110 A column (250 mm x 4.6 mm, 5 μm) using a gradient mixture of acetonitrile and potassium dihydrogen phosphate buffer pH 3.1 (containing 10 % methanol) as a mobile phase at a flow rate of 1ml/min. The total analysis time was 40 min. For detection of the analytes, four different UV wavelengths were used: 215 nm, 226 nm, 242 nm and 299 nm. The method was validated according to the guidelines of the Society of Toxicology and Forensic Chemistry (GTFCh) in terms of selectivity, linearity, accuracy, precision and stability and successfully applied for the analysis of the 15 described analytes in human serum.

  4. Simultaneous determination of catechins, caffeine and gallic acids in green, Oolong, black and pu-erh teas using HPLC with a photodiode array detector.

    PubMed

    Zuo, Yuegang; Chen, Hao; Deng, Yiwei

    2002-05-16

    A simple and fast HPLC method using a photodiode array detector was developed for simultaneous determination of four major catechins, gallic acid and caffeine. After multiple extractions with aqueous methanol and acidic methanol solutions, tea extract was separated within 20 min using a methanol-acetate-water buffer gradient elution system on a C(18) column. The sample extraction data demonstrated that the single extraction used in the previous studies with aqueous acetonitrile or methanol is not sufficient; the multiple extraction procedure is essential for the quantitative analysis of catechins, phenolic acids and caffeine in teas. Several green, Oolong, black and pu-erh teas were successfully analyzed by this method. The analytical results obtained indicated that green teas contain higher content of catechins [(-)-epigallocatechin gallate, (-)-epigallocatechin, (-)-epicatechin gallate, and (-)-epicatechin] than both Oolong, pu-erh and black teas because fermentation process during the tea manufacturing reduced the levels of catechins significantly. The fermentation process also remarkably elevated the levels of gallic acid in full-fermented pu-erh and black teas. Another interesting finding is the low level of caffeine in Oolong teas, especially in Fujian Oolong tea.

  5. Design of Experiment (DOE) Utilization to Develop a Simple and Robust Reversed-Phase HPLC Technique for Related Substances’ Estimation of Omeprazole Formulations

    PubMed Central

    Manranjan, Vayeda Chintan; Yadav, Devendra Singh; Jogia, Hitesh Amrutlal; Chauhan, Praful Lalitkumar

    2013-01-01

    A simple, fast, and sensitive reversed-phase HPLC method with UV detection was developed for the quantitation of omeprazole and its eleven related compounds (impurities) in pharmaceutical formulation using the Thermo Accucore C–18 (50 mm × 4.6 mm, 2.6 μm) column. The separation among all the compounds was achieved with a flow rate of 0.8 mL min−1 employing a gradient program of mobile phase A [0.08 M glycine buffer pH 9.0: acetonitrile; 95:05 (v/v)] and mobile phase B [acetonitrile: methanol; 65:35 (v/v)]. The chromatographic detection was carried out at a wavelength of 305 nm. The method was validated for specificity, linearity, and recovery. The huskiness of the method was determined prior to validation using the Design of Experiments (DOE). The ANOVA analysis of DOE with a 95% confidence interval (CI) confirmed the buffer pH of mobile phase A (p <0.0001) and column temperature (p<0.0001) as significant Critical Method Parameters (CMPs). PMID:24482772

  6. Enantioselective determination of metoprolol and its metabolites in human urine high-performance liquid chromatography with fluorescence detection (HPLC-FLD) and tandem mass spectrometry (MS/MS).

    PubMed

    Baranowska, Irena; Adolf, Weronika; Magiera, Sylwia

    2015-11-01

    A sensitive, stereoselective assay using solid phase extraction and high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) was developed and validated for the analysis of enantiomers of metoprolol and its metabolites (α-hydroxymetoprolol, O-desmethylmetoprolol). Chiral separation was achieved using a CHIRALCEL OD-RH column, packed with cellulose tris-(3,5-dimethylphenyl-carbamate) stationary phase, employing a mobile phase composed by a mixture of 0.2% diethylamine in water and acetonitrile in gradient elution mode. Linear calibration curves were obtained over the range of 0.025-2.0μg/mL (R(2)>0.994) in urine for both enantiomers of metoprolol and its metabolites with quantitation limit of 0.025μg/mL. Intra and inter-day precision and accuracy were below 15% for both metoprolol and metabolites enantiomers. The recovery of enantiomer of metoprolol and its metabolite was greater than 68.0%, utilizing a SPE procedure. The method was tested with urine quality control samples and human urine fractions after administration of 50mg rac-metoprolol.

  7. Identification of TLC markers and quantification by HPLC-MS of various constituents in noni fruit powder and commercial noni-derived products.

    PubMed

    Potterat, Olivier; Felten, Roger Von; Dalsgaard, Petur W; Hamburger, Matthias

    2007-09-05

    The composition of noni (Morinda citrifolia) products has been investigated. TLC profiles of several commercial juices and capsules were compared. 3-Methyl-1,3-butanediol was identified as a typical marker in noni juices. The presence of sorbic acid (E200) was detected in one juice declared as additive free. Quantitative data have been obtained by HPLC-MS. A method for the quantification of characteristic noni constituents, such as iridoid glucosides, scopoletin, rutin, fatty acid glucosides, and anthraquinones, was developed and validated. The separation was performed on a C18 column with a gradient of acetonitrile in water containing 0.1% formic acid. Detection was carried out with ESI-MS in the negative ion mode. Significant differences were observed between the products. Asperulosidic acid, deacetylasperulosidic acid, and rutin were present in all samples analyzed, but their concentrations differed considerably between the products. Fatty acid glucosides, noniosides B and C, were present in capsules and most juices. Scopoletin was mainly found in juices. The anthraquinone alizarin, which has been reported from roots and leaves, was not detected in the samples investigated.

  8. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  9. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  10. Magnetic separation of uranium from magnesium fluoride

    SciTech Connect

    Hoegler, J.M.

    1987-01-01

    The attraction or repulsion of particles by a magnetic gradient, based on the respective susceptibilities, provides the basis for physical separation of particles that are comprised predominantly of uranium from those that are predominantly magnesium fluoride (MgF/sub 2/). To determine the effectiveness of this approach, a bench-scale magnetic separator from the S.G. Frantz Co., Inc. was used. In the Frantz Model L-1, particles are fed through a funnel onto a vibration tray and through a magnetic field. The specific design of the Frantz magnet causes the magnetic field strength to vary along the width of the magnet, setting up a gradient. The tray in the magnetic field is split at a point about half way down its length so that the separated material does not recombine. A schematic is presented of Frantz Model L-1 CN - the same magnet configured for high gradient magnetic separation of liquid-suspended particles. Here different pole pieces create a uniform magnetic field, and stainless steel wood in the canister between the pole pieces creates the high gradient. 1 ref., 6 figs., 2 tabs.

  11. Development and Validation of Stability-indicating HPLC Method for Betamethoasone Dipropionate and Related Substances in Topical Formulation.

    PubMed

    Vairale, A S; Sivaswaroop, P; Bandana, S

    2012-03-01

    A gradient reversed phase HPLC method was developed and validated for analysis of betamethasone dipropionate, its related substances and degradation products, using Altima C(18) column (250×4.6 mm, 5 μm) with a flow rate of 1.0 ml/min and detection wavelength of 240 nm. The mobile phase A is a mixture of water, tetrahydrofuran and acetonitrile in the ratio of 90:4:6 (v/v/v) while mobile phase B is a mixture of acetonitrile, tetrahydrofuran, water and methanol in the ratio of 74:2:4:20 (v/v/v/v). The samples were analyzed using 20 μl injection volume and the column temperature was maintained at 50°. The limit of detection and limit of quantitation were found to be 0.02 μg/ml and 0.07 μg/ml, respectively. The stability-indicating capability of method was established by forced degradation studies and method demonstrated successful separation of drug, its related substances and degradation products. The method was validated as per the International Conference on Harmonization guidelines. The developed method is linear in the range of 0.07 to 200% of specification limits established for all the known related substances; betamethasone17-propionate, betamethasone 21-propionate, betamethasone 17-propionate-21-acetate (RSD <5, 2, 1%, respectively, r(2)=09991-0.9999 for sample concentration of 100 μg/ml). The method is sensitive, specific, linear, accurate, precise and stability indicating for the quantitation of drug, its related substances and other degradation compounds.

  12. Development and Validation of Stability-indicating HPLC Method for Betamethoasone Dipropionate and Related Substances in Topical Formulation

    PubMed Central

    Vairale, A. S.; Sivaswaroop, P.; Bandana, S.

    2012-01-01

    A gradient reversed phase HPLC method was developed and validated for analysis of betamethasone dipropionate, its related substances and degradation products, using Altima C18 column (250×4.6 mm, 5 μm) with a flow rate of 1.0 ml/min and detection wavelength of 240 nm. The mobile phase A is a mixture of water, tetrahydrofuran and acetonitrile in the ratio of 90:4:6 (v/v/v) while mobile phase B is a mixture of acetonitrile, tetrahydrofuran, water and methanol in the ratio of 74:2:4:20 (v/v/v/v). The samples were analyzed using 20 μl injection volume and the column temperature was maintained at 50°. The limit of detection and limit of quantitation were found to be 0.02 μg/ml and 0.07 μg/ml, respectively. The stability-indicating capability of method was established by forced degradation studies and method demonstrated successful separation of drug, its related substances and degradation products. The method was validated as per the International Conference on Harmonization guidelines. The developed method is linear in the range of 0.07 to 200% of specification limits established for all the known related substances; betamethasone17-propionate, betamethasone 21-propionate, betamethasone 17-propionate-21-acetate (RSD <5, 2, 1%, respectively, r2=09991-0.9999 for sample concentration of 100 μg/ml). The method is sensitive, specific, linear, accurate, precise and stability indicating for the quantitation of drug, its related substances and other degradation compounds. PMID:23325990

  13. Determination of chlorpheniramine in human plasma by HPLC-ESI-MS/MS: application to a dexchlorpheniramine comparative bioavailability study.

    PubMed

    Moreno, Ronilson Agnaldo; Oliveira-Silva, Diogo; Sverdloff, Carlos Eduardo; Borges, Bruno Carter; Rebelo Galvinas, Paulo Alexandre; Astigarraga, Rafael Barrientos; Borges, Ney Carter

    2010-07-01

    In the present study a fast, sensitive and robust validated method to quantify chlorpheniramine in human plasma using brompheniramine as internal standard (IS) is described. The analyte and the IS were extracted from plasma by LLE (diethyl ether-dichloromethane, 80:20, v/v) and analyzed by HPLC-ESI-MS/MS. Chromatographic separation was performed using a gradient of methanol from 35 to 90% with 2.5 mm NH(4)OH on a Gemini Phenomenex C(8) 5 microm column (50 x 4.6 mm i.d.) in 5.0 min/run. The method fitted to a linear calibration curve (0.05-10 ng/mL, R > 0.9991). The precision (%CV) and accuracy ranged, respectively: intra-batch from 1.5 to 6.8% and 99.1 to 106.6%, and inter-batch from 2.4 to 9.0%, and 99.9 to 103.1%. The validated bioanalytical procedure was used to assess the comparative bioavailability in healthy volunteers of two dexchlorpheniramine 2.0 mg tablet formulations (test dexchlorpheniramine, Eurofarma, and reference Celestamine, Schering-Plough). The study was conducted using an open, randomized, two-period crossover design with a 2 week washout interval. Since the 90% confidence interval for C(max) and AUC ratios were all within the 80-125% interval proposed by ANVISA and FDA, it was concluded that test and reference formulations are bioequivalent concerning the rate and the extent of absorption.

  14. Development and Optimization of HPLC Analysis of Metronidazole, Diloxanide, Spiramycin and Cliquinol in Pharmaceutical Dosage Forms Using Experimental Design.

    PubMed

    Elkhoudary, Mahmoud M; Abdel Salam, Randa A; Hadad, Ghada M

    2016-11-01

    A new simple, sensitive, rapid and accurate gradient reversed-phase high-performance liquid chromatography with photodiode array detector (RP-HPLC-DAD) was developed and validated for simultaneous analysis of Metronidazole (MNZ), Spiramycin (SPY), Diloxanidefuroate (DIX) and Cliquinol (CLQ) using statistical experimental design. Initially, a resolution V fractional factorial design was used in order to screen five independent factors: the column temperature (°C), pH, phosphate buffer concentration (mM), flow rate (ml/min) and the initial fraction of mobile phase B (%). pH, flow rate and initial fraction of mobile phase B were identified as significant, using analysis of variance. The optimum conditions of separation determined with the aid of central composite design were: (1) initial mobile phase concentration: phosphate buffer/methanol (50/50, v/v), (2) phosphate buffer concentration (50 mM), (3) pH (4.72), (4) column temperature 30°C and (5) mobile phase flow rate (0.8 ml min(-1)). Excellent linearity was observed for all of the standard calibration curves, and the correlation coefficients were above 0.9999. Limits of detection for all of the analyzed compounds ranged between 0.02 and 0.11 μg ml(-1); limits of quantitation ranged between 0.06 and 0.33 μg ml(-1) The proposed method showed good prediction ability. The optimized method was validated according to ICH guidelines. Three commercially available tablets were analyzed showing good % recovery and %RSD.

  15. An Investigation Into HPLC Data Quality Problems

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; VanHeukelem, Laurie

    2011-01-01

    This report summarizes the analyses and results produced by a five-member investigative team of Government, university, and industry experts, established by NASA HQ. The team examined data quality problems associated with high performance liquid chromatography (HPLC) analyses of pigment concentrations in seawater samples produced by the San Diego State University (SDSU) Center for Hydro-Optics and Remote Sensing (CHORS). This report shows CHORS did not validate the methods used before placing them into service to analyze field samples for NASA principal investigators (PIs), even though the HPLC literature contained easily accessible method validation procedures, and the importance of implementing them, more than a decade ago. In addition, there were so many sources of significant variance in the CHORS methodologies, that the HPLC system rarely operated within performance criteria capable of producing the requisite data quality. It is the recommendation of the investigative team to a) not correct the data, b) make all the data that was temporarily sequestered available for scientific use, and c) label the affected data with an appropriate warning, e.g., "These data are not validated and should not be used as the sole basis for a scientific result, conclusion, or hypothesis--independent corroborating evidence is required."

  16. Strong cation exchange monoliths for HPLC by Reactive Gelation.

    PubMed

    Brand, Bastian; Krättli, Martin; Storti, Giuseppe; Morbidelli, Massimo

    2011-08-01

    Polymeric monolithic stationary phases for HPLC can be produced by Reactive Gelation. Unlike the conventional method of using porogens, such novel process consists of a number of separate steps, thus enabling a better control of the quality of the final material. A suspension of polymer nanoparticles in water is produced and subsequently swollen with hydrophobic monomers. The particles are then destabilised (usually by salt addition) to make them aggregate into a large percolating structure, the so-called monolith. Finally, the added monomer can then be polymerised to harden the structure. In this work, a polystyrene latex is used as the base material and functionalised by introduction of epoxide groups on the surface and subsequent reaction to sulphonic acid groups, yielding a SO3(-) density of 0.7 mmol/g dry material. Morphological investigations show 54% porosity made of 300 nm large pores. Van Deemter measurements of a large protein show no practical influence of diffusion limitations on the plate number. Finally, a preliminary separation of a test protein mixture is shown, demonstrating the potential of using ion-exchange chromatography on Reactive Gelation monoliths.

  17. Multifraction separation in countercurrent chromatography (MCSGP).

    PubMed

    Krättli, Martin; Müller-Späth, Thomas; Morbidelli, Massimo

    2013-09-01

    The multicolumn countercurrent solvent gradient purification (MCSGP) process is a continuous countercurrent multicolumn chromatography process capable of performing three fraction separations while applying a linear gradient of some modifier. This process can then be used either for the purification of a single species from a multicomponent mixture or to separate a three component mixture in one single operation. In this work, this process is extended to the separation of multifractions, in principle with no limitation. To achieve this goal the MCSGP standard process is extended by introducing one extra separation section per extra fraction to be isolated. Such an extra separation section is realized in this work through a single additional column, so that a n fraction MCSGP process can be realized using a minimum of n columns. Two separation processes were considered to experimentally demonstrate the possibility of realizing a four-fraction MCSGP unit able to purify two intermediate products in a given multicomponent mixture. The first one was a model mixture containing four different proteins. The two proteins eluting in the center of the chromatogram were purified with yields equal to 95% for the early eluting and 92% for the later eluting one. The corresponding purities were 94% and 97%, respectively. Such performance was well superior to that of the batch operation with the same modifier gradient which for the same purity values could not achieve yields larger than 67% and 81%, respectively. Similar performance improvements were found for the second separation where two out of seven charge variants which constitute the mAb Cetuximab currently available on the market have been purified in one single operation using a four-fraction MCSGP unit. In this case, yields of 81% and 65% were obtained with purities of 90% and 89%, respectively. These data compare well with the corresponding data from batch chromatography where with the same gradient and for the same

  18. Parameter-exploring policy gradients.

    PubMed

    Sehnke, Frank; Osendorfer, Christian; Rückstiess, Thomas; Graves, Alex; Peters, Jan; Schmidhuber, Jürgen

    2010-05-01

    We present a model-free reinforcement learning method for partially observable Markov decision problems. Our method estimates a likelihood gradient by sampling directly in parameter space, which leads to lower variance gradient estimates than obtained by regular policy gradient methods. We show that for several complex control tasks, including robust standing with a humanoid robot, this method outperforms well-known algorithms from the fields of standard policy gradients, finite difference methods and population based heuristics. We also show that the improvement is largest when the parameter samples are drawn symmetrically. Lastly we analyse the importance of the individual components of our method by incrementally incorporating them into the other algorithms, and measuring the gain in performance after each step.

  19. Mixed-mode reversed-phase and ion-exchange monolithic columns for micro-HPLC.

    PubMed

    Jiang, Zhengjin; Smith, Norman W; Ferguson, Paul D; Taylor, Mark R

    2008-08-01

    This paper describes the fabrication of RP/ion-exchange mixed-mode monolithic materials for capillary LC. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by copolymerisation of pentaerythritol diacrylate monostearate (PEDAS), 2-sulphoethyl methacrylate (SEMA) with/without ethylene glycol dimethacrylate (EDMA) within 100 microm id capillaries. In order to investigate the porous properties of the monoliths prepared in our laboratory, mercury intrusion porosimetry, SEM and micro-HPLC were used to measure the monolithic structures. The monolithic columns prepared without EDMA showed bad mechanical stability at high pressure, which is undesirable for micro-HPLC applications. However, it was observed that the small amount (5% w/w) of EDMA clearly improved the mechanical stability of the monoliths. In order to evaluate their application for micro-HPLC, a range of neutral, acidic and basic compounds was separated with these capillaries and satisfactory separations were obtained. In order to further investigate the separation mechanism of these monolithic columns, comparative studies were carried out on the poly(PEDAS-co-SEMA) monolithic column and two other monoliths, poly(PEDAS) and poly(PEDAS-co-2-(methacryloyloxy)ethyl-trimethylammonium methylsulphate (METAM)). As expected, different selectivities were observed for the separation of basic compounds on all three monolithic columns using the same separation conditions. The mobile phase pH also showed clear influence on the retention time of basic compounds. This could be explained by ion-exchange interaction between positively charged analytes and the negatively charged sulphate group.

  20. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.